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Abstract11

Measuring inbreeding as well as its consequences on fitness is central for many12

areas in biology including human genetics and the conservation of endangered13

species. However, there is no consensus on the most appropriate method, nei-14

ther for quantification of inbreeding itself nor for the model to estimate its15

effect on specific traits. In this project, we simulated traits based on simu-16

lated genomes from a large pedigree and empirical whole-genome sequences of17

human data from populations with various sizes and structure (from the 1,00018

Genomes project). We compare the ability of various inbreeding coefficients (F )19

to quantify the strength of inbreeding depression: allele sharing, two versions20

of the correlation of uniting gametes which differ in the weight they attribute21

to each locus and two identical-by-descent segments-based estimators. We also22

compare two models: the standard linear model and a linear mixed model in-23

cluding a genetic relatedness matrix (GRM) as random effect to account for24

the non-independence of observations. We find linear mixed models give bet-25

ter results in scenarios with population or family structure. Within the mixed26

models, we compare three different GRM matrices and show that in homoge-27

neous populations, there is little difference among the different F and GRM for28

inbreeding depression quantification. However, as soon as strong population or29

family structure is present, the strength of inbreeding depression can be most30

efficiently estimated only if (i) the phenotypes are regressed on inbreeding coef-31

ficient based on a weighted version of the correlation of uniting gametes, which32

gives more weight to common alleles and (ii) with the GRM obtained from an33

allele sharing relatedness estimator.34
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Introduction35

Inbreeding is the result of mating between relatives and is often associated with36

reduced fitness, a phenomenon called inbreeding depression (ID) and which37

was observed in many different species such as humans [7, 6], other animals38

[26, 12, 21], and plants [34].39

Many different methods have been developed for inbreeding quantification40

and there is no consensus on which one is the best [1, 5, 11, 25, 33, 35]. The41

classical approach was first proposed by Sewall Wright in 1922 and makes use of42

pedigrees (called hereafter FPED ) [31]. With the advances in sequencing tech-43

nologies, genomic-based inbreeding coefficients (hereafter called Fgenomic ) have44

been developed. Among these, some coefficients rely on the comparison between45

observed and expected heterozygosity such as FHOM [8, 27], the expected allele46

sharing between individuals such as FAS [35] or on the correlation between unit-47

ing gametes such as FUNI [32]. In addition to estimating the realized inbreeding48

coefficient and requiring no prior knowledge of the mating behavior of the popu-49

lation, these genomic estimates are simple and straightforward to compute and50

do not require whole-genome sequencing (WGS) data; a few thousands SNPs51

are usually sufficient for reliable inbreeding estimation in humans [11]. However52

they also have a disadvantage: they usually rely on allelic frequencies (except53

for FAS ) and therefore if these frequencies have not been correctly estimated,54

this will affect the estimation of these coefficients. Another inbreeding coeffi-55

cient was proposed by McQuillan et al. (2008): FROH uses runs of homozygosity56

(ROHs), long homozygous stretches as a proxy for IBD segments within individ-57

uals [22]. A model-based approach relying on hidden Markov models has also58

been developed for detecting IBD segments [19] by identifying homozygous-by-59

descent (HBD) segments. This model is the basis for many other model-based60

IBD segments detection methods such as BCFTools [24], BEAGLE [3] and RZooRoH61

[10]. The inbreeding coefficient estimated with these model-based approaches62

will be called FHBD from now on. One advantage of these methods is that they63

do not depend on allelic frequencies which can be very valuable when only a few64

individuals are available. However, it has been shown that these coefficients,65

and especially FROH , are sensitive to SNP density and parameters used, and66

there is no consensus on what is the most suitable set of parameters at present67

[23, 18].68

How to quantify ID, although central to conservation genetics for decades69

[16], is still debated. This debate includes two sub-questions: which statistical70

model should be employed ? And which F ? Regarding the model, the classi-71

cal approach consisted of the use of linear regression of the phenotypes on the72

inbreeding coefficient. However, other models have been utilized, such as Gen-73

eralized Linear models (GLMs) with various link functions. In 2019, Nietlisbach74

et al.. [25] compared different models and found that the common GLM models75

with logit link did not allow for accurate inbreeding depression strength estima-76

tion. They propose using GLM with logarithm link functions. Ultimately, the77

type of model is largely dependent on the distribution of the trait.78

Regarding the choice of which F is more accurate for quantifying ID, many79
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studies have demonstrated that Fgenomic yields better results than FPED [17, 2,80

13]. However, some studies found FUNI to be more accurate than FROH [33],81

while others found that FROH provided the best estimates of ID [17, 13, 25].82

In 2020, Caballero et al. [5] used simulations and included several populations83

with different histories: they found that the optimal F actually depends on how84

large the population is. FROH did a better job at quantifying ID in populations85

with small effective size while FUNI was better at predicting ID estimates in86

populations with large effective sizes. This result was later confirmed by Alemu87

et al. [1] used SNP-array empirical cattle data for several groups of allelic fre-88

quencies and concluded that FUNI and FGRM (FI and FIII respectively in [32])89

are better at quantifying homozygosity at rare alleles while FROH and FHOM are90

better for alleles at intermediate frequencies and correlate better with whole-91

genome homozygosity. Indeed, recessive deleterious alleles, which are thought92

to be responsible for inbreeding depression, should segregate at low frequencies93

in large populations as a result of negative selection. On the contrary, in small94

