

1 **Ikzf1 association with Foxp3 for Foxp3-dependent gene repression in Treg cells:**
2 **induction of autoimmunity and tumor immunity by disrupting the association**

3

4 Kenji Ichiyama^{1*}, Jia Long¹, Yusuke Kobayashi^{1,2}, Yuji Horita^{3,4}, Takeshi Kinoshita^{3,4},
5 Yamami Nakamura¹, Chizuko Kominami¹, Katia Georgopoulos⁵ and Shimon
6 Sakaguchi^{1,6,7*}

7

8 ¹Laboratory of Experimental Immunology, Immunology Frontier Research Center,
9 Osaka University, Suita, Osaka, Japan

10 ²Department of Medical Innovations, Osaka Research Center for Drug Discovery,
11 Otsuka Pharmaceutical Co., Ltd., Osaka, Japan

12 ³Joint Research Chair of Immune-therapeutic Drug Discovery, Immunology Frontier
13 Research Center, Osaka University, Suita, Osaka, Japan

14 ⁴Department of Research Management, Otsuka Pharmaceutical Co., Ltd., Tokushima,
15 Japan

16 ⁵Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard
17 Medical School, Charlestown, Massachusetts, USA

18 ⁶Department of Experimental Pathology, Institute for Frontier Life and Medical
19 Sciences, Kyoto University, Kyoto, Japan

20 ⁷Lead contact

21

22 *Correspondence: ichiken@ifrec.osaka-u.ac.jp; shimon@ifrec.osaka-u.ac.jp

23

24

SUMMARY

25 The transcription factor Foxp3 specifically expressed in regulatory T (Treg) cells
26 controls Treg function by repressing some genes and activating others. We have
27 shown here that the transcription factor *Ikzf1* associates with Foxp3 via its exon 5
28 (called *IkE5*) and that conditional deletion of *IkE5* up-regulated the genes, including
29 *Ifng*, normally repressed by Foxp3 upon TCR stimulation. *IkE5*-deletion in Treg cells
30 indeed incurred IFN- γ overproduction, which destabilized Foxp3 expression and
31 impaired suppressive function, consequently producing fatal systemic autoimmune
32 diseases and evoking strong anti-tumor immunity. In addition, pomalidomide, which
33 degrades IKZF1 and IKZF3, induced IFN- γ overproduction in human Treg cells.
34 Mechanistically, the Foxp3/*Ikzf1*/*Ikzf3* complex exerted gene-repressing function by
35 competing with epigenetic co-activators, such as p300 and NFAT1, for binding to the
36 target gene loci via chromatin remodeling. Collectively, the association of *Ikzf1* with
37 Foxp3 is essential for repressive function of Foxp3, and can be targeted to control
38 autoimmunity and tumor immunity.

39

40

KEYWORDS

41 Foxp3, *Ikzf1*, transcription factor, regulatory T cell, autoimmune disease

42

43

INTRODUCTION

44 Regulatory T (Treg) cells are a functionally distinct CD4 $^{+}$ T-cell subset that plays
45 crucial roles in maintaining immunological self-tolerance and homeostasis by
46 suppressing aberrant or excessive immune responses.^{1,2} The transcription factor (TF)
47 forkhead box protein P3 (Foxp3) is essential for the Treg cell function as illustrated by
48 loss-of-function mutations of the *Foxp3* gene, which cause various immunological
49 diseases such as autoimmune disease, allergy, and immunopathology in mice and
50 humans through Treg cell deficiency or dysfunction.³⁻⁸ Foxp3 forms a large protein
51 complex by interacting with a number of cofactors, including other TFs and epigenetic
52 regulators.⁹ Upon T cell receptor (TCR) stimulation, the Foxp3 complex negatively
53 controls the expression of some target genes, such as *Il2* and *Ifng*, as a
54 strong repressor, while positively regulating other target genes, such as *Il2ra* and *Ctla4*,
55 as an activator.¹⁰⁻¹⁴ Yet it is still contentious how a Foxp3 complex acts directly on its

56 target genes as an activator, a repressor, or both, across diverse Treg cell states, and
57 how the interactions of Foxp3 with other TFs, co-activators, and co-repressors affect
58 Treg cell function and thereby cause autoimmune and other inflammatory diseases.^{15–}
59 20

60 The Ikaros TF family has five distinct members: Ikaros (encoded by *Ikzf1*),
61 Helios (*Ikzf2*), Aiolos (*Ikzf3*), Eos (*Ikzf4*), and Pegasus (*Ikzf5*), all of which are
62 characterized by two sets of highly conserved C2H2 zinc-finger motifs and critically
63 involved in hematopoiesis and adaptive immunity.²¹ The first three or four motifs at the
64 N-terminus are essential for regulating gene transcription through DNA binding, and
65 the last two motifs at the C-terminus facilitate multimer formation as both homodimer
66 and heterodimer with other family members.²² *Ikzf* family members, except *Ikzf5*, are
67 highly expressed in Treg cells and physically associated with Foxp3.^{9,20,23} In particular,
68 Helios and Eos have been reported to play a crucial role in the stability and
69 suppressive function, respectively, of Treg cells.^{23,24} Interestingly, a recent attempt of
70 comprehensive mutagenesis has suggested that variations of the *Ikzf1*-binding motifs
71 impair Treg-specific chromatin accessibility.²⁵ In addition, there is accumulating
72 evidence that germline heterozygous mutations in *IKZF1*, especially in the exon 5
73 region of *IKZF1* (called *IkE5*), can cause immunodeficiency and autoimmune diseases
74 in humans.^{26–29} These findings in mice and humans have prompted us to determine
75 how *Ikzf1* and *Ikzf3* contribute to Treg cell function and how their anomalies, especially
76 their interactions with Foxp3, are causative of autoimmune disease.

77 Here, we have shown that *Ikzf1* is associated with Foxp3 via its *IkE5* and that
78 it forms a repressive Foxp3 complex together with *Ikzf3*, controlling genomic
79 association of the complex to suppress the expression of the target genes including
80 *Ifng*, which are normally repressed by Foxp3 upon TCR stimulation. Consequently,
81 Treg-specific deletion of *IkE5* results in overproduction of IFN- γ in Treg cells, thereby
82 impairs Foxp3 expression, hence Treg suppressive function, culminating in the
83 development of fatal systemic autoimmune disease. The deletion can also evoke
84 strong anti-tumor immunity. Our results show how a particular TF interacts with Foxp3
85 to exert repressive function and how the interaction can be pharmaceutically targeted
86 to control immune responses.

87

88

RESULTS

89 **Treg-specific deletion of *IkE5* causes fatal systemic autoimmunity**

90 To identify the essential regions of *Ikzf1* for association with *Foxp3*, we first generated
91 several mutants that were deleted of C-terminal region (ΔC) or N-terminal region (ΔN)
92 of *Ikzf1*, and conducted co-immunoprecipitation (Co-IP) assays (Figure 1A).
93 Immunoblot analysis revealed that the ΔN mutant failed to interact with *Foxp3* while
94 the ΔC mutant did (Figure 1B). Since the deleted N-terminal region of *Ikzf1* is
95 composed of four exons, exon 4, exon 5 and exon 6/7, which contain four zinc-finger
96 domains (Figure 1A), we next constructed mutants with deletion of each exon ($\Delta E4$,
97 $\Delta E5$ and $\Delta E6/7$) and examined which exon was required for the interaction with *Foxp3*
98 (Figure 1A). Co-IP assay showed that only $\Delta E5$ mutant was unable to bind to *Foxp3*,
99 indicating that *IkE5* was essential for interaction with *Foxp3* (Figure 1C).

100 To investigate the role of interaction between *Ikzf1* and *Foxp3* in Treg cell
101 biology *in vivo*, we generated *Foxp3*^{Cre}/*IkE5*^{f/f} mice by crossing mice in which *IkE5* was
102 flanked with loxP to *Foxp3*^{IRES-YFP-Cre} mice expressing yellow fluorescent protein
103 (YFP)-Cre recombinase fusion protein under the control of *Foxp3* regulatory
104 elements.^{30,31} In these *Foxp3*^{Cre}/*IkE5*^{f/f} mice, we observed efficient Treg-specific
105 deletion of *IkE5* (Figure S1A). Furthermore, Co-IP analysis confirmed the dissociation
106 of *Ikzf1* and *Foxp3* interaction in *IkE5*-deficient Treg cells (Figure S1B). *Foxp3*^{Cre}/*IkE5*^{f/f}
107 mice died between 20 and 50 days after birth (Figure 1D). Of note, *Foxp3*^{Cre}/*IkE5*^{f/w}
108 mice developed less severe but still lethal autoimmunity as seen in haploinsufficiency
109 of human germline *IKZF1* mutations (Figure 1D).²⁶⁻²⁹ *Foxp3*^{Cre}/*IkE5*^{f/f} mice showed
110 reduced body weight, lymphadenopathy and splenomegaly, and massive infiltrations
111 of leukocytes into skin (ear), stomach, lung and liver (Figures 1E-1G). Moreover, fatal
112 inflammation and tissue lesions could be adoptively transferred by splenocytes from
113 *Foxp3*^{Cre}/*IkE5*^{f/f} mice into syngeneic *Rag2*^{-/-} mice, indicating autoimmune nature of the
114 inflammation (Figures 1H and 1I).

115 The frequencies and absolute numbers of both CD4⁺ and CD8⁺ T cells, in
116 particular, CD44^{hi}CD62L^{lo} effector memory cells, were markedly increased in
117 peripheral lymphoid organs of *Foxp3*^{Cre}/*IkE5*^{f/f} mice (Figures 1J and 1K; Figure S1C).
118 CD4⁺*Foxp3*⁻ T cells in *Foxp3*^{Cre}/*IkE5*^{f/f} mice exhibited enhanced expressions of
119 activation markers, including CD25, inducible T-cell co-stimulator (ICOS), cytotoxic T-

120 lymphocyte associated protein 4 (CTLA4) and glucocorticoid-induced TNFR-related
121 protein (GITR) as well as the proliferation marker Ki67 (Figure 1L). Similarly, T cells
122 producing cytokines, such as interferon- γ (IFN- γ) and interleukin-4 (IL-4), increased in
123 *Foxp3*^{Cre}/*IkE5*^{f/f} mice (Figure S1D).

124 The frequencies of both CD4⁺Bcl-6⁺CXCR5⁺ follicular helper T (Tfh) cells and
125 IgM⁺GL7⁺ germinal center B (GCB) cells were increased in *Foxp3*^{Cre}/*IkE5*^{f/f} mice,
126 suggesting their contribution to autoantibody production (Figures 1M and S1E).
127 Consistently, the serum concentrations of IgG, IgM and IgE were all markedly
128 increased in *Foxp3*^{Cre}/*IkE5*^{f/f} mice (Figure S1F). Of note, *Foxp3*^{Cre}/*IkE5*^{f/f} mice showed
129 enhanced production of serum autoantibodies against double-stranded DNA (dsDNA)
130 and gastric parietal cells (PC), which are indicative of systemic and organ-specific
131 autoimmunity, respectively (Figures 1N and 1O). Collectively, Treg-specific deletion of
132 *IkE5* produced fatal systemic autoimmune and inflammatory diseases, which were
133 similar to scurvy disease due to a loss-of-function mutation in the *Foxp3* gene.³²

134

135 ***IkE5*-deficient Treg cells show impaired suppressive function and functional 136 instability**

137 With the autoimmunity in *Foxp3*^{Cre}/*IkE5*^{f/f} mice, we assessed the role of *IkE5* in Treg
138 cell function and maintenance. To exclude possible indirect effects by inflammation,
139 we made use of *Foxp3*^{Cre/+}/*IkE5*^{f/f} mosaic female mice, which possessed both YFP⁺
140 *IkE5*-deficient Treg cells and YFP⁻ *IkE5*-intact Treg cells as a result of random
141 inactivation of X chromosome-linked genes. *Foxp3*^{Cre/+}/*IkE5*^{f/f} mice indeed showed no
142 overt signs of autoimmunity or body weight loss during 4 weeks of observation, with
143 no alteration in the expression of activation markers, such as CD25, ICOS, CTLA4,
144 GITR and Ki67, in YFP⁺ Treg cells (Figures S2A-S2C). However, the ratio between
145 YFP⁺*Foxp3*⁺ and YFP⁻*Foxp3*⁺ Treg populations in *Foxp3*^{Cre/+}/*IkE5*^{f/f} mice was
146 significantly decreased compared to the corresponding ratio in *Foxp3*^{Cre/+} mice (Figure
147 2A). There was no significant changes in the ratio in the thymus (Figure S2D). The
148 results suggested that *IkE5*-deletion led to a decline in Treg cell survival or their *Foxp3*
149 expression. To examine then whether *IkE5*-deficient Treg cells would lose *Foxp3*
150 expression, we isolated YFP⁺ Treg cells from *Foxp3*^{Cre/+} and *Foxp3*^{Cre/+}/*IkE5*^{f/f} mice and
151 transferred each of them into lymphopenic *Rag2*^{-/-} mice. Compared with wild-type Treg

