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Abstract

Zero-inflated outcomes are very common in behavioral data, partic-
ularly for responses to psychological questionnaires. Modeling these
challenging distributions is further exacerbated by the absence of estab-
lished statistical models capable of characterizing total signals attributed
to whole-brain imaging features, making the accurate assessment of
brain-behavior relationships particularly formidable. Given this crit-
ical need, we have developed a novel variational Bayes algorithm
that characterizes the total signal captured by whole-brain imag-
ing features for zero-inflated outcomes . Our zero-inflated variance
(ZIV) estimator robustly estimates the fraction of variance explained
(FVE) and the proportion of non-null effects from large-scale imag-
ing data. In simulations, ZIV outperformed other linear prediction
algorithms. Applying ZIV to data from one of the largest neuroimag-
ing studies, the Adolescent Brain Cognitive DevelopmentSM (ABCD)
Study, we found that whole-brain imaging features have a larger
FVE for externalizing compared to internalizing behavior. We also
demonstrate that the ZIV estimator, especially applied to focal sub-
scales, can localize key neurocircuitry associated with human behavior.

1



2 Estimating Total Variance for Zero-inflated Outcomes

Keywords: behavioral outcome, zero-inflated, brain imaging,
neurodevelopment

1 Introduction

Non-invasively measuring the form and function of the human brain and map-
ping variation in these properties to cognitive and psychological outcomes
has been fundamental for understanding the neural circuitry underpinning
complex human behaviors.1,2, 3, 4, 5 For example, magnetic resonance imaging
(MRI) data are commonly used to identify brain features subserving specific
neurocognitive functions6,7, 8 and to build individual-level prediction models
of specific behaviors.9,10 Despite having been used in many published stud-
ies, two key problems in analyzing brain-behavior associations from MRI data
have remained unsolved.

First, recent results of brain-behavior associations with large samples
show that individual imaging features tend to have smaller effect sizes than
previously expected, casting doubt on the validity and reliability of the “one-
brain-feature-at-a-time” approach.11,12,10,13,14 In light of this, one approach
is to estimate the theoretical upper bound of the variance explained given
all imaging features from a given MRI modality.15,16 However, the validity of
these approaches for brain-behavior associations from MRI data remains to
be examined. For example, it is unclear if the brain features for specific MRI
modalities and behavioral outcomes are in fact not sparse.16 Moreover, the
typical assumption of “ubiquity of effects” limits the ability of these variance
components models to provide information about which features may be more
or less important for driving brain-behavior associations.

Second, existing methodologies are built either for normally-distributed or
binary outcomes.16 However, many behavioral outcomes are semi-continuous,
i.e., characterized by a peak of values occurring at a minimum value along with
typically right-skewed continuous values.17,18 (Note, following the literature we
refer to these distributions as being“zero inflated” even though the minimum
may differ from zero.) Semi-continuous data arise frequently in applications,
including medical costs,19 microbiome,20single cell gene expression21,22 and
psychological questionnaires.23

For example, the Child Behavior Checklist (CBCL), a widely used
assessment of the mental state of children,24,25 contains eight syndromal
subscales and six DSM-oriented subscales, which yield right-skewed data
with evident inflation at their minimum values, equal to fifty by scale con-
struction26,3 (Figure 1). Misspecifying semi-continuous outcomes as being
normally-distributed, especially in highly zero-inflated and/or right-skewed
data such as these, can cause severe, generally downward bias in estimates.
Unfortunately, no analytical techniques so far are specifically developed to
model the relationship between semi-continuous traits and brain imaging
features.
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Fig. 1 The schematic of the ZIV. A. The histogram of a zero-inflated outcome. B. ZIV
assumes a latent outcome and the input imaging features have a linear relationship. C.
Through variational Bayes algorithm, ZIV estimates both total signal profiles and the local
feature characteristics simultaneously. The resulting posterior weights can be used for the
prediction afterwards.

In light of the urgent need for methods that address these two issues, we
present our newly developed Bayesian model, the zero-inflated variance esti-
mator (ZIV). Figure 1 illustrates the design of ZIV. Given a set of whole
brain imaging features, ZIV estimates the total variance explained by all fea-
tures en masse (fraction of variance explained [FVE]; Figure 1 C, top section),
proportion of non-null effects among all included features (Proportion of non-
nulls), and identify which imaging features are most important for zero-inflated
outcomes (Probability of being non-null; Figure 1 C, middle section). The pos-
terior weights from the ZIV estimator can then can be used for prediction
in an independent sample (Prediction Weights; Figure 1 C, bottom section).
The practicality of the ZIV estimator is strengthened by our use of a varia-
tional inference algorithm, enabling inference with high-dimensional imaging
data tractable. We demonstrate the validity and the utility of our method
with comprehensive Monte Carlo simulations and empirical applications on
a large-scale imaging cohort: the Adolescent Brain Cognitive DevelopmentSM

(ABCD) Study.
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2 Method

2.1 Model Setup

The observed zero-inflated semi-continuous outcome zi for subject i is modeled
by positing a latent variable yi,

zi =

{
yi , yi > 0

0 , yi ≤ 0

The latent variable and feature pairs {(yi,xi)}ni=1 are assumed to follow a
linear relationship:

yi = β0 + xT
i β + ϵi

where the error terms ϵi are assumed to be independently and identically
distributed as N(0, σ2), xi = (xi1, xi2, ..., xip) and β = (β1, β2, ..., βp) are both
p-dimensional column vectors.

