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Abstract

The mutation is a fundamental source of biological evolution that create genetic variation in
populations. Mutations can create new advantageous traits, but also potentially interfere with
pre-existing organismal functions. Therefore, organisms may have evolved their mutation
rates to appropriate levels to maintain or improve their fitness. In this study, we aimed to
experimentally quantify the relationship between mutation rate and the speed of antibiotic
resistance evolution. We conducted experimental evolution using twelve Escherichia coli
mutator strains with increased mutation rates and five antibiotics. Our results showed that
the highest mutation rate did not necessarily lead to the highest speed of adaptation,
indicating a non-monotonic relationship between the speed of drug resistance evolution and
mutation rate as expected. Moreover, this relationship was observed to differ among drugs,
with significant differences in peak size observed between bacteriostatic and bactericidal
antibiotics. We also successfully reproduced the mutation-rate dependence of the speed of
adaptation using numerical simulation of a population dynamics model. These findings offer
significant insights into the mutation rate's evolution concomitant with the development of
antibiotic resistance.
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Introduction

The mutation is a fundamental driving force behind biological evolution since it serves as a
source of genetic variation within a population. Mutations have the ability to create new
advantageous traits that are favored by natural selection while having a potential for
interfering with pre-existing organismal functions. In other words, mutations exert a double-
edged-sword influence on organisms, conferring both beneficial and deleterious effects
[1] ,and that implies that mutation rates are adjusted to appropriate levels [1-3]. Specifically,
under certain selection pressures, the speed of adaptive evolution can increase with the
mutation rate, as demonstrated by several studies [4—6]. Accordingly, one would anticipate
that alleles that change mutation rates can undergo positive selection in some conditions.
For example, in the long-term experimental evolution of asexual Escherichia coli populations,
cells with a significantly higher mutation rate called ‘mutator’ emerged [7,8], which likely
acquired a larger number of beneficial mutations than the wild-type strain. However, when
the mutation rate is too high, fitness is expected to decrease due to deleterious mutations
that are more common than beneficial ones. Thus, under such circumstances, selection
pressure can reduce the mutation rate. Indeed, several studies have demonstrated a
reduction in mutation rate during evolution [3,9,10]. The beneficial and harmful effects of
mutations imply a non-monotonic relationship between mutation rate and the speed of fitness
increase.

Experimental evolution of asexual bacterial populations, aided by whole-genome
sequencing, is a powerful tool for investigating the effects of mutation rates on evolution
[1,3,4,6,11]. Bacterial strains with different mutation rates can be prepared, for example, by
deleting genes related to DNA-repair mechanisms as the mutator strains. Using these strains,
we can evaluate how changes in mutation rates affect the course of evolution. For example,
Wagner and his colleagues conducted experimental evolution with engineered E. coli strains
having four different mutation rates [12]. They evolved these strains for 3,000 generations in
a minimal medium without explicit stressors. Although populations with higher mutation rates
had greater genetic diversity, this diversity only benefited when the mutation rate was
modestly high. The study demonstrated that the highest mutation rates they used were not
optimal for evolution in the environment during the long-term cultivation, or stress tolerance
in novel environments after evolution.

Although the question of how evolutionary dynamics depend on mutation rates is
important and has been the focus of many studies, the extent to which this relationship is
influenced by the selective environment remains uncertain. The relationship is expected to
depend on multiple factors, including the frequency of beneficial and harmful mutations,

population size, and selection pressure. Analyzing the mutation rate dependency of
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evolutionary dynamics experimentally allows us to capture the contributions of these factors,
providing a better understanding of how mutation rates evolve in nature and laboratories. For
example, the evolution of antibiotic resistance in microorganisms has been extensively
studied in both laboratory and clinical settings [13—17]. Examining how evolutionary
dynamics under antibiotics depend on mutation rates will provide valuable insight into the
broader mechanisms underlying the emergence of antibiotic resistance.