152 cells, transfer of *IkE5*-deficient Treg cells resulted in a significant increase of Foxp3⁻
153 (exTreg) donor cells in the peripheral lymphoid organs (Figure 2B). To further confirm
154 the instability of Treg cells by *IkE5*-deficiency in the steady state, we generated Foxp3
155 fate-mapping mice by crossing *Foxp3*^{Cre/+}/*IkE5*^{f/f} mice to *Rosa26*^{fp} reporter mice
156 inserted at the *ROSA26* locus with a loxP site-flanked STOP cassette before a DNA
157 sequence encoding red fluorescent protein (RFP).³³ The frequency of YFP-RFP⁺
158 exTreg cells in the peripheral lymphoid organs of *Foxp3*^{Cre/+}/*IkE5*^{f/f}/*R26*^{fp/+} mice were
159 indeed increased significantly compared to *Foxp3*^{Cre/+}/*R26*^{fp/+} mice (Figure 2C).
160 Regarding this Treg instability, Kim et al previously reported that *Ikzf2*-deficient Treg
161 cells were unstable in Foxp3 expression because of a diminished activation of the
162 STAT5 pathway.²⁴ It is also known that the DNA hypomethylation pattern of Treg-
163 specific demethylation regions (TSDRs) is required for the maintenance of Foxp3
164 expression.^{13,34} However, DNA demethylation of the *Foxp3* CNS2 region as well as
165 the expression of phosphorylated STAT5 (pSTAT5) were normal in *IkE5*-deficient Treg
166 cells (Figures S2E and S2F).

167 We next assessed the role of *IkE5* in suppressive function of Treg cells. In an
168 *in vitro* suppression assay, *IkE5*-deficient Treg cells failed to suppress the numerical
169 expansion of responder T cells compared to their wild-type counterparts (Figure 2D).
170 To assess *in vivo* suppressive activity, we used the T-cell transfer model of colitis:
171 Treg cells from CD45.2⁺*Foxp3*^{Cre/+} or CD45.2⁺*Foxp3*^{Cre/+}/*IkE5*^{f/f} mice were transferred
172 into *Rag2*^{-/-} mice together with congenic CD45.1⁺CD4⁺CD25⁺CD45RB^{hi} naïve T
173 cells.³⁵ As shown in Figures 2E-2G, while wild-type Treg cells prevented body weight
174 loss, change in colon length, and colonic inflammation, *IkE5*-deficient Treg cells failed
175 to exhibit such suppressive effects. Further, *Rag2*^{-/-} mice recipient of *IkE5*-deficient
176 Treg cells showed a significant increase of responder CD4⁺ T cells, especially those
177 producing IFN- γ (Figures 2H and 2I). Notably, a significant portion of the transferred
178 *IkE5*-deficient Treg cells was converted to exTreg cells when compared to similarly
179 transferred wild-type Treg cells (Figure 2J), suggesting severely compromised
180 functional stability in *IkE5*-deficient Treg cells. These results collectively indicate that
181 the *IkE5* region is critically required for the suppressive function and functional stability
182 of Treg cells.

183

184 **Treg-specific deletion of *IkE5* evokes strong anti-tumor immunity**

185 We next investigated whether the *IkE5*-deletion in Treg cells would facilitate not only
186 autoimmunity but also anti-tumor immunity. By crossing *IkE5*^{f/f} mice to *Foxp3*^{eGFP-Cre}
187 ^{ERT2} mice,³⁶ we established *Foxp3*^{eGFP-Cre-ERT2}/*IkE5*^{f/f} mice that allowed tamoxifen-
188 inducible Treg-specific deletion of *IkE5*. We inoculated into the mice B16F0 murine
189 melanoma or MC38 murine colon adenocarcinoma cells intradermally, and injected
190 tamoxifen intraperitoneally on day 0, 1 and 3 (Figure 3A). The growth of both B16F0
191 and MC38 cells was strongly inhibited in *Foxp3*^{eGFP-Cre-ERT2}/*IkE5*^{f/f} mice compared to
192 control *Foxp3*^{eGFP-Cre-ERT2} mice (Figures 3B and 3C; Figures S3A and S3B). *Foxp3*^{eGFP}-
193 ^{Cre-ERT2}/*IkE5*^{f/f} mice showed a profound reduction of Treg cells in the draining lymph
194 nodes (dLNs) and tumor tissues, but not in non-draining lymph nodes (ndLNs) when
195 examined on day 10 after tumor cell inoculation (Figure 3D). Moreover, the ratio of
196 intratumoral CD8⁺ T to Treg cells was markedly increased in *Foxp3*^{eGFP-Cre-ERT2}/*IkE5*^{f/f}
197 mice (Figure 3E), implying strong anti-tumor responses. Consistently, a higher
198 frequency of intratumoral CD4⁺*Foxp3*⁻ T cells in *Foxp3*^{eGFP-Cre-ERT2}/*IkE5*^{f/f} mice
199 produced anti-tumor effector cytokines, including IFN- γ and tumor necrosis factor- α
200 (TNF- α) (Figure 3F). Taken together, *IkE5* is required for the suppressive function and
201 functional stability of Treg cells in the tumor microenvironment.

202

203 ***IkE5* is required for *Foxp3*-dependent gene repression in Treg cells**

204 To explore the molecular program affected by *IkE5*-deletion in Treg cells, we
205 performed RNA-sequencing (RNA-seq) analysis of FYP⁺ Treg cells from *Foxp3*^{Cre/+}
206 and *Foxp3*^{Cre/+}/*IkE5*^{f/f} mice. Principal component analysis (PCA) clearly separated wild-
207 type and *IkE5*-deficient Treg cells based on both location and genotype (Figure S4A),
208 indicating a significant alteration in the transcriptome pattern in *IkE5*-deleted Treg cells.
209 Differential gene expression analysis showed that 469 genes were up-regulated (Up)
210 and 248 genes were down-regulated (Down) in *IkE5*-deficient Treg cells compared to
211 wild-type Treg cells (Figure 4A and Table S1). Since Up genes contained a number of
212 Treg-signature genes (Figure 4A), we next performed a gene set enrichment analysis
213 (GSEA) and a cumulative distribution function (CDF) analysis on the RNA-seq data.
214 Both analyses revealed that the “Treg down genes”³⁷ were more highly expressed in
215 *IkE5*-deficient Treg cells compared to wild-type Treg cells, while the “Treg up genes”³⁷

216 were comparable between them (Figures 4B and 4C). Moreover, when “Foxp3
217 dependent genes”³⁸ were compared, they were mainly up-regulated in *IkE5*-deficient
218 Treg cells (Figures 4D and 4E), suggesting impaired Foxp3-dependent gene
219 repression in *IkE5*-deleted Treg cells. In agreement with these findings, we confirmed
220 that the expression of Treg down-regulated genes, such as *Il2*, *Ifng*, *Il4*, *Il21*, *Tbx21*,
221 *Cd4*, *Plscr1* and *Zap70*, were significantly increased in *IkE5*-deficient Treg cells
222 (Figure 4F). We further confirmed at the protein level the enhancement of IL-2 and
223 IFN-γ production from *IkE5*-deficient Treg cells (Figure 4G). In contrast, the expression
224 of Treg up-regulated genes, such as *Ctla4*, *Ikzf2*, *Ikzf4*, *Itgae*, *Nt5e* and *Il10*, were
225 mostly normal, while the expression of some genes, e.g., *Il2ra* and *Tnfrsf18*, were
226 further enhanced in *IkE5*-deficient Treg cells at both the mRNA and protein levels
227 (Figures 4F and S4B). In addition to Treg-signature genes, GSEA revealed an
228 enhanced expression of gene signatures related to “Inflammatory response”, “IL-2
229 STAT5 signaling” and “IFN-gamma response” in *IkE5*-deficient Treg cells (Figures 4H
230 and 4I). Collectively, these results suggest that *IkE5* plays a critical role in Foxp3-
231 dependent gene repression to maintain Treg cell homeostasis.

232

233 **Overproduction of IFN-γ promotes the instability and dysfunction of *IkE5*- 234 deficient Treg cells**

235 Since *IkE5*-deficient Treg cells highly produced IL-2 and IFN-γ, we next generated
236 mice deficient of either cytokine and examined whether overproduction of these
237 cytokines was causative of fatal inflammation in *Foxp3*^{Cre}/*IkE5*^{fl/fl} mice.
238 *Foxp3*^{Cre}/*IkE5*^{fl/fl} *Ifng*^{-/-} mice showed significant prolongation of survival compared to
239 *Foxp3*^{Cre}/*IkE5*^{fl/fl} mice, in contrast with no alteration in the survival of *Foxp3*^{Cre}/*IkE5*^{fl/fl} *Il2*^{fl/fl}
240 mice (Figures 5A and S5). Since IFN-γ is known to drive Treg cells to be fragile and
241 reduce their suppressive activity,³⁹ we generated *Foxp3*^{Cre/+}/*IkE5*^{fl/fl} *Ifng*^{-/-} *R26*^{fp/+} mice
242 and examined whether IFN-γ deficiency would repair the instability of *IkE5*-deficient
243 Treg cells. The IFN-γ deficiency indeed significantly inhibited the increase of YFP-
244 RFP+ exTreg cells in the peripheral lymphoid organs of *Foxp3*^{Cre/+}/*IkE5*^{fl/fl} *R26*^{fp/+} mice
245 (Figure 5B). Moreover, transfer of *IkE5* and *Ifng* double-deficient Treg cells into
246 lymphopenic *Rag2*^{-/-} mice showed their much less conversion to exTreg cells
247 compared with similar transfer of *IkE5*-deficient Treg cells (Figure 5C). To further

248 substantiate the role of IFN- γ for the instability of *IkE5*-deficient Treg cells, we cultured
249 FYP⁺ Treg cells from *Foxp3*^{Cre/+} or *Foxp3*^{Cre/+}/*IkE5*^{f/f} mice under TCR and IL-2
250 stimulation with/without neutralizing anti-IFN- γ antibody for 7 days *in vitro*. While about
251 35% of *IkE5*-deficient Treg cells lost Foxp3 expression, anti-IFN- γ antibody prevented
252 the Foxp3 loss (Figure 5D).

253 In the *in vitro* suppression assay, addition of neutralizing anti-IFN- γ antibody
254 partially recovered the impaired suppressive activity of *IkE5*-deficient Treg cells
255 (Figure 5E). Moreover, in *Rag2*^{-/-} mice co-transferred with *IkE5*-deficient Treg cells and
256 naive CD4⁺CD25⁻CD45RB^{hi} T cells, neutralizing anti-IFN- γ antibody treatment
257 prevented body weight loss, reduction of colon length, and massive infiltration of
258 leukocytes into the colon (Figures 5F-5H). Consistent with these observations,
259 administration of neutralizing anti-IFN- γ antibody abrogated the increase in the
260 frequency of exTreg cells as well as the number of responder CD4⁺ T cells in *Rag2*^{-/-}
261 mice receiving *IkE5*-deficient Treg cells (Figures 5I and 5J). Collectively, these results
262 indicate that the overproduction of IFN- γ by *IkE5*-deletion is responsible for the
263 impaired functional stability and suppressive function of Treg cells.

264

265 **The Foxp3-Ikzf1 complex controls chromatin architecture through the NuRD 266 complex to repress gene expression in Treg cells**

267 Since Ikzf1 associates with Foxp3 via IkE5 in Treg cells (Figure S1B), we first
268 investigated whether Foxp3 and Ikzf1 bound to similar genomic sites in Treg cells by
269 performing chromatin immunoprecipitation-sequencing (ChIP-seq). ChIP-seq analysis
270 revealed that genomic distribution of both Foxp3 and Ikzf1 peaks were globally similar
271 (Figures S6A); 20,583 and 22,275 peaks were identified as the sites with significant
272 binding of Foxp3 and Ikzf1, respectively, in Treg cells, with more than 75% of Foxp3
273 peaks overlapped with Ikzf1 peaks (Figures S6B). The results suggested that Foxp3
274 and Ikzf1 shared a large number of target genes in Treg cells.

