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Abstract5

We explore the intersection of neural dynamics and the effects of psychedelics in light6

of distinct timescales in a framework integrating concepts from dynamics, complexity, and7

plasticity. We call this framework neural geometrodynamics for its parallels with general8

relativity’s description of the interplay of spacetime and matter. The geometry of trajecto-9

ries within the dynamical landscape of “fast time” dynamics are shaped by the structure of10

a differential equation and its connectivity parameters, which themselves evolve over “slow11

time” driven by state-dependent and state-independent plasticity mechanisms. Finally, the12

adjustment of plasticity processes (metaplasticity) takes place in an “ultraslow” time scale.13

Psychedelics flatten the neural landscape, leading to heightened entropy and complexity14

of neural dynamics, as observed in neuroimaging and modeling studies linking increases15

in complexity with a disruption of functional integration. We highlight the relationship16

between criticality, the complexity of fast neural dynamics, and synaptic plasticity. Patho-17

logical, rigid, or “canalized” neural dynamics result in an ultrastable confined repertoire,18

allowing slower plastic changes to consolidate them further. However, under the influence19

of psychedelics, the destabilizing emergence of complex dynamics leads to a more fluid and20

adaptable neural state in a process that is amplified by the plasticity-enhancing effects of21

psychedelics. This shift manifests as an acute systemic increase of disorder and a possibly22

longer-lasting increase in complexity affecting both short-term dynamics and long-term23

plastic processes. Our framework offers a holistic perspective of the acute effects of these24

substances and their potential long-term impacts on neural structure and function.25
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1 Introduction36

Spacetime tells matter how to move;

matter tells spacetime how to curve.

John Archibald Wheeler, in

Gravitation (1973)

In this paper, we explore new perspectives to interpret changes in the brain’s landscape37

and connectivity, focusing on the subtle interplay between structural and dynamical38

aspects across timescales (fast, slow, and ultraslow). Our primary goal is to present a39

framework that enhances the understanding of the intricate relationships among brain40

dynamics, complexity, structure, and plasticity. This framework, which we call “neural41

geometrodynamics”, draws on principles from non-linear dynamics and is further inspired42

by conceptual links to general relativity in physics.43

In describing neural dynamics, we will refer to the mathematical formalism of neu-44

ral mass models (NMMs), although other computational neuroscience formulations are45

equally relevant [1, 2]. Neural mass models have been extensively utilized to model vari-46

ous brain activities, from localized brain functions to the coordinated activity observed in47

different brain regions. By employing mathematical formulations that include essential48

features like synaptic connectivity and neuronal excitability, NMMs enable the simu-49

lation and analysis of complex brain activities in various dynamic regimes [3]. NMMs50

are particularly useful because they provide a link between the mesoscopic physiological51

scale and macroscopic brain function, allowing for the connection of effects on neurons at52

the molecular level, such as those of psychedelics, with those of whole-brain connectivity53

[4, 5].54

Analyzing the effects of psychoactive neuroplastogens (psychedelics such as psilocybin55

or LSD) serves as an illustrative case of the framework, given the immediate and poten-56

tially lasting plastic changes these substances can provoke in the brain [6]. By altering57

neural dynamics and connectivity, psychedelics are thought to induce both transient58

and sustained shifts in cognition and perception [7]. Several studies underscore the role59

of psychedelics in inducing neuroplasticity with antidepressant effects, revealing mecha-60

nisms at molecular, synaptic, and dendritic levels [8, 9], and with significant potential61

for treating neuropsychiatric disorders [10, 11], although the duration and permanence62

of these effects remain to be fully understood.63

Recent conceptual perspectives have enhanced our understanding of the brain’s response64

to psychedelics, combining biological, dynamical systems, complexity science, and arti-65
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ficial intelligence viewpoints. The REBUS (RElaxed Beliefs Under pSychedelics) frame-66

work [12], grounded in the Free Energy Principle (FEP) and the entropic and anarchic67

brain models, offers a perspective on the effects of psychedelics on the brain whereby68

psychedelic action results in the collapse of brain functional hierarchies or, in other words,69

in the “flattening of the landscape” of brain’s dynamics to allow the brain state to es-70

cape a deep local minimum. The term annealing is also used in this context in relation71

to physical annealing in metallurgy and simulated annealing in numerical optimization72

[13].73

Consequently, it has been argued that the observed expansion of the repertoire of func-74

tional patterns elicited by hallucinogenic substances can be associated with an increase in75

entropy in brain dynamics [14, 15], with the brain moving to a more disordered state from76

a relaxation of high-level cognitive priors [12, 16]. This may lead to a favorable context77

for conducting psychotherapy [12, 17, 18]. Studies on functional neuroimaging regarding78

psilocybin and LSD effects have shown initial evidence of the mechanistic alterations79

on brain dynamics at the network level, with the majority of the findings suggesting a80

relative weakening of usual functional configurations giving place to an increase of brain81

entropy, global functional integration, and more flexible brain dynamics [14, 19–28]. As82

mentioned above, these changes are traditionally reflected in the complexity of neural83

dynamics, which can be evaluated using various techniques such as criticality measures84

[29, 30], complexity measures [31], connectome harmonic decomposition [23–25], control85

theory [26] and Ising (or spinglass) modeling [32, 33].86

For example, Ising modeling of psychedelics has shown that the increased complexity of87

brain dynamics under LSD (e.g., increased Ising temperature, Lempel-Ziv, and the Block88

Decomposition Method complexity) is associated with a decrease of interhemispheric89

connectivity — especially homotopic links [34], corroborating earlier modeling studies90

suggesting the central role of long-range connections in controlling phase transitions91

[35].92

The observed push of brain dynamics towards disorder and away from criticality aligns93

with the REBUS and FEP frameworks, which link the vividness of experience to the en-94

tropy of brain activity. At the same time, the notion that a wakeful brain exhibits95

dimensionality reduction and criticality features that are disrupted by the effect of96

psychedelics is also predicted by an algorithmic perspective on consciousness [16, 36,97

37], where the psychedelic shift towards disorder is associated with a disruption of the98

world-modeling/world-tracking circuits in the brain.99
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Another feature of brain dynamics related to the collapse of higher-order cognitive100

functions under psychedelics in the REBUS framework is the hierarchical organization101

along the uni- to trans-modal functional gradient [38]. This asymmetry in neural ac-102

tivity reflects the bottom-up and top-down information flows in cognitive processing103

[39, 40]. This has been suggested to be intimately linked to non-equilibrium dynam-104

ics in thermodynamic-inspired frameworks where the level of hierarchy is related to the105

amount of brain signal irreversibility as well as entropy production [41–43]. Indeed it has106

been demonstrated that the principal functional gradient collapses under the influence107

of various psychedelics [44–46].108

A related perspective for this paper is the CANAL framework [11] for describing the109

pathological plasticity of “being stuck in a rut” in certain mood disorders and the po-110

tential therapeutic role of psychedelics through the concept of metaplasticity. In contrast111

to psychedelics, these changes are reflected in neural dynamics with brain signatures of112

excessively rigid and highly ordered functional states [47]. The CANAL framework has113

been further extended by establishing connections with deep artificial neural networks114

