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5 Abstract

6 We explore the intersection of neural dynamics and the effects of psychedelics in light
7 of distinct timescales in a framework integrating concepts from dynamics, complexity, and
8 plasticity. We call this framework neural geometrodynamics for its parallels with general
9 relativity’s description of the interplay of spacetime and matter. The geometry of trajecto-
10 ries within the dynamical landscape of “fast time” dynamics are shaped by the structure of
11 a differential equation and its connectivity parameters, which themselves evolve over “slow
12 time” driven by state-dependent and state-independent plasticity mechanisms. Finally, the
13 adjustment of plasticity processes (metaplasticity) takes place in an “ultraslow” time scale.
14 Psychedelics flatten the neural landscape, leading to heightened entropy and complexity
15 of neural dynamics, as observed in neuroimaging and modeling studies linking increases
16 in complexity with a disruption of functional integration. We highlight the relationship
17 between criticality, the complexity of fast neural dynamics, and synaptic plasticity. Patho-
18 logical, rigid, or “canalized” neural dynamics result in an ultrastable confined repertoire,
19 allowing slower plastic changes to consolidate them further. However, under the influence
20 of psychedelics, the destabilizing emergence of complex dynamics leads to a more fluid and
21 adaptable neural state in a process that is amplified by the plasticity-enhancing effects of
22 psychedelics. This shift manifests as an acute systemic increase of disorder and a possibly
23 longer-lasting increase in complexity affecting both short-term dynamics and long-term
24 plastic processes. Our framework offers a holistic perspective of the acute effects of these
25 substances and their potential long-term impacts on neural structure and function.
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s 1 Introduction

Spacetime tells matter how to move;

matter tells spacetime how to curve.

John Archibald Wheeler, in
Gravitation (1973)

37 In this paper, we explore new perspectives to interpret changes in the brain’s landscape
33 and connectivity, focusing on the subtle interplay between structural and dynamical
30 aspects across timescales (fast, slow, and ultraslow). Our primary goal is to present a
20 framework that enhances the understanding of the intricate relationships among brain
a1 dynamics, complexity, structure, and plasticity. This framework, which we call “neural
22 geometrodynamics”, draws on principles from non-linear dynamics and is further inspired

a3 by conceptual links to general relativity in physics.

s In describing neural dynamics, we will refer to the mathematical formalism of neu-
s ral mass models (NMMs), although other computational neuroscience formulations are
s equally relevant [1, 2]. Neural mass models have been extensively utilized to model vari-
a7 ous brain activities, from localized brain functions to the coordinated activity observed in
a8 different brain regions. By employing mathematical formulations that include essential
20 features like synaptic connectivity and neuronal excitability, NMMs enable the simu-
so lation and analysis of complex brain activities in various dynamic regimes [3]. NMMs
51 are particularly useful because they provide a link between the mesoscopic physiological
52 scale and macroscopic brain function, allowing for the connection of effects on neurons at
53 the molecular level, such as those of psychedelics, with those of whole-brain connectivity
sa [4, 5.

ss  Analyzing the effects of psychoactive neuroplastogens (psychedelics such as psilocybin
ss or LSD) serves as an illustrative case of the framework, given the immediate and poten-
s7 tially lasting plastic changes these substances can provoke in the brain [6]. By altering
ss neural dynamics and connectivity, psychedelics are thought to induce both transient
so and sustained shifts in cognition and perception [7]. Several studies underscore the role
60 of psychedelics in inducing neuroplasticity with antidepressant effects, revealing mecha-
61 nisms at molecular, synaptic, and dendritic levels [8, 9], and with significant potential
62 for treating neuropsychiatric disorders [10, 11], although the duration and permanence

63 of these effects remain to be fully understood.

64 Recent conceptual perspectives have enhanced our understanding of the brain’s response

es to psychedelics, combining biological, dynamical systems, complexity science, and arti-
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e ficial intelligence viewpoints. The REBUS (RElaxed Beliefs Under pSychedelics) frame-
¢ work [12], grounded in the Free Energy Principle (FEP) and the entropic and anarchic
6s brain models, offers a perspective on the effects of psychedelics on the brain whereby
60 psychedelic action results in the collapse of brain functional hierarchies or, in other words,
70 in the “flattening of the landscape” of brain’s dynamics to allow the brain state to es-
71 cape a deep local minimum. The term annealing is also used in this context in relation
72 to physical annealing in metallurgy and simulated annealing in numerical optimization
73 [13].

72 Consequently, it has been argued that the observed expansion of the repertoire of func-
75 tional patterns elicited by hallucinogenic substances can be associated with an increase in
76 entropy in brain dynamics [14, 15], with the brain moving to a more disordered state from
77 a relaxation of high-level cognitive priors [12, 16]. This may lead to a favorable context
78 for conducting psychotherapy [12, 17, 18]. Studies on functional neuroimaging regarding
79 psilocybin and LSD effects have shown initial evidence of the mechanistic alterations
so on brain dynamics at the network level, with the majority of the findings suggesting a
s1 relative weakening of usual functional configurations giving place to an increase of brain
&2 entropy, global functional integration, and more flexible brain dynamics [14, 19-28]. As
83 mentioned above, these changes are traditionally reflected in the complexity of neural
s« dynamics, which can be evaluated using various techniques such as criticality measures
&5 [29, 30], complexity measures [31], connectome harmonic decomposition [23-25], control

ss theory [26] and Ising (or spinglass) modeling [32, 33].

&7 For example, Ising modeling of psychedelics has shown that the increased complexity of
s brain dynamics under LSD (e.g., increased Ising temperature, Lempel-Ziv, and the Block
8o Decomposition Method complexity) is associated with a decrease of interhemispheric
o connectivity — especially homotopic links [34], corroborating earlier modeling studies
o1 suggesting the central role of long-range connections in controlling phase transitions
e [35].

o3 The observed push of brain dynamics towards disorder and away from criticality aligns
9¢  with the REBUS and FEP frameworks, which link the vividness of experience to the en-
95 tropy of brain activity. At the same time, the notion that a wakeful brain exhibits
96 dimensionality reduction and criticality features that are disrupted by the effect of
o7 psychedelics is also predicted by an algorithmic perspective on consciousness [16, 36,
¢ 37|, where the psychedelic shift towards disorder is associated with a disruption of the

o world-modeling/world-tracking circuits in the brain.
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100 Another feature of brain dynamics related to the collapse of higher-order cognitive
101 functions under psychedelics in the REBUS framework is the hierarchical organization
102 along the uni- to trans-modal functional gradient [38]. This asymmetry in neural ac-
103 tivity reflects the bottom-up and top-down information flows in cognitive processing
w4 [39, 40]. This has been suggested to be intimately linked to non-equilibrium dynam-
105 ics in thermodynamic-inspired frameworks where the level of hierarchy is related to the
106 amount of brain signal irreversibility as well as entropy production [41-43]. Indeed it has
107 been demonstrated that the principal functional gradient collapses under the influence

s of various psychedelics [44-46].

