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Summary

‘Kingdom-level’ branches are being added to the tree of eukaryotes at a rate approaching one
per year, with no signs of slowing downl-4. Some are completely new discoveries, while others
are morphologically unusual protists that were previously described but lacked molecular data.
For example, Hemimastigophora are predatory protists with two rows of flagella that were
known since the 19t century, but proved to represent a new deep-branching eukaryote lineage
when phylogenomic analyses were conducted2. Meteora sporadica Hausmann et al. 20025 is a
protist with a unique morphology and motility; cells glide over substrates along a long axis of
anterior and posterior projections, and have a pair of lateral ‘arms’ that swing back and forth.
Originally, Meteora was described by light microscopy only, from a short-term enrichment of
deep-sea sediment. A small subunit ribosomal RNA (SSU rRNA) sequence was reported recently,
but the phylogenetic placement of Meteora remained unresolved®. Here, we investigated two
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cultivated Meteora sporadica isolates in detail. Transmission electron microscopy showed that
the anterior-posterior projections are supported by microtubules originating from a cluster of
subnuclear MTOCs. Likewise, the arms are supported by microtubules, and neither have a
flagellar axoneme-like structure. Sequencing the mitochondrial genome showed this to be
amongst the most gene-rich known, outside jakobids. Remarkably, phylogenomic analyses of
254 nuclear protein-coding genes robustly support a close relationship with Hemimastigophora.
Our study suggests that Meteora and Hemimastigophora together represent a morphologically
diverse ‘supergroup’, and thus are important for resolving the tree of eukaryote life and early
eukaryote evolution.

Results and Discussion

Morphology

The two Meteora sporadica isolates, SRT610 (Fig 1A-B) and LBC3 (Fig 1C-F; Fig S1A-F), have a
similar morphology. The cell body is 4.4 + 0.6 pm long and 3.6 * 0.4 um wide in isolate SRT610
(n=22) and 4.3 £ 0.9 um by 3.2 +/- 0.7 um in isolate LBC3 (n=24). The anterior projection is 8.1
*+ 1.7 um long in SRT610 (n=22) and 13.0 * 4.5 pm in LBC3 (n=24), while the posterior is 6.7 *
1.6 pm and 8.4 * 2.9 um, respectively. There are typically two lateral ‘arms’ of length 2.7 + 0.5
um or 2.6 # 0.9 um emerging from the cell body, but some individuals have more (Fig 1D,
Supplementary Video 2). The cell glides along the surface via its long axis (Supplementary Video
1). The arms normally swing regularly back and forth, but gliding persists when the arms are
static or absent (Supplementary Video 3), indicating that this motility does not depend on arm
movement. Detached floating cells bend and squirm, but appear to lack directed motility. There
are numerous small granules along the arms, as well as the long axis (Fig 1), most of which
correspond to extrusomes (see below). These granules move back and forth along both arms
and the long axis (Supplementary Video 1), as well as between them (Fig S1D). Occasionally,
protrusions up to 3 pm long can extend rapidly from both arms and the long axis (Fig S1D).

Transmission electron microscopy (TEM) examination of the cell body shows the vesicular
nucleus, food vacuoles containing bacteria, and mitochondria (or possibly one ramified
mitochondrion) located to the dorsal side of the nucleus (Fig 2A). Mitochondria have flat cristae
(Fig S2B). Adjacent to the ventral side of the nucleus (Fig 24, Fig S2C) is a flat cluster of about
seven (5-8) microtubule organising centres (MTOCs), which are hexagonally arranged, mostly
as two staggered rows (Fig 2B). Each MTOC is a cylindrical structure approximately 160 nm long
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(mean 158 + 18 nm; n=9) and 120 nm wide (116 * 56 nm; n=13) with a dense-staining core 100
nm long (100 * 13 nm) and 55 nm (56 * 7 nm) wide (Fig 2A, F, G; Fig S2E, M). At least some
MTOCs are anchored to the nuclear envelope (Fig S2 C, D). Emerging microtubules form both
longitudinal and transverse bundles (Fig 2B; Fig S2E, G, L-M). The arrangement of microtubules
in longitudinal bundles is irregular in cross section (Fig 2C). Transverse microtubules converge
at the base of arms, then extend into them (Fig S2G). The cell body, longitudinal extensions and
arms contain numerous ovoid extrusomes approximately 240 nm long (243 + 16 nm; n=11) and
180 nm wide (178 £ 20 nm; n=11), composed of mostly of light-staining material but with a dark
staining cylinder at the base (Fig 2D). Some vacuoles, including food vacuoles, are coated by
fibrillar material on the inside (Fig 2E).

Meteora feeds by contacting bacterial prey with an extrusome (Fig S1C, Supplementary Video 4),
typically on one of the arms. The bacterium becomes attached, is gradually moved to the base
of the arm, then is phagocytosed once at the cell body proper. A structure inferred to be a
discharged extrusome was observed by TEM in most vacuoles with discernible prey material
(Fig 2E, Fig S2I-K). Most microbial eukaryotes with extrusomes use them for capturing
eukaryotic prey or for defense’8; it is notable that Meteora uses extrusomes to capture
prokaryotes, which is much rarer?.

The cells divide across the long axis (Fig 1F): the cell stops in place while the cell body proper
moves slightly up and down for several minutes (Fig S1E) until visible cytokinesis begins (Fig
S1F); the daughter cells pinch off and each re-establishes the missing end of the long axis in
approximately 5 minutes.

Most unicellular organisms that glide across surfaces, eating bacteria, are flagellates, and these
often glide on one of their flagella. They are highly abundant and found widely distributed across
the tree of eukaryotes: examples include phagotrophic euglenids?, glissomonads??,
mantamonads??, and apusomonads?3. The ecology and behaviour of Meteora closely resembles
that of bacterivorous gliding flagellates; however, Meteora does not have flagella, nor obvious
derivatives. Thus, it defies assignment to one of the general ecological categories of eukaryotic
microorganisms.

rRNA analyses

An SSU rRNA gene phylogeny of 192 taxa broadly representing eukaryote diversity (Fig S3A)
agreed with a similar recent analysis © in failing to resolve the phylogenetic position of Meteora.
A similarly broad dataset of concatenated SSU+LSU rDNA likewise did not resolve the placement
of Meteora with any support, nor place it in any major group of eukaryotes (Fig S3B).