(Deep CANAL [48]) to introduce a distinction between two distinct pathological phe-115

nomena — one related to fast brain dynamics and their slow and ultraslow counterparts.116

These distinctions will be naturally integrated into the presented framework (see the Ap-117

pendix for a figure relating the concepts in the different frameworks).118

While the discussion is centered on the effects of psychedelics, the framework proposed119

here extends more generally to other phenomena related to plasticity, including neu-120

rodevelopment, pathological plasticity in mood disorders [49], and interventions that121

alter brain dynamics like transcranial brain stimulation (tES) [50], transcranial mag-122

netic stimulation (TMS), or electroconvulsive therapy (ECT).123

In what follows, we formalize the notions of brain dynamics, plasticity, and their asso-124

ciated timescales and subsequently use them to study the impact of psychedelics on the125

brain. In the last section, we draw connections between the framework and concepts126

from general relativity in physics. We hope these parallels will illuminate the complex127

relationship between the structure and function of brain dynamics. Figure 1 illustrates128

the reciprocal dynamics between brain states and connectivity as conceptualized in the129

neural geometrodynamics framework.130
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Figure 1: Neural Geometrodynamics: a dynamic interplay between brain states and

connectivity. A central element in the discussion is the dynamic interplay between brain state

(x) and connectivity (w), where the dynamics of brain states is driven by neural connectivity

while, simultaneously, state dynamics influence and reshape connectivity through neural plas-

ticity mechanisms. The central arrow represents the passage of time and the effects of external

forcing (from, e.g., drugs, brain stimulation, or sensory inputs), with plastic effects that alter

connectivity (ẇ, with the overdot standing for the time derivative).

2 Dynamics across timescales131

The state of a system can be defined by a set of coordinates in phase space: a multidi-132

mensional manifold in which each dimension corresponds to one of the variables. For a133

single particle moving in one dimension, the phase space is two-dimensional, with one134

axis representing its position and the other representing its momentum. For example,135

Figure 2 illustrates the phase space of a pendulum with friction. In phase space, and per-136

haps after some transient period, the possible trajectories of the states of the system lie137

in a reduced or invariant manifold (an attractor, see Box 1 for a glossary of terms), which138

we may refer to as the “geometry” or latent “structure” of the phase space. Together,139

the structure (geometry and topology) of the phase space with its invariant properties140

can be referred to as the dynamical landscape, where the depth or shallowness of the141

“valleys” can, in some cases, be interpreted as the stability of the state in that location142

given some stochastic forcing. For example, in mechanics, the landscape can be labeled143

by potential energy isolines, e.g., in a physical system such as in the pendulum example144

in Figure 2 (bottom right), or their generalization, Lyapunov functions [55].145

Fast time: neural dynamics146

Here, we discuss the first equation in neural geometrodynamics in the context of neural147

mass models, but the ideas are applicable more extensively in computational neuro-148

science. The standard equation we use in neural mass modeling is a multidimensional149
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Box 1 - GLOSSARY

State of the system: Depending on the context, the state of the system is defined by the coordinates x (Eq. 1, fast

time view) or by the full set of dynamical variables (x, w, θ) – see Eqs. 1, 2 and 3.

Entropy: Statistical mechanics: the number of microscopic states corresponding to a given macroscopic state (after

coarse-graining), i.e., the information required to specify a specific microstate in the macrostate. Information theory: a

property of a probability distribution function quantifying the uncertainty or unpredictability of a system.

Complexity: A multifaceted term associated with systems that exhibit rich, varied behavior and entropy. In algorithmic

complexity, this is defined as the length of the shortest program capable of generating a dataset (Kolmogorov complexity).

Characteristics of complex systems include nonlinearity, emergence, self-organization, and adaptability.

Critical point: Dynamics: parameter space point where a qualitative change in behavior occurs (bifurcation point, e.g.,

stability of equilibria, emergence of oscillations, or shift from order to chaos). Statistical mechanics: phase transition

where the system exhibits changes in macroscopic properties at certain critical parameters (e.g., temperature), exhibiting

scale-invariant behavior and critical phenomena like diverging correlation lengths and susceptibilities. These notions may

interconnect, with bifurcation points in large systems leading to phase transitions.

Temperature: In the context of Ising or spinglass models, it represents a parameter controlling the degree of random-

ness or disorder in the system. It is analogous to thermodynamic temperature and influences the probability of spin

configurations. Higher temperatures typically correspond to increased disorder and higher entropy states, facilitating

transitions between different spin states.

Effective connectivity (or connectivity for short): In our high-level formulation, this is symbolized by w. It

represents the connectivity relevant to state dynamics. It is affected by multiple elements, including the structural

connectome, the number of synapses per fiber in the connectome, and the synaptic state (which may be affected by

neuromodulatory signals or drugs).

Plasticity: The ability of the system to change its effective connectivity (w), which may vary over time.

Metaplasticity: The ability of the system to change its plasticity over time (dynamics of plasticity).

State or Activity-dependent plasticity: Mechanism for changing the connectivity (w) as a function of the state (fast)

dynamics and other parameters (α). See Eq. 2.

State or Activity-independent plasticity: Mechanism for changing the connectivity (w) independently of state

dynamics, as a function of some parameters (γ). See Eq. 2.

Connectodynamics: Equations governing the dynamics of w in slow or ultraslow time.

Fast time: Timescale associated to state dynamics pertaining to x.

Slow time: Timescale associated to connectivity dynamics pertaining to w.

Ultraslow time: Timescale associated to plasticity dynamics pertaining to θ = (α, γ) — v. Eq. 3.

Phase space: Mathematical space, also called state space, where each point represents a possible state of a system,

characterized by its coordinates or variables.

Geometry and topology of reduced phase space: State trajectories lie in a submanifold of phase space (the reduced

or invariant manifold). We call the geometry of this submanifold and its topology the “structure of phase space” or

“geometry of dynamical landscape”.

Topology: The study of properties of spaces that remain unchanged under continuous deformation, like stretching or

bending, without tearing or gluing. It’s about the ‘shape’ of space in a very broad sense. In contrast, geometry deals with

the precise properties of shapes and spaces, like distances, angles, and sizes. While geometry measures and compares

exact dimensions, topology is concerned with the fundamental aspects of connectivity and continuity.

Invariant manifold: A submanifold within (embedded into) the phase space that remains preserved or invariant under

the dynamics of a system. That is, points within it can move but are constrained to the manifold. Includes stable,

unstable, and other invariant manifolds.

Stable manifold or attractor: A type of invariant manifold defined as a subset of the phase space to which trajectories

of a dynamical system converge or tend to approach over time.

