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Abstract
Detailed investigation of extremely severe pathological conditions in ancient human skeletons
is important as it could shed light on the breadth of potential interactions between humans and
disease etiologies in the past. Here, we applied palaeoproteomics to investigate an ancient
human skeletal individual with severe oral pathology, focusing our research on bacterial
pathogenic factors and host defense response. This female skeleton, from the Okhotsk period
(i.e., 5th—13th century) of Northern Japan, poses relevant amounts of abnormal dental calculus
deposition and exhibits oral dysfunction due to severe periodontal disease. A shotgun mass-
spectrometry analysis identified 81 human proteins and 15 bacterial proteins from the calculus
of the subject. We identified two pathogenic or bioinvasive proteins originating from two of
the three “red complex” bacteria, the core species associated with severe periodontal disease in
modern humans, as well as two additional bioinvasive proteins of periodontal-associated
bacteria. Moreover, we discovered defense response system-associated human proteins,
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although their proportion was mostly similar to those reported in ancient and modern human
individuals with lower calculus deposition. These results suggest that the bacterial etiology was
similar and the host defense response was not necessarily more intense in ancient individuals
with significant amounts of abnormal dental calculus deposition.

Introduction

Ancient human skeletons sometimes show abnormal and extremely severe pathological
conditions that could be rarely observed in modern human populations2. Such extreme cases
could be considered “natural experiments” that highlight both human resilience and
vulnerability to disease in the absence of modern medical interventions®4. Humans and
pathogens coevolved and various ancient pathogens are not equivalent to their contemporary
descendants®®. Ancient severe pathological conditions that cannot be seen today could have
existed due to the lack of modern medical interventions or different bacterial etiologies.
Detailed investigation of these extreme cases would be important as they shed light on the
breadth of potential interactions between humans and diseases, and reveal differences between
past disease etiologies and present-day pathogens.

In this study, we used palaeoproteomics to investigate the etiology of and host resilience to
periodontal disease in an ancient human skeleton showing abnormal deposition of dental
calculus with severe periodontal disease. Dental calculus is a calcified oral plaque that promotes
periodontal disease’ and is habitually removed in modern dental care. In contrast, abnormal
depositions of dental calculus, where a large calculus deposition entirely covers the occlusal
surface of at least one tooth, could be occasionally observed in ancient human skeletons. Such
examples include a late Saxon skeleton from Nottinghamshire, UK® , and the subject of this
study, an Okhotsk skeleton from Hokkaido, Japan®. Dental calculus entraps and preserves
microparticles, DNA, and proteins originating from the environment, host, microbiome, and
diet. Therefore, dental calculus provides molecular clues to help understand the lifeways of the
host, pathological conditions, and disease etiology in the past'®!l. Analyzing abnormally
deposited dental calculus can further reveal the pathogenic cause of oral pathology and the
defense response of the host.

Palaeoproteomics of dental calculus, applied in this study, is an effective method for
investigating both the etiology of and host responses to ancient periodontal disease!? 4,
Proteins are functional agent, and their expression differs in response to pathological conditions.
These pieces of evidence, revealing information on functional oral pathologic processes, could
not be obtained solely by DNA analysis, which could only reveal the presence of certain taxa
in analyzed specimens. The paleoproteomic analytic potential of dental calculus for studying
health and diseases in the past has not been fully exploited (however, see references?141%)
despite successful applications in studies aiming at dietary reconstruction®-2L,

By applying palaeoproteomics to abnormally deposited dental calculus from a skeletal
individual with severe periodontal disease, we aimed at answering i) whether the pathogenic
factors associated with the severe periodontal disease in this individual differed from modern
and ancient human individuals with lower calculus deposition, and ii) to what extent the
extreme oral pathological conditions caused pathological stress to the host.

