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ABSTRACT

Cancer genomes are rife with genetic variants; one key outcome of this variation is gain-of-
cysteine, which is the most frequently acquired amino acid due to missense variants in COSMIC.
Acquired cysteines are both driver mutations and sites targeted by precision therapies. However,
despite their ubiquity, nearly all acquired cysteines remain uncharacterized. Here, we pair
cysteine chemoproteomics—a technique that enables proteome-wide pinpointing of functional,
redox sensitive, and potentially druggable residues—with genomics to reveal the hidden
landscape of cysteine acquisition. For both cancer and healthy genomes, we find that cysteine
acquisition is a ubiquitous consequence of genetic variation that is further elevated in the context
of decreased DNA repair. Our chemoproteogenomics platform integrates chemoproteomic, whole
exome, and RNA-seq data, with a customized 2-stage false discovery rate (FDR) error controlled
proteomic search, further enhanced with a user-friendly FragPipe interface. Integration of CADD
predictions of deleteriousness revealed marked enrichment for likely damaging variants that result
in acquisition of cysteine. By deploying chemoproteogenomics across eleven cell lines, we identify
116 gain-of-cysteines, of which 10 were liganded by electrophilic druglike molecules. Reference
cysteines proximal to missense variants were also found to be pervasive, 791 in total, supporting
heretofore untapped opportunities for proteoform-specific chemical probe development
campaigns. As chemoproteogenomics is further distinguished by sample-matched combinatorial
variant databases and compatible with redox proteomics and small molecule screening, we
expect widespread utility in guiding proteoform-specific biology and therapeutic discovery.

INTRODUCTION

The average human genome is rife with sequence variation and differs from the reference at
roughly 3.5 million sites®. This profound genetic variation gives rise to human diversity and
disease. While the fraction of single nucleotide variants (SNVs) that occur in protein-coding make
up a small fraction of all known variants, most known disease-causing mutations are found in
protein coding sequences. Nearly all (>98%) of nonsynonymous protein-coding SNVs are
missense variants that result in the substitution of single amino acids?. There are over 2 million
coding mutations that have been identified in human cancers (Catalogue of Somatic Mutations
[COSMIC] database), of which >90% are missense variants®4. However, only a tiny fraction of
these genetic variants (~3,400) have been identified as putative missense driver mutations® that
confer selective growth advantages to cancer cells with the remaining mutations acting as
“‘passengers.”

Quite surprisingly given the relative rarity of cysteine (2.3% of all residues in a human
reference proteome)®, cysteine is the most commonly acquired amino acid due to somatic
mutations in human cancers’. Given the unique chemistry of the cysteine thiol, including its
nucleophilicity and sensitivity to oxidative stress, a subset of these residues almost
unquestionably have a substantial impact on protein function. Exemplifying this paradigm, a
number of driver mutations are gained cysteines, including Gly12Cys KRAS Tyr279Cys SHP2,
Ser249Cys FGFR, and Arg132Cys IDH1822, A likely reason for the ubiquity of cysteine acquisition
is the comparative instability of CpG motifs; C-T transitions are nearly ten times more common
than other missense mutations in cancer®®, and these transitions should favor gain-of-cysteine
codons.

Due to its nucleophilicity and sensitivity to alkylation, cysteine residues have emerged as
attractive sites to target with chemical probes. Covalent compounds can access small and poorly
defined binding sites and can efficiently block high-affinity interactions (e.g. protein-protein
interactions) or compete with high concentrations of endogenous biomolecules (e.g. ATP). There
are numerous examples of cysteine-reactive clinical candidates and drugs, including the
blockbuster covalent kinase inhibitors (e g. Afatinib and Ibrutinib*¢ ) and covalent compound
that react with the Gly12Cys mutated oncogenic form of the GTPase KRAS (e.g. ARS-1620 and
sotorasib®1’71%), a protein previously thought to be undruggable.
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Mass spectrometry-based chemical proteomic methods, including those developed by our
lab, have begun to unlock the therapeutic potential of the cysteinome. By capturing and enriching
cysteines using highly reactive chemical probes, such as iodoacetamide alkyne (IAA) and
iodoacetamide desthiobiotin, the studies have assayed the ligandability of upwards of 25% of all
cysteines in the human proteome?>2°. Cysteine chemoproteomics has even enabled the
discovery of new lead molecules that target specific cysteines, including JAK®*°, SARM13,
PPP2R1A%*, XRCC5%*, NRBO01%*%, and pro-CASP8?°. Several new strategies have made
substantial inroads into stratifying cysteine functionality to achieve function-first readouts of the
likelihood of a covalent modification altering the labeled protein, including quantifying intrinsic
cysteine nucleophilicity?®, by pairing of chemoproteomics with CRISPR-base editing®®, by
performing proteomic stratification of covalent-modification induced altered protein complexes®,
and our own work combining computational predictions of genetic pathogenicity with cysteine
chemoproteomics?’.

Single amino acid variants (SAAVs) encoded by missense mutations, including those that
result in acquisition of cysteine, are almost universally missed by chemoproteomic studies. A key
reason for this gap is that most genetic variants are not found in reference protein sequence
databases used to identify peptides from acquired tandem mass spectrometry (MS/MS) data?’-
2% Understanding whether a genetic variant is translated into protein is a critical step for
characterizing the functional impact and therapeutic relevance of genomic variation.
Proteogenomic studies that implement custom variant-containing sequence databases for search
have enabled proteome-wide detection of protein coding variants, including SAAVs and splice
variants®*3, When compared to variant calling at the genomic level, the coverage of these studies
remains comparatively small, spanning tens to hundreds of peptides, with the exception of recent
studies employing ultra deep fractionation**4° resulting in thousands of identified variants. These
studies all share general data processing pipelines. Variant calling is performed on next-gen
sequencing (NGS) data, then customized databases featuring both canonical protein sequences
and sequences encoding SAAV-, insertion/deletions (indels)-, or splice variant-proteins are
generated, using customized tools, such as Spritz**, CustomProDB*/, Galaxy-P*, and
sapFinder*®. While targeted proteomics methods, such as parallel reaction monitoring (PRM)
have enabled focused monitoring of high value variant-containing peptides®, including encoding
driver mutations, the broader landscape of translated SAAVs remains to be fully explored.

There are two central complexities to these pipelines that have only recently begun to be
addressed. The first challenge is that, by relying on exome-only sequencing and short read
sequencing, the relative proximity of two or more variants in the same gene (whether they are on
the same or opposite chromosomes) is not typically apparent. A notable exception is the recent
integration of long read sequencing for de-novo database construction with sample-specific
proteomics to characterize novel protein isoforms®. Consequently, multi-variant peptides are
typically not detected by most proteogenomics workflows that rely on databases featuring either
single-each or all-in-one SAAV-containing proteins. Such search strategies also introduce higher
chances of false positive identification®. All possible cancer-derived aberrant peptide sequences,
reflecting increased genetic complexity of tumor genomes, increases the size of the custom
databases and thus search spaces. One solution to the false discovery rate (FDR) challenge is
to calculate a class-specific FDR (separating the FDR calculations for the variant-containing
peptides and reference peptides)®2. An alternative strategy to ensure class-specific FDR control
is to perform a 2-stage database search®3. In this strategy, the first first search of acquired MS/MS
spectrais performed against a reference database of canonical protein sequences. Subsequently,
peptide to spectrum (PSM) matches identified with a certain high level of confidence (e.g. passing
1% FDR) are removed, and the remaining spectra are then searched against a variant-containing
database. While implementation of such strategies in prior proteogenomic studies highlights the
importance of rigorous statistical validation of identified variant-containing peptides®*-°, the
requirement for customized pipelines has so far limited widespread adoption.
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Here we develop and deploy chemoproteogenomics as an integrated platform tailored to
capture the missense variant cysteinome. Chemoproteogenomics unites a missense-variant
focused proteogenomic pipeline with mass spectrometry-based cysteine chemoproteomics. By
mining publically available datasets, including COSMIC, dbSNP, and ClinVar, we reveal that gain-
of-cysteine variants are a ubiquitous consequence of genetic variation. We further reveal that
DNA repair deficient cell lines are particularly enriched for acquired cysteines, together with a
general high burden of rare and predicted deleterious variants. Guided by these discoveries, we
generate combinatorial cell-specific custom databases built from whole exome and RNA-Seq data
for eleven cell lines. Chemoproteogenomic analysis with a user-friendly FragPipe computational
platform, extended to support 2-stage database search and FDR estimation, identified >1,400
total unique variants, including 629 chemoproteomic enriched variant-proximal cysteines and 103
gain-of-cysteines. Chemoproteogenomics also robustly identifies ligandable SAAVs that alter
cysteine oxidation state and outperforms bulk proteogenomic analysis for capture of SAAVs with
lower variant allele frequency. The utility of chemoproteogenomics is further showcased through
our identification of iodoacetamide-labeled Cys67 (Cys91) in the highly variable peptide binding-
groove of HLA-B. In sum, chemoproteogenomics sets the stage for enhanced global
understanding of the functional and therapeutic relevance of the missense variant proteome.

