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Abstract 

The mutation is a fundamental source of biological evolution that create genetic variation in 

populations. Mutations can create new advantageous traits, but also potentially interfere with 

pre-existing organismal functions. Therefore, organisms may have evolved their mutation 

rates to appropriate levels to maintain or improve their fitness. In this study, we aimed to 

experimentally quantify the relationship between mutation rate and the speed of antibiotic 

resistance evolution. We conducted experimental evolution using twelve Escherichia coli 

mutator strains with increased mutation rates and five antibiotics. Our results showed that 

the highest mutation rate did not necessarily lead to the highest speed of adaptation, 

indicating a non-monotonic relationship between the speed of drug resistance evolution and 

mutation rate as expected. Moreover, this relationship was observed to differ among drugs, 

with significant differences in peak size observed between bacteriostatic and bactericidal 

antibiotics. We also successfully reproduced the mutation-rate dependence of the speed of 

adaptation using numerical simulation of a population dynamics model. These findings offer 

significant insights into the mutation rate's evolution concomitant with the development of 

antibiotic resistance. 
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Introduction 

The mutation is a fundamental driving force behind biological evolution since it serves as a 

source of genetic variation within a population. Mutations have the ability to create new 

advantageous traits that are favored by natural selection while having a potential for 

interfering with pre-existing organismal functions. In other words, mutations exert a double-

edged-sword influence on organisms, conferring both beneficial and deleterious effects 

[1] ,and that implies that mutation rates are adjusted to appropriate levels [1–3]. Specifically, 

under certain selection pressures, the speed of adaptive evolution can increase with the 

mutation rate, as demonstrated by several studies [4–6]. Accordingly, one would anticipate 

that alleles that change mutation rates can undergo positive selection in some conditions. 

For example, in the long-term experimental evolution of asexual Escherichia coli populations, 

cells with a significantly higher mutation rate called ‘mutator’ emerged [7,8], which likely 

acquired a larger number of beneficial mutations than the wild-type strain. However, when 

the mutation rate is too high, fitness is expected to decrease due to deleterious mutations 

that are more common than beneficial ones. Thus, under such circumstances, selection 

pressure can reduce the mutation rate. Indeed, several studies have demonstrated a 

reduction in mutation rate during evolution [3,9,10]. The beneficial and harmful effects of 

mutations imply a non-monotonic relationship between mutation rate and the speed of fitness 

increase. 

Experimental evolution of asexual bacterial populations, aided by whole-genome 

sequencing, is a powerful tool for investigating the effects of mutation rates on evolution 

[1,3,4,6,11]. Bacterial strains with different mutation rates can be prepared, for example, by 

deleting genes related to DNA-repair mechanisms as the mutator strains. Using these strains, 

we can evaluate how changes in mutation rates affect the course of evolution. For example, 

Wagner and his colleagues conducted experimental evolution with engineered E. coli strains 

having four different mutation rates [12]. They evolved these strains for 3,000 generations in 

a minimal medium without explicit stressors. Although populations with higher mutation rates 

had greater genetic diversity, this diversity only benefited when the mutation rate was 

modestly high. The study demonstrated that the highest mutation rates they used were not 

optimal for evolution in the environment during the long-term cultivation, or stress tolerance 

in novel environments after evolution. 

Although the question of how evolutionary dynamics depend on mutation rates is 

important and has been the focus of many studies, the extent to which this relationship is 

influenced by the selective environment remains uncertain. The relationship is expected to 

depend on multiple factors, including the frequency of beneficial and harmful mutations, 

population size, and selection pressure. Analyzing the mutation rate dependency of 
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evolutionary dynamics experimentally allows us to capture the contributions of these factors, 

providing a better understanding of how mutation rates evolve in nature and laboratories. For 

example, the evolution of antibiotic resistance in microorganisms has been extensively 

studied in both laboratory and clinical settings [13–17]. Examining how evolutionary 

dynamics under antibiotics depend on mutation rates will provide valuable insight into the 

broader mechanisms underlying the emergence of antibiotic resistance. 