275 Next, to address whether genome-wide occupancy of Foxp3 would be affected
276 by *IkE5*-deletion, we conducted ChIP-seq for Foxp3 in *IkE5*-deficient Treg cells. The
277 assay revealed that 12.1% of Foxp3 peaks found in wild-type Treg cells were markedly
278 reduced in intensity in *IkE5*-deficient Treg cells (designated Reduced Foxp3-binding
279 Sites); 19.3% of Foxp3 peaks found in *IkE5*-deficient Treg cells were markedly

280 enhanced compared with wild-type Treg cells (Enhanced Foxp3-binding Sites); the
281 rest of Foxp3-binding sites were not altered in wild-type and *IkE5*-deficient Treg cells
282 (Maintained Foxp3-binding Sites) (Figure 6A). The genomic distribution of these sites
283 revealed that the Reduced and Enhanced Foxp3-binding Sites were much less
284 localized at the promoter regions compared to the Maintained Foxp3-binding Sites,
285 suggesting that the changes in Foxp3 binding due to *IkE5*-deletion preferentially
286 occurred at the enhancer (intergenic and intron) regions (Figure 6B). Furthermore,
287 63.0% of the Reduced Foxp3-binding Sites in wild-type Treg cells located at the same
288 sites of *Ikzf1*-binding, while 28.3% of the Enhanced Foxp3-binding Sites in *IkE5*-
289 deficient Treg cells were bound by *Ikzf1*, suggesting that a sizable fraction of these
290 Reduced or Enhanced Foxp3-bindings Sites are dependent on the presence of *Ikzf1*
291 for optimal Foxp3-binding (Figure 6C).

292 To determine then functional relevance of the alteration in Foxp3 binding, we
293 integrated RNA-seq results and assessed the percentage of the genes possessing the
294 altered Foxp3-binding sites among differentially Up- or Down-genes in *IkE5*-deficient
295 Treg cells. Compared with 7.7% of Down-genes, 38.2% of Up-genes possessed the
296 Enhanced Foxp3-binding Sites, implying a predominant contribution of the sites to the
297 expression of Up-genes (Figure 6D). In agreement with these results, a CDF analysis
298 revealed that the expression of the genes possessing the Enhanced Foxp3-binding
299 Sites were markedly up-regulated in *IkE5*-deficient Treg cells (Figure 6E). These
300 results collectively demonstrated that *Ikzf1* association with Foxp3 was required for
301 Treg-type gene expression, in particular, repression.

302 Foxp3 and its partners are known to form a large protein complex involving
303 other TFs or epigenetic regulators for controlling the expression of target genes.⁹ We
304 therefore examined by Co-IP analysis whether the components of the Foxp3
305 complexes were altered in *IkE5*-deficient Treg cells. Notably, core members of the
306 nucleosome remodeling and deacetylase (NuRD) complex, CHD4 and HDAC1, were
307 dissociated from Foxp3 complex by *IkE5*-deficiency (Figure 6F). Next, since the NuRD
308 complex is a chromatin remodeling complex having nucleosome remodeling and
309 histone deacetylase activities,⁴⁰ we examined whether the Foxp3-*Ikzf1* complex might
310 suppress the expression of target genes by regulating chromatin accessibility and
311 histone acetylation trough the NuRD complex. Assay for transposase-accessible

312 chromatin (ATAC)-seq and histone H3 on lysine 27 acetylation (H3K27ac) ChIP-seq
313 analyses indeed revealed that chromatin accessibility and enhancer activity at the
314 Enhanced Foxp3-binding Sites were low in wild-type Treg cells compared to other
315 sites (Figure S6C), but these activities were strongly augmented by *IkE5*-deficiency
316 (Figure 6G). Consistent with these results, the histone acetyl transferase (HAT), p300,
317 interacted with Foxp3 and its binding to the Enhanced Foxp3-binding Sites were
318 augmented in *IkE5*-deficient Treg cells (Figures 6F and 6H). Because Foxp3
319 complexes are heterogeneous in composition,⁹ these results indicate that Foxp3 may
320 form a repressive complex with *Ikzf1* and compete with the active Foxp3-p300
321 complex in controlling gene transcription.

322 Motif enrichment analysis also revealed that NFAT motif was mostly enriched
323 in the Enhanced Foxp3-binding Sites (Figure S6D). Using a published dataset,⁴¹ we
324 further found that 31.5% of the Enhanced Foxp3-binding Sites bound NFAT1 in CD8
325 T cells, compared to only 2.5% in wild-type Treg cells (Figure S6E). NFAT1-binding to
326 the Enhanced Foxp3-binding Sites were indeed increased in *IkE5*-deficient Treg cells
327 (Figure 6H), suggesting an inhibition of NFAT1-binding to the Enhanced Foxp3-
328 binding Sites by the Foxp3-*Ikzf1* complex. We further confirmed that epigenetic
329 signatures as well as epigenetic regulators binding were altered at the Enhanced
330 Foxp3-binding Sites around the Treg down-regulated genes loci, including *Ifng* and *Il2*
331 in *IkE5*-deficient Treg cells (Figure 6I). In contrast, these alterations were not detected
332 at the Treg up-regulated genes loci, including *Ctla4*, *Il2ra* and *Tnfrsf18* (Figure S6F).

333 Collectively, these findings indicate that the Foxp3-*Ikzf1* complex competes
334 with co-activators such as p300 and NFAT1 by inducing closed chromatin architecture
335 through the NuRD complex in an *Ikzf1*-dependent manner, consequently suppressing
336 the expression of its target genes.

337

338 **Both *Ikzf1* and *Ikzf3* association with Foxp3 is required for the maintenance of
339 Treg cell homeostasis in mice and humans**

340 Recently, Carolina et al. reported that *dLck*^{Cre}/*Ikzf1*^{f/f} mice, in which *Ikzf1* was
341 specifically deleted in mature T cells, showed a normal frequency of splenic Treg cells
342 and no overt spontaneous autoimmunity during 3 months' observation,⁴² suggesting
343 possible defects other than the *Ikzf1* anomaly in *Foxp3*^{Cre}/*IkE5*^{f/f} mice. *Ikzf1* functions

344 by forming not only the homodimer but also a heterodimer with other *Ikzf* family
345 members,²² suggesting that *IkE5*-deficiency might affect function of its heterodimeric
346 partners in Treg cells. To identify putative *Ikzf* family proteins that contribute to the
347 phenotypes of *IkE5*-deficient Treg cells, we generated Treg cells deficient in each *Ikzf*
348 family member, or in combination, by *in vitro* CRISPR/Cas9-mediated editing (ICE).
349 The ICE system efficiently and specifically disrupted the targeted *Ikzf* family proteins
350 in primary Treg cells (Figure S7A). In these conditions, double-deficiency of *Ikzf1* and
351 *Ikzf3* significantly induced IFN- γ production and generated exTreg cells compared to
352 control, to a similar extent as quadruple-deficiency of *Ikzf1*, *Ikzf2*, *Ikzf3* and *Ikzf4*
353 (Figure 7A). On the other hand, double-deficiency of *Ikzf2* and *Ikzf4* as well as single-
354 deficiency of each *Ikzf* family protein failed to induce IFN- γ production and exTreg cell
355 generation (Figure 7A). These results suggest that the *IkE5*-deletion affects not only
356 *Ikzf1* but also *Ikzf3* function in Treg cells.

357 The *IkE5*-deleted *Ikzf1* mutant (Δ *IkE5*) has been reported to exert a dominant-
358 negative effect in B cells.³⁰ Moreover, various germline *IKZF1* point mutations, which
359 show four different mechanisms of action; 1) haploinsufficiency mutations, 2)
360 dimerization defective mutations, 3) dominant-negative mutations, and 4) gain-of-
361 function mutations, were recently identified in patients with immunodeficiency and
362 autoimmune diseases.²⁷ To clarify whether the effect of *IkE5*-deficiency in Treg cells
363 was due to dominant-negative effect of Δ *IkE5* or its dissociation from *Foxp3*, we
364 conducted overexpression of several *Ikzf1*-mutants in Treg cells. Similar to *IkE5*-
365 deficient Treg cells, overexpression of Δ *IkE5* led to inhibition of interaction between
366 *Foxp3* and *Ikzf1*, and promoted IFN- γ production and exTreg cell generation in Treg
367 cells (Figure 7B and 7C). In contrast, overexpression of a dominant-negative mutant
368 *Ikzf1*^{N179S} (N159S in humans) failed to inhibit above interaction and to induce Treg cell
369 instability (Figure 7B and 7C). Of note, a haploinsufficiency mutant *Ikzf1*^{C167R} (C147R
370 in humans) that inhibited the interaction between *Foxp3* and *Ikzf1* promoted IFN- γ
371 production and exTreg cell generation, while another haploinsufficiency mutant
372 *Ikzf1*^{Y230C} (Y210C in humans) that had no inhibitory effect on their interaction
373 maintained Treg cell stability (Figure 7B and 7C). These results collectively suggest
374 that dissociation of *Ikzf1* from *Foxp3* by *IkE5*-deficiency is causative of functional
375 instability in *IkE5*-deficient Treg cells.

376 Kwon *et al.* previously demonstrated that *Ikzf2* and *Ikzf3* each form different
377 *Foxp3* complexes in Treg cells,²⁰ which suggested to us that *Ikzf1* might belong to the
378 same *Foxp3* complex with *Ikzf3* in Treg cells. To address this possibility, we performed
379 a pre-cleared Co-IP experiments in which Treg cell lysates were pre-cleared with anti-
380 *Ikzf1* or anti-IgG antibody before immunoprecipitation of *Foxp3*. Pre-clearing the
381 lysates with anti-*Ikzf1* antibody significantly depleted *Ikzf3*-*Foxp3* complexes, while it
382 did not affect *Ikzf2*-*Foxp3* complexes (Figure 7D). Moreover, we confirmed the
383 dissociation of *Ikzf3*, but not *Ikzf2*, from *Foxp3* in *IkE5*-deficient Treg cells (Figure 7E).
384 These observations collectively indicate that *Ikzf1* and *Ikzf3* belong to the same *Foxp3*
385 complex in Treg cells, while *Ikzf2* belongs to a different one, which explains the
386 functional defect of both *Ikzf1* and *Ikzf3* by *IkE5*-deletion. The results also indicate that
387 both *Ikzf1* and *Ikzf3* association with *Foxp3* is required for the maintenance of Treg
388 cell homeostasis.

389 To address whether *IKZF1* would similarly associate with *FOXP3* in humans,
390 we conducted Co-IP analysis with peripheral blood $CD4^+CD25^+CD127^{\text{lo}}$ naive Treg
391 cells from healthy donors, and confirmed the interaction between *IKZF1* and *FOXP3*
392 (Figure 7F). We next evaluated the role of *IKZF* family proteins in human Treg cells
393 using a protein knock-down strategy with small molecules. Thalidomide analogues,
394 such as Lenalidomide and Pomalidomide, can induce degradation of *IKZF1* and *IKZF3*
395 by recruiting them to the CRL4(CRBN) E3 ubiquitin ligase.^{43–46} Moreover, one
396 compound, 3-(5-(1-(4-(difluoromethoxy)benzyl)piperidin-4-yl)-1-oxoisooindolin-2-
397 yl)piperidine-2,6-dione, has recently been reported as a potent and selective degrader
398 for *IKZF2* and *IKZF4* in the International Patent Applications (WO 2019/038717 A1).
399 Therefore, we synthesized the compound (designated REF001329) and *in vitro*
400 cultured human Treg cells with Pomalidomide or REF001329 in the presence of anti-
401 *CD3*, anti-*CD28* and *IL-2*. *IKZF1* and *IKZF3* or *IKZF2* and *IKZF4* were indeed
402 selectively degraded by the treatment with Pomalidomide or REF001329, respectively
403 (Figure S7B). Under these conditions, overproduction of *IFN-γ* was observed in
404 Pomalidomide-treated Treg cells, but not in those treated with REF001329 (Figure 7G),
405 indicating that both *IKZF1* and *IKZF3* are required for the suppression of *IFN-γ* in
406 human Treg cells. These findings taken together suggest that *Ikzf1* and *Ikzf3*

407 cooperatively play crucial roles in the maintenance of Treg cell homeostasis in mice
408 and humans.