populations, drift can increase the frequency of deleterious recessive alleles to95

intermediate frequencies, making FROH and FHOM more suitable for detecting96

ID. Indeed, in the simulations conducted by Yengo et al. [33], rare alleles al-97

ways caused negative effects on fitness (referred to as DEMA, for Directional98

Effect of Minor Alleles). The authors showed that FHOM (and thus FAS since99

they have similar properties) is sensitive to DEMA while FUNI and FROH are100

not. They also showed via simulations that all estimates of ID are somewhat101

sensitive to population structure, FUNI being the least affected. They recom-102

mend estimating ID using Linkage Disequilibrium (LD) score and Minor Allele103

Frequency (MAF) bins, and summing the ID estimates from these bins as an104

overall estimate of ID for the trait.105

In this paper we simulated traits based on both simulated and empirical106

WGS human data from populations with varying sizes and structure. We show107

that some F are more sensitive to population structure and DEMA than others.108

We confirm only some of Yengo et al. [33] results. Importantly, we show that109

accounting for the non-independence of observations with a mixed model via110

an allele sharing based genomic relationship matrix (GRM) (rather than the111

standard GCTA GRM) and using a modified version of FUNI which gives more112

weight to common alleles resolves most of the issues raised by Yengo et al. [33].113

Material and Methods114

Simulated pedigrees115

We simulated a polygamous pedigree from a dioecious population with over-116

lapping generations (hereafter called PEDIGREE) using custom R scripts. The117

population started from 500 founders (equal numbers of males and females),118

and followed a polygamous mating system: female fertilities per time interval119

were drawn from a Poisson distribution with parameter λ = 1, mortality rate120

per time interval was set to 0.5, and only 10% of the males were allowed to121
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reproduce at each time step. Matings were recorded for 25 time steps, resulting122

in a pedigree of 11, 924 individuals (over 25 time steps).123

In order to simulate the genotypes of the individuals, we proceeded in two124

steps. We used the mspms wrapper to the msprime software [15] to simulate the125

two haplotypes containing L = 650, 000 loci for each founder individual. The126

L loci were uniformly distributed along a constant recombination map 20M127

long. For each reproduction event, the number of cross-overs was first drawn128

from a Poisson distribution and then randomly positioned along the genome.129

The non-founder genotypes were then obtained by drawing two gametes: one130

from each parent. For each gamete, the allele at the first locus is selected at131

random between the two alleles of the parent. The alleles at the next loci along132

the chromosome are copied from the chromosome with the chosen allele at the133

first locus until a recombination event occurs, at which point the alleles are134

copied from the other chromosome until the next crossing-over or the end of the135

chromosome.136

In order to investigate the effect of using more realistic smaller sample sizes,137

we subsampled 2,500 individuals from the PEDIGREE population. We per-138

formed two types of sub-sampling: i) a random sub-sampling where individuals139

were subsampled completely randomly, ii) a stratified sub-sampling where we140

sought to retain the widest range of inbreeding coefficients in the sub-sampled141

population. Consequently, for this stratified sub-sampling individuals with Fw
UNI142

≥ 0.2 were always included and individuals with Fw
UNI < 0.2 were randomly143

selected until the population reached the desired size. 100 replicates were per-144

formed for each sub-sampling.145

1000 Genomes146

In order to extend our conclusions to even smaller sample sizes and populations147

with stronger structure (which are common in wild and/or endangered species),148

we used empirical data from phase 3 from the 1,000 Genomes project [28]. We149

considered i) a small sample from a homogeneous population with small effective150

size represented by 504 individuals from the super-population with East-Asian151

ancestry (EAS), ii) a small sample from a population with some admixture and152

larger effective population sizes represented by 661 individuals from the super-153

population with African ancestry and admixed individuals (AFR) and finally154

iii) a larger sample from a population with larger effective size and with genetic155

structure (global FST = 0.083) comprising all the 2,504 individuals (hereafter156

called WORLD) and represented by five super-populations: individuals with157

East-Asian ancestry (EAS), African ancestry (AFR), European ancestry (EUR),158

admixed American ancestry (AMR) and finally South-Asian ancestry (SAS). A159

more detailed description of the samples can be found at the 1,000 Genomes160

Project website.161
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Simulated traits162

We simulated traits based on equation 1 following [33]: we consider a trait163

y whose phenotype is partly determined by the genotypes at Lc causal loci164

with h2 = 0.8. We assume these loci to be bi-allelic, with one allele encoding165

for an increase in the trait value (the plus allele) and the other encoding for166

a decrease in trait value (the minus allele). Dominance was also considered167

since inbreeding depression (ID) occurs only if there is directional dominance:168

when heterozygotes at loci encoding for the trait are closer on average to the169

homozygote for the plus allele [20]. If gene effects are purely additive or if170

dominance is not directional, there is no ID. Finally, we assume no epistasis171

between loci, and no genotype-environment interaction.172

For individual j, yj is the individual trait value (its phenotype), calculated173

as the sum of allelic and genotypic effects over causal loci, an environmental174

effect and µ, the average trait value among all individuals. At locus l, xjl is the175

minor allele count (MAC) ∈ {0, 1, 2} of individual j. al represents the additive176

effect size of the alternate allele at locus l. dl is the dominance effect size, the177

deviation of the heterozygous genotype from the mean of the two homozygotes.178

Finally, ϵj is the environmental contribution to the phenotype of individual j,179

drawn from a normal distribution.180

yj = µ+
Lc∑
l=1

xjlal +
Lc∑
l

xjl(2− xjl)dl + ϵj (1)