RESULTS

High missense burden cancer cell lines are rich in acquired cysteines, including in census
genes. Our first step to realize variant-directed chemoproteomics was to mine existing publicly
available missense repositories to assess the scope of acquired cysteines present in cancer
genomes (COSMIC) and healthy genomes (dbSNP) (Figure 1A). By doing so, we sought to
achieve three goals: (1) validate prior reports of high cysteine acquisition in cancer 7°657 (2)
determine whether cysteine acquisition is a privileged feature of cancer genomes, and (3)
establish a panel of variant rich cell lines. We analyzed publicly available sequencing data of
1,020 cell lines, found in the Catalogue of Somatic Mutations in Cancer Cell Lines Project
database®"° (COSMIC-CLP, release v96), to establish a panel of high mutational burden tumor
cell lines; our hypothesis was high missense burden cell lines would be enriched for acquired
cysteine SAAVSs, including those found in Census genes® and residues that are driver mutations.
The top 15 cell lines with the highest mutational burden (Figure 1B, S1A, Table S1) encode
77,693 total unique missense variants, which represents ~18% of all uniqgue missense variants in
COSMIC-CLP.

We next evaluated whether these identified missense-rich cell line genomes were
similarly enriched for gained cysteine SAAVs. We calculated the net gain amino acid changes
(total gained minus total lost) encoded by all coding missense variants in this cell line panel
(Figure S2), which revealed a marked enrichment for acquired histidines and cysteines together
with loss of arginine, both for the aggregate cell line panel and for individually analyzed cell line
datasets (Figure S3). As calculations of net gain can fail to distinguish high versus low missense
burden cell lines, we also further stratified these cell lines based on total gained and total lost
amino acids (Figure S1B, S4, S5), which further substantiated the enrichment for gain-of-cysteine
across all of the top 15 missense variant burden cell lines analyzed (Figure 1C, S1B). This
marked cysteine enrichment in cancer cell line genomes is consistent with previously reported
aggregate analysis, not stratified by cell line, of all available COSMIC missense data’%%’. Our
own analysis of all COSMIC-CLP mutations shows cysteine as the second most gained residue
(Figure 1D). The genomes of the top 15 missense cell lines encoded 4,725 total gained cysteines,
found in 3,688 genes. Showcasing the potential therapeutic relevance of this set, <10% of these
identified genes have been targeted by FDA approved drugs?©! (Figure 1E). Notably, 219/738
Census genes (v98) were found to harbor one or more gained cysteines, including NRAS (G12C),
which is found in the Molt-4 cell line; TP53 (R273C) found in the KARPAS-45 cell line; GNAS
(R218C) in the CW-2, SNU-175, and HT-115 cell lines; FBXW?7 (R505C) in Jurkat and KARPAS-
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45 cell line; ASXL1 (W796C) found in HCT-15 cell line, and KEAP1 (Y33C) found in the Hec-1
cell line (Table S1).

dMMR cell lines are enriched for SAAVSs, including acquired cysteines. Cancer genomes
display characteristic patterns of mutations, or signatures, that have developed from biological
processes specific to the course of the cancer®?®. Endogenous and exogenous sources of DNA
damage, left uncorrected due to faulty repair pathways, often lead to high tumor mutational
burdens. Microsatellite instability (MSI) is a hypermutable phenotype caused by deficiency in
mismatch repair (dAMMR). High MSI tumors have higher mutational burdens; the converse is not
true as high mutational burden tumors do not always display MSI%4. Eight out of fifteen of the top
missense burden cell lines reported in COSMIC were observed to be derived from colorectal
carcinoma (CRC) (Figure 1B, S3). As ~15% of CRCs are reported to have elevated MSI®% this
high CRC missense burden is to be expected®%8, While Jurkat, Molt-4 and Hec-1B cells are not
CRC, both have previously been reported as dMMR with mutations in mismatch repair
machinery® 70, Unexpectedly, MeWo cells, which are derived from metastasized melanoma and
reported to be microsatellite stable (MSS)"%, also exhibited a high burden of missense mutations.
The majority of missense rich cell lines, including the dMMR lines were observed to encode
between 200 and 500 acquired cysteine SAAVs (Figure S1B). However, a significant depletion
of gained cysteines relative to total variant burden was observed for MeWo and SW684 (Figure
1C).

Acquired cysteines are ubiquitous in both healthy and diseased genomes. We next asked
whether this marked enrichment for gained cysteines was specific to cancer genomes or a more
universal consequence of human genetic variation, with the overarching goal of facilitating efforts
to pinpointing acquired cysteines with therapeutic relevance. Complicating matters, gain-of-
cysteine missense variants are also expected to be ubiquitous in healthy genomes, due to the
comparative instability of CpG—a key consequence of this instability is the frequent loss of arginine
codons (4/6 CG dinucleotides)’?. We aggregated and quantified the amino acid changes resulting
from common missense variants reported by dbSNP’3, a repository of single nucleotide
polymorphisms and ClinvVar’, a repository of variants with reported pathogenicity. We find that
cysteine acquisition is the third most common consequence of missense variants identified in
dbSNP (Figure 1D, Table S1) for common variants—common variants are defined by NCBI as
of germline origin and/or with a minor allele frequency (MAF) of >=0.01 in at least one major
population, with at least two unrelated individuals having the minor allele. Analogous stratification
of variants reported by ClinVar also revealed a preponderance of gained cysteines compared with
lost cysteines, albeit to a more modest degree than that observed for cancer genomes (Figure
S6 and Table S1). For the pathogenic variant subset of ClinVar, both gain- and loss-of-cysteine
and gain-of-proline were frequently observed (Figure S6).

An expanded cell line panel incorporates high value acquired cysteines. Across the >2
million missense variants reported in COSMIC, 52 acquired cysteines are reported as putative
driver mutations (dN/dS values)”™ in the Cancer Mutation Census (Table S1). Consequently,
nearly all acquired cysteine SAAVs are of uncertain functional significance for tumor cell growth
and survival. Given that one of our key objectives is to enable rapid proteomic identification and
subsequent electrophilic compound screening of functional variants, we next stratified the top
missense variant cell lines based on known driver mutations and damaging variants. We find that
top missense cell lines that are readily available for purchase encode NRAS G12C, KRAS G12D,
PIK3CA E545K, and TP53 R248Q variants among other known driver mutations (Table S1).
Given the considerable interest in targeting G12C KRAS, we opted to add several KRAS mutated
cell lines to our panel (MIA-PACA-2, H2122, and H358) in order to favor detection of the G12C
peptide. Notably, the smoking-associated mutational signature is C—A/G—T’®, which should
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favor gain-of-cysteines. Therefore, we additionally sought to test whether smoking associated
NSCLC-derived H2122 and H1437 adenocarcinoma cell lines would be enriched for acquired
cysteines when compared to other proficient mismatch repair (PMMR) cell lines, including lung
cancer cell lines (H358 NSCLC and H661 metastatic large cell undifferentiated carcinoma (LCUC)
lung cancer cell lines). Lastly, we opted to include CACO-2 cells, an MSS CRC cell line, to test
the feasibility of capturing driver mutations located proximal to chemoproteomics detectable
cysteines—Caco-2 cells express mutant SMAD4 (D351H), a variant implicated in blocking SMAD
homo- and hetero-oligomerization’” and located proximal to two previously chemoproteomics
detected cysteines (C345 and C363)21%2. Qur prioritized cell line panel features 11 cells lines in
total (2 female and 9 male) spanning 6 tumor types and encoding 22,559 somatic variants and
1,296 somatic acquired cysteines, as annotated by COSMIC-CLP (Figure 1F, Table S1-S2), with
aggregate enrichment for gained cysteines observed for the entire panel (Figure S7, S8). Of the
proteins that harbor gained cysteines, 486 are Census genes and 5% are targeted by FDA
approved drugs (Table S1).

dMMR cell lines are enriched for rare predicted missense changes, including acquired
cysteines. Given the preponderance of acquired cysteine SAAVs observed across COSMIC,
Clinvar, and dbSNP, we postulated that cancer genomes would be enriched for both rare and
common gain-of-cysteine mutations. To both test this hypothesis and enable the building of
sequence databases for proteogenomics search, we sequenced exomes and RNA of our cell
lines and subjected NGS reads to variant-calling (Figure 2A, Figure S9). For all 11 cell lines
sequenced, we identified on average 82% of the variants reported in COSMIC-CLP and 70% of
missense mutations reported by Cancer Cell Line Encyclopedia (CCLE)" databases (Table S2).
Driver mutations (CMC significant, dN/dS g-values) identified include KRAS G12C for MIA-PACA-
2, H358, and H2122 cell lines, PIK3CA E545K in HCT-15, and FBXW7 R505C in Jurkat cells
(Table S2). 9,190 total rare variants were identified that had been not previously reported in
COSMIC-CLP, including 435 variants encoding acquired cysteines (Table S2).

