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ABSTRACT 
Cancer genomes are rife with genetic variants; one key outcome of this variation is gain-of-
cysteine, which is the most frequently acquired amino acid due to missense variants in COSMIC. 
Acquired cysteines are both driver mutations and sites targeted by precision therapies. However, 
despite their ubiquity, nearly all acquired cysteines remain uncharacterized. Here, we pair 
cysteine chemoproteomics—a technique that enables proteome-wide pinpointing of functional, 
redox sensitive, and potentially druggable residues—with genomics to reveal the hidden 
landscape of cysteine acquisition. For both cancer and healthy genomes, we find that cysteine 
acquisition is a ubiquitous consequence of genetic variation that is further elevated in the context 
of decreased DNA repair. Our chemoproteogenomics platform integrates chemoproteomic, whole 
exome, and RNA-seq data, with a customized 2-stage false discovery rate (FDR) error controlled 
proteomic search, further enhanced with a user-friendly FragPipe interface. Integration of CADD 
predictions of deleteriousness revealed marked enrichment for likely damaging variants that result 
in acquisition of cysteine. By deploying chemoproteogenomics across eleven cell lines, we identify 
116 gain-of-cysteines, of which 10 were liganded by electrophilic druglike molecules. Reference 
cysteines proximal to missense variants were also found to be pervasive, 791 in total, supporting 
heretofore untapped opportunities for proteoform-specific chemical probe development 
campaigns. As chemoproteogenomics is further distinguished by sample-matched combinatorial 
variant databases and compatible with redox proteomics and small molecule screening, we 
expect widespread utility in guiding proteoform-specific biology and therapeutic discovery. 
 
INTRODUCTION 
The average human genome is rife with sequence variation and differs from the reference at 
roughly 3.5 million sites1. This profound genetic variation gives rise to human diversity and 
disease. While the fraction of single nucleotide variants (SNVs) that occur in protein-coding make 
up a small fraction of all known variants, most known disease-causing mutations are found in 
protein coding sequences. Nearly all (>98%) of nonsynonymous protein-coding SNVs are 
missense variants that result in the substitution of single amino acids2. There are over 2 million 
coding mutations that have been identified in human cancers (Catalogue of Somatic Mutations 
[COSMIC] database), of which >90% are missense variants3,4. However, only a tiny fraction of 
these genetic variants (~3,400) have been identified as putative missense driver mutations5 that 
confer selective growth advantages to cancer cells with the remaining mutations acting as 
“passengers.”  

Quite surprisingly given the relative rarity of cysteine (2.3% of all residues in a human 
reference proteome)6, cysteine is the most commonly acquired amino acid due to somatic 
mutations in human cancers7. Given the unique chemistry of the cysteine thiol, including its 
nucleophilicity and sensitivity to oxidative stress, a subset of these residues almost 
unquestionably have a substantial impact on protein function. Exemplifying this paradigm, a 
number of driver mutations are gained cysteines, including Gly12Cys KRAS  Tyr279Cys SHP2, 
Ser249Cys FGFR, and Arg132Cys IDH18–12. A likely reason for the ubiquity of cysteine acquisition 
is the comparative instability of CpG motifs; C-T transitions are nearly ten times more common 
than other missense mutations in cancer13, and these transitions should favor gain-of-cysteine 
codons. 

 Due to its nucleophilicity and sensitivity to alkylation, cysteine residues have emerged as 
attractive sites to target with chemical probes. Covalent compounds can access small and poorly 
defined binding sites and can efficiently block high-affinity interactions (e.g. protein-protein 
interactions) or compete with high concentrations of endogenous biomolecules (e.g. ATP). There 
are numerous examples of cysteine-reactive clinical candidates and drugs, including the 
blockbuster covalent kinase inhibitors (e g. Afatinib and Ibrutinib14–16 ) and covalent compound 
that react with the Gly12Cys mutated oncogenic form of the GTPase KRAS (e.g. ARS-1620 and 
sotorasib9,17–19), a protein previously thought to be undruggable.  
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Mass spectrometry-based chemical proteomic methods, including those developed by our 
lab, have begun to unlock the therapeutic potential of the cysteinome. By capturing and enriching 
cysteines using highly reactive chemical probes, such as iodoacetamide alkyne (IAA) and 
iodoacetamide desthiobiotin, the studies have assayed the ligandability of upwards of 25% of all 
cysteines in the human proteome20–29. Cysteine chemoproteomics has even enabled the 
discovery of new lead molecules that target specific cysteines, including JAK30, SARM131,  
PPP2R1A32, XRCC533, NRB0134, and pro-CASP829. Several new strategies have made 
substantial inroads into stratifying cysteine functionality to achieve function-first readouts of the 
likelihood of a covalent modification altering the labeled protein, including quantifying intrinsic 
cysteine nucleophilicity25, by pairing of chemoproteomics with CRISPR-base editing35, by 
performing proteomic stratification of covalent-modification induced altered protein complexes36, 
and our own work combining computational predictions of genetic pathogenicity with cysteine 
chemoproteomics27.    

Single amino acid variants (SAAVs) encoded by missense mutations, including those that 
result in acquisition of cysteine, are almost universally missed by chemoproteomic studies. A key 
reason for this gap is that most genetic variants are not found in reference protein sequence 
databases used to identify peptides from acquired tandem mass spectrometry (MS/MS) data20–

29. Understanding whether a genetic variant is translated into protein is a critical step for 
characterizing the functional impact and therapeutic relevance of genomic variation. 
Proteogenomic studies that implement custom variant-containing sequence databases for search 
have enabled proteome-wide detection of protein coding variants, including SAAVs and splice 
variants37–43. When compared to variant calling at the genomic level, the coverage of these studies 
remains comparatively small, spanning tens to hundreds of peptides, with the exception of recent 
studies employing ultra deep fractionation44,45 resulting in  thousands of identified variants. These 
studies all share general data processing pipelines. Variant calling is performed on next-gen 
sequencing (NGS) data, then customized databases featuring both canonical protein sequences 
and sequences encoding SAAV-, insertion/deletions (indels)-, or splice variant-proteins are 
generated, using customized tools, such as Spritz46, CustomProDB47, Galaxy-P48, and 
sapFinder49. While targeted proteomics methods, such as parallel reaction monitoring (PRM) 
have enabled focused monitoring of high value variant-containing peptides50, including encoding 
driver mutations, the broader landscape of translated SAAVs remains to be fully explored. 

There are two central complexities to these pipelines that have only recently begun to be 
addressed. The first challenge is that, by relying on exome-only sequencing and short read 
sequencing, the relative proximity of two or more variants in the same gene (whether they are on 
the same or opposite chromosomes) is not typically apparent. A notable exception is the recent 
integration of long read sequencing for de-novo database construction with sample-specific 
proteomics to characterize novel protein isoforms51. Consequently, multi-variant peptides are 
typically not detected by most proteogenomics workflows that rely on databases featuring either 
single-each or all-in-one SAAV-containing proteins. Such search strategies also introduce higher 
chances of false positive identification52. All possible cancer-derived aberrant peptide sequences, 
reflecting increased genetic complexity of tumor genomes, increases the size of the custom 
databases and thus search spaces. One solution to the false discovery rate (FDR) challenge is 
to calculate a class-specific FDR (separating the FDR calculations for the variant-containing 
peptides and reference peptides)52. An alternative strategy to ensure class-specific FDR control 
is to perform a 2-stage database search53. In this strategy, the first first search of acquired MS/MS 
spectra is performed against a reference database of canonical protein sequences. Subsequently, 
peptide to spectrum (PSM) matches identified with a certain high level of confidence (e.g. passing 
1% FDR) are removed, and the remaining spectra are then searched against a variant-containing 
database. While implementation of such strategies in prior proteogenomic studies highlights the 
importance of rigorous statistical validation of identified variant-containing peptides53–55, the 
requirement for customized pipelines has so far limited widespread adoption.  
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Here we develop and deploy chemoproteogenomics as an integrated platform tailored to 
capture the missense variant cysteinome. Chemoproteogenomics unites a missense-variant 
focused proteogenomic pipeline with mass spectrometry-based cysteine chemoproteomics. By 
mining publically available datasets, including COSMIC, dbSNP, and ClinVar, we reveal that gain-
of-cysteine variants are a ubiquitous consequence of genetic variation. We further reveal that 
DNA repair deficient cell lines are particularly enriched for acquired cysteines, together with a 
general high burden of rare and predicted deleterious variants. Guided by these discoveries, we 
generate combinatorial cell-specific custom databases built from whole exome and RNA-Seq data 
for eleven cell lines. Chemoproteogenomic analysis with a user-friendly FragPipe computational 
platform, extended to support  2-stage database search and FDR estimation, identified >1,400 
total unique variants, including 629 chemoproteomic enriched variant-proximal cysteines and 103 
gain-of-cysteines. Chemoproteogenomics also robustly identifies ligandable SAAVs that alter 
cysteine oxidation state and outperforms bulk proteogenomic analysis for capture of SAAVs with 
lower variant allele frequency. The utility of  chemoproteogenomics is further showcased through 
our identification of  iodoacetamide-labeled Cys67 (Cys91) in the highly variable peptide binding-
groove of HLA-B. In sum, chemoproteogenomics sets the stage for enhanced global 
understanding of the functional and therapeutic relevance of the missense variant proteome.  
    