The strength of inbreeding depression b was set to −3 in all simulations, as181

in Yengo et al. [33]. We chose a value which was close to zero because if the the182

effect of inbreeding is too strong, it will always be detected. In addition, this183

value is in the range of observed inbreeding depression published estimates (for184

instance, table 10.4 from [20]).185

We used equation 1 to simulate traits with varying architectures. To avoid186

causal markers with extremely low frequencies, we first excluded loci with187

MAF ≤ 0.01 for both the EAS and AFR populations and loci with MAF ≤188

0.001 for both the PEDIGREE and WORLD populations. We then simulated189

traits using 1,000 randomly chosen SNPs (after MAF filtering). We drew both190

the raw additive effect sizes of the alternate allele and the raw dominance ef-191

fect sizes from a uniform [0, 1] distribution (other distributions were explored192

with almost no effect on the results (results not shown)). As we expect al-193

leles causing ID to be counter selected and thus removed or maintained at a194

low frequency (proportionally to their detrimental effect), the raw effect sizes195

were scaled inversely to MAF aj = rawaj/pj to mimic negative selection. We196

also scaled the dominance effects inversely to the locus expected heterozygosity197

dj = rawdj/(2pj(1− pj)). In addition, we attributed the same sign to the effect198

sizes of all minor alleles in order to include what Yengo et al. [33] called Di-199

rectional Effect of Minor Alleles (DEMA) [33]. However, in order to investigate200

the effect of the parameters mentioned above, we also simulated traits where201

the additive and dominance effect sizes were left unchanged aj = rawaj and202
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dj = rawdj and without DEMA. A summary of all the simulated scenarios can203

be found in table S1. In addition, graphical representation of the additive effect204

sizes and dominance coefficients distribution under these different scenarios can205

be found in Figure S1.206

Individual inbreeding coefficients207

We estimated individual inbreeding coefficients using several methods whose208

properties were recently described in detail in Zhang et al. [35]. Regarding the209

figures and tables presented in the main text, we do not filter on MAF for any210

of the F s estimates. We use one allele-sharing-based estimator of inbreeding,211

hereafter called FAS and described in [30, 35]:212

FASj
=

∑L
l=1 Ajl −ASl∑L
l=1 1−ASl

(2)

where Ajl indicates the identity of the two alleles an individual j carries at213

locus l: one for homozygous and 0 for heterozygous and ASl is the average allele214

sharing proportion at locus l for pairs of individuals j, k, j ̸= k.215

Then, we compare two versions of FUNI (initially described in [32]) and which216

measure the correlation between uniting gametes. The first version (hereafter217

called Fu
UNI ) is the original FUNI [32] measured as the average of ratios over218

SNPs (which attributes equal weight to all loci):219

Fu
UNIj =

1

L

L∑
l=1

x2
jl − (1 + 2pl)xjl + 2p2l

2pl(1− pl)
(3)

Similarly to equation 1, xjl is the MAC of individual j at locus l ∈ {0, 1, 2}220

and pl is the derived allele frequency at locus l.221

The second version (hereafter called Fw
UNI ) is a modified version of FUNI222

which measures the ratio of averages and thus gives more weight to loci with223

larger expected heterozygosity (i.e. with MAF close to 0.5). We are not aware224

of other investigations using the ratio of averages estimator Fw
UNI in the context225

of ID estimation.226

Fw
UNIj =

∑L
l=1 x

2
jl − (1 + 2pl)xjl + 2p2l∑L

l=1 2pl(1− pl)
(4)

We also used four Identical-by-descent (IBD) segments based F. We called227

runs of homozygosity (ROHs) with PLINK [27] and default parameters. We228

also called Homozygous-by-descent (HBD) segments with BCFTools [24]. For229

both methods, we selected ROHs or HBD segments based on their size: either230

larger than 100Kb: FROH100KB and FHBD100KB or larger than 1Mb: FROH1MB and231

FHBD1MB . For both methods the inbreeding coefficients were simply estimated232

as the fraction of genome falling within ROHs or HBD segments.233

Finally, in the PEDIGREE population, we used the pedigree-based inbreed-234

ing coefficient: FPED [31].235
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All inbreeding coefficients were estimated separately for each population of236

the 1,000 Genomes Project (EAS, AFR, WORLD) and with population specific237

SNPs and allelic frequencies (i.e. we removed monomorphic SNPs and estimated238

allelic frequencies in all the three populations). Consequently the same individ-239

ual might have different Fgenomic in the EAS and the WORLD population. This240

influenced only the IBD segments-based inbreeding coefficients (FROH and FHBD241

) trivially but greatly influenced FAS (though the rank of inbreeding among indi-242

viduals was conserved) and both FUNI (for which the rank of inbreeding among243

individuals was not conserved) since their formulae rely on allelic frequencies244

estimations. Comparison among the different inbreeding coefficients per popu-245

lation can be found in supplementary material (Figures S2 - S5). More details246

can be found in [35],247

Estimation of Inbreeding Depression: b248

We estimated the strength of ID (hereafter defined as b) using two different mod-249

els. In the first model, b was estimated as the slope of regression of phenotypes250

on the different inbreeding coefficients with a classical linear model (LM):251

b̂LM = Cov(Y, F )/V ar(F )