In this study, we aimed to experimentally quantify the mutation rate dependency of 

the speed of antibiotic resistance evolution. To achieve this, we constructed twelve E. coli 

mutator strains with elevated mutation rates and conducted experimental evolution under five 

different antibiotics with varying action mechanisms. The results revealed a non-monotonic 

dependency between speed of adaptation, as quantified by the increasing rate of minimum 

inhibitory concentration (MIC), and the mutation rate. Furthermore, this dependency was 

found to differ between drugs, with significant differences between bacteriostatic and 

bactericidal antibiotics. We successfully reproduced these mutation-rate dependencies using 

numerical simulations of population dynamics model. This study provides valuable insights 

into the mechanisms that underlie the evolution of antibiotic resistance and highlights the 

importance of taking mutation rates into account when evaluating the efficacy of antibiotic 

treatments. 

 

Results 

Construction of hyper-mutable strains 

We used the E. coli MDS42 strain as the wild-type (WT) and generated knockout mutants of 

the mutS, mutH, mutL, mutT, and dnaQ genes, which we denoted as S, H, L, T, and Q, 

respectively. The mutS, mutH, and mutL genes are involved in the mismatch repair 

machinery [18], mutT plays a role in maintaining replication fidelity [19], and dnaQ codes for 

the epsilon subunit of DNA polymerase III [20]. Deletion of these genes is known to cause a 

loss of replication fidelity and an increase in mutation rates. Additionally, we created seven 

double-gene-knockout strains and obtained 12 hyper-mutable strains, which are listed in 

Table 1. 

To quantify the mutation rate, we conducted mutation accumulation (MA) 

experiments using the hyper-mutable strains as ancestors. Specifically, we propagated three 

lineages for each ancestor as single colonies on agar plate medium for 23-70 passages. We 

estimated the number of generations during the MA experiment by establishing a relationship 

between colony size and cell number [21–23]. Subsequently, we sequenced the samples at 

the end of the MA experiment to detect point mutations accumulated on the genome. The 

total number of identified base-pair substitutions (BPS) is summarized in Table 1. 
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We calculated the mutation rates per generation for each strain, following the 

previous study [24]. Initially, we determined the proportion of each pattern of synonymous 

base-pair substitution. Subsequently, we estimated the genome-wide mutation rate by 

dividing the number of accumulated mutations on a genome by the number of generations, 

and then normalizing it with the frequency of possible mutational patterns. As shown in Fig. 

1, our results showed that the hyper-mutable strains exhibited mutation rates about 6 to 400 

times higher than that of WT. The base-pair substitution patterns varied depending on the 

knockout gene(s), as shown in the pie charts in Fig. 1, which was consistent with previous 

studies [19,22,25–27]. Specifically, disruption of the mismatch-repair mechanism (ΔmutS, 

ΔmutH, ΔmutL) increased A:T to G:C and G:C to A:T substitutions, while knockout of the 

mutT gene increased only A:T to C:G. Additionally, for each hyper-mutable strain, we 

calculated dN/dS ratios, which represents the ratio of nonsynonymous to synonymous 

substitution rates. We found that dN/dS ratios did not differ from 1 for all strains except for 

WT, which had scarcely accumulated mutations (Fig. S1A). The dN/dS ratio close to 1 

suggested that selection had little effect in our MA experiments. 

We then quantified the growth rates of the hyper-mutable strains in M9 minimum 

medium without adding any antibiotics. As shown in Fig. S1B, the growth rate decreased with 

increasing mutation rate, indicating deleterious effects of higher mutation rates.  

 

Quantifying speed of adaptation under antibiotics 

To elucidate the relationship between mutation rate and evolutionary dynamics, we 

conducted experimental evolution of twelve hyper-mutable strains and the wild-type strain 

using five antibiotics with distinct action mechanisms, namely chloramphenicol (CP), 

trimethoprim (TP), amikacin (AMK), cefixime (CFIX), and ciprofloxacin (CPFX). We 

maintained four replica lines for each strain-antibiotic combination, resulting in a total of 260 

individually evolving lines (13 strains × 5 antibiotics × 4 replicas). The cells were cultured in 

200 µl of M9 medium supplemented with 20 amino acids (M9+AA medium) in a 96-well 

microtiter plate, to which each antibiotic was added as a two-fold dilution series (Fig. 2A). 