The subject individual, HM2-HA-3

HM2-HA-3 is a female skeleton, aged 34-54 years at death, excavated in 1992 from the
Hamanaka 2 site (Figure 1) on Rebun Island, Hokkaido, Japan?2. The most notable feature of
this individual is the abnormal deposition of large amounts of dental calculus (Figure 1°). The
morphological characteristics of this individual have been previously described in detail®.
Briefly, most skeletal elements of HM2-HA-3 were missing; only a part of the cranium, an
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upper limb, and trunk bones were present, though the mandible and maxilla, including erupted
teeth were well-preserved. Heavy deposits of dental calculus were present, especially on the
right side of the dentition. These calculus deposits are predominantly located above the
cementoenamel junction, a feature of supragingival calculus. These deposits were primarily
found on the right upper second and third molars (Figure 1). The occlusal surfaces of these
molars are completely covered by calculus deposits and present a non-smooth surface.

HM2-HA-3 also exhibits extreme oral pathological conditions. Caries are not present in any
of the remaining teeth but HM2-HA-3 presents apical lesions with cementum hyperplasia,
rounded cavities in the root apex, and severe periodontal disease including resorption of the
alveolar process®. Periodontitis-related horizontal alveolar bone resorption was prominent in
HM2-HA-3, and the mandibular right molars had been completely lost with severe resorption
of the crest. This individual would likely have suffered from periodontal disease since the
relatively early stages of her life, when the right side of her jaws would have become almost
completely unusable for masticatory function®. As a result, HM2-HA-3 showed severe tooth
wear on her left teeth, which were not covered by calculus. Furthermore, alveolar bone
resorption at the root branch was observed on the upper right side, suggesting the presence of
endodontic-periodontal disease. Abnormal calculus deposition would have facilitated
periodontal tissue collapse in the same region. Taken together, these conditions show that
normal masticatory function would have been impaired in this individual.

HM2-HA-3 was found in an archaeological site belonging to the Okhotsk culture. The
Okhotsk culture was distributed along southern Sakhalin Island, the northeastern coast of
Hokkaido, and the Kuril Islands during the 5th—13th centuries?®. The Okhotsk people
predominantly subsisted on fishing, and it is estimated that marine foods comprised more than
80% of their dietary protein intake?*?. Although a few crop remains have been excavated from
Okhotsk sites?, it is believed that plant horticulture was not practiced in the Okhotsk culture?.
Because of their low carbohydrate intake, the caries rate of Okhotsk people was remarkably
lower than in Jomon hunter-gatherers?’. Physical anthropological measures of oral health, such
as the frequency of linear enamel hypoplasia, in the Okhotsk people were generally better than
in the Jomon hunter-gatherers of mainland Japan?. Even though, no other Okhotsk human
skeletons show such an abnormal calculus depositions seen in HM2-HA-3°.

Results

Chronological age and diet

Elemental and isotopic results of the rib bone collagen sample from HM2-HA-3 are shown
in Table 1. Bone collagen extracted from the rib of HM2-HA-3 showed acceptable %C
(44.5%), %N (16.4%), and C/N ratio (3.17)*°, suggesting good molecular preservation of this
individual.

The calibrated radiocarbon age of HM2-HA-3 was 485-760 cal AD with 95.4% posterior
probability and 565-678 cal AD with 68.3% posterior probability. Considering the chronology
of the Hamanaka 2 site?, this age falls in the earlier Okhotsk period. The §*3C and 5'°N values
of bone collagen from HM2-HA-3, which mostly represent protein dietary components
assimilated during ~10 years before death*’“, were -13.0%o and 19.3%o, respectively. These
isotope ratios are shown in Figure 2 along with the previously reported values from other human
skeletons excavated at the Hamanaka 2 site?**° and faunal bones excavated from another
Okhotsk site (Moyoro site?®). These comparisons showed that most dietary proteins of HM2-
HA-3 were obtained from marine foods and there were no apparent differences in dietary food
sources between HM2-HA-3 and other Okhotsk individuals excavated from the Hamanaka 2
site (Figure 2).
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Dental calculus proteome