A phylogenetic placement analysis of environmental sequences from publicly available datasets
(see methods) using RAXML-EPA identified almost no candidate relatives of Meteora. This
analysis assigned a likelihood-weight ratio of 0.7 to a marine environmental sequence
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(asv_053_06994, Biomarks), however this in turn is 97% identical to uncultured marine
hydrothermal vent sediment clone AT4-68 (AF530543.1); this latter sequence sometimes
resolves as sister to Meteora in SSU rRNA gene phylogenies, but without support (e.g. 20%
bootstrap support in our analysis). A sequence from a neotropical soils metatranscriptome 14
was identified with a likelihood-weight ratio of only 0.56 and with just 86% sequence identity
to Meteora sporadica (LBC3) - thus, its identity remains inconclusive. No other environmental
sequence hits were found. Thus, Meteora appears to represent a distinct phylogenetic entity in
the current molecular tree of eukaryotes.

Phylogenomics

To better place Meteora in the eukaryote tree of life, we generated a transcriptome from each of
our isolates. We then assembled a 254-gene dataset, representing a broad sampling of
eukaryotic diversity through 108 taxa, reduced to 66 for computationally-intensive analyses.
The phylogenomic marker genes were well represented in the sequenced transcriptomes
(236/254 genes for both), which additionally had relatively high BUSCO scores (231 and 211
complete/255, SRT610 and LBC3, respectively; see methods). Phylogenies inferred for both the
108- and 66-taxon datasets broadly agree with other eukaryote-wide phylogenetic studies2415,
for example recovering Sar, Obazoa, Amorphea (i.e. Obazoa+Amoebozoa) and Discoba with full
support (Fig 3, Fig S4A). We did not, however, recover Telonemia as the sister group to Sar (i.e.
the TSAR group)!>. Remarkably, Meteora did not fall into any of the well-established
supergroups, but instead formed a maximally-supported clade with Hemimastigophora, a
phylogenetically isolated taxon recently-proposed to represent a new eukaryote supergroup?.
The heterotrophic flagellate Ancoracysta (representing a different newly proposed supergroup,
Provoral®) branches as sister to this Meteora-Hemimastigophora clade, though with weaker
support (85% PMSF bootstrap support; 97% UFBOOT support; posterior probability 0.99)

To validate the robustness of the Meteora+Hemimastigophora clade, we examined multiple
variations on the 66-taxon dataset that test for potential sources of phylogenetic error. Analysis
of a dataset that excluded three branches identified as long-branching outliers (“nLB”) still
returned maximal support for the Meteora+Hemimastigophora clade (Fig S4B). Recoding the
amino acid data into a reduced alphabet of 4 classes based on (i) the pre-defined “SR4”
categorisation 17, or (ii) custom classes optimised to minimise across-taxon compositional bias
in this dataset (minmax-chisq)!8, both robustly supported Meteora+Hemimastigophora (SR4
and MinMaxChisq: 100% and 99% UFBOOT support, respectively; Fig S4C-D). By contrast, these
same analyses did not recover Ancoracysta+Meteora+Hemimastigophora and placed
Ancoracysta elsewhere entirely, as sister to ‘Diaphoretickes’ (SR4, 92% UFBOOT) or to
haptophytes (minmax-chisq, 97% UFBOOT). Incidentally, the 66-taxon dataset without
Ancoracysta (noAnco) recovered the Meteora+Hemimastigophora relationship with full support
(Fig S4E).
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Removal of the fastest evolving sites in 10% increments (FSR analysis; Fig. S4G) showed
Meteora+Hemimastigophora as maximally supported until 30% sites remaining, whereupon
support dropped to ~80% UFBOOT; the widely-accepted Discoba and CRuMs clades behave
similarly. Conversely, support for Ancoracysta+Meteora+Hemimastigophora was lower
throughout (generally <95% UFBOOT although 98% at 50% sites remaining) and dropped
precipitously when 30% of the sites remained.

Random subsampling of 50% of the genes in 5 jackknife replicates maintained robust support
for Meteora+Hemimastigophora but not for Ancoracysta+Meteora+Hemimastigophora (Fig
S4H). The gene concordance factor (gCF1?) for Meteora+Hemimastigophora (8.65%) was
similar, or higher, than that of several accepted supergroups like Sar (9%), CRuMs (4.35%) and
Amorphea (1.2%). By contrast, Ancoracysta+Meteora+Hemimastigophora was recovered in
<1% of the single gene trees (gCF 0.87%; Fig S4F). We infer that the phylogenetic signal for the
Meteora+Hemimastigophora relationship is broadly distributed across genes.

Overall, the Meteora+Hemimastigophora association remained robust through tests for biases
from subsets of genes and sites, and, notably, those for compositional bias (i.e. the recoding
analyses). On the other hand, Ancoracysta+Meteora+Hemimastigophora was poorly supported
in these tests, especially for compositional bias. The position of Provora, represented here by
Ancoracysta, remains unresolved by our study, as in prior examinations 420.

The Meteora mitochondrial genome is gene-rich

We completely sequenced the mitochondrial genome of Meteora sporadica LBC3 (Met mt-
genome). The genome is a circular mapping molecule of 94.9 kbp (94,877 bp) with a G+C content
of 28.8%. The Met mt-genome encodes a total of 79 genes (38 duplicated) including 50 protein-
coding genes, 2 functionally unidentified open reading frames (ORFs), and 27 RNA genes (rnl,
rns, rrn5 and 24 tRNAs) (Fig 4A). The tRNAs recognize 44 codons that together code for all 20
amino acids, but no stop-codon-recognizing tRNAs were found. No recognizable mobile
elements, introns, or split-genes were detected in the genome. The genome contains a pair of
inverted repeats of 33.0 kbp (32,998 bp) that are separated by unique regions of 2,143 bp and
26,739 bp. The shorter unique region encodes ccmF bounded by two tRNAs, while the larger one
has 25 protein-coding genes and 14 tRNAs.