100 A related perspective for this paper is the CANAL framework [11] for describing the
1o pathological plasticity of “being stuck in a rut” in certain mood disorders and the po-
1 tential therapeutic role of psychedelics through the concept of metaplasticity. In contrast
12 to psychedelics, these changes are reflected in neural dynamics with brain signatures of
us excessively rigid and highly ordered functional states [47]. The CANAL framework has
12 been further extended by establishing connections with deep artificial neural networks
us  (Deep CANAL [48]) to introduce a distinction between two distinct pathological phe-
116 nomena — one related to fast brain dynamics and their slow and ultraslow counterparts.
17  These distinctions will be naturally integrated into the presented framework (see the Ap-

us pendix for a figure relating the concepts in the different frameworks).

1o While the discussion is centered on the effects of psychedelics, the framework proposed
120 here extends more generally to other phenomena related to plasticity, including neu-
121 rodevelopment, pathological plasticity in mood disorders [49], and interventions that
122 alter brain dynamics like transcranial brain stimulation (tES) [50], transcranial mag-

123 netic stimulation (TMS), or electroconvulsive therapy (ECT).

124 In what follows, we formalize the notions of brain dynamics, plasticity, and their asso-
15 ciated timescales and subsequently use them to study the impact of psychedelics on the
126 brain. In the last section, we draw connections between the framework and concepts
127 from general relativity in physics. We hope these parallels will illuminate the complex
128 relationship between the structure and function of brain dynamics. Figure 1 illustrates
120 the reciprocal dynamics between brain states and connectivity as conceptualized in the

130 neural geometrodynamics framework.
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) Brain connectivity Brain connectivity
Brain state

Figure 1: Neural Geometrodynamics: a dynamic interplay between brain states and
connectivity. A central element in the discussion is the dynamic interplay between brain state
(z) and connectivity (w), where the dynamics of brain states is driven by neural connectivity
while, simultaneously, state dynamics influence and reshape connectivity through neural plas-
ticity mechanisms. The central arrow represents the passage of time and the effects of external
forcing (from, e.g., drugs, brain stimulation, or sensory inputs), with plastic effects that alter

connectivity (w, with the overdot standing for the time derivative).

s 2  Dynamics across timescales

132 The state of a system can be defined by a set of coordinates in phase space: a multidi-
133 mensional manifold in which each dimension corresponds to one of the variables. For a
134  single particle moving in one dimension, the phase space is two-dimensional, with one
135 axis representing its position and the other representing its momentum. For example,
136 Figure 2 illustrates the phase space of a pendulum with friction. In phase space, and per-
137 haps after some transient period, the possible trajectories of the states of the system lie
1s  in a reduced or invariant manifold (an attractor, see Box 1 for a glossary of terms), which
130 we may refer to as the “geometry” or latent “structure” of the phase space. Together,
1o the structure (geometry and topology) of the phase space with its invariant properties
11 can be referred to as the dynamical landscape, where the depth or shallowness of the
12 “valleys” can, in some cases, be interpreted as the stability of the state in that location
143 given some stochastic forcing. For example, in mechanics, the landscape can be labeled
144 by potential energy isolines, e.g., in a physical system such as in the pendulum example

us in Figure 2 (bottom right), or their generalization, Lyapunov functions [55].

us Fast time: neural dynamics

147 Here, we discuss the first equation in neural geometrodynamics in the context of neural
s mass models, but the ideas are applicable more extensively in computational neuro-

1o science. The standard equation we use in neural mass modeling is a multidimensional
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Box 1-G

State of the system: Depending on the context, the state of the system is defined by the coordinates = (Eq. 1, fast
time view) or by the full set of dynamical variables (x, w, 0) — see Egs. 1, 2 and 3.

Entropy: Statistical mechanics: the number of microscopic states corresponding to a given macroscopic state (after
coarse-graining), i.e., the information required to specify a specific microstate in the macrostate. Information theory: a
property of a probability distribution function quantifying the uncertainty or unpredictability of a system.
Complexity: A multifaceted term associated with systems that exhibit rich, varied behavior and entropy. In algorithmic
complexity, this is defined as the length of the shortest program capable of generating a dataset (Kolmogorov complexity).
Characteristics of complex systems include nonlinearity, emergence, self-organization, and adaptability.

Critical point: Dynamics: parameter space point where a qualitative change in behavior occurs (bifurcation point, e.g.,
stability of equilibria, emergence of oscillations, or shift from order to chaos). Statistical mechanics: phase transition
where the system exhibits changes in macroscopic properties at certain critical parameters (e.g., temperature), exhibiting
scale-invariant behavior and critical phenomena like diverging correlation lengths and susceptibilities. These notions may
interconnect, with bifurcation points in large systems leading to phase transitions.

Temperature: In the context of Ising or spinglass models, it represents a parameter controlling the degree of random-
ness or disorder in the system. It is analogous to thermodynamic temperature and influences the probability of spin
configurations. Higher temperatures typically correspond to increased disorder and higher entropy states, facilitating
transitions between different spin states.

Effective connectivity (or connectivity for short): In our high-level formulation, this is symbolized by w. It
represents the connectivity relevant to state dynamics. It is affected by multiple elements, including the structural
connectome, the number of synapses per fiber in the connectome, and the synaptic state (which may be affected by
neuromodulatory signals or drugs).

Plasticity: The ability of the system to change its effective connectivity (w), which may vary over time.
Metaplasticity: The ability of the system to change its plasticity over time (dynamics of plasticity).

State or Activity-dependent plasticity: Mechanism for changing the connectivity (w) as a function of the state (fast)
dynamics and other parameters («). See Eq. 2.

State or Activity-independent plasticity: Mechanism for changing the connectivity (w) independently of state
dynamics, as a function of some parameters (). See Eq. 2.

Connectodynamics: Equations governing the dynamics of w in slow or ultraslow time.

Fast time: Timescale associated to state dynamics pertaining to x.

Slow time: Timescale associated to connectivity dynamics pertaining to w.

Ultraslow time: Timescale associated to plasticity dynamics pertaining to 0 = (o, ) v. Eq. 3.

Phase space: Mathematical space, also called state space, where each point represents a possible state of a system,
characterized by its coordinates or variables.

Geometry and topology of reduced phase space: State trajectories lie in a submanifold of phase space (the reduced
or invariant manifold). We call the geometry of this submanifold and its topology the “structure of phase space” or
“geometry of dynamical landscape”.

Topology: The study of properties of spaces that remain unchanged under continuous deformation, like stretching or
bending, without tearing or gluing. It’s about the ‘shape’ of space in a very broad sense. In contrast, geometry deals with
the precise properties of shapes and spaces, like distances, angles, and sizes. While geometry measures and compares
exact dimensions, topology is concerned with the fundamental aspects of connectivity and continuity.

Invariant manifold: A submanifold within (embedded into) the phase space that remains preserved or invariant under
the dynamics of a system. That is, points within it can move but are constrained to the manifold. Includes stable,
unstable, and other invariant manifolds.

Stable manifold or attractor: A type of invariant manifold defined as a subset of the phase space to which trajectories
of a dynamical system converge or tend to approach over time.

Unstable Manifold or Repellor: A type of invariant manifold defined as a subset of the phase space from which
trajectories diverge over time.