As with our analysis COSMIC-CLP (Figure 1B), we detected a high missense burden for
the dMMR cell lines compared to the pMMR cell lines. MeWo cells were an exception, with a
missense burden comparable to that of the dMMR cell lines (Figure 2B). Analysis of DNA damage
repair-associated genes revealed specific mutations (Table S2), including DDB2 R313* in MeWo
cells, which provide an explanation for the previously unreported high missense burden—
inactivating mutations in DDB2 are implicated in deficient nucleotide excision repair’®.

We next subsetted the data into rare and common variant categories, using dbSNP
common variants (04-23-2018 00-common_all.vcf.gz) (Table S2)°. The dMMR cell lines,
together with the MeWo cells, have proportionally more rare variants compared to common
variants (Figure 2B), irrespective of sequencing coverage (Figure S10). Further SAAV analysis
revealed net gain of histidine, isoleucine, and cysteine as the most frequent amino acids gained
across the common and rare subsets (Figure 2C). We find that cysteine acquisition is a more
frequent consequence of common variants detected in pMMR cell lines (Figure 2D).

In contrast with the common variants, the net gained SAAV signatures encoded by rare
variants differed markedly between dMMR and pMMR cell lines (Figure 2D, S11-13). No
significant difference between the number of gained cysteines was observed for the smoking-
associated lung cancer cell lines (Figure S14). By contrast, in the dMMR cell lines, we detected
a sizable increase, when compared to the pMMR cell lines, of acquired rare SNVs encoding Cys,
along with His, lle, Asn, Tyr, and Tryp (Figure 2D, Figure S11). Beyond cysteine acquisition, the
SAAV signature for MeWo cells was observed to be distinct, with pronounced gain-of rare Phe
and Lys detected (Figure S11-13), consistent with UV radiation induced pyrimidine dimers, which
result in gain-of F and K (Figure S15, Table S2). These findings together with our analysis of the
top missense cell lines in COSMIC-CLP indicate that previously reported widespread cysteine
acquisition in cancer genomes is predominated by mismatch repair deficient cell lines.
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Figure 1. Acquired cysteines are prevalent across cancer genomes, particularly for high missense
burden cell lines. A) The full scope of acquired cysteines in the COSMIC Cell Lines Project (COSMIC-
CLP, cancer.sanger.ac.uk/cell_lines) (v96)585° and dbSNP (4-23-18)"2 were analyzed. B) 1,020 cell lines
stratified by number of gained cysteines and total missense mutations; color indicates cancer type for top
15 highest missense count cell lines. C) Top 15 cell lines with highest missense burden from panel B; linear
regression and 95% confidence interval shaded in gray. D) Net missense mutations (gained-lost) from
COSMIC-CLP (v96) and common SNPs (dbSNP 4-23-18). E) Overlap of genes with acquired cysteines in
top 15 subset from panel B with Census genes and targets of FDA approved drugs. F) Panel of cell lines
used in this study with MMR status (dMMR= deficient mismatch repair, pMMR=proficient mismatch repair).
Data found in Table S1.
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Rare gained cysteines in dMMR cell lines are enriched for high CADD scores. With the
overarching goal of facilitating identification of likely functional variants, we next stratified the
predicted deleteriousness of the identified missense variants (Figure 2E, Table S2). We focused
on the Combined Annotation Dependent Depletion (CADD) score, due to its high reported
specificity and sensitivity”® and our prior findings that showed strong association between cysteine
functionality and high CADD score?’. Unsurprisingly, our analysis revealed higher CADD scores
for rare variants compared to common variants, across the cell line panel (Figure 2E, Table S2).
More unexpectedly, we observed a more marked increase in the predicted pathogenicity of the
rare variants detected in dMMR cell lines compared with pMMR cell lines (the top 1% most
predicted deleterious mutations have CADD phred-scaled scores > 20) (Figure 2F-G, S16-17).
This enrichment for high CADD score rare variants held true for the MeWo cells. Further
stratification by specific gained or lost amino acids (Figure 2H, Figure S18-21), revealed that
gained cysteine missense are the most significantly enriched for high predicted deleterious scores
across all pMMR and dMMR cell lines (Figure S19, Table S2)—a notable exception are the
MeWo cell line variants for which gain-of Phe, Lys, and Leu codons are the most high CADD
scoring variants (Figure S22).

As only a small fraction of the acquired cysteines are known driver mutations, we next
restricted our analysis to include only the 388 total variants localized to hotspot mutations, as
annotated by CCLE and The Cancer Genome Atlas (TCGA). We find that gain of cysteine within
TCGA hotspot mutations is markedly enriched for high CADD score variants (Figure S21).
Notable high CADD score hotspot acquired cysteines include the tumor suppressor FBXW7
R505C in Jurkat cells, the metalloprotease ADAMTS1 R604C in Molt-4 cells, and exrin-associated
protein SCYL3 R61C in MeWo cells. 98% (50/51) of these cysteines are gained due to loss of
arginine, which aligns with the observed parallel enrichment for high CADD scores at loss of
arginine hotspot variants (Figure S23).

dMMR rare variants are enriched for proximity to known functional sites. To further broaden
our understanding of the functional landscape of cysteine acquisition, we also analyzed proximity
to known functional sites and sites of post translational modification (Table S2). We find that the
dMMR rare variant set is enriched for known proximal active site/binding site residues (Figure
2l). Intriguingly, analysis of known PTM modified sites reported by Phosphosite® revealed a
significant association between arginine methylation sites and rare variants in dMMR cell lines
(Figure 2I). These findings are consistent with loss of arginine as a frequent consequence of
exonic CpG mutability’?8! together with roles of MMR in protecting against CpG associated
deamination®?. As 60% of the gained cysteines in our data resulted from loss of arginine (Figure
S24), we expected that many of these variants will result in altered PTM status (Figure 2J).
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Figure 2. dMMR cell lines are enriched for rare, predicted deleterious gain-of-cysteine mutations. A)

Sequencing portion of the ‘chemoproteogenomic’ workflow to identify chemoproteomic detected variants—
extracted genomic DNA or RNA from cell lines undergo sequencing followed by variant calling using
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Platypus (v0.8.1)8% and GATK-Haplotype Caller (v4.1.8.1)84 for RNA and exomes respectively and predicted
missense changes were computed. B) Total numbers of missense mutations identified from either RNA-
seq or WE-seq; stripe vs solid denotes common and rare variants, red text indicate dMMR cell lines. C) Net
amino acid changes for all cell lines combined. D) Totals of gained and lost cysteine in each cell line
separated by rare and common variants, dashed line indicates dMMR cell lines. E) Scheme of CADD score
analysis for two dMMR and non-dMMR cell lines. F) Distribution of CADD scores for indicated variant
grouping; statistical significance was calculated using Mann-Whitney U test, **** p < 0.0001. G) Empirical
cumulative distributions (ECDF) were computed for CADD scores with indicated grouping; statistical
significance was calculated using two-sample Kolmogorov-Smirnov test, **** p < 0.0001. H) CADD score
distributions for cysteine gained amino acid indicated separated by grouping; statistical significance
between gained Cys values was calculated using Mann-Whitney U test, **** p < 0.0001. I) Proportion of
variants belonging to the indicated sites; AS/BS = in or near active site/binding site as annotated by
UniProtKB or Phosphosite; statistical significant calculated using two-sample test of proportions, *** p <
0.001, **** p < 0.0001, ns p > 0.05. J) Amino acid changes at protein methylation sites as identified by
Phosphosite. Data found in Table S2.