RESULTS 
High missense burden cancer cell lines are rich in acquired cysteines, including in census 
genes.  Our first step to realize variant-directed chemoproteomics was to mine existing publicly 
available missense repositories to assess the scope of acquired cysteines present in cancer 
genomes (COSMIC)  and healthy genomes (dbSNP) (Figure 1A). By doing so, we sought to 
achieve three goals: (1) validate prior reports of high cysteine acquisition in cancer 7,56,57 (2) 
determine whether cysteine acquisition is a privileged feature of cancer genomes, and (3) 
establish a panel of variant rich cell lines. We analyzed publicly available sequencing data of 
1,020 cell lines, found in the Catalogue of Somatic Mutations in Cancer Cell Lines Project 
database58,59 (COSMIC-CLP, release v96), to establish a panel of high mutational burden tumor 
cell lines; our hypothesis was high missense burden cell lines would be enriched for acquired 
cysteine SAAVs, including those found in Census genes60 and residues that are driver mutations. 
The top 15 cell lines with the highest mutational burden (Figure 1B, S1A, Table S1) encode 
77,693 total unique missense variants, which represents ~18% of all unique missense variants in 
COSMIC-CLP. 

 We next evaluated whether these identified missense-rich cell line genomes were 
similarly enriched for gained cysteine SAAVs. We calculated the net gain amino acid changes 
(total gained minus total lost) encoded by all coding missense variants in this cell line panel 
(Figure S2), which revealed a marked enrichment for acquired histidines and cysteines together 
with loss of arginine, both for the aggregate cell line panel and for individually analyzed cell line 
datasets (Figure S3). As calculations of net gain can fail to distinguish high versus low missense 
burden cell lines, we also further stratified these cell lines based on total gained and total lost 
amino acids (Figure S1B, S4, S5), which further substantiated the enrichment for gain-of-cysteine 
across all of the top 15 missense variant burden cell lines analyzed (Figure 1C, S1B). This 
marked cysteine enrichment in cancer cell line genomes is consistent with previously reported 
aggregate analysis, not stratified by cell line, of all available COSMIC missense data7,56,57. Our 
own analysis of all COSMIC-CLP mutations shows cysteine as the second most gained residue 
(Figure 1D). The genomes of the top 15 missense cell lines encoded 4,725 total gained cysteines, 
found in 3,688 genes. Showcasing the potential therapeutic relevance of this set, <10% of these 
identified genes have been targeted by FDA approved drugs20,61 (Figure 1E). Notably,  219/738 
Census genes (v98) were found to harbor one or more gained cysteines, including NRAS (G12C), 
which is found in the Molt-4 cell line;  TP53 (R273C) found in the KARPAS-45 cell line; GNAS 
(R218C) in the CW-2, SNU-175, and HT-115 cell lines; FBXW7 (R505C) in Jurkat and KARPAS-
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45 cell line; ASXL1 (W796C) found in HCT-15 cell line, and KEAP1 (Y33C) found in the Hec-1 
cell line (Table S1).  

 
dMMR cell lines are enriched for SAAVs, including acquired cysteines. Cancer genomes 
display characteristic patterns of mutations, or signatures, that have developed from biological 
processes specific to the course of the cancer62,63. Endogenous and exogenous sources of DNA 
damage, left uncorrected due to faulty repair pathways, often lead to high tumor mutational 
burdens. Microsatellite instability (MSI) is a hypermutable phenotype caused by deficiency in 
mismatch repair (dMMR). High MSI tumors have higher mutational burdens; the converse is not 
true as high mutational burden tumors do not always display MSI64. Eight out of fifteen of the top 
missense burden cell lines reported in COSMIC were observed to be derived from colorectal 
carcinoma (CRC) (Figure 1B, S3). As ~15% of CRCs are reported to have elevated MSI65–67, this 
high CRC missense burden is to be expected64,68. While Jurkat, Molt-4 and Hec-1B cells are not 
CRC, both have previously been reported as dMMR with mutations in mismatch repair 
machinery69,70. Unexpectedly, MeWo cells, which are derived from metastasized melanoma and 
reported to be microsatellite stable (MSS)71, also exhibited a high burden of missense mutations. 
The majority of  missense rich cell lines, including the dMMR lines were observed to encode 
between 200 and 500 acquired cysteine SAAVs (Figure S1B). However, a significant depletion 
of gained cysteines relative to total variant burden was observed for MeWo and SW684 (Figure 
1C).   
 
Acquired cysteines are ubiquitous in both healthy and diseased genomes. We next asked 
whether this marked enrichment for gained cysteines was specific to cancer genomes or a more 
universal consequence of human genetic variation, with the overarching goal of facilitating efforts 
to pinpointing acquired cysteines with therapeutic relevance. Complicating matters, gain-of-
cysteine missense variants are also expected to be ubiquitous in healthy genomes, due to the 
comparative instability of CpG–a key consequence of this instability is the frequent loss of arginine 
codons (4/6 CG dinucleotides)72. We aggregated and quantified the amino acid changes resulting 
from common missense variants reported by dbSNP73, a repository of single nucleotide 
polymorphisms and ClinVar74, a repository of variants with reported pathogenicity. We find that 
cysteine acquisition is the third most common consequence of missense variants identified in 
dbSNP (Figure 1D, Table S1) for common variants—common variants are defined by NCBI as 
of germline origin and/or with a minor allele frequency (MAF) of >=0.01 in at least one major 
population, with at least two unrelated individuals having the minor allele. Analogous stratification 
of variants reported by ClinVar also revealed a preponderance of gained cysteines compared with 
lost cysteines, albeit to a more modest degree than that observed for cancer genomes (Figure 
S6 and Table S1). For the pathogenic variant subset of ClinVar, both gain- and loss-of-cysteine 
and gain-of-proline were frequently observed (Figure S6). 
 