where Y is the vector of trait values and F is the vector of individual in-252

breeding coefficients estimates.253

In the second model, we estimate b as the fixed effect coefficient associated254

with the inbreeding coefficient in the following linear mixed model (LMM):255

Y = bX + ω + ϵ

where Y is the vector of trait values, X is a matrix with two columns, the256

first containing ones and the second the individual inbreeding coefficients, ω is257

the random component of the mixed model with ω ∼ N(0, τK), K being the258

genomic relationship matrix (GRM) and τ the additive variance component.259

Finally, ϵ is the individual residual variance and is defined as ϵ ∼ σ2In. From260

this, b is estimated as follows:261

b̂LMM = (X ′V −1X)−1X ′V −1Y

with V = τK + σ2In [9]. We compare three different GRMs we estimated262

using all loci (no MAF filtering). The first mixed model included a GRM derived263

from allele sharing [11], hereafter called LMMAS . We used the R Hierfstat264

package to estimate K and the R gaston package to estimate V and b. We265

could not use GCTA software to run the mixed model for this GRM because266

its leading eigenvalue is negative which the Choleski decomposition algorithm267

used for matrix inversion in GCTA cannot handle (it requires a positive definite268

matrix), while the Schur decomposition algorithm used in gaston can. We note269

that the standard GRM is not positive definite (one eigen value is 0), but the270

matrix to invert in the mixed model is not the GRM itself but V = τK + σ2In271
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which becomes positive definite and can be inverted if the heritability is smaller272

than one.273

The second mixed model used the GCTA weighted GRM matrix [11, 29].274

Similarly to Fw
UNI , this matrix uses the ratio of averages. For this model, we275

used GCTA and the R SNPrelate package to estimate V . We then used the R276

gaston package for estimating b with the LMM.277

Finally, the third mixed model used the GCTA unweighted GRM matrix [32]278

which (similarly to Fu
UNI ) utilizes the average of ratios and thus gives equal279

weight to all loci. For this model, we used GCTA to estimate V . We then280

estimated b with the LMM implemented in the R gaston package.281

Note that the Average Information-Restricted Maximum Likelihood (AIREML)282

fitting method we used in the LMM is an iterative procedure, and should re-283

sult in unbiased estimates. In some cases, the model did not converge, and284

gave highly biased b. For each scenario, regression model and population, the285

number of replicates which did not converge can be found in tables S6-S8.286

Results287

All the figures presented in the main text picture the scenario where alleles288

additive effect sizes and dominance coefficients are proportional to MAF and289

where there is a directional effect of minor alleles (DEMA) (i.e. the ADD &290

DOM & DEMA scenario from table S1) (see Figure S1). The results for the291

other scenarios are shown and discussed in supplementary material (Figures292

S8-S15, tables S2-S5).293

Simulated pedigrees294

Figure 1 presents the inbreeding depression (ID) strength estimates (b, see the295

methods section) for the different inbreeding coefficients (F ), with two regres-296

sion models in the PEDIGREE populations. The first column shows b estimated297

with the simple LM and the second column shows b estimated with LMM in-298

cluding the allele sharing GRM as random factor (LMMAS ). The first row299

shows results for the complete PEDIGREE population (n = 11,924). The sec-300

ond row shows results for a reduced sample size of the PEDIGREE population301

(n = 2,500, meant to match the size of the 1KG WORLD population) where302

sub-sampled individuals were chosen completely randomly. The third row also303

shows results for a reduced sample size of the PEDIGREE population (n =304

2,500) but these individuals were selected to represent the entire spectrum of305

inbreeding values. The violin plots show b estimates distributions among the306

simulation replicates (100 replicates for the complete population, 10,000 repli-307

cates for both sub-sampled populations). The solid dark grey line is the true308

strength of ID (b = -3). The dashed red line represents the absence of ID (b =309

0), indicating that ID was not detected in any replicate above this line. Root310

mean square error (RMSE) values associated with both models and populations311

are shown in table 1. Strikingly, in the PEDIGREE population, no F resulted312
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in a accurate estimation of b with the simple LM, whatever the sample size313

(Figure 1, panels A, C and E; Table 1). The inclusion of a GRM matrix as a314

random factor allowed for the correction of non-independence of observations315

and greatly improved b estimation (Figure 1, panels B, D, and F; table 1). In316

the complete PEDIGREE population, we see little difference between the three317

GRMs we tested (1, panel B vs Figure S8, panels A and B; table 1): all F yielded318

efficient (we use efficient to describe an estimate with low RMSE, thus which is319

unbiased and has low variance) estimates of b when used inside a LMM, except320

for Fu
UNI that slightly overestimates the strength of ID while FPED slightly un-321

derestimates it. This suggests that large sample sizes (here 11,924 individuals)322

combined with a mixed model allow efficient ID estimation regardless of the323

F used. The three mixed models, however, perform less efficiently when the324

sample size is reduced, as we demonstrate with both subsampled PEDIGREE325

populations (n = 2,500): many replicates produced estimates above zero for b326

(Figure 1, panels D and F; Figure S8, panels C to F; table 1). RMSE were327

particularly large for FPED , FHBD100KB
and FROH100KB

with the mixed model328

using the unweighted GCTA GRM matrix (LMMGCTAu ) (Figure S8, panel D;329

table 1). Additionally, increasing the variance of sub-sampled individuals’ F330

(i.e. ranged sub-sampling) led to better estimates of b with reduced variance331

among replicates compared to random subsampling (Figure 1, panels D vs F:332

Figure S8, panels C vs E and D vs F, table 1).333

1,000 Genomes Project334

Figure 2 illustrates the estimates of ID strength (b) for the different inbreeding335

coefficients (F ), when using either a LM or a LMM for two subsets of the 1,000336