Variant peptide identification enabled by MSFragger 2-stage database search and false
discovery rate (FDR) estimation. To enable chemoproteomic detection of acquired cysteine
SAAV-containing peptides and SAAVs found in peptides with canonical cysteines, we next
established a customized proteogenomics pipeline (Figure 3A, B). Motivated by the prior report38
that demonstrated proteogenomic sample searches performed with sample-specific databases
both improved coverage (~45% more variants) and decreased rates of SAAV peptide false
discovery, we generated cell line-specific variant peptide databases from HEK293T RNA-seq data
(Figure 3A, Table S3). Next, to afford a reduction to the likelihood that a variant peptide will be
mismatched to wild-type spectra®®, we established a 2-stage database search and FDR control
scheme (Figure 3B), usingMSFragger (v3.5)/Philosopher®8 command line pipeline within
FragPipe computational platform (detailed in Methods).

We then subjected our chemoproteogenomics pipeline to benchmarking by generating a
set of high coverage cysteine chemoproteomics datasets (Figure 3B) in which cell lysates labeled
with iodoacetamide alkyne (IAA)? and conjugated isotopically labeled ‘light’ (*Hs) or’ heavy’ (He)
biotin-azide reagents®’ (+6 Da mass difference between the reagents) were combined pairwise
in biological triplicate at different H/L ratios (1:1,10:10, 1:4, 4:1, 1:10, and 10:1). By searching
these datasets using our 2-stage search, we sought to validate the accuracy of variant
identification. Peptide quantification using lonQuant®, following the workflow shown in Figure
3A, revealed MS1 intensity ratios for both canonical and variant peptide sequences that matched
closely with the expected values (Figure 3C, Table S3). We also compared the retention times
of the heavy- and light-peptides and observed an ~2-3 sec shift for the deuterated heavy
sequences for both the variant and canonical peptide sequences (Figure 3D, Table S3). These
retention time shifts are consistent with our previous study®’ and with prior reports®°t, Analogous
to studies that utilize isotopically enriched synthetic peptide standards to validate novel peptide
sequences®”%, the observed co-elution of both heavy and light variant peptides provides further
evidence to support the low FDR of our data processing pipeline. Lastly, the high concordance
between observed and expected MS1 ratios provides compelling support for the use of the heavy
and light biotin azide reagents in competitive cysteine-reactive compound screens, in which
elevated MS1 intensity ratios are indicative of a compound modified cysteine.
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Figure 3. Variant peptide identification implementing an MSFragger-search pipeline A) 2-stage
MSFragger-enabled variant searches—variant databases are generated from non-redundant reference
protein sequences that are in-silico mutated to incorporate sequencing-derived missense variants followed
by 2-stage MSFragger/PeptideProphet search to identify confident variant-containing peptides. First, raw
spectra are searched against a normal reference protein database, confidently matched spectra (passing
1% FDR) are removed and remainder spectra are searched with a variant tryptic database. B)
Chemoproteomics workflow to validate heavy and light biotin®”. HEK293T cell lysates were labeled with
pan-reactive iodoacetamide alkyne (IAA) followed by ‘click’ conjugation onto heavy or light biotin azide
enrichment handles in known ratios. Following neutravidin enrichment, samples are digested and subjected
to MS/MS analysis. C) Heavy to light ratios (H:L) from triplicate datasets comparing identifications from
reference and variant searches; mean ratio value indicated, dashed lines indicate ground-truth log2 ratio,
statistical significance was calculated using Mann-Whitney U test, ** p < 0.01, ns p > 0.05. D) Retention
time difference for heavy and light identified peptides for reference and variant-searches; mean value
indicated, statistical significance was calculated using Mann-Whitney U test, ns p > 0.05. Data found in
Table S3.

Chemoproteomics with combinatorial databases improves coverage of acquired cysteines
and proximal variants. We next set out to apply our validated search scheme for
chemoproteogenomic variant detection (Figure 4A). Inspired by the recent report® of
combinatorial databases to improve detection of proximal SAAVs—we expect such variants to be
prevalent in heterogeneous cell populations, such as a mismatch repair deficient tumor cell line—
we established an algorithm (Figure S27) to generate all combinations of SAAVs derived from
both RNA/WE-seq data within 30 amino acids flanking the variant site. These combinations were
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then converted into a peptide FASTA database containing two tryptic sites flanking each variant
site (Figure 4B). On average, >4,500 total multi-variant peptide sequences were generated per
cell line. Our approach differs from most prior custom database generators, which offer ‘Single-
Each'#7:92.9%.97 or ‘All-in-One’ outputs®® for the former, all protein sequences harbor one SAAV
each; for the latter, each protein harbors all SAAV detected. While establishing our combinatorial
databases, we observed that a small number of highly polymorphic genes (Table S4) markedly
increased database size—exemplifying this increased complexity, upwards of 1 billion
combinations (2"n -1) are possible for protein sequences with 30 or more SAAVs. To determine
the practical limit for the number of SAAVs/protein, we performed test searches where we limited
the numbers of variants to combine (Table S4). We find that nearly all variants are retained with
databases that include combinations for proteins with up to 25 variants (Table S4). For the small
set of highly polymorphic protein sequences (e.g. HLA, MUC, and OBSCN, (Table S4), Single-
Each sequences were searched (Figure S27).

Next, for all 11 sequenced cell lines (Table S2), we prepared and acquired a set of high
coverage cysteine chemoproteomics datasets (Figure 4A). In aggregate, 32,638 total canonical
cysteines were identified on 7,233 total proteins, with 9,349 cysteines unique to individual cell
lines and 25,223 shared across the entire dataset (Figure S25, Table S4). 2,318 cysteines on
1,406 total proteins had not previously been reported in the CysDB database? (Figure S26). 2-
stage MSFragger search using our sample specific combinatorial databases identified a total of
59 gained cysteines and 302 SAAVs located proximal to 343 reference cysteines (Figure 4C,
Table S4). 74 canonical sequence cysteines located proximal to variants and 60 acquired
cysteines had not been previously reported in CysDB (Figure 4D)¥. Notable examples of
acquired cysteine variants not reported in CysDB include acquired cysteines KRAS G12C and
PRKDC R2899C. Consistent with the aforementioned genomic data findings, we observe arginine
as the most frequently lost out of detected Cys-proximal SAAVs (Figure 4E). We detect 15 total
cysteines in peptides that harbor gain/loss of arginine that were previously too long or too short
to be identified (Figure 4F, Table S4). For the cysteine protease cathepsin B (CTSB), we identify
Cys207 in HCT-15 cells which was not identified in CysDB—a K209E mutation that creates a
longer tryptic peptide sequence compared to reference sequence (‘CSK to
‘CSEICEPGYSPTYKQDK’). In the well-studied Jurkat proteome, we detect stromal cell derived
factor 2 SDF2, Cys88, which is also not reported in CysDB, is found in a peptide harboring a
proximal R93Q mutation that creates a longer, detectable peptide sequence (‘CGQPIR’ to
‘CGQPIQLTHVNTGR’). Showcasing the utility of the combinatorial exome and RNA-seq SAAV
databases, we identify six multi variant-containing peptides (Table S4). One noteworthy example
is the peptide L86P/F92C peptide from the mitochondrial enzyme HADH, which catalyzes beta-
oxidation of fatty acyl-CoAs—two variants, one from RNA-seq and one from exome-seq were
detected in this peptide. For the 1105V, A114V peptide from enzyme GSTP1, the 1105V variants
were flagged as bad quality reads from RNA-seq data but passed filters from the exome-seq data
(Table S4). Of these combination variants, two are exome-seq only derived variants that span
exon boundaries.

Chemoproteomic identified variants are in diverse functional sites across protein families.
We next asked whether the chemoproteogenomic-identified SAAVs might be of functional
significance. By stratifying the the CADD scores of identified SAAVs, we find that the enrichment
of high CADD score missense variants in the dMMR rare variant subset was maintained for
SAAVs identified by chemoproteogenomics, including for gain-of-cysteine SAAVs (Figure S28,
S29).