An expanded cell line panel incorporates high value acquired cysteines. Across the >2 
million missense variants reported in COSMIC, 52 acquired cysteines are reported as putative 
driver mutations (dN/dS values)75 in the Cancer Mutation Census (Table S1). Consequently, 
nearly all acquired cysteine SAAVs are of uncertain functional significance for tumor cell growth 
and survival. Given that one of our key objectives is to enable rapid proteomic identification and 
subsequent electrophilic compound screening of functional variants, we next stratified the top 
missense variant cell lines based on known driver mutations and damaging variants. We find that 
top missense cell lines that are readily available for purchase encode NRAS G12C, KRAS G12D, 
PIK3CA E545K, and TP53 R248Q variants among other known driver mutations (Table S1). 
Given the considerable interest in targeting G12C KRAS, we opted to add several KRAS mutated 
cell lines to our panel (MIA-PACA-2, H2122, and H358) in order to favor detection of the G12C 
peptide. Notably, the smoking-associated mutational signature is C→A/G→T76, which should 
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favor gain-of-cysteines. Therefore, we additionally sought to test whether smoking associated 
NSCLC-derived H2122 and H1437 adenocarcinoma cell lines would be enriched for acquired 
cysteines when compared to other proficient mismatch repair (pMMR) cell lines, including lung 
cancer cell lines (H358 NSCLC and H661 metastatic large cell undifferentiated carcinoma (LCUC) 
lung cancer cell lines). Lastly, we opted to include CACO-2 cells, an MSS CRC cell line, to test 
the feasibility of capturing driver mutations located proximal to chemoproteomics detectable 
cysteines—Caco-2 cells express mutant SMAD4 (D351H), a variant implicated in blocking SMAD 
homo- and hetero-oligomerization77 and located proximal to two previously chemoproteomics 
detected cysteines (C345 and C363)21,22. Our prioritized cell line panel features 11 cells lines in 
total (2 female and 9 male) spanning 6 tumor types and encoding 22,559 somatic variants and 
1,296 somatic acquired cysteines, as annotated by COSMIC-CLP (Figure 1F, Table S1-S2), with 
aggregate enrichment for gained cysteines observed for the entire panel (Figure S7, S8). Of the 
proteins that harbor gained cysteines, 486 are Census genes and 5% are targeted by FDA 
approved drugs (Table S1).  

 
dMMR cell lines are enriched for rare predicted missense changes, including acquired 
cysteines. Given the preponderance of acquired cysteine SAAVs observed across COSMIC, 
ClinVar, and dbSNP, we postulated that cancer genomes would be enriched for both rare and 
common gain-of-cysteine mutations. To both test this hypothesis and enable the building of 
sequence databases for proteogenomics search, we sequenced exomes and RNA of our cell 
lines and subjected NGS reads to variant-calling (Figure 2A, Figure S9). For all 11 cell lines 
sequenced, we identified on average 82% of the variants reported in COSMIC-CLP and 70% of 
missense mutations reported by Cancer Cell Line Encyclopedia (CCLE)71 databases (Table S2). 
Driver mutations (CMC significant, dN/dS q-values) identified include KRAS G12C for MIA-PACA-
2, H358, and H2122 cell lines, PIK3CA E545K in HCT-15, and FBXW7 R505C in Jurkat cells 
(Table S2). 9,190 total rare variants were identified that had been not previously reported in 
COSMIC-CLP, including 435 variants encoding acquired cysteines (Table S2).  

As with our analysis COSMIC-CLP (Figure 1B), we detected a high missense burden for 
the dMMR cell lines compared to the pMMR cell lines. MeWo cells were an exception, with a 
missense burden comparable to that of the dMMR cell lines (Figure 2B). Analysis of DNA damage 
repair-associated genes revealed specific mutations (Table S2), including DDB2 R313* in MeWo 
cells, which provide an explanation for the previously unreported high missense burden—
inactivating mutations in DDB2 are implicated in deficient nucleotide excision repair78.  
 We next subsetted the data into rare and common variant categories, using dbSNP 
common variants (04-23-2018 00-common_all.vcf.gz) (Table S2)73. The dMMR cell lines, 
together with the MeWo cells, have proportionally more rare variants compared to common 
variants (Figure 2B), irrespective of sequencing coverage (Figure S10). Further SAAV analysis 
revealed net gain of histidine, isoleucine, and cysteine as the most frequent amino acids gained 
across the common and rare subsets (Figure 2C). We find that cysteine acquisition is a more 
frequent consequence of common variants detected in pMMR cell lines (Figure 2D). 

In contrast with the common variants, the net gained SAAV signatures encoded by rare 
variants differed markedly between dMMR and pMMR cell lines (Figure 2D, S11-13). No 
significant difference between the number of gained cysteines was observed for the smoking-
associated lung cancer cell lines (Figure S14).  By contrast, in the dMMR cell lines, we detected 
a sizable increase, when compared to the pMMR cell lines, of acquired rare SNVs encoding Cys, 
along with His, Ile, Asn, Tyr, and Tryp (Figure 2D, Figure S11). Beyond cysteine acquisition, the 
SAAV signature for MeWo cells was observed to be distinct, with pronounced gain-of rare Phe 
and Lys detected (Figure S11-13), consistent with UV radiation induced pyrimidine dimers, which 
result in gain-of F and K (Figure S15, Table S2). These findings together with our analysis of the 
top missense cell lines in COSMIC-CLP indicate that previously reported widespread cysteine 
acquisition in cancer genomes is predominated by mismatch repair deficient cell lines. 
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Figure 1. Acquired cysteines are prevalent across cancer genomes, particularly for high missense 
burden cell lines. A) The full scope of acquired cysteines in the COSMIC Cell Lines Project (COSMIC-
CLP, cancer.sanger.ac.uk/cell_lines) (v96)58,59 and dbSNP (4-23-18)73 were analyzed. B) 1,020 cell lines 
stratified by number of gained cysteines and total missense mutations; color indicates cancer type for top 
15 highest missense count cell lines. C) Top 15 cell lines with highest missense burden from panel B; linear 
regression and 95% confidence interval shaded in gray. D) Net missense mutations (gained-lost) from 
COSMIC-CLP (v96) and common SNPs (dbSNP 4-23-18). E) Overlap of genes with acquired cysteines in 
top 15 subset from panel B with Census genes and targets of FDA approved drugs. F) Panel of cell lines 
used in this study with MMR status (dMMR= deficient mismatch repair, pMMR=proficient mismatch repair). 
Data found in Table S1. 
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Rare gained cysteines in dMMR cell lines are enriched for high CADD scores.  With the 
overarching goal of facilitating identification of likely functional variants, we next stratified  the 
predicted deleteriousness of the identified missense variants (Figure 2E, Table S2). We focused 
on the Combined Annotation Dependent Depletion (CADD) score, due to its high reported 
specificity and sensitivity79 and our prior findings that showed strong association between cysteine 
functionality and high CADD score27. Unsurprisingly, our analysis revealed higher CADD scores 
for rare variants compared to common variants, across the cell line panel (Figure 2E, Table S2). 
More unexpectedly, we observed a more marked increase in the predicted pathogenicity of the 
rare variants detected in dMMR cell lines compared with pMMR cell lines (the top 1% most 
predicted deleterious mutations have CADD phred-scaled scores > 20)  (Figure 2F-G, S16-17). 
This enrichment for high CADD score rare variants held true for the MeWo cells. Further 
stratification by specific gained or lost amino acids (Figure 2H, Figure S18-21), revealed that 
gained cysteine missense are the most significantly enriched for high predicted deleterious scores 
across all pMMR and dMMR cell lines (Figure S19, Table S2)—a notable exception are the 
MeWo cell line variants for which gain-of  Phe, Lys, and Leu codons are the most high CADD 
scoring variants (Figure S22). 

As only a small fraction of the acquired cysteines are known driver mutations, we next 
restricted our analysis to include only the 388 total variants localized to hotspot mutations, as 
annotated by CCLE and The Cancer Genome Atlas (TCGA). We find that gain of cysteine within 
TCGA hotspot mutations is markedly enriched for high CADD score variants (Figure S21). 
Notable high CADD score hotspot acquired cysteines include the tumor suppressor FBXW7 
R505C in Jurkat cells, the metalloprotease ADAMTS1 R604C in Molt-4 cells, and exrin-associated 
protein SCYL3 R61C in MeWo cells. 98% (50/51) of these cysteines are gained due to loss of 
arginine, which aligns with the observed parallel enrichment for high CADD scores at loss of 
arginine hotspot variants (Figure S23).  

 
dMMR rare variants are enriched for proximity to known functional sites. To further broaden 
our understanding of the functional landscape of cysteine acquisition, we also analyzed proximity 
to known functional sites and sites of post translational modification (Table S2). We find that the 
dMMR rare variant set is enriched for known proximal active site/binding site residues (Figure 
2I). Intriguingly, analysis of known PTM modified sites reported by Phosphosite80 revealed a 
significant association between arginine methylation sites and rare variants in dMMR cell lines 
(Figure 2I). These findings are consistent with loss of arginine as a frequent consequence of 
exonic CpG mutability72,81 together with roles of MMR in protecting against CpG associated 
deamination82. As 60% of the gained cysteines in our data resulted from loss of arginine (Figure 
S24), we expected that many of these variants will result in altered PTM status (Figure 2J).   
 