The cultivation began with a fixed initial cell concentration (OD620 value of 3×10-4, 

corresponding to approximately 2×105 cells). After 24 hours of incubation, cells were 

collected from the well with the highest drug concentration among wells with OD values 

above a certain threshold (OD620=0.03). The collected cells were then transferred to a fresh 

medium containing the antibiotic dilution series, with the initial OD620 value of 3×10-4. We 

repeated this serial transfer procedure for nine days, corresponding to approximately 60 

generations of cells. 

In this study, we defined the minimum inhibitory concentration (MIC) as the drug 
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concentration of the well from which cells were transferred. Fig. 2B shows typical examples 

of the time series of MIC under TP selection, starting from the wild-type (WT) and ΔmutS (S) 

strains, respectively (all MIC time series of 260 evolutionary lines are presented in Fig. S2). 

Using these time series data of MIC, we evaluated the speed of drug resistance evolution 

under antibiotic treatment by determining the doubling rate of the MIC per day, which was 

obtained using the linear fitting method. To assess the reproducibility of our observation, we 

conducted a replicate experiment over a shorter period of five days. The results indicated 

clear correlations between the speeds of adaptation in the replica series with different 

experimental periods (Fig. S3), demonstrating the reproducibility of the estimation of 

adaptation speed. 

 

Non-monotonical relationship between mutation rate and speed of adaptation. 

Figure 3 illustrates the relationship between mutation rate and speed of adaptation for each 

antibiotic. As can be seen, these dependencies do not always follow a monotonic pattern, 

wherein the strain LQ with the highest mutation rate often exhibited a smaller speed of 

adaptation than the strains with modest mutation rates. An interesting finding is that the 

mutation rate dependencies differ among the antibiotics used for selection. For CP and TP 

selections, there were significant decreases in MIC doubling rate at the highest mutation rate, 

while no significant decrease was observed for the other three drugs. CP and TP are known 

as bacteriostatic drugs, while AMK, CFIX, and CPFX are classified as bactericidal drugs. 

Thus, our results suggest that the effect of mutation rate on antibiotic resistance evolution 

depends on the action mechanisms of the drugs used for selection. 

To elucidate the mutation rate dependency of adaptation speed, we employed a 

simple population dynamics model of multi-step resistance evolution that incorporates 

pharmacodynamic modeling [28,29]. In this model, E. coli populations can grow and increase 

their cell number up to a certain carrying capacity while accumulating mutations during their 

replication at a given mutation rate. Specifically, we considered the sequential accumulation 

of mutations that confer additive beneficial effects on growth under antibiotics (Fig. 4A). The 

population dynamics is described by the following deterministic differential equation: 

 

with  . Here,   represents the number of E. coli cells that has accumulated  

beneficial mutations,  is the growth rate,  is the death rate with  mutations, and  is the 

carrying capacity, respectively. The probability of acquiring a beneficial mutation,  , is 

assumed to be proportional to the mutation rate, , such that , where  is the ratio of 

beneficial mutations to the total mutations. The first term on the right-hand side of Eq. (1) 
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represents the influx of population caused by a single beneficial mutation. For simplicity, we 

do not allow reverse mutations that decrease the number of beneficial mutations.  

By measuring the growth rate of hyper-mutable strains that we constructed, we 

observed that the growth rate  decreases as the mutation rate  increases, as shown in Fig. 

S1, due to deleterious effects of high-mutation rate. We fit the data in Fig. S1 and obtained 

the following relationship:   per hour, with 0.90  and 54 . This 

relationship was used for the numerical simulations. 

In our model, the addition of antibiotics results in an increase in the death rate of 

cells. However, the acquisition of beneficial mutations can enable cells to overcome the 

drug's effects. We assume that the combined effect of antibiotics and beneficial mutations 

can be represented by the following death rate: 

( )

( )
(2) 

where  is log2-transformed concentration of antibiotics and the parameter    represents the 

sensitivity of the death rate to the addition of antibiotics (see Fig. 4B). At sufficiently high drug 

concentrations, the death rate   converges to the growth rate  , and cells are unable to 

proliferate further. We do not consider the case where , as a subpopulation with <  

is rapidly diluted in our serial transfer culture and becomes negligible.   represents the 

benefit resulting from the accumulation of   mutations, which corresponds to the log2-

transformed drug concentration that reduces the growth rate of the subpopulation by half 

