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. Abstract

2 Measuring inbreeding as well as its consequences on fitness is central for many
13 areas in biology including human genetics and the conservation of endangered
1 species. However, there is no consensus on the most appropriate method, nei-
15 ther for quantification of inbreeding itself nor for the model to estimate its
16 effect on specific traits. In this project, we simulated traits based on simu-
17 lated genomes from a large pedigree and empirical whole-genome sequences of
18 human data from populations with various sizes and structure (from the 1,000
v Genomes project). We compare the ability of various inbreeding coefficients (F')
2 to quantify the strength of inbreeding depression: allele sharing, two versions
a1 of the correlation of uniting gametes which differ in the weight they attribute
2 to each locus and two identical-by-descent segments-based estimators. We also
23 compare two models: the standard linear model and a linear mixed model in-
2 cluding a genetic relatedness matrix (GRM) as random effect to account for
»s  the non-independence of observations. We find linear mixed models give bet-
2% ter results in scenarios with population or family structure. Within the mixed
27 models, we compare three different GRM matrices and show that in homoge-
;s neous populations, there is little difference among the different F' and GRM for
2 inbreeding depression quantification. However, as soon as strong population or
s family structure is present, the strength of inbreeding depression can be most
a  efficiently estimated only if (i) the phenotypes are regressed on inbreeding coef-
2 ficient based on a weighted version of the correlation of uniting gametes, which
1 gives more weight to common alleles and (ii) with the GRM obtained from an
s allele sharing relatedness estimator.
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» Introduction

s Inbreeding is the result of mating between relatives and is often associated with
w» reduced fitness, a phenomenon called inbreeding depression (ID) and which
1 was observed in many different species such as humans [7, 6], other animals
» [26, 12, 21], and plants [34].

a0 Many different methods have been developed for inbreeding quantification
aand there is no consensus on which one is the best [1, 5, 11, 25, 33, 35]. The
« classical approach was first proposed by Sewall Wright in 1922 and makes use of
i pedigrees (called hereafter Fprp ) [31]. With the advances in sequencing tech-
w nologies, genomic-based inbreeding coefficients (hereafter called Fyenomic ) have
s been developed. Among these, some coeflicients rely on the comparison between
s observed and expected heterozygosity such as Fom [8, 27], the expected allele
«  sharing between individuals such as Fag [35] or on the correlation between unit-
s ing gametes such as Fynr [32]. In addition to estimating the realized inbreeding
w coeflicient and requiring no prior knowledge of the mating behavior of the popu-
so lation, these genomic estimates are simple and straightforward to compute and
s do not require whole-genome sequencing (WGS) data; a few thousands SNPs
2 are usually sufficient for reliable inbreeding estimation in humans [11]. However
53 they also have a disadvantage: they usually rely on allelic frequencies (except
s« for Fag ) and therefore if these frequencies have not been correctly estimated,
ss  this will affect the estimation of these coefficients. Another inbreeding coeffi-
ss cient was proposed by McQuillan et al. (2008): Fron uses runs of homozygosity
s» (ROHs), long homozygous stretches as a proxy for IBD segments within individ-
s uals [22]. A model-based approach relying on hidden Markov models has also
5o been developed for detecting IBD segments [19] by identifying homozygous-by-
oo descent (HBD) segments. This model is the basis for many other model-based
s IBD segments detection methods such as BCFTools [24], BEAGLE [3] and RZooRoH
2 [10]. The inbreeding coefficient estimated with these model-based approaches
&3 will be called Fygp from now on. One advantage of these methods is that they
& do not depend on allelic frequencies which can be very valuable when only a few
es individuals are available. However, it has been shown that these coefficients,
e and especially Fron , are sensitive to SNP density and parameters used, and
o7 there is no consensus on what is the most suitable set of parameters at present
e [23, 18]

69 How to quantify ID, although central to conservation genetics for decades
w0 [16], is still debated. This debate includes two sub-questions: which statistical
7 model should be employed 7 And which F' ? Regarding the model, the classi-
2 cal approach consisted of the use of linear regression of the phenotypes on the
7 inbreeding coefficient. However, other models have been utilized, such as Gen-
7 eralized Linear models (GLMs) with various link functions. In 2019, Nietlisbach
75 et al.. [25] compared different models and found that the common GLM models
7 with logit link did not allow for accurate inbreeding depression strength estima-
77 tion. They propose using GLM with logarithm link functions. Ultimately, the
7 type of model is largely dependent on the distribution of the trait.

79 Regarding the choice of which F' is more accurate for quantifying ID, many
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s studies have demonstrated that Fyenomic yields better results than Fpep (17, 2,
s 13]. However, some studies found Fyni to be more accurate than Fromn [33],
22 while others found that Fron provided the best estimates of ID [17, 13, 25].
&z In 2020, Caballero et al. [5] used simulations and included several populations
s with different histories: they found that the optimal F' actually depends on how
s large the population is. Frop did a better job at quantifying ID in populations
s with small effective size while Fyn; was better at predicting ID estimates in
&7 populations with large effective sizes. This result was later confirmed by Alemu
s et al. [1] used SNP-array empirical cattle data for several groups of allelic fre-
& quencies and concluded that Fyny and Forym (Fr and Fypp respectively in [32])
o are better at quantifying homozygosity at rare alleles while Frog and Fyonm are
o better for alleles at intermediate frequencies and correlate better with whole-
e genome homozygosity. Indeed, recessive deleterious alleles, which are thought
o3 to be responsible for inbreeding depression, should segregate at low frequencies
o in large populations as a result of negative selection. On the contrary, in small
s populations, drift can increase the frequency of deleterious recessive alleles to
o intermediate frequencies, making Frog and Fyon more suitable for detecting
o ID. Indeed, in the simulations conducted by Yengo et al. [33], rare alleles al-
s ways caused negative effects on fitness (referred to as DEMA, for Directional
o Effect of Minor Alleles). The authors showed that Fyowm (and thus Fag since
wo they have similar properties) is sensitive to DEMA while Fyni and Fron are
w not. They also showed via simulations that all estimates of ID are somewhat
02 sensitive to population structure, Fyni being the least affected. They recom-
0 mend estimating ID using Linkage Disequilibrium (LD) score and Minor Allele
e Frequency (MAF) bins, and summing the ID estimates from these bins as an
s overall estimate of ID for the trait.