409

410 **DISCUSSION**

411 Foxp3 forms the molecular complexes with numerous factors that facilitate
412 epigenetic remodeling through regulation of histone modifications and DNA
413 methylation, thereby activating or repressing target genes. For example, Foxp3 is
414 thought to induce histone H3 acetylation near promoters and enhancers of its target
415 genes, such as CD25, CTLA4, and GITR, by associating with p300 and other key
416 transcriptional co-activators, leading to the activation of target genes.^{10,15} In contrast,
417 when Foxp3 functions as a repressor, Foxp3 may silence the expression of target
418 genes such as IL-2 and IFN- γ by inducing deacetylation of histone H3 via recruiting
419 histone deacetylase and transcriptional co-repressors, including histone deacetylase
420 3 (HDAC3), carboxy-terminal binding protein 1 (CtBp1) and nuclear receptor co-
421 repressors (NCoR1/NCoR2).^{10,23,47} This report has shown another inhibitory
422 mechanism mediated by an association of Foxp3 with *Ikzf1*.

423 *Ikzf1* is an essential regulator of lymphocyte differentiation and functions
424 primarily as a gene repressor by interacting with the NuRD complex.^{48–50} Our results
425 indicate that Foxp3 forms a repressive complex with the NuRD complex in an *Ikzf1*-
426 dependent manner and suppresses the expression of its target genes by competing
427 directly with co-activators, such as p300 and NFAT1, through induction of closed
428 chromatin architecture. Consistent with our findings, many studies have suggested a
429 direct gene regulation model for Foxp3 in determining Treg cell identity.^{10–12,16,18} On
430 the other hand, a recent study has shown that Foxp3 augments the Treg-type
431 chromatin accessibility largely in an indirect manner by tuning the activity of other
432 chromatin remodeling TFs such as TCF1.²⁵ Hence, it remains debatable whether
433 Foxp3 regulates Treg-specific transcription directly or indirectly by tuning
434 intermediates. Interestingly, our RNA-seq analysis has shown that the expression of
435 several TFs, such as *Bhlhe40* and *Nfat2*, are significantly up-regulated in *IkE5*-
436 deficient Treg cells. *Bhlhe40* and *NFAT2* are key regulators of T-cell activation and
437 cytokine production.^{51,52} These results taken together suggest that the Foxp3-*Ikzf1*

438 complex may also indirectly suppress the expression of target genes through
439 repression of transcriptional regulators in Treg cells.

440 As a model for Foxp3-mediated regulation of gene expression, Kwon *et al.* have
441 shown that Foxp3 exists in distinct multimolecular complexes which can be segregated
442 into two groups based on co-factors, function and nuclear localization.²⁰ Specifically,
443 Foxp3 actively regulates the expression of its target genes, both positively and
444 negatively, when complexed with RELA, IKZF2 and KAT5, and localizes to the center
445 of the nucleus. In contrast, Foxp3 is inactive when complexed with YY1, IKZF3 and
446 EZH2, has a diminished activity in both the activation and repression of its target genes,
447 and is sequestered in the periphery of the nucleus.²⁰ We have clarified in the present
448 study that *Ikzf1* forms Foxp3 complex with *Ikzf3*, one of the components of the inactive
449 Foxp3 complex in Kwon's model, in activated Treg cells, and that both *Ikzf1* and *Ikzf3*
450 play an important role in the suppression of IFN- γ production and exTreg generation
451 from Treg cells. In addition, DuPage *et al.* has reported that EZH2, another component
452 of the inactive Foxp3 complex in Kwon's model, is required for stabilization of Foxp3-
453 driven transcriptional program in activated Treg cells.⁵³ To explain these discrepancies,
454 it should be noted that Kwon *et al.* mainly used Foxp3-transduced T cells in their
455 study.²⁰ It has been shown that Foxp3-transduced T cells exhibit a transcriptional
456 program and a CpG hypomethylation pattern distinct from those in endogenous
457 naturally occurring Treg cells,^{13,54} and that Foxp3 becomes functional and engages in
458 gene repression after TCR stimulation.¹⁴ Since we and DuPage *et al.* analyzed natural
459 Treg cells activated with anti-CD3 and anti-CD28, it is likely that the inactive Foxp3
460 complex becomes functional upon TCR stimulation.

461 The *Ikzf1* isoforms lacking ZFs of the N-terminus have been reported to exert
462 a dominant-negative effect by forming dimers with other *Ikzf* family members and
463 interfering with their DNA-binding activity.²² Since *IkE5*-deletion generates an Ikaros
464 isoform lacking the two N-terminal ZFs, it is predicted to have a dominant-negative
465 effect. Joshi *et al.* indeed showed that *IkE5*-deficient mice exhibited a dominant-
466 negative phenotype in B cells.³⁰ We have, however, experimentally demonstrated that
467 instability of *IkE5*-deficient Treg cells was not due to a dominant-negative effect by
468 Δ *IkE5* since overexpression of a dominant-negative mutant *Ikzf1*^{N179S} could not induce
469 IFN- γ production and exTreg generation in Treg cells. Furthermore, in contrast to

470 impaired IL-2-mediated activation of STAT5 in *Ikzf2*-deficient Treg cells,²⁴ IL-2-STAT5
471 signaling was not affected in *IkE5*-deficient Treg cells, suggesting that *Ikzf2* function
472 is intact in the latter. These results support our finding that Δ *IkE5* does not exert a
473 dominant-negative effect in Treg cells. On the other hand, dissociation of *Ikzf1* from
474 *Foxp3* by *IkE5*-deletion can be a main cause for instability of *IkE5*-deficient Treg cells
475 because overexpression of Δ *IkE5* or a haploinsufficient *Ikzf1*^{C167R} mutation, which
476 inhibited the interaction between *Foxp3* and *Ikzf1*, similarly induced IFN- γ production
477 in Treg cells and generated exTreg cells. In addition, patients carrying IKZF1 C147R
478 mutation (C167R in mice) reportedly show a reduction of Treg cells and development
479 of autoimmune disease.²⁸ However, with the differences in the phenotype, such as
480 serum Ig levels and IFN- γ production, between our *IkE5*-deficient mouse model and
481 the patients with IKZF1 germline mutations, further investigation of *Ikzf1* mutations,
482 their functional anomalies, and disease phenotype is necessary to elucidate the
483 function of *Ikzf1* in Treg and other immune cells.

484 We have found that pomalidomide treatment compromises Treg cell
485 homeostasis with a decrease in IKZF1 and IKZF3 in human Treg cells, as observed
486 with *Ikzf1* and *Ikzf3* double-deficiency in mice. Immunomodulatory drugs (IMiDs) such
487 as lenalidomide and pomalidomide have been used in the treatment of cancers
488 including multiple myeloma and myelodysplastic syndrome, and an inflammatory skin
489 pathology associated with Hansen's disease because of their anti-tumor, anti-
490 angiogenic and anti-inflammatory properties.⁵⁵ Furthermore, IMiDs are promising for
491 the treatment of autoimmune disorders such as systemic lupus erythematosus and
492 inflammatory bowel disease.^{56,57} Recent studies have revealed that cereblon, an
493 ubiquitin E3 ligase, is a receptor of IMiDs, and that both IKZF1 and IKZF3 are target
494 molecules of IMiDs.^{43,44} Specifically, IMiDs have been reported to induce cytotoxicity
495 in multiple myeloma and MDS del(5q) cell lines by a cereblon-dependent degradation
496 of IKZF1 and IKZF3 as one of the mechanisms of their anti-tumor activity.^{43,44}
497 moreover, IMiDs may contribute to anti-inflammatory effects by promoting Treg cell
498 survival and suppressing pathogenic Th17 cell differentiation via increased IL-2
499 production from activated T cells through degradation of IKZF1 and IKZF3.^{58,59} To date,
500 however, these proposals on anti-inflammatory property of IMiDs have lacked
501 sufficient experimental support or large-scale controlled clinical trials. Our findings thus

502 provide not only a new mechanism of the anti-cancer activity of IMiDs, but also clues
503 to explaining their anti-inflammatory effects for treating immunological diseases.

504 In conclusion, the present study demonstrates that the *Foxp3/Ikzf1/Ikzf3*
505 complex exerts gene-repressing function via chromatin remodeling at the target gene
506 loci in Treg cells. Our findings can be exploited to devise novel immunotherapies of
507 immunological diseases and cancer.

508

509 METHODS

510 Mice

511 *IkE5^{f/f}* mice³⁰ were crossed with *Foxp3^{Cre}* transgenic mice³¹ or *Foxp3^{eGFP-Cre-ERT2}*
512 mice³⁶ to generate *Foxp3^{Cre}IkE5^{f/f}* mice or *Foxp3^{eGFP-Cre-ERT2}IkE5^{f/f}* mice, respectively.
513 *Foxp3^{Cre}IkE5^{f/f}* mice and *Rosa26^{fp}* reporter mice³³ were bred to yield
514 *Foxp3^{Cre/+}IkE5^{f/f}R26^{fp/+}* mice. *Foxp3^{Cre/+}IkE5^{f/f}R26^{fp/+}* mice were crossed with *Ifng^{-/-}*
515 mice to generate *Foxp3^{Cre/+}IkE5^{f/f}Ifng^{-/-}R26^{fp/+}* mice. CD45.1⁺C57BL/6 and
516 CD45.1⁺*Rag2^{-/-}* mice were bred in our animal facility. The animal experiments except
517 murine tumor models were performed by using age-matched, 3 to 4-week-old mice.
518 *Foxp3^{eGFP-Cre-ERT2}IkE5^{f/f}* and *Rag2^{-/-}* recipient mice were used at 8 to 12 weeks of age
519 for experiments. All mice used were maintained under specific pathogen-free
520 conditions and all experiments were performed in accordance with guidelines for
521 animal welfare set by Osaka University.

522

523 Plasmids construction

524 Murine *Ikzf1* and *Foxp3* cDNA were amplified by RT-PCR, and inserted into pCMV-
525 Tag vectors (Agilent) to generate Tag fused-*Ikzf1* and -*Foxp3*. The deletion fragments
526 and point-mutants of *Ikzf1* were amplified by RT-PCR, and inserted into pCMV-Tag
527 vectors (Agilent) and MSCV-NGFR vector to generate Tag fused-*Ikzf1* mutants and
528 retroviral *Ikzf1* mutants, respectively.

529

530 Cell preparation and culture conditions

531 Mouse Treg cell sorting from peripheral lymphoid organs was performed as previously
532 described.⁶⁰ Briefly, single cell suspensions were prepared from spleen and lymph
533 nodes, and were pre-enrichment of CD4⁺ cells using a CD4⁺ T cell isolation kit, mouse

534 (Miltenyi Biotec). Enriched cells were stained with Live/Dead cell viability dye and
535 antibodies for surface markers as follows, CD4, CD25, CD8, CD3, CD44, CD62L and
536 CD45RB. Then, CD4⁺CD8⁻YFP⁺ cells were sorted as Treg cells by FACS Aria II (BD
537 Biosciences). In some experiments, CD4⁺CD25⁻YFP⁻CD44^{lo}CD62L^{hi} cells or
538 CD4⁺CD25⁻CD45RB^{hi} cells were prepared as naive CD4⁺ T cells. CD3⁻CD25⁻YFP⁻
539 cells from spleen were prepared as CD3⁺ T cell-depleted splenocytes. For mouse cell
540 culture, we used RPMI 1640 (Nacalai tesque) supplemented with 10% fetal calf serum
541 (FCS)(v/v), 60 µg/ml penicillin G (Nacalai tesque), 100 µg/ml streptomycin (Nacalai
542 tesque) and 0.1 mM 2-mercaptoethanol (Thermo Fisher Scientific).

543 For purification of human Treg cells, human CD4⁺ T cells were purified from frozen
544 peripheral blood mono-nuclear cells (PBMCs) (STEMCELL Technologies) with
545 EasySep Human CD4⁺ T Cell Isolation Kit (STEMCELL Technologies). Enriched CD4⁺
546 cells were stained for 30 min on ice with antibodies against anti-CD4, anti-CD25 and
547 anti-CD45RA antibodies. CD4⁺CD25⁺CD45RA⁺ and CD4⁺CD25^{hi}CD45RA⁻ cells were
548 sorted by MA900 cell sorter (SONY Biotechnology). For Co-IP experiment, naive Treg
549 cells were purified by using EasySep Human CD4⁺CD127^{low}CD25⁺ Regulatory T Cell
550 Isolation Kit (STEMCELL Technologies). For human cell culture, we used RPMI 1640
551 (Thermo Fisher Scientific) supplemented with 10% fetal calf serum (FCS)(v/v)(Thermo
552 Fisher Scientific), Penicillin-Streptomycin Solution (x100) (FUJIFILM Wako). The
553 present study was approved by the institutional ethics committees of Osaka University.
554

555 **Flow cytometry analysis**

556 Flow cytometry analysis was performed as previously described.⁶¹ Cells were first
557 incubated with anti-CD16/32 then stained with Live/Dead cell viability dye, and
558 antibodies for surface markers. Cells were subsequently fixed and permeabilized with
559 a Foxp3/Transcription Factor Staining Buffer Set (eBioscience) according to the
560 manufacturer's instructions. For intracellular cytokine staining, cells were incubated
561 with Cell Stimulation Cocktail (plus protein transport inhibitors) (eBioscience) for 4 hrs
562 or Cell Activation Cocktail (Biolegend) in the presence of Brefeldin A and Monensin
563 for 5 hrs before staining.