Genomes Project: EAS and AFR, as well as for the entire world population.337

It has the same structure as Figure 1. Root mean square error (RMSE) values338

associated with both models and populations can be found in table 2. Inter-339

estingly, we see little difference between LM and LMM and the different GRMs340

when there is no structure among the samples even with small sample sizes341

(EAS: Figure 2, panel A and B vs Figure S6, panels A and B; table 2; AFR:342

Figure 2, panel C and D vs Figure S6, panels C and D; table 2). Similarly to343

what was observed for the PEDIGREE population, when some structure exists344

(population structure in the WORLD population compared to family structure345

in the PEDIGREE population), the simple LM fails to accurately estimate the346

strength of ID, regardless of the F (Figure 2, panel E; table 2). In contrast to347

the pedigree population showing no difference between the three GRMs (Figure348

1 and Figure S6), the most efficient estimates of b are obtained only with the349

LMMAS model and with Fw
UNI in the highly structured WORLD population350

(Figure 2, panel F vs Figure S7 panels E and F; table 2). In fact, the models351

including the GCTAw and GCTAu matrices cannot efficiently estimate b with352

any of the inbreeding coefficients: even though Fw
UNI is unbiased, the variance is353

very large (panel F; Figure S7, table 2). In addition, several replicates did not354

converge when both GCTAw and GCTAu models were used which was never355

the case with the GRMAS . Numbers of such replicates are indicated in the356
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Figures’ legend and in supplementary tables S6-S8.357

Comparing inbreeding coefficients358

With both the LM and LMMAS models in the three populations from the 1,000359

Genomes Project (EAS, AFR and WORLD, panels A - F) and for the LM in360

the PEDIGREE population, FAS is consistently underestimating the strength361

of ID, particularly when there is strong structure (WORLD: Figure 2, panels E362

and F). It is because DEMA is included in the model and strongly influences363

the quantification of ID by FAS . In the absence of a DEMA, FAS produces364

efficient estimates (Figures S10 - S13). In addition, FAS is sensitive to the365

dominance effects being proportional to MAF but to a lesser extent and in the366

opposite direction (Figure S8 vs Figure S9). Concerning the other SNP-based367

F, Fu
UNI is constantly overestimating the strength of ID and is the most sensitive368

to population structure: its variance is much larger compared to Fw
UNI in the369

structured WORLD population and with all models (Figure 2, panel F; table 2).370

Interestingly, the variance of Fu
UNI is affected only when allele effect sizes and/or371

dominance coefficients are proportional to MAF, but not by DEMA (Figures372

S8-S15). In contrast, Fw
UNI is the least sensitive to allele effect sizes or dominance373

coefficients proportional to MAF and DEMA (Figures S8 – S15), which makes374

it the most appropriate F for estimating ID (Figure 2, panel F; table 2). Since375

the difference between Fw
UNI and Fu

UNI is the weight given to rare and common376

alleles, we conducted the same analyses (including the re-estimation of both377

F and GRMs estimation) on the WORLD population but excluding loci with378

MAF > 0.05 and showed that there is no difference between Fw
UNI and Fu

UNI379

when rare alleles are removed (Figure S16). Concerning the F calculated from380

ROHs and HBD segments, there is not much difference between PLINK and381

BCFTools except for the variance among b estimates, which is slightly smaller382

with BCFTools compared to PLINK (Figure 2, panels A - F; table 2). In addition,383

focusing on recent inbreeding by including only large segments (here larger than384

1MB) yielded better results in the WORLD population (Figure 2, panel F).385

Since BCFTools is a model-based HBD approach, there is no mandatory length386

requirement. In light of this, we also estimated FHBD based on HBD segments387

without any size restrictions, and the results are similar to those obtained using388

FHBD100KB (Figure S17).389

Comparing genetic relatedness matrices390

Since we identified Fw
UNI as the best inbreeding coefficient, Figure 3 contrasts the391

four different models for this coefficient in the four populations: each panel cor-392

responds to one population. As mentioned above, there is almost no difference393

among the different GRM matrices in the extremely large complete PEDIGREE394

population (Figure 3, panel A; table 1) and between any of the models in the395

two homogeneous populations (EAS and AFR) (Figure 3, panels B and C; table396

2). However, in the highly structured WORLD population, LMMAS gives the397
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most accurate result due to its smaller variance and RMSE (Figure 3, panel D;398

table 2).399

Distribution of additive and dominance effects400

We found a difference between the three linear mixed models only because the401

scenario presented in the main text includes effect sizes and dominance coeffi-402

cients proportional to causal markers’ MAF as well as DEMA. When none of403

these three parameters are included, there is little difference between the three404

linear mixed models (Figure S8, panels B, F, J, N vs panels C, G, K, O vs panels405