Unstable Manifold or Repellor: A type of invariant manifold defined as a subset of the phase space from which

trajectories diverge over time.

Latent space: A compressed, reduced-dimensional data representation (see Box 2).

Topological tipping point: A sharp transition in the topology of attractors due to changes in system inputs or

parameters.

ODE of the form150

ẋ = f
(
x;w, η(t)

)
(1)

with x ∈ Rn and where w denotes connectivity parameters1 and where, as usual, a151

dot over a variable denotes its time derivative. This equation governs dynamics at152

1In the REBUS model [56], from the Free Energy perspective, w would correspond to the weights

or precision assigned to priors/beliefs; from the Entropic Brain perspective, w would correspond to the

weights of the effective connectivity between neuronal populations on the macroscopic scale.
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Box 2 - The manifold hypothesis and latent spaces

The dimension of the phase (or state) space is determined by the number of independent variables required

to specify the complete state of the system and the future evolution of the system. The Manifold

hypothesis posits that high-dimensional data, such as neuroimaging data, can be compressed into a

reduced number of parameters due to the presence of a low-dimensional invariant manifold within the

high-dimensional phase space [51, 52]. Invariant manifolds can take various forms, such as stable

manifolds or attractors and unstable manifolds. In attractors, small perturbations or deviations from

the manifold are typically damped out, and trajectories converge towards it. They can be thought of as

lower-dimensional submanifolds within the phase space that capture the system’s long-term behavior or

steady state. Such attractors are sometimes loosely referred to as the “latent space” of the dynamical

system, although the term is also used in other related ways. In the related context of deep learning with

variational autoencoders, latent space is the compressive projection or embedding of the original high-

dimensional data or some data derivatives (e.g., functional connectivity [53, 54]) into a lower-dimensional

space. This mapping, which exploits the underlying invariant manifold structure, can help reveal patterns,

similarities, or relationships that may be obscured or difficult to discern in the original high-dimensional

space. If the latent space is designed to capture the full dynamics of the data (i.e., is constructed

directly from time series) across different states and topological tipping points, it can be interpreted as a

representation of the invariant manifolds underlying system.

short time scales (seconds or less) when connectivity parameters w are assumed to be153

constant.154

The external input term η(t) makes the equations non-autonomous (an autonomous155

ODE does not explicitly depend on time). This term can refer to external forces pro-156

viding random kicks to the trajectory or to a more steady and purposeful forcing from157

unspecified internal systems, external inputs from sensory systems, or external electric158

fields, for example.159

We may think of this equation describing phenomena in fast time scales as providing160

the “structure” for the dynamics of neuronal population state. The fast timescale is161

set by synaptic transmission (milliseconds) and by ephaptic coupling (electromagnetic162

waves) [57–60] in a nanosecond or subnanosecond scale [59].163

Equation 1 characterizes the dynamical landscape, which is established through the164

geometric structure of the phase space, where trajectories are shaped by the given set165

of ordinary differential equations. The landscape is determined by the functional form166

of f(x;w, η(t)) and by the parameters w, and is analogous to the Neural Activation167

Landscape proposed in [48]. More specifically, we talk about the landscape as defined by168

the manifold generated by the motion of trajectories with coordinates x ∈ Rn. Typically,169

trajectories lie in a reduced manifold of dimensionality lower than Rn. The fact that170

such a reduced space exists means that it can be generated by coordinates in a reduced171

latent space. The geometry and topology of this reduced space in different states provide172
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Figure 2: Dynamics of a pendulum with friction. Time series, phase space, and energy

landscape. Attractors in phase space are sets to which the system evolves after a long enough

time. In the case of the pendulum with friction, it is a point in the valley in the “energy”

landscape (more generally, defined by the level sets of a Lyapunov function).

a synthetic description of the dynamics and are of special interest [37].173

Slow time: connectodynamics174

The landscape, like that on planet Earth, may appear to be static, but in reality, it is175

not fixed. It also flows in slow time. We thus consider changes in connectivity in the176

system, that is, now w = w(t). We call the potential for such changes plasticity of the177

system. The general form of this equation is ẇ = g(x,w; θ), with θ standing for a set of178

parameters controlling plasticity.179

To be more concrete, we can think of two types of process: one that modifies the180

connectivity parameters independently of the system’s state (ψ) and another that is a181

function of the state (e.g., Hebbian plasticity [61], h). We express this by writing182

ẇ = ψ(w; γ) + h(x,w;α) (2)

(with the second term understood as not separable into parts where any part is a function183

of only w). This decomposition separates out state-dependent (via the term h(x,w;α))184
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and state-independent plasticity (with ψ(w; γ)) processes. The set of parameters θ is185

similarly decomposed as θ = (α, γ): we separate out the plasticity-controlling parameters186

in order to differentiate the state-dependent (α) and state-independent (γ) plasticity187

control parameters (e.g., Hebbian vs. drug-enhanced structural plasticity [11]). The188

parameters (α, γ) may vary in time to reflect, for example, the effects of drugs. The189

dynamics of these parameters are formalized in the next section.190

Hebbian plasticity is the most prominent example of state-dependent plasticity [61].191

State dependence implies that state-related concepts such as system temperature, phase192

transitions, and critical phenomena are relevant for the study of the dynamics of plas-193

ticity. In particular, within the scope of slower “slow time” (taking place over many194

hours), we include homeostatic plasticity [62–65], which may itself target desired com-195

plexity states as a homeostatic goal [66, 67]. In the case of state-independent plasticity,196

there are numerous candidates for these plastic processes, such as heterosynaptic plas-197

ticity [68] or critical-period plasticity [69].198

In summary, the functions h and ψ with parameters α and γ regulate connectodynamics,199

defining where and how fast the effective connectivity will change in a state-dependent200

or state-independent way.201

These connectodynamics differential equations define a new dynamical landscape, which202

we can call the plasticity landscape (analogous to the Synaptic Weight Landscape in [48]).203

The state w in this plasticity landscape will determine the shape of the neural dynamics204

landscape.205

Ultraslow time: metaplasticity206

Plasticity is required to adapt to a changing environment [70], and the environment may207

change at different rates at different times. Plasticity in the healthy brain should match208

this variation in the character of dynamics accordingly. This is analogous to the situation209

in biology, where optimal mutation rates ensure successful adaptation in a tradeoff with210

genetic integrity [71]. More specifically, the plasticity-regulating parameters α and γ in211

Equation 2 should adapt to changes in the environmental conditions.212

In pathological cases, plasticity levels can either become overly exuberant, reflecting the213

notion of catastrophic forgetting in artificial neural networks, or impoverished and rigid,214

reflecting general plasticity loss [48]. These scenarios can be tentatively related to certain215

neurological and psychiatric conditions. For example, reduced plasticity could underlie216

conditions such as major depressive disorder, obsessive-compulsive disorder, anxiety, or217
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substance abuse [48, 72].218