 

 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 14, 2023. ; https://doi.org/10.1101/2023.08.12.553095doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.12.553095
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

 
Figure 2. dMMR cell lines are enriched for rare, predicted deleterious gain-of-cysteine mutations. A) 
Sequencing portion of the ‘chemoproteogenomic’ workflow to identify chemoproteomic detected variants–
extracted genomic DNA or RNA from cell lines undergo sequencing followed by variant calling using 
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Platypus (v0.8.1)83 and GATK-Haplotype Caller (v4.1.8.1)84 for RNA and exomes respectively and predicted 
missense changes were computed. B) Total numbers of missense mutations identified from either RNA-
seq or WE-seq; stripe vs solid denotes common and rare variants, red text indicate dMMR cell lines. C) Net 
amino acid changes for all cell lines combined. D) Totals of gained and lost cysteine in each cell line 
separated by rare and common variants, dashed line indicates dMMR cell lines. E) Scheme of CADD score 
analysis for two dMMR and non-dMMR cell lines. F) Distribution of CADD scores for indicated variant 
grouping; statistical significance was calculated using Mann-Whitney U test, **** p < 0.0001. G) Empirical 
cumulative distributions (ECDF) were computed for CADD scores with indicated grouping; statistical 
significance was calculated using two-sample Kolmogorov-Smirnov test, **** p < 0.0001.  H) CADD score 
distributions for cysteine gained amino acid indicated separated by grouping; statistical significance 
between gained Cys values was calculated using Mann-Whitney U test, **** p < 0.0001. I) Proportion of 
variants belonging to the indicated sites; AS/BS = in or near active site/binding site as annotated by 
UniProtKB or Phosphosite; statistical significant calculated using two-sample test of proportions, *** p < 
0.001, **** p < 0.0001, ns p > 0.05.  J) Amino acid changes at protein methylation sites as identified by 
Phosphosite. Data found in Table S2. 

 
Variant peptide identification enabled by MSFragger 2-stage database search and false 
discovery rate (FDR) estimation. To enable chemoproteomic detection of acquired cysteine 
SAAV-containing peptides and SAAVs found in peptides with canonical cysteines, we next 
established a customized proteogenomics pipeline (Figure 3A, B). Motivated by the prior report38 
that demonstrated proteogenomic sample searches performed with sample-specific databases 
both improved coverage (~45% more variants) and decreased rates of SAAV peptide false 
discovery, we generated cell line-specific variant peptide databases from HEK293T RNA-seq data 
(Figure 3A, Table S3). Next,  to afford a reduction to the likelihood that a variant peptide will be 
mismatched to wild-type spectra53, we established a 2-stage database search and FDR control 
scheme (Figure 3B), usingMSFragger (v3.5)/Philosopher85,86 command line pipeline within 
FragPipe computational platform (detailed in Methods).   

We then subjected our chemoproteogenomics pipeline to benchmarking by generating a 
set of high coverage cysteine chemoproteomics datasets (Figure 3B) in which cell lysates labeled 
with iodoacetamide alkyne (IAA)25 and conjugated isotopically labeled ‘light’ (1H6) or’ heavy’ (2H6) 
biotin-azide reagents87 (+6 Da mass difference between the reagents) were combined pairwise 
in biological triplicate at different H/L ratios (1:1,10:10, 1:4, 4:1, 1:10, and 10:1). By searching 
these datasets using our 2-stage search, we sought to validate the accuracy of variant 
identification. Peptide quantification using IonQuant88,89, following the workflow shown in Figure 
3A, revealed MS1 intensity ratios for both canonical and variant peptide sequences that matched 
closely with the expected values (Figure 3C, Table S3). We also compared the retention times 
of the heavy- and light-peptides and observed an ~2-3 sec shift for the deuterated heavy 
sequences for both the variant and canonical peptide sequences (Figure 3D, Table S3). These 
retention time shifts are consistent with our previous study87 and with prior reports90,91. Analogous 
to studies that utilize isotopically enriched synthetic peptide standards to validate novel peptide 
sequences92–94, the observed co-elution of both heavy and light variant peptides provides further 
evidence to support the low FDR of our data processing pipeline. Lastly, the high concordance 
between observed and expected MS1 ratios provides compelling support for the use of the heavy 
and light biotin azide reagents in competitive cysteine-reactive compound screens, in which 
elevated MS1 intensity ratios are indicative of a compound modified cysteine.  
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Figure 3. Variant peptide identification implementing an MSFragger-search pipeline A) 2-stage 
MSFragger-enabled variant searches–variant databases are generated from non-redundant reference 
protein sequences that are in-silico mutated to incorporate sequencing-derived missense variants followed 
by 2-stage  MSFragger/PeptideProphet search to identify confident variant-containing peptides. First, raw 
spectra are searched against a normal reference protein database, confidently matched spectra (passing 
1% FDR)  are removed and remainder spectra are searched with a variant tryptic database. B) 
Chemoproteomics workflow to validate heavy and light biotin87. HEK293T cell lysates were labeled with 
pan-reactive iodoacetamide alkyne (IAA) followed by ‘click’ conjugation onto heavy or light biotin azide 
enrichment handles in known ratios. Following neutravidin enrichment, samples are digested and subjected 
to MS/MS analysis. C) Heavy to light ratios (H:L) from triplicate datasets comparing identifications from 
reference and variant searches; mean ratio value indicated, dashed lines indicate ground-truth log2 ratio, 
statistical significance was calculated using Mann-Whitney U test, ** p < 0.01, ns p > 0.05. D) Retention 
time difference for heavy and light identified peptides for reference and variant-searches; mean value 
indicated, statistical significance was calculated using Mann-Whitney U test, ns p > 0.05.  Data found in 
Table S3. 

 
Chemoproteomics with combinatorial databases improves coverage of acquired cysteines 
and proximal variants. We next set out to apply our validated search scheme for 
chemoproteogenomic variant detection (Figure 4A). Inspired by the recent report95 of 
combinatorial databases to improve detection of proximal SAAVs—we expect such variants to be 
prevalent in heterogeneous cell populations, such as a mismatch repair deficient tumor cell line—
we established an algorithm (Figure S27) to generate all combinations of SAAVs derived from 
both RNA/WE-seq data within 30 amino acids flanking the variant site. These combinations were 
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then converted into a peptide FASTA database containing two tryptic sites flanking each variant 
site (Figure 4B). On average, >4,500 total multi-variant peptide sequences were generated per 
cell line. Our approach differs from most prior custom database generators, which offer ‘Single-
Each’47,92,96,97 or ‘All-in-One’ outputs98,99 for the former, all protein sequences harbor one SAAV 
each; for the latter, each protein harbors all SAAV detected. While establishing our combinatorial 
databases, we observed that a small number of highly polymorphic genes (Table S4) markedly 
increased database size—exemplifying this increased complexity, upwards of 1 billion 
combinations (2^n -1) are possible for protein sequences with 30 or more SAAVs. To determine 
the practical limit for the number of SAAVs/protein, we performed test searches where we limited 
the numbers of variants to combine (Table S4). We find that nearly all variants are retained with 
databases that include combinations for proteins with up to 25 variants (Table S4). For the small 
set of highly polymorphic protein sequences (e.g.  HLA, MUC, and OBSCN,  (Table S4), Single-
Each sequences were searched (Figure S27). 