106 In this paper we simulated traits based on both simulated and empirical
1wz WGS human data from populations with varying sizes and structure. We show
0s that some F' are more sensitive to population structure and DEMA than others.
1w We confirm only some of Yengo et al. [33] results. Importantly, we show that
w0 accounting for the non-independence of observations with a mixed model via
ur an allele sharing based genomic relationship matrix (GRM) (rather than the
u2  standard GCTA GRM) and using a modified version of Fyni which gives more
us  weight to common alleles resolves most of the issues raised by Yengo et al. [33].

w Material and Methods

us  Simulated pedigrees

us  We simulated a polygamous pedigree from a dioecious population with over-
ur  lapping generations (hereafter called PEDIGREE) using custom R scripts. The
us population started from 500 founders (equal numbers of males and females),
o and followed a polygamous mating system: female fertilities per time interval
120 were drawn from a Poisson distribution with parameter A = 1, mortality rate
21 per time interval was set to 0.5, and only 10% of the males were allowed to
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122 reproduce at each time step. Matings were recorded for 25 time steps, resulting
13 in a pedigree of 11,924 individuals (over 25 time steps).

124 In order to simulate the genotypes of the individuals, we proceeded in two
s steps. We used the mspms wrapper to the msprime software [15] to simulate the
s two haplotypes containing L = 650,000 loci for each founder individual. The
w2 L loci were uniformly distributed along a constant recombination map 20M
s long. For each reproduction event, the number of cross-overs was first drawn
120 from a Poisson distribution and then randomly positioned along the genome.
10 The non-founder genotypes were then obtained by drawing two gametes: one
1 from each parent. For each gamete, the allele at the first locus is selected at
12 random between the two alleles of the parent. The alleles at the next loci along
133 the chromosome are copied from the chromosome with the chosen allele at the
134 first locus until a recombination event occurs, at which point the alleles are
135 copied from the other chromosome until the next crossing-over or the end of the
s chromosome.

137 In order to investigate the effect of using more realistic smaller sample sizes,
s we subsampled 2,500 individuals from the PEDIGREE population. We per-
o formed two types of sub-sampling: i) a random sub-sampling where individuals
1w were subsampled completely randomly, ii) a stratified sub-sampling where we
w sought to retain the widest range of inbreeding coefficients in the sub-sampled
12 population. Consequently, for this stratified sub-sampling individuals with F{jy;
us > 0.2 were always included and individuals with Fj; < 0.2 were randomly
s selected until the population reached the desired size. 100 replicates were per-
us formed for each sub-sampling.

us 1000 Genomes

w7 In order to extend our conclusions to even smaller sample sizes and populations
us  with stronger structure (which are common in wild and/or endangered species),
us  we used empirical data from phase 3 from the 1,000 Genomes project [28]. We
50 considered i) a small sample from a homogeneous population with small effective
151 size represented by 504 individuals from the super-population with East-Asian
152 ancestry (EAS), ii) a small sample from a population with some admixture and
153 larger effective population sizes represented by 661 individuals from the super-
15« population with African ancestry and admixed individuals (AFR) and finally
155 iii) a larger sample from a population with larger effective size and with genetic
156 structure (global Fspr = 0.083) comprising all the 2,504 individuals (hereafter
157 called WORLD) and represented by five super-populations: individuals with
158 East-Asian ancestry (EAS), African ancestry (AFR), European ancestry (EUR),
150 admixed American ancestry (AMR) and finally South-Asian ancestry (SAS). A
1o more detailed description of the samples can be found at the 1,000 Genomes
11 Project website.
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e Simulated traits

163 We simulated traits based on equation 1 following [33]: we consider a trait
ey whose phenotype is partly determined by the genotypes at Lc causal loci
s with h? = 0.8. We assume these loci to be bi-allelic, with one allele encoding
s for an increase in the trait value (the plus allele) and the other encoding for
w7 a decrease in trait value (the minus allele). Dominance was also considered
s since inbreeding depression (ID) occurs only if there is directional dominance:
10 when heterozygotes at loci encoding for the trait are closer on average to the
wo homozygote for the plus allele [20]. If gene effects are purely additive or if
i dominance is not directional, there is no ID. Finally, we assume no epistasis
2 between loci, and no genotype-environment interaction.

173 For individual j, y; is the individual trait value (its phenotype), calculated
7a as the sum of allelic and genotypic effects over causal loci, an environmental
s effect and p, the average trait value among all individuals. At locus [, x;; is the
e minor allele count (MAC) € {0,1,2} of individual j. a; represents the additive
1w effect size of the alternate allele at locus [. d; is the dominance effect size, the
s deviation of the heterozygous genotype from the mean of the two homozygotes.
s Finally, €; is the environmental contribution to the phenotype of individual j,
1o drawn from a normal distribution.

Le Lec
v =+ Y wpa+ Yy w2 —zp)di+ ¢ (1)
1=1 l
181 The strength of inbreeding depression b was set to —3 in all simulations, as

w2 in Yengo et al. [33]. We chose a value which was close to zero because if the the
183 effect of inbreeding is too strong, it will always be detected. In addition, this
s value is in the range of observed inbreeding depression published estimates (for
s instance, table 10.4 from [20]).