We identified a total of 96 protein groups from the dental calculus of HM2-HA-3, excluding
keratins and common laboratory contaminants. Of these, 81 and 15 protein groups originated
from humans (Table 2) and bacteria (Table 3), respectively. The calculus displayed a high (i.e.,
92.1%) OSSD score, suggesting good protein preservation®®. The peptide deamidation rates,
the approximate proxy for ancient protein authenticity®®®!, derived from the four fractions
ranging between 38.7%-54.8% and 30.7%-37.7% for asparagine and glutamine in human
proteins, respectively (Supplementary Table S1). As the deamidation rate of modern proteins
is typically below 20%, the human proteins identified in the dental calculus of HM2-HA-3
would originate from ancient times*.In contrast, bacterial proteins showed lower asparagine
and glutamine deamidation rates (4.9%-23.2% and 4.2%—24.0%, respectively) (Supplementary
Table S1). The number of asparagine and glutamine residues in the identified bacterial proteins
was below 8, the precise deamidation rates could thus not be calculated.

The identified human proteins were classified with GO term using the PANTHER software®,
Among the assigned protein class, 13.9% represented the “defense/immunity.” Among the
proteins categorized in this class, peptidoglycan recognition protein 1 was one of the innate
immune system proteins and functions to directly kill bacteria by recognizing and cleaving
peptidoglycans on the bacterial wall®2. Neutrophil elastase is among the antimicrobial peptides
abundant in the saliva and gingival crevicular fluid in the oral cavity and is involved in local
defense mechanisms®3,

We identified a total of 15 proteins from 13 bacterial taxa from the calculus. Eight of these
originated from six bacterial taxa that are reportedly associated with periodontal disease in
modern patients (Table 3). We identified two of the three “red complex™ bacteria, the most
notable core bacterial species in the severe form of periodontal disease (Porphyromonas
gingivalis and Treponema denticola). In addition, among the identified bacterial taxa,
Selenomonas sputigena and Fretibacterium fastidiosum are reportedly associated with severe
periodontal disease in modern humans®*®°, while Actinomyces dentalis and Actinomyces
israelii were identified in patients with severe periodontal disease®. P. gingivalis toxin, a
proteolytic enzyme of Lys-gingipain W83, was identified in the calculus with well-annotated
MS?2 spectra (Supplementary Figure S2)°’. Moreover, pathologically invasive proteins, such as
T. denticola flagellar filament 33-kDa core protein, F. fastidiosum flagellin, and S. sputigena
flagellar filament 33-kDa core protein, were also identified with well-annotated MS2 spectra
(Supplementary Figure S2). These flagellar proteins are associated with bacterial motility and
could initiate immune responses by interacting with toll-like receptor 5 in the host>®5!, We
could not identify any bacterial taxa and dental caries-associated proteins. Our BLAST search
indicated that the peptide sequences of these periodontal disease-associated bacterial proteins
only occur in certain bacterial genera (Supplementary Table S2).

We compared the protein groups or bacterial taxa identified in the dental calculus of HM2-
HA-3 with those identified in a previous palaeoproteomic analysis of ancient human dental
calculus from medieval Dalheim, Germany as well as those of modern European patients with
periodontitis and dental caries'?. As presented in Figure 3, 49.4% (40/81) of the human proteins
and 69.2% (9/15) of the bacterial taxa identified in HM2-HA-3 calculus were also identified
either in Dalheim or modern calculus®?. with the common bacterial taxa being P. gingivalis, A.
israelii, Actinomyces sp. HMT 414, and Corynebacterium matruchotii. Bacterial species unique
to HM2-HA-3 included S. sputigena, Actinomyces sp. HMT 169, Selenomonas sp. HMT 892,
and Campylobacter gracilis®?.

The “defense/immunity” protein class proportion calculated by PANTHER was similar
between the Dalheim (10.4%) and HM2-HA-3 (13.9%) calculi while that in modern calculus
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was higher (20.8%). The proportion of “immune system”-assigned biological processes
calculated by PANTHER was lower in HM2-HA-3 (6.9%) than in Dalheim (8.1%) and modern
(10.8%) dental calculi.