(close to MIC in our experimental setting). In bacterial experimental evolution under 

antibiotics, MIC generally increases exponentially (see Fig. 2B for example). To model the 

exponential increase of MIC by mutations, we simply assume the following additive effect of 

mutations to the benefit: , where  and  are constant parameters representing 

the resistance of non-mutated cell and benefit of single mutation, respectively. Note that the 

unit of benefit   is log-transformed concentration, thus the above additive effect of the 

mutations represents to an exponential increase in MIC. We simplify our model by neglecting 

the individuality of mutations and assuming that each mutation has the same beneficial effect 

and cost. Additionally, we neglect any positive or negative epistasis between mutations. 

We utilized the population dynamics model to simulate the adaptive evolution of 

antibiotic resistance in our serial transfer setup (Fig. 2). In the initial condition, non-mutated 

cells were inoculated into a series of 2-fold dilutions of antibiotics with a constant initial 

density denoted as ×  and  for ≠ , in units of OD620. After 24 hours of 

cultivation, cells were sampled from an environment with highest drug concentration in which 

the total cell density exceeded a certain threshold (  ), diluted, and 

subsequently transferred to a fresh environment for the next round of cultivation. Note that 
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this procedure corresponds to our experimental design (Fig. 2A). This simulation procedure 

was iterated nine times, resulting in an increase in minimum inhibitory concentration (MIC) 

similar to that observed in Fig. 2B. 

  Figure 4C presents typical simulation results for the MIC doubling rate as a function 

of mutation rate. As shown in the figure, we observed that the curve is significantly influenced 

by , which represents the sensitivity to antibiotics. When  is equal to 0.5, the MIC increases 

significantly with the increase in mutation rate before experiencing a drastic decrease when 

mutation rates become extremely high. Conversely, when the sensitivity is high, as indicated 

by the steeper kill curve in Fig. 4B, the change in the MIC with increasing mutation rates is 

smaller. This difference can be explained by the variation in the effective population sizes 

between these two conditions. In the case of the death rate with low steepness, cells with 

fewer beneficial mutations have a greater chance to grow, and these cells can also acquire 

further beneficial mutations. Therefore, with an increase in the mutation rate, the speed of 

adaptation can increase substantially. In contrast, when the sensitivity curve is steep, only a 

small fraction of cells with beneficial mutations can grow, and the MIC improvement is 

primarily governed by the time required for the mutated cells to take over the population. 

Hence, in this case, the effect of an increased mutation rate on the speed of adaptation is 

relatively small. 

We used this population dynamics model to fit experimental data and elucidate the 

evolutionary dynamics presented in Fig. 5. The experimentally estimated values of , , 

and  were used as fixed parameters, while , and  were used as fitting parameters to 

minimize the residual sum of squares between experimental and simulated adaptation 

speeds for each antibiotic. Due to the difficulty in experimentally estimating the parameter , 

representing the ratio of beneficial mutations, we assigned an arbitrary value and confirmed 

that the simulated results remained qualitatively unchanged within a certain range. The green 

solid lines in Fig. 5 represent the average of simulated results under the fitted parameters, 

with the light green range indicating the standard error estimated by bootstrap random 

resampling of experimental data. 

Our analysis revealed an interesting finding that the estimated sensitivity 

significantly differed among antibiotics (Fig. 4D), with relatively low values for CP and TP, and 

high values for the other three antibiotics. This result was consistent with the classification of 

bacteriostatic and bactericidal antibiotics, where the former is expected to have shallow killing 

curves. We were unable to find a clear interpretation for the estimated beneficial effect of 

each mutation  (Fig. S4). 

 

Discussion 
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In this study, we conducted a quantitative analysis to investigate how changes in mutation 

rates affect the speed of antibiotic resistance evolution in E. coli. To achieve this, we 

generated a set of E. coli mutator strains by single and double deletions of genes related to 

error correction. We quantified the mutation rates of these mutators using MA experiments, 

resulting in a range of mutation rates caused by the gene deletions. We then performed 

experimental evolution starting from these mutators by serial transfer culture under five 

antibiotics, and we quantified the speed of adaptation by MIC increase rate over time. Our 

results revealed a non-monotonic curve of adaptation speed as a function of mutation rate 

(Fig. 3), with the peak sizes differing among the antibiotics used for selection. We explained 

the variation in the mutation rate dependency of the adaptation speed using numerical 

simulation using the simple population model. 