We model the effects of the features as a mixture of priors from normally
distributed non-nulls and point mass nulls (slab and spike prior):

βj ∼ N(0, σβ)π + δ0(βj)(1− π)

where δ0 is a point mass at 0. In addition, we assume the following prior for the
global proportion of non-nulls, π, and the variance of the error terms, σ2, as:

π ∼ Uniform(0, 1)

σ2 ∼ Uniform(0,+∞)

We denote by θ = (σβ , β0) the parameters optimized using gradient descent
without a variational posterior. We reparameterize βj , j = 1, . . . , p, as

βj = δj β̃j

where

β̃j ∼ N(0, σ2
β)

δj ∼ πδj (1− π)δj

2.2 Variational Inference on the Posterior

We want to approximate the following true posterior

P(β, π, σ | X, z) = P(β̃, δ, π, σ | X, z)

To do so we use the following variational distributions for approximation:

qϕ(β̃, δ, π, σ) = Beta(π | a3, a4)× LogNormal(σ2 | µ = b3, σ
2 = b4)
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×
p∏

j=1

N
(
β̃j | µβj

δj , σ
2
βj
δj + σ2

βj
(1− δj)

)
× π

δj
βj
(1− πβj

)1−δj

Notice that we have dependency between β̃j and δj , where P (β̃j , δj) = P (β̃j |
δj)P (δj).

We denote the variational parameters as ϕ = (a3, a4, b3, b4,µβ ,σβ ,πβ)
for which we want to optimize over. To measure the distance between the
true posterior and the approximate posterior, we use the Kullback-Leibler
divergence (KL-divergence):

DKL(q∥p) = Eqϕ

(
log

qϕ(β̃, δ, π, σ)

P(β̃, δ, π, σ | X, z)

)
= Eqϕ

(
log qϕ − logP(β̃, δ, π, σ,X, z) + logP(X, z)

)
= Eqϕ

(
log qϕ − logP(β̃, δ, π, σ,X, z)

)
+ logP(X, z)

Therefore, we have

logP(X, z) = DKL(q∥p) + Eqϕ

(
logP(β̃, δ, π, σ,X, z)− log qϕ

)
Since logP(X, z) is a constant, in order to minimize DKL(q∥p), we maximize

Eqϕ

(
log P(β̃,δ,π,σ,X,z)

qϕ(β̃,δ,π,σ)

)
which is the Evidence Lower Bound (ELBO). For sim-

plicity, we assume that the feature matrix X is fixed and always conditioned
upon. The ELBO can be written in three separate parts:

ELBO = Eqϕ

[
logP(z | β̃, δ, π, σ)

]
(1)

+ Eqϕ

[
logP(β̃, δ, π, σ)

]
(2)

+ Eqϕ

[
− log qϕ(β̃, δ, π, σ)

]
(3)

Equation 1 is the expectation of the data likelihood over the variational dis-
tributions, Equation 2 is the expectation of the prior likelihood and Equation
3 is the entropy of the variational approximation distribution. We use [27]
for our stochastic gradient descend algorithm to minimize the negative of the
ELBO. The details of the posterior inference, prediction and optimization
methodologies are shown in the Supplemental Materials.
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2.3 Model Inference

2.3.1 Inferring Global Signal Architecture of Brain-Behavior
Relationship

We used FVE and the proportion of non-nulls as the two key metrics to char-
acterize the signal patterns of the brain-behavior associations as a whole. To
estimate the FVE on the latent scale, we use the sampled values of latent lin-
ear effects in the posterior draw of the parameters. By definition, the variance
captured by the latent linear outcome is

var

[
p∑

j=1

xij β̃jδj

]
(4)

And we define the latent linear outcome value for each individual i at the
current cycle is:

r̃i =

p∑
j=1

xij β̃jδj

Then, the estimated variance in the current cycle is

σ̃2
m := v̂ar (r̃i) =

∑
i r̃

2
i

N
−
(∑

i r̃i
N

)2

The estimated FVE on the latent scale is

m̃2 =
σ̃2
m

σ̃2
m + σ̃2

where σ̃2 is the current estimate for the noise variance σ2. On the other
hand, the inference for proportion of non-null effects can be done directly using
the approximated posterior distribution Beta(π | a3, a4) for π.

2.3.2 Localized Feature Inference and Selection

For individual feature selection, the model produces posterior distributions
Bernoulli(πβj

) for each feature j. Customized rules based on πβj
can be uti-

lized to select out likely non-null features. In the simulation, we pick the top
k highest πβj

as true associations, where k equal to the mean estimate of π
multiply by the total number of features then divide by 2. There is a trade
off between false discovery rate and sensitivity, so the rules should be cre-
ated based on the actual needs of the researcher (Supplemental Materials).
Given high degree of observed correlations between brain imaging features, ZIV
provides an alternative but objective way to examine the feature importance.
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2.3.3 Prediction

The variational inference model approximates the posterior distribu-
tions of coefficient j using a mixture Guassian distribution δj β̃j where

N
(
β̃j | µβj

δj , σ
2
βj
δj + σ2

β(1− δj)
)
×πδj

βj
(1−πβj

)1−δj . The variational parame-

ters µβj , σβj , πβj are optimized using gradient descent, and δj is sampled from
the Bernoulli distribution with probability πβj . In order to obtain a point pre-
diction, we directly take the mean of the coefficient posterior distributions and
multiply them with the features as our predictions.

2.4 Monte Carlo Experiments

We performed Monte Carlo experiments to evaluate the performance of the
ZIV model. In order to simulate synthetic data that closely resemble real data,
we used actual task fMRI data for our imaging features while varying true
model parameters to generate synthesized semi-continuous outcomes. The task
fMRI data were sampled from the ABCD 4.0 Data Release, detailed in 2.5.
We randomly assigned 0.5%, 1%, 5% or 10% of the features to have non-null
effects. The non-null effects were generated from a normal distribution with
mean 0 and standard deviation of 0.1. The latent outcome was set equal to the
linear combination of the features multiplied by the corresponding coefficients
adding normally-distributed noise. The observed outcome was truncated at 0
whenever the latent outcome was negative. The variance of the random Gaus-
sian noise was determined by the empirical variance of the latent mean (linear
combination of the features multiplied by the corresponding coefficients) and
the pre-defined FVE parameter for simulation. We simulated data that have
0.05, 0.25, 0.5 or 0.8 fraction of variance explained. This resulted in a total
of 16 different simulation scenarios (4 different percent non-null effects times
4 different pre-defined FVE’s). For each simulation setup, we generated 500
instances and aggregated over the estimates of the instances for final result.