186 We used equation 1 to simulate traits with varying architectures. To avoid
17 causal markers with extremely low frequencies, we first excluded loci with
188 MAF < 0.01 for both the EAS and AFR populations and loci with MAF <
189 0.001 for both the PEDIGREE and WORLD populations. We then simulated
wo traits using 1,000 randomly chosen SNPs (after MAF filtering). We drew both
w1 the raw additive effect sizes of the alternate allele and the raw dominance ef-
w2 fect sizes from a uniform [0, 1] distribution (other distributions were explored
s with almost no effect on the results (results not shown)). As we expect al-
14 leles causing ID to be counter selected and thus removed or maintained at a
s low frequency (proportionally to their detrimental effect), the raw effect sizes
ws  were scaled inversely to MAF a; = raw,;/p; to mimic negative selection. We
17 also scaled the dominance effects inversely to the locus expected heterozygosity
ws  dj = rawg;/(2p;(1—pj)). In addition, we attributed the same sign to the effect
s sizes of all minor alleles in order to include what Yengo et al. [33] called Di-
20 rectional Effect of Minor Alleles (DEMA) [33]. However, in order to investigate
20 the effect of the parameters mentioned above, we also simulated traits where
22 the additive and dominance effect sizes were left unchanged a; = raw,; and
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203 d; = rawg; and without DEMA. A summary of all the simulated scenarios can
24 be found in table S1. In addition, graphical representation of the additive effect
205 sizes and dominance coefficients distribution under these different scenarios can
26 be found in Figure S1.

»» Individual inbreeding coefficients

28  We estimated individual inbreeding coefficients using several methods whose
20 properties were recently described in detail in Zhang et al. [35]. Regarding the
20 figures and tables presented in the main text, we do not filter on MAF for any
au of the F's estimates. We use one allele-sharing-based estimator of inbreeding,
2 hereafter called Fag and described in [30, 35]:

L
1A — Ag
Fas, — izt = Ast @)
Zl=1 1- ASl
213 where Aj; indicates the identity of the two alleles an individual j carries at

au locus I: one for homozygous and 0 for heterozygous and Ag; is the average allele
25 sharing proportion at locus [ for pairs of individuals j, k, 7 # k.

216 Then, we compare two versions of Fyy (initially described in [32]) and which
a7 measure the correlation between uniting gametes. The first version (hereafter
2e  called Fijy; ) is the original Fynr [32] measured as the average of ratios over
20 SNPs (which attributes equal weight to all loci):

L 2 2

1 x5 — (14 2py)xi + 2p

Fi =+ 3 2 O 2 2 3
L= 2p1(1 —pp)

220 Similarly to equation 1, zj; is the MAC of individual j at locus { € {0,1, 2}
21 and p; is the derived allele frequency at locus .

2 The second version (hereafter called F}y; ) is a modified version of Fyuni
223 which measures the ratio of averages and thus gives more weight to loci with
2 larger expected heterozygosity (i.e. with MAF close to 0.5). We are not aware
25 of other investigations using the ratio of averages estimator F{jy; in the context
26 of ID estimation.

Sy @ — (L4 2p)aj + 297
S 2m(l—pr)

227 We also used four Identical-by-descent (IBD) segments based F. We called
»s  runs of homozygosity (ROHs) with PLINK [27] and default parameters. We
20 also called Homozygous-by-descent (HBD) segments with BCFTools [24]. For
20 both methods, we selected ROHs or HBD segments based on their size: either
2z larger than 100Kb: FroH,poks @0d FHBD, g0k OF larger than 1Mb: Frown, . and
22 Fupp,ys - For both methods the inbreeding coefficients were simply estimated
213 as the fraction of genome falling within ROHs or HBD segments.

23 Finally, in the PEDIGREE population, we used the pedigree-based inbreed-
25 ing coefficient: Fpgp [31].

(4)

w —
Fony, =
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236 All inbreeding coefficients were estimated separately for each population of
2 the 1,000 Genomes Project (EAS, AFR, WORLD) and with population specific
23 SNPs and allelic frequencies (i.e. we removed monomorphic SNPs and estimated
20 allelic frequencies in all the three populations). Consequently the same individ-
20 ual might have different Fyenomic in the EAS and the WORLD population. This
21 influenced only the IBD segments-based inbreeding coefficients (Fron and Fupp
22 ) trivially but greatly influenced Fg (though the rank of inbreeding among indi-
23 viduals was conserved) and both Fynr (for which the rank of inbreeding among
24 individuals was not conserved) since their formulae rely on allelic frequencies
25 estimations. Comparison among the different inbreeding coefficients per popu-
26 lation can be found in supplementary material (Figures S2 - S5). More details
27 can be found in [35],

»s  Estimation of Inbreeding Depression: b

20 We estimated the strength of ID (hereafter defined as b) using two different mod-
0 els. In the first model, b was estimated as the slope of regression of phenotypes
51 on the different inbreeding coefficients with a classical linear model (LM):

bra = Cov(Y, F)/Var(F)

252 where Y is the vector of trait values and F' is the vector of individual in-
»3 breeding coefficients estimates.
254 In the second model, we estimate b as the fixed effect coefficient associated

255 with the inbreeding coefficient in the following linear mixed model (LMM):

Y=0X+w+te

256 where Y is the vector of trait values, X is a matrix with two columns, the
»7  first containing ones and the second the individual inbreeding coefficients, w is
258 the random component of the mixed model with w ~ N(0,7K), K being the
250 genomic relationship matrix (GRM) and 7 the additive variance component.
20 Finally, € is the individual residual variance and is defined as € ~ %1,,. From
1 this, b is estimated as follows:

brya = (X'VIX) I X'V Y
262 with V = 7K + 021, [9]. We compare three different GRMs we estimated
263 using all loci (no MAF filtering). The first mixed model included a GRM derived
26 from allele sharing [11], hereafter called LMMpg . We used the R Hierfstat
s package to estimate K and the R gaston package to estimate V' and b. We
%6 could not use GCTA software to run the mixed model for this GRM because
»7  its leading eigenvalue is negative which the Choleski decomposition algorithm
s used for matrix inversion in GCTA cannot handle (it requires a positive definite
20 matrix), while the Schur decomposition algorithm used in gaston can. We note
zo  that the standard GRM is not positive definite (one eigen value is 0), but the
m  matrix to invert in the mixed model is not the GRM itself but V = 7K + 021,
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a2 which becomes positive definite and can be inverted if the heritability is smaller
213 than one.