Finally, we performed a proteomic analysis of a rib bone sample of HM2-HA-3 to investigate
the potential presence of systematic diseases. We identified a total of 59 human proteins, most
of them being bone proteins (Supplementary Table S3). We could not identify any systematic
disease-associated protein.

Discussion

The palaeoproteomic analysis of abnormally deposited dental calculus conducted here
provided molecular insights into the pathological conditions of the oral cavity of HM2-HA-3.
We identified both pathogenic factors and bioinvasive proteins (i.e., Lys-gingipain W83,
flagellin, and flagellar filament 33-kDa) from bacterial taxa reportedly associated with
periodontal disease in modern patients. The identification of these proteins provides molecular
support for the periodontal disease of this individual originally diagnosed based solely on
physical characteristics. These bacterial proteins are associated with periodontal disease
pathogenesis and development as well as with the secretion of inflammatory cytokines>®6162,

Of the 13 bacterial taxa identified from the calculus of HM2-HA-3, seven (53.8%) are
reportedly associated with periodontal disease in modern clinical medicine (Table 3), in
particular, two of the three red complex bacterial taxa. Proteins from the red complex bacteria
have frequently been identified in both modern and ancient human dental calculus
samples'#!46485 In this study, the pathogenic protein of P. gingivalis and bioinvasive protein
of T. denticola were confidently identified®, providing direct evidence of red complex bacterial
involvement in periodontal disease etiology. Although the involvement of the remaining seven
bacterial taxa in the etiology of periodontal disease remains unclear, our results confidently
indicate that periodontal disease bacterial etiology in HM2-HA-3 was similar to that in modern
patients.

The presence of various host defense response proteins suggests that HM2-HA-3 was
subjected to pathological stress and the resulting inflammation, at least during dental calculus
deposition. However, the identified host defense proteins were nonspecific (e.g.,
lactotransferrin, immunoglobulin kappa constant, and prolactin-inducible protein) and mostly
similar to those identified in other ancient individuals with significantly lower calculus
deposition (Supplementary Figure S3)2. Moreover, our PANTHER analysis revealed that the
“immune system process” comprised 6.9% of the total processes assigned to the identified host
proteins in the HM2-HA-3 dental calculus (Figure 4). This proportion is rather lower compared
to those in the calculus samples from medieval Dalheim (8.1%) and modern patients suffering
from moderate to moderate/severe periodontal disease (10.7%)*. Furthermore, the proportion
of the “defense/immunity protein” class was also lower in the calculus of HM2-HA-3 (13.9%)
than that in the modern dental calculus (20.8%) and was somewhat higher than that in the
calculus sample of medieval Dalheim (10.4%)*2. These results imply that host defense response
to oral pathological stress was not necessarily higher in HM2-HA-3, who exhibited significant
amounts of calculus deposits and severe masticatory dysfunction, relative to modern
periodontitis patients and medieval individuals with lower calculus deposition.

Although palaeoproteomics provides molecular evidence on the bacterial etiology of and
host defense response to periodontal disease, the cause of the abnormal calculus deposition in
HM2-HA-3 remains unclear. Diet is often cited as a cause for calculus deposition®’, but this
cause is unlikely for HM2-HA-3. Stable isotope analysis showed that HM2-HA-3 had a similar
diet to other individuals from the Hamanaka 2 site and other individuals from Hamanaka 2 site
displayed little or no calculus deposition (Figure 2). Abnormally high amounts of calculus
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deposition could occasionally be seen in modern patients, but the underlying cause is
unidentifiable in most cases®®°. At least, this individual would not have a routine tooth cleaning
habit during the period of calculus deposition. Furthermore, as the HM2-HA-3 bone proteome
did not contain disease-indicative proteins, calculus deposition unlikely occurred as a systemic
disease byproduct.