First, we examined the performance of ZIV for inferring the global sig-
nal architectures, i.e. whether the FVE and the proportion of non-nulls covers
the true values. For comparison, we also implemented a liability-based linear
mixed effects model.16,28,29 Estimation of mophemtricity from liability-based
linear mixed effects model is one of the few existing high-dimensional imag-
ing algorithms that focuses on characterizing the global signal.16 The liability
based estimates were first proposed and implemented in the software, called
GCTA,28 for human genetic studies and then applied to the neuroimaging
data.16,29 In contrast to ZIV, the GCTA model estimates the FVE, assuming
the outcome is normally distributed and the signal architecture is ubiquitous
across all input features.28,29

Second, we investigated if ZIV improved the predictive performance by
accounting for the zero-inflated distribution and non-null probabilities. We
compared the predictive performance of ZIV with three other prediction mod-
els: ridge regression, LASSO, and the best linear unbiased predictor (BLUP)
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from the GCTA model. To evaluate the prediction performance of the mod-
els, we randomly split the data into 80% training and 20% testing sets for
each outcome-modality pair. The performance metric we used was the mean
absolute error (MAE). Compared to mean-squared error (MSE), MAE is less
sensitive to outliers that are abundant in non-Gaussian data30 and hence more
appropriate for semi-continuous, highly skewed data. In addition, MAE is more
interpretable than MSE because it is assessed in the same units as the data,
while the MSE is in squared units.31 Finally, we compared the computational
speed and accuracy between variational inference and the traditional Markov
chain Monte Carlo (MCMC) algorithm using a similar simulation setup.

2.5 Empirical Application

We investigated the relationship between the psychopathology and Region of
Interest (ROI) brain measurements, one imaging modality at a time, using data
from the Adolescent Brain Cognitive Development (ABCD) Study. ABCD is
the largest study of neurodevelopment in the United States. N=11,880 youth
aged 9-11 at baseline were recrutied from 21 different sites around the country;
they are currently undergoing annual in-person evaluations for over a decade
by the end of the study.32,33 Data are released publicly on an annual basis
via the National Institute of Mental Health Data Archive (NDA, https://
data-archive.nimh.nih.gov/abcd). More details about the study can be found
at https://abcdstudy.org/. In this application, we used data from the ABCD
4.0 National Data Archive release (NDAR DOI:10.15154/1523041).

2.5.1 Child Behavior Checklist scores

The Child Behavior Checklist (CBCL) is a widely-used tool utilized for evaluat-
ing an extensive range of emotional and behavioral problems in children.34,35,36

It uses a scoring system where responses are labeled as 0 (not applicable), 1
(partially or occasionally applicable), or 2 (completely or frequently applica-
ble). The CBCL is comprised of 113 items that measure aspects of the child’s
behavior across the past six months. The CBCL provides a total score, along
with scores on eight syndrome subscales and six subscales oriented around
the Diagnostic and Statistical Manual of Mental Disorders (DSM). The eight
syndrome subscales include: (1) anxiety/depression; (2) social withdrawal/de-
pression; (3) somatic complaints; (4) issues with social interaction; (5) thought
disturbances; (6) attention issues; (7) rule breaking; and (8) aggressive behav-
ior. Subscales from these eight syndromes can be further summarized into
three problem scales: internalizing problems (comprising anxiety/depression,
social withdrawal/depression, physical complaints), externalizing problems
(comprising violations of rules, hostile behavior), and total problems. The six
DSM-oriented scales encompass: (1) depressive disorders; (2) anxiety disor-
ders; (3) somatic disorders; (4) attention-deficit/hyperactivity disorders; (5)
oppositional defiant disorders; and (6) conduct disorders. Scores obtained from
the CBCL are usually highly right skewed.37 In particular, the t-standardized

https://data-archive.nimh.nih.gov/abcd
https://data-archive.nimh.nih.gov/abcd
https://abcdstudy.org/
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score, a preferred scoring that aims to reduce over-interpretation, exacerbates
the violation of normal assumption by left truncation of the raw score at
50, leading to inflation at this minimum value.38 Here, we focus on the t-
standardized scores of all eight syndrome scales, six DSM-oriented scales, and
three summary problem scales, investigating how brain features associate with
these semi-continuous scores.

2.5.2 Multimodal Imaging Measures

Neuroimaging data were consolidated across all 21 data collection sites and
processed by the ABCD Data Analysis Informatics and Resource Center and
the ABCD Image Acquisition Workgroup.39 Data were then obtained at the
region of interest (ROI) level for the five MRI modalities available in the
ABCD data release: 1) structural T1 MRI (sMRI), which measures cortical and
subcortical morphometry; 2) diffusion tensor images (DTI), which are sensitive
to the fiber structures of human brain; 3) restricted spectrum images (RSI),
which summarize the properties of tissue compartments; 4) task functional
MRI (task fMRI), consisting of event-related contrasts capturing change in
the fMRI signal in response to stimuli;40 and 5) resting state functional MRI
(rsMRI), consisting of connectivity measures across Gordon parcellations and
subcortical regions, partitioned into modular networks.41

The number of features per modality were as follows: 1) p = 1,186 measures
from sMRI; 2) p = 2,376 measures from DTI; 3) p = 1,140 from RSI; 4) p =
885 from the three fMRI tasks; and 5) p = 416 from rsMRI. For all imaging
modalities except rsMRI, ROIs were restricted to the Desikan cortical atlas.42

As described above, rsMRI was based on a modular network partition. Both
DTI and RSI features included metrics from segmented major fiber bundles,
in addition to the cortical and subcortical ROIs. Casey et al. (2018)40 offers
in-depth information about the imaging acquisition, processing procedures,
and quality control metrics in the the ABCD imaging data. All features were
standardized to have zero mean and unit standard deviation before entering
them into the ZIV models.