274 The second mixed model used the GCTA weighted GRM matrix [11, 29)].
s Similarly to F{fy; , this matrix uses the ratio of averages. For this model, we
s used GCTA and the R SNPrelate package to estimate V. We then used the R
o gaston package for estimating b with the LMM.

o7 Finally, the third mixed model used the GCTA unweighted GRM matrix [32]
ze  which (similarly to F{iyy ) utilizes the average of ratios and thus gives equal
20  weight to all loci. For this model, we used GCTA to estimate V. We then
2 estimated b with the LMM implemented in the R gaston package.

282 Note that the Average Information-Restricted Maximum Likelihood (AIREML)
23 fitting method we used in the LMM is an iterative procedure, and should re-
2 sult in unbiased estimates. In some cases, the model did not converge, and
25 gave highly biased b. For each scenario, regression model and population, the
26 number of replicates which did not converge can be found in tables S6-S8.

» Results

2 All the figures presented in the main text picture the scenario where alleles
o additive effect sizes and dominance coefficients are proportional to MAF and
20 where there is a directional effect of minor alleles (DEMA) (i.e. the ADD &
21 DOM & DEMA scenario from table S1) (see Figure S1). The results for the
22 other scenarios are shown and discussed in supplementary material (Figures
203 S8-S15, tables S2-S5).

» Simulated pedigrees

205 Figure 1 presents the inbreeding depression (ID) strength estimates (b, see the
26 methods section) for the different inbreeding coefficients (F'), with two regres-
207 sion models in the PEDIGREE populations. The first column shows b estimated
26 with the simple LM and the second column shows b estimated with LMM in-
20 cluding the allele sharing GRM as random factor (LMMyg ). The first row
300  shows results for the complete PEDIGREE population (n = 11,924). The sec-
sn  ond row shows results for a reduced sample size of the PEDIGREE population
32 (n = 2,500, meant to match the size of the 1IKG WORLD population) where
;3 sub-sampled individuals were chosen completely randomly. The third row also
;e shows results for a reduced sample size of the PEDIGREE population (n =
205 2,500) but these individuals were selected to represent the entire spectrum of
w6 inbreeding values. The violin plots show b estimates distributions among the
37 simulation replicates (100 replicates for the complete population, 10,000 repli-
28 cates for both sub-sampled populations). The solid dark grey line is the true
w0 strength of ID (b = -3). The dashed red line represents the absence of ID (b =
a0 0), indicating that ID was not detected in any replicate above this line. Root
au  mean square error (RMSE) values associated with both models and populations
sz are shown in table 1. Strikingly, in the PEDIGREE population, no F' resulted
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a3 in a accurate estimation of b with the simple LM, whatever the sample size
su  (Figure 1, panels A, C and E; Table 1). The inclusion of a GRM matrix as a
a5 random factor allowed for the correction of non-independence of observations
a6 and greatly improved b estimation (Figure 1, panels B, D, and F; table 1). In
sz the complete PEDIGREE population, we see little difference between the three
a1 GRMs we tested (1, panel B vs Figure S8, panels A and B; table 1): all F' yielded
a0 efficient (we use efficient to describe an estimate with low RMSE, thus which is
20 unbiased and has low variance) estimates of b when used inside a LMM, except
s for Fijyp that slightly overestimates the strength of ID while Fpgp slightly un-
w2 derestimates it. This suggests that large sample sizes (here 11,924 individuals)
323 combined with a mixed model allow efficient ID estimation regardless of the
s24  F used. The three mixed models, however, perform less efficiently when the
15 sample size is reduced, as we demonstrate with both subsampled PEDIGREE
»s populations (n = 2,500): many replicates produced estimates above zero for b
w27 (Figure 1, panels D and F; Figure S8, panels C to F; table 1). RMSE were
»2s  particularly large for Fpep , FuBDooks @A FROH,0okp With the mixed model
2o using the unweighted GCTA GRM matrix (LMMgera« ) (Figure S8, panel D;
s table 1). Additionally, increasing the variance of sub-sampled individuals’ F'
s (i.e. ranged sub-sampling) led to better estimates of b with reduced variance
s among replicates compared to random subsampling (Figure 1, panels D vs F:
s Figure S8, panels C vs E and D vs F, table 1).

s 1,000 Genomes Project

1 Figure 2 illustrates the estimates of ID strength (o) for the different inbreeding
s coefficients (F'), when using either a LM or a LMM for two subsets of the 1,000
ssw Genomes Project: EAS and AFR, as well as for the entire world population.
ss It has the same structure as Figure 1. Root mean square error (RMSE) values
30 associated with both models and populations can be found in table 2. Inter-
s estingly, we see little difference between LM and LMM and the different GRMs
s when there is no structure among the samples even with small sample sizes
s (EAS: Figure 2, panel A and B vs Figure S6, panels A and B; table 2; AFR:
a3 Figure 2, panel C and D vs Figure S6, panels C and D; table 2). Similarly to
s what was observed for the PEDIGREE population, when some structure exists
us  (population structure in the WORLD population compared to family structure
us in the PEDIGREE population), the simple LM fails to accurately estimate the
a7 strength of ID, regardless of the F' (Figure 2, panel E; table 2). In contrast to
us  the pedigree population showing no difference between the three GRMs (Figure
s 1 and Figure S6), the most efficient estimates of b are obtained only with the
5o LMMags model and with F{fy; in the highly structured WORLD population
1 (Figure 2, panel F vs Figure S7 panels E and F; table 2). In fact, the models
2 including the GCTAY and GCT A" matrices cannot efficiently estimate b with
33 any of the inbreeding coefficients: even though F{jy; is unbiased, the variance is
s« very large (panel F; Figure S7, table 2). In addition, several replicates did not
35 converge when both GCTAY and GCT A" models were used which was never
36 the case with the GRMuzs . Numbers of such replicates are indicated in the
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7 Figures’ legend and in supplementary tables S6-S8.