To account for the dynamics of plasticity, we allow the plasticity parameters to be

dynamic, i.e.,

θ̇ = ξ(x,w, θ;µ(t)) (3)

This equation is again state-dependent, allowing the system to respond to changes in the219

neural dynamics (with state dynamics as drivers of plasticity parameter regulation [73]),220

including critical phenomena (changes in criticality regime [66]) and complexity. Plas-221

ticity dynamics reflect changes in the parameters regulating state-dependent (Hebbian)222

plasticity (changes in α) during neurodevelopment, and state-independent plasticity,223

such as the ones induced by psychedelics in the acute or post-acute phases (changes in224

γ). Finally, this equation is a function of other parameters and non-autonomous terms225

(µ(t)), reflecting external perturbations of the system, such as those from drugs. We226

provide analogies in the context of sailing and electrodynamics in the appendix to further227

clarify these concepts.228

The dynamics of plasticity presented above reflect a physiological principle well described229

by Abraham et al. in the definition of metaplasticity [74]:230

Metaplasticity [ ...] is manifested as a change in the ability to induce231

subsequent synaptic plasticity, such as long-term potentiation or depres-232

sion. Thus, metaplasticity is a higher-order form of synaptic plasticity [74].233

Thus, metaplasticity and its counterparts are terms used in neuroscience to refer to234

the plasticity of synaptic plasticity. That is, the idea that the ability of synapses to235

strengthen or weaken in response to increases or decreases in their activity (which is236

called synaptic plasticity) can be modulated based on the history of the synaptic ac-237

tivity or other factors (e.g., age, neuromodulatory systems, drugs, or lifestyle [75]).238

Metaplasticity has important implications for the learning and memory of an organism,239

as it can regulate the ability of synaptic plasticity to change and adapt over time as240

required by its environmental context.241

We call the set of equations 1,2 and 3 — somewhat whimsically — the equations for242

neural geometrodynamics in reference to the equations of general relativity in physics.243

We recall that general relativity provides equations defining the dynamics of spacetime244

geometry (via the “metric”) coupled with matter [76]. Section 4 elaborates further on245

this parallel.246
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Figure 3: Geometrodynamics of the acute and post-acute plastic effects of

psychedelics. The acute plastic effects can be represented by rapid state-independent changes

in connectivity parameters, i.e., the term ψ(w; γ) in Eq. 3. This will result in the flattening or

de-weighting of the dynamical landscape. Such flattening allows for the exploration of a wider

range of states, eventually creating new minima through state-dependent plasticity, represented

by the term h(x,w;α) in Eq. 3. As the psychedelic action fades out, the landscape gradually

transitions towards its initial state but with lasting changes due to the creation of new attractors

during the acute state. The post-acute plastic effects can be described as a “window of en-

hanced plasticity”. These transitions are brought about by changes of the parameters γ and α,

each controlling the behavior of state-independent and state-dependent plasticity, respectively.

In this post-acute phase, the landscape is more malleable to internal and external influences.

3 Dynamics under psychedelics247

Psychedelics like psilocybin and LSD act as agonists or partial agonists for serotonin 5-248

hydroxytryptamine 2A (5-HT2A) receptors, specifically targeting Layer V cortical pyra-249

midal neurons [11, 14, 56, 77, 78], leading to increased neuronal excitability through an250

increase in excitatory postsynaptic currents and discharge rates in pyramidal neurons251

[12]. The highest expression of 5-HT2ARs is found on the apical dendrites of Layer252

5 pyramidal cells in both cortical and subcortical structures [12, 79]. In the cortex,253

5-HT2A receptors are strongly expressed along a steep anteroposterior gradient [80].254

When psychedelics bind to these receptors, they can lead to a gradual increase of the255

excitability of these pyramidal neurons — depolarizing them and making them more256

susceptible to excitatory inputs such as those associated with glutamate receptors [80]257

— much as the gain knob in an amplifier. This increased excitability and susceptibility258

to inputs can lead to changes in the firing patterns of these neurons and alterations in259
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the overall neural circuit activity. Recognized for their potent and immediate impact on260

the brain, these drugs cause a swift reconfiguration of neural dynamics. As we explain,261

this immediate effect is represented in our model by state-independent alterations in the262

connectivity parameters (w) (see Figure 3).263

How are these effects represented in Equations 1 and 2? If we include the neuromodula-264

tory nodes in our model — the dorsal raphe and median raphe nuclei in the brainstem265

are the source of most serotonergic neurons projecting throughout the brain [80] —, the266

modulation of serotonin receptors could be represented by changes in neuromodulatory267

connectivity (the subset of w parameters in the model connecting the raphe nuclei to268

other nodes). Alternatively, if neuromodulatory nodes are not explicitly included in the269

model, for the purposes at hand, we can think of the changes in the excitability of the270

nodes affected by neuromodulatory inputs as leading to changes in their effective connec-271

tivity (w) to other nodes (e.g., through an increase of the connectivity of glutamatergic272

synapses into Layer 5 pyramidal cells).273

The abrupt shift induced by psychedelics can be thought of as a transformation of the274

phase space’s geometry, allowing the neural state to explore new trajectories. This275

process manifests in an increase of complexity and disorder, which can be measured276

using various tools in different modalities (e.g., EEG or fMRI BOLD with measures277

such as entropy, fractal dimension, algorithmic complexity, etc. [29, 31, 34, 81]). The278

decrease in effective connectivity under LSD (especially in interhemispheric homotopic279

connections), as inferred using Ising modeling of BOLD signals measured using fMRI280

imaging, is associated with a subsequent increase in algorithmic complexity [34].281

Psychedelic-induced changes in connectivity correspond to a flattening of the dynamical282

landscape [12] or a destabilization of it [48]. In our framework, the alteration of effective283

connective results in an immediate and state-independent remodeling of the dynamical284

landscape during the acute phase of psychedelics, which is represented by the term285

ψ(w; γ) in the connectodynamics equation (Eq. 2)2.286

The instantaneous modification of the landscape is, however, ephemeral, gradually fad-287

ing as the acute effects of the psychedelics wear off. The system returns to near its288

original geometrical configuration but with lasting influences brought about by the plas-289

tic changes resulting from the exploration of new trajectories in the acute phase. These290

residual changes are captured by the state-dependent plasticity term, h(x,w;α), which291

2In the REBUS model and the Entropic Brain perspective [56], the weights of the effective connectivity

during the psychedelic-induced state are “flattened” or “de-weighted”, representing a more symmetrical

and non-hierarchical connectivity profile.
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reflects changes in connectivity due to Hebbian plasticity that arise from the co-activation292

of neurons during the psychedelic acute stage.293

In the literature, there is an increasing body of evidence suggesting a post-acute phase294

following psychedelic exposure characterized by a period of enhanced plasticity [11, 12,295