2.5.3 Participant Inclusion

For each outcome (CBCL scores) and image modality pair, we excluded par-
ticipants who were missing outcome observations or lacked the corresponding
modality ROI measurements. We randomly sampled one member from each
family if there were multiple siblings within a family. Within each participant,
a single observation was randomly sampled if that participant had multiple
MRI assessments across visits. The number of observations included for each
image modality for all outcomes is shown in Supplementary Materials Table
7.3. In all ZIV models we adjusted for race, age, MRI scanner serial info and
software versions, and sex at birth as potential confounders. Variance due to
confounders is thus not included in the calculation of FVE for brain imaging
features.
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3 Results

3.1 Monte Carlo Results

Table 1 Simulations with various brain-behavior signal architectures

True FVE 0.25 0.50 0.80
True Non-null Proportion 0.005 0.010 0.050 0.100 0.005 0.010 0.050 0.100 0.005 0.010 0.050 0.100

Point Estiamtes
FVE by GCTA 0.124 0.127 0.129 0.131 0.260 0.263 0.265 0.269 0.438 0.447 0.449 0.450
FVE by ZIV 0.241 0.241 0.236 0.230 0.487 0.487 0.479 0.472 0.792 0.791 0.786 0.780
Inferred proportion of non-nulls by ZIV 0.011 0.016 0.040 0.053 0.010 0.015 0.044 0.065 0.008 0.014 0.049 0.078

95% CI Coverage Error Rate
FVE ZIV Error Rate 0.010 0.002 0.000 0.008 0.010 0.002 0.004 0.000 0.076 0.028 0.004 0.002
Error Rate of proportion of non-nulls 0.000 0.000 0.000 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Prediction - Mean Absolute Errors (MAE)
ZIV 0.397 0.593 1.468 2.067 0.231 0.342 0.850 1.213 0.115 0.169 0.423 0.615
GCTA 0.507 0.759 1.855 2.585 0.448 0.663 1.599 2.265 0.620 0.888 2.197 2.930
LASSO 0.464 0.693 1.708 2.402 0.280 0.413 1.016 1.435 0.163 0.238 0.591 0.842
Ridge 0.476 0.710 1.729 2.411 0.287 0.423 1.034 1.452 0.167 0.244 0.599 0.849

Simulation results are shown in Table 1. The ZIV model provides unbi-
ased estimates of the FVE’s under all scenarios (Table 1); in contrast, GCTA
severely underestimates them in all scenarios. Furthermore, unlike GCTA, our
ZIV model provides estimates for the proportion of non-nulls. The Credible
Interval (CI) for FVE and proportion of non-nulls provide good coverage of the
true values, with less than 5% error rates (Table 1). In the context of predic-
tion performance, the ZIV model out-performed predictions made by GCTA,
LASSO and Ridge (Table 1). On average across all the scenarios, ZIV has
a 49.7%, 19.8%, and 21.2% improvement over GCTA, LASSO, and Ridge in
terms of MAE, respectively. Further detail of the simulations regarding infer-
ence for localized non-null features and the comparison between variational
inference and MCMC can be found in the Supplementary Materials.

3.2 ABCD Study Results

We used ZIV to infer the signal architecture of the CBCL subscales, one imag-
ing modality at a time. Results are summarized in Figure 2A. Across CBCL
scales, the estimated FVE ranges from 0.6% to 4.9%. Imaging modalities have
a similar range of FVE’s given the same CBCL subscale, with the highest
magnitude of FVE in the DSM-oriented Conduct subscale and the Rule Break
syndrome subscale. However, the proportion of non-nulls differs across imag-
ing features. Across CBCL subscales, rsfMRI has the highest proportion of
non-null compared to other imaging modalities, despite having a similar range
of FVE’s.

The estimated proportion of non-nulls are all less than 5% of included
features. Posterior estimates thus indicate brain-behavior signals are concen-
trated on smaller subsets of ROIs with an overall background of weaker effects
(Figure 2 B and C). Between-network connectivity between the default mode
and dorsal lateral attention networks is associated with CBCL scales in three
DSM-oriented scales (ADHD, Conduct, and Opposition) and two syndrome
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Fig. 2 Brain and CBCL behavior associations in ABCD. A. The global signal architectures
of CBCL across imaging modalities. B. Posterior estimates of the local features of rsfMRI.
The coloring and size of the square in a cell represent the posterior effect size of each measure
pair while the asterisk marks indicate the probability of being non-null exceeding 50%. C.
Posterior estimates of the local features of sMRI for two CBCL scales that have highest FVE.
The posterior effect sizes are illustrated on the upper row and the posterior probabilities are
illustrated on the lower row.

scales (Rule break and Social). Within cingulo-parietal network connectiv-
ity, on the other hand, is found to be most closely related to externalizing
behaviors. The somatosensory network has strong associations with all CBCL
subscales, although most prominently in the ADHD, Attention, Social, and
Total Problem subscales (Figure 2 B).

Mirroring results from rsfMRI, local signals from the associations with
sMRI measures were more evident in the cingulate, pariental, and somatosen-
sory regions, as shown in the Figure 2 C. The volume of the parahippocampus
was inferred to have the highest probability of being non-null compared to all
other regions.

4 Discussion

We demonstrated that the ZIV model can efficiently infer the total global signal
while simultaneously localizing the driving features, given zero-inflated out-
comes and high-dimensional imaging predictive features. In simulations using
realistic high-dimensional features from task fMRI, ZIV out-performed other
tools in estimating the true values of FVE and proportion of non-null signal,
as well as in predictive accuracy on independent testing sets. By adopting
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variational inference, ZIV provides posterior estimates within minutes using a
modern laptop computer. ZIV is hence useful and practical for application to
large-scale brain-behavior analyses of many existing datasets.

Analyzing zero-inflated outcomes without considering the violation of nor-
mality assumption can lead to serious bias. As showcased in our simulations,
FVE estimated by methods like GCTA are severely downward biased. ZIV for-
mally models the zero-inflated outcome as a result of truncation of a partially
observed latent variable, hence more accurately capturing the global signal
architecture. With correct model specification, ZIV also benefits during pre-
diction, performing better than GCTA, LASSO, and Ridge regression in all
settings.