In this study, we aimed to experimentally quantify the mutation rate dependency of
the speed of antibiotic resistance evolution. To achieve this, we constructed twelve E. coli
mutator strains with elevated mutation rates and conducted experimental evolution under five
different antibiotics with varying action mechanisms. The results revealed a non-monotonic
dependency between speed of adaptation, as quantified by the increasing rate of minimum
inhibitory concentration (MIC), and the mutation rate. Furthermore, this dependency was
found to differ between drugs, with significant differences between bacteriostatic and
bactericidal antibiotics. We successfully reproduced these mutation-rate dependencies using
numerical simulations of population dynamics model. This study provides valuable insights
into the mechanisms that underlie the evolution of antibiotic resistance and highlights the
importance of taking mutation rates into account when evaluating the efficacy of antibiotic

treatments.

Results

Construction of hyper-mutable strains

We used the E. coli MDS42 strain as the wild-type (WT) and generated knockout mutants of
the mutS, mutH, mutL, mutT, and dnaQ genes, which we denoted as S, H, L, T, and Q,
respectively. The mutS, mutH, and mutL genes are involved in the mismatch repair
machinery [18], mutT plays a role in maintaining replication fidelity [19], and dnaQ codes for
the epsilon subunit of DNA polymerase Ill [20]. Deletion of these genes is known to cause a
loss of replication fidelity and an increase in mutation rates. Additionally, we created seven
double-gene-knockout strains and obtained 12 hyper-mutable strains, which are listed in
Table 1.

To quantify the mutation rate, we conducted mutation accumulation (MA)
experiments using the hyper-mutable strains as ancestors. Specifically, we propagated three
lineages for each ancestor as single colonies on agar plate medium for 23-70 passages. We
estimated the number of generations during the MA experiment by establishing a relationship
between colony size and cell number [21-23]. Subsequently, we sequenced the samples at
the end of the MA experiment to detect point mutations accumulated on the genome. The

total number of identified base-pair substitutions (BPS) is summarized in Table 1.
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We calculated the mutation rates per generation for each strain, following the
previous study [24]. Initially, we determined the proportion of each pattern of synonymous
base-pair substitution. Subsequently, we estimated the genome-wide mutation rate by
dividing the number of accumulated mutations on a genome by the number of generations,
and then normalizing it with the frequency of possible mutational patterns. As shown in Fig.
1, our results showed that the hyper-mutable strains exhibited mutation rates about 6 to 400
times higher than that of WT. The base-pair substitution patterns varied depending on the
knockout gene(s), as shown in the pie charts in Fig. 1, which was consistent with previous
studies [19,22,25-27]. Specifically, disruption of the mismatch-repair mechanism (AmutS,
AmutH, AmutL) increased A:T to G:C and G:C to A:T substitutions, while knockout of the
mutT gene increased only A:T to C:G. Additionally, for each hyper-mutable strain, we
calculated dN/dS ratios, which represents the ratio of nonsynonymous to synonymous
substitution rates. We found that dN/dS ratios did not differ from 1 for all strains except for
WT, which had scarcely accumulated mutations (Fig. S1A). The dN/dS ratio close to 1
suggested that selection had little effect in our MA experiments.

We then quantified the growth rates of the hyper-mutable strains in M9 minimum
medium without adding any antibiotics. As shown in Fig. S1B, the growth rate decreased with

increasing mutation rate, indicating deleterious effects of higher mutation rates.

Quantifying speed of adaptation under antibiotics

To elucidate the relationship between mutation rate and evolutionary dynamics, we
conducted experimental evolution of twelve hyper-mutable strains and the wild-type strain
using five antibiotics with distinct action mechanisms, namely chloramphenicol (CP),
trimethoprim (TP), amikacin (AMK), cefixime (CFIX), and ciprofloxacin (CPFX). We
maintained four replica lines for each strain-antibiotic combination, resulting in a total of 260
individually evolving lines (13 strains x 5 antibiotics x 4 replicas). The cells were cultured in
200 pl of M9 medium supplemented with 20 amino acids (M9+AA medium) in a 96-well
microtiter plate, to which each antibiotic was added as a two-fold dilution series (Fig. 2A).
The cultivation began with a fixed initial cell concentration (ODex value of 3x10%
corresponding to approximately 2x10° cells). After 24 hours of incubation, cells were
collected from the well with the highest drug concentration among wells with OD values
above a certain threshold (ODe20=0.03). The collected cells were then transferred to a fresh
medium containing the antibiotic dilution series, with the initial ODe2o value of 3x10+. We
repeated this serial transfer procedure for nine days, corresponding to approximately 60
generations of cells.