Next, for all 11 sequenced cell lines (Table S2), we prepared and acquired a set of high 
coverage cysteine chemoproteomics datasets (Figure 4A). In aggregate, 32,638 total canonical 
cysteines were identified on 7,233 total proteins, with 9,349 cysteines unique to individual cell 
lines and 25,223 shared across the entire dataset (Figure S25, Table S4). 2,318 cysteines on 
1,406 total proteins had not previously been reported in the CysDB database20 (Figure S26). 2-
stage MSFragger search using our sample specific combinatorial databases identified a total of 
59 gained cysteines and 302 SAAVs located proximal to 343 reference cysteines (Figure 4C, 
Table S4). 74 canonical sequence cysteines located proximal to variants and 60 acquired 
cysteines had not been previously reported in CysDB (Figure 4D)20. Notable examples of 
acquired cysteine variants not reported in CysDB include acquired cysteines KRAS G12C and 
PRKDC R2899C. Consistent with the aforementioned genomic data findings, we observe arginine 
as the most frequently lost out of detected Cys-proximal SAAVs (Figure 4E). We detect 15 total 
cysteines in peptides that harbor gain/loss of arginine that were previously too long or too short 
to be identified (Figure 4F, Table S4). For the cysteine protease cathepsin B (CTSB), we identify 
Cys207 in HCT-15 cells which was not identified in CysDB–a K209E mutation that creates a 
longer tryptic peptide sequence compared to reference sequence (‘CSK’ to 
‘CSEICEPGYSPTYKQDK’). In the well-studied Jurkat proteome, we detect stromal cell derived 
factor 2 SDF2, Cys88, which is also not reported in CysDB, is found in a peptide harboring a 
proximal R93Q mutation that creates a longer, detectable peptide sequence (‘CGQPIR’ to 
‘CGQPIQLTHVNTGR’). Showcasing the utility of the combinatorial exome and RNA-seq SAAV 
databases, we identify six multi variant-containing peptides (Table S4). One noteworthy example 
is the peptide L86P/F92C peptide from the mitochondrial enzyme HADH, which catalyzes beta-
oxidation of fatty acyl-CoAs—two variants, one from RNA-seq and one from exome-seq were 
detected in this peptide. For the I105V, A114V peptide from enzyme GSTP1, the I105V variants 
were flagged as bad quality reads from RNA-seq data but passed filters from the exome-seq data 
(Table S4). Of these combination variants, two are exome-seq only derived variants that span 
exon boundaries. 

 
Chemoproteomic identified variants are in diverse functional sites across protein families. 
We next asked whether the chemoproteogenomic-identified SAAVs might be of functional 
significance. By stratifying the the CADD scores of identified SAAVs, we find that the enrichment 
of high CADD score missense variants in the dMMR rare variant subset was maintained for 
SAAVs identified by chemoproteogenomics, including for gain-of-cysteine SAAVs (Figure S28, 
S29).  
 As CADD scores only provide a prediction of deleteriousness, we also asked whether any 
of the identified variants are located in Census genes or have been reported in Clinvar. We identify 
77 variants previously reported in ClinVar (Table S4), with nearly all annotated as benign. A total 
of 16 mutations and 7 putative driver mutations (dN/dS p-values) were identified in Census genes. 
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One prevalent driver was KRAS G12C, which was identified in several of the cell lines known to 
harbor this variant as a driver mutation (MIA-PACA-2 and H358 but not H2122). As KRAS 
expression is known to vary across cell lines71, this data suggests both H358 and MIA-PACA-2 
cell lines are suitable for chemoproteogenomic target engagement analysis of G12C-directed 
compounds. However, as a cautionary example in mapping peptides, we identify several SAAV-
peptides that match to multiple protein sequences, including sequences in human leukocyte 
antigens (HLA) and POTE ankyrin domain family proteins (Figure 4G). Most notably, the RHOT2 
R425C mitochondrial GTPase peptides in H358 cells have exact sequence similarity to KRAS 
G12C peptides; these half-tryptic peptides are also identified in H1437 cells that do not harbor 
the KRAS G12C variant.  

Chemoproteogenomics failed to capture several key Census gene SAAVs that we 
detected on the genomic level (e.g. SMAD4 (D351H) in CaCo-2, FBXWY (R505C) in Jurkat and 
CDK6 (R220C) in Molt-4 cells). Several Census gene SAAVs did, however, stand out due both to 
their high CADD scores and proximity to known pathogenic mutation sites. These variants of 
interest include MLH1 R385C, RAD17 L557R (proximal Cys551/556), MSN R180C, HIF1A S790N 
(proximal Cys800) and CTCF R320C, a likely pathogenic position in this protein (CADD score = 
29.4) (Figure 4H, Table S4).  

Exemplifying the utility of the chemoproteogenomics to uncover new variants, we find that 
20 of the identified SAAVs have not been previously reported in COSMIC, CCLE or ClinVar (Table 
S4). One variant of unknown significance, not reported in ClinVar, is HMGB1 R110C labeled in 
the Molt-4 cell line (Figure 4I) (CADD score = 24.1). Adjacent Cys106 is a cysteine under highly 
controlled redox state that is responsible for inactivating the immunostimulatory state of 
HMGB1100. We also identify SARS R302H (proximal Cys300;CADD = 32), a mutation in the ATP 
binding site of serine-tRNA ligase, which is a tRNA ligase involved in negative regulation of 
VEGFA expression101.  

Given the comparatively limited set of variants at or proximal to known damaging sites, 
we next broadened our analysis to include SAAVs at or proximal to UniProtKB annotated active 
sites (AS) and binding sites (BS) (Figure 4J). We find that 27 SAAVs are located within the 
permissive range of 10 amino acids of a known functional residue, including 4 active sites and 24 
binding sites. Specific examples of high value SAAVs include tRNA synthetase EPRS R1152 
(proximal Cys1148; CADD = 33), a mutation known to cause complete loss of tRNA glutamate-
proline ligase activity102. Interestingly, EPRS has mTORC-mediated roles in regulating fat 
metabolism103. We also capture a variant proximal to the active site of BLM hydrolase I75T 
(proximal Cys73,78; CADD = 27.6), a cysteine protease responsible for BLM anti-tumor drug 
resistance104. More broadly, analysis of SAAV location by protein domains, reveals no marked 
bias for variants located in specific domain types, with the ubiquitous P-loop NTPase domain as 
the most SAAV-rich domain (Figure S30, Table S4). 

As cysteines play critical roles in protein structure via disulfide bond formation together 
with additional cysteine oxidative modifications105, we asked whether identified loss of cysteine 
variants (10 in total) were annotated as involved in disulfides. Likely due to the comparatively 
small number of loss-of-cys variants, none were observed with disulfide annotations. To further 
pinpoint whether any variants are sensitive to oxidative modification, we subjected our previously 
reported Jurkat cell redox chemoproteomics datasets to reanalysis106. In total, our reanalysis 
quantified 7 acquired cysteines and 54 variants proximal to acquired cysteines. For nearly all of 
the cysteines quantified both in our reference database searches and now also identified with 
proximal variants, we observed a high concordance between variant- and reference sequence 
oxidation (R2=0.77). One notable exception was the Mitochondrial-processing peptidase enzyme 
(PMPCA) Cys225, for which markedly different cysteine oxidation states were measured for the 
reference peptide Cys (~3% oxidation) and variant peptide Cys (~88% oxidation) (Figure 4K). 
These data provide evidence that the proximal P226S mutation profoundly impacts Cys225 
sensitivity to oxidative modifiers.  
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Figure 4. Variant peptide identification on tumor cell lines A) Cell lysates were labeled with pan-reactive 
iodoacetamide alkyne (IAA) followed by ‘click’ conjugation onto biotin azide enrichment. Samples were 
prepared and acquired using our SP3-FAIMS chemoproteomic platform22,23,107 using single pot solid phase 
sample preparation (SP3)108 sample cleanup, neutravidin enrichment, sequence specific proteolysis, and 
LC-MS/MS analysis with field asymmetric ion mobility (FAIMS) device109. Experimental spectra are 
searched using the custom fasta for variant identification. Sample set includes both reanalysis of previously 
reported datasets from Yan et al. (Molt-4, Jurkat, Hec-1B, HCT-15, H661, and H2122 cell line) with newly 
acquired datasets (H1437, H358, Caco-2, Mia-PaCa-2 and MeWo cell lines). B) Non-synonymous changes 
are incorporated into reference protein sequences and combinations of variants are generated for proteins 
with less than 25 variant sites to make customized fasta databases. Details in methods. C) Total numbers 
of unique missense variants identified from either RNA-seq or WE-seq or both after using 2-stage 
MSFragger search and philosopher validation from duplicate datasets; stripe vs solid denotes common and 
rare variants, red text indicate dMMR cell lines Indicated is sequencing source and type of variant. D) 
Overlap of identified cysteines from variant searches with cysteines in CysDB database20. E) Net amino 
acid changes for all cell lines combined F) Example of cysteies identified from loss of R/K peptides  G) 
Examples of multi-mapping variant sites. H) Crystal structure of CTCF indicating detected Cys320 (yellow) 
and DNA-binding site (PDB: 5T0U). I) Crystal structure of HMGB1 indicating detected Cys110 and nearby 
Cys106 (yellow) (PDB: 6CIL). J) Variants identified in or near active and binding sites with CADD score, 
common/rare, cell line dMMR/pMMR annotations. K) Re-analysis of SP3-Rox106 oxidation state data in 
Jurkat cells. Data found in Table S4. 