Our empirical findings of applying ZIV to the ABCD cohort indicate that,
regardless of imaging modality, relevant brain features are most consistently
detected for externalizing symptoms. Conduct problems, rule breaking behav-
iors, and total problem scales exhibited the highest FVE across measures.
It is perhaps unsurprizing that externalizing symptoms were most strongly
linked with brain morphology and function, with ADHD and conduct problems
forming some of the most prevalent mental disorders in early adolescence.43

Indeed, recent analysis within the ABCD sample found these behaviors to be
most strongly predicted by genetics.44 Taken together these results indicate
that externalizing symptom assessments may exhibit more variability in this
young adolescent sample leading to a greater ability to detect associations. A
recent high impact paper used ABCD data to argue that the strength of brain-
behavior associations were much smaller than previously thought.45 In this
work researchers presented cross-validation predictions claiming that rsfMRI
features explain around 1 percent of variance of the CBCL Total Problem while
much less for the CBCL internalizing and externalizing measures. We find this
previous work likely underestimated proportion of variance explained, in part
due to a mispecified model assuming normality of variables. the current work
tackles this problem directly and in so doing provides a more comprehensive
picture of associations between brain and adolescent mental health.

In particular, our estimates of the proportion of non-null effects indicate
that, for the item-level behavioral measures among youth, brain-behavior sig-
nals are not ubiquitous across brain regions. This is in contrast with reports
that focus on more complex and normally distributed outcomes, such as intel-
ligence scores.46 This sparseness also violates assumptions used in methods
such as GCTA,28,29,16 rendering them inappropriate to model such effects.
The sparseness of the non-null effects across brain regions enables analyses to
partition out neurocircuitry related to components of behavior - such as those
captured by item-level measures. Here we have showcased that ZIV is well
suited for this purpose since many of the item-level behavioral measures are
zero-inflated and heavily skewed.

Our analyses domonstrated that default mode network connectivity with
the dorsal lateral attention network has consistent associations with ADHD,
Conduct, Opposition, Rule breaking, and Social scales. The mis-engagement of
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the default mode network with the attention network has been posited as a key
driver for attention issues among youth.47 Concordant with the rsfMRI results,
our analysis on the volumetric measures from sMRI show that the reduced
volumes in parietal, cingulate, and parahippocampal regions are consistently
associated with Conduct and Rule breaking scales. These results suggest
that circuitry linking these regions is more salient to externally-manifested
behavior, rather than attention alone.

In sum, our development and efficient implementation of the ZIV mddel
provides a necessary tool to investigate brain-behavioral relationships zero-
inflated, highly-non-normal data. In these cases, ZIV produces unbiased
estimates of the global signal from high-dimensional imaging data while
providing detail on signal localization. Because of the high prevalence of semi-
continuous data in many fields, ZIV could be applied to analyses beyond
brain-behavior research.

5 Code Availability

The code associated with this research is available on GitHub at https://
github.com/junting-ren/ZIV. This repository contains all necessary code and
instructions to replicate the analyses described in this paper.
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7 Supplement

7.0.1 Expectation of the data likelihood

Due to the truncation of the observed phenotype z, the log data likelihood for
z = 0 is

logP(z | β̃, δ, π, σ)

=

n∑
i=1

logP(yi ≤ 0)

=

n∑
i=1

logP

(
p∑

j=1

xij β̃jδj + β0 + ϵi ≤ 0

)

=

n∑
i=1

logP

(
ϵi
σ

≤ − 1

σ
(

p∑
j=1

xij β̃jδj + β0)

)

=

n∑
i=1

log Φ

(
− 1

σ
(

p∑
j=1

xij β̃jδj + β0)

)
(5)

where Φ is the cumulative distribution function for standard normal distribu-
tion. The log data likelihood when z > 0 is given by

logP(z | β̃, δ, π, σ)

=

n∑
i=1

[
−1

2
log(2σ2)−

(zi −
∑p

j=1 xij β̃jδj − β0)
2

2σ2

]

= −n
2
log(2σ2)−

∑n
i=1(zi −

∑p
j=1 xij β̃jδj − β0)

2

2σ2

The variational parameters that need to be taken expectation of are σ2, β̃, δ.
When z = 0, we directly plug in the current estimate µβj

in place of β̃j , πβj

in place of δj , and
√

exp(b3 + b4) (mode of the standard deviation variational
distribution) in place of σ into Equation 5 as approximation to the expectation
of Equation 5.

For the expectation of the log data likelihood when z > 0, it is possible
to calculate the exact value. Due to the factorization of the approximation
distribution, we can first take the expectation with respect to σ,

Eσ2∼q[logP(y | β̃, δ, π, σ)]

= −n
2
b3 −

1

2
exp(−b3 + b4/2)

n∑
i=1

(zi −
p∑

j=1

xij β̃jδj − β0)
2
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As for β̃, δ, we need to expand (zi −
∑p

j=1 xij β̃jδj − β0)
2 before tak-

ing the expectation. We use the Gumbel-softmax [48] to sample δj and

reparametrization trick [49] to sample β̃j so that there will be gradients for the
respective parameters using Monte Carlo integration. The best temperature
for Gumbel-softmax is 1. During simulation experimentation for the Monte
Carlo integration model, it was observe that even by taking more samples for
the integration, the performance did not improve. From further investigation,
this is because simply by plugging in µβj

and πβj
in place of βj and δj , the only

difference between the true expectation and the plug-in approximation is on
the quadratic term, where the true expectation contains

∑p
j=1 x

2
ij(µ

2
βj
+σ2)πβj

comparing the approximation
∑p

j=1 x
2
ijµ

2
βj
π2
βj

for each i. By taking the dif-
ference, we can obtain the true expectation. The true expectation of the term
(zi −

∑p
j=1 xij β̃jδj − β0)

2 is:

n∑
i=1

[
z2i + β2

0 +

p∑
j=1

xij(µ
2
βj

+ σ2
βj
)πβj − 2zi(

p∑
j=1

xijµβjπβj )

− 2ziβ0 + 2β0(

p∑
j=1

xijµβj
πβj

) + 2
∑
k<l

xikxilµβk
µβl

πβk
πβl

]
Note that this is exactly the same as the variational inference posterior if βj
and δj are independent since the conditional dependency is not introduced
in the data likelihood. Therefore, in the final algorithm, we used the true
expectation of the data likelihood to optimize over instead of the Gumbel-
softmax approximation version.