D, H, L, P; tables S2-S5). Additional simulations were conducted without addi-406

tive and dominance coefficients proportional to loci’s MAF and DEMA to assess407

their impact on ID detection. The individual and pairwise effects of additive408

and dominance coefficients being proportional to MAF and DEMA (the other409

scenarios of table S1) are explored and discussed in details in supplementary410

material and Figures S8-S15.411

Finally, we also investigated i) the effect of the LDMS stratification method412

proposed by Yengo [33] (Figures S8-S15) but found that it only improves results413

with the simple LM and ii) the effect of using intermediate frequencies causal414

loci (Figure S18) which reduced the variance in b estimates for all inbreeding415

coefficients.416

Discussion417

By analyzing the phenotypes of a large simulated pedigreed polygamous popu-418

lation with high family structure as well as subsets of the 1000 genomes project419

[28], we demonstrated that, despite population or family structure, inbreeding420

depression estimates can be accurately measured if the data are analyzed with421

a mixed model using the genomic relationships among individuals as random422

effect. In comparison to the other genomic relationship matrices (GRMs), the423

one based on allele sharing provides the most consistent and accurate results,424

especially for smaller sample sizes and samples with a high family or population425

structure. And, among the several inbreeding estimators tested, Fw
UNI proved426

the most reliable to quantify inbreeding depression.427

We observed trivial differences among the different models when there is428

no population structure (i.e. in the EAS and AFR populations). However, as429

soon as there is some structure (the WORLD and POLYPED populations) the430

classical linear model (LM) completely fails to estimate b regardless of the in-431

breeding coefficient used. This result is concordant with Yengo et al. (2017)432

[33] where the authors quantified ID using a simple linear model and demon-433

strated that FHOM (whose properties are very similar to FAS ), Fu
UNI and two434

different FROH were sensitive to population structure. As for the comparison435

of three linear mixed models (LMM), they perform equally when there is no436

population structure (EAS and AFR) or very large sample sizes (11,924 indi-437

viduals from the complete PEDIGREE population). Although samples of this438
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size are common for research on humans, they will seldom be found in wild439

populations. We therefore subsampled the PEDIGREE population to 2,500 in-440

dividuals in order to investigate the effect of a smaller sample size. We used441

two types of sub-sampling: i) random sub-sampling where individuals were cho-442

sen completely randomly and ii) ranged sub-sampling where individuals where443

chosen to maximise the range of F in the sampled population. We stress that444

what we consider a small sample size (2,500 individuals) will not be found in445

many wild species, particularly for endangered populations, where monitoring446

inbreeding and inbreeding depression are critical. As expected, when we sub-447

sampled individuals from the PEDIGREE population, RMSE values associated448

with b estimation increased slightly for both LMMAS and LMMGCTAw mixed449

models and we failed to detect ID in some replicates. Accordingly, even with450

2,500 individuals, we lack power and several thousands of individuals would451

be required to detect ID efficiently as Keller et al. and Caballero et al. pre-452

viously pointed out [16, 4]. With the LMMGCTAu mixed model, all inbreed-453

ing coefficients but FAS and FUNI had convergence issues, suggesting that the454

LMMGCTAu mixed model is the least robust of the three mixed models. As455

expected, randomly sub-sampling individuals lead to a larger variance of b esti-456

mates compared to the ranged sub-sampling scheme, indicating that maximizing457

the variance of samples’ F improves the estimation of b, although it is not ob-458

vious how such sampling could be done in non monitored natural populations.459

When we add strong population structure in addition to the small sample size460

(2,504 individuals from the highly structured WORLD population), we observe461

striking differences between the three different GRMs. The linear mixed model462

including the allele sharing based GRM (LMMAS ) resulted in the most efficient463

estimations of b. In addition, the mixed models with both GRMGCTAu and464

GRMGCTAw did not converge for high percentages of replicates (compared to465

0% for LMMAS ) emphasizing that LMMAS is the best model for quantifying466

inbreeding depression in highly structured populations (although the most used467

GRM is currently the one estimated from GCTA). This is because the allele shar-468

ing based GRM matrix is a better estimator of kinship compared to both GCTA469

matrices [11, 30]. Indeed what the GRMAS estimates is the actual kinship in the470

population, based on how many alleles individuals share. In contrast, what both471

GRMGCTAw and GRMGCTAu estimate is a combination of individual kinship,472

their mean kinship with the other individuals and the overal mean kinship in473

the population (see eq. 3 in Goudet et al. [30]). Consequently, since the kinship474

itself is better estimated with GRMAS , the non-independence of observations475

(and thus the population structure) is better accounted for with LMMAS which476

leads to better b estimates. Importantly, the inclusion of a GRM in the ID esti-477

mation model is not limited to simple linear models. Even though we used only478

linear models in this study, any type of generalized linear model can incorporate479

a GRM as a random factor. Consequently this method can be applied to any480

trait distribution. Furthermore, by including the GRM-based random factor,481

the non-independence of observations is better accounted for than by including482

the population as a random factor, and no prior knowledge of the population483

structure is required.484
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Comparing F485

Concerning the different inbreeding coefficients, we found Fw
UNI to be the best486