 
Assessing how differential expression impacts chemoproteogenomic detection. Our 
comparatively modest coverage of SAAVS achieved by chemoproteogenomics (particularly when 
compared to our genomics datasets) is on par with the coverage reported by most prior 
proteogenomics studies41,43,53. A notable exception is the recent study by Coon and colleagues 
that implemented ultra-deep fractionation to achieve more global coverage of variants44. Inspired 
by this work, we next sought to ask whether chemoproteogenomics, with its built in enrichment 
step, would enable sampling of variants not detectable by fractionation methods (Figure 5A). We 
subjected lysates from HCT-15 and Molt-4 cells, which were chosen based on high rare missense 
burden, to tryptic digest, off-line high pH fractionation, and LC-MS/MS analysis. In aggregate 
across both cell lines, we identified 8,435 proteins and 149,006 peptides, including 1,069 unique 
SAAVs found in 1,352 total peptides using our 2-stage MSFragger search (Figure 5B,S31,Table 
S5). 26 peptides were identified that contained multiple variants, including peptides that would 
only be detected by our combinatorial databases (Figure 4B) as well as those readily detected 
by combined ‘Single-Each’ and ‘All-in-One’ database searches (Table S5).  

Comparison of this unenriched dataset to the chemoproteogenomic dataset for the 
matched HCT-15 and Molt-4 proteomes (145 total SAAVs identified by chemoproteogenomics for 
these two cell lines) revealed 70 SAAVs, including eight acquired cysteines, uniquely identified 
with chemoproteogenomics (Table S4-S5), (Figure 5C). Despite the lower numbers of total 
SAAVs in the chemoproteogenomics datasets, we find that chemoproteomic enrichment afforded 
a ~5-fold boost in the relative fraction of acquired cysteines captured (Figure 5D). Further 
stratification of the net detected amino acid changes (Figure S32-S33) revealed that, again, 
cysteine was a top gainer and arginine was the most lost amino acid for both enriched and 
unenriched datasets. 

We next asked whether protein or RNA abundance might rationalize the differences in 
SAAV coverage for each method. Comparison of normalized transcript counts for SAAV-matched 
genes identified either by chemoproteogenomics or in our bulk proteomic dataset, for HCT-15 
cells analysis revealed no significant difference between measured transcript abundance 
between the sets (Figure 5E, Table S5). A notable subset of SAAVs (3,262 total, including 
PIK3CA E545K, TP53 S241F, SMARCA4 R885C TCGA hotspot mutations) with low abundance 
transcripts (less than 4000 normalized counts) were not detected in either the 
chemoproteogenomics or bulk proteogenomics. Providing further evidence that lower transcript 
abundance decreases the likelihood of detection, we find that an even more sizable fraction of 
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cysteines found in reference protein sequences matched with low abundance genes are not 
detected, both for high-pH fractionated samples and chemoproteomics enriched samples (Figure 
S34). 

Given the likely disconnect between transcript abundance and protein abundance110–112 
for some SAAVs analyzed, we also extended these analyses to measures of protein abundance. 
Using label-free quantification (LFQ) analysis, we find that  for proteins with proteomic-detectable 
SAAV peptides, the quantified protein intensities  were significantly higher when compared to 
proteins for which the corresponding variants were only detected via genomic analysis. No 
difference was observed between the bulk fractionated samples and the chemoproteogenomic 
samples (Figure 5F, Table S5).  

As both the transcript and protein abundance analyses do not delineate reference from 
variant-specific transcript/protein sequences, we also compared the variant allele frequencies 
(VAF) for SAAVs detected by each method. We find that high-pH variant allele frequencies (VAF) 
were significantly higher than the chemoproteogenomic detected SAAVs, which were comparable 
to the aggregate bulk RNA-seq VAFs (Figure 5G, Table S5). This enrichment for lower VAF for 
the chemoproteogenomic detected SAAVs extended to the acquired cysteine subset (Figure 
S34). 

Given that cysteine chemoproteomics requires peptide derivatization, with a 
comparatively large (463 Da) biotin modification, we postulated that some differences in coverage 
might be ascribed to behavior of peptides during sample acquisition. Comparing the properties of 
the SAAV peptides detected by chemoproteogenomics versus proteogenomics we observed a 
more restricted charge state distribution for cysteine-enriched samples and no appreciable 
differences in the amino acid content beyond enrichment for cysteine (Figure S35). While we did 
not observe differences in the peptide lengths in our comparison of between the chemoproteomic-
enriched and high pH detected SAAV peptides, a marked significant increase in SAAV peptide 
length (average 5AA longer) was observed compared to  reference peptides in both datasets 
(Figure 5H). This increased peptide length is consistent with the ubiquity of loss-of-arginine 
SAAVs in both datasets, which are favored in the longer length peptides (Figure S36).  

Protein families analysis revealed slight differences between the two datasets with 
enzymes making up a larger fraction of cys-enriched detected variant proteins. Significantly higher 
CADD scores were also observed for enrichment data (Figure S37). Notable high-CADD score 
variants identified only from enrichment include lysine demethylase KDM3B D1444Y, RNA 
polymerase POLRMT R805C, glycoprotein transporter LMAN2 R218C and Serine/threonine-
protein phosphatase PP1-alpha catalytic subunit PPP1CA D203N (Figure 5C). Addition of the 
bulk proteomic analysis yielded coverage of 85 notable variants belonging to Census genes, 
including BRD4 E451G and KRAS G13D, and 26 rare and common variants of uncertain 
significance in ClinVar, including rare gain-of-cysteines ubiquitin hydrolase USP8 Y1040C and 
LMNA R298C (Figure 5I,Table S5).  
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Figure 5. Comparison of variants identified from cysteine enrichment and bulk proteomics A) 
Workflow for high-pH fractionation of lysates. Cell lysates are treated with DTT and iodoacetamide followed 
by digestion, high-pH fractionation, and LC-MS/MS analysis. Triplicate high-pH sets for HCT-15 and Molt-
4 cells were used. B) Total numbers of unique missense variants identified from either RNA-seq or WE-seq 
or both after using 2-stage MSFragger search of high-pH datasets. C) Overlap of cysteine-containing 
peptide variants identified from bulk fractionation and cysteine enrichment datasets. D) Fold enrichment of 
amino acids as a ratio of the net amino acid frequency (gain minus loss) to the amino acid frequency in all 
missense-containing proteins detected in high-pH and cys-enriched datasets. E) DE-seq normalized 
transcript counts for all RNA variants ‘All’, variants detected from cys-enrichment ‘C’, and variants detected 
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from high-pH fractionation ‘H’ in HCT-15 cells. F) Label free quantitation (LFQ) intensities for proteins 
matched to all RNA variants ‘All’, variants detected from cys-enrichment ‘C’, and variants detected from 
high-pH fractionation ‘H’ in HCT-15 cells. G) Variant allele frequencies (VAF) (total reads/total coverage 
per site) for RNA-seq variants called in HCT-15 and Molt-4 cells. E-G statistical significance was calculated 
using Mann-Whitney U test, **** p < 0.0001, ns p > 0.05.  H) Peptide lengths of reference and variant 
peptides identified in dataset types. I) High-pH detected variants stratified by CADD score and ClinVar 
clinical significance. Data found in Table S5. 