HM2-HA-3 is the first individual among the ancient human skeletons from Asia with a
bacterial proteome studied in detail. Therefore, in this study, we used for comparison previously
published proteome results on calculi from individuals in Europe?. Almost all published
bacterial proteome of modern and ancient dental calculus originate from Europe!?!*. As the
regional differences in the human oral bacterial composition have been suggested’,
accumulating data on dental calculus bacterial proteome outside Europe would be required.

Materials and Methods
Detailed procedures regarding sample collection and analyses are described in the
Supplementary Information. A brief summary is shown below.

Sampling

Dental calculus was collected from the lower right first incisor of HM2-HA-3
(Supplementary Figure S1), with the method described previously?. Given the small variability
in bacterial composition in calculus obtained from different oral positions within an individual®°,
we assume that this sample had a representative bacterial composition as would be obtained
from the abnormally deposited calculus present on the molars (Figure 1). Rib bones were also
sampled for palaeoproteomic and isotope analyses.

Proteomics

Protein extraction from 15 mg of dental calculus was performed using modified ultrafiltration
and single-pot solid-phase-enhanced sample preparation (SP3) methods for ancient protein
analysis®>®2. Protein extraction from 20 mg rib bone was performed using modified
ultrafiltration method®. Following the guidelines for palaeoproteomics?’, the entire extraction
process was carried out in a clean laboratory dedicated to ancient biomolecules built at the
Graduate University for Advanced Studies, Japan. We obtained four fractions of the calculus
sample (i.e., supernatant and pellet fractions from each of the ultrafiltration and SP3 methods)
and two fractions (i.e., supernatant and pellet) of bone sample along with experimental blanks.

Liquid chromatgraphy-tandem mass spectrometry (LC-MS/MS) analysis of dental calculus
was performed using an Orbitrap Fusion Tribrid mass spectrometer (Thermo Fisher Scientific)
at Japan Agency for Marine-Earth Science and Technology (JAMSTEC) with the conditions
described in Nunoura et al.>*. LC-MS/MS analysis of rib bone was performed using an Orbitrap
QE Plus mass spectrometer (Thermo Fisher Scientific) at Kanazawa University with the
conditions described in Ogura et al.*>. RAW data files generated by LC-MS/MS were analyzed
using the MaxQuant software version 2.0.1.0%. Data of calculus were searched against the Oral
Signature Screening Database (OSSD?®) for the first quality-assuarance step and the electric
Human Oral Microbiome Database (eHOMD?') or entire human proteome (as of 2023-03-02)
for the second protein identification step. Data of bone were searched against the entire human
proteome. Because no food proteins was identified from dental calculus in a MaxQuant search
against an entire Swiss-Prot database (as of 2021-08-20), we did not investigate into food
proteins. Comparative datasets were analyzed anew in the same manner*2,

Gene Ontology (GO) analysis of the human-derived proteins identified from the dental
calculus of HM2-HA-3 was performed using PANTHER, version 14%, Python script reported
by Mackie et al.'®* was used to calculate asparagine and glutamine deamidation rates. All
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sunsequrnt data analyses were performed using R, version 4.2.2 (R Core Team, 2022).

Radiocarbon dating and stable isotope analysis

Collagen was extracted from a rib bone of HM2-HA-3 to conduct radiocarbon measurement
and carbon and nitrogen stable isotope analysis, based on the method described previously®®.
Carbon and nitrogen stable isotopes were measured using elemental analyzer-isotope ratio mass
spectrometry (EA-IRMS) at the University Museum, the University of Tokyo (UMUT).

Radiocarbon concentrations were measured using accelerator mass spectrometry (AMS) at
UMUT. Radiocarbon age was calibrated against atmospheric and marine calibration curves
(IntCal20 and Marine20%%#1) and with the local marine reservoir effect*? using OxCal, version
4.4%,
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500 Figure legends

501 Figure 1. a) Map of Rebun Island and Hamanaka 2 site. b) Right buccal aspect of the HM2-
502  HA-3 maxilla and mandible. A red arrow indicates the sampled calculus (i.e., from the lower
503  right permanent first incisor).