564 For phosphorylated STAT5 staining, cells were first starved for 45 min at 37°C,
565 followed by stimulation with IL-2 (100 U/ml) for 30 min at 37°C. Stimulated cells were

566 then subjected to BD Phosflow Lyse/Fix Buffer and BD Phosflow Perm Buffer III (BD
567 Biosciences), according to the manufacturer's instructions. Data were acquired
568 through a FACSCanto II (BD Biosciences) for mouse samples or a CytoFLEX LX
569 (Beckman Coulter) for human samples, and analyzed with FlowJo software (Tree Star
570 Inc).

571

572 **Immunoblot analysis and Simple western assay**

573 Immunoblot analysis was performed as described previously.⁶² Briefly, cells were
574 washed, lysed in sample buffer, and boiled. Whole cell lysates were separated by
575 SDS-PAGE and transferred to a polyvinylidene difluoride membrane by using iBlot 2
576 Dry Blotting System (Thermo Fisher Scientific). The membrane was blocked with
577 StartingBlock (TBS) Blocking Buffer (Thermo Fisher Scientific) and probed with the
578 following primary antibodies: anti-IKZF1 (Cell Signaling Technology), anti-IKZF2 (Cell
579 Signaling Technology), anti-IKZF3 (Cell Signaling Technology), anti-IKZF4 (Novus
580 Biologicals), anti-FOXP3 (Cell Signaling Technology), anti-β-Actin (Invitrogen), anti-
581 Flag-M2 (Sigma-Aldrich) or anti-c-Myc-Tag (Cell Signaling Technology). The
582 membrane was then probed with appropriate secondary antibodies conjugated to HRP
583 and visualized with SuperSignal West Pico PLUS Chemiluminescent Substrate
584 (Thermo Fisher Scientific) according to the manufacturer's instructions. Anti-β-Actin
585 was used as a loading control.

586 For the Simple western assay, the Jess Simple Western System (ProteinSimple) is an
587 automated capillary-based size separation and nano-immunoassay system. We
588 followed the manufacturer's standard method. Briefly, the total cell lysates were mixed
589 with 0.1x sample buffer and Fluorescent 5x master mix (ProteinSimple) in the
590 presence of fluorescent molecular weight markers and 400 mM dithiothreitol
591 (ProteinSimple). The samples were separated in capillaries as they migrated through
592 a separation matrix. A Protein Simple proprietary photoactivated capture chemistry
593 was used to immobilize separated proteins on the capillaries. After a wash step, the
594 primary antibodies: anti-Ikzf1 (Cell Signaling Technology), anti-Ikzf2 (Cell Signaling
595 Technology), anti-Ikzf3 (Santa Cruz Biotechnology), anti-CHD4 (Sigma-Aldrich), anti-
596 HDAC1 (Cell Signaling Technology), anti-p300 (Sigma-Aldrich) or anti-GAPDH (Cell
597 Signaling Technology), and HRP-conjugated secondary antibodies (ProteinSimple):

598 anti-rabbit secondary antibody or anti-mouse secondary antibody, were incubated for
599 50 min and 30 min, respectively. The chemiluminescent revelation was established
600 with peroxyde/luminol-S (ProteinSimple). Digital image of chemiluminescence of the
601 capillary was captured with Compass Simple Western software (ProteinSimple) that
602 calculated automatically heights (Chemiluminescence intensity), area, and
603 signal/noise ratio. If no signal of target factors was calculated, band intensity was
604 defined as 0. Results could be visualized as electropherograms representing peak of
605 chemiluminescence intensity and as lane view from signal of chemiluminescence
606 detected in the capillary. An internal system control was included in each run.

607

608 **Co-immunoprecipitation (Co-IP)**

609 Expression vectors encoding Foxp3 and *Ikzf1* and/or *Ikzf1* mutants were transfected
610 into HEK293T cells (2×10^5) with FuGENE HD (Promega). 48h after transfection, cells
611 were harvested and lysed in IP lysis buffer (Thermo Fisher Scientific).
612 Immunoprecipitation was performed using 2 μ g anti-Flag-M2 antibody (Sigma-Aldrich)
613 in the presence of DynaBeads IgG magnetic beads (25 μ l/sample)(Thermo Fisher
614 Scientific) overnight at 4°C. Equivalent amounts of protein from whole cell lysates
615 (Input) or immunoprecipitates (IP) were analyzed by Immunoblot analysis.

616 In primary mouse Treg cells, purified CD4⁺FYP⁺ Treg cells (1×10^5) were cultured with
617 Dynabeads mouse CD3/CD28 T cell stimulator (25 μ l/ml) (Thermo Fisher Scientific)
618 and IL-2 (1500 U/ml) for 7 days. Activated Treg cells were then stimulated with Cell
619 Stimulation Cocktail (eBioscience) for 1 hr at 37 °C and lysed in IP lysis buffer (Thermo
620 Fisher Scientific). Immunoprecipitation was performed with 5 μ g anti-IgG (Sigma-
621 Aldrich) or 5 μ g anti-Foxp3 (eBioscience) antibody in the presence of DynaBeads IgG
622 magnetic beads (50 μ l/sample) (Thermo Fisher Scientific) overnight at 4°C. Equivalent
623 amounts of protein from whole cell lysates (Input) or immunoprecipitates (IP) were
624 analyzed by Simple Western assay.

625 In human Treg cells, purified CD4⁺CD25⁺CD127^{lo} naive Treg cells (5×10^4) were
626 stimulated with Dynabeads Human T-activator CD3/CD28 (12.5 μ l/ml) (Thermo Fisher
627 Scientific) and IL-2 (100 U/ml) for 9 days. Expanded Treg cells were harvested and
628 lysed in RIPA buffer (Nacalai tesque). Immunoprecipitation was performed using 6 μ g
629 anti-FOXP3 antibody (eBioscience) and Protein G Dynabeads (20 μ l/sample) for 3 hrs.

630 Equivalent amounts of protein from whole cell lysates (Input) or immunoprecipitates
631 (IP) were analyzed by Immunoblot analysis.

632

633 **Pre-clearing Co-IP**

634 Purified CD4⁺FYP⁺ Treg cells (1 x 10⁵) were cultured with Dynabeads mouse
635 CD3/CD28 T cell stimulator (25 µl/ml) (Thermo Fisher Scientific) and IL-2 (1500 U/ml)
636 for 7 days, and lysed in IP lysis buffer (Thermo Fisher Scientific). Before
637 immunoprecipitation, whole cell lysates were pre-cleared with 5 µg anti-IgG (Cell
638 Signaling Technology) or 5 µg anti-Ikzf1 (Cell Signaling Technology) antibody in the
639 presence of DynaBeads IgG magnetic beads (50 µl/sample) (Thermo Fisher Scientific)
640 overnight at 4°C. Subsequently, pre-cleared lysate were immunoprecipitated with 5 µg
641 anti-IgG (Sigma-Aldrich) or 5 µg anti-Foxp3 (eBioscience) antibody in the presence of
642 DynaBeads IgG magnetic beads (50 µl/sample) (Thermo Fisher Scientific) overnight
643 at 4°C. Equivalent amounts of protein from supernatants (Input) or immunoprecipitates
644 (IP) were analyzed by Simple Western assay.

645

646 **Enzyme linked immunosorbent assay (ELISA)**

647 Serum was collected from *Foxp3*^{Cre} and *Foxp3*^{Cre}/*IkE5*^{f/f} mice at 3 to 4 weeks of age
648 and analyzed for concentration of IgG1, IgM and IgE with Mouse Uncoated ELISA kits
649 (Invitrogen) according to the manufacturer's instructions. Anti-double strand DNA
650 (dsDNA) and anti-parietal cell (PC) antibodies in serum were respectively measured
651 with a LBIS Mouse anti-dsDNA ELISA Kit (FUJIFILM Wako Shibayagi Corporation)
652 and a Qualitative Mouse Gastric Parietal Cell Antibody (Anti-PC) ELISA Kit
653 (MYBioSource), according to the manufacturer's protocol. The absorbance was
654 measured at 450 nm with Nivo multimode microplate reader (PerkinElmer).

655

656 **Histological analysis**

657 Freshly-isolated tissues were immediately fixed by 4% Paraformaldehyde (Nacalai
658 tesque). Hematoxylin and eosin (H&E) staining and microscopy slide preparation was
659 performed by the Center for Anatomical, Pathological and Forensic Medical Research,
660 Kyoto University Graduate School of Medicine. Stained sections were subjected to
661 scoring of disease severity, in a double-blinded manner, based on the following criteria.

662 Dermatitis: 0, normal (no inflammation); 1, mild inflammation; 2, moderate
663 inflammation; 3, marked inflammation (thickness and tissue destruction).
664 Gastritis: 0, no inflammation; 1, submucosal inflammation; 2, mild mucosal
665 inflammation; 3, intermediate mucosal inflammation with destruction of gastric glands;
666 4, severe mucosal inflammation with loss of parietal cells.
667 Pneumonitis: 0, no inflammation; 1, mild inflammation; 2, intermediate inflammation;
668 3, severe inflammation and tissue destruction.
669 Hepatitis: 0, normal (no pathology); 1, mild (1-3 abnormal areas); 2, moderate (3-5
670 abnormal areas); 3, severe (> 5 abnormal areas).
671 Colitis: 0, no inflammation; 1, minimal scattered mucosal inflammatory cell infiltrates,
672 with or without minimal epithelial hyperplasia; 2, mild scattered mucosal and
673 submucosal inflammatory cell infiltrates with mild epithelial hyperplasia; 3, moderate
674 scattered mucosal and submucosal inflammatory cell infiltrates with moderate
675 epithelial hyperplasia and mucin depletion; 4, marked scattered mucosal and
676 submucosal inflammatory cell infiltrates that were associated with ulceration with
677 marked epithelial hyperplasia and mucin depletion; 5, marked transmural inflammation
678 with severe ulceration and loss of intestinal glands.

679

680 **Treg cell stability assay**

681 For the *in vitro* assay, purified CD4⁺FYP⁺ Treg cells (1 x 10⁵) were cultured with
682 Dynabeads mouse CD3/CD28 T cell stimulator (25 µl/ml) (Thermo Fisher Scientific)
683 and IL-2 (100 U/ml) in the presence of 10 µg/ml anti-IFN-γ (eBioscience) or 10 µg/ml
684 anti-IgG antibody (eBioscience) for 7 days. Cultured cells were analyzed by flow
685 cytometry after removing Dynabeads.

686 For the *ex vivo* assay, purified CD4⁺FYP⁺ Treg cells (1 x 10⁵) from *Foxp3*^{Cre/+},
687 *Foxp3*^{Cre/+}*Ike5*^{f/f} or *Foxp3*^{Cre/+}*Ike5*^{f/f}*Ifng*^{-/-} mice were intravenously transferred into
688 *Rag2*^{-/-} recipients. At day 7-8 after transfer, peripheral lymphoid organs were collected
689 from recipient mice and subjected to flow cytometric analysis.

690 For human Treg cells, purified Treg cells (5 x 10⁴) were cultured with Dynabeads
691 Human T-activator CD3/CD28 (12.5 µl/ml) (Thermo Fisher Scientific) and IL-2 (100
692 U/ml) stimulations in the presence of DMSO, 10 µM Pomalidomide (Tokyo Chemical
693 Industry) or 10 µM REF001329 (Fujii Memorial Research Institute) for 9 days, followed

694 by flow cytometry analysis.