 
Chemoproteogenomics enables ligandability screening. As demonstrated by our previous 
studies, cysteine chemoproteomics platforms are capable of pinpointing small-molecule 
targetable cysteine residues21,22,26,29. Therefore, we next paired our 2-stage search method with 
cysteine-reactive small molecule ligandability analysis to establish a chemoproteogenomic small 
molecule screening platform (Figure 6A). We first opted to use the widely employed scout 
fragment KB0229 (Figure 6B) to compare the ligandable variant proteomes for three high variant 
burden dMMR cell lines (HCT-15, Jurkat, and Molt-4). For KB02 treated samples, we identified 
210 total variants. The high concordance for ratios detected for variant peptides with multiple 
alleles provides evidence of the robustness of our platform and hints that most cysteine proximal 
variants do not substantially alter cysteine ligandability (Figure 6C).  

We next subjected the HCT-15 proteome to more in depth analysis using a small panel of 
custom electrophilic fragments (Figure 6B). We observed 27 total liganded variant peptides in 27 
proteins in the HCT-15 proteome, which are labeled by one or more compounds (Figure 6C). As 
with the KB02 cell line comparison, nearly all multi-allelic peptides showed comparable ratios 
(Figure 6E). Nucleotide analogue SO-105 was observed to be more promiscuously reactive 
(Figure 6F) when compared to the less elaborate fragments.  

In aggregate across all ligandability datasets, we identified 259 total variants found in 232 
total proteins (Figure 6D). Of these variants, 57 were acquired cysteines, in 55 proteins; 22 were 
ligandable (Log2(HL) ratio > 2), variant-proximal cysteines and 10 were ligandable  gain-of-
cysteines (Figure 6D). Notable liganded sites we identify include Cullin-associated NEDD8-
dissociated protein 1 (CAND1) G1069C–a site which mutated in the Arabadopisis ortholog 
reduces auxin response113 and Tubulin beta 6 (TUBB6) G71C (Figure 6G). Some sites with 
differing reference and variant ratios include EPRS P1482T–the mutated proline nearby Cys 1480 
may be requisite for labeling by electrophilic fragments. We also identify 3 ligandable variants of 
uncertain significance or conflicting pathogenicity that we show may be modulated for study with 
small molecules and could act as potential starting points for biological analyses (Figure 6C). As 
multi-allelic acquired cysteine sites cannot be captured sans cysteine, no analogous ratio 
comparison could be performed for the 6 total quantified acquired cysteines (Figure 6G). 

To understand functionality of the ligandable variant sites in 3D protein space, we 
analyzed active site and binding sites within 10 angstrom distance of the ligandable Cys residues 
and Cys-proxial variant sites (Table S6). We find three ligandable cysteines near or in 
active/binding sites including previously identified HMGB1 Cys106 (R110C) (Figure 4I), as well 
as Aldolase A ALDOA Cys178 (G196G) and HLA-B/C Cys125 (V127L/S123Y). Intriguingly HLA-
B/C Cys125 (C101 post signal peptide cleavage), near peptide binding region sites Y183 is 
liganded by KB02 in HCT-15 cells which harbor HLA-B*08:01 and HLA-B*35:01 (Figure 6F). This 
conserved cysteine plays important roles in HLA structure114. Ligandability of this site is 
unexpected as this site is known to be disulfided with C188 in cell surface HLA115; however, we 
find in our sequencing that HCT-15 cells harbor truncated beta-2-microglobulin (β2m) protein 
(B2M Y30*) (Table S2). β2m is known to stabilize this specific disulfide115,116, facilitating protein 
folding and translocation to the cell surface117–119. In HLA-B27 allelic variants, Cys125 is known 
to be exposed without β2m120. 
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Figure 6. Assessing ligandability of variant proximal cysteines and gain-of-cysteines. A) Schematic 
of activity-based screening of Cys reactive compounds; cell lysates are labeled with compound or DMSO 
followed by chase with IAA and ‘click’ conjugation to heavy or light biotin click conjugation to our isotopically 
differentiated heavy and light biotin-azide reagents, tryptic digest, LC-MS/MS acquisition, and MSFragger 
analysis. B) Chloroacetamide compound library. C) Total quantified variants and total ligandable variants 
(Log2 Ratio > 2) identified stratified by cell line (KB02 data) or compound (HCT-15 cell line). D) Correlation 
of high-confidence variant containing and reference cysteine ratio values from KB02 data. E) Correlation of 
high-confidence variant containing and reference cysteine ratio values from SO compound data.  F) Log2 
heavy to light ratio values for variant containing and reference cysteine peptides. G) Subset of gain of 
cysteine peptide variant log2 ratios. H) Crystal structure of HLA-B*08:01 protein liganded Cys125, disulfide 
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Cys188, and binding site residue Y183 as well as variant sites V127 and S123 (PDB: 3X13). Data provided 
in Table S6. 

 
 
Expanding HLA cysteine peptide coverage and gel-based ABPP of HLA covalent labeling  
Major Histocompatibility Complex (MHC) Class I molecules (known as HLA molecules in humans) 
present intracellularly derived protein fragments, either self-derived or from pathogens in the 
context of cross-presentation, on the cell surface for recognition by T cells and subsequent 
immune response; noncovalent assembly of a polymorphic heavy chain with a light chain (β2m) 
and peptide occurs in the endoplasmic reticulum (ER) followed by translocation via the Golgi to 
the cell surface121. Recent reports of allele-specific HLA-binding compounds, most notably 
abacivir HIV drug122, together with efforts to develop covalent modulators of MHC Class I and II 
complexes123–125 prompted us to assess the impact of chemoproteogenomics on achieving 
improved coverage of highly polymorphic genes (Figure 7A). 15,000 HLA alleles have been 
reported in the human population126. Exemplifying this impact on proteomic sequence coverage, 
our panel of cell lines alone harbor >25 HLA-A, B and C alleles (Table S2), while most protein 
reference databases only contain one copy of each MHC Class I and Class II molecule. 

Through search of sample-specific databases of both chemoproteomics and high pH 
fractionated samples, we achieved ~50% more coverage of HLA-A sequence in comparison to 
reference searches (Figure 7B and Figure S39). A key finding of our analysis was detection of 
HLA-B Y91C (C67 post signal peptide cleavage), which lies in the extracellular peptide binding 
pocket of HLA-B and was identified as IAA-labeled in MeWo cells (Figure 4J). The MeWo cell 
line HLA alleles (HLA-B*14:02 and HLA-B*38:01) both harbor this comparatively rare Cys (Figure 
7C). Notably this cysteine is also a key feature of the pathogenic ankylosing spondylitis associated 
allele HLA-B*27127,128. To test whether this cysteine was amenable to gel-based ABPP analysis 
and to determine whether this IAA labeling extends to HLA-B*27:05, we co-expressed c-terminal 
FLAG tagged HLA-B*38:01, HLA-B*27:05, HLA-B*38:01 C91S, and HLA-B*27:05 C91S with 
beta-2-microglobulin (β2m) and subjected cells to in situ IAA labeling followed by lysis, FLAG 
immunoprecipitation to enhance the detectability of the HLA cysteine, and click conjugation to 
rhodamine azide (Figure 7D). Gratifyingly, we observed a Cys67-specific rhodamine signal 
(Figure 7E), showcasing the utility of gel-based ABPP in visualizing HLA small molecule 
interactions. Notably IAA labeling was also observed for HLA-B27:05, although the presence of a 
strong co-migrating band in the HLA-B27:05 C67S immunoprecipitated sample complicates 
interpretation of the specificity of this labeling to Cys67. We were unable to observe comparable 
signal in lysate-based labeling studies, supporting enhanced accessibility of this cysteine to cell-
based labeling (Figure S40). 
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Figure 7. Expanding HLA cysteine peptide coverage and gel-based ABPP of HLA covalent labeling. 
A) Schematic of highly variable HLA binding pocket containing cysteine with bound peptide. B) Coverage 
of HLA cysteines from this study and in CysDB; color indicates HLA type or  multi-mapped cysteines. C) 
Crystal structure of HLA-B 14:02 (PDB: 3BXN) with highlighted Cys67 and Arg P2 position of bound peptide; 
alignments of Cys91 regions of three HLA-B alleles. D) Workflow to visualize HLA cysteine labeling; first 
cells were harvested and treated with IAA followed by lysis, FLAG immunoprecipitation, and click onto 
rhodamine-azide. E) Cys-dependent cell surface labeling of HLA-B alleles with IAA, band indicated with red 
arrow and non-specific band represented with asterisk (representative of 2 two biological replicates). Data 
provided in Table S7. 