F for quantifying inbreeding depression. Indeed, Fw
UNI was the only coefficient487

we tested which was not sensitive to either additive and dominance effect sizes488

being proportional to MAF or DEMA resulting in the least biased estimation489

of b. On the contrary, we found that Fu
UNI was influenced by the dominance490

effect sizes being proportional to MAF and by population structure. Since Fu
UNI491

gives equal weight to all loci, the rare allele associated with large dominance492

coefficients add noise in the estimation of b. Similarly, when there is population493

structure, rare alleles which have strong influence on Fu
UNI are likely to be pri-494

vate alleles which will strongly bias population-specific allelic frequencies and495

eventually Fu
UNI estimation. Importantly, Fu

UNI performed as well as Fw
UNI when496

we filtered on MAF > 0.05 for F and all GRMs estimation. This is because497

Fu
UNI uses the average of ratios, which results in loci with small MAF strongly498

influencing the outcome. When these rare loci are filtered out, the estimated F499

is no longer biased. This explains why Yengo et al. [33] found that Fu
UNI was500

the best F for quantifying inbreeding depression with an homogeneous subset of501

the UK bio bank dataset: they filtered on MAF > 0.05 leading to Fu
UNI estima-502

tion not being influenced by rare alleles with strong additive and/or dominance503

effect sizes. Concerning FAS , we found that it was very sensitive to DEMA.504

This result is also concordant with Yengo et al. [33] who found that FHOM505

(with properties very similar to FAS ) was sensitive to DEMA. In this paper the506

authors explain that this sensitivity is due to FHOM (and thus FAS ) correlating507

strongly with minor allelic count which will create a spurious association with508

inbreeding depression in the presence of DEMA. However, FAS resulted in the509

most accurate estimates of b when DEMA was not included in the model, sug-510

gesting that it is the best F to estimate inbreeding for neutral regions. Finally,511

we found that ROHs and HBD segments based F , namely FROH and FHBD , per-512

formed poorly: underestimating the strength of inbreeding depression (positive513

b) or displaying very large variance among replicates. This result is in contra-514

diction with Kardos et al. [13, 14] and Nietlisbach et al. [25] who found that515

FROH and FHBD were better at quantifying inbreeding depression compared to516

SNPs-independent based F . However, Alemu et al. [1] and Caballero et al. [5]517

showed the best F actually depends on the history of the population. Indeed,518

they showed that FROH and FHBD and to a lesser extent FHOM were better at519

quantifying homozygosity at loci with common alleles. On the contrary, Fu
UNI520

was better at quantifying homozygosity at rare alleles. Alemu et al. [1] and521

Caballero et al. [5] propose that, on the one hand, in populations with low522

effective sizes, selection is weaker and deleterious alleles may be able to reach523

intermediate frequencies as a result of drift. Therefore both FROH and FHBD524

(and FHOM in their analyses) should perform better in such populations. In525

our study, the standard scenario (with no ADD, no DOM and no DEMA) mim-526

ics what happens in such small populations and we found that FROH , FHBD527

and FAS (which has similar properties to FHOM ) performed better than Fu
UNI528

(which is the FUNI they tested) in the highly structured WORLD population529

13

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 14, 2023. ; https://doi.org/10.1101/2023.08.14.552950doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.14.552950
http://creativecommons.org/licenses/by-nc/4.0/


and to a lesser extent in the family structured PEDIGREE population. With530

homogeneous populations, we do not observe any difference between these in-531

breeding coefficients. Nevertheless, this is consistent with Alemu [1] results, as532

they used families which consequently create structure. On the other hand, in533

populations with a large effective size, selection maintains deleterious alleles at534

low frequencies which explains why Yengo et al. (2017) found that FUNI was535

the best F with the large UK biobank dataset and this is consistent with what536

we have found with the ADD & DOM & DEMA scenario which mimics what537

happens in populations with large effective sizes.538

Conclusion539

In this paper, we showed that the more accurate method for estimating inbreed-540

ing depression is to use a mixed model with an allele-sharing-based relatedness541

matrix as a random component but Fw
UNI as the inbreeding coefficient to predict542

inbreeding depression. The most commonly used GRM (GRMGCTAu ) results543

in biased and highly variable estimates of b in structured populations. We stress544

that even if the results are greatly improved by using the allele-sharing GRM and545

Fw
UNI , the variance among replicates is still large and no inbreeding depression546

is detected in several replicates (b̂ ≥ 0) in the highly structured WORLD popu-547

lation as well as in the small and slightly admixed AFR population. Therefore,548

detecting efficiently inbreeding depression of the magnitude commonly found549

and that we simulated requires very large sample sizes with several thousand550

individuals, particularly in structured populations. Unfortunately, this might551

be hardly feasible for wild and/or endangered populations.552
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Figure 1: Comparison of the estimation of inbreeding depression
strength (b) among different F estimates and two models in the PEDIGREE
population. Each column represents a regression model. The first column de-
picts the simple linear regression (LM) (panels A, C and E) and the second
column depicts the linear mixed model with the allele sharing relatedness ma-
trix as a random component (LMMAS ) (panels B, D and F). The first row
represents the complete simulated population (11,924 individuals, panels A and
B). The second row shows the random subsampling (2,500 individuals, panels C
and D). The third row shows the ranged subsampling (2,500 individuals, panels
E and F). Inbreeding estimates presented in this graph are FPED , FAS , Fu

UNI

, Fw
UNI , FHBD100KB

, FROH100KB
, FHBD1MB

and finally FROH1MB
. For panels A

and B, violin plots show the distribution of the inbreeding depression strength
estimates (b) among the simulated 100 replicates. For panelsC to F, violin plots
represent the distribution of the inbreeding depression strength estimates (b) for
the 10,000 simulated and sub-sampling replicates (100 sub-sampling replicates
for each of the 100 simulation replicates). The solid dark grey line is the true
strength of ID (b = -3). The dashed red line represents the absence of ID (b =
0), meaning that we failed to detect ID in any replicate above this line. Note
that all panels are in log10 scale.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 14, 2023. ; https://doi.org/10.1101/2023.08.14.552950doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.14.552950
http://creativecommons.org/licenses/by-nc/4.0/