Our findings indicated that the relationship between speed of adaptation and 

increasing mutation rates is dependent on the antibiotics used for selection. When using 

bacteriostatic drugs, a modest mutation rate led to a significant increase in speed of 

adaptation, while bactericidal drugs exhibited less dependency of adaptation speed on the 

mutation rate. This difference has provided novel insights into the conditions for the 

emergence of mutator strains. In cases where the slope of the killing curve for antibiotics is 

gradual, a greater number of cells have survived and obtain the opportunity to acquire 

beneficial mutations, resulting in stronger selection favoring higher mutation rates under drug 

treatment. Conversely, if the sensitivity to a drug shows a steep response, only a small 

fraction of cells survives and has a chance to acquire beneficial mutations. In this case, with 

a smaller effective population size, the benefit of increasing the mutation rate for resistance 

evolution is limited. While the relationship between mutation rate and the speed of adaptive 

evolution has been previously explored [5,12], these analyses were conducted under single 

selection environment. In contrast, the current study employed various drugs with distinct 

action mechanisms, implying that the effective population size, under the influence of strong 

drug selection, may impact the association between mutation rate and adaptation speed. 

Notably, our results indicate that the rate of adaptation under amikacin addition did not have 

a significant increase with increase in mutation rate. This result may shed light on the 

mechanism responsible for the infrequent emergence of amikacin-resistant strains [30]. As 

the emergence of mutator pathogens with multi-drug resistance is an increasingly important 

problem worldwide, our findings could serve as a basis for designing drug usage to suppress 

antibiotic resistance evolution. 

As a recent advancement, Bollenbach and colleagues conducted drug-resistance 

evolution experiments with E. coli using an automated platform to quantify the evolvability of 

98 strains with gene deletions [31]. Their study demonstrates epistasis between resistance 
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mutations and genetic background by identifying gene deletion strains that affect the 

evolvability of drug resistance. The gene deletion library they used included mutL and mutT, 

which showed a modestly high mutation rate in our MA experiment. Additionally, they used 

Tetracycline and Chloramphenicol, which are both bacteriostatic drugs. Their experiment also 

showed that deletion of mutL and mutT generally accelerated the evolution of resistance to 

these drugs, which supports our conclusion. Note that they selected the gene deletions by 

ensuring that these deletions did not bring significant growth reduction to the cells in drug-

free media. This gene selection contrasts with our research which focuses on the impact of 

higher mutation rates alongside growth reduction on evolvability. In this way, their study 

elaborates on the effect of gene deletions mainly involved in efflux pumps on drug resistance 

and resistance evolution, as well as the types of mutations that occur in the evolved strain. 

On the other hand, we shed light on the phenomenological behavior using quantitative 

parameters of mutation rate and growth rate, and the evolution of drug resistance. We found 

that qualitative changes in their phenomenological behavior appeared depending on whether 

the drug is bacteriostatic or bactericidal. 

There are still questions regarding the relationship between mutation rate, fitness, 

and evolution of drug resistance. In our mutator strains, the highest mutation rate observed 

was about 1 base pair per genome per generation in the LQ strain. The LQ strain showed a 

significant reduction in growth rate, approximately 30% lower than the wild-type strain. 

Although the growth defect is likely due to the higher mutation rate, the mechanism for the 

growth rate reduction cannot always be attributed to the fixation of deleterious mutations. For 

example, assuming that 10% of all fixed mutations are lethal, the observed mutation rate in 

the LQ strain would only result in a 10% reduction in growth rate, despite the extremely high 

ratio of lethal mutations. Thus, fixation of deleterious or lethal mutations can only explain a 

small fraction of the growth defect, and unknown mechanisms remain for the growth defect 

under a high mutation rate. One possible mechanism is the cost associated with high-

frequency gene repair, which could consume the cellular resources necessary for growth [24]. 

We anticipate that the elucidation of the growth defect will contribute to a better 

understanding of the evolution of mutation rates. 