 
 
FragPipe graphical user interface with improved 2-stage MSFragger search and FDR 
estimation. Motivated by the multi-faceted uses of the 2-stage search pipeline, including those 
reported here and future envisioned applications, we also sought to facilitate the utilization of the 
2-stage search strategy by the scientific community. Therefore, we enhanced FragPipe by 
establishing semi-automated execution of these searches while also providing an option to run 
MSBooster and Percolator (instead of PeptideProphet)  to further improve the sensitivity of 
identification of variant peptides  (Figure 8A).  

In the first stage pass, with the "write sub mzML" option enabled, FragPipe utilizes 
MSFragger85,129 for mass calibration, search parameter optimization, and database searching. 
Following this, FragPipe applies MSBooster130 to compute the deep-learning scores130, 
Percolator131 for PSM rescoring, ProteinProphet132 for protein inference, and Philosopher for FDR 
filtering. Subsequently, FragPipe generates new mzML files, which include the scans that did not 
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pass the FDR filtering (default is 1%) and those with a probability higher than a predefined 
threshold (default is 0). 

In the second search, as the mass spectral files have already been calibrated and only  
scans that remained unidentified in the first search have been retained, the mass calibration 
should be disabled. Moreover, Percolator modeling might fail in the second pass due to a lack of 
sufficient number of high-scoring PSMs. Therefore, FragPipe lets Percolator reuse the model from 
the initial pass. FragPipe then generates a new workflow file containing optimized parameters, 
and a new manifest file with the new (subset) mzML files specified for the second-pass search. 
The user is merely required to load these two files without needing any further adjustments. 

Using the new GUI features, we observe comparable coverage for both the command-line 
and automated GUI implementations of the 2-stage search with a slight increase in numbers of 
identifications observed for datasets processed with MSBooster and Percolator (Figure 
S41,Table S8). The ratio differences between variant and reference Cys peptide are comparable  
(Figure 8B). 

 

 
Figure 8. 2-stage search implemented into FragPipe GUI with Percolator rescoring A) 2-stage search 
incorporation into FragPipe GUI workflow. B) Heavy to light ratios (H:L) from triplicate datasets comparing 
identifications from reference and variant searches; mean ratio value indicated, dashed lines indicate 
ground-truth log2 ratio, statistical significance was calculated using Mann-Whitney U test, * p < 0.05, ** p < 
0.01, ns p > 0.05. Data provided in Table S8. 

 
DISCUSSION 

SAAvs are a ubiquitous feature of human proteins, which remain under sampled in 
established proteomics pipelines. Here, we merged genomics with mass spectrometry-based 
chemoproteomics to establish chemoproteogenomics as an integrated platform tailored to 
capture and functionally assess the missense variant cysteinome. Our chemoproteogenomics 
study is distinguished by a number of features including: (1) genomic stratification of the predicted 
pathogenicity of acquired cysteine residues, (2) cell-line paired custom combinatorial search 
databases, (3) FragPipe enabled 2-stage database search platform ensuring class-specific FDR 
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estimation, and (4) capacity to pinpoint both redox-sensitive and ligandable genetic variants 
proteome-wide. To facilitate widespread adoption of our approach, including for applications 
beyond the study of the variant cysteinome, the user-friendly GUI-based FragPipe platform now 
features a robust semi-automated version of our 2-stage  search (Figure 8). 

To build chemoproteogenomics, we started by analyzing publically available datasets in 
Clinvar, COSMIC, and dbSNP, which revealed that cysteine acquisition is a ubiquitous feature of 
human genetic variation, which predominates in the context of DNA damage repair responses. 
The instability of CpG motifs is a key driver of bulk cysteine acquisition, which occurs largely hand-
in-hand with bulk arginine depletion, across both cancer genomes and healthy genomes and rare 
and common variants. Many colon cancer cell lines and other MSI high cell lines are particularly 
enriched for cysteine acquisition—however, nearly all of the acquired residues in these lines are 
not driver mutations, which complicates their use as models for assessing the potentially 
druggability of variants with established clinical connections and highlights the value of future 
efforts to analyze additional missense variant rich cell lines and perform CRISPR-Cas9 base 
editing to engineer variants of interest into endogenous loci35,133–136. 

Armed with a set of variant rich cell lines, we next generated combinatorial SAAV-peptide 
databases for cell-line specific SAAVs as identified in cell-line matched whole exome and 
transcriptome datasets. In total, across 11 cell lines sequenced, we identified 1,453 missense 
variants, of which 116 led to gain-of-cysteine. Looking towards future iterations of 
chemoproteogenomics, we expect that the use of tumor-normal paired variant calling with tools 
such as MuTect2137 will further decrease the likelihood of false discovery introduced by factors 
such as cell heterogeneity and low read quality—for cell lines that lack matched normal controls, 
we expect that the pairing of publically available datasets (e.g. DepMap, https://depmap.org/) with 
custom sequencing data, will prove another useful strategy to further bolster the quality and 
accessibility of variant-containing databases. Such multi-pronged approaches will likely prove 
most useful when paired with combinatorial custom databases, such as the peptide-based 
databases reported here, which were designed to minimize increased search space complexity 
while also more fully accounting for cell heterogeneity. 
         By building upon prior reports describing 2-stage database searches for class-specific 
FDR control53–55 as a rigorous search strategy that reduces the likelihood that a false positive 
variant peptide detection, here we deployed a 2-stage search  approach in FragPipe, first as a 
custom command-line workflow and subsequently as a user-friendly semi-automated workflow in 
the FragPipe GUI. Enabled by our previously reported isotopically enriched heavy- and light-
biotin-azide capture reagents87, we provide compelling evidence to support the low rates of false 
discovery of variant peptides using the 2-stage search—spurious false discovery of variant 
peptides would easily be detected from MS1 precursor ion ratios that deviate from the expected 
spike-in values (Figure 3,8). Our isotopic labeling strategy also enabled the assessment of the 
ligandability and redox sensitivity of variant peptides. Our discovery of a cysteine in PMPCA that 
exhibits variant-dependent changes in oxidation provides an intriguing anecdotal example that 
supports the future utility of chemoproteogenomics in more broadly characterizing the missense 
variant redox proteome. Given the critical role that disulfides play in protein structure and folding 
and the causal roles for cysteine mutations in human disease, for example the NOTCH mutations 
that cause the neurodegenerative disorder CADASIL138, we expect a subset of these lost 
cysteines could be implicated in altered protein abundance or activity. Through cysteine 
chemoproteomic capture, we identified ligandable variant-proximal cysteines in Census genes 
such as RAD17, including one gain-of-cysteine of uncertain significance in LMNA (R298C). Other 
liganded cysteines proximal to variants of uncertain significance include TJP2 (A906R) and SRRT 
(R415Q). Demonstrating the utility of our approach, we identified a Cys91 (Cys67) as labeled by 
IAA both by proteomics and gel-based ABPP. As this cysteine is shared with the pathogenic HLA-
B27, it is exciting to speculate about the impact of covalent modification on HLA peptide 
presentation. Our application of chemoproteogenomics to screening of a focused library of 
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electrophilic compounds, identified 32 ligandable variant-proximal Cys which demonstrates that 
cysteine ligandability can be assessed proteome-wide in a proteoform-specific manner.  

Looking beyond our current study, we anticipate multiple high value applications for 
chemoproteogenomics. Application to immunopeptidomics should uncover additional covalent 
neoantigen sites, analogous to the recent reports for Gly12Cys KRAS124,139. Pairing of 
chemoproteogenomics with ultra-deep offline fractionation should further increase coverage and 
allow delineation of variants that alter protein stability, including the numerous high CADD score 
acquired cysteines, which we find were underrepresented in our proteomics analysis when 
compared to genomic identification. Inclusion of genetic variants beyond SAAVs will allow for 
capture of additional therapeutically relevant targets that result from indels, alternative 
splicing39,140, translocations, transversions, or even undiscovered open reading frames such as 
microproteins141,142. Thus chemoproteogenomics is poised to guide discovery of proteoform-
directed therapeutics.  
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