As CADD scores only provide a prediction of deleteriousness, we also asked whether any
of the identified variants are located in Census genes or have been reported in Clinvar. We identify
77 variants previously reported in ClinVar (Table S4), with nearly all annotated as benign. A total
of 16 mutations and 7 putative driver mutations (dN/dS p-values) were identified in Census genes.
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One prevalent driver was KRAS G12C, which was identified in several of the cell lines known to
harbor this variant as a driver mutation (MIA-PACA-2 and H358 but not H2122). As KRAS
expression is known to vary across cell lines”, this data suggests both H358 and MIA-PACA-2
cell lines are suitable for chemoproteogenomic target engagement analysis of G12C-directed
compounds. However, as a cautionary example in mapping peptides, we identify several SAAV-
peptides that match to multiple protein sequences, including sequences in human leukocyte
antigens (HLA) and POTE ankyrin domain family proteins (Figure 4G). Most notably, the RHOT2
R425C mitochondrial GTPase peptides in H358 cells have exact sequence similarity to KRAS
G12C peptides; these half-tryptic peptides are also identified in H1437 cells that do not harbor
the KRAS G12C variant.

Chemoproteogenomics failed to capture several key Census gene SAAVs that we
detected on the genomic level (e.g. SMAD4 (D351H) in CaCo-2, FBXWY (R505C) in Jurkat and
CDK®6 (R220C) in Molt-4 cells). Several Census gene SAAVs did, however, stand out due both to
their high CADD scores and proximity to known pathogenic mutation sites. These variants of
interest include MLH1 R385C, RAD17 L557R (proximal Cys551/556), MSN R180C, HIF1A S790N
(proximal Cys800) and CTCF R320C, a likely pathogenic position in this protein (CADD score =
29.4) (Figure 4H, Table S4).

Exemplifying the utility of the chemoproteogenomics to uncover new variants, we find that
20 of the identified SAAVs have not been previously reported in COSMIC, CCLE or ClinVar (Table
S4). One variant of unknown significance, not reported in ClinVar, is HMGB1 R110C labeled in
the Molt-4 cell line (Figure 41) (CADD score = 24.1). Adjacent Cys106 is a cysteine under highly
controlled redox state that is responsible for inactivating the immunostimulatory state of
HMGB1°, We also identify SARS R302H (proximal Cys300;CADD = 32), a mutation in the ATP
binding site of serine-tRNA ligase, which is a tRNA ligase involved in negative regulation of
VEGFA expression®,

Given the comparatively limited set of variants at or proximal to known damaging sites,
we next broadened our analysis to include SAAVs at or proximal to UniProtKB annotated active
sites (AS) and binding sites (BS) (Figure 4J). We find that 27 SAAVs are located within the
permissive range of 10 amino acids of a known functional residue, including 4 active sites and 24
binding sites. Specific examples of high value SAAVs include tRNA synthetase EPRS R1152
(proximal Cys1148; CADD = 33), a mutation known to cause complete loss of tRNA glutamate-
proline ligase activity'®2. Interestingly, EPRS has mTORC-mediated roles in regulating fat
metabolism!%, We also capture a variant proximal to the active site of BLM hydrolase 175T
(proximal Cys73,78; CADD = 27.6), a cysteine protease responsible for BLM anti-tumor drug
resistance®. More broadly, analysis of SAAV location by protein domains, reveals no marked
bias for variants located in specific domain types, with the ubiguitous P-loop NTPase domain as
the most SAAV-rich domain (Figure S30, Table S4).

As cysteines play critical roles in protein structure via disulfide bond formation together
with additional cysteine oxidative modifications'®®, we asked whether identified loss of cysteine
variants (10 in total) were annotated as involved in disulfides. Likely due to the comparatively
small number of loss-of-cys variants, none were observed with disulfide annotations. To further
pinpoint whether any variants are sensitive to oxidative modification, we subjected our previously
reported Jurkat cell redox chemoproteomics datasets to reanalysis!®®. In total, our reanalysis
quantified 7 acquired cysteines and 54 variants proximal to acquired cysteines. For nearly all of
the cysteines quantified both in our reference database searches and now also identified with
proximal variants, we observed a high concordance between variant- and reference sequence
oxidation (R?=0.77). One notable exception was the Mitochondrial-processing peptidase enzyme
(PMPCA) Cys225, for which markedly different cysteine oxidation states were measured for the
reference peptide Cys (~3% oxidation) and variant peptide Cys (~88% oxidation) (Figure 4K).
These data provide evidence that the proximal P226S mutation profoundly impacts Cys225
sensitivity to oxidative modifiers.

13


https://doi.org/10.1101/2023.08.12.553095
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.12.553095; this version posted August 14, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A High mutational B , fri-silic digest
burden cell lines reference protein sequences | Generaleall  {qriany peptide
protein sequences Compute | containing single pOS_SIbl_e database
- : coding missense changes combinations L
(..PEPTIDE... changes of variants PEPTIDE.
..PEPTIDE.. —mm— " PEPTIDE.) EE;E‘;E
..PEPTIDE.... Variant PEPTICE.. :::PEPTIDY“
Cystein \.PEPTIDE.., Calling =%~ __ ...PERTIDE... PERTIDY.
J\; Eo ehment l Cys near saavs memmmma [LPEPTIV. Proteins with resce
nrichmen - -
(1AR) gain-of-Cys SAAY, >25  —— |.peRror)
missense

» .CYSPEPTIDE... C 100 mutations
LT - Rare Exome only Two-stage FDR
o -~ GYSPEPTICE... 124 Rare RNA onl
-LL’ § X = 2 Rare RN Sy e MSFragger search
L“V\ .CYSPERTIDE .. ! 75 Common Exome only “MSFR GGER
r's = Common RNA only
W ! Sy O .CYSPEPTIDY.. © Common RNA&Exome
P S ;
o 3 s0
£T (LAl *
z Click’, c
. D
Digest, @
MS/MS £ 2
Variant search Annotations *
CADD 0
Uniprot § < N
cyspg  “APP Oon, \y’g\ ,Lﬁj' \)?33% Qg?-'\’ & G’& & (5$0 c}rﬂ'o\’,\'
“H @ o XX F T S
&
Unique Cys Unigue Cys (proximal
in Cys DB to SAAV) or gain of Cys E Combined Cell Lines
MLH1 R385C... YAHQMVCT. 601
oS +—
c
CTSB C207 . CSEICEPGYS. . 5 301
A =
RAD17 C551,556 ... FCLPALCR O g e
5 ans o
m U
) Z 30
Putative DLGT E385G . .NVCLEETHGE.
hEIGFEJZt_ngUS EPRSR1152LW QVAVCNVVLW" CINMDFHEWYQSKTVLAPGR
mutations . .
A Amino Acid
F Cys identified due to gain or loss of R/K G Multi-mapping variant-containing peptides
Gene Reference Peptide Identified Peptide Ceil Line Identified Peptide
SDF2 KCGQPIR > WCGOPIGLTHVNTGR H358 KRAS G12C, RHOT2 R425C LIKVVGACGVGK
F'y
CHCHD3 KILQCYR ~ —>  KILQCYHENTHQTLK
P CACO-2  HLA-B K292E, HLA-G M295T, HLA-AK292E R'YTCHVQHEGLPEPLTLR
cpngi  RFSYPVOHFCGGNPSTPIQ A
VQCSDYDSDGSHOLIGTFH — RFSVPYVQHFCGGNPSTPIQVR '
TSLAQLOAVPAEFECIHPEK e H1437  POTEF G973D, POTEE G73D R'CPEALFQPCFLGMESCDIHETTFNSINK
oTCF HMGB1

H
K SP3-Rox

c
8
E?E —
© 2 _
g R"=0.77 @ Annotated Disulfide
CADD =294 CADD =24.1 - ® Gain of Cysteine
7 50
o
§
J . . 2
Annotation / pMMR Common / dMMR Common .pMMRRare.dMMRRare ©
' ' 225 .ii D
- Y/ /. W/ :
L Hilid & " O PMPCA P226S
a0 ] * ~
| [ T O
20
QOXrLALCZNrNOIErQoawOzazkE00OI I CR2ILQRELE 0 25 50 75
» §%ﬁ%ﬁ§§§§§§E§§§§§§§E5§§§§§§ gusgEpssdza Variant Proximal % Cys Oxidation
m501~<'32>4m:cz<;muﬂonIgn:mmon:,I FrEEs1EFe0 2
r oo lolaxdysdatc I LOoRIYN okEgdo0gdngg
Sg2s900::355:-88083¢acra ey Qlzissszgs ¢
T3 3 SxSsixSa ¥YRO0TRFo LEERTOS 2 =l
oLz E%%F§0Eé§%§:&‘ x gu_(nm (SR I (224 @ ames ehi 0 e
o @
= 2 < L
a a £ o . 25 50 s
VUS or Variant Proximal % Cys Oxidation