Model Population FPED FAS Fu
UNI Fw

UNI FHBD100KB
FROH100KB

FHBD1MB
FROH1MB

LM PEDIGREE (complete) 34.82 22.71 10.17 4.17 19.93 22.22 17.4 17.44
LMM: AS PEDIGREE (complete) 1.62 1.27 1.89 0.87 1.07 1.12 1.11 1.11
LMM: GCTA WE PEDIGREE (complete) 1.62 1.27 1.89 0.87 1.07 1.12 1.11 1.11
LMM: GCTA UN PEDIGREE (complete) 1.58 1.28 1.85 0.88 1.08 1.12 1.08 1.08
LM PEDIGREE (random sub) 33.84 22.20 10.41 4.47 19.53 21.72 17.24 17.28
LMM: AS PEDIGREE (random sub) 4.01 2.97 3.82 1.83 2.57 2.73 2.56 2.57
LMM: GCTA WE PEDIGREE (random sub) 4.01 2.97 3.82 1.83 2.57 2.73 2.56 2.57
LMM: GCTA UN PEDIGREE (random sub) > 1,000 2.75 3.44 1.78 > 1,000 > 1,000 > 1,000 > 1,000
LM PEDIGREE (ranged sub) 15.22 11.04 3.46 1.61 9.58 10.52 8.13 8.15
LMM: AS PEDIGREE (ranged sub) 2.09 1.82 2.13 1.26 1.61 1.67 1.58 1.58
LMM: GCTA WE PEDIGREE (ranged sub) 2.09 1.82 2.13 1.26 1.61 1.67 1.58 1.58
LMM: GCTA UN PEDIGREE (ranged sub) > 1,000 1.69 2.05 1.24 > 1,000 > 1,000 1.53 1.54

Table 1: RMSE on b estimate in the PEDIGREE population These values are for the complete ADD & DOM & DEMA
scenario. See tables S2-S5 for the other scenarios
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Figure 2: Comparison of the estimation of inbreeding depression
strength (b) among different F estimates and models in four different pop-
ulations. Each column represents a regression model. The first column depicts
the simple linear regression (LM) (panels A, C and E) and the second column
depicts the linear mixed model with the allele sharing relatedness matrix as a
random component (LMMAS ) (panels B, D and F). The three rows correspond
to the three populations from the 1,000 Genomes project: EAS on panels A and
B, AFR on panels C and D and WORLD on panels E and F. Inbreeding esti-
mates presented are FAS , Fu

UNI , F
w
UNI , FHBD100KB

, FROH100KB
, FHBD1MB

and
finally FROH1MB

. Violin plots represent the distribution of the inbreeding de-
pression strength estimates (b) among the 100 simulation replicates. The solid
dark grey line is the true strength of ID (b = -3). The dashed red line represents
the absence of ID (b = 0), meaning that we failed to detect ID in any replicate
above this line. Note that all panels are in log10 scale.
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Model Population FAS Fu
UNI Fw

UNI FHBD100KB
FROH100KB

FHBD1MB
FROH1MB

LM EAS 5.55 4.9 4.86 7.14 7.93 6.19 10.58
LMM: AS EAS 5.67 4.68 4.64 7.41 8.22 6.12 10.39
LMM: GCTA WE EAS 5.67 4.68 4.64 7.28 8.06 6.11 10.39
LMM: GCTA UN EAS 5.48 4.74 4.71 7.1 7.87 6.18 10.57
LM AFR 5.93 4.81 4.81 6.03 7.21 7.21 13.12
LMM: AS AFR 5.15 4.07 4.07 5.46 6.2 7.15 13.1
LMM: GCTA WE AFR 5.15 4.07 4.07 > 1,000 > 1,000 7.16 13.1
LMM: GCTA UN AFR 5.78 4.42 4.42 5.92 6.93 7.2 13.11
LM WORLD 32.91 142.95 62.21 67.42 59.15 107.67 169.73
LMM: AS WORLD 8.63 8.34 4.17 9.15 10.97 8.78 14.6
LMM: GCTA WE WORLD 9.84 > 1,000 > 1,000 11.19 13.92 > 1,000 > 1,000
LMM: GCTA UN WORLD 18.18 > 1,000 > 1,000 27.52 26.91 > 1,000 > 1,000

Table 2: RMSE on b estimate in the three 1,000 Genomes Project populations: EAS, AFR and WORLD These
values are for the complete ADD & DOM & DEMA scenario. See tables S2-S5 for other scenarios
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Figure 3: Comparison of the inbreeding depression strength estimates
(b) with Fw

UNI in the four populations with four different models. The four
models are: i) the simple linear regression (LM), ii) the linear mixed model with
the allele sharing relatedness matrix as a random factor, iii) the linear mixed
model with the weighted GCTA relatedness matrix as a random factor and iv) the
linear mixed model with the unweighted GCTA relatedness matrix as a random
factor. Panel A the simulated PEDIGREE population, panel B depicts the
EAS population, panel C the AFR population and finally panel D the WORLD
population. Note that all panels are in log10 scale. Also note that LMM did not
converge for some replicates (yielding estimated b values above 1000 or below -
1000, not shown in the graph). Percentages of replicates which did not converge:
panel D (WORLD): 21% for GRMGCTAw ; 20% for GRMGCTAu .
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