In this study, we defined the minimum inhibitory concentration (MIC) as the drug
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concentration of the well from which cells were transferred. Fig. 2B shows typical examples
of the time series of MIC under TP selection, starting from the wild-type (WT) and AmutS (S)
strains, respectively (all MIC time series of 260 evolutionary lines are presented in Fig. S2).
Using these time series data of MIC, we evaluated the speed of drug resistance evolution
under antibiotic treatment by determining the doubling rate of the MIC per day, which was
obtained using the linear fitting method. To assess the reproducibility of our observation, we
conducted a replicate experiment over a shorter period of five days. The results indicated
clear correlations between the speeds of adaptation in the replica series with different
experimental periods (Fig. S3), demonstrating the reproducibility of the estimation of

adaptation speed.

Non-monotonical relationship between mutation rate and speed of adaptation.

Figure 3 illustrates the relationship between mutation rate and speed of adaptation for each
antibiotic. As can be seen, these dependencies do not always follow a monotonic pattern,
wherein the strain LQ with the highest mutation rate often exhibited a smaller speed of
adaptation than the strains with modest mutation rates. An interesting finding is that the
mutation rate dependencies differ among the antibiotics used for selection. For CP and TP
selections, there were significant decreases in MIC doubling rate at the highest mutation rate,
while no significant decrease was observed for the other three drugs. CP and TP are known
as bacteriostatic drugs, while AMK, CFIX, and CPFX are classified as bactericidal drugs.
Thus, our results suggest that the effect of mutation rate on antibiotic resistance evolution
depends on the action mechanisms of the drugs used for selection.

To elucidate the mutation rate dependency of adaptation speed, we employed a
simple population dynamics model of multi-step resistance evolution that incorporates
pharmacodynamic modeling [28,29]. In this model, E. coli populations can grow and increase
their cell number up to a certain carrying capacity while accumulating mutations during their
replication at a given mutation rate. Specifically, we considered the sequential accumulation
of mutations that confer additive beneficial effects on growth under antibiotics (Fig. 4A). The
population dynamics is described by the following deterministic differential equation:

dM,

M M
iy M, (11— 1—p)M. (1 —-22) —~. M, 1
o= HD, ,,,,1< K>+u( »,) < K) v, M, (1)

with M =3_ M;. Here, M, represents the number of E. coli cells that has accumulated :
beneficial mutations, p is the growth rate, v, is the death rate with < mutations, and K is the
carrying capacity, respectively. The probability of acquiring a beneficial mutation, p,, is
assumed to be proportional to the mutation rate, p, such that p, = ap, where « is the ratio of

beneficial mutations to the total mutations. The first term on the right-hand side of Eq. (1)
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represents the influx of population caused by a single beneficial mutation. For simplicity, we
do not allow reverse mutations that decrease the number of beneficial mutations.

By measuring the growth rate of hyper-mutable strains that we constructed, we
observed that the growth rate © decreases as the mutation rate p increases, as shown in Fig.
S1, due to deleterious effects of high-mutation rate. We fit the data in Fig. S1 and obtained
the following relationship: 1 = p, exp(—dp) per hour, with 1, =0.90 and § = 0.54. This
relationship was used for the numerical simulations.