695

696 **CpG methylation analysis by bisulfite sequencing**

697 Genome DNA was collected from purified Treg cells (1×10^5) by phenol-chloroform
698 extraction. 10-100 ng of genome DNA was subjected to bisulfite reaction using
699 MethylEasy Xceed Rapid DNA Bisulfite Modification Kit (Human Genetic Signatures)
700 following the manufacturer's instruction. PCR primers, conditions, and methods for
701 DNA sequencing are previously described.¹³

702

703 ***In vitro* suppression assay**

704 Purified CD4⁺ naïve T (Tresp) cells from CD45.1⁺ C57BL/6 mice were stained with
705 CellTrace violet (CTV) (Thermo Fisher Scientific). Tresp cells (5×10^4) were cultured
706 with CD3⁺ T cell-depleted splenocytes (1×10^5) and CD4⁺FYP⁺ Treg cells at indicated
707 Treg : Tresp ratios in the presence of 1 μ g/ml anti-CD3 antibody (BD Pharmingen).
708 After 3 days, Tresp cell proliferation was assessed by dilution of CTV fluorescence
709 intensity with flow cytometry. For calibration of Tresp cell absolute numbers,
710 CountBright Absolute Counting Beads (Thermo Fisher Scientific) were mixed with the
711 cell samples before cell surface staining and assayed with flow cytometry. For the IFN-
712 γ neutralization, 10 μ g/ml anti-IFN- γ (eBioscience) or 10 μ g/ml anti-IgG antibody
713 (eBioscience) was added into culture medium.

714

715 **CD4⁺ T cell transfer model of colitis**

716 CD4⁺CD25⁻CD45RB^{hi} naïve T cells (1×10^5) from CD45.1⁺ C57BL/6 and
717 CD45.2⁺CD4⁺FYP⁺ Treg cells (1×10^5) from *Foxp3*^{Cre/+} or *Foxp3*^{Cre/+}/*Ike5*^{fl/fl} mice were
718 mixed and intravenously transferred into *Rag2*^{-/-} recipients to induce colitis. Body
719 weight of recipients was measured once a week up to day 42. Body weight change
720 was assessed by the ratio of body weight to day 0 (Day 0 = 100%). At day 42, all mice
721 were sacrificed and subjected to measurement of colon length, inspection of histology
722 and flow cytometric analysis. For the IFN- γ neutralization, either anti-IFN- γ (250
723 μ g/mouse) (BioXCell) or anti-IgG antibody (250 μ g/mouse) (BioXCell) intraperitoneally
724 injected into *Rag2*^{-/-} recipients every 3 days.

725

726 **Murine tumor models**

727 *Foxp3*^{eGFP-Cre-ERT2} and *Foxp3*^{eGFP-Cre-ERT2}/*IkE5*^{f/f} mice were intradermally inoculated with
728 B16F0 murine melanoma cells (5×10^5) or MC38 murine colon adenocarcinoma cells
729 (2×10^5) into their shaved flanks (Day 0) and intraperitoneally injected with tamoxifen
730 (4 mg/mouse in corn oil) (Sigma-Aldrich) on day 0, 1 and 3. Tumors were measured
731 every 2 or 3 days with digital calipers and tumor area (mm^2) was calculated as length
732 x width. Tumor weight was measured on day 18. Tumors, draining lymph nodes
733 (dLNs) and non-draining lymph nodes (ndLNs) were collected for analysis on day 10.
734 Tumor-infiltrating leukocytes (TILs) were prepared with the Tumor Dissociation Kit
735 (Miltenyi Biotec) and the gentleMACS Octo Dissociator (Miltenyi Biotec), according to
736 the manufacturer's instructions.

737

738 **RNA-seq and data analysis**

739 Purified CD4⁺FYP⁺ Treg cells were stimulated with Cell Stimulation Cocktail
740 (eBioscience) for 2 hrs and lysed in RLT buffer (Qiagen) containing 1% 2-
741 mercaptoethanol (Thermo Fisher Scientific), followed by RNA reverse transcription by
742 SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing (Clontech). After enzymatic
743 fragmentation of cDNA samples by KAPA Frag kit (KAPA Biosystems), sequencing
744 libraries were prepared using KAPA Hyper Prep Kit (KAPA Biosystems). Sequencing
745 of the cDNA libraries was performed by HiSeq2500 (Illumina).

746 Gene expression was quantified using ikra (v2.0), an RNA-seq pipeline centered on
747 Salmon.⁶³ The ikra pipeline executed the following tools for the quality control,
748 trimming, and quantification of transcripts; Trim Galore (v0.6.6), Salmon (v1.4.0), and
749 tximport (v1.6.0), consequently outputting the scaled TPM and TPM values. As the
750 reference, GENCODE vM26 was used. The differentially expressed genes (DEGs)
751 (Fold change, 2-fold; FDR < 0.1) were identified by DEseq2 in iDEP (v0.90)⁶⁴ using
752 the scaled TPM values. Gene set enrichment analysis (v4.0.3)⁶⁵ was performed with
753 the following settings: collapse = true, permutation type = gene_set, scoring =
754 weighted. Hierarchical clustering was performed using the heatmap.2 function in R
755 package gplots.

756

757 **ChIP-seq and data analysis**

758 ChIP-seq experiments were performed as previously described with minor
759 modification.⁶⁰ Purified Treg cells were stimulated with Cell Stimulation Cocktail
760 (eBioscience) for 1 hr at 37 °C. Stimulated Treg cells were then cross-linked with 1%
761 Formaldehyde for 5 min (histone ChIP) or 30 min (transcription factor ChIP) at room
762 temperature. After nuclear extraction, Cross-linked DNA was fragmentated by
763 sonication using Digital Sonifier (Branson). The lysate was incubated overnight at 4 °C
764 with 50-100 µl DynaBeads IgG magnetic beads (Thermo Fisher Scientific) that had
765 been pre-incubated with 2.5-5 µg appropriate antibodies. Samples were washed,
766 eluted, reverse cross-linked at 65 °C for 24 hrs, and purified using ChIP DNA Clean &
767 Concentrator (Zymo Research). For the transcription factor ChIP-seq, purified ChIP
768 DNA was fragmented using Covaris Focused-ultrasonicator S220 (Covaris) before
769 library preparation. Library was prepared using Ion Xpress Plus Fragment Library Kit
770 (Thermo Fisher Scientific) according to manufacturer's instructions and sequenced by
771 IonS5 sequencer system (Thermo Fisher Scientific). Antibodies used were anti-
772 H3K27ac (GeneTex), anti-Foxp3 (Abcam), anti-Ikaros (Sigma-Aldrich), anti-p300
773 (Abcam) and anti-NFAT1 (Abcam).

774 For data analysis, the quality of sequence reads was confirmed using fastQC to
775 confirm that the average of Phred score was over 20. Raw sequences were trimmed
776 with fastx_trimmer in fastx_tool kit, using following setting; fastx_trimmer -Q33 -f 12 -l
777 220 -i \${name}.fastq | fastq_quality_trimmer -Q33 -t 20 -l 30 -o \${name}_trimm.fastq.
778 Sequencing reads were mapped to the mouse genome mm10 using Bowtie2 with
779 default setting; bowtie2 -p 30 -x mm10 -U \${name}_trim.fastq -S \${name}_accept.sam.
780 For visualization of ChIP peaks, peak call was performed using MACS2⁶⁶ by the
781 following command; macs2 callpeak -t \${name}_accept.sam -c input.sam -g mm -n
782 \${name} -B -q 0.01 –nomodel. Bdg2bw tool used for the conversion of bedgraph to
783 bigwig. Integrated genome viewer (IGV) was used for the visualization of peak or
784 region data using group-auto scaling, auto-scaling based on normalized to total
785 mapped reads. ChIP-seq peaks were defined using FindPeaks, with their size fixed at
786 500 base pairs, minimum distance between peaks being 500 base pairs, FDR set as
787 default, and local filtering switched off. The overlap of among ChIP-seq peaks was
788 defined by ≥ 1 base pair overlap using Bedtools. To identify common or specific peaks
789 between given conditions, the identified peaks in each condition were merged. Then,

790 the merged peaks were used to define common or specific peaks using HOMER
791 (getDifferentialPeaks) with default parameters. Normalized density plots of histone
792 modifications peaks as well as binding of transcription factors around Foxp3-binding
793 sites were calculated using annotatePeaks in Homer package.⁶⁷

794

795 **ATAC-seq and data analysis**

796 ATAC-seq was performed as previously described.⁶¹ Briefly, purified CD4⁺FYP⁺ Treg
797 cells (1 x 10⁵) were lysed using 50 µl of lysis buffer (0.01% digitonin, 0.1% NP-40,
798 0.1% Tween 20 in resuspension buffer; 10 mM Tris-HCl pH7.5, 100 mM NaCl, 3 mM
799 MgCl₂) for 3 min on ice. After removing lysis buffer by centrifugation, Tn5 tagmentation
800 was performed using Illumina Tagment DNA TDE1 Enzyme and Buffer Kits (Illumina)
801 at 37°C for 30 min, with shaking at 1000 rpm following manufacturer's instruction. After
802 purification using DNA Clean & Concentrator-5 (Zymo Research), tagmented DNA
803 was amplified using NEBNext High-Fidelity PCR Master Mix (New England BioLabs)
804 with the following primers: 5'-
805 CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTCTCGTGGCTCGGAGATG
806 T-3' and 5'-
807 AATGATACGGCGACCACCGAGATCTACACNNNNNNNTCGTCGGCAGCGTCAG
808 ATGTG-3' (barcode sequences are indicated as NNNNNNNN). Prepared DNA
809 libraries were size-selected (150-1000 bp) by Ampure XP (Beckman Coulter).
810 Sequencing was performed using NextSeq500 (Illumina).

811 For ATAC-seq analysis, sequenced reads were processed with fastx_trimmer and
812 cmpfastq_pe. Processed reads were mapped to mm10 reference using Bowtie2 with
813 default setting. The peak call was performed using MACS2⁶⁶. ATAC-seq peaks were
814 defined using FindPeaks, with their size fixed at 250 base pairs, FDR set as default,
815 and local filtering switched off. Normalized density of mapped reads around Foxp3-
816 binding sites was determined using annotatePeaks.⁶⁷

817

818 **Retroviral transduction**

819 Purified CD4⁺FYP⁺ Treg cells (1 x 10⁵) were stimulated the plate-bound α-CD3 (1
820 µg/ml) (BD Pharmingen), α-CD28 (1 µg/ml) (BD Pharmingen) and IL-2 (100 U/ml) for
821 24 hrs. After activation, fresh retrovirus supernatant was added and the cells were

822 spun with 2500 rpm for 90 min at 32°C. After spin infection, the cells were cultured
823 under the above conditions and harvested on day 4 for flow cytometric analysis.

824

825 ***In vitro* CRISPR/Cas9-mediated gene targeting**

826 CRISPR RNAs (crRNAs) for target genes were designed using the Integrated DNA
827 Technologies (IDT) guide RNA design tool. Two or three crRNAs per target were
828 designed and mixed to use. Negative control crRNA and tracrRNA were purchased
829 from IDT. Purified CD4⁺FYP⁺ Treg cells (1 x 10⁵) were cultured with Dynabeads mouse
830 CD3/CD28 T cell stimulator (25 µl/ml) (Thermo Fisher Scientific) and IL-2 (1500 U/ml)
831 for 7 days. Expanded Treg cells (2 x 10⁶) were resuspended into P4 Primary Cell
832 solution (Lonza Bioscience) and nucleofected with Cas9 protein and gRNAs, which
833 are mixture of crRNAs and tracrRNA, at the DG137 program by Amaxa 4D (Lonza
834 Bioscience). After nucleofection, cells were washed and re-cultured with Dynabeads
835 mouse CD3/CD28 T cell stimulator (25 µl/ml) (Thermo Fisher Scientific) and IL-2 (1500
836 U/ml) for 3 days, followed by staining for surface and intracellular molecules.

837

838 **Data and code availability**

839 All data generated in this study are included in this published article and online
840 supplemental materials. The RNA-seq, the ChIP-seq and the ATAC-seq data have
841 been deposited in the GEO database⁶⁸ under the accession codes: GSE229592. Any
842 additional information required to reanalyze the data reported in this paper is available
843 from the lead contact upon request.

844

845 **Quantification and statistical analysis**

846 Statistical analyses were calculated with Prism software (GraphPad). Normal
847 distribution was assumed a priori for all samples. *P* values of less than 0.05 were
848 considered significant (**P* < 0.05; ***P* < 0.01; ****P* < 0.001).

849

850 **ACKNOWLEDGMENTS**

851 We thank Fujii Memorial Research Institute for providing REF001329, J. White for
852 reading the manuscript, A. Shimonishi, M. Zaizen and R. Ishii for help with mice and
853 cell sorting. Bioinformatics analyses were conducted using the computer system at the

854 Genome Information Research Center of the Research Institute for Microbial Diseases
855 at Osaka University. This study was funded in part by grants-in-aid from the Ministry
856 of Education, Sports, and Culture of Japan (16H06295), and Japan Agency for Medical
857 Research and Development (P-CREATE; 18cm0106303, and LEAP; 18gm0010005)
858 to S.S. and the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant-
859 in-Aid for Scientific Research (B) 21H02748, and the Takeda Science Foundation to
860 K.I.