82–84]. This phase can be interpreted as an extended window of malleability of the land-296

scape, which could have profound implications for learning and therapy. Such window of297

plasticity has been related to increased neurogenesis and upregulation of Brain-Derived298

Neurotropic Factor (BDNF) in humans and mice [8]. The activity-dependent release of299

BDNF plays a crucial role in selectively strengthening active synapses while weakening300

inactive ones, a critical process for Hebbian-type plasticity. Intriguingly, recent studies301

with mice have found psychedelic-induced changes in plasticity and antidepressant-like302

behavior dependent on the increase of endogenous BDNF and TrkB binding (the receptor303

of BDNF), but independent from the activation of 5-HT2A [9, 10].304

In terms of our model, these two pathways correspond to changes of connectivity through305

Equation 2 due to a temporary modulation of the parameters γ and α (i.e., metaplastic-306

ity, see Equation 3) upregulating state-independent and state-dependent plasticity pro-307

cesses, respectively. The strong acute-phase increase of state-independent plasticity (ψ)308

would be directly associated with the activation of serotonergic receptors, as discussed309

above, with a possible gradual decrease during the post-acute phase (solid white line310

in Figure 3). The sustained increase of state-dependent plasticity (h) in the post-acute311

phase (dashed black line in Figure 3) would be linked to dendritic growth, neurogenesis,312

upregulation of BDNF, and other related changes. This means that in the post-acute313

period, the landscape would be more responsive to state changes (itself influenced by314

external factors), offering a potential mechanism for the long-lasting changes reported315

after psychedelic experiences. Such external influences are modeled by the external input316

term η(t) in the state equation (Eq. 1) and can represent environmental/sensory inputs,317

psychotherapy, or neuromodulatory brain stimulation techniques such as transcranial318

electrical current stimulation (tES).319

Dynamics of psychedelics and psychopathology320

Recently, psychedelic medicine has emerged as a promising direction for treating mental321

disorders such as depression or addiction [85]. The nuanced interaction between the322

brain’s neurophysiology and the emergent brain activity underlies the pathophysiology323

of mood disorders, often resulting in a persistent and maladaptive rigidity in cognitive324

and emotional processes [86]. Such changes to the brain’s neurophysiology can be ex-325
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plained through the CANAL framework whereby pathological plasticity, often caused326

by a traumatic event, asserts itself and dominates brain activity, driving the brain state327

to be “stuck in a rut” [11], i.e., a deepening minimum in the dynamical landscape (see328

Figure 4).329

The interplay between external inputs, neural (fast time), and connectivity (slow time)330

dynamics can drive the system into a joint canalized, stable state of lower complexity.331

Under the influence of psychedelics, more diverse and complex dynamics destabilize the332

plasticity equilibrium point, leading to a more fluid and adaptable neural state in a333

process that is amplified by the plasticity-enhancing effects of psychedelics. This shift334

manifests as an acute systemic increase of disorder and possibly a longer-lasting increase335

in complexity (Ising temperature, Lempel-Ziv complexity, etc.) that affects both short-336

term dynamics and long-term plastic processes.337

The CANAL framework offers insight into the neural mechanisms underlying the persis-338

tence of various brain disorders. In particular, psychedelics may mediate their effects by339

altering the balance between stability and plasticity in neural networks through meta-340

plasticity and thus act as potential therapeutic treatments. By acting on the serotonergic341

receptors, they trigger a cascade of neurochemical events, subsequently facilitating the342

reorganization of entrenched neural patterns. As discussed above, this alteration of343

the neural network during the acute phase (connectodynamics) can be interpreted as344

a rapid deformation or flattening of the landscape that allows the trapped state to es-345

cape and access more adaptive cognitive and emotional patterns. The rapid increase346

in complexity (a change in the dynamics) is in itself a likely driver of metaplasticity.347

The acute phase is believed to be followed by an extended window of malleability of348

the landscape, otherwise known as a “window of plasticity”, where treatments such as349

psychotherapy and transcranial electrical stimulation can further alter the pathological350

rigidity characteristic of various brain disorders (see Figure 4).351

4 Neural geometrodynamics and general relativity352

A parallel can be drawn between neural geometrodynamics and Einstein’s equations353

of general relativity — the original geometrodynamics. Both frameworks involve the354

dynamical interaction between structure and resulting activity, each influencing and355

being influenced by the other. The Einstein field equations, including the cosmological356

constant Λ, are357

Rµν −
1

2
gµνR+ Λgµν =

8πG

c4
Tµν . (4)
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Figure 4: Psychedelics and psychopathology: a dynamical systems perspective. From

left to right, we provide three views of the transition from health to canalization following a

traumatic event and back to a healthy state following the acute effects and post-acute effects of

psychedelics and psychotherapy. The top row provides the neural network (NN) and effective

connectivity (EC) view. Circles represent nodes in the network and edge connectivity between

them, with edge thickness representing the connectivity strength between nodes. The middle row

provides the landscape view, with three schematic minima and colors depicting the valence of each

corresponding state (positive, neutral, or negative). The bottom row represents the transition

probabilities across states and how they change across the different phases. Due to traumatic

events, excessive canalization may result in a pathological landscape reflected as a deepening

of a negative valence minimum where the state may be trapped. During the acute psychedelic

state, the landscape is deformed, enabling the state to escape. Moreover, plasticity is enhanced

during the acute and post-acute phases, benefiting interventions such as psychotherapy or brain

stimulation (i.e., changes in effective connectivity). Not shown is the possibility that a deeper

transformation of the landscape may take place during the acute phase (see the discussion on

the wormhole analogy in Section 4).

Here, gµν is the metric tensor, Rµν = Rµν [gµν ] is the Ricci curvature tensor and a358

function of gµν , R[gµν ] is the Ricci scalar (or curvature scalar) and a function of gµν ,359

Tµν is the stress-energy tensor3, a function of the mass and energy distribution (all the360

3The stress-energy tensor (also called the energy-momentum tensor) is a central concept in general

relativity. It encapsulates the distribution and flow of energy and momentum in spacetime, and its

16

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 17, 2024. ; https://doi.org/10.1101/2023.08.14.553258doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.14.553258
http://creativecommons.org/licenses/by-nc-nd/4.0/


indices refer to spacetime dimensions), G is the gravitational constant, c is the speed361

of light, and Λ is the cosmological constant. These equations describe the fundamental362

interaction of gravitation as a result of spacetime being curved by matter and energy.363