The Met mt-genome is among the most gene-rich yet documented, with only jakobids (60-66
genes), Microheliella maris (53 genes), nibblerids (51 genes), and Diphylleia rotans (51 genes)
encoding larger gene sets 16.21-24 The 24 unique genes for the respiratory chain complexes in the
Met mt-genome is the most complete mt-encoded respiratory complex gene set, together with
Microheliella, outside of jakobids 21.2225(Fig 4B). This includes atp3, the first such gene recorded
outside of Discoba 21.22,26-30,
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Other rare genes in the Met mt-genome include tufA and cox11. These have previously only been
seen together in the mitochondrial genomes of some Discoba (Tsukubamonas globosa and
jakobids), the centrohelid Marophrys sp., and Microheliella maris, a protist which branches basal
to Cryptista 253132, The mitochondrial genomes of Diphylleia rotans, a member of CRuMs, and
members of the provoran taxon Nibbleromonas encode only cox11 1624, while the amoebozoan
Vermamoeba vermiformis mt-genome encodes only tufA (GenBank accession number:
GU828005; unpublished).

We detected a full set of type I cytochrome ¢ maturase genes (ccmABCF), which, in many
eukaryotes, has been functionally replaced by the eukaryote-specific nuclear-encoded type III
system, holocytochrome ¢ synthase (HCCS) 33. System I is presumed to be ancestral to all
eukaryotes and has been replaced over time by HCCS, but it is unclear whether this happened as
a single event or multiple times 313334,

Conclusions

Phylogenomic analyses convincingly show Meteora as a sister group to Hemimastigophora. This
seems remarkable based on their morphology and basic life history. As shown here, Meteora
cells are completely aflagellate bacterivores, whereas hemimastigotes are multi-flagellated cells
that prey on microbial eukaryotes 23>, Both exhibit symmetry, which is relatively uncommon
among unicellular eukaryotes; however, hemimastigotes have diagonal symmetry and are
essentially a constant shape, whereas Meteora is predominantly bilaterally symmetrical and is
highly plastic, breaking and re-establishing symmetry in the arrangement of the arms. While
these groups seem to have little in common, established eukaryotic supergroups like Sar and
CRuMs also encompass a bewildering variety of morphologies and lifestyles. Sar encompasses
fungal-like, flagellated, and amoeboid forms, and even large macroscopic algae3¢ . Although
CRuMs is represented by fewer than 10 described species, these range from small filose amoebae
to bacterivorous nanoflagellates to larger eukaryovorous flagellates3”.

This finding resonates with the high rate of discovery of novel eukaryotes, and indeed entire new
phylum- and supergroup-level lineages, over recent years1241520 As with all other recently
discovered major lineages!, Meteora is a free-living heterotrophic protist, underlining the
importance of pursuing this category of organism in efforts to catalogue deeper eukaryote
diversity. It also illustrates that the first known representative of a major clade (i.e.
hemimastigotes in Meteora+Hemimastigophora) need not reflect the morphology or biology of
the rest of the group. In particular, environmental lineages (i.e. groups known only from
molecular data) may not necessarily be similar to their morphologically-characterised relatives.
Both the remarkable cellular architecture and unexpected phylogenetic placement of Meteora
sporadica suggest that the staggering diversity of microbial eukaryotes is far from fully
understood, and will continue to surprise us.
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Extended METHODS

Isolation and cultivation

Samples were obtained from subtidal /intertidal sediments. For SRT610, a sample from Nikadori
fishing port, Okinawa, Japan (24° 49' 10.52", 125° 16' 47.77") was enriched in ESM medium at
20°C. An individual cell was picked with a drawn-out glass micropipette and placed in ESM
medium. For LBC3, a sample from Playa la Boca, Cuba (21° 35' 24.99", -77° 5' 35.33"; kindly
provided by Claire Burnard), was enriched in seawater + LB medium at room temperature
(21°C). An individual cell on a flake of biofilm was picked by micropipette and placed in 0.1%
LB in autoclaved natural seawater medium. Both isolates were subsequently maintained in
tissue culture flasks with unidentified co-cultured bacteria at 20°C (SRT610) or 16°C (LBC3),
and transferred every 2 weeks.

Light microscopy

For SRT610, aliquots of culture were mounted on slides with coverslips and imaged on Zeiss
Axio imager A2 microscope (Carl Zeiss AG) with an Olympus DP74 CCD camera (Olympus), while
aliquots of LBC3 culture were incubated on sealed slide preparations overnight and imaged on
Zeiss AxioVert 200M with an AxioCam ICc5 camera (Carl Zeiss AG). Downstream image
processing and analysis was done in FIJI3839.

Transmission electron microscopy

Culture flasks of isolate SRT610 were scraped and removed cells were collected by
centrifugation (1000 g, 15 min). The concentrated material was mounted on copper grids and
plunged rapidly into liquid propane. The frozen pellets were then plunged into liquid nitrogen
for several seconds, then placed in acetone with 2% osmium tetroxide at -85 °C for 48 h. The
fixing solution was then kept at =20 °C for 2 h and at -4 °C for 2 h. The pellets were rinsed with
acetone three times, and were then embedded in agar low viscosity resin R1078 (Agar Scientific
Ltd, Stansted, England). The resin was polymerized at 60 °C for 12 h. Ultrathin sections were
prepared on a Reichert Ultracut S ultramicrotome (Leica, Vienna, Austria), double stained with
2% uranyl acetate and lead citrate, and observed using a Hitachi H-7650 electron microscope
(Hitachi High-Technologies Corp.) equipped with a Veleta TEM CCD camera (Olympus).
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SSU rDNA phylogenetics

DNA was extracted from SRT610 using the DNeasy Plant Mini kit (Qiagen), and from LBC3 using
the DNeasy Blood & Tissue kit (Qiagen). The SSU rDNA of SRT610 was amplified by PCR using
forward primer 18F (5 -AAC CTG GTT GAT CCT GCC AG-3") and reverse primer 18R (5 -CYG CAG
GTT CAC CTA CGG AA-37) at 55°C annealing temperature for 35 cycles. The SSU rDNA of LBC3
was obtained by semi-nested PCR, with initial amplification using forward primer EukA (5'-
AACCTGGTTGATCCTGCCAGT-3") and reverse primer 1498R (5 -CACCTACGGAAACCTTGTTA-3")
at 63°C annealing temperature for 35 cycles, followed by secondary amplification with forward
primer 82F (5 -GAAACTGCGAATGGCTC-3") and reverse primer 1498R at 63°C for 25 cycles. The
sequences were obtained by Sanger sequencing, with some PCR product from LBC3 being gel-
extracted prior to sequencing (QIAquick Gel Extraction kit; Qiagen).