861

862 AUTHOR CONTRIBUTIONS

863 K.I. and S.S. designed the research and analyzed the data. K.I. performed most of
864 experiments and bioinformatic analysis of next generation sequencing. Y.N. supported
865 to run next generation sequencing. Y.H. and T.K. performed most of human
866 experiments. L.J., Y.K. and C.K. participated in specific experiments. K.I. prepared the
867 manuscript. K.G. and S.S. critically revised the manuscript.

868

869 DECLARATION OF INTERESTS

870 The authors declare no competing interests.

871

872 REFERENCES

- 873 1. Sakaguchi, S. (2004). Naturally arising CD4+ regulatory T cells for immunologic
874 self-tolerance and negative control of immune responses. *Annu. Rev. Immunol.* 22, 531–562. 10.1146/annurev.immunol.21.120601.141122.
- 876 2. Josefowicz, S.Z., Lu, L.F., and Rudensky, A.Y. (2012). Regulatory T cells:
877 Mechanisms of differentiation and function. *Annu. Rev. Immunol.* 30, 531–564.
878 10.1146/annurev.immunol.25.022106.141623.
- 879 3. Hori, S., Nomura, T., and Sakaguchi, S. (2003). Control of regulatory T cell
880 development by the transcription factor Foxp3. *Science* (80-). 299, 1057–1061.
881 10.1126/science.1079490.

- 882 4. Fontenot, J.D., Gavin, M.A., and Rudensky, A.Y. (2003). Foxp3 programs the
883 development and function of CD4+CD25+ regulatory T cells. *Nat. Immunol.* 4,
884 330–336. 10.1038/ni904.
- 885 5. Khatri, R., Cox, T., Yasayko, S.A., and Ramsdell, F. (2003). An essential role
886 for Scurfin in CD4+CD25+T regulatory cells. *Nat. Immunol.* 4, 337–342.
887 10.1038/ni909.
- 888 6. Godfrey, V.L., Wilkinson, J.E., Rinchik, E.M., and Russell, L.B. (1991). Fatal
889 lymphoreticular disease in the scurfy (sf) mouse requires T cells that mature in
890 a sf thymic environment : Potential model for thymic education. *Proc. Natl. Acad.*
891 *Sci. U. S. A.* 88, 5528–5532.
- 892 7. Bacchetta, R., Barzaghi, F., and Roncarolo, M.G. (2018). From IPEX syndrome
893 to FOXP3 mutation: A lesson on immune dysregulation. *Ann. N. Y. Acad. Sci.*
894 1417, 5–22. 10.1111/nyas.13011.
- 895 8. Hayatsu, N., Miyao, T., Tachibana, M., Murakami, R., Kimura, A., Kato, T.,
896 Kawakami, E., Endo, T.A., Setoguchi, R., Watarai, H., et al. (2017). Analyses of
897 a Mutant Foxp3 Allele Reveal BATF as a Critical Transcription Factor in the
898 Differentiation and Accumulation of Tissue Regulatory T Cells. *Immunity* 47,
899 268-283.e9. 10.1016/j.jimmuni.2017.07.008.
- 900 9. Rudra, D., Deroos, P., Chaudhry, A., Niec, R.E., Arvey, A., Samstein, R.M.,
901 Leslie, C., Shaffer, S.A., Goodlett, D.R., and Rudensky, A.Y. (2012).
902 Transcription factor Foxp3 and its protein partners form a complex regulatory
903 network. *Nat. Immunol.* 13, 1010–1019. 10.1038/ni.2402.
- 904 10. Chen, C., Rowell, E.A., Thomas, R.M., Hancock, W.W., and Wells, A.D. (2006).
905 Transcriptional regulation by Foxp3 is associated with direct promoter
906 occupancy and modulation of histone acetylation. *J. Biol. Chem.* 281, 36828–
907 36834. 10.1074/jbc.M608848200.
- 908 11. Ono, M., Yaguchi, H., Ohkura, N., Kitabayashi, I., Nagamura, Y., Nomura, T.,
909 Miyachi, Y., Tsukada, T., and Sakaguchi, S. (2007). Foxp3 controls regulatory

- 910 T-cell function by interacting with AML1/Runx1. *Nature* **446**, 685–689.
911 10.1038/nature05673.
- 912 12. Wu, Y., Borde, M., Heissmeyer, V., Feuerer, M., Lapan, A.D., Stroud, J.C., Bates,
913 D.L., Guo, L., Han, A., Ziegler, S.F., et al. (2006). FOXP3 Controls Regulatory
914 T Cell Function through Cooperation with NFAT. *Cell* **126**, 375–387.
915 10.1016/j.cell.2006.05.042.
- 916 13. Ohkura, N., Hamaguchi, M., Morikawa, H., Sugimura, K., Tanaka, A., Ito, Y.,
917 Osaki, M., Tanaka, Y., Yamashita, R., Nakano, N., et al. (2012). T Cell Receptor
918 Stimulation-Induced Epigenetic Changes and Foxp3 Expression Are
919 Independent and Complementary Events Required for Treg Cell Development.
920 *Immunity* **37**, 785–799. 10.1016/j.immuni.2012.09.010.
- 921 14. Morikawa, H., Ohkura, N., Vandenbon, A., Itoh, M., Nagao-Sato, S., Kawaji, H.,
922 Lassmann, T., Carninci, P., Hayashizaki, Y., Forrest, A.R.R., et al. (2014).
923 Differential roles of epigenetic changes and Foxp3 expression in regulatory T
924 cell-specific transcriptional regulation. *Proc. Natl. Acad. Sci. U. S. A.* **111**, 5289–
925 5294. 10.1073/pnas.1312717110.
- 926 15. Li, B., Samanta, A., Song, X., Iacono, K.T., Bembas, K., Tao, R., Basu, S., Riley,
927 J.L., Hancock, W.W., Shen, Y., et al. (2007). FOXP3 interactions with histone
928 acetyltransferase and class II histone deacetylases are required for repression.
929 *Proc. Natl. Acad. Sci. U. S. A.* **104**, 4571–4576. 10.1073/pnas.0700298104.
- 930 16. Arvey, A., Van Der Veeken, J., Samstein, R.M., Feng, Y., Stamatoyannopoulos,
931 J.A., and Rudensky, A.Y. (2014). Inflammation-induced repression of chromatin
932 bound by the transcription factor Foxp3 in regulatory T cells. *Nat. Immunol.* **15**,
933 580–587. 10.1038/ni.2868.
- 934 17. Zemmour, D., Charbonnier, L.M., Leon, J., Six, E., Keles, S., Delville, M.,
935 Benamar, M., Baris, S., Zuber, J., Chen, K., et al. (2021). Single-cell analysis of
936 FOXP3 deficiencies in humans and mice unmasks intrinsic and extrinsic CD4+
937 T cell perturbations. *Nat. Immunol.* **22**, 607–619. 10.1038/s41590-021-00910-8.

- 938 18. Ramirez, R.N., Chowdhary, K., Leon, J., Mathis, D., and Benoist, C. (2022).
939 FoxP3 associates with enhancer-promoter loops to regulate Treg-specific gene
940 expression. *Sci. Immunol.* *7*, 1–15. 10.1126/sciimmunol.abj9836.
- 941 19. Konopacki, C., Pritykin, Y., Rubtsov, Y., Leslie, C.S., and Rudensky, A.Y. (2019).
942 Transcription factor Foxp1 regulates Foxp3 chromatin binding and coordinates
943 regulatory T cell function. *Nat. Immunol.* *20*, 232–242. 10.1038/s41590-018-
944 0291-z.
- 945 20. Kwon, H.K., Chen, H.M., Mathis, D., and Benoist, C. (2017). Different molecular
946 complexes that mediate transcriptional induction and repression by FoxP3. *Nat.*
947 *Immunol.* *18*, 1238–1248. 10.1038/ni.3835.
- 948 21. John, L.B., and Ward, A.C. (2011). The Ikaros gene family: Transcriptional
949 regulators of hematopoiesis and immunity. *Mol. Immunol.* *48*, 1272–1278.
950 10.1016/j.molimm.2011.03.006.
- 951 22. Sun, L., Liu, A., and Georgopoulos, K. (1996). Zinc finger-mediated protein
952 interactions modulate Ikaros activity, a molecular control of lymphocyte
953 development. *EMBO J.* *15*, 5358–5369. 10.1002/j.1460-2075.1996.tb00920.x.
- 954 23. Pan, F., Yu, H., Dang, E. V, Barbi, J., Pan, X., Grosso, J.F., Jinasena, D.,
955 Sharma, S.M., McCadden, E.M., Getnet, D., et al. (2009). Eos Mediates Foxp3-
956 Dependent Gene Silencing in CD4+ Regulatory T Cells. *Science* (80-). *325*,
957 1142–1146.
- 958 24. Kim, H.J., Barnitz, R.A., Kreslavsky, T., Brown, F.D., Moffett, H., Lemieux, M.E.,
959 Kaygusuz, Y., Meissner, T., Holderried, T.A.W., Chan, S., et al. (2015). Stable
960 inhibitory activity of regulatory T cells requires the transcription factor Helios.
961 *Science* (80-). *350*, 334–339. 10.1126/science.aad0616.
- 962 25. van der Veenken, J., Glasner, A., Zhong, Y., Hu, W., Wang, Z.M., Bou-Puerto, R.,
963 Charbonnier, L.M., Chatila, T.A., Leslie, C.S., and Rudensky, A.Y. (2020). The
964 Transcription Factor Foxp3 Shapes Regulatory T Cell Identity by Tuning the

- 965 Activity of trans-Acting Intermediaries. *Immunity* 53, 971-984.e5.
966 10.1016/j.immuni.2020.10.010.

967 26. Kuehn, H.S., Boisson, B., Cunningham-Rundles, C., Reichenbach, J., Pedersen,
968 A.S., Gelfand, E.W., Maffucci, P., Pierce, K.R., Abbott, J.K., Voelkerding, K. V,
969 et al. (2016). Loss of B Cells in Patients with Heterozygous Mutations in IKAROS.
970 *N. Engl. J. Med.* 374, 1032–1043. 10.1056/NEJMoa1512234.

971 27. Kuehn, H.S., Boast, B., and Rosenzweig, S.D. (2022). Inborn errors of human
972 IKAROS: LOF and GOF variants associated with primary immunodeficiency.
973 *Clin. Exp. Immunol.*, 129–136. 10.1093/cei/uxac109.

974 28. Hoshino, A., Okada, S., Yoshida, K., and Nishida, N. (2017). Abnormal
975 hematopoiesis and autoimmunity in human subjects with germline IKZF1
976 mutations. *J. Allergy Clin. Immunol.* 140, 223–231. 10.1016/j.jaci.2016.09.029.

977 29. Kuehn, H.S., Nunes-santos, C.J., and Rosenzweig, S.D. (2021). IKAROS-
978 Associated Diseases in 2020: Genotypes , Phenotypes , and Outcomes in
979 Primary Immune Deficiency / Inborn Errors of Immunity. *J. Clin. Immunol.* 41, 1–
980 10.

981 30. Joshi, I., Yoshida, T., Jena, N., Qi, X., Zhang, J., Van Etten, R.A., and
982 Georgopoulos, K. (2014). Loss of Ikaros DNA-binding function confers integrin-
983 dependent survival on pre-B cells and progression to acute lymphoblastic
984 leukemia. *Nat. Immunol.* 15, 294–304. 10.1038/ni.2821.

985 31. Rubtsov, Y.P., Rasmussen, J.P., Chi, E.Y., Fontenot, J., Castelli, L., Ye, X.,
986 Treuting, P., Siewe, L., Roers, A., Henderson, W.R., et al. (2008). Regulatory T
987 Cell-Derived Interleukin-10 Limits Inflammation at Environmental Interfaces.
988 *Immunity* 28, 546–558. 10.1016/j.immuni.2008.02.017.

989 32. Brunkow, M.E., Jeffery, E.W., Hjerrild, K.A., Paeper, B., Clark, L.B., Yasayko,
990 S., Wilkinson, J.E., Galas, D., Ziegler, S.F., and Ramsdell, F. (2001). Disruption
991 of a new forkhead / winged-helix protein , scurfin , results in the fatal
992 lymphoproliferative disorder of the scurfy mouse. *Nat. Genet.* 27, 68–73.