Specifically, they equate local spacetime curvature (on the left-hand side) with the local364

energy and momentum within that spacetime (on the right-hand side).365

To complete these equations, the geodesic equation portrays how particles (matter) move366

in this curved spacetime, encapsulated by the notion that particles follow the straightest367

possible paths (geodesics) in curved spacetime,368

d2xµ

dτ2
+ Γµρσ

dxρ

dτ

dxσ

dτ
= 0 (5)

where xµ are the coordinates of the particle, τ is the proper time along the particle’s369

path, and Γµρσ[gµν ] are the Christoffel symbols, which are a function of gµν and encode370

the connection (a mathematical object that describes how vectors change as they are371

parallel transported along curves in spacetime). The stress-energy tensor Tµν can be372

computed from the state of the particles, closing the system of equations. For example,373

for N particles, it is given by Tµν =
∑

imiu
µ
i u

ν
i δ(x−xi), where mi and ui are the mass374

and velocity of the ith particle. More generally, the stress-energy tensor represents the375

state of matter and energy, which corresponds to x in our neural model. The metric376

gµν , which specifies the geometry of spacetime, is akin to the connectivity w — which377

shapes the structure of the space where fast dynamics occur.378

In the context of neural mass models, the state equation, ẋ = f(x;w), is analogous379

to the geodesic equation – “the state of the system evolves according to the landscape380

geometry specified by the parameters w”. On the other hand, the connectodynamics381

equation, ẇ = h(x,w; θ) (with θ standing for plasticity parameters), is analogous to382

Einstein’s field equations — the parameters w, which describe the “structure” of the383

space where dynamics take place, evolve according to the current state of the system x384

and its ‘readiness’ for plasticity (parametrized by θ).385

The analogy to psychedelic effects in general relativity can be clarified further. The386

neural effects of psychedelics, as we understand them, start with a disruption of con-387

nectivity in a spatially dependent manner. Since the analog of w is g (the metric), in388

cosmological terms, we would first see a dynamic deformation of spacetime independent389

of the mass distribution (state-independent plasticity). Spacetime would “flatten”. This390

would cause the mass in the universe to escape from gravitational wells following new391

components include energy density, momentum density, and stress (pressure and shear stress) within a

given region.
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Figure 5: General Relativity and Neural Geometrodynamics. Left: Equations for gen-

eral relativity (the original geometrodynamics), coupling dynamics of matter with the dynamics

of spacetime. Right: Equations for neural geometrodynamics, coupling neural state, and con-

nectivity. Only fast and slow time equations are shown (ultraslow time endows with dynamics

the “constants” appearing in these equations).

geodesics (just as the state in the brain will explore new regions of phase space), in turn392

creating further deformations of spacetime (state-dependent plasticity).393

We emphasize that this comparison is largely metaphorical and therefore limited: the394

mutual influence between particles and spacetime in general relativity is akin to the state395

of the neural system and its underlying connectivity parameters. In both cases, dynamics396

and structure are intertwined (see Figure 5). However, as an example of the limitations397

of the analogy, the slow and fast nature of the different variables is interchanged in the398

two formulations, with spacetime responding faster (at the speed of light) to changes in399

the distribution of energy than the stress-energy tensor itself.400

Metaplasticity and variable constants in cosmology401

In our neural mass model framework, the concept of metaplasticity is introduced as

dynamic variations in the plasticity control constants, namely θ in the connectodynamics

equation. This set of constants can be represented as evolving over time as a function
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of the state of the system or other relevant variables,

θ̇ = ξ(x,w, θ;λ) (6)

In this equation, ξ defines the evolution of the plasticity control constants with param-402

eters λ.403

Analogously, in the realm of general relativity and cosmology, it has been speculated404

that the fundamental constants, such as the speed of light c, the gravitational constant405

G, or the cosmological constant Λ, may, in fact, be dynamic. Although not part of the406

mainstream cosmological model, theories proposing variable constants, such as “Variable407

Speed of Light” (VSL) or “Variable Cosmological Constant” provide an intriguing par-408

allel. For instance, within VSL theories, the speed of light c is postulated to vary over409

cosmological time scales. Certain hypothetical dynamical equations could dictate the410

dynamical evolution of these constants. Although these theories are quite speculative411

and do not form a part of mainstream physics, they offer an interesting perspective on412

the concept of metaplasticity and its potential implications for the dynamical evolution413

of neural mass models and the structure of their landscapes.414

Psychedelics as wormholes in the neural landscape415

In the parallel of general relativity and neural geometrodynamics, we see the effects of416

psychedelics as a deformation of the neural landscape (spacetime) that allows the brain417

state (of a particle or set of particles) to escape from a local minimum and transition418

to another location in the landscape (spacetime). Although transitions may be smooth419

and respect the topology of the landscape (as described by topological quantities such420

as the Euler characteristic of Betti numbers4 [87, 88]), deformations of the landscape421

may also be more extreme — sharp transitions through a topological tipping point of422

the dynamical landscape. This may be due to external inputs (η(t)), when our system423

is non-autonomous [89], e.g., from sensory or brain stimulation effect. And as we have424

discussed, it may be due to connectivity dynamics.425

The creation of a wormhole in general relativity5 can be viewed as a profound deforma-426

4In algebraic topology, Betti numbers provide a way to count the number of n-dimensional “holes”

in a manifold. The creation of a wormhole (in 4D or higher dimensional spaces), being a topological

feature that connects two otherwise distant regions of spacetime, would alter the topological structure

of the manifold it inhabits and the associated Betti numbers.
5Wormholes, a term due to John A. Wheeler [90], also known as Einstein-Rosen bridges, are solutions

to the Einstein field equations of general relativity which some models suggest could exist under certain

conditions. However, creating or stabilizing a traversable wormhole would likely require forms of exotic
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Figure 6: A hypothetical psychedelic wormhole. On the left, the landscape is characterized

by a deep pathological attractor, where the neural state is trapped. After ingestion of psychedelics

(middle), a radical transformation of the neural landscape takes place, with the formation of

a wormhole connecting the pathological attractor to another, healthier attractor location and

allowing the neural state to tunnel out. After the acute effects wear off (right panel), the

landscape returns near its original topology and geometry, but activity-dependent plasticity

reshapes it into a less pathological geometry.

tion of spacetime, bending and connecting distant parts of the universe in such a way427

that matter/energy, like an astronaut, can travel through vast distances in an instant.428

This change in the geometry and topology of spacetime can be likened to the effect of429

psychedelics on the human mind. Just as the wormhole alters the structure of spacetime,430

psychedelics may radically alter the dynamical landscape of neural dynamics, creating431

connections across distant landscape locations. In the same way that the astronaut uses432

the wormhole to bypass vast stretches of space, the deformation caused by psychedelics433

may allow the state of the brain to tunnel out and escape from a local minimum or434

stuck pattern of thought, providing access to new areas of the landscape — new per-435

spectives and potentially unexplored territories of consciousness. This analogy, although436

speculative, aims to highlight that both phenomena are characterized by a fundamen-437

tal transformation that enables traversal into otherwise inaccessible regions — whether438

in physical space or the brain’s dynamical landscape (see Figure 6 for a sketch of this439

concept).440

matter with properties not yet observed in the known universe — there is no current consensus about this

in classical general relativity, where some theorems suggest it may not be possible in some conditions

because of the necessity of singularities, or in quantum gravity, where topology change is a natural

concept [91].
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Characterizing the landscape441