7.0.2 Expectation of the prior likelihood

Expanding the inside of equation 2,

P(β̃, δ, π, σ)

=

 p∏
j=1

πδj (1− π)1−δj
1√
2σ2

β

exp

(
−
β̃2
j

2σ2
β

)
Therefore, taking the log, we have

logP(β̃, δ, π, σ)

= log(π)

p∑
j=1

δj + log(1− π)

p∑
j=1

(1− δj)− 0.5p log(2σ2
β)

−
∑p

j=1 β̃
2
j

2σ2
β
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Now, we know

Eπ∼ϕ(log(π)) = ψ(c)− ψ(c+ d)

Eπ∼ϕ(log(1− π)) = ψ(d)− ψ(c+ d)

Eβ̃j∼ϕ(β̃
2
j ) = E

(
E(β̃2

j | δj)
)
= µ2

βj
πj + σ2

βj
πj + (1− πj)σ

2
β

where ψ is the digamma function. From linearity of the expectation, we can
obtain

Eϕ

[
logP(β̃, δ, π, σ)

]
= E[log(π)]

p∑
j=1

πβj + E[log(1− π)]

p∑
j=1

(1− πβj )− 0.5p log(2σ2
β)

−
∑p

j=1 E[β̃2
j ]

2σ2
β

7.0.3 Entropy

Since the variational approximation distributions can be factorized, we con-
sider the entropy for β̃, δ first:

Eq(β̃,δ)

[
− log q(β̃, δ)

]
= −

p∑
j=1

[∫
(1− πj)N

(
βj | 0, σ2

β

)
log
[
(1− πj)N

(
βj | 0, σ2

β

)]
dβj

+

∫
πjN

(
βj | µβj , σ

2
βj

)
log
[
πjN

(
βj | µβj , σ

2
βj

)]
dβj

]

=

p∑
j=1

[
− (1− πj) log(1− πj)− πj log(πj)

+
1

2
(1− πj) log(2πeσ

2
β) +

1

2
πj log(2πeσ

2
βj
)

]

The entropy for π is

Eq(π) [− log q(π)]

= log

(
Γ(a3)Γ(a4)

Γ(a3 + a4)

)
− (a3 − 1)ψ(a3)

− (a4 − 1)ψ(a4) + (a3 + a4 − 2)ψ(a3 + a4)
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where Γ is the gamma function. The entropy for σ is

Eq(σ) [− log q(σ)]

∝ log
(√

b4 exp(b3 + 0.5)
)

7.1 Model Optimization

The prior hyper-parameters for global proportion of non-nulls π and error vari-
ance σ2 are pre-defined as shown in Section 2. The prior variance of coefficients
σβ and the intercept β0 are optimized using gradient descent similar to the
variational parameters.

Majority of the parameters that needs to be optimized are initialized ran-
domly using either standard Gaussian distribution or Uniform distribution.50

For the posterior approximating Beta distribution for π, the parameters a3
and a4 are initialized with 1.1. For the posterior approximating LogNormal
distribution for σ2, the parameters b3 and b4 are initialized at 10.0 and 0.1,
respectively.

We used the Adam optimizer27 with learning rate of 0.5, with betas equal
to (0.9, 0.999). An exponential learning rate scheduler is used with decay
multiplicative factor 0.8 for every 1000 epochs. Early stop is implemented
whenever the difference between the current loss and minimum loss is less than
1% for 200 epochs, with a max of total training epochs of 20000. Bayesian
variational inference inherently guards against overfitting, so there is no need
for a validation set to be used for early stopping. In this context, early stopping
has been implemented specifically to expedite the training process.

7.2 Supplemental Experimentation Result

For the main simulation, we pick the top k highest πβj as causal, where k equal
to the mean estimate of π multiply by the total number of features then divide
by 2. The sensitivity and False-discover rate (FDR) for different proportion
of non-null features are shown in Figure 3. We can see that using this feature
selection approach that focus more on controlling false discoveries, we achieve
a low FDR of at most 0.25. As the FVE increases, the FDR decreases and can
be as low as 0. The sensitivity increases with FVE and lowers with the true
proportion of non-null features. This is because as the percentage of causal
features increases, features with high correlations with casual features may be
erroneously selected.
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Fig. 3 Sensitivity and FDR for causal feature selection

In addition, we compared the model inference speed and estimation accu-
racy between VI and Markov chain Monte Carlo (MCMC). Due to the high
computation requirement of MCMC, we used the same simulation setup but
limiting the number of observations to 5000, number of features varying from
100 to 500, FVE equals to 0.5 and percentage of causal equal to 10%. For each
comparison setup, a total of 100 instances are generated. The result is shown
in Figure 4. As the number of features increases, the fitting time for MCMC
increases exponentially, whereas the time increases linearly for VI. The FVE
for both approaches are estimated with high accuracy achieving unbiased esti-
mates at 0.50. The VI inference approach achieves smaller variance comparing
to MCMC under this simulation setup.
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Fig. 4 Comparing VI to MCMC

7.3 Data Application Sample Size and Feature Number

Table 2 Number of observations and features for data application

modality N p

Resting state MRI 9501 416
Task functional MRI 8893 885
Structural MRI 9426 1186
Diffusion tensor images 9454 2367
Restricted spectrum images 9455 1140
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Paul M Matthews, Marcus R Munafò, Thomas E Nichols, Jean-Baptiste



Estimating Total Variance for Zero-inflated Outcomes 21

Poline, Edward Vul, and Tal Yarkoni. Scanning the horizon: towards
transparent and reproducible neuroimaging research. Nature reviews
neuroscience, 18(2):115–126, 2017.

[13] Rotem Botvinik-Nezer, Felix Holzmeister, Colin F Camerer, Anna Dreber,
Juergen Huber, Magnus Johannesson, Michael Kirchler, Roni Iwanir,
Jeanette A Mumford, R Alison Adcock, et al. Variability in the analysis of
a single neuroimaging dataset by many teams. Nature, 582(7810):84–88,
2020.