s Comparing inbreeding coefficients

0 With both the LM and LMM g models in the three populations from the 1,000
0  Genomes Project (EAS, AFR and WORLD, panels A - F) and for the LM in
1 the PEDIGREE population, Fag is consistently underestimating the strength
32 of ID, particularly when there is strong structure (WORLD: Figure 2, panels E
s and F). It is because DEMA is included in the model and strongly influences
s the quantification of ID by Fag . In the absence of a DEMA, Fags produces
w5 efficient estimates (Figures S10 - S13). In addition, Fag is sensitive to the
6 dominance effects being proportional to MAF but to a lesser extent and in the
s opposite direction (Figure S8 vs Figure S9). Concerning the other SNP-based
ss I, Fijyp Is constantly overestimating the strength of ID and is the most sensitive
0 to population structure: its variance is much larger compared to F{jy; in the
s structured WORLD population and with all models (Figure 2, panel F; table 2).
s Interestingly, the variance of F{jy; is affected only when allele effect sizes and/or
s dominance coefficients are proportional to MAF, but not by DEMA (Figures
sz S8-515). In contrast, F{jyy is the least sensitive to allele effect sizes or dominance
s coeflicients proportional to MAF and DEMA (Figures S8 — S15), which makes
ws it the most appropriate F' for estimating ID (Figure 2, panel F; table 2). Since
s the difference between Fify; and Fyjy; is the weight given to rare and common
s alleles, we conducted the same analyses (including the re-estimation of both
s  F and GRMs estimation) on the WORLD population but excluding loci with
s MAF > 0.05 and showed that there is no difference between Fijy; and Fijy;
;0  when rare alleles are removed (Figure S16). Concerning the F' calculated from
s ROHs and HBD segments, there is not much difference between PLINK and
sz BCFTools except for the variance among b estimates, which is slightly smaller
33 with BCFTools compared to PLINK (Figure 2, panels A - F; table 2). In addition,
s« focusing on recent inbreeding by including only large segments (here larger than
s 1MB) yielded better results in the WORLD population (Figure 2, panel F).
6 Since BCFTools is a model-based HBD approach, there is no mandatory length
sr  requirement. In light of this, we also estimated Fypp based on HBD segments
s without any size restrictions, and the results are similar to those obtained using
389 FHBDIOOKB (Figure 817)

» Comparing genetic relatedness matrices

s1 Since we identified F{jy; as the best inbreeding coefficient, Figure 3 contrasts the
s2  four different models for this coefficient in the four populations: each panel cor-
503 responds to one population. As mentioned above, there is almost no difference
s among the different GRM matrices in the extremely large complete PEDIGREE
35 population (Figure 3, panel A; table 1) and between any of the models in the
w6 two homogeneous populations (EAS and AFR) (Figure 3, panels B and C; table
w7 2). However, in the highly structured WORLD population, LMMag gives the
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ws most accurate result due to its smaller variance and RMSE (Figure 3, panel D;
0 table 2).

w0 Distribution of additive and dominance effects

a1 We found a difference between the three linear mixed models only because the
a2 scenario presented in the main text includes effect sizes and dominance coeffi-
w3 cients proportional to causal markers” MAF as well as DEMA. When none of
ws  these three parameters are included, there is little difference between the three
ws linear mixed models (Figure S8, panels B, F, J, N vs panels C, G, K, O vs panels
ws D, H, L, P; tables S2-S5). Additional simulations were conducted without addi-
w7 tive and dominance coefficients proportional to loci’s MAF and DEMA to assess
w08 their impact on ID detection. The individual and pairwise effects of additive
w9 and dominance coefficients being proportional to MAF and DEMA (the other
a0 scenarios of table S1) are explored and discussed in details in supplementary
a1 material and Figures S8-S15.

a2 Finally, we also investigated i) the effect of the LDMS stratification method
a3 proposed by Yengo [33] (Figures S8-S15) but found that it only improves results
as  with the simple LM and ii) the effect of using intermediate frequencies causal
as  loci (Figure S18) which reduced the variance in b estimates for all inbreeding
as  coefficients.

+ Discussion

as By analyzing the phenotypes of a large simulated pedigreed polygamous popu-
a0 lation with high family structure as well as subsets of the 1000 genomes project
w0 [28], we demonstrated that, despite population or family structure, inbreeding
a1 depression estimates can be accurately measured if the data are analyzed with
22 a mixed model using the genomic relationships among individuals as random
w23 effect. In comparison to the other genomic relationship matrices (GRMs), the
¢ one based on allele sharing provides the most consistent and accurate results,
a5 especially for smaller sample sizes and samples with a high family or population
a6 structure. And, among the several inbreeding estimators tested, F{fy; proved
w27 the most reliable to quantify inbreeding depression.