Latent space: A compressed, reduced-dimensional data representation (see Box 2).

Topological tipping point: A sharp transition in the topology of attractors due to changes in system inputs or
parameters.

150 ODE of the form
T = f(wv w, 77(75)) (1)

151 with z € R” and where w denotes connectivity parameters’ and where, as usual, a

152 dot over a variable denotes its time derivative. This equation governs dynamics at

'In the REBUS model [56], from the Free Energy perspective, w would correspond to the weights
or precision assigned to priors/beliefs; from the Entropic Brain perspective, w would correspond to the

weights of the effective connectivity between neuronal populations on the macroscopic scale.
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Box 2 - The manifold hypothesis and latent spaces

The dimension of the phase (or state) space is determined by the number of independent variables required
to specify the complete state of the system and the future evolution of the system. The Manifold
hypothesis posits that high-dimensional data, such as neuroimaging data, can be compressed into a
reduced number of parameters due to the presence of a low-dimensional invariant manifold within the
high-dimensional phase space [51, 52|. Invariant manifolds can take various forms, such as stable
manifolds or attractors and unstable manifolds. In attractors, small perturbations or deviations from
the manifold are typically damped out, and trajectories converge towards it. They can be thought of as
lower-dimensional submanifolds within the phase space that capture the system’s long-term behavior or
steady state. Such attractors are sometimes loosely referred to as the “latent space” of the dynamical
system, although the term is also used in other related ways. In the related context of deep learning with
variational autoencoders, latent space is the compressive projection or embedding of the original high-
dimensional data or some data derivatives (e.g., functional connectivity [53, 54]) into a lower-dimensional
space. This mapping, which exploits the underlying invariant manifold structure, can help reveal patterns,
similarities, or relationships that may be obscured or difficult to discern in the original high-dimensional
space. If the latent space is designed to capture the full dynamics of the data (i.e., is constructed
directly from time series) across different states and topological tipping points, it can be interpreted as a

representation of the invariant manifolds underlying system.

153 short time scales (seconds or less) when connectivity parameters w are assumed to be

154 constant.

155 The external input term 7(¢) makes the equations non-autonomous (an autonomous
15 ODE does not explicitly depend on time). This term can refer to external forces pro-
157 viding random kicks to the trajectory or to a more steady and purposeful forcing from
158 unspecified internal systems, external inputs from sensory systems, or external electric

150 fields, for example.

160 We may think of this equation describing phenomena in fast time scales as providing
161 the “structure” for the dynamics of neuronal population state. The fast timescale is
12 set by synaptic transmission (milliseconds) and by ephaptic coupling (electromagnetic

163 waves) [57-60] in a nanosecond or subnanosecond scale [59].

164« Equation 1 characterizes the dynamical landscape, which is established through the
165 geometric structure of the phase space, where trajectories are shaped by the given set
166 of ordinary differential equations. The landscape is determined by the functional form
17 of f(x;w,n(t)) and by the parameters w, and is analogous to the Neural Activation
s Landscape proposed in [48]. More specifically, we talk about the landscape as defined by
160 the manifold generated by the motion of trajectories with coordinates x € R™. Typically,
170 trajectories lie in a reduced manifold of dimensionality lower than R™. The fact that
11 such a reduced space exists means that it can be generated by coordinates in a reduced

172 latent space. The geometry and topology of this reduced space in different states provide
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Figure 2: Dynamics of a pendulum with friction. Time series, phase space, and energy
landscape. Attractors in phase space are sets to which the system evolves after a long enough

time. In the case of the pendulum with friction, it is a point in the valley in the “energy”

landscape (more generally, defined by the level sets of a Lyapunov function).

a synthetic description of the dynamics and are of special interest [37].

Slow time: connectodynamics

The landscape, like that on planet Earth, may appear to be static, but in reality, it is
not fixed. It also flows in slow time. We thus consider changes in connectivity in the
system, that is, now w = w(t). We call the potential for such changes plasticity of the
system. The general form of this equation is w = g(z, w;#), with 0 standing for a set of

parameters controlling plasticity.

To be more concrete, we can think of two types of process: one that modifies the
connectivity parameters independently of the system’s state (1) and another that is a

function of the state (e.g., Hebbian plasticity [61], h). We express this by writing
(2)

(with the second term understood as not separable into parts where any part is a function

W = Y(w;y) + iz, w;a)

of only w). This decomposition separates out state-dependent (via the term h(x,w;a))
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15 and state-independent plasticity (with 1 (w;~)) processes. The set of parameters 6 is
16 similarly decomposed as § = («,y): we separate out the plasticity-controlling parameters
17 in order to differentiate the state-dependent (o) and state-independent () plasticity
18 control parameters (e.g., Hebbian vs. drug-enhanced structural plasticity [11]). The
189 parameters («,y) may vary in time to reflect, for example, the effects of drugs. The

10  dynamics of these parameters are formalized in the next section.

11 Hebbian plasticity is the most prominent example of state-dependent plasticity [61].
192 State dependence implies that state-related concepts such as system temperature, phase
103 transitions, and critical phenomena are relevant for the study of the dynamics of plas-
14 ticity. In particular, within the scope of slower “slow time” (taking place over many
195 hours), we include homeostatic plasticity [62—65], which may itself target desired com-
196 plexity states as a homeostatic goal [66, 67]. In the case of state-independent plasticity,
197 there are numerous candidates for these plastic processes, such as heterosynaptic plas-

198 ticity [68] or critical-period plasticity [69].

10 In summary, the functions h and 1 with parameters o and y regulate connectodynamics,
200 defining where and how fast the effective connectivity will change in a state-dependent

201 or state-independent way.

202 These connectodynamics differential equations define a new dynamical landscape, which
203 we can call the plasticity landscape (analogous to the Synaptic Weight Landscape in [48]).
204 The state w in this plasticity landscape will determine the shape of the neural dynamics

205 landscape.

26 Ultraslow time: metaplasticity

207 Plasticity is required to adapt to a changing environment [70], and the environment may
208 change at different rates at different times. Plasticity in the healthy brain should match
200 this variation in the character of dynamics accordingly. This is analogous to the situation
210 in biology, where optimal mutation rates ensure successful adaptation in a tradeoff with
2 genetic integrity [71]. More specifically, the plasticity-regulating parameters « and ~ in

212 Equation 2 should adapt to changes in the environmental conditions.

213 In pathological cases, plasticity levels can either become overly exuberant, reflecting the
214 notion of catastrophic forgetting in artificial neural networks, or impoverished and rigid,
215 reflecting general plasticity loss [48]. These scenarios can be tentatively related to certain
216 neurological and psychiatric conditions. For example, reduced plasticity could underlie

217 conditions such as major depressive disorder, obsessive-compulsive disorder, anxiety, or

10
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218 substance abuse [48, 72].