504

505 Figure 2. Carbon and nitrogen stable isotopic results of faunal and human bone collagen.
506

507 Figure 3. Venn diagrams of a) human proteins and b) bacterial taxa identified in the ancient

508  dental calculus of HM2-HA-3 (this study) as well as in the dental calculus samples from
509  medieval Dalheim and modern patients2.

510

511 Figure 4. Results of PANTHER a) biological process and b) protein class analysis of protein
512 groups identified in the dental calculus of HM2-HA-3 (this study) as well as in the dental
513  calculus samples from medieval Dalheim and modern patients®?.
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514 Tables

515 Table 1. Results of stable isotope analysis and radiocarbon measurement. Previously reported data from other skeletal individuals from the
516  Hamanaka 2 site are also shown.
517
ID sex Age(y) Element %C %N o13C S15N C/N 14C age Reference
(BP)
1480 M 4050  Skull 43.9 15.1 -13.2 19.0 3.4 —~ Naito et al., 2010%*
1496 F 30-40 Skull 43.8 15.7 -12.9 18.6 3.3 - Naito et al., 2010%
NATO002 F 40-49 — 41.8 15.0 -12.9 19.3 3.2 - Okamoto et al., 20164
HM2-HA-3 F 35-54 Rib 44.5 16.4 -13.0 19.3 3.2 1777 + 37 This study
518
519 Table 2. Human protein groups identified in the dental calculus of HM2-HA-3.
520
Protein ID Protein name Gene name N. of razor + unique peptides Sequence Score

coverage (%)

Total SP3-S UF-S SP3-P UF-P
E7EQB2 Lactotransferrin (Fragment) LTF 22 12 11 16 13 40.7 323.31
P01024 Complement C3 C3 21 11 11 15 11 17.2 323.31
P05164-2 Isoform H14 of MPO 20 8 9 16 11 39.8 202.58
Myeloperoxidase
P01023 Alpha-2-macroglobulin A2M 16 10 8 8 6 16.1 129.04
A0A024R617  Alpha-1-antitrypsin SERPINA1 14 7 9 6 7 44.3 287.77
P30740 Leukocyte elastase inhibitor SERPINB1 14 6 8 3 5 44.9 11.99

15
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P12273
P01008
P01871

P05109
P06702
Q6P5S2
P00450
P01036
P68871
J3QLCY
P01011
AOA8BVSTL71
PODUBG
P07237
P01833

AOATP0Z497

P29508-2
?OAOC4DGN

Prolactin-inducible protein
Antithrombin-I11

Immunoglobulin heavy
constant mu

Protein S100-A8

Protein S100-A9

Protein LEG1 homolog
Ceruloplasmin

Cystatin-S

Hemoglobin subunit beta
Haptoglobin (Fragment)
Alpha-1-antichymotrypsin
Actinin alpha 4
Alpha-amylase 1A
Protein disulfide-isomerase

Polymeric immunoglobulin
receptor

Peptidyl-prolyl cis-trans
isomerase

Isoform 2 of Serpin B3

Zymogen granule protein 16B

PIP
SERPINC1
IGHM

S100A8
S100A9
LEG1
cP
CST4
HBB

HP
SERPINA3
ACTN4
AMY1A
PAHB
PIGR

PPIB

SERPINB3

Z2G16B

10
10

73.3
35.1
28.3

81.7
60.5
42.7
9.0
53.2
53.7
19.2
20.3
7.4
11.7
11
10.3

27.1

22.2
37.2

323.31
65.43

23.09

113.57
323.31
157.65
39.11
9.91
131.40
12.79
323.31
80.754
2.7398
1.5164

9.1261

8.4126

266.53

192.94
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P25311
Q8N4F0

P08246
AOA286YEY1

P01877

P01591
P61626
Q9HD89
Q09666

AO0A590UJZ9

P31025

AOABVETKR
9

Q14686
P12724

A0A494C0J7

AOA2R8YH9
0

AOAOAOMTS

Zinc-alpha-2-glycoprotein

BPI fold-containing family B
member 2

Neutrophil elastase

Immunoglobulin heavy
constant alpha 1 (Fragment)