The Meteora sequences were added to a global eukaryotic SSU alignment (derived from the
reference SSU dataset for the environmental analysis in Lax et al. 20182) via profile alignment in
SeaView#041, The alignment was further augmented for taxon sampling with additional
environmental sequences from NCBI and Jamy et al. (2020)%2, corrected manually, then masked
via gblocks*3 followed by manual correction to yield a 1187 site alignment across 173 taxa. This
was subject to phylogenetic analyses in RAXML* (raxmlHPC-PTHREADS-SSE3 v. 8.2.6) under
the GTR+I'+] model with 50 starting trees and 1000 non-parametric bootstraps.

Combined SSU and LSU rDNA phylogenetics

Source alignments for SSU and LSU rDNA from Jamy et al. (2020)42 were expanded for broader
taxon selection using publicly available data in NCBI nt, or extracted from published
transcriptome and genome assemblies using barrnap4s> v. 0.9. Meteora LBC3 LSU rDNA was
extracted from the transcriptome using barrnap and concatenated with the SSU rDNA
mentioned above. Site selection was performed on each alignment using g-blocks 43 in SeaView4?
followed by manual curation, then the SSU and LSU rDNA alignments were concatenated for a
total of 3051 sites. The phylogeny was inferred via RAxXML4* (raxmlHPC-PTHREADS-SSE3 v.
8.2.6) under the GTR+I'+] model with 50 starting trees and 1000 non-parametric bootstraps.

Environmental sequence analysis

We searched 14 153 628 publicly available V4 and V9 sequences from TARA Oceans (V9)46,
VAMPS (V9)47 , MetaPR2 (“Biomarks”) (V4)4849, deep sea sediments (V9)>9, Malaspina (V4)>1,
neotropicall* and temperate>2 soil metatranscriptomes (V4), and the Cariaco basin oxic-anoxic
gradient (V4)>3 for sequences very similar to Meteora. The V4 and V9 regions of the Meteora
LBC3 SSU rDNA were extracted and used to query the respective databases using BLASTn with
a sequence identity threshold of 80%. The collected sequences were then aligned using PaPaRa>4
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against a 1187 site, 173 taxon reference SSU rDNA alignment derived from Lax et al. (2018)2,
manually curated through MUSCLE#! profile alignments in SeaView4?, and augmented for taxon
sampling with additional environmental sequences from NCBI and Jamy et al. (2020)#2 (Fig S3A).
Phylogenetic placements were inferred via RAXML-EPAS5. Output was analysed in R using
ggtree>® and filtered with a likelihood-weight ratio threshold of 0.5.

Transcriptome assembly

For RNA extraction, SRT610 cells grown in culture flasks were dislodged by scraping and
collected by centrifugation at 3000 g for 10 minutes at room temperature. Total RNA was
extracted using TRIzol (ThermoFisher) following the manufacturer’s instructions. The cDNA
library construction and paired-end sequencing (125 bp per read) with Illumina HiSeq2500
were performed at Eurofins Genomics (Tokyo, Japan). Read quality was inspected using
FastQC>7, adaptors clipped and reads trimmed with Trimmomatic v.0.30°8 (LEADING:3
TRAILING:3 SLIDINGWINDOW:4:15 CROP:160 MINLEN:36), and assembly performed in
Trinity>? v2.2.0.

For LBC3, RNA was extracted from culture grown in 0.1% LB in sterile seawater on Petri plates
(15 cm diameter), scraped and spun 30 min at 2500 g and 16°C, followed by adding 15 mL TRIzol
(ThermoFisher) to 5 mL of resuspended pellet. Then, 3 mL of chloroform was added and phase
separation obtained by centrifugation for 30 min at 4500 g at 4°C. The aqueous phase was
removed and further treated as per manufacturer’s instructions. The RNA was further purified
with a phenol:chloroform extraction and treated with DNase. Quantity was assessed by Qubit
(ThermoFisher). The sequencing library was prepared using the NEBNext Poly(A) mRNA
Magnetic Isolation Module (NEB #E7490; New England Biolabs), and sequenced on Illumina
MiSeq with 2 x 250(V2 kit) bp reads, indexed with [llumina adaptors i703 and i503 (multiplexed
with an undescribed metamonad with adaptors i704 and i504). Read quality was inspected
using FastQC57, adaptors clipped and reads trimmed with Trimmomatic>8 v.0.30 (LEADING:3
TRAILING:3 SLIDINGWINDOW:4:15 CROP:160 MINLEN:36) and assembled with Trinity5°
v.2.0.2. To remove most cross-contamination from multiplexed samples, we used a custom script
(M. Kolisko, Institute of Parasitology Biology Centre, Czech Academy of Sciences, Ceské
Budéjovice) and then reassembled in Trinity.

Transcriptome completeness was assessed by BUSCO¢° v3.0.2 using eukaryote_odb10 dataset.
This yielded 231/255 complete BUSCOs (13 fragmented) for SRT610 and 211/255 complete
BUSCOs (24 fragmented) for LBC3. Of the 254 phylogenomic marker genes (see below), 236
from each isolate were present in the final alignment, with 90.2% and 88.5% site occupancy for
SRT610 and LBC3, respectively.
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Phylogenomic dataset assembly

The 351 gene phylogenomic dataset from Lax et al. (2018)? (based originally on Brown et al.
201837) was expanded by adding the two Meteora isolates, plus selected subsequently
sequenced taxa including Ancoracysta?9, telonemids?®, and the three Rhodelphis transcriptomes#
via a custom pipeline3’. Telonemids, Rhodelphis, and Meteora were added (and
Hemimastigophora re-added) using a custom script that enables multiple candidate genes per
transcriptome to be selected and added at once, up to 4 in this case. After addition, each gene
was re-aligned with MAFFT-linsi®!, trimmed with BMGE®2 (-h 0.5, -g 0.2, -m BLOSUM30), and
phylogenies inferred under the LG4X+I' model®3 in IQ-TREE v1.5.5%4, then manually inspected
for paralogues, contaminants, lateral gene transfers, and signs of deep paralogies within the base
dataset. Sequences marked for deletion were removed using a custom script. Where deep
paralogies were detected that affected the whole gene tree, we discarded the gene from the
dataset, resulting in a final phylogenomic dataset of 254 genes (listing on Datadryad). The single
gene alignments were filtered using PREQUAL®> with -filterthresh 0.95 (0.28% masked), then
trimmed with BMGE (-h 0.5, -g 0.2, -m BLOSUM30) and concatenated, for a final alignment of
70471 sites. The taxa were subsampled to produce a 108-taxon dataset aiming to broadly
represent eukaryote diversity, and a 66-taxon dataset for computationally intensive analyses
(see listing on Datadryad). In both cases, phylogenetically redundant taxa were removed, with
retention of higher coverage and more slowly evolving taxa where possible.