Variants in/near active or binding sites conflicting pathagenicity

14


https://doi.org/10.1101/2023.08.12.553095
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.12.553095; this version posted August 14, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure 4. Variant peptide identification on tumor cell lines A) Cell lysates were labeled with pan-reactive
iodoacetamide alkyne (IAA) followed by ‘click’ conjugation onto biotin azide enrichment. Samples were
prepared and acquired using our SP3-FAIMS chemoproteomic platform?2223.107 ysing single pot solid phase
sample preparation (SP3)1°¢ sample cleanup, neutravidin enrichment, sequence specific proteolysis, and
LC-MS/MS analysis with field asymmetric ion mobility (FAIMS) devicel®. Experimental spectra are
searched using the custom fasta for variant identification. Sample set includes both reanalysis of previously
reported datasets from Yan et al. (Molt-4, Jurkat, Hec-1B, HCT-15, H661, and H2122 cell line) with newly
acquired datasets (H1437, H358, Caco-2, Mia-PaCa-2 and MeWo cell lines). B) Non-synonymous changes
are incorporated into reference protein sequences and combinations of variants are generated for proteins
with less than 25 variant sites to make customized fasta databases. Details in methods. C) Total numbers
of uniqgue missense variants identified from either RNA-seq or WE-seq or both after using 2-stage
MSFragger search and philosopher validation from duplicate datasets; stripe vs solid denotes common and
rare variants, red text indicate dMMR cell lines Indicated is sequencing source and type of variant. D)
Overlap of identified cysteines from variant searches with cysteines in CysDB database?°. E) Net amino
acid changes for all cell lines combined F) Example of cysteies identified from loss of R/K peptides G)
Examples of multi-mapping variant sites. H) Crystal structure of CTCF indicating detected Cys320 (yellow)
and DNA-binding site (PDB: 5T0OU). I) Crystal structure of HMGBL1 indicating detected Cys110 and nearby
Cys106 (yellow) (PDB: 6CIL). J) Variants identified in or near active and binding sites with CADD score,
common/rare, cell line dMMR/pMMR annotations. K) Re-analysis of SP3-Rox1% oxidation state data in
Jurkat cells. Data found in Table S4.

Assessing how differential expression impacts chemoproteogenomic detection. Our
comparatively modest coverage of SAAVS achieved by chemoproteogenomics (particularly when
compared to our genomics datasets) is on par with the coverage reported by most prior
proteogenomics studies*4353, A notable exception is the recent study by Coon and colleagues
that implemented ultra-deep fractionation to achieve more global coverage of variants*. Inspired
by this work, we next sought to ask whether chemoproteogenomics, with its built in enrichment
step, would enable sampling of variants not detectable by fractionation methods (Figure 5A). We
subjected lysates from HCT-15 and Molt-4 cells, which were chosen based on high rare missense
burden, to tryptic digest, off-line high pH fractionation, and LC-MS/MS analysis. In aggregate
across both cell lines, we identified 8,435 proteins and 149,006 peptides, including 1,069 unique
SAAVs found in 1,352 total peptides using our 2-stage MSFragger search (Figure 5B,S31,Table
Sb). 26 peptides were identified that contained multiple variants, including peptides that would
only be detected by our combinatorial databases (Figure 4B) as well as those readily detected
by combined ‘Single-Each’ and ‘All-in-One’ database searches (Table S5).

Comparison of this unenriched dataset to the chemoproteogenomic dataset for the
matched HCT-15 and Molt-4 proteomes (145 total SAAVs identified by chemoproteogenomics for
these two cell lines) revealed 70 SAAVS, including eight acquired cysteines, uniquely identified
with chemoproteogenomics (Table S4-S5), (Figure 5C). Despite the lower numbers of total
SAAVs in the chemoproteogenomics datasets, we find that chemoproteomic enrichment afforded
a ~5-fold boost in the relative fraction of acquired cysteines captured (Figure 5D). Further
stratification of the net detected amino acid changes (Figure S32-S33) revealed that, again,
cysteine was a top gainer and arginine was the most lost amino acid for both enriched and
unenriched datasets.

We next asked whether protein or RNA abundance might rationalize the differences in
SAAV coverage for each method. Comparison of normalized transcript counts for SAAV-matched
genes identified either by chemoproteogenomics or in our bulk proteomic dataset, for HCT-15
cells analysis revealed no significant difference between measured transcript abundance
between the sets (Figure 5E, Table S5). A notable subset of SAAVs (3,262 total, including
PIK3CA E545K, TP53 S241F, SMARCA4 R885C TCGA hotspot mutations) with low abundance
transcripts (less than 4000 normalized counts) were not detected in either the
chemoproteogenomics or bulk proteogenomics. Providing further evidence that lower transcript
abundance decreases the likelihood of detection, we find that an even more sizable fraction of
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cysteines found in reference protein sequences matched with low abundance genes are not
detected, both for high-pH fractionated samples and chemoproteomics enriched samples (Figure
S34).

Given the likely disconnect between transcript abundance and protein abundance!0-112
for some SAAVSs analyzed, we also extended these analyses to measures of protein abundance.
Using label-free quantification (LFQ) analysis, we find that for proteins with proteomic-detectable
SAAV peptides, the quantified protein intensities were significantly higher when compared to
proteins for which the corresponding variants were only detected via genomic analysis. No
difference was observed between the bulk fractionated samples and the chemoproteogenomic
samples (Figure 5F, Table S5).

As both the transcript and protein abundance analyses do not delineate reference from
variant-specific transcript/protein sequences, we also compared the variant allele frequencies
(VAF) for SAAVs detected by each method. We find that high-pH variant allele frequencies (VAF)
were significantly higher than the chemoproteogenomic detected SAAVS, which were comparable
to the aggregate bulk RNA-seq VAFs (Figure 5G, Table S5). This enrichment for lower VAF for
the chemoproteogenomic detected SAAVs extended to the acquired cysteine subset (Figure
S34).

Given that cysteine chemoproteomics requires peptide derivatization, with a
comparatively large (463 Da) biotin modification, we postulated that some differences in coverage
might be ascribed to behavior of peptides during sample acquisition. Comparing the properties of
the SAAV peptides detected by chemoproteogenomics versus proteogenomics we observed a
more restricted charge state distribution for cysteine-enriched samples and no appreciable
differences in the amino acid content beyond enrichment for cysteine (Figure S35). While we did
not observe differences in the peptide lengths in our comparison of between the chemoproteomic-
enriched and high pH detected SAAV peptides, a marked significant increase in SAAV peptide
length (average 5AA longer) was observed compared to reference peptides in both datasets
(Figure 5H). This increased peptide length is consistent with the ubiquity of loss-of-arginine
SAAVs in both datasets, which are favored in the longer length peptides (Figure S36).

Protein families analysis revealed slight differences between the two datasets with
enzymes making up a larger fraction of cys-enriched detected variant proteins. Significantly higher
CADD scores were also observed for enrichment data (Figure S37). Notable high-CADD score
variants identified only from enrichment include lysine demethylase KDM3B D1444Y, RNA
polymerase POLRMT R805C, glycoprotein transporter LMAN2 R218C and Serine/threonine-
protein phosphatase PP1-alpha catalytic subunit PPP1CA D203N (Figure 5C). Addition of the
bulk proteomic analysis yielded coverage of 85 notable variants belonging to Census genes,
including BRD4 E451G and KRAS G13D, and 26 rare and common variants of uncertain
significance in ClinVar, including rare gain-of-cysteines ubiquitin hydrolase USP8 Y1040C and
LMNA R298C (Figure 5l,Table S5).
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Figure 5. Comparison of variants identified from cysteine enrichment and bulk proteomics A)
Workflow for high-pH fractionation of lysates. Cell lysates are treated with DTT and iodoacetamide followed
by digestion, high-pH fractionation, and LC-MS/MS analysis. Triplicate high-pH sets for HCT-15 and Molt-
4 cells were used. B) Total numbers of uniqgue missense variants identified from either RNA-seq or WE-seq
or both after using 2-stage MSFragger search of high-pH datasets. C) Overlap of cysteine-containing
peptide variants identified from bulk fractionation and cysteine enrichment datasets. D) Fold enrichment of
amino acids as a ratio of the net amino acid frequency (gain minus loss) to the amino acid frequency in all
missense-containing proteins detected in high-pH and cys-enriched datasets. E) DE-seq normalized
transcript counts for all RNA variants ‘All’, variants detected from cys-enrichment ‘C’, and variants detected
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from high-pH fractionation ‘H’ in HCT-15 cells. F) Label free quantitation (LFQ) intensities for proteins
matched to all RNA variants ‘All’, variants detected from cys-enrichment ‘C’, and variants detected from
high-pH fractionation ‘H’ in HCT-15 cells. G) Variant allele frequencies (VAF) (total reads/total coverage
per site) for RNA-seq variants called in HCT-15 and Molt-4 cells. E-G statistical significance was calculated
using Mann-Whitney U test, **** p < 0.0001, ns p > 0.05. H) Peptide lengths of reference and variant
peptides identified in dataset types. I) High-pH detected variants stratified by CADD score and ClinVar
clinical significance. Data found in Table S5.