To account for the dynamics of plasticity, we allow the plasticity parameters to be

dynamic, i.e.,

0 = &(x,w,0; u(t)) (3)

219 This equation is again state-dependent, allowing the system to respond to changes in the
220 mneural dynamics (with state dynamics as drivers of plasticity parameter regulation [73]),
221 including critical phenomena (changes in criticality regime [66]) and complexity. Plas-
222 ticity dynamics reflect changes in the parameters regulating state-dependent (Hebbian)
223 plasticity (changes in «) during neurodevelopment, and state-independent plasticity,
224 such as the ones induced by psychedelics in the acute or post-acute phases (changes in
225 7y). Finally, this equation is a function of other parameters and non-autonomous terms
26 (pu(t)), reflecting external perturbations of the system, such as those from drugs. We
227 provide analogies in the context of sailing and electrodynamics in the appendix to further

»s clarify these concepts.

29 The dynamics of plasticity presented above reflect a physiological principle well described

230 by Abraham et al. in the definition of metaplasticity [74]:

231 Metaplasticity [ .../ is manifested as a change in the ability to induce
232 subsequent synaptic plasticity, such as long-term potentiation or depres-
233 sion. Thus, metaplasticity is a higher-order form of synaptic plasticity [74].

23« Thus, metaplasticity and its counterparts are terms used in neuroscience to refer to
235 the plasticity of synaptic plasticity. That is, the idea that the ability of synapses to
236 strengthen or weaken in response to increases or decreases in their activity (which is
237 called synaptic plasticity) can be modulated based on the history of the synaptic ac-
238 tivity or other factors (e.g., age, neuromodulatory systems, drugs, or lifestyle [75]).
239 Metaplasticity has important implications for the learning and memory of an organism,
20 as it can regulate the ability of synaptic plasticity to change and adapt over time as

241 required by its environmental context.

22 We call the set of equations 1,2 and 3 — somewhat whimsically — the equations for
23 neural geometrodynamics in reference to the equations of general relativity in physics.
24 We recall that general relativity provides equations defining the dynamics of spacetime
us  geometry (via the “metric”) coupled with matter [76]. Section 4 elaborates further on

26 this parallel.

11
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Figure 3: Geometrodynamics of the acute and post-acute plastic effects of
psychedelics. The acute plastic effects can be represented by rapid state-independent changes
in connectivity parameters, i.e., the term ¥ (wj;~) in Eq. 3. This will result in the flattening or
de-weighting of the dynamical landscape. Such flattening allows for the exploration of a wider
range of states, eventually creating new minima through state-dependent plasticity, represented
by the term h(z,w;«) in Eq. 3. As the psychedelic action fades out, the landscape gradually
transitions towards its initial state but with lasting changes due to the creation of new attractors
during the acute state. The post-acute plastic effects can be described as a “window of en-
hanced plasticity”. These transitions are brought about by changes of the parameters v and «,
each controlling the behavior of state-independent and state-dependent plasticity, respectively.

In this post-acute phase, the landscape is more malleable to internal and external influences.

«» 3 Dynamics under psychedelics

s Psychedelics like psilocybin and LSD act as agonists or partial agonists for serotonin 5-
20 hydroxytryptamine 2A (5-HT4 ) receptors, specifically targeting Layer V cortical pyra-
20 midal neurons [11, 14, 56, 77, 78], leading to increased neuronal excitability through an
251 increase in excitatory postsynaptic currents and discharge rates in pyramidal neurons
22 [12]. The highest expression of 5-HT2ARs is found on the apical dendrites of Layer
253 5 pyramidal cells in both cortical and subcortical structures [12, 79]. In the cortex,
4 5-HToa receptors are strongly expressed along a steep anteroposterior gradient [80].
255 When psychedelics bind to these receptors, they can lead to a gradual increase of the
26 excitability of these pyramidal neurons — depolarizing them and making them more
257 susceptible to excitatory inputs such as those associated with glutamate receptors [80]
28— much as the gain knob in an amplifier. This increased excitability and susceptibility

250 to inputs can lead to changes in the firing patterns of these neurons and alterations in
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260 the overall neural circuit activity. Recognized for their potent and immediate impact on
261 the brain, these drugs cause a swift reconfiguration of neural dynamics. As we explain,
%2 this immediate effect is represented in our model by state-independent alterations in the

263 connectivity parameters (w) (see Figure 3).

264 How are these effects represented in Equations 1 and 27 If we include the neuromodula-
265 tory nodes in our model — the dorsal raphe and median raphe nuclei in the brainstem
26 are the source of most serotonergic neurons projecting throughout the brain [80] —, the
27 modulation of serotonin receptors could be represented by changes in neuromodulatory
28 connectivity (the subset of w parameters in the model connecting the raphe nuclei to
260 other nodes). Alternatively, if neuromodulatory nodes are not explicitly included in the
270 model, for the purposes at hand, we can think of the changes in the excitability of the
onn nodes affected by neuromodulatory inputs as leading to changes in their effective connec-
212 tivity (w) to other nodes (e.g., through an increase of the connectivity of glutamatergic

273 synapses into Layer 5 pyramidal cells).

274 The abrupt shift induced by psychedelics can be thought of as a transformation of the
o5 phase space’s geometry, allowing the neural state to explore new trajectories. This
276 process manifests in an increase of complexity and disorder, which can be measured
277 using various tools in different modalities (e.g., EEG or fMRI BOLD with measures
213 such as entropy, fractal dimension, algorithmic complexity, etc. [29, 31, 34, 81]). The
270 decrease in effective connectivity under LSD (especially in interhemispheric homotopic
20 connections), as inferred using Ising modeling of BOLD signals measured using fMRI

21 imaging, is associated with a subsequent increase in algorithmic complexity [34].

282 Psychedelic-induced changes in connectivity correspond to a flattening of the dynamical
283 landscape [12] or a destabilization of it [48]. In our framework, the alteration of effective
234 connective results in an immediate and state-independent remodeling of the dynamical
255 landscape during the acute phase of psychedelics, which is represented by the term

26 (w;7) in the connectodynamics equation (Eq. 2)2.

287 The instantaneous modification of the landscape is, however, ephemeral, gradually fad-
288 ing as the acute effects of the psychedelics wear off. The system returns to near its
280 original geometrical configuration but with lasting influences brought about by the plas-
20 tic changes resulting from the exploration of new trajectories in the acute phase. These

201 residual changes are captured by the state-dependent plasticity term, h(z,w;«), which

2In the REBUS model and the Entropic Brain perspective [56], the weights of the effective connectivity
during the psychedelic-induced state are “flattened” or “de-weighted”, representing a more symmetrical

and non-hierarchical connectivity profile.
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202 reflects changes in connectivity due to Hebbian plasticity that arise from the co-activation

203 of neurons during the psychedelic acute stage.

204 In the literature, there is an increasing body of evidence suggesting a post-acute phase
205 following psychedelic exposure characterized by a period of enhanced plasticity [11, 12,
206 82-84]. This phase can be interpreted as an extended window of malleability of the land-
207 scape, which could have profound implications for learning and therapy. Such window of
208 plasticity has been related to increased neurogenesis and upregulation of Brain-Derived
200 Neurotropic Factor (BDNF) in humans and mice [8]. The activity-dependent release of
s00 BDNF plays a crucial role in selectively strengthening active synapses while weakening
301 inactive ones, a critical process for Hebbian-type plasticity. Intriguingly, recent studies
32 with mice have found psychedelic-induced changes in plasticity and antidepressant-like
303 behavior dependent on the increase of endogenous BDNF and TrkB binding (the receptor
s of BDNF), but independent from the activation of 5-HT2a [9, 10].