Phylogenomic analyses

An initial phylogeny was inferred from the concatenated 254-gene, 108-taxon dataset in 1Q-
TREE v1.5.564 using the LG+C20+F+I' model, with support assessed via UFBOOT bootstrap
approximation (1000 replicates) in IQ-TREE®6. Next, a phylogeny was inferred from the
subsampled 66-taxon dataset under the LG+C60+F+I' model, then used as a guide tree for the 60
custom profile site-heterogeneous mixture model LG+MAM60+T%7 (hereafter referred to as
“MAM60”) using the program MAMMalL®8, with support values generated via UFBOOT bootstrap
approximation in IQ-TREE®. MAM60 was preferred over C60 by AIC (7324035 - 7302542 =
21493) and BIC (7325959 - 7314353 = 11606). A site-heterogeneous mixture model
approximation method, PMSF®°, was used to generate 200 non-parametric bootstrap trees using
the MAMG60 tree as the guide tree. A Bayesian phylogeny was inferred using the CAT+GTR model
in Phylobayes”? v. 1.8 via 4 chains, with 1.1 x 10# cycles and a burn-in of 500. Three chains
converged, but the unconverged chain (1) was identical in all respects directly relevant to the
placement of Meteora (compare Fig S41 and Fig S4J).

The Hemimastigophora+Meteora relationship was interrogated further via downstream
analyses based on the 66-taxon dataset. A step-wise removal of fastest evolving sites (Fast Site
Removal - FSR) was done in 10% increments using Phylofisher v.0.1.2071 and corresponding
phylogenies inferred under MAM60 with UFBOOT support. Support values for relationships of
interest were summarised via a custom script. A ‘no long-branching taxa’ (nLB) alignment was
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produced by determining the outlier long branches via a custom script (L. Eme; CNRS at
Université Paris-Sud, France), in this case Tetrahymena, Diplonema, and Bodo. This dataset, along
with one with Ancoracysta removed (noAnco) was used to infer a phylogeny under the MAM60
model.

To test whether the Hemimastigophora+Meteora relationship was the result of a few outlier
genes, two analyses were conducted: gene jack-knifing and gene concordance factor (gCF19)
calculation. 5 gene-jack-knifing replicate alignments of 50% of the genes (following
recommendations for adequate statistical power in Brown et al. 201837) were generated using
random_sample_iteration.py utility in Phylofisher”l, and corresponding phylogenies inferred
under MAM60 in 1Q-TREE with statistical support from 1000 UFBOOT replicates. Single gene
trees were estimated under MAM60 in IQ-TREE v1.5.5 for each of the 254 individual gene
alignments and gCF calculated in IQ-TREE v2.072.

To test for biases arising from sequence composition, two recoding approaches were used. The
Susko and Roger set of 4 amino acid classes (SR417) was used to reduce the amino acid alphabet.
Additionally, a set of 4 amino acid classes that minimises compositional differences between
sequences was determined via minmax-chisq!8. In both cases, these schemes were used to
recode the amino acid alignment as well as the 60 category MAMMaL model definition via
custom scripts (see DataDryad), and then a phylogeny was inferred under the
GTR+[4binCustomModel]+R6 model in IQ-TREE 2.0, with support values inferred from 1000
UFBOOT replicates. Trees were formatted using the Ete3 toolkit”3.

DNA extraction for mitochondrial genome sequencing

Isolate LBC3 was grown in K media’4 with 0.3% LB at room temperature for 3-4 days until most
bacteria were consumed and the culture dish was dense with cells. Meteora cells from two litres
of culture (50 150 mm x 15 mm Petri dishes) were harvested by careful decanting of 90% of the
volume. The cells were collected by scraping and pooled in 50 mL Falcon tubes, then pelleted by
centrifugation in a swing-out rotor at 2000 g, 10 min, 20°C. The pelleted cells were resuspended
in artificial sterile seawater (ASW) and re-pelleted by centrifugation as above in a 15 mL Falcon
tube. The cell pellet was resuspended in 4 mL of ASW and 1 mL aliquots were pelleted for 2 min
at 16000 g, 4°C. The dry pellets were frozen at -80°C or used directly for long-read DNA
extraction.

Cells for short-read sequencing were harvested from two 175 cm? culture flasks grown for 3
weeks at room temperature. The cultures were harvested by first carefully decanting 90% of the
volume and then dislodged using a cell scraper. The cells were pelleted as described in the
previous paragraph.

DNA for long-read and short-read sequencing was purified using the MagAttract HMW gDNA kit
(Qiagen) using the tissue lysis protocol. DNA for long-read sequencing was additionally purified
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on the GenomicTip G/20 column (Qiagen) by the manufacturer's protocol. Sample quality and
quantity were assessed by agarose gel electrophoresis, a nano spectrophotometer and the
Qubit™ dsDNA BR Assay Kit (Thermo Fisher Scientific).

Short-read DNA sequencing

DNA for Illumina short-read sequencing was submitted to Génome Québec for shotgun-library
construction using the Illumina TruSeq LT kit. The libraries were sequenced on an Illumina
HiSeq X using 150 bp paired reads. [llumina reads were quality checked using FastQC v.0.11.5
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc) and trimmed using
Trimmomatic v0.3675. Short-reads derived from the mitochondrial genome were recruited by
mapping reads using Bowtie27¢ against a circular mapping mitochondrial genome contig
assembled using default settings in Abruijn v1.077.

Long-read DNA sequencing

Long-read data was generated in two sequencing runs. Oxford Nanopore libraries were
prepared with ligation sequencing kits SQK-LSK109 and SQK-LSK110 (sequencing runs 1 and 2,
respectively) and sequenced on MIN106D flow cells (R9.4.1). Base-calling was performed using
Guppy v5.0.11 using the SUP (super high accuracy) model. Adapters and chimeric reads were
removed using Porechop v0.2.4 (default settings with --discard_middle option).