- 993 33. Luche, H., Weber, O., Rao, T.N., Blum, C., and Fehling, H.J. (2007). Faithful
994 activation of an extra-bright red fluorescent protein in “knock-in” Cre-reporter
995 mice ideally suited for lineage tracing studies. *Eur. J. Immunol.* **37**, 43–53.
996 10.1002/eji.200636745.
- 997 34. Floess, S., Freyer, J., Siewert, C., Baron, U., Olek, S., Polansky, J., Schlawe,
998 K., Chang, H., Bopp, T., Schmitt, E., et al. (2007). Epigenetic Control of the foxp3
999 Locus in Regulatory T Cells. *PLoS Biol.* **5**. 10.1371/journal.pbio.0050038.
- 1000 35. Powrie, F., Leach, M.W., Mauze, S., Caddie, L.B., and Coffman, R.L. (1993).
1001 Phenotypically distinct subsets of cd4+t cells induce or protect from chronic
1002 intestinal inflammation in c. B-17 scid mice. *Int. Immunol.* **5**, 1461–1471.
1003 10.1093/intimm/5.11.1461.
- 1004 36. Rubtsov, Y.P., Niec, R.E., Josefowicz, S., Li, L., Darce, J., Mathis, D., Benoist,
1005 C., and Rudensky, A.Y. (2010). Stability of the Regulatory T Cell Lineage in Vivo.
1006 *Science* (80-.). **329**, 1667–1672.
- 1007 37. Feuerer, M., Hill, J.A., Kretschmer, K., Von Boehmer, H., Mathis, D., and Benoist,
1008 C. (2010). Genomic definition of multiple ex vivo regulatory T cell subphenotypes.
1009 *Proc. Natl. Acad. Sci. U. S. A.* **107**, 5919–5924. 10.1073/pnas.1002006107.
- 1010 38. Gavin, M.A., Rasmussen, J.P., Fontenot, J.D., Vasta, V., Manganiello, V.C.,
1011 Beavo, J.A., and Rudensky, A.Y. (2007). Foxp3-dependent programme of
1012 regulatory T-cell differentiation. *Nature* **445**, 771–775. 10.1038/nature05543.
- 1013 39. Overacre-Delgoffe, A.E., Chikina, M., Dadey, R.E., Yano, H., Brunazzi, E.A.,
1014 Shayan, G., Horne, W., Moskovitz, J.M., Kolls, J.K., Sander, C., et al. (2017).
1015 Interferon- γ Drives Treg Fragility to Promote Anti-tumor Immunity. *Cell* **169**,
1016 1130-1141.e11. 10.1016/j.cell.2017.05.005.
- 1017 40. Xue, Y., Wong, J., Moreno, G.T., Young, M.K., Co, J., and Wang, W. (1998).
1018 NURD , a Novel Complex with Both and Histone Deacetylase Activities. *Mol.*
1019 *Cell* **2**, 851–861.

- 1020 41. Martinez, G.J., Pereira, R.M., and Hogan, P.G. (2015). The Transcription Factor
1021 NFAT Promotes Exhaustion Article The Transcription Factor NFAT Promotes
1022 Exhaustion of Activated CD8 + T Cells. *Immunity* 42, 265–278.
1023 10.1016/j.jimmuni.2015.01.006.
- 1024 42. Lyon de Ana, C., Arakcheeva, K., Agnihotri, P., Derosia, N., and Winandy, S.
1025 (2019). Lack of Ikaros Dere regulates Inflammatory Gene Programs in T Cells. *J.
1026 Immunol.* 202, 1112–1123. 10.4049/jimmunol.1801270.
- 1027 43. Krönke, J., Udeshi, N.D., Narla, A., Grauman, P., Hurst, S.N., Mcconkey, M.,
1028 Svinkina, T., Heckl, D., Comer, E., Li, X., et al. (2014). Lenalidomide causes
1029 selective degradation of *Ikzf1* and *Ikzf3* in multiple myeloma cells. *Science* (80-).
1030 3, 301–306.
- 1031 44. Lu, G., Middleton, R.E., Sun, H., Naniong, M.V., Ott, C.J., Mitsiades, C.S., Wong,
1032 K.K., Bradner, J.E., and Kaelin, W.G. (2014). The myeloma drug lenalidomide
1033 promotes the cereblon-dependent destruction of ikaros proteins. *Science* (80-).
1034 343, 305–309. 10.1126/science.1244917.
- 1035 45. Fischer, E.S., Böhm, K., Lydeard, J.R., Yang, H., Stadler, M.B., Cavadini, S.,
1036 Nagel, J., Serluca, F., Acker, V., Lingaraju, G.M., et al. (2014). Structure of the
1037 DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide. *Nature* 512, 49–
1038 53. 10.1038/nature13527.
- 1039 46. Sievers, Q.L., Petzold, G., Bunker, R.D., Renneville, A., Słabicki, M., Liddicoat,
1040 B.J., Abdulrahman, W., Mikkelsen, T., Ebert, B.L., and Thomä, N.H. (2018).
1041 Defining the human C2H2 zinc finger degrome targeted by thalidomide analogs
1042 through CRBN. *Science* (80-). 362. 10.1126/science.aat0572.
- 1043 47. Wang, L., Liu, Y., Han, R., Beier, U.H., Bhatti, T.R., Akimova, T., Greene, M.I.,
1044 Hiebert, S.W., and Hancock, W.W. (2015). Corrigendum: FOXP3+ regulatory T
1045 cell development and function require histone/protein deacetylase 3 (J Clin
1046 Investigation (2015) 125, 3 (1111-1123) DOI: 10.1172/JCI83084). *J. Clin. Invest.*
1047 125, 3304. 10.1172/JCI83084.

- 1048 48. Kim, J., Sif, S., Jones, B., Jackson, A., Koipally, J., Heller, E., Winandy, S., Viel,
1049 A., Sawyer, A., Ikeda, T., et al. (1999). Ikaros DNA-binding proteins direct
1050 formation of chromatin remodeling complexes in lymphocytes. *Immunity* *10*,
1051 345–355. 10.1016/S1074-7613(00)80034-5.
- 1052 49. O'Neill, D.W., Schoetz, S.S., Lopez, R.A., Castle, M., Rabinowitz, L., Shor, E.,
1053 Krawchuk, D., Goll, M.G., Renz, M., Seelig, H.-P., et al. (2000). An Ikaros-
1054 Containing Chromatin-Remodeling Complex in Adult-Type Erythroid Cells. *Mol.*
1055 *Cell. Biol.* *20*, 7572–7582. 10.1128/mcb.20.20.7572-7582.2000.
- 1056 50. Heizmann, B., Kastner, P., and Chan, S. (2018). The Ikaros family in lymphocyte
1057 development. *Curr. Opin. Immunol.* *51*, 14–23. 10.1016/j.coi.2017.11.005.
- 1058 51. Cook, M.E., Jarjour, N.N., Lin, C.C., and Edelson, B.T. (2020). Transcription
1059 Factor Blh40 in Immunity and Autoimmunity. *Trends Immunol.* *41*, 1023–1036.
1060 10.1016/j.it.2020.09.002.
- 1061 52. Macian, F. (2005). NFAT proteins: Key regulators of T-cell development and
1062 function. *Nat. Rev. Immunol.* *5*, 472–484. 10.1038/nri1632.
- 1063 53. DuPage, M., Chopra, G., Quiros, J., Rosenthal, W.L., Morar, M.M., Holohan, D.,
1064 Zhang, R., Turka, L., Marson, A., and Bluestone, J.A. (2015). The chromatin-
1065 modifying enzyme Ezh2 is critical for the maintenance of regulatory T cell
1066 identity after activation. *Immunity* *42*, 227–238. 10.1016/j.jimmuni.2015.01.007.
- 1067 54. Sugimoto, N., Oida, T., Hirota, K., Nakamura, K., Nomura, T., Uchiyama, T., and
1068 Sakaguchi, S. (2006). Foxp3-dependent and -independent molecules specific
1069 for CD25+ CD4+ natural regulatory T cells revealed by DNA microarray analysis.
1070 *Int. Immunol.* *18*, 1197–1209. 10.1093/intimm/dxl060.
- 1071 55. Millrine, D., and Kishimoto, T. (2017). A Brighter Side to Thalidomide: Its
1072 Potential Use in Immunological Disorders. *Trends Mol. Med.* *23*, 348–361.
1073 10.1016/j.molmed.2017.02.006.

- 1074 56. Yang, C., Singh, P., Singh, H., Le, M.L., and El-Matary, W. (2015). Systematic
1075 review: Thalidomide and thalidomide analogues for treatment of inflammatory
1076 bowel disease. *Aliment. Pharmacol. Ther.* *41*, 1079–1093. 10.1111/apt.13181.
- 1077 57. Wu, E.Y., Schanberg, L.E., Wershba, E.C., and Rabinovich, E.C. (2017).
1078 Lenalidomide for refractory cutaneous manifestations of paediatric systemic
1079 lupus erythematosus. *Lupus* *26*, 646–649.
1080 10.1177/0961203316676377.Lenalidomide.
- 1081 58. Gandhi, A.K., Kang, J., Havens, C.G., Conklin, T., Ning, Y., Wu, L., Ito, T., Ando,
1082 H., Waldman, M.F., Thakurta, A., et al. (2014). Immunomodulatory agents
1083 lenalidomide and pomalidomide co-stimulate T cells by inducing degradation of
1084 T cell repressors Ikaros and Aiolos via modulation of the E3 ubiquitin ligase
1085 complex CRL4CRBN. *Br. J. Haematol.* *164*, 811–821. 10.1111/bjh.12708.
- 1086 59. Quintana, F.J., Jin, H., Burns, E.J., Nadeau, M., Yeste, A., Kumar, D.,
1087 Rangachari, M., Zhu, C., Xiao, S., Seavitt, J., et al. (2012). Aiolos promotes T
1088 H17 differentiation by directly silencing IL2 expression. *Nat. Immunol.* *13*, 770–
1089 777. 10.1038/ni.2363.
- 1090 60. Kitagawa, Y., Ohkura, N., Kidani, Y., Vandenbon, A., Hirota, K., Kawakami, R.,
1091 Yasuda, K., Motooka, D., Nakamura, S., Kondo, M., et al. (2017). Guidance of
1092 regulatory T cell development by Satb1-dependent super-enhancer
1093 establishment. *Nat. Immunol.* *18*, 173–183. 10.1038/ni.3646.
- 1094 61. Kawakami, R., Kitagawa, Y., Chen, K.Y., Arai, M., Ohara, D., Nakamura, Y.,
1095 Yasuda, K., Osaki, M., Mikami, N., Lareau, C.A., et al. (2021). Distinct Foxp3
1096 enhancer elements coordinate development, maintenance, and function of
1097 regulatory T cells. *Immunity* *54*, 947-961.e8. 10.1016/j.jimmuni.2021.04.005.
- 1098 62. Ichiyama, K., Sekiya, T., Inoue, N., Tamiya, T., Kashiwagi, I., Kimura, A., Morita,
1099 R., Muto, G., Shichita, T., Takahashi, R., et al. (2011). Transcription factor
1100 Smad-independent T helper 17 cell induction by transforming-growth factor- β is

- 1101 mediated by suppression of eomesodermin. *Immunity* *34*, 741–754.
- 1102 10.1016/j.immuni.2011.02.021.
- 1103 63. Patro, R., Duggal, G., Love, M.I., Irizarry, R.A., and Kingsford, C. (2017). Salmon
- 1104 provides fast and bias-aware quantification of transcript expression. *Nat.*
- 1105 *Methods* *14*, 417–419. 10.1038/nmeth.4197.
- 1106 64. Ge, S.X., Son, E.W., and Yao, R. (2018). iDEP: An integrated web application
- 1107 for differential expression and pathway analysis of RNA-Seq data. *BMC*
- 1108 *Bioinformatics* *19*, 1–24. 10.1186/s12859-018-2486-6.
- 1109 65. Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette,
- 1110 M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., et al. (2005).
- 1111 Gene set enrichment analysis: A knowledge-based approach for interpreting
- 1112 genome-wide expression profiles. *Proc. Natl. Acad. Sci. U. S. A.* *102*, 15545–
- 1113 15550. 10.1073/pnas.0506580102.
- 1114 66. Feng, J., Liu, T., Qin, B., Zhang, Y., and Liu, X.S. (2012). Identifying ChIP-seq
- 1115 enrichment using MACS. *Nat. Protoc.* *7*, 1728–1740. 10.1038/nprot.2012.101.
- 1116 67. Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y.C., Laslo, P., Cheng, J.X.,
- 1117 Murre, C., Singh, H., and Glass, C.K. (2010). Article