Evolution of mutation rates and effects of new mutations on reproductive success 

have been well studied [2,32] while pathogen/drug resistance has been used merely as 

marker traits to estimate mutation rates using the fluctuation test [33,34]. Given that recent 

studies have revealed drug resistance can be achieved by loss-of-function mutations [17] 

and studies that show the fitness cost of resistant genotypes [35,36], it is likely that the 

distribution of fitness effects in environments that contain drugs is qualitatively different from 

that studied under environments without drugs, and hypermutator genotypes might be 
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favored by selection in the former environments. We provide the first empirical study that 

examines the relationship between the speed of drug-resistance evolution and mutation rates. 

Further experimental and theoretical investigations would help better understand the 

evolution of drug-resistant microbes as well as the emergence of drug-resistant cancer cells 

[37]. 

 

Methods 

Bacterial strains and media 

The insertion sequence (IS)-free E. coli K-12 substrain MDS42 [38], purchased from Scarab 

Genomics (Madison, Wisconsin, USA), was utilized as the wild-type (WT) strain in this study. 

Using this WT strain, we constructed 12 knockout strains of genes related to suppressing 

mutation rate (mutS, mutH, mutL, mutT, dnaQ) as listed in Table 1. These single- and double-

gene knockouts were performed using the λ-Red homologous recombination method [39]. E. 

coli cells were cultured in modified M9 minimal medium supplemented with 20 amino acids 

(M9+AA medium) which includes 17.1 g/L Na2HPO4·12H2O, 3.0 g/L KH2PO4, 0.5 g/L NaCl, 

2.0 g/L NH4Cl, 5.0 g/L glucose, 14.7 mg/L CaCl2·2H2O, 123.0 mg/L MgSO4·7H2O, 2.8 mg/L 

FeSO4·7H2O, and 10.0 mg/L thiamine hydrochloride (pH 7.0), and 20 canonical amino acids 

(0.02 mM Tyr and 0.05 mM of the remaining 19 amino acids) [40].  

 

Measurement of growth rate 

To measure growth rate, cells precultured to yield an initial OD600 of 1×10-4 were inoculated 

into a 96-well microtiter plate containing 100 μL of M9+AA medium. The cells were then 

cultured at 34 °C with shaking at 300 rpm, and the cell density was measured at OD600 using 

an Infinite 200 PRO (TECAN) at 15-minute intervals. The specific growth rate was calculated 

based on three data points with minimum OD600 values under the condition that OD600 > 

5×10-3. 

 

Mutation accumulation (MA) experiment 

E. coli cells were subcultured as a single colony on M9+AA agar medium and incubated at 

34 °C. To induce mutations, a colony was randomly selected and streaked onto a fresh agar 

medium every 2 days for a total of 23 or 62-70 passages. The number of generations per 

passage was estimated based on the colony diameter, which was previously shown to be a 

reliable indicator [21–23]. Specifically, we used a regression curve to estimate colony-forming 

units from the diameter and then calculated the number of generations based on the 

assumption that all the cells in a colony were derived from a single cell from the previous 

passage. The adopted relationship used in this study was (number of generations) = 24.51 
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+ 2 log2 (colony diameter in mm) [23]. After each passage, we cultured the remaining cells of 

the selected colony in M9+AA liquid medium and stored them in glycerol. We repeated the 

experiment three times for each ancestral strain, resulting in a total of 39 MA lines. 

 

Whole-genome resequencing 

Glycerol-stocked cells were grown in M9+AA medium until they reached full growth and were 

then harvested as a cell pellet using centrifugation. Genomic DNA was extracted from the 

cells using the DNeasy Blood & Tissue Kit (Qiagen). For library preparation prior to 

sequencing, the Nextera XT kit (Illumina) was used in a paired-end (2×300 bp) setting. The 

Illumina MiSeq platform was used to sequence the libraries with the MiSeq Reagent Kit v3, 

which provides 600 cycles (Illumina). The obtained short reads were mapped to the reference 

genome and point mutations accumulated during the MA experiment were detected using 

the breseq software [41]. 

 

Experimental evolution under antibiotics 

Cells were cultured in 200 µL volumes of M9+AA liquid medium in a 96-well microtiter plate. 