Long reads were assembled with Flye v2.9 in metagenome mode (-meta flag)7879. The contig
containing the mitochondrial genome was identified by mapping previously identified
mitochondrial short reads to the long-read assembly with HISAT2 v2.2.180. Repetitive regions in
this contig were collapsed - to generate a single circular contig with resolved repeats, NGMLR
v0.2.7 81 was used to identify the long reads that mapped only to the mitochondrial contig, and
a new assembly was generated using those reads with Flye v2.9 under default settings.

The assembly was polished using two rounds of long-read polishing with Medaka v1.7.2
followed by one round of short-read polishing with Pilon v1.24 82, Short reads were then mapped
to the polished assembly (HISATZ v2.2.1) and the few remaining sequencing errors were
identified using a genome browser (Tablet v1.21.02.08) 8 and manually corrected.

MFannot v1.36 (https://megasun.bch.umontreal.ca/apps/mfannot/) was used for gene

prediction and annotation using the standard genetic code. Annotations and gene boundaries
were inspected in Tablet, and any missing annotations were added manually.
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Figure captions

Figure 1. DIC light micrographs of Meteora sporadica isolates SRT610 (A-B) and LBC3 (C-F).
A-B) General views of two individuals. C) One cell at different time points showing typical positions
of lateral ‘arms’. A partially ingested bacterium can be seen anterior of the cell body proper (barbed
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arrowhead). D) Individual with three lateral arms and a large cytoplasmic extension (arrow). E)
Individual with two small extensions, one from the long axis (single arrowhead) and another from a
lateral arm (double arrowhead). More images of this cell in Fig S1D. F) Late cell division, with two
individuals (asterisks) separating along the longitudinal axis. Scale bar: A-F (in A) 10 pm.

Figure 2. Ultrastructure of Meteora sporadica isolate SRT610 as imaged by transmission electron
microscopy. A) Section through the cell body with the dorsal side to top of image. A cluster of
microtubule organising centres (MTOCs, barbed arrowheads) is attached on the ventral surface of the
nucleus (N). The longitudinal bundle of microtubules (L) passes to the left and right from the MTOCs.
Mitochondrial sections (M) and food vacuoles (FV) can be seen. B) Cross section of the cell body and
cluster of MTOCs (barbed arrowhead), longitudinal bundle (L) extending to the left and right of the
image. Transverse microtubules (T, arrowhead) emerge from the MTOCs and are seen here extending
to the bottom of the image. For the adjacent section in the series of the same cell, see Fig S2F. C) Cross
section through the longitudinal bundle of microtubules. D) Section through part of a lateral arm
showing microtubules (arrowheads) and two extrusomes (Ex). E) Discharged extrusome (Ex) attached
to the surface of a prey bacterium inside a food vacuole (FV). Note coating inside the vesicle (black
arrowhead), and the longitudinal bundle (L). More images of discharged extrusomes can be seen in
FigS2I-K. F) Detail of MTOC (barbed arrowheads) attachment to the nucleus (N), and emerging
longitudinal microtubules, from Fig 2A. G) Cross-section through four MTOCs showing a radial
emergence of microtubules (arrowheads). H) Diagram of the cell structure. Scale bars: A-B (in A) 500
nm, C) 250 nm, D-E (in D) 500 nm, F-G (in F) 500 nm.

Figure 3. Phylogenetic placement of Meteora among eukaryotes. Maximum likelihood
phylogeny inferred from 70471 sites across 254 genes over 66 taxa under the LG+MAM60+T
model. Support values on branches show posterior mean site frequency bootstrap support
(PMSF; 200 true replicates), UFBOOT support (1000 replicates), and Bayesian posterior
probabilities (PP) under the CAT+GTR model, in that order, left to right or top to bottom. Filled
circles indicate full support (100%, 100%, 1). Bars on the right indicate % coverage by gene
(above) and by site (below).

Figure 4. A gene-rich mitochondrial genome in Meteora. A) The map of the Meteora sporadica
LBC3 mitochondrial genome with genes color-coded as to their function and the GC% indicated
in grey. Genes on the outside of circle are transcribed in the clockwise direction. The inverted
repeats are indicated in dark grey segments. B) Protein-coding capacity of mitochondrial
genomes across eukaryotes. Presence and absence of corresponding genes from selected
eukaryotes are shown by blue or white boxes respectively. The presence and absence of genes
are derived from 24 and updated with additional lineages. Phylogenetic relationships between
eukaryotes are based on but showing the eukaryotic root as a polytomy 162584 The Meteora
branch is indicated in red. Abbreviations: Al - Alveolata, St - Stramenopila, Rh - Rhizaria, Ce -
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Centrohelea, Ha - Haptophyta, Cr - Pancryptista, Re - Rhodophyta (‘Reds’), Gl - Glaucophyta, Ch
- Chlorophyta, Pr - Provora, Cm - CRuMs, Op - Opisthokonta, Am - Amoebozoa, Ma -
Malawimonadida, Di - Discoba. CI-CV - electron transport chain complex [-V.

Figure S1. Additional light micrographs of Meteora sporadica isolate LBC3. A) General view of
four cells of Meteora sporadica isolate LBC3, showing their direction of movement (arrows), and
variety in lateral ‘arm’ morphology. B) Collision between two cells (arrow shows direction of
movement) showing the bending of the long axis. C) Feeding on a bacterium. A granule on an arm
plays a role in contacting and attaching the bacterium (arrowhead), which is then moved towards the
cell body proper and phagocytosed there. D) Series showing the behaviour of cytoskeletal elements
and surface granules. Protrusions can jump between the long axis and the arms across the surface of
the cell body proper (black arrowhead). Regions of the axes associated with surface granules can
protrude outwards, sometimes rapidly (white barbed arrow), and later fuse with the long axis (not
shown). E) Cell in early division, arms retracted, as the cell body proper, containing the nucleus (n) in
mitosis, gradually moves up and down along the long axis. F) Later stage of another dividing cell.
Cells separate along the long axis and gradually begin to reconstitute arms starting from this stage.
Scalebars: 10 um. Videos corresponding to B and C are in supplementary Videos 1 and 4, respectively.
Videos for A, E and F are available on DataDryad.