Immunoglobulin heavy
constant alpha 2

Immunoglobulin J chain
Lysozyme C
Resistin

Neuroblast differentiation-
associated protein AHNAK

Deleted in malignant brain
tumors 1 protein

Lipocalin-1

Moesin

Nuclear receptor coactivator 6
Eosinophil cationic protein

Transglutaminase-like
domain-containing protein

Tropomyosin 4

Titin

AZGP1
BPIFB2

ELANE
IGHA1

IGHA2

JCHAIN
LYZ
RETN

AHNAK

DMBT1

LCN1

MSN

NCOAG

RNASE3

TPM4

TTN

17

19.1
13.3

31.1
16.3

21.8

21.7
41.2
51.9
13

8.2

14.2

5.7

15
25
53

10.9

0.1

4.6576

1.2089

23.103

68.605

16.597

1.873
38.618
323.31

0.38438

78.756

2.7264

0.34829

0.16146
194.29

77.907

2.2422

0.79787
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7
Q9HCE9
P04083
P02743
P20160
AOA8BVSTLP6

AS5YKKG6-4

K7ESB6

P59666

Q8TB45

Q96M86

CaJyu7

E7EUTS

Q92820
P62805
AOA0G2JIW1

AOATPOTAIO

Anoctamin-8

Annexin Al

Serum amyloid P-component
Azurocidin

Complement C4A (Rodgers
blood group)

Isoform 4 of CCR4-NOT
tlranscription complex subunit

Casein kinase 1 gamma 2
(Fragment)

Neutrophil defensin 3

DEP domain-containing
mTOR-interacting protein

Dynein heavy chain domain-
containing protein 1

Mitotic deacetylase associated
SANT domain protein
(Fragment)

GI%/ceraldehyde-3-phosphate
dehydrogenase

Gamma-glutamyl hydrolase
Histone H4
Heat shock 70 kDa protein 1B

78 kDa glucose-regulated

ANO8
ANXA1
APCS
AZU1
C4A

CNOT1

CSNK1G2

DEFA3

DEPTOR

DNHD1

MIDEAS

GAPDH

GGH
H4C16
HSPA1B

HSPA5

1.9
6.9
9.4
9.2

1.7

12.7

19.1
6.4

0.6

43.1

10.8

8.5
175
4.8

4.2

0.35178
2.0362
0.46515
7.0993

14.849

1.6788

1.1282

46.255

0.183

0.46915

0.32619

2.864

1.4863
0.019644
0.55721

0.66496
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P01834
PODOY3
AOA3B31U98

P06870-2
P13796
Q8IWC1-4

P98088
QIUKX3
Q72406-5
AOAOAOMR
M2

Q7Z2Y5-2
Q13310-3
075594

P24158
AOAT7I2V2H3
P28065

protein

Immunoglobulin kappa
constant

Immunoglobulin lambda
constant 3

1Q motif and Sec7 domain
ArfGEF 1 (Fragment)