428 We observed trivial differences among the different models when there is
»e  no population structure (i.e. in the EAS and AFR populations). However, as
a0 soon as there is some structure (the WORLD and POLYPED populations) the
a classical linear model (LM) completely fails to estimate b regardless of the in-
a2 breeding coefficient used. This result is concordant with Yengo et al. (2017)
a3 [33] where the authors quantified ID using a simple linear model and demon-
s strated that Fgom (whose properties are very similar to Fag ), F{jy; and two
a5 different Frop were sensitive to population structure. As for the comparison
w6 of three linear mixed models (LMM), they perform equally when there is no
w7 population structure (EAS and AFR) or very large sample sizes (11,924 indi-
w8 viduals from the complete PEDIGREE population). Although samples of this
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a0 size are common for research on humans, they will seldom be found in wild
wo  populations. We therefore subsampled the PEDIGREE population to 2,500 in-
wa  dividuals in order to investigate the effect of a smaller sample size. We used
w2 two types of sub-sampling: i) random sub-sampling where individuals were cho-
w3 sen completely randomly and ii) ranged sub-sampling where individuals where
ws chosen to maximise the range of F' in the sampled population. We stress that
us  what we consider a small sample size (2,500 individuals) will not be found in
ws  many wild species, particularly for endangered populations, where monitoring
w7 inbreeding and inbreeding depression are critical. As expected, when we sub-
ws  sampled individuals from the PEDIGREE population, RMSE values associated
we  with b estimation increased slightly for both LMMags and LMMgeraw mixed
w0 models and we failed to detect ID in some replicates. Accordingly, even with
st 2,500 individuals, we lack power and several thousands of individuals would
2 be required to detect ID efficiently as Keller et al. and Caballero et al. pre-
3 viously pointed out [16, 4]. With the LMMgoraw mixed model, all inbreed-
s ing coefficients but Fag and Fyny had convergence issues, suggesting that the
s LMMgagora« mixed model is the least robust of the three mixed models. As
w6 expected, randomly sub-sampling individuals lead to a larger variance of b esti-
ss7 mates compared to the ranged sub-sampling scheme, indicating that maximizing
sss the variance of samples’ F' improves the estimation of b, although it is not ob-
a0 vious how such sampling could be done in non monitored natural populations.
w0  When we add strong population structure in addition to the small sample size
w1 (2,504 individuals from the highly structured WORLD population), we observe
w2 striking differences between the three different GRMs. The linear mixed model
w3 including the allele sharing based GRM (LMMag ) resulted in the most efficient
s estimations of b. In addition, the mixed models with both GRMgcTaw and
ws GRMgcoraw did not converge for high percentages of replicates (compared to
ws 0% for LMMyg ) emphasizing that LMMyg is the best model for quantifying
w7 inbreeding depression in highly structured populations (although the most used
ws  GRM is currently the one estimated from GCTA). This is because the allele shar-
w0 ing based GRM matrix is a better estimator of kinship compared to both GCTA
w0 matrices [11, 30]. Indeed what the GRMag estimates is the actual kinship in the
an population, based on how many alleles individuals share. In contrast, what both
a2 GRMgceraw and GRMgcraus estimate is a combination of individual kinship,
a3 their mean kinship with the other individuals and the overal mean kinship in
a2 the population (see eq. 3 in Goudet et al. [30]). Consequently, since the kinship
a5 itself is better estimated with GRMyg , the non-independence of observations
ws  (and thus the population structure) is better accounted for with LMM g which
ar leads to better b estimates. Importantly, the inclusion of a GRM in the ID esti-
s mation model is not limited to simple linear models. Even though we used only
w9 linear models in this study, any type of generalized linear model can incorporate
s a GRM as a random factor. Consequently this method can be applied to any
s trait distribution. Furthermore, by including the GRM-based random factor,
s the non-independence of observations is better accounted for than by including
w3 the population as a random factor, and no prior knowledge of the population
s structure is required.
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w Comparing F

w6 Concerning the different inbreeding coefficients, we found F{jy; to be the best
w7 F for quantifying inbreeding depression. Indeed, F{jy; was the only coefficient
s we tested which was not sensitive to either additive and dominance effect sizes
s being proportional to MAF or DEMA resulting in the least biased estimation
w0 of b. On the contrary, we found that F{jy; was influenced by the dominance
s effect sizes being proportional to MAF and by population structure. Since Fjyy
w2 gives equal weight to all loci, the rare allele associated with large dominance
203 coefficients add noise in the estimation of b. Similarly, when there is population
s structure, rare alleles which have strong influence on Fijy; are likely to be pri-
w5 vate alleles which will strongly bias population-specific allelic frequencies and
w6 eventually F{jy; estimation. Importantly, Fijy; performed as well as Fify; when
w7 we filtered on MAF > 0.05 for F' and all GRMs estimation. This is because
ws  F{yp uses the average of ratios, which results in loci with small MAF strongly
w0 influencing the outcome. When these rare loci are filtered out, the estimated F
so is no longer biased. This explains why Yengo et al. [33] found that F{fy; was
s the best F' for quantifying inbreeding depression with an homogeneous subset of
s2  the UK bio bank dataset: they filtered on M AF > 0.05 leading to F{jy; estima-
3 tion not being influenced by rare alleles with strong additive and/or dominance
soe  effect sizes. Concerning Fag , we found that it was very sensitive to DEMA.
sos  This result is also concordant with Yengo et al. [33] who found that Fyowm
ss  (with properties very similar to Fag ) was sensitive to DEMA. In this paper the
sor  authors explain that this sensitivity is due to Fyom (and thus Fag ) correlating
sos  strongly with minor allelic count which will create a spurious association with
soo inbreeding depression in the presence of DEMA. However, Fag resulted in the
s most accurate estimates of b when DEMA was not included in the model, sug-
su  gesting that it is the best F' to estimate inbreeding for neutral regions. Finally,
sz we found that ROHs and HBD segments based F', namely Froy and Fyupp , per-
sis formed poorly: underestimating the strength of inbreeding depression (positive
s b) or displaying very large variance among replicates. This result is in contra-
sis  diction with Kardos et al. [13, 14] and Nietlisbach et al. [25] who found that
sis Frog and Fypp were better at quantifying inbreeding depression compared to
sz SNPs-independent based F. However, Alemu et al. [1] and Caballero et al. [5]
sis  showed the best F' actually depends on the history of the population. Indeed,
siv  they showed that Frop and Fupp and to a lesser extent Fyon were better at
s0 quantifying homozygosity at loci with common alleles. On the contrary, Fijy;
s was better at quantifying homozygosity at rare alleles. Alemu et al. [1] and
s» Caballero et al. [5] propose that, on the one hand, in populations with low
s3  effective sizes, selection is weaker and deleterious alleles may be able to reach
s intermediate frequencies as a result of drift. Therefore both Frog and Fugp
s (and Fyom in their analyses) should perform better in such populations. In
s our study, the standard scenario (with no ADD, no DOM and no DEMA) mim-
so7  ics what happens in such small populations and we found that Fron , Fusp
sz and Fag (which has similar properties to Fyom ) performed better than Fiy;
20 (which is the Fyny they tested) in the highly structured WORLD population
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s and to a lesser extent in the family structured PEDIGREE population. With
s homogeneous populations, we do not observe any difference between these in-
s breeding coefficients. Nevertheless, this is consistent with Alemu [1] results, as
s they used families which consequently create structure. On the other hand, in
s populations with a large effective size, selection maintains deleterious alleles at
s low frequencies which explains why Yengo et al. (2017) found that Fyny was
s the best F with the large UK biobank dataset and this is consistent with what
57 we have found with the ADD & DOM & DEMA scenario which mimics what
ss  happens in populations with large effective sizes.