Figure S2. Additional transmission electron micrographs showing ultrastructure of Meteora
sporadica isolate SRT610. A) Nucleus (N) with two pores visible (asterisks). B) Mitochondrial (M)
section showing cristae in longitudinal (left) and transverse (right) sections. C) MTOCs (barbed
arrowhead) associated with the nucleus (N), with cross sections of perpendicularly-oriented
microtubules emerging nearby (black arrowhead). D) Another section through an MTOC (barbed
arrowhead) detailing its association with the nuclear (N) envelope, as well as an oblique section
through the longitudinal microtubular bundle (L). E) A small cluster of MTOCs (barbed arrowheads)
with the emerging longitudinal bundle (L) and transverse (T) microtubules. F) General view of the cell
body with the longitudinal bundle (L) as well as transverse microtubules (T, arrowhead) emerging
from the cluster of MTOCs (barbed arrowhead). Adjacent section in series containing Fig 2B. G) Series
(70 nm steps) following transverse microtubules (T) from the cluster of MTOCs to the start of the
lateral arm (A). H) A cluster of 7 MTOCs, two of them in grazing section (barbed arrowheads). I1-K)
Detail of discharged extrusomes (Ex) inside food vacuoles (FV) containing bacteria. The extrusome
inJis in cross section. L) series following the longitudinal bundle of microtubules through two MTOCs
of a cluster. Populations of microtubules emerging in the adjacent section are indicated by a white arc.
Connective material can be seen between some microtubules in the bundle. M) Longitudinal section
of the longitudinal bundle and MTOC:s in a different cell, to the same scale as L, as a reference. Scale
bars: A, B-C (in B), D-E (in D), F, G, H, I-K (in J) all 500 nm, L) 250 nm, M) 500 nm.
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Figure S3. Position of Meteora sporadica in rDNA phylogenies. A) SSU rDNA phylogeny
representing eukaryote-wide diversity, for use as the reference tree for environmental sequence
placement analyses. Alignment contains 1187 sites across 173 taxa. Tree inferred under the GTR+I'+I
model with 1000 non-parametric bootstrap replicates. Meteora sequences highlighted in red. B) SSU-
LSU rDNA phylogeny inferred from 3051 sites in final concatenated alignment, across 137 taxa, under
the GTR+I'+l model with 1000 non-parametric bootstrap replicates. Meteora sequences are
highlighted in red.

Figure S4. Additional/supplementary phylogenomic analyses. A) 108 taxon phylogeny
inferred from 70471 sites across a concatenated 254-gene alignment under the LG+C20+F+T
model, representing major eukaryotic groups. Node support values represent % UFBOOT
support from 1000 replicates. Filled circles indicate full support. Bars on the right represent
coverage across the alignment as percent genes (top) and percent sites (bottom). B) No long-
branching taxa (nLB) phylogeny, core 66-taxon dataset with three taxa removed, inferred from
a concatenated 254-gene alignment under the LG+MAM60+I" model, support values from 1000
UFBOOT replicates. Filled circles indicate full support. C) Phylogeny inferred from SR4-recoded
254-gene alignment derived from core 66-taxon dataset, under the LG+MAM60+I" model,
support values from 1000 UFBOOT replicates. Filled circles indicate full support. D) Phylogeny
inferred from MinMax-Chisq-recoded 254-gene alignment derived from core 66-taxon dataset,
under the LG+MAM60+I" model, support values from 1000 UFBOOT replicates. Filled circles
indicate full support. E) No Ancoracysta (nAnco) phylogeny; core 66-taxon dataset with
Ancoracysta removed, inferred from a concatenated 254-gene alignment under the
LG+MAM60+I" model, support values from 1000 UFBOOT replicates. Filled circles indicate full
support. F) 66-taxon topology (see Fig 3) with gene concordance factor values indicated on
branches as percentages in blue. G) Fast-site removal (FSR) profile of selected groupings with
step-wise removal in 10% increments. Plot traces UFBOOT support (1000 replicates) under the
LG+MAM60+I" model. H) Support for selected groupings following 50% gene jackknifing (i.e.,
50% of genes randomly removed) across 5 replicates. (trees in datadryad). I) 66-taxon
PhyloBayes CAT+GTR consensus phylogeny of chains 2-4, following 1.1 x 104 cycles with a burn-
in of 500. Support values show posterior probabilities. Filled circles indicate full support. J) 66-
taxon PhyloBayes CAT+GTR phylogeny of chain 1, following 1.1 x 104 cycles with a burn-in of
500. Support values show posterior probabilities. Filled circles indicate full support.
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Supplementary video descriptions

Supplementary Video S1. Real time video of Meteora sporadica isolate LBC3 gliding, followed
by a video of one cell gliding into another and the long axis projection bending. Note motion of
the ‘arms’.

Supplementary Video S2. Real time video of a specimen of Meteora sporadica isolate LBC3
with a more complex arrangement of projections.

Supplementary Video S3. Real time video of an ‘armless’ specimen of Meteora sporadica
isolate LBC3 gliding, showing that the gliding motility does not depend on the ‘arm’ motion.

Supplementary Video S4. Real time video of a Meteora sporadica isolate LBC3 cell picking up
a food bacterium; 2x sped up video of several cells feeding; real time video of a cell, already
carrying a prey bacterium, firing an extrusome at another bacterium (unsuccessfully).
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833 Figures