305 In terms of our model, these two pathways correspond to changes of connectivity through
36 Equation 2 due to a temporary modulation of the parameters v and « (i.e., metaplastic-
o7 ity, see Equation 3) upregulating state-independent and state-dependent plasticity pro-
308 cesses, respectively. The strong acute-phase increase of state-independent plasticity (1))
300 would be directly associated with the activation of serotonergic receptors, as discussed
s10  above, with a possible gradual decrease during the post-acute phase (solid white line
su  in Figure 3). The sustained increase of state-dependent plasticity (k) in the post-acute
siz phase (dashed black line in Figure 3) would be linked to dendritic growth, neurogenesis,
s13  upregulation of BDNF, and other related changes. This means that in the post-acute
s period, the landscape would be more responsive to state changes (itself influenced by
a5 external factors), offering a potential mechanism for the long-lasting changes reported
316 after psychedelic experiences. Such external influences are modeled by the external input
si7 - term 7)(t) in the state equation (Eq. 1) and can represent environmental /sensory inputs,
s1s  psychotherapy, or neuromodulatory brain stimulation techniques such as transcranial

s19 electrical current stimulation (tES).

20 Dynamics of psychedelics and psychopathology

321 Recently, psychedelic medicine has emerged as a promising direction for treating mental
322 disorders such as depression or addiction [85]. The nuanced interaction between the
323 brain’s neurophysiology and the emergent brain activity underlies the pathophysiology
324 of mood disorders, often resulting in a persistent and maladaptive rigidity in cognitive

»s and emotional processes [86]. Such changes to the brain’s neurophysiology can be ex-
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326 plained through the CANAL framework whereby pathological plasticity, often caused
327 by a traumatic event, asserts itself and dominates brain activity, driving the brain state
28 to be “stuck in a rut” [11], i.e., a deepening minimum in the dynamical landscape (see

320  Figure 4).

330 The interplay between external inputs, neural (fast time), and connectivity (slow time)
331 dynamics can drive the system into a joint canalized, stable state of lower complexity.
322 Under the influence of psychedelics, more diverse and complex dynamics destabilize the
333 plasticity equilibrium point, leading to a more fluid and adaptable neural state in a
s34 process that is amplified by the plasticity-enhancing effects of psychedelics. This shift
335 manifests as an acute systemic increase of disorder and possibly a longer-lasting increase
336 in complexity (Ising temperature, Lempel-Ziv complexity, etc.) that affects both short-

337 term dynamics and long-term plastic processes.

333 The CANAL framework offers insight into the neural mechanisms underlying the persis-
33 tence of various brain disorders. In particular, psychedelics may mediate their effects by
a0 altering the balance between stability and plasticity in neural networks through meta-
sa plasticity and thus act as potential therapeutic treatments. By acting on the serotonergic
32 receptors, they trigger a cascade of neurochemical events, subsequently facilitating the
3 reorganization of entrenched neural patterns. As discussed above, this alteration of
sas the neural network during the acute phase (connectodynamics) can be interpreted as
s a rapid deformation or flattening of the landscape that allows the trapped state to es-
36 cape and access more adaptive cognitive and emotional patterns. The rapid increase
s7 in complexity (a change in the dynamics) is in itself a likely driver of metaplasticity.
us  The acute phase is believed to be followed by an extended window of malleability of
a0 the landscape, otherwise known as a “window of plasticity”, where treatments such as
350 psychotherapy and transcranial electrical stimulation can further alter the pathological

ss1 rigidity characteristic of various brain disorders (see Figure 4).

s 4 Neural geometrodynamics and general relativity

353 A parallel can be drawn between neural geometrodynamics and Einstein’s equations
354 of general relativity — the original geometrodynamics. Both frameworks involve the
355 dynamical interaction between structure and resulting activity, each influencing and
356 being influenced by the other. The Einstein field equations, including the cosmological

357 constant A, are
1 8t
Ry = 59w+ Mg = == Ty (4)
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Figure 4: Psychedelics and psychopathology: a dynamical systems perspective. From
left to right, we provide three views of the transition from health to canalization following a
traumatic event and back to a healthy state following the acute effects and post-acute effects of
psychedelics and psychotherapy. The top row provides the neural network (NN) and effective
connectivity (EC) view. Circles represent nodes in the network and edge connectivity between
them, with edge thickness representing the connectivity strength between nodes. The middle row
provides the landscape view, with three schematic minima and colors depicting the valence of each
corresponding state (positive, neutral, or negative). The bottom row represents the transition
probabilities across states and how they change across the different phases. Due to traumatic
events, excessive canalization may result in a pathological landscape reflected as a deepening
of a negative valence minimum where the state may be trapped. During the acute psychedelic
state, the landscape is deformed, enabling the state to escape. Moreover, plasticity is enhanced
during the acute and post-acute phases, benefiting interventions such as psychotherapy or brain
stimulation (i.e., changes in effective connectivity). Not shown is the possibility that a deeper
transformation of the landscape may take place during the acute phase (see the discussion on
the wormhole analogy in Section 4).

s Here, g, is the metric tensor, R,, = Ry, [gu] is the Ricci curvature tensor and a
30 function of g, R[g..] is the Ricci scalar (or curvature scalar) and a function of g,

s0 1}, is the stress-energy tensor?, a function of the mass and energy distribution (all the

3The stress-energy tensor (also called the energy-momentum tensor) is a central concept in general

relativity. It encapsulates the distribution and flow of energy and momentum in spacetime, and its
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ss1 indices refer to spacetime dimensions), G is the gravitational constant, ¢ is the speed
362 of light, and A is the cosmological constant. These equations describe the fundamental
363 interaction of gravitation as a result of spacetime being curved by matter and energy.
s« Specifically, they equate local spacetime curvature (on the left-hand side) with the local

35 energy and momentum within that spacetime (on the right-hand side).

36 'To complete these equations, the geodesic equation portrays how particles (matter) move
37 in this curved spacetime, encapsulated by the notion that particles follow the straightest

38 possible paths (geodesics) in curved spacetime,

>zt dx? dx°
I~ ~ =0 5
dr? P dr dr (5)

60 where x* are the coordinates of the particle, 7 is the proper time along the particle’s

s path, and ', [g,,] are the Christoffel symbols, which are a function of g,, and encode
srn the connection (a mathematical object that describes how vectors change as they are
sz parallel transported along curves in spacetime). The stress-energy tensor 1), can be
313 computed from the state of the particles, closing the system of equations. For example,
s for N particles, it is given by T = >, mul'u?6(x — x;), where m; and u; are the mass
375 and velocity of the ith particle. More generally, the stress-energy tensor represents the
36 state of matter and energy, which corresponds to z in our neural model. The metric
577 g, Which specifies the geometry of spacetime, is akin to the connectivity w — which

378 shapes the structure of the space where fast dynamics occur.

s7o  In the context of neural mass models, the state equation, & = f(x;w), is analogous
0 to the geodesic equation — “the state of the system evolves according to the landscape
31 geometry specified by the parameters w”. On the other hand, the connectodynamics
2 equation, w = h(x,w;0) (with 6 standing for plasticity parameters), is analogous to
33 Hinstein’s field equations — the parameters w, which describe the “structure” of the
s8¢ space where dynamics take place, evolve according to the current state of the system x

s and its ‘readiness’ for plasticity (parametrized by 0).