In our model, the addition of antibiotics results in an increase in the death rate of
cells. However, the acquisition of beneficial mutations can enable cells to overcome the
drug's effects. We assume that the combined effect of antibiotics and beneficial mutations
can be represented by the following death rate:

o (@/b)”
Ky

where z is logz-transformed concentration of antibiotics and the parameter 3 represents the

(2)

sensitivity of the death rate to the addition of antibiotics (see Fig. 4B). At sufficiently high drug
concentrations, the death rate v, converges to the growth rate 1, and cells are unable to
proliferate further. We do not consider the case where i < ,, as a subpopulation with p < v,
is rapidly diluted in our serial transfer culture and becomes negligible. b, represents the
benefit resulting from the accumulation of ¢ mutations, which corresponds to the log.-
transformed drug concentration that reduces the growth rate of the subpopulation by half
(close to MIC in our experimental setting). In bacterial experimental evolution under
antibiotics, MIC generally increases exponentially (see Fig. 2B for example). To model the
exponential increase of MIC by mutations, we simply assume the following additive effect of
mutations to the benefit: b, = b, + ic, where b, and € are constant parameters representing
the resistance of non-mutated cell and benefit of single mutation, respectively. Note that the
unit of benefit b, is log-transformed concentration, thus the above additive effect of the
mutations represents to an exponential increase in MIC. We simplify our model by neglecting
the individuality of mutations and assuming that each mutation has the same beneficial effect
and cost. Additionally, we neglect any positive or negative epistasis between mutations.

We utilized the population dynamics model to simulate the adaptive evolution of
antibiotic resistance in our serial transfer setup (Fig. 2). In the initial condition, non-mutated
cells were inoculated into a series of 2-fold dilutions of antibiotics with a constant initial
density denoted as M, = 3 x 10~* and M, = 0 for i # 0, in units of ODe20. After 24 hours of
cultivation, cells were sampled from an environment with highest drug concentration in which
the total cell density exceeded a certain threshold (M = Z,;]\/[i > 0.03), diluted, and

subsequently transferred to a fresh environment for the next round of cultivation. Note that
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this procedure corresponds to our experimental design (Fig. 2A). This simulation procedure
was iterated nine times, resulting in an increase in minimum inhibitory concentration (MIC)
similar to that observed in Fig. 2B.

Figure 4C presents typical simulation results for the MIC doubling rate as a function
of mutation rate. As shown in the figure, we observed that the curve is significantly influenced
by 8, which represents the sensitivity to antibiotics. When £ is equal to 0.5, the MIC increases
significantly with the increase in mutation rate before experiencing a drastic decrease when
mutation rates become extremely high. Conversely, when the sensitivity is high, as indicated
by the steeper kill curve in Fig. 4B, the change in the MIC with increasing mutation rates is
smaller. This difference can be explained by the variation in the effective population sizes
between these two conditions. In the case of the death rate with low steepness, cells with
fewer beneficial mutations have a greater chance to grow, and these cells can also acquire
further beneficial mutations. Therefore, with an increase in the mutation rate, the speed of
adaptation can increase substantially. In contrast, when the sensitivity curve is steep, only a
small fraction of cells with beneficial mutations can grow, and the MIC improvement is
primarily governed by the time required for the mutated cells to take over the population.
Hence, in this case, the effect of an increased mutation rate on the speed of adaptation is
relatively small.

We used this population dynamics model to fit experimental data and elucidate the
evolutionary dynamics presented in Fig. 5. The experimentally estimated values of K, 1,
and 0 were used as fixed parameters, while ¢, b, and 3 were used as fitting parameters to
minimize the residual sum of squares between experimental and simulated adaptation
speeds for each antibiotic. Due to the difficulty in experimentally estimating the parameter «,
representing the ratio of beneficial mutations, we assigned an arbitrary value and confirmed
that the simulated results remained qualitatively unchanged within a certain range. The green
solid lines in Fig. 5 represent the average of simulated results under the fitted parameters,
with the light green range indicating the standard error estimated by bootstrap random
resampling of experimental data.

Our analysis revealed an interesting finding that the estimated sensitivity
significantly differed among antibiotics (Fig. 4D), with relatively low values for CP and TP, and
high values for the other three antibiotics. This result was consistent with the classification of
bacteriostatic and bactericidal antibiotics, where the former is expected to have shallow killing
curves. We were unable to find a clear interpretation for the estimated beneficial effect of

each mutation € (Fig. S4).