834

835  Figure 1. DIC light micrographs of Meteora sporadica isolates SRT610 (A-B) and LBC3 (C-F).
836  A-B) General views of two individuals. C) One cell at different time points showing typical positions
837  of lateral arms. A partially ingested bacterium can be seen anterior of the cell body proper (barbed
838 arrowhead). D) Individual with three lateral arms and a large cytoplasmic extension (arrow). E)
839 Individual with two small extensions, one from the long axis (single arrowhead) and another from a
840 lateral arm (double arrowhead). More images of this cell in Fig S1D. F) Late cell division, with two
841 individuals (asterisks) separating along the longitudinal axis. Scale bar: A-F (in A) 10 pum.
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Figure 2. Ultrastructure of Meteora sporadica isolate SRT610 as imaged by transmission
electron microscopy. A) Section through the cell body with the dorsal side to top of image. A
cluster of microtubule organising centres (MTOCs, barbed arrowheads) is attached on the
ventral surface of the nucleus (N). The longitudinal bundle of microtubules (L) passes to the left
and right from the MTOCs. Mitochondrial sections (M) and food vacuoles (FV) can be seen. B)
Cross section of the cell body and cluster of MTOCs (barbed arrowhead), longitudinal bundle (L)
extending to the left and right of the image. Transverse microtubules (T, arrowhead) emerge
from the MTOCs and are seen here extending to the bottom of the image. For the adjacent section
in the series of the same cell, see Fig S2F. C) Cross section through the longitudinal bundle of
microtubules. D) Section through part of a lateral arm showing microtubules (arrowheads) and
two extrusomes (Ex). E) Discharged extrusome (Ex) attached to the surface of a prey bacterium
inside a food vacuole (FV). Note coating inside the vesicle (black arrowhead), and the
longitudinal bundle (L). More images of discharged extrusomes can be seen in FigS21-K. F) Detail
of MTOC (barbed arrowheads) attachment to the nucleus (N), and emerging longitudinal
microtubules, from Fig 2A. G) Cross-section through four MTOCs showing a radial emergence of
microtubules (arrowheads). H) Diagram of the cell structure. Scale bars: A-B (in A) 500 nm, C)
250 nm, D-E (in D) 500 nm, F-G (in F) 500 nm.
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864  Figure 3: Phylogenetic placement of Meteora among eukaryotes. Maximum likelihood
865  phylogeny inferred from 70471 sites across 254 genes over 66 taxa under the LG+MAM60+T
866  model. Support values on branches show posterior mean site frequency bootstrap support
867  (PMSF; 200 true replicates), UFBOOT support (1000 replicates), and Bayesian posterior
868  probabilities (PP) under the CAT+GTR model, in that order, left to right or top to bottom. Filled
869 circles indicate full support (100%, 100%, 1). Bars on the right indicate % coverage by gene
870  (above) and by site (below).
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Figure 4: A gene-rich mitochondrial genome in Meteora. A) The map of the Meteora
sporadica LBC3 mitochondrial genome with genes color-coded as to their function and the GC%
indicated in grey. Genes on the outside of circle are transcribed in the clockwise direction. The
inverted repeats are indicated in dark grey segments. B) Protein-coding capacity of
mitochondrial genomes across eukaryotes. Presence and absence of corresponding genes from
selected eukaryotes are shown by blue or white boxes respectively. The presence and absence
of genes are derived from 24 and updated with additional lineages. Phylogenetic relationships
between eukaryotes are based on but showing the eukaryotic root as a polytomy 162584 The
Meteora branch is indicated in red. Abbreviations: Al - Alveolata, St - Stramenopila, Rh - Rhizaria,
Ce - Centrohelea, Ha - Haptophyta, Cr - Pancryptista, Re - Rhodophyta (‘Reds’), Gl - Glaucophyta,
Ch - Chlorophyta, Pr - Provora, Cm - CRuMs, Op - Opisthokonta, Am - Amoebozoa, Ma -
Malawimonadida, Di - Discoba. CI-CV - electron transport chain complex I-V.
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Figure S1. Additional light micrographs of Meteora sporadica isolate LBC3. [see ‘figure
captions’ above for full legend]
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Figure S2. Additional transmission electron micrographs showing ultrastructure of
Meteora sporadica isolate SRT610. [see ‘figure captions’ above for full legend]
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897

898  Figure S3. Position of Meteora sporadica in rDNA phylogenies. A) SSU rDNA phylogeny
899 representing eukaryote-wide diversity, for use as the reference tree for environmental

900 sequence placement analyses. Alignment contains 1187 sites across 173 taxa. Tree inferred
901 under the GTR+I'+I model with 1000 non-parametric bootstrap replicates. Meteora sequences
902  highlighted in red.
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artheions PIPC20 PRUIDARG

Figure S3 [cont.]. Position of Meteora sporadica in rDNA phylogenies. B) SSU-LSU rDNA
phylogeny inferred from 3051 sites in final concatenated alignment, across 137 taxa, under the
GTR+I'+I model with 1000 non-parametric bootstrap replicates. Meteora sequences are highlighted
in red.
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Figure S4: Additional /supplementary phylogenomic analyses. A) 108 taxon phylogeny
inferred from 70471 sites across a concatenated 254-gene alignment under the LG+C20+F+T
model, representing major eukaryotic groups. Node support values represent % UFBOOT
support from 1000 replicates. Filled circles indicate full support. Bars on the right represent
coverage across the alignment as percent genes (top) and percent sites (bottom).
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Figure S4 [cont.]: Additional/supplementary phylogenomic analyses. B) No long-
branching taxa (nLB) phylogeny, core 66-taxon dataset with three taxa removed, inferred from
a concatenated 254-gene alignment under the LG+MAM60+T" model, support values from 1000
UFBOOT replicates. Filled circles indicate full support.
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920  Figure S4 [cont.]: Additional /supplementary phylogenomic analyses. C) Phylogeny
921 inferred from SR4-recoded 254-gene alignment derived from core 66-taxon dataset, under the

922 LG+MAMG60+I model, support values from 1000 UFBOOT replicates. Filled circles indicate full
923  support.
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Figure S4 [cont.]: Additional /supplementary phylogenomic analyses. D) Phylogeny
inferred from MinMax-Chisq-recoded 254-gene alignment derived from core 66-taxon dataset,
under the LG+MAM60+T model, support values from 1000 UFBOOT replicates. Filled circles
indicate full support.
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931 Figure S4 [cont.]: Additional /supplementary phylogenomic analyses. E) No Ancoracysta
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Figure S4 [cont.]: Additional /supplementary phylogenomic analyses. G) Fast-site removal
(FSR) profile of selected groupings with step-wise removal in 10% increments. Plot traces
UFBOOT support (1000 replicates) under the LG+MAM60+I" model. H) Support for selected
groupings following 50% gene jackknifing (i.e., 50% of genes randomly removed) across 5
replicates. (trees in datadryad).
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Figure S4 [cont.]: Additional /supplementary phylogenomic analyses. ) 66-taxon
PhyloBayes CAT+GTR consensus phylogeny of chains 2-4, following 1.1 x 104 cycles with a
burn-in of 500. Support values show posterior probabilities. Filled circles indicate full support.
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Figure S4 [cont.]: Additional /supplementary phylogenomic analyses. |) 66-taxon
PhyloBayes CAT+GTR phylogeny of chain 1, following 1.1 x 104 cycles with a burn-in of 500.
Support values show posterior probabilities. Filled circles indicate full support.
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