6 The analogy to psychedelic effects in general relativity can be clarified further. The
sz neural effects of psychedelics, as we understand them, start with a disruption of con-
s8  nectivity in a spatially dependent manner. Since the analog of w is g (the metric), in
389 cosmological terms, we would first see a dynamic deformation of spacetime independent
s0 of the mass distribution (state-independent plasticity). Spacetime would “flatten”. This

301 would cause the mass in the universe to escape from gravitational wells following new

components include energy density, momentum density, and stress (pressure and shear stress) within a

given region.
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Figure 5: General Relativity and Neural Geometrodynamics. Left: Equations for gen-
eral relativity (the original geometrodynamics), coupling dynamics of matter with the dynamics
of spacetime. Right: Equations for neural geometrodynamics, coupling neural state, and con-
nectivity. Only fast and slow time equations are shown (ultraslow time endows with dynamics
the “constants” appearing in these equations).

sz geodesics (just as the state in the brain will explore new regions of phase space), in turn

303 creating further deformations of spacetime (state-dependent plasticity).

34 We emphasize that this comparison is largely metaphorical and therefore limited: the
35 mutual influence between particles and spacetime in general relativity is akin to the state
306 of the neural system and its underlying connectivity parameters. In both cases, dynamics
37 and structure are intertwined (see Figure 5). However, as an example of the limitations
38 of the analogy, the slow and fast nature of the different variables is interchanged in the
300 two formulations, with spacetime responding faster (at the speed of light) to changes in

a0 the distribution of energy than the stress-energy tensor itself.

w1 Metaplasticity and variable constants in cosmology

In our neural mass model framework, the concept of metaplasticity is introduced as
dynamic variations in the plasticity control constants, namely 6 in the connectodynamics

equation. This set of constants can be represented as evolving over time as a function
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of the state of the system or other relevant variables,
0 =&z, w,0; ) (6)

a2 In this equation, £ defines the evolution of the plasticity control constants with param-

a3 eters .

a4 Analogously, in the realm of general relativity and cosmology, it has been speculated
a5 that the fundamental constants, such as the speed of light ¢, the gravitational constant
aws G, or the cosmological constant A, may, in fact, be dynamic. Although not part of the
a7 mainstream cosmological model, theories proposing variable constants, such as “Variable
w8 Speed of Light” (VSL) or “Variable Cosmological Constant” provide an intriguing par-
a0 allel. For instance, within VSL theories, the speed of light ¢ is postulated to vary over
a0 cosmological time scales. Certain hypothetical dynamical equations could dictate the
s dynamical evolution of these constants. Although these theories are quite speculative
a2 and do not form a part of mainstream physics, they offer an interesting perspective on
a3 the concept of metaplasticity and its potential implications for the dynamical evolution

a1s of neural mass models and the structure of their landscapes.

sns  Psychedelics as wormholes in the neural landscape

a6 In the parallel of general relativity and neural geometrodynamics, we see the effects of
s psychedelics as a deformation of the neural landscape (spacetime) that allows the brain
ss  state (of a particle or set of particles) to escape from a local minimum and transition
so to another location in the landscape (spacetime). Although transitions may be smooth
20 and respect the topology of the landscape (as described by topological quantities such
o1 as the Euler characteristic of Betti numbers* [87, 88]), deformations of the landscape
a2 may also be more extreme — sharp transitions through a topological tipping point of
23 the dynamical landscape. This may be due to external inputs (1(¢)), when our system
424 is non-autonomous [89], e.g., from sensory or brain stimulation effect. And as we have

a5 discussed, it may be due to connectivity dynamics.

26 The creation of a wormhole in general relativity® can be viewed as a profound deforma-

“In algebraic topology, Betti numbers provide a way to count the number of n-dimensional “holes”
in a manifold. The creation of a wormhole (in 4D or higher dimensional spaces), being a topological
feature that connects two otherwise distant regions of spacetime, would alter the topological structure

of the manifold it inhabits and the associated Betti numbers.
SWormbholes, a term due to John A. Wheeler [90], also known as Einstein-Rosen bridges, are solutions

to the Einstein field equations of general relativity which some models suggest could exist under certain

conditions. However, creating or stabilizing a traversable wormhole would likely require forms of exotic

19


https://doi.org/10.1101/2023.08.14.553258
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.14.553258; this version posted January 17, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Pathological Healthy
attractor Healthy Pathological attractor
(current state)  attractor attractor (new state)

Psychedelics After-effect |

Psychedelic
wormhole

Figure 6: A hypothetical psychedelic wormhole. On the left, the landscape is characterized
by a deep pathological attractor, where the neural state is trapped. After ingestion of psychedelics
(middle), a radical transformation of the neural landscape takes place, with the formation of
a wormhole connecting the pathological attractor to another, healthier attractor location and
allowing the neural state to tunnel out. After the acute effects wear off (right panel), the
landscape returns near its original topology and geometry, but activity-dependent plasticity

reshapes it into a less pathological geometry.

227 tion of spacetime, bending and connecting distant parts of the universe in such a way
w28 that matter/energy, like an astronaut, can travel through vast distances in an instant.
a0 This change in the geometry and topology of spacetime can be likened to the effect of
a0 psychedelics on the human mind. Just as the wormhole alters the structure of spacetime,
a1 psychedelics may radically alter the dynamical landscape of neural dynamics, creating
a2 connections across distant landscape locations. In the same way that the astronaut uses
s33 the wormhole to bypass vast stretches of space, the deformation caused by psychedelics
a3« may allow the state of the brain to tunnel out and escape from a local minimum or
35 stuck pattern of thought, providing access to new areas of the landscape — new per-
136 spectives and potentially unexplored territories of consciousness. This analogy, although
a37  speculative, aims to highlight that both phenomena are characterized by a fundamen-
a3 tal transformation that enables traversal into otherwise inaccessible regions — whether
s  in physical space or the brain’s dynamical landscape (see Figure 6 for a sketch of this

a0 concept).

matter with properties not yet observed in the known universe — there is no current consensus about this
in classical general relativity, where some theorems suggest it may not be possible in some conditions
because of the necessity of singularities, or in quantum gravity, where topology change is a natural

concept [91].
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s Characterizing the landscape

a2 An important challenge in the program of neural geometrodynamics is to explore prac-
a3 tical methods to characterize the landscape. Here again, we can draw inspiration from

ss  physics and mathematics.