s Conclusion

se0  In this paper, we showed that the more accurate method for estimating inbreed-
sa0  ing depression is to use a mixed model with an allele-sharing-based relatedness
s« matrix as a random component but Fify; as the inbreeding coeflicient to predict
s inbreeding depression. The most commonly used GRM (GRMgcTav ) results
s in biased and highly variable estimates of b in structured populations. We stress
=5 that even if the results are greatly improved by using the allele-sharing GRM and
see  F{JNp » the variance among replicates is still large and no inbreeding depression
s7 1s detected in several replicates (13 > 0) in the highly structured WORLD popu-
sis  lation as well as in the small and slightly admixed AFR population. Therefore,
sa0  detecting efficiently inbreeding depression of the magnitude commonly found
ss0 and that we simulated requires very large sample sizes with several thousand
ss1  individuals, particularly in structured populations. Unfortunately, this might
2 be hardly feasible for wild and/or endangered populations.
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Figure 1: Comparison of the estimation of inbreeding depression
strength (b) among different F' estimates and two models in the PEDIGREE
population. Each column represents a regression model. The first column de-
picts the simple linear regression (LM) (panels A, C and E) and the second
column depicts the linear mixed model with the allele sharing relatedness ma-
trix as a random component (LMMg ) (panels B, D and F). The first row
represents the complete simulated population (11,924 individuals, panels A and
B). The second row shows the random subsampling (2,500 individuals, panels C
and D). The third row shows the ranged subsampling (2,500 individuals, panels
E and F). Inbreeding estimates presented in this graph are Fpgp , Fas , Fint
y F[lfNI y FHBDIOOKB y FROHlOOKB s FHBDlMB and finally FROH1MB . For panels A
and B, violin plots show the distribution of the inbreeding depression strength
estimates (b) among the simulated 100 replicates. For panels C to F, violin plots
represent the distribution of the inbreeding depression strength estimates (b) for
the 10,000 simulated and sub-sampling replicates (100 sub-sampling replicates
for each of the 100 simulation replicates). The solid dark grey line is the true
strength of ID (b = -3). The dashed red line represents the absence of ID (b =
0), meaning that we failed to detect ID in any replicate above this line. Note
that all panels are in log10 scale.
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Model Population Frep Fas FGNI FIIfNI FHBDlOOKB FROHlOOKB Fupp,vg  FROH us
LM PEDIGREE (complete) 34.82 22.71  10.17 4.17 19.93 22.22 174 17.44
LMM: AS PEDIGREE (complete) 1.62 1.27 1.89 0.87 1.07 1.12 1.11 1.11
LMM: GCTA WE PEDIGREE (complete) 1.62 1.27 1.89 0.87 1.07 1.12 1.11 1.11
LMM: GCTA UN PEDIGREE (complete) 1.58 1.28 1.85 0.88 1.08 1.12 1.08 1.08
LM PEDIGREE (random sub) 33.84 22.20 10.41 4.47 19.53 21.72 17.24 17.28
LMM: AS PEDIGREE (random sub) 4.01 2.97 3.82 1.83 2.57 2.73 2.56 2.57
LMM: GCTA WE PEDIGREE (randorn sub) 4.01 2.97 3.82 1.83 2.57 2.73 2.56 2.57
LMM: GCTA UN PEDIGREE (random sub) > 1,000 2.75 3.44 1.78 > 1,000 > 1,000 > 1,000 > 1,000
LM PEDIGREE (ranged sub) 15.22 11.04 3.46 1.61 9.58 10.52 8.13 8.15
LMM: AS PEDIGREE (ranged sub) 2.09 1.82 2.13 1.26 1.61 1.67 1.58 1.58
LMM: GCTA WE PEDIGREE (ranged sub) 2.09 1.82 2.13 1.26 1.61 1.67 1.58 1.58
LMM: GCTA UN PEDIGREE (ranged sub) > 1,000 1.69 205 1.24 > 1,000 > 1,000 1.53 1.54