[14] Denes Szucs and John PA Ioannidis. Empirical assessment of published
effect sizes and power in the recent cognitive neuroscience and psychology
literature. PLoS biology, 15(3):e2000797, 2017.

[15] Mert R Sabuncu, Tian Ge, Avram J Holmes, Jordan W Smoller, Randy L
Buckner, Bruce Fischl, and Alzheimer’s Disease Neuroimaging Initiative.
Morphometricity as a measure of the neuroanatomical signature of a trait.
Proceedings of the National Academy of Sciences, 113(39):E5749–E5756,
2016.

[16] Baptiste Couvy-Duchesne, Lachlan T Strike, Futao Zhang, Yan Holtz,
Zhili Zheng, Kathryn E Kemper, Loic Yengo, Olivier Colliot, Margaret J
Wright, Naomi RWray, et al. A unified framework for association and pre-
diction from vertex-wise grey-matter structure. Human Brain Mapping,
41(14):4062–4076, 2020.

[17] Lei Liu, Robert L Strawderman, Bankole A Johnson, and John M
O’Quigley. Analyzing repeated measures semi-continuous data, with
application to an alcohol dependence study. Statistical Methods in Medical
Research, 25(1):133–152, 2016.

[18] Junting Ren, Susan Tapert, Chun Chieh Fan, and Wesley K Thompson.
A semi-parametric bayesian model for semi-continuous longitudinal data.
Statistics in Medicine, 41(13):2354–2374, 2022.

[19] Lei Liu, Robert L Strawderman, Mark E Cowen, and Ya-Chen T Shih.
A flexible two-part random effects model for correlated medical costs.
Journal of health economics, 29(1):110–123, 2010.

[20] Eric Z Chen and Hongzhe Li. A two-part mixed-effects model for
analyzing longitudinal microbiome compositional data. Bioinformatics,
32(17):2611–2617, 2016.

[21] Greg Finak, Andrew McDavid, Masanao Yajima, Jingyuan Deng, Vivian
Gersuk, Alex K Shalek, Chloe K Slichter, Hannah W Miller, M Juliana
McElrath, Martin Prlic, et al. Mast: a flexible statistical framework
for assessing transcriptional changes and characterizing heterogeneity in



22 Estimating Total Variance for Zero-inflated Outcomes

single-cell rna sequencing data. Genome biology, 16(1):1–13, 2015.

[22] Ruochen Jiang, Tianyi Sun, Dongyuan Song, and Jingyi Jessica Li.
Statistics or biology: the zero-inflation controversy about scrna-seq data.
Genome biology, 23(1):1–24, 2022.

[23] Nicole R Karcher and Deanna M Barch. The abcd study: understand-
ing the development of risk for mental and physical health outcomes.
Neuropsychopharmacology, 46(1):131–142, 2021.

[24] Kendra L Read, Cara A Settipani, Jeremy Peterman, Philip C Kendall,
Scott Compton, John Piacentini, James McCracken, Lindsey Bergman,
John Walkup, Dara Sakolsky, et al. Predicting anxiety diagnoses and
severity with the cbcl-a: improvement relative to other cbcl scales?
Journal of psychopathology and behavioral assessment, 37:100–111, 2015.

[25] Marc B Lande, Heather Adams, Bonita Falkner, Shari R Waldstein,
George J Schwartz, Peter G Szilagyi, Hongyue Wang, and Donna
Palumbo. Parental assessments of internalizing and externalizing behav-
ior and executive function in children with primary hypertension. The
Journal of pediatrics, 154(2):207–212, 2009.

[26] Amal Isaiah, Thomas Ernst, Christine C Cloak, Duncan B Clark, and
Linda Chang. Associations between frontal lobe structure, parent-
reported obstructive sleep disordered breathing and childhood behavior
in the abcd dataset. Nature Communications, 12(1):2205, 2021.

[27] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[28] Jian Yang, S Hong Lee, Michael E Goddard, and Peter M Visscher. Gcta: a
tool for genome-wide complex trait analysis. Am J Hum Genet, 88(1):76–
82, Jan 2011.

[29] Futao Zhang, Wenhan Chen, Zhihong Zhu, Qian Zhang, Marta F. Nabais,
Ting Qi, Ian J. Deary, Naomi R. Wray, Peter M. Visscher, Allan F. McRae,
and Jian Yang. Osca: a tool for omic-data-based complex trait analysis.
Genome Biology, 20(1):107, 2019.

[30] Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H
Friedman. The elements of statistical learning: data mining, inference,
and prediction, volume 2. Springer, 2009.

[31] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press,
2012.



Estimating Total Variance for Zero-inflated Outcomes 23

[32] H Garavan, H Bartsch, K Conway, A Decastro, RZ Goldstein, S Heeringa,
T Jernigan, A Potter, W Thompson, and D Zahs. Recruiting the abcd
sample: Design considerations and procedures. Developmental cognitive
neuroscience, 32:16–22, 2018.

[33] Anthony Steven Dick, Daniel A Lopez, Ashley L Watts, Steven Heeringa,
Chase Reuter, Hauke Bartsch, Chun Chieh Fan, David N Kennedy, Clare
Palmer, Andrew Marshall, et al. Meaningful associations in the adolescent
brain cognitive development study. NeuroImage, 239:118262, 2021.

[34] Thomas M Achenbach and Leslie A Rescorla. Manual for the ASEBA
preschool forms and profiles, volume 30. Burlington, VT: University of
Vermont, Research center for children, youth . . . , 2000.

[35] Thomas M Achenbach. The Achenbach system of empirically based
assessment (ASEBA): Development, findings, theory, and applications.
University of Vermont, Research Center for Children, Youth, & Families,
2009.

[36] A Vezzani, S Balosso, and T Ravizza. Handbook of clinical neurology,
2012.

[37] Thomas M Achenbach and Leslie A Rescorla. Manual for the aseba school-
age forms & profiles: an integrated system of multi-informant assessment
burlington, vt: University of vermont. Research Center for Children,
Youth, & Families, 1617, 2001.