a5 The roots of this approach can be traced back to the 19th century when Carl Friedrich
a6 Gauss pioneered the field of differential geometry. Gauss’s Theorema Egregium demon-
a7 strated that the curvature of a surface could be determined entirely by measurements
ss  within the surface, without any reference to the surrounding space [92]. This seminal in-
a0 sight has laid the groundwork for understanding manifolds in various contexts, including
a0 the theory of relativity. In the era of general relativity, the interplay between geometry
ss1 and physics was further enriched. Differential geometry and algebraic topology — which
a2 comes into play when one is interested in the global properties of the manifold, such as its
43 shape, connectedness, and the presence of holes [93, 94] — became essential in describ-
a4 ing the fabric of spacetime itself. It enabled physicists to conceptualize how mass and

s55  energy warp the geometry of spacetime, thus influencing the motion of objects.

a6 In our current endeavor, these ideas find application in characterizing the complex dy-
ss7 namical landscapes of neural data. Modern tools from deep learning, such as variational
a5 autoencoders, can be used to unravel the reduced spaces underlying neuroimaging or
550 neurophysiological data [53, 54], while dynamical systems theory in concert with dif-
wo ferential geometry, group theory, and algebraic topology data analysis [95] offer robust
s61  frameworks to understand and characterize them [89, 96-100]. Topological data anal-
a2 ysis can also be used to explore the graphs associated with model space, for example,
a3 the structural (connectome) or effective connectivity between regions in the brain (see
a4 [101] for a recent review). Topological methods have already been successfully employed
a5 to analyze detailed microscopic models [98], to study the relationship of criticality and
w6 topology in models [102], and to characterize functional brain networks derived from

s7  neuroimaging data [87, 88, 101].

ses  World-tracking constraints force the brain as a dynamical system to mirror the symmetry
a0 in the data [37], a requirement that translates into constraints on structural and dynam-
a0 ical aspects of the system (and which can be analyzed using Lie group theory). This
s suggests leveraging the known links between topology and Lie groups [103]. The con-
a2 vergence of these mathematical techniques extends to neuroscience the fruitful exercise

473 in physics of linking geometry and topology.

a7 Finally, it would be interesting to explore if hierarchical data processing systems such as
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475 the brain display dynamical manifolds with hierarchical structure, including topology.
a6 'This possibility is intuitive given the connections between the notions of criticality, in-
s77 - formation processing, and hierarchical organization [34, 104]. In this sense, the effects
a3 of psychedelics, which are seen to increase the temperature of the system [34] and the
479 complexity of dynamics, should be reflected as an increase in the topological complex-
a0 ity of the associated dynamical attractors, as we discussed above with the analogy to

as1 wormbholes.

a2 The relationship between hierarchy and topological complexity could be analyzed, for
a3 example, by exploring artificial neural networks carrying out hierarchical processing
84 (any generative deep network trained on real-world data would do, in principle). Such
ass  networks could then be used to generate neural activation data and analyze, for instance,
a6 whether the depth of the network (the number of layers in its hierarchical architecture)
ss7  is reflected in the topology (e.g., in Betti numbers) associated with the data or its latent

488 space.

s O Conclusions

a0 In this paper, we have defined the umbrella of neural geometrodynamics to study the
a1 coupling of state dynamics and their complexity, geometry, and topology with plastic
a2 phenomena. We have enriched the discussion by framing it in the context of the acute

203 and longer-lasting effects of psychedelics.

a4 As a source of inspiration, we have established a parallel with other mathematical theo-
a05 ries of nature, namely in general relativity, where dynamics and the “kinematic theatre”

w6 are intertwined (see the Appendix for a similar parallel with electrodynamics).

a7 Although we can think of “geometry” in neural geometrodynamics as referring to the
w8 structure imposed by connectivity on state dynamics (paralleling the role of the met-
00 ric in general relativity), it is more appropriate to think of it as the geometry of the
so0 reduced phase space (or invariant manifold) where state trajectories ultimately will lie:
so0  this is where the term reaches its fuller meaning. Since the fluid geometry and topol-
502 ogy of the invariant manifolds underlying apparently complex neural dynamics may be
s03 strongly related to brain function and first-person (structured) experience [16], further
soa research should focus on creating and characterizing these fascinating mathematical

sos structures.
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w A Appendix

7 A.1 A nautical analogy

798 To illustrate the interconnected dynamics of neural states, connectodynamics, and meta-
799 plasticity, consider a toy sailing boat navigating a circular pond. The boat moves through
so the pond, creating ripples that propagate across the water’s surface, eventually reflecting
son  off the pond’s boundaries. These reflected ripples, in turn, influence the boat’s trajec-
so2 tory. This mirrors the dynamics of brain states, analogous to neural dynamics expressed
so3 by the equation & = f(x;w,n(t)), where the boat’s position represents the state x and
sos  the water surface’s geometry reflects the effective connectivity w. The term 7(t) may be

gos  assoclated with an external force such as the wind.

sos The changes in the geometry of the water surface caused by the boat’s movement symbol-
sor ize connectodynamics. This is captured by the plasticity equation w = g(z, w;6), where
sos the evolving connectivity parameters w depend on the boat’s position « and other fac-
soo tors. The boat’s position and the water’s surface geometry are intrinsically linked, akin

sio  to brain state and effective connectivity.

si1  Further, imagine that other external factors, such as temperature fluctuations or changes
812 in water viscosity, modify the water’s molecular structure over time. For example, a tem-
s13  perature decrease nearing freezing could alter the water structure (density and viscosity
s [105]) in the pond and how the boat’s movement affects the water geometry. This
s1is  change in the water’s properties symbolizes the dynamics of plasticity, or metaplasticity,
a6 as described by 6 = &(x, w, 0; u(t)).

sz A.2 Classical dynamics of particles and fields

sis Here we provide the equations for other systems where one can think of part of the
s10  equation describing the geometry of a space-providing subsystem (“kinematic theatre”)
820 and another the subsystem moving in this space, influenced by the structure and affecting

g1 its geometry in return. Several such examples can be found in physics.

82 INon-relativistic electrodynamics

823 The non-relativistic dynamics of N-charged particles and the associated electromag-
s« netic field are described by (coupled) Newton’s second law and Maxwell’s equations.
s2s  The charged particles are influenced by the electromagnetic field and at the same time,

826 generate it. This can lead to problematic scenarios, such as the self-interaction prob-
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sz lem: charged particles generate an electromagnetic field, and if one considers a particle’s
828 interaction with its own field, paradoxical or unphysical results can arise. This self-
s20 interaction leads to divergences in calculations and has been a longstanding challenge in

s30  classical electrodynamics until recently [106].

g1 The motion of the ith electron is given by mi% = F;, where F; = ¢;(E + v; x B) is

82 the Lorentz force. The electromagnetic field obeys Maxwell’s equations:

v.E=",
€0
V.B=0,
0B
E--2
V x 5
OE
V x B = pod + pogo—-»

ot

13 where p(r,t) =), ¢;6(r —r;(t)) and J(r,t) = >, ¢;vi(t)6(r —r;(t)) are the charge and

ga current densities.