During the experiment, each culture line was exposed to 12 concentrations of antibiotics, 

corresponding to 11 wells with a two-fold dilution series and one drug-free well. The cell 

concentration was quantified by measuring the optical density at 620 nm (OD620). Cells were 

inoculated into these 12 wells at an initial OD620 value of 3×10-4. After 24 hours of cultivation 

at 34 °C with shaking at 300 rpm, cells were sampled from the well with the highest drug 

concentration among the wells that showed an OD620 value greater than 0.03. The sampled 

cells were diluted to an initial OD620 value of 3×10-4 and inoculated into fresh medium in 12 

wells on a new plate, which was then incubated. For each combination of strain and 

antibiotics, four independent culture lines were maintained in parallel. The serial transfer 

experiment was conducted for nine days. The described experimental operations were 

performed using an automated culture system comprising Biomek NXP laboratory 

automation workstation (Beckman Coulter) in a clean booth, STX44 automated shaker 

incubator (LiCONiC), LPX220 plate hotel (LiCONiC), and FilterMax F3 microplate reader 

(Molecular Devices) [42]. 

 

Parameter estimation 

Custom C programs were used to implement the population dynamics model described in 

equation (1) and to optimize the model parameters. Specifically, a genetic algorithm was 

employed to estimate the values of the parameters , and . The fitness function for the 

genetic algorithm was defined as the Euclidean distance between the experimentally 
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observed MIC doubling rate and the rate obtained from simulations of the population 

dynamics model. The mean and standard errors of the parameters were estimated using 

bootstrap resampling of the experimental data. 

 

Data availability 

The resequencing analysis data have been deposited at the DDBJ Sequence Read Archive 
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Strain Abbr. 
MA 

rounds 
Generations 

No. of Syn 
BPSs 

No. of NSyn 
BPSs 

MDS42 WT 66 1685.7 ± 7.0 0.67 ± 0.58 0.67 ± 0.58 

MDS42ΔmutH H 23 613.4 ± 1.7 4.33 ± 3.21 11.67 ± 1.53 

MDS42ΔmutL L 66 1675.5 ± 0.8 8.33 ± 2.31 15.00 ± 1.00 

MDS42ΔmutS S 66 1691.3 ± 9.3 11.00 ± 2.00 24.33 ± 1.15 

MDS42ΔdnaQ Q 66 1651.0 ± 5.9 8.67 ± 1.15 23.33 ± 2.89 

MDS42ΔmutT T 66 1679.7 ± 13.6 27.33 ± 2.31 157.67 ± 20.21 

MDS42ΔmutLΔmutH LH 66 1651.4 ± 13.2 10.67 ± 1.53 15.00 ± 2.00 

MDS42ΔmutSΔmutH SH 66 1691.1 ± 9.4 13.33 ± 5.13 21.00 ± 6.56 

MDS42ΔmutLΔdnaQ LQ 62,62,70 1461.2 ± 96.0 545.67 ± 60.72 939.67 ± 81.5 

MDS42ΔmutHΔmutT HT 23 610.8 ± 0.6 15.67 ± 5.03 76.33 ± 6.03 

MDS42ΔmutLΔmutT LT 23 614.7 ± 2.5 16.00 ± 2.65 84.67 ± 14.57 

MDS42ΔmutSΔmutT ST 23 605.0 ± 4.0 13.33 ± 4.51 54.33 ± 10.97 

MDS42ΔdnaQΔmutT QT 23 611.7 ± 2.6 13.33 ± 2.08 63.33 ± 7.09 

 

Table 1. Summary of MA experiments. The two right-hand columns display synonymous 

(Syn) and non-synonymous (NSyn) base-pair substitutions (BPS), respectively, while the 

mean and standard deviation of three replicates are presented. A list of all detected mutations 

and an extended table showing the number of intergenic BPS and short Indel are shown in 

Supplementary tables S1 and S2, respectively. 
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Figure 1. Mutation rates of hyper-mutable E. coli strains. Each dot with error bars represents 

the mean and standard deviation of the mutation rates observed in replicate MA lineages. 