Chemoproteogenomics enables ligandability screening. As demonstrated by our previous
studies, cysteine chemoproteomics platforms are capable of pinpointing small-molecule
targetable cysteine residues?'?2262%_ Therefore, we next paired our 2-stage search method with
cysteine-reactive small molecule ligandability analysis to establish a chemoproteogenomic small
molecule screening platform (Figure 6A). We first opted to use the widely employed scout
fragment KB022° (Figure 6B) to compare the ligandable variant proteomes for three high variant
burden dMMR cell lines (HCT-15, Jurkat, and Molt-4). For KB02 treated samples, we identified
210 total variants. The high concordance for ratios detected for variant peptides with multiple
alleles provides evidence of the robustness of our platform and hints that most cysteine proximal
variants do not substantially alter cysteine ligandability (Figure 6C).

We next subjected the HCT-15 proteome to more in depth analysis using a small panel of
custom electrophilic fragments (Figure 6B). We observed 27 total liganded variant peptides in 27
proteins in the HCT-15 proteome, which are labeled by one or more compounds (Figure 6C). As
with the KBO2 cell line comparison, nearly all multi-allelic peptides showed comparable ratios
(Figure 6E). Nucleotide analogue SO-105 was observed to be more promiscuously reactive
(Figure 6F) when compared to the less elaborate fragments.

In aggregate across all ligandability datasets, we identified 259 total variants found in 232
total proteins (Figure 6D). Of these variants, 57 were acquired cysteines, in 55 proteins; 22 were
ligandable (Log2(HL) ratio > 2), variant-proximal cysteines and 10 were ligandable gain-of-
cysteines (Figure 6D). Notable liganded sites we identify include Cullin-associated NEDD8-
dissociated protein 1 (CAND1) G1069C-a site which mutated in the Arabadopisis ortholog
reduces auxin response!'® and Tubulin beta 6 (TUBB6) G71C (Figure 6G). Some sites with
differing reference and variant ratios include EPRS P1482T—-the mutated proline nearby Cys 1480
may be requisite for labeling by electrophilic fragments. We also identify 3 ligandable variants of
uncertain significance or conflicting pathogenicity that we show may be modulated for study with
small molecules and could act as potential starting points for biological analyses (Figure 6C). As
multi-allelic acquired cysteine sites cannot be captured sans cysteine, no analogous ratio
comparison could be performed for the 6 total quantified acquired cysteines (Figure 6G).

To understand functionality of the ligandable variant sites in 3D protein space, we
analyzed active site and binding sites within 10 angstrom distance of the ligandable Cys residues
and Cys-proxial variant sites (Table S6). We find three ligandable cysteines near or in
active/binding sites including previously identified HMGB1 Cys106 (R110C) (Figure 4l), as well
as Aldolase A ALDOA Cys178 (G196G) and HLA-B/C Cys125 (V127L/S123Y). Intriguingly HLA-
B/C Cys125 (C101 post signal peptide cleavage), near peptide binding region sites Y183 is
liganded by KB02 in HCT-15 cells which harbor HLA-B*08:01 and HLA-B*35:01 (Figure 6F). This
conserved cysteine plays important roles in HLA structure!'®. Ligandability of this site is
unexpected as this site is known to be disulfided with C188 in cell surface HLA!'®; however, we
find in our sequencing that HCT-15 cells harbor truncated beta-2-microglobulin (32m) protein
(B2M Y30*) (Table S2). B2m is known to stabilize this specific disulfide!'>!¢, facilitating protein
folding and translocation to the cell surface!!’~1%, In HLA-B27 allelic variants, Cys125 is known
to be exposed without B2m*%,
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Figure 6. Assessing ligandability of variant proximal cysteines and gain-of-cysteines. A) Schematic
of activity-based screening of Cys reactive compounds; cell lysates are labeled with compound or DMSO
followed by chase with IAA and ‘click’ conjugation to heavy or light biotin click conjugation to our isotopically
differentiated heavy and light biotin-azide reagents, tryptic digest, LC-MS/MS acquisition, and MSFragger
analysis. B) Chloroacetamide compound library. C) Total quantified variants and total ligandable variants
(Logz Ratio > 2) identified stratified by cell line (KB02 data) or compound (HCT-15 cell line). D) Correlation
of high-confidence variant containing and reference cysteine ratio values from KB02 data. E) Correlation of
high-confidence variant containing and reference cysteine ratio values from SO compound data. F) Logz
heavy to light ratio values for variant containing and reference cysteine peptides. G) Subset of gain of
cysteine peptide variant logz ratios. H) Crystal structure of HLA-B*08:01 protein liganded Cys125, disulfide
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Cys188, and binding site residue Y183 as well as variant sites V127 and S123 (PDB: 3X13). Data provided
in Table S6.

Expanding HLA cysteine peptide coverage and gel-based ABPP of HLA covalent labeling
Major Histocompatibility Complex (MHC) Class | molecules (known as HLA molecules in humans)
present intracellularly derived protein fragments, either self-derived or from pathogens in the
context of cross-presentation, on the cell surface for recognition by T cells and subsequent
immune response; noncovalent assembly of a polymorphic heavy chain with a light chain (2m)
and peptide occurs in the endoplasmic reticulum (ER) followed by translocation via the Golgi to
the cell surface'?. Recent reports of allele-specific HLA-binding compounds, most notably
abacivir HIV drug'??, together with efforts to develop covalent modulators of MHC Class | and
complexes!?®*-125 prompted us to assess the impact of chemoproteogenomics on achieving
improved coverage of highly polymorphic genes (Figure 7A). 15,000 HLA alleles have been
reported in the human population'?®, Exemplifying this impact on proteomic sequence coverage,
our panel of cell lines alone harbor >25 HLA-A, B and C alleles (Table S2), while most protein
reference databases only contain one copy of each MHC Class | and Class Il molecule.

Through search of sample-specific databases of both chemoproteomics and high pH
fractionated samples, we achieved ~50% more coverage of HLA-A sequence in comparison to
reference searches (Figure 7B and Figure S39). A key finding of our analysis was detection of
HLA-B Y91C (C67 post signal peptide cleavage), which lies in the extracellular peptide binding
pocket of HLA-B and was identified as I1AA-labeled in MeWo cells (Figure 4J). The MeWo cell
line HLA alleles (HLA-B*14:02 and HLA-B*38:01) both harbor this comparatively rare Cys (Figure
7C). Notably this cysteine is also a key feature of the pathogenic ankylosing spondylitis associated
allele HLA-B*27?7128 To test whether this cysteine was amenable to gel-based ABPP analysis
and to determine whether this IAA labeling extends to HLA-B*27:05, we co-expressed c-terminal
FLAG tagged HLA-B*38:01, HLA-B*27:05, HLA-B*38:01 C91S, and HLA-B*27:05 C91S with
beta-2-microglobulin (2m) and subjected cells to in situ IAA labeling followed by lysis, FLAG
immunoprecipitation to enhance the detectability of the HLA cysteine, and click conjugation to
rhodamine azide (Figure 7D). Gratifyingly, we observed a Cys67-specific rhodamine signal
(Figure 7E), showcasing the utility of gel-based ABPP in visualizing HLA small molecule
interactions. Notably IAA labeling was also observed for HLA-B27:05, although the presence of a
strong co-migrating band in the HLA-B27:05 C67S immunoprecipitated sample complicates
interpretation of the specificity of this labeling to Cys67. We were unable to observe comparable
signal in lysate-based labeling studies, supporting enhanced accessibility of this cysteine to cell-
based labeling (Figure S40).
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Figure 7. Expanding HLA cysteine peptide coverage and gel-based ABPP of HLA covalent labeling.
A) Schematic of highly variable HLA binding pocket containing cysteine with bound peptide. B) Coverage
of HLA cysteines from this study and in CysDB; color indicates HLA type or multi-mapped cysteines. C)
Crystal structure of HLA-B 14:02 (PDB: 3BXN) with highlighted Cys67 and Arg P2 position of bound peptide;
alignments of Cys91 regions of three HLA-B alleles. D) Workflow to visualize HLA cysteine labeling; first
cells were harvested and treated with IAA followed by lysis, FLAG immunoprecipitation, and click onto
rhodamine-azide. E) Cys-dependent cell surface labeling of HLA-B alleles with IAA, band indicated with red
arrow and non-specific band represented with asterisk (representative of 2 two biological replicates). Data
provided in Table S7.