833 Relativistic equations

sss  Maxwell’s equations are relativistic (they transform properly under Lorentz transforma-
s37  tions), but Newton’s is not. For the relativistic version, the field strength tensor F'*”
s3s is defined in terms of the four-potential A* [107],

P = gtAY — 9V AH
5.0 The dual tensor FH is defined in terms of F,p and the Levi-Civita symbol ¢*” of
R — 1 ghvab g
2 op
a0 The homogeneous Maxwell’s equations are given by:
O F™ =0
sa1 and the inhomogeneous Maxwell’s equations are given by:
GMF HY = /LoJ v

a2 where JV is the four-current vector, which we now define for a particular case. Given a

m

aa3s  distribution of N particles each with charge ¢; and four-velocity w; , the four-current J#*
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84 at position x and time ¢ is given by
N
TH(x, 1) = qul6? (x — x,(t))
i=1

sas  Here, x;(t) is the position of the i-th particle at time ¢, and §° is the three-dimensional

a6 Dirac delta function.

87 The equation of motion for a charged particle in an electromagnetic field, commonly
sas  known as the Lorentz force equation, in its relativistic form is:
dp*

i,y
dr Y

a0 Here, p* is the four-momentum of the particle, u” is the four-velocity of the particle,
g0 F'MY is the electromagnetic field tensor, and ¢ is the charge of the particle. The equation
gs1  describes how the four-momentum of the particle changes with proper time 7 under the

g2 influence of the electromagnetic field.
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3 A.3 Modeling plasticity in neural mass models

s« In this section, we provide a brief overview of plasticity mechanisms and how they
g5 relate to the terms in the formalism, namely the functions h and . See Table 1 for a
sso  summary. Including plasticity in Neuronal Mass Models (NMMs) allows for the modeling
g7 of time-varying connectivity strengths that reflect the learning and adaptation processes

sss  observed in biological neuronal networks.

g0 Functional Plasticity

sso The simplest and most common way to include synaptic plasticity is through Hebbian
81 learning rules. Hebbian plasticity, a type of functional plasticity, follows the principle
sz that “neurons that fire together wire together” [61]. It can be included in NMM using
863 the equation

Wij = NTiT; — Owy (7)
s« Where w;; is the synaptic strength from neuron j to neuron ¢, z; and z; are the neuronal
85 activities, and n and § are parameters controlling the learning and decay rates.
ss6 Homeostatic Plasticity

87 Homeostatic plasticity, a form of plasticity that adjusts synaptic strengths to keep the
ses overall activity of a neuron or network within a certain range, can be included in an
sso  NMM using the equation [62-66],

Wij = 1(T; — Trarget)Tj — OWij (8)

s70  Where Tiarger 1S the target activity level.

sn1 Structural Plasticity

sz Structural plasticity, where the actual number and dendrites and arrangement of synapses
73 change over time, can be represented in NMMs by modifying (or even adding) rows
sz« and columns from the w adjacency matrix to represent the formation or elimination of

875 synapses or even fibers.

s76  Empirically-derived Structural Plasticity

sz NMMs can be used to infer the structural changes to plasticity without explicitly de-
s7s  scribing the plastic mechanism per se. For example, in the post-acute psychedelic state,

so. NMMSs can be used to infer the plastic changes to w;; by optimizing the model functional
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g0 connectivity F' SZ?Odel to approximate the empirical functional connectivity F S{?"dd with

g1 a certain learning rate € as in the following equation.
wij = Wi; + 6(FS,f]mpmcal — FS{?Odel) (9)

82 Such optimization is, for example, computed through gradient descent methods with
ss3  priors on the topology of structural connectivity between brain regions [108]. Recent
sss  methods have further extended this framework by adding time-shifted correlation [42]
85 to the optimization as a better description of the overall brain state, as in this case, the

86 post-acute psychedelic state.

g7 Including these forms of plasticity in NMMs allows for more realistic modeling of neu-
sss ral systems in better capturing their adaptive nature and the impact of learning and

80 experience on synaptic connections.
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Neural state Plasticity Metaplasticity
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x w 2] Introduction of state
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State State State State formalization
dependent independent dependent independent
h(yw;a) — Ywy) %
» o » » -

Dee Neural activation Synaptic weights Changes.in Introduction of two
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CANAL Dynamic Canalization TEMP Introduction of two
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Flattening of dynamical
landscape under psychedelics

Dyhamic Overweighted Landscape

REBUS landscape landscape flattening

NGD — Neural Geometrodynamics

TEMP — Temperature of Entropy Mediated Plasticity

REBUS - Relaxed Belief Under pSychedelics

Figure A.1: Conceptual funnel of terms between the NGD (neural geometrody-
namics), Deep CANAL [48], CANAL [11], and REBUS [12] frameworks. The figure
provides an overview of the different frameworks discussed in the paper and how the concepts in
each relate to each other, including their chronological evolution. We wish to stress that there
is no one-to-one mapping between the concepts as different frameworks build and expand on the
previous work in a non-trivial way. In red, we highlight the main conceptual leaps between the
frameworks. See the main text or the references for a definition of all the terms, variables, and

acronyms used.

37


https://doi.org/10.1101/2023.08.14.553258
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.14.553258; this version posted January 17, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Type Time Scale Mechanism Effects State-
dependence

Functional Milliseconds to | Changes in | Short and long- | State-dependent
or dynamical | minutes strength/efficiency of | term memory, | (h)
Plasticity synapses (e.g., Hebbian | fine-tuning of

plasticity, LTP, LTD) connections
Acute Minutes to | Targeting of serotonergic | Flattens or de- | State-independent
Psychedelic- Hours neuroreceptors especially | weights the dy- | (¥)
induced Plas- the 5-HT3 4 with a result in | namical landscape
ticity overall excitability [11, 12,

82, 83]
Homeostatic Hours to days Regulation of overall ex- | Balances and sta- | State-dependent
Plasticity citability to maintain stabil- | bilizes network (h)

ity (e.g., adjusting synapse

strength for E/I balance)

[62-66]
Structural Hours to years Larger physical changes | Long-term mem- | Depends on con-
Plasticity in neurons (e.g., dendrite | ory, development text

(e.g., post-acute growth, synapse formation)

psychedelic- through an increase of

induced plastic- endogenous BDNF and via

ity) TrkB binding (the receptor
of BDNF) [84]
Metaplasticity | Various, often | Changes in mechanisms gov- | Regulates other | Depends on con-
longer-term erning synaptic plasticity | forms of plasticity, | text
(e.g., modulation of thresh- | “plasticity of plas-
olds/rules) ticity” [74]
Table 1: Summary of Different Types of Neural Plasticity Phenomena. State-

dependent Plasticity (h) refers to changes in neural connections that depend on the current
state or activity of the neurons involved. For example, functional plasticity often relies on spe-
cific patterns of neural activity to induce changes in synaptic strength. State-independent
Plasticity () refers to changes that are not directly dependent on the specific activity state
of the neurons. For example, acute psychedelic-induced plasticity acts on the serotonergic neu-
roreceptors and thus acts on the brain networks regardless of specific activity patterns. Some
forms of plasticity, like structural plasticity and metaplasticity, may exhibit characteristics of
both state-dependent and state-independent plasticity, depending on the context and specific
mechanisms involved. Finally, metaplasticity refers to the adaptability or dynamics of plastic-

ity mechanisms.
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