An important challenge in the program of neural geometrodynamics is to explore prac-442

tical methods to characterize the landscape. Here again, we can draw inspiration from443

physics and mathematics.444

The roots of this approach can be traced back to the 19th century when Carl Friedrich445

Gauss pioneered the field of differential geometry. Gauss’s Theorema Egregium demon-446

strated that the curvature of a surface could be determined entirely by measurements447

within the surface, without any reference to the surrounding space [92]. This seminal in-448

sight has laid the groundwork for understanding manifolds in various contexts, including449

the theory of relativity. In the era of general relativity, the interplay between geometry450

and physics was further enriched. Differential geometry and algebraic topology — which451

comes into play when one is interested in the global properties of the manifold, such as its452

shape, connectedness, and the presence of holes [93, 94] — became essential in describ-453

ing the fabric of spacetime itself. It enabled physicists to conceptualize how mass and454

energy warp the geometry of spacetime, thus influencing the motion of objects.455

In our current endeavor, these ideas find application in characterizing the complex dy-456

namical landscapes of neural data. Modern tools from deep learning, such as variational457

autoencoders, can be used to unravel the reduced spaces underlying neuroimaging or458

neurophysiological data [53, 54], while dynamical systems theory in concert with dif-459

ferential geometry, group theory, and algebraic topology data analysis [95] offer robust460

frameworks to understand and characterize them [89, 96–100]. Topological data anal-461

ysis can also be used to explore the graphs associated with model space, for example,462

the structural (connectome) or effective connectivity between regions in the brain (see463

[101] for a recent review). Topological methods have already been successfully employed464

to analyze detailed microscopic models [98], to study the relationship of criticality and465

topology in models [102], and to characterize functional brain networks derived from466

neuroimaging data [87, 88, 101].467

World-tracking constraints force the brain as a dynamical system to mirror the symmetry468

in the data [37], a requirement that translates into constraints on structural and dynam-469

ical aspects of the system (and which can be analyzed using Lie group theory). This470

suggests leveraging the known links between topology and Lie groups [103]. The con-471

vergence of these mathematical techniques extends to neuroscience the fruitful exercise472

in physics of linking geometry and topology.473

Finally, it would be interesting to explore if hierarchical data processing systems such as474
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the brain display dynamical manifolds with hierarchical structure, including topology.475

This possibility is intuitive given the connections between the notions of criticality, in-476

formation processing, and hierarchical organization [34, 104]. In this sense, the effects477

of psychedelics, which are seen to increase the temperature of the system [34] and the478

complexity of dynamics, should be reflected as an increase in the topological complex-479

ity of the associated dynamical attractors, as we discussed above with the analogy to480

wormholes.481

The relationship between hierarchy and topological complexity could be analyzed, for482

example, by exploring artificial neural networks carrying out hierarchical processing483

(any generative deep network trained on real-world data would do, in principle). Such484

networks could then be used to generate neural activation data and analyze, for instance,485

whether the depth of the network (the number of layers in its hierarchical architecture)486

is reflected in the topology (e.g., in Betti numbers) associated with the data or its latent487

space.488

5 Conclusions489

In this paper, we have defined the umbrella of neural geometrodynamics to study the490

coupling of state dynamics and their complexity, geometry, and topology with plastic491

phenomena. We have enriched the discussion by framing it in the context of the acute492

and longer-lasting effects of psychedelics.493

As a source of inspiration, we have established a parallel with other mathematical theo-494

ries of nature, namely in general relativity, where dynamics and the “kinematic theatre”495

are intertwined (see the Appendix for a similar parallel with electrodynamics).496

Although we can think of “geometry” in neural geometrodynamics as referring to the497

structure imposed by connectivity on state dynamics (paralleling the role of the met-498

ric in general relativity), it is more appropriate to think of it as the geometry of the499

reduced phase space (or invariant manifold) where state trajectories ultimately will lie:500

this is where the term reaches its fuller meaning. Since the fluid geometry and topol-501

ogy of the invariant manifolds underlying apparently complex neural dynamics may be502

strongly related to brain function and first-person (structured) experience [16], further503

research should focus on creating and characterizing these fascinating mathematical504

structures.505
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A Appendix796

A.1 A nautical analogy797

To illustrate the interconnected dynamics of neural states, connectodynamics, and meta-798

plasticity, consider a toy sailing boat navigating a circular pond. The boat moves through799

the pond, creating ripples that propagate across the water’s surface, eventually reflecting800

off the pond’s boundaries. These reflected ripples, in turn, influence the boat’s trajec-801

tory. This mirrors the dynamics of brain states, analogous to neural dynamics expressed802

by the equation ẋ = f(x;w, η(t)), where the boat’s position represents the state x and803

the water surface’s geometry reflects the effective connectivity w. The term η(t) may be804

associated with an external force such as the wind.805

The changes in the geometry of the water surface caused by the boat’s movement symbol-806

ize connectodynamics. This is captured by the plasticity equation ẇ = g(x,w; θ), where807

the evolving connectivity parameters w depend on the boat’s position x and other fac-808

tors. The boat’s position and the water’s surface geometry are intrinsically linked, akin809

to brain state and effective connectivity.810

Further, imagine that other external factors, such as temperature fluctuations or changes811

in water viscosity, modify the water’s molecular structure over time. For example, a tem-812

perature decrease nearing freezing could alter the water structure (density and viscosity813

[105]) in the pond and how the boat’s movement affects the water geometry. This814

change in the water’s properties symbolizes the dynamics of plasticity, or metaplasticity,815

as described by θ̇ = ξ(x,w, θ;µ(t)).816

A.2 Classical dynamics of particles and fields817

Here we provide the equations for other systems where one can think of part of the818

equation describing the geometry of a space-providing subsystem (“kinematic theatre”)819

and another the subsystem moving in this space, influenced by the structure and affecting820

its geometry in return. Several such examples can be found in physics.821

Non-relativistic electrodynamics822

The non-relativistic dynamics of N -charged particles and the associated electromag-823

netic field are described by (coupled) Newton’s second law and Maxwell’s equations.824