Table 1: RMSE on b estimate in the PEDIGREE population These values are for the complete ADD & DOM & DEMA

scenario. See tables S2-S5 for the other scenarios
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Figure 2: Comparison of the estimation of inbreeding depression
strength (b) among different F estimates and models in four different pop-
ulations. Each column represents a regression model. The first column depicts
the simple linear regression (LM) (panels A, C and E) and the second column
depicts the linear mixed model with the allele sharing relatedness matrix as a
random component (LMMag ) (panels B, D and F). The three rows correspond
to the three populations from the 1,000 Genomes project: EAS on panels A and
B, AFR on panels C and D and WORLD on panels E and F. Inbreeding esti-
mates presented are FAS y FSNI y FI?NI s FHBDIODKB y FROH]OOKB s FHBDIMB and
finally Frou,ys - Violin plots represent the distribution of the inbreeding de-
pression strength estimates (b) among the 100 simulation replicates. The solid
dark grey line is the true strength of ID (b = -3). The dashed red line represents
the absence of ID (b = 0), meaning that we failed to detect ID in any replicate
above this line. Note that all panels are in logi( scale.
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Model Population Fas FIQJLNI FIlJUNI FHBDlOOKB FROHmoKB Fuppivs  FROH s
LM EAS 5.55 4.9 4.86 7.14 7.93 6.19 10.58
LMM: AS EAS 5.67 4.68 4.64 7.41 8.22 6.12 10.39
LMM: GCTA WE EAS 5.67 4.68 4.64 7.28 8.06 6.11 10.39
LMM: GCTA UN EAS 548 4.74 4.71 7.1 7.87 6.18 10.57
LM AFR 5.93 4.81 4.81 6.03 7.21 7.21 13.12
LMM: AS AFR 5.15 4.07 4.07 5.46 6.2 7.15 13.1
LMM: GCTA WE AFR 5.15 4.07 4.07 > 1,000 > 1,000 7.16 13.1
LMM: GCTA UN AFR 5.78 4.42 4.42 5.92 6.93 7.2 13.11
LM WORLD 32.91 142.95 62.21 67.42 59.15 107.67 169.73
LMM: AS WORLD 8.63 8.34 4.17 9.15 10.97 8.78 14.6
LMM: GCTA WE WORLD 9.84 > 1,000 > 1,000 11.19 13.92 > 1,000 > 1,000
LMM: GCTA UN WORLD 18.18 > 1,000 > 1,000 27.52 26.91 > 1,000 > 1,000

Table 2: RMSE on b estimate in the three 1,000 Genomes Project populations:

EAS, AFR and WORLD These

values are for the complete ADD & DOM & DEMA scenario. See tables S2-S5 for other scenarios
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Figure 3: Comparison of the inbreeding depression strength estimates
(b) with FJy; in the four populations with four different models. The four
models are: i) the simple linear regression (LM), ii) the linear mixed model with
the allele sharing relatedness matrix as a random factor, iii) the linear mixed
model with the weighted GCTA relatedness matrix as a random factor and iv) the
linear mixed model with the unweighted GCTA relatedness matrix as a random
factor. Panel A the simulated PEDIGREE population, panel B depicts the
EAS population, panel C the AFR population and finally panel D the WORLD
population. Note that all panels are in log;g scale. Also note that LMM did not
converge for some replicates (yielding estimated b values above 1000 or below -
1000, not shown in the graph). Percentages of replicates which did not converge:
panel D (WORLD): 21% for GRMgcTaw ; 20% for GRMgcTav -
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Model Population Fegp Fas  Fini Fini Fusbiooxs  FROMieoxs  FHBDiws  FROH s
LM PEDIGREE (complete) 34.82 22.71 10.17 417 19.93 22.22 174 17.44
LMM: AS PEDIGREE (complete) 1.62 1.27 189 087 1.07 1.12 1.11 1.11
LMM: GCTA WE PEDIGREE (complete) 1.62 1.27 189 087 1.07 1.12 i 11T
LMM: GCTA UN PEDIGREE (complete) 1.58 1.28 1.85 0.88 1.08 1.12 1.08 1.08
LM PEDIGREE (random sub) 33.84 2220 1041 4.47 19.53 21.72 17.24 17.28
LMM: AS PEDIGREE (random sub) 4.01 297 3.82 183 2.57 2.73 2.56 2.57
LMM: GCTA WE PEDIGREE (random sub) 4.01 297 3.82 1.83 2.57 2.73 2.56 2.57
LMM: GCTA UN PEDIGREE (random sub) > 1,000 2.75 344 1.78 > 1,000 > 1,000 > 1,000 > 1,000
LM PEDIGREE (ranged sub)  15.22 11.04 346 1.61 9.58 10.52 8.13 8.15
LMM: AS PEDIGREE (ranged sub)  2.09 1.82 213 126 1.61 1.67 1.58 1.58
LMM: GCTA WE PEDIGREE (ranged sub)  2.09 1.82 213 126 1.61 1.67 1.58 1.58
LMM: GCTA UN PEDIGREE (ranged sub) > 1,000 1.69 205 124 > 1,000 > 1,000 1.53 1.54
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Model POPUla‘tion Fas F{]LNI F[t]yNI FI"]-BDIUOKB FROHJOGKB FHBD}.MB FROHlMB

LM EAS 5.0 4.9 4.86 7.14 7.93 6.19 10.58
LMM: AS EAS 5.67 4.68 4.64 7.41 8.22 6.12 10.39
LMM: GCTA WE EAS 5.67 4.68 4.64 7.28 8.06 6.11 10.39
LMM: GCTA UN EAS 548 4.74 4.71 T 7.87 6.18 10.57
LM AFR 5.93 4.1 4.81 6.03 7.21 7.21 13.12
LMM: AS AFR 5.15 4.07 4.07 2.46 6.2 7.15 13.1
LMM: GCTA WE AFR 5.15 4.07 4.07 > 1,000 > 1,000 7.16 13.1
LMM: GCTA UN AFR 5.78 4.42 4.42 9.92 6.93 7.2 13.11
LM WORLD 3291 14295 62.21 67.42 59.15 107.67 169.73
LMM: AS WORLD 8.63 8.34 4.17 9.15 10.97 8.78 14.6
LMM: GCTA WE WORLD 9.84 > 1,000 > 1,000 11.19 13.92 > 1,000 > 1,000

LMM: GCTA UN WORLD 18.18 > 1,000 > 1,000 27.52 26.91 > 1,000 > 1,000
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