The mutation rate was estimated using only synonymous mutations to exclude the effects of 

purifying selection. The pie charts above the dots show the distribution of substitution 

patterns identified in the hyper-mutable strains. 
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Figure 2. Experimental evolution under antibiotic selection pressure. (A) Schematic 

representation of the experimental procedure. A 96-well microtiter plate was prepared with 

two-fold serial dilutions of antibiotics. After 24 hours of cultivation, cells from the well with the 

highest drug concentration, in which the cell concentration (OD620) exceeded 0.03, were 

transferred to fresh medium with a drug concentration gradient. In this study, we designated 

the drug concentration of the selected well (green asterisk) as the minimal inhibitory 

concentration (MIC). The serial transfer cultures were iterated for 9 days. (B) Example of MIC 

changes during experimental evolution. The vertical axis shows the MIC for trimethoprim 

(TP). The black and blue lines represent the data for the WT and ΔmutS (S) strains, 

respectively. For each strain, data from four replicate series are overlaid. Data for all 

combinations of strains and drugs are presented in Fig. S2. 
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Figure 3. The relationship between mutation rate and MIC doubling rate. The dots represent 

experimental observations of 13 strains and four replicate serial transfer cultures.  
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Figure 4. Parameter estimation by a population dynamics model. (A) Schematic 

representation of the model with multi-step resistance evolution. The mutated subpopulations 

( ) with  mutations proliferate with the growth rate , mutate with the rate  , and die at 

the death rate  . The death rate depends on the benefit of mutation  conferred per 

mutation, as represented in Eq. (2). (B) The effect of antibiotics on the death rate. For the 

cases of 𝛽 = 0.5 and 𝛽 = 2, the death rates are plotted as a function of drug concentration, 

where 𝑏0  is set to 1. The death rate curve shifts towards the right due to mutation 

accumulation, as depicted by the right green lines in the case of 𝛽 = 2. (C) The simulated 

relationship between mutation rate and MIC doubling rate. The population dynamics model 

with mutation accumulation was utilized to simulate the increase in MIC observed in serial 

transfer experiments for the cases of 𝛽 = 0.5 and 𝛽 = 2. The parameters were set to 𝐾 = 0.2, 

𝑏0 = 0.5, and 𝜖 = 0.5, respectively. (D) The estimated beta value for each drug. The mean 

value of  estimated through 100 bootstrap resampling is represented by the bars, while the 

error bars represent the standard error. 
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Figure 5. The fitting results of the population dynamics model to experimental observations.  

The blue dots represent experimental observation shown in Fig.3 and the green solid line 

shows the mean of simulated MIC changes generated with the parameters estimated from 

100 bootstrap resampling, while the light green region represents the estimated standard 

error. 
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Figure S1. (A) Neutrality in mutation accumulation. The dN/dS ratio was calculated for each 

hyper-mutable strain and the wild-type strain. Error bars show the standard deviations 

between the MA lineages. (B) Relationship between growth rate and mutation rate. The 

horizontal error bars show the standard deviation across MA lineages, whereas the vertical 

error bars represent the standard deviation among replicate experiments in growth rate 

measurement. The sample sizes in the growth rate measurements were n=20 for wild-type 

strains and n=10 for mutant strains. 
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Figure S2. Experimental evolution of hyper-mutable strains under antibiotics. For all 

combinations of drugs and strains, the change of MIC over time are plotted. For each plot, 

data from four replicate series are overlaid. The dots and solid lines show experimental 

data, while dashed lines represent linear regressions of the increase in the evolutionary curve, 

performed via the least-squares method. To focus the regression analysis solely on the 

ascendant portion of the curve, data points indicating the minimum and maximum MIC values 

achievable within our experimental parameters (highlighted by gray fills) were systematically 

excluded. 
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Figure S2. (continued) 

 

  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 16, 2023. ; https://doi.org/10.1101/2023.08.15.553341doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.15.553341
http://creativecommons.org/licenses/by/4.0/


 

Figure S3. Reproducibility of the adaptation speed quantification. The MIC doubling rates 

were estimated by conducting independent experimental evolution trials with varying duration 

(9 days and 5 days, respectively). Each dot and error bars show the mean and standard 

deviation of the slope of the evolutionary curve, respectively, fitted per replicate for each 

strain as illustrated in Fig. S2. The Spearman's rank correlation coefficient and corresponding 

P-value were computed for these data points (N=13). 
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Figure S4. Estimated parameter  representing the beneficial effect of each mutation. The 

mean value estimated through 100 bootstrap resampling is represented by the bars, while 

the error bars represent the standard error. 
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