The charged particles are influenced by the electromagnetic field and at the same time,825

generate it. This can lead to problematic scenarios, such as the self-interaction prob-826
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lem: charged particles generate an electromagnetic field, and if one considers a particle’s827

interaction with its own field, paradoxical or unphysical results can arise. This self-828

interaction leads to divergences in calculations and has been a longstanding challenge in829

classical electrodynamics until recently [106].830

The motion of the ith electron is given by mi
d2ri
dt2

= Fi, where Fi = qi(E + vi × B) is831

the Lorentz force. The electromagnetic field obeys Maxwell’s equations:832

∇ ·E =
ρ

ε0
,

∇ ·B = 0,

∇×E = −∂B
∂t
,

∇×B = µ0J+ µ0ε0
∂E

∂t
,

where ρ(r, t) =
∑

i qiδ(r− ri(t)) and J(r, t) =
∑

i qivi(t)δ(r − ri(t)) are the charge and833

current densities.834

Relativistic equations835

Maxwell’s equations are relativistic (they transform properly under Lorentz transforma-836

tions), but Newton’s is not. For the relativistic version, the field strength tensor Fµν837

is defined in terms of the four-potential Aµ [107],838

Fµν = ∂µAν − ∂νAµ

The dual tensor F̃µν is defined in terms of Fαβ and the Levi-Civita symbol εµναβ ,839

F̃µν =
1

2
εµναβFαβ

The homogeneous Maxwell’s equations are given by:840

∂µF̃
µν = 0

and the inhomogeneous Maxwell’s equations are given by:841

∂µF
µν = µ0J

ν

where Jν is the four-current vector, which we now define for a particular case. Given a842

distribution of N particles each with charge qi and four-velocity uµi , the four-current Jµ843
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at position x and time t is given by844

Jµ(x, t) =

N∑
i=1

qiu
µ
i δ

3(x− xi(t))

Here, xi(t) is the position of the i-th particle at time t, and δ3 is the three-dimensional845

Dirac delta function.846

The equation of motion for a charged particle in an electromagnetic field, commonly847

known as the Lorentz force equation, in its relativistic form is:848

dpµ

dτ
= qFµνuν

Here, pµ is the four-momentum of the particle, uν is the four-velocity of the particle,849

Fµν is the electromagnetic field tensor, and q is the charge of the particle. The equation850

describes how the four-momentum of the particle changes with proper time τ under the851

influence of the electromagnetic field.852
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A.3 Modeling plasticity in neural mass models853

In this section, we provide a brief overview of plasticity mechanisms and how they854

relate to the terms in the formalism, namely the functions h and ψ. See Table 1 for a855

summary. Including plasticity in Neuronal Mass Models (NMMs) allows for the modeling856

of time-varying connectivity strengths that reflect the learning and adaptation processes857

observed in biological neuronal networks.858

Functional Plasticity859

The simplest and most common way to include synaptic plasticity is through Hebbian860

learning rules. Hebbian plasticity, a type of functional plasticity, follows the principle861

that “neurons that fire together wire together” [61]. It can be included in NMM using862

the equation863

ẇij = ηxixj − δwij (7)

where wij is the synaptic strength from neuron j to neuron i, xi and xj are the neuronal864

activities, and η and δ are parameters controlling the learning and decay rates.865

Homeostatic Plasticity866

Homeostatic plasticity, a form of plasticity that adjusts synaptic strengths to keep the867

overall activity of a neuron or network within a certain range, can be included in an868

NMM using the equation [62–66],869

ẇij = η(xi − xtarget)xj − δwij (8)

where xtarget is the target activity level.870

Structural Plasticity871

Structural plasticity, where the actual number and dendrites and arrangement of synapses872

change over time, can be represented in NMMs by modifying (or even adding) rows873

and columns from the w adjacency matrix to represent the formation or elimination of874

synapses or even fibers.875

Empirically-derived Structural Plasticity876

NMMs can be used to infer the structural changes to plasticity without explicitly de-877

scribing the plastic mechanism per se. For example, in the post-acute psychedelic state,878

NMMs can be used to infer the plastic changes to wij by optimizing the model functional879
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connectivity FSmodelij to approximate the empirical functional connectivity FSmodelij with880

a certain learning rate ϵ as in the following equation.881

wij = wij + ϵ(FSempiricalij − FSmodelij ) (9)

Such optimization is, for example, computed through gradient descent methods with882

priors on the topology of structural connectivity between brain regions [108]. Recent883

methods have further extended this framework by adding time-shifted correlation [42]884

to the optimization as a better description of the overall brain state, as in this case, the885

post-acute psychedelic state.886

Including these forms of plasticity in NMMs allows for more realistic modeling of neu-887

ral systems in better capturing their adaptive nature and the impact of learning and888

experience on synaptic connections.889
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Figure A.1: Conceptual funnel of terms between the NGD (neural geometrody-

namics), Deep CANAL [48], CANAL [11], and REBUS [12] frameworks. The figure

provides an overview of the different frameworks discussed in the paper and how the concepts in

each relate to each other, including their chronological evolution. We wish to stress that there

is no one-to-one mapping between the concepts as different frameworks build and expand on the

previous work in a non-trivial way. In red, we highlight the main conceptual leaps between the

frameworks. See the main text or the references for a definition of all the terms, variables, and

acronyms used.
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Type Time Scale Mechanism Effects State-

dependence

Functional

or dynamical

Plasticity

Milliseconds to

minutes

Changes in

strength/efficiency of

synapses (e.g., Hebbian

plasticity, LTP, LTD)

Short and long-

term memory,

fine-tuning of

connections

State-dependent

(h)

Acute

Psychedelic-

induced Plas-

ticity

Minutes to

Hours

Targeting of serotonergic

neuroreceptors especially

the 5-HT2A with a result in

overall excitability [11, 12,

82, 83]

Flattens or de-

weights the dy-

namical landscape

State-independent

(ψ)

Homeostatic

Plasticity

Hours to days Regulation of overall ex-

citability to maintain stabil-

ity (e.g., adjusting synapse

strength for E/I balance)

[62–66]

Balances and sta-

bilizes network

State-dependent

(h)

Structural

Plasticity

(e.g., post-acute

psychedelic-

induced plastic-

ity)

Hours to years Larger physical changes

in neurons (e.g., dendrite

growth, synapse formation)

through an increase of

endogenous BDNF and via

TrkB binding (the receptor

of BDNF) [84]

Long-term mem-

ory, development

Depends on con-

text

Metaplasticity Various, often

longer-term

Changes in mechanisms gov-

erning synaptic plasticity

(e.g., modulation of thresh-

olds/rules)

Regulates other

forms of plasticity,

“plasticity of plas-

ticity” [74]

Depends on con-

text

Table 1: Summary of Different Types of Neural Plasticity Phenomena. State-

dependent Plasticity (h) refers to changes in neural connections that depend on the current

state or activity of the neurons involved. For example, functional plasticity often relies on spe-

cific patterns of neural activity to induce changes in synaptic strength. State-independent

Plasticity (ψ) refers to changes that are not directly dependent on the specific activity state

of the neurons. For example, acute psychedelic-induced plasticity acts on the serotonergic neu-

roreceptors and thus acts on the brain networks regardless of specific activity patterns. Some

forms of plasticity, like structural plasticity and metaplasticity, may exhibit characteristics of

both state-dependent and state-independent plasticity, depending on the context and specific

mechanisms involved. Finally, metaplasticity refers to the adaptability or dynamics of plastic-

ity mechanisms.
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