[38] TM Achenbach, SH McConaughy, MY Ivanova, and LA Rescorla. Manual
for the aseba brief problem monitor for ages 6–18 (bpm/6–18). Burlington:
University of Vermont Research Center for Children, Youth, and Families,
2017.

[39] Donald J Hagler Jr, SeanN Hatton, M Daniela Cornejo, Carolina
Makowski, Damien A Fair, Anthony Steven Dick, Matthew T Sutherland,
BJ Casey, Deanna M Barch, Michael P Harms, et al. Image process-
ing and analysis methods for the adolescent brain cognitive development
study. Neuroimage, 202:116091, 2019.

[40] Betty Jo Casey, Tariq Cannonier, May I Conley, Alexandra O Cohen,
Deanna M Barch, Mary M Heitzeg, Mary E Soules, Theresa Teslovich,
Danielle V Dellarco, Hugh Garavan, et al. The adolescent brain cog-
nitive development (abcd) study: imaging acquisition across 21 sites.
Developmental cognitive neuroscience, 32:43–54, 2018.

[41] Evan M Gordon, Timothy O Laumann, Adrian W Gilmore, Dillan J
Newbold, Deanna J Greene, Jeffrey J Berg, Mario Ortega, Catherine
Hoyt-Drazen, Caterina Gratton, Haoxin Sun, et al. Precision functional



24 Estimating Total Variance for Zero-inflated Outcomes

mapping of individual human brains. Neuron, 95(4):791–807, 2017.

[42] Rahul S Desikan, Florent Ségonne, Bruce Fischl, Brian T Quinn, Brad-
ford C Dickerson, Deborah Blacker, Randy L Buckner, Anders M Dale,
R Paul Maguire, Bradley T Hyman, et al. An automated labeling system
for subdividing the human cerebral cortex on mri scans into gyral based
regions of interest. Neuroimage, 31(3):968–980, 2006.

[43] Rebecca H Bitsko, Angelika H Claussen, Jesse Lichstein, Lindsey I Black,
Sherry Everett Jones, Melissa L Danielson, Jennifer M Hoenig, Shane
P Davis Jack, Debra J Brody, Shiromani Gyawali, Matthew J Maen-
ner, Margaret Warner, Kristin M Holland, Ruth Perou, Alex E Crosby,
Stephen J Blumberg, Shelli Avenevoli, Jennifer W Kaminski, and Reem M
Ghandour. Mental health surveillance among children — united states,
2013–2019. 71(2).

[44] Robert J. Loughnan, Clare E. Palmer, Carolina Makowski, Wesley K.
Thompson, Deanna M. Barch, Terry L. Jernigan, Anders M. Dale, and
Chun Chieh Fan. Unique prediction of developmental psychopathology
from genetic and familial risk. 63(12):1631–1643.

[45] Scott Marek, Brenden Tervo-Clemmens, Finnegan J. Calabro, David F.
Montez, Benjamin P. Kay, Alexander S. Hatoum, Meghan Rose Donohue,
William Foran, Ryland L. Miller, Timothy J. Hendrickson, Stephen M.
Malone, Sridhar Kandala, Eric Feczko, Oscar Miranda-Dominguez,
Alice M. Graham, Eric A. Earl, Anders J. Perrone, Michaela Cordova,
Olivia Doyle, Lucille A. Moore, Gregory M. Conan, Johnny Uriarte,
Kathy Snider, Benjamin J. Lynch, James C. Wilgenbusch, Thomas Pengo,
Angela Tam, Jianzhong Chen, Dillan J. Newbold, Annie Zheng, Nicole A.
Seider, Andrew N. Van, Athanasia Metoki, Roselyne J. Chauvin, Timo-
thy O. Laumann, Deanna J. Greene, Steven E. Petersen, Hugh Garavan,
Wesley K. Thompson, Thomas E. Nichols, B. T. Thomas Yeo, Deanna M.
Barch, Beatriz Luna, Damien A. Fair, and Nico U. F. Dosenbach. Repro-
ducible brain-wide association studies require thousands of individuals.
Nature, 603(7902):654–660, 2022.

[46] Weiqi Zhao, Clare E Palmer, Wesley K Thompson, Bader Chaarani,
Hugh P Garavan, B J Casey, Terry L Jernigan, Anders M Dale, and
Chun Chieh Fan. Individual Differences in Cognitive Performance Are
Better Predicted by Global Rather Than Localized BOLD Activity
Patterns Across the Cortex. Cerebral Cortex, 31(3):1478–1488, 11 2020.

[47] Max M Owens, DeKang Yuan, Sage Hahn, Matthew Albaugh, Nicholas
Allgaier, Bader Chaarani, Alexandra Potter, and Hugh Garavan. Inves-
tigation of psychiatric and neuropsychological correlates of default mode
network and dorsal attention network anticorrelation in children. Cereb



Estimating Total Variance for Zero-inflated Outcomes 25

Cortex, 30(12):6083–6096, Nov 2020.

[48] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization
with gumbel-softmax. arXiv preprint arXiv:1611.01144, 2016.

[49] Durk P Kingma, Tim Salimans, and Max Welling. Variational dropout
and the local reparameterization trick. Advances in neural information
processing systems, 28, 2015.

[50] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep
into rectifiers: Surpassing human-level performance on imagenet classifi-
cation. In Proceedings of the IEEE international conference on computer
vision, pages 1026–1034, 2015.


	Introduction
	Method
	Model Setup
	Variational Inference on the Posterior
	Model Inference
	Inferring Global Signal Architecture of Brain-Behavior Relationship
	Localized Feature Inference and Selection
	Prediction

	Monte Carlo Experiments
	Empirical Application
	Child Behavior Checklist scores
	Multimodal Imaging Measures
	Participant Inclusion


	Results
	Monte Carlo Results
	ABCD Study Results

	Discussion
	Code Availability
	Acknowledgement
	Supplement
	Expectation of the data likelihood
	Expectation of the prior likelihood
	Entropy

	Model Optimization
	Supplemental Experimentation Result
	Data Application Sample Size and Feature Number