Isoform 2 of Kallikrein-1
Plastin-2

Isoform 4 of MAP7 domain-
containing protein 3

Mucin-5AC
Myosin-13
Isoform 5 of Myosin-14

Nebulin related anchoring
protein

Isoform 2 of Nik-related
protein kinase

Isoform 3 of Polyadenylate-
binding protein 4

Peptido%lycan recognition
protein

Myeloblastin

Proteasome subunit alpha type

Proteasome subunit beta type-
9

IGKC

IGLC3

IQSEC1

KLK1
LCP1
MAP7D3

MUCS5AC
MYH13
MYH14

NRAP

NRK

PABPC4

PGLYRP1

PRTN3

PSMB9

19

31.8

33

3.2

12.5
3.2
3.7

0.3
2.3
1.6
14

1.9

19.9

8.2
154
114

30.836

9.558

1.2623

2.8386
0.11803

0.38741

0.06592
0.24148
1.6056

0.26403

0.16886

0.41886

17.412

0.45503
3.0049

1.1251
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521
522
523
524

Q5VT52-2 Isoform 2 of Regulation of RPRD2 2 0 0 1 1 1.8 0.30317
nuclear pre-mRNA domain-
containing protein 2
P25815 Protein S100-P S100P 2 1 2 1 2 30.5 25.995
F8WO0QO0 Sodium voltage-gated channel ~ SCN8A 2 0 2 0 0 3.1 0.26391
alpha subunit 8 (Fragment)
P48595 Serpin B10 SERPINB10 2 0 1 0 1 5 0.88109
AOA087WUD  Serpin family G member 1 SERPING1 2 2 1 0 0 6.2 0.53009
9
P02814 Submaxillary gland androgen- SMR3B 2 1 1 1 1 65.8 2.6144
regulated protein 3B
P50552 Vasodilator-stimulated VASP 2 0 2 0 1 6.6 1.8437
phosphoprotein
Q6N043-2 Isoform 2 of Zinc finger ZNF280D 2 0 1 0 1 3.6 0.059397
protein 280D
Table 3. Oral bacterial protein groups identified in the dental calculus of HM2-HA-3
Protein ID  Protein name Taxonomy Strain Periodontal N. of razor + unique peptides Sequence Score Note
coverage
(%)
Total SP3-S UF-S SP3-P UF-P
SEQF2705 Inosamine- Actinomyces DSM Yes 8 2 1 2 7 32.0 36.74
00640 phosphate israelii 43320
amidinotransferas
el

20
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SEQF3180
02237

SEQF1598
_00449

SEQF1674
00209

SEQF1013
00339

SEQF1604
01614

SEQF2454
00889

SEQF3095
01402

SEQF2745
00190

SEQF2434
01156

SEQF1871
01017

Enolase

Flagellar filament
33 kDa core
protein

Flagellin

Enolase

Major outer
membrane
protein P.IB

Flagellar filament
31 kDa core
protein

Inosamine-
phosphate
amidinotransferas
el

18 kDa heat
shock protein

Fumarate
reductase
flavoprotein
subunit

Flagellar filament
33 kDa core

Actinomyces
sp.HMT 169

Selenomona
s sputigena

Fretibacteri
um
fastidiosum

Corynebacte
rium
matruchotii

Cardiobacte
rium
hominis

Selenomona
s sp. HMT
892

Actinomyces
sp. HMT
171

Actinomyces
sp. HMT
414

Campylobac
ter gracilis

Treponema
denticola

F0496

ATCC Yes
35185

SGP1 Yes
ATCC

14266

ATCC
15826

F0426

F0337

F0588

RM3268

Us- Yes
Trep/F045

21

22.0

10.8

55

9.9

8.8

9.8

16.8

23.8

52

16.8

68.84

12.62

12.82

11.596

26.671

8.7738

14.42

8.886

9.5569

8.9183

calcifying
bacterium
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525

protein

SEQF3226  Minor fimbrium  Porphyromo AFR5B1 Yes 7 9.9852
01738 subunit Mfal nas

gingivalis
SEQF2745 Fimbrial subunit  Actinomyces F0588 6 58.435
00395 type 1 sp. HMT

414
SEQF2743  Lys-gingipain Porphyromo W50 Yes 3.9 35.543
_01115 W83 nas

gingivalis
SEQF3145 14-alpha-glucan  Actinomyces R5292 Yes 4.9 9.6191
00537 branching oricola

enzyme GlgB

22
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Biological adhesion (G0:0022610)

Biological process involved in interspecies
interaction between organisms (G0O:0044419)
Biological regulation (GO:0065007)

Cellular process (G0:0009987)
Developmental process (G0:0032502)
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