Discussion


https://doi.org/10.1101/2023.08.15.553341
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.15.553341; this version posted August 16, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

In this study, we conducted a quantitative analysis to investigate how changes in mutation
rates affect the speed of antibiotic resistance evolution in E. coli. To achieve this, we
generated a set of E. coli mutator strains by single and double deletions of genes related to
error correction. We quantified the mutation rates of these mutators using MA experiments,
resulting in a range of mutation rates caused by the gene deletions. We then performed
experimental evolution starting from these mutators by serial transfer culture under five
antibiotics, and we quantified the speed of adaptation by MIC increase rate over time. Our
results revealed a non-monotonic curve of adaptation speed as a function of mutation rate
(Fig. 3), with the peak sizes differing among the antibiotics used for selection. We explained
the variation in the mutation rate dependency of the adaptation speed using numerical
simulation using the simple population model.

Our findings indicated that the relationship between speed of adaptation and
increasing mutation rates is dependent on the antibiotics used for selection. When using
bacteriostatic drugs, a modest mutation rate led to a significant increase in speed of
adaptation, while bactericidal drugs exhibited less dependency of adaptation speed on the
mutation rate. This difference has provided novel insights into the conditions for the
emergence of mutator strains. In cases where the slope of the killing curve for antibiotics is
gradual, a greater number of cells have survived and obtain the opportunity to acquire
beneficial mutations, resulting in stronger selection favoring higher mutation rates under drug
treatment. Conversely, if the sensitivity to a drug shows a steep response, only a small
fraction of cells survives and has a chance to acquire beneficial mutations. In this case, with
a smaller effective population size, the benefit of increasing the mutation rate for resistance
evolution is limited. While the relationship between mutation rate and the speed of adaptive
evolution has been previously explored [5,12], these analyses were conducted under single
selection environment. In contrast, the current study employed various drugs with distinct
action mechanisms, implying that the effective population size, under the influence of strong
drug selection, may impact the association between mutation rate and adaptation speed.
Notably, our results indicate that the rate of adaptation under amikacin addition did not have
a significant increase with increase in mutation rate. This result may shed light on the
mechanism responsible for the infrequent emergence of amikacin-resistant strains [30]. As
the emergence of mutator pathogens with multi-drug resistance is an increasingly important
problem worldwide, our findings could serve as a basis for designing drug usage to suppress
antibiotic resistance evolution.

As a recent advancement, Bollenbach and colleagues conducted drug-resistance
evolution experiments with E. coli using an automated platform to quantify the evolvability of

98 strains with gene deletions [31]. Their study demonstrates epistasis between resistance
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mutations and genetic background by identifying gene deletion strains that affect the
evolvability of drug resistance. The gene deletion library they used included mutL and mutT,
which showed a modestly high mutation rate in our MA experiment. Additionally, they used
Tetracycline and Chloramphenicol, which are both bacteriostatic drugs. Their experiment also
showed that deletion of mutL and mutT generally accelerated the evolution of resistance to
these drugs, which supports our conclusion. Note that they selected the gene deletions by
ensuring that these deletions did not bring significant growth reduction to the cells in drug-
free media. This gene selection contrasts with our research which focuses on the impact of
higher mutation rates alongside growth reduction on evolvability. In this way, their study
elaborates on the effect of gene deletions mainly involved in efflux pumps on drug resistance
and resistance evolution, as well as the types of mutations that occur in the evolved strain.
On the other hand, we shed light on the phenomenological behavior using quantitative
parameters of mutation rate and growth rate, and the evolution of drug resistance. We found
that qualitative changes in their phenomenological behavior appeared depending on whether
the drug is bacteriostatic or bactericidal.

There are still questions regarding the relationship between mutation rate, fitness,
and evolution of drug resistance. In our mutator strains, the highest mutation rate observed
was about 1 base pair per genome per generation in the LQ strain. The LQ strain showed a
significant reduction in growth rate, approximately 30% lower than the wild-type strain.
Although the growth defect is likely due to the higher mutation rate, the mechanism for the
growth rate reduction cannot always be attributed to the fixation of deleterious mutations. For
example, assuming that 10% of all fixed mutations are lethal, the observed mutation rate in
the LQ strain would only result in a 10% reduction in growth rate, despite the extremely high
ratio of lethal mutations. Thus, fixation of deleterious or lethal mutations can only explain a
small fraction of the growth defect, and unknown mechanisms remain for the growth defect
under a high mutation rate. One possible mechanism is the cost associated with high-
frequency gene repair, which could consume the cellular resources necessary for growth [24].
We anticipate that the elucidation of the growth defect will contribute to a better
understanding of the evolution of mutation rates.

Evolution of mutation rates and effects of new mutations on reproductive success
have been well studied [2,32] while pathogen/drug resistance has been used merely as
marker traits to estimate mutation rates using the fluctuation test [33,34]. Given that recent
studies have revealed drug resistance can be achieved by loss-of-function mutations [17]
and studies that show the fitness cost of resistant genotypes [35,36], it is likely that the
distribution of fitness effects in environments that contain drugs is qualitatively different from

that studied under environments without drugs, and hypermutator genotypes might be
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favored by selection in the former environments. We provide the first empirical study that
examines the relationship between the speed of drug-resistance evolution and mutation rates.
Further experimental and theoretical investigations would help better understand the
evolution of drug-resistant microbes as well as the emergence of drug-resistant cancer cells
[37].

Methods

Bacterial strains and media

The insertion sequence (IS)-free E. coli K-12 substrain MDS42 [38], purchased from Scarab
Genomics (Madison, Wisconsin, USA), was utilized as the wild-type (WT) strain in this study.
Using this WT strain, we constructed 12 knockout strains of genes related to suppressing
mutation rate (mutS, mutH, mutL, mutT, dnaQ) as listed in Table 1. These single- and double-
gene knockouts were performed using the A-Red homologous recombination method [39]. E.
coli cells were cultured in modified M9 minimal medium supplemented with 20 amino acids
(M9+AA medium) which includes 17.1 g/L Na;HPO4-12H20, 3.0 g/L KH2PO4, 0.5 g/L NaCl,
2.0 g/L NH4CI, 5.0 g/L glucose, 14.7 mg/L CaCl,-2H,0, 123.0 mg/L MgSO4-7H20, 2.8 mg/L
FeS0O,-7H20, and 10.0 mg/L thiamine hydrochloride (pH 7.0), and 20 canonical amino acids
(0.02 mM Tyr and 0.05 mM of the remaining 19 amino acids) [40].

Measurement of growth rate

To measure growth rate, cells precultured to yield an initial ODggo of 1x10* were inoculated
into a 96-well microtiter plate containing 100 yL of M9+AA medium. The cells were then
cultured at 34 °C with shaking at 300 rpm, and the cell density was measured at ODegoo USing
an Infinite 200 PRO (TECAN) at 15-minute intervals. The specific growth rate was calculated
based on three data points with minimum ODego values under the condition that ODego >
5x10°3.

Mutation accumulation (MA) experiment

E. coli cells were subcultured as a single colony on M9+AA agar medium and incubated at
34 °C. To induce mutations, a colony was randomly selected and streaked onto a fresh agar
medium every 2 days for a total of 23 or 62-70 passages. The number of generations per
passage was estimated based on the colony diameter, which was previously shown to be a
reliable indicator [21-23]. Specifically, we used a regression curve to estimate colony-forming
units from the diameter and then calculated the number of generations based on the
assumption that all the cells in a colony were derived from a single cell from the previous

passage. The adopted relationship used in this study was (number of generations) = 24.51
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+ 2 logz (colony diameter in mm) [23]. After each passage, we cultured the remaining cells of
the selected colony in M9+AA liquid medium and stored them in glycerol. We repeated the

experiment three times for each ancestral strain, resulting in a total of 39 MA lines.

Whole-genome resequencing

Glycerol-stocked cells were grown in M9+AA medium until they reached full growth and were
then harvested as a cell pellet using centrifugation. Genomic DNA was extracted from the
cells using the DNeasy Blood & Tissue Kit (Qiagen). For library preparation prior to
sequencing, the Nextera XT kit (lllumina) was used in a paired-end (2x300 bp) setting. The
lllumina MiSeq platform was used to sequence the libraries with the MiSeq Reagent Kit v3,
which provides 600 cycles (lllumina). The obtained short reads were mapped to the reference
genome and point mutations accumulated during the MA experiment were detected using

the breseq software [41].

Experimental evolution under antibiotics

Cells were cultured in 200 pL volumes of M9+AA liquid medium in a 96-well microtiter plate.
During the experiment, each culture line was exposed to 12 concentrations of antibiotics,
corresponding to 11 wells with a two-fold dilution series and one drug-free well. The cell
concentration was quantified by measuring the optical density at 620 nm (ODs20). Cells were
inoculated into these 12 wells at an initial ODe2o value of 3x104. After 24 hours of cultivation
at 34 °C with shaking at 300 rpm, cells were sampled from the well with the highest drug
concentration among the wells that showed an ODe2o value greater than 0.03. The sampled
cells were diluted to an initial ODe2o value of 3x10# and inoculated into fresh medium in 12
wells on a new plate, which was then incubated. For each combination of strain and
antibiotics, four independent culture lines were maintained in parallel. The serial transfer
experiment was conducted for nine days. The described experimental operations were
performed using an automated culture system comprising Biomek NXP laboratory
automation workstation (Beckman Coulter) in a clean booth, STX44 automated shaker
incubator (LICONIC), LPX220 plate hotel (LICONIC), and FilterMax F3 microplate reader

(Molecular Devices) [42].

Parameter estimation

Custom C programs were used to implement the population dynamics model described in
equation (1) and to optimize the model parameters. Specifically, a genetic algorithm was
employed to estimate the values of the parameters ¢, b, and 3. The fitness function for the

genetic algorithm was defined as the Euclidean distance between the experimentally
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observed MIC doubling rate and the rate obtained from simulations of the population

dynamics model. The mean and standard errors of the parameters were estimated using

bootstrap resampling of the experimental data.
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Strain Abbr. roIL\JArQJs Generations Noégfsiyn No.BolingSyn
MDS42 WT 66 1685.7+7.0 0.67 £ 0.58 0.67 £ 0.58
MDS42AmutH H 23 613.4+1.7 4.33 + 3.21 11.67 £ 1.53
MDS42AmutL L 66 1675.5+0.8 8.33+2.31 15.00 £ 1.00
MDS42AmutS S 66 1691.3+£9.3 11.00 £ 2.00 2433+1.15
MDS42AdnaQ Q 66 1651.0+ 5.9 8.67 £ 1.15 23.33+2.89
MDS42AmutT T 66 1679.7 £ 13.6 27.33+2.31 157.67 £ 20.21
MDS42AmutLAmutH ~ LH 66 1651.4 + 13.2 10.67 £ 1.53 15.00 £ 2.00
MDS42AmutSAmutH ~ SH 66 1691.1 £ 9.4 13.33+5.13 21.00 £ 6.56
MDS42AmutLAdnaQ  LQ  62,62,70 1461.2+96.0 54567 +60.72 939.67 +81.5
MDS42AmutHAmutT ~ HT 23 610.8 £ 0.6 15.67 £5.03 76.33 £ 6.03
MDS42AmutLAmutT LT 23 614.7+25 16.00+2.65 84.67 + 14.57
MDS42AmutSAmutT ST 23 605.0 + 4.0 13.33+4.51 54.33+10.97
MDS42AdnaQAmutT QT 23 611.7+2.6 13.33+2.08 63.33+7.09

Table 1. Summary of MA experiments. The two right-hand columns display synonymous
(Syn) and non-synonymous (NSyn) base-pair substitutions (BPS), respectively, while the
mean and standard deviation of three replicates are presented. Alist of all detected mutations
and an extended table showing the number of intergenic BPS and short Indel are shown in

Supplementary tables S1 and S2, respectively.
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Figure 1. Mutation rates of hyper-mutable E. coli strains. Each dot with error bars represents
the mean and standard deviation of the mutation rates observed in replicate MA lineages.
The mutation rate was estimated using only synonymous mutations to exclude the effects of
purifying selection. The pie charts above the dots show the distribution of substitution

patterns identified in the hyper-mutable strains.
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Figure 2. Experimental evolution under antibiotic selection pressure. (A) Schematic
representation of the experimental procedure. A 96-well microtiter plate was prepared with
two-fold serial dilutions of antibiotics. After 24 hours of cultivation, cells from the well with the
highest drug concentration, in which the cell concentration (ODe2) exceeded 0.03, were
transferred to fresh medium with a drug concentration gradient. In this study, we designated
the drug concentration of the selected well (green asterisk) as the minimal inhibitory
concentration (MIC). The serial transfer cultures were iterated for 9 days. (B) Example of MIC
changes during experimental evolution. The vertical axis shows the MIC for trimethoprim
(TP). The black and blue lines represent the data for the WT and AmutS (S) strains,
respectively. For each strain, data from four replicate series are overlaid. Data for all

combinations of strains and drugs are presented in Fig. S2.
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Figure 3. The relationship between mutation rate and MIC doubling rate. The dots represent

experimental observations of 13 strains and four replicate serial transfer cultures.
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Figure 4. Parameter estimation by a population dynamics model. (A) Schematic
representation of the model with multi-step resistance evolution. The mutated subpopulations
(M;) with « mutations proliferate with the growth rate 1, mutate with the rate p,, and die at
the death rate v,. The death rate depends on the benefit of mutation b, conferred per
mutation, as represented in Eq. (2). (B) The effect of antibiotics on the death rate. For the
cases of B = 0.5 and g = 2, the death rates are plotted as a function of drug concentration,
where b, is set to 1. The death rate curve shifts towards the right due to mutation
accumulation, as depicted by the right green lines in the case of § = 2. (C) The simulated
relationship between mutation rate and MIC doubling rate. The population dynamics model
with mutation accumulation was utilized to simulate the increase in MIC observed in serial
transfer experiments for the cases of § = 0.5 and 8 = 2. The parameters were setto K = 0.2,
b, = 0.5, and € = 0.5, respectively. (D) The estimated beta value for each drug. The mean
value of § estimated through 100 bootstrap resampling is represented by the bars, while the

error bars represent the standard error.
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Figure 5. The fitting results of the population dynamics model to experimental observations.
The blue dots represent experimental observation shown in Fig.3 and the green solid line
shows the mean of simulated MIC changes generated with the parameters estimated from
100 bootstrap resampling, while the light green region represents the estimated standard

error.
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Figure S1. (A) Neutrality in mutation accumulation. The dN/dS ratio was calculated for each
hyper-mutable strain and the wild-type strain. Error bars show the standard deviations
between the MA lineages. (B) Relationship between growth rate and mutation rate. The
horizontal error bars show the standard deviation across MA lineages, whereas the vertical
error bars represent the standard deviation among replicate experiments in growth rate
measurement. The sample sizes in the growth rate measurements were n=20 for wild-type

strains and n=10 for mutant strains.
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Figure S2. Experimental evolution of hyper-mutable strains under antibiotics. For all
combinations of drugs and strains, the change of MIC over time are plotted. For each plot,
data from four replicate series are overlaid. The dots and solid lines show experimental
data, while dashed lines represent linear regressions of the increase in the evolutionary curve,
performed via the least-squares method. To focus the regression analysis solely on the
ascendant portion of the curve, data points indicating the minimum and maximum MIC values
achievable within our experimental parameters (highlighted by gray fills) were systematically

excluded.
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Figure S2. (continued)
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Figure S3. Reproducibility of the adaptation speed quantification. The MIC doubling rates
were estimated by conducting independent experimental evolution trials with varying duration
(9 days and 5 days, respectively). Each dot and error bars show the mean and standard
deviation of the slope of the evolutionary curve, respectively, fitted per replicate for each
strain as illustrated in Fig. S2. The Spearman's rank correlation coefficient and corresponding

P-value were computed for these data points (N=13).
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Figure S4. Estimated parameter € representing the beneficial effect of each mutation. The
mean value estimated through 100 bootstrap resampling is represented by the bars, while

the error bars represent the standard error.
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