FragPipe graphical user interface with improved 2-stage MSFragger search and FDR
estimation. Motivated by the multi-faceted uses of the 2-stage search pipeline, including those
reported here and future envisioned applications, we also sought to facilitate the utilization of the
2-stage search strategy by the scientific community. Therefore, we enhanced FragPipe by
establishing semi-automated execution of these searches while also providing an option to run
MSBooster and Percolator (instead of PeptideProphet) to further improve the sensitivity of
identification of variant peptides (Figure 8A).

In the first stage pass, with the "write sub mzML" option enabled, FragPipe utilizes
MSFragger®1? for mass calibration, search parameter optimization, and database searching.
Following this, FragPipe applies MSBooster®® to compute the deep-learning scores®,
Percolator®! for PSM rescoring, ProteinProphet® for protein inference, and Philosopher for FDR
filtering. Subsequently, FragPipe generates new mzML files, which include the scans that did not
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pass the FDR filtering (default is 1%) and those with a probability higher than a predefined
threshold (default is 0).

In the second search, as the mass spectral files have already been calibrated and only
scans that remained unidentified in the first search have been retained, the mass calibration
should be disabled. Moreover, Percolator modeling might fail in the second pass due to a lack of
sufficient number of high-scoring PSMs. Therefore, FragPipe lets Percolator reuse the model from
the initial pass. FragPipe then generates a new workflow file containing optimized parameters,
and a new manifest file with the new (subset) mzML files specified for the second-pass search.
The user is merely required to load these two files without needing any further adjustments.

Using the new GUI features, we observe comparable coverage for both the command-line
and automated GUI implementations of the 2-stage search with a slight increase in numbers of
identifications observed for datasets processed with MSBooster and Percolator (Figure
S41,Table S8). The ratio differences between variant and reference Cys peptide are comparable
(Figure 8B).

2-stage search with FragPipe
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Figure 8. 2-stage search implemented into FragPipe GUI with Percolator rescoring A) 2-stage search

incorporation into FragPipe GUI workflow. B) Heavy to light ratios (H:L) from triplicate datasets comparing
identifications from reference and variant searches; mean ratio value indicated, dashed lines indicate
ground-truth log2 ratio, statistical significance was calculated using Mann-Whitney U test, * p < 0.05, ** p <
0.01, ns p > 0.05. Data provided in Table S8.

DISCUSSION

SAAvs are a ubiquitous feature of human proteins, which remain under sampled in
established proteomics pipelines. Here, we merged genomics with mass spectrometry-based
chemoproteomics to establish chemoproteogenomics as an integrated platform tailored to
capture and functionally assess the missense variant cysteinome. Our chemoproteogenomics
study is distinguished by a number of features including: (1) genomic stratification of the predicted
pathogenicity of acquired cysteine residues, (2) cell-line paired custom combinatorial search
databases, (3) FragPipe enabled 2-stage database search platform ensuring class-specific FDR
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estimation, and (4) capacity to pinpoint both redox-sensitive and ligandable genetic variants
proteome-wide. To facilitate widespread adoption of our approach, including for applications
beyond the study of the variant cysteinome, the user-friendly GUI-based FragPipe platform now
features a robust semi-automated version of our 2-stage search (Figure 8).

To build chemoproteogenomics, we started by analyzing publically available datasets in
Clinvar, COSMIC, and dbSNP, which revealed that cysteine acquisition is a ubiquitous feature of
human genetic variation, which predominates in the context of DNA damage repair responses.
The instability of CpG motifs is a key driver of bulk cysteine acquisition, which occurs largely hand-
in-hand with bulk arginine depletion, across both cancer genomes and healthy genomes and rare
and common variants. Many colon cancer cell lines and other MSI high cell lines are particularly
enriched for cysteine acquisition—however, nearly all of the acquired residues in these lines are
not driver mutations, which complicates their use as models for assessing the potentially
druggability of variants with established clinical connections and highlights the value of future
efforts to analyze additional missense variant rich cell lines and perform CRISPR-Cas9 base
editing to engineer variants of interest into endogenous loci3%133-136,

Armed with a set of variant rich cell lines, we next generated combinatorial SAAV-peptide
databases for cell-line specific SAAVs as identified in cell-line matched whole exome and
transcriptome datasets. In total, across 11 cell lines sequenced, we identified 1,453 missense
variants, of which 116 led to gain-of-cysteine. Looking towards future iterations of
chemoproteogenomics, we expect that the use of tumor-normal paired variant calling with tools
such as MuTect2'¥” will further decrease the likelihood of false discovery introduced by factors
such as cell heterogeneity and low read quality—for cell lines that lack matched normal controls,
we expect that the pairing of publically available datasets (e.g. DepMap, https://depmap.org/) with
custom sequencing data, will prove another useful strategy to further bolster the quality and
accessibility of variant-containing databases. Such multi-pronged approaches will likely prove
most useful when paired with combinatorial custom databases, such as the peptide-based
databases reported here, which were designed to minimize increased search space complexity
while also more fully accounting for cell heterogeneity.

By building upon prior reports describing 2-stage database searches for class-specific
FDR control®*° as a rigorous search strategy that reduces the likelihood that a false positive
variant peptide detection, here we deployed a 2-stage search approach in FragPipe, first as a
custom command-line workflow and subsequently as a user-friendly semi-automated workflow in
the FragPipe GUI. Enabled by our previously reported isotopically enriched heavy- and light-
biotin-azide capture reagents®’, we provide compelling evidence to support the low rates of false
discovery of variant peptides using the 2-stage search—spurious false discovery of variant
peptides would easily be detected from MS1 precursor ion ratios that deviate from the expected
spike-in values (Figure 3,8). Our isotopic labeling strategy also enabled the assessment of the
ligandability and redox sensitivity of variant peptides. Our discovery of a cysteine in PMPCA that
exhibits variant-dependent changes in oxidation provides an intriguing anecdotal example that
supports the future utility of chemoproteogenomics in more broadly characterizing the missense
variant redox proteome. Given the critical role that disulfides play in protein structure and folding
and the causal roles for cysteine mutations in human disease, for example the NOTCH mutations
that cause the neurodegenerative disorder CADASIL'®, we expect a subset of these lost
cysteines could be implicated in altered protein abundance or activity. Through cysteine
chemoproteomic capture, we identified ligandable variant-proximal cysteines in Census genes
such as RAD17, including one gain-of-cysteine of uncertain significance in LMNA (R298C). Other
liganded cysteines proximal to variants of uncertain significance include TJP2 (A906R) and SRRT
(R415Q). Demonstrating the utility of our approach, we identified a Cys91 (Cys67) as labeled by
IAA both by proteomics and gel-based ABPP. As this cysteine is shared with the pathogenic HLA-
B27, it is exciting to speculate about the impact of covalent modification on HLA peptide
presentation. Our application of chemoproteogenomics to screening of a focused library of
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electrophilic compounds, identified 32 ligandable variant-proximal Cys which demonstrates that
cysteine ligandability can be assessed proteome-wide in a proteoform-specific manner.

Looking beyond our current study, we anticipate multiple high value applications for
chemoproteogenomics. Application to immunopeptidomics should uncover additional covalent
neoantigen sites, analogous to the recent reports for Glyl2Cys KRAS'?413°  Pairing of
chemoproteogenomics with ultra-deep offline fractionation should further increase coverage and
allow delineation of variants that alter protein stability, including the numerous high CADD score
acquired cysteines, which we find were underrepresented in our proteomics analysis when
compared to genomic identification. Inclusion of genetic variants beyond SAAVs will allow for
capture of additional therapeutically relevant targets that result from indels, alternative
splicing®*1%%, translocations, transversions, or even undiscovered open reading frames such as
microproteins!#+142, Thus chemoproteogenomics is poised to guide discovery of proteoform-
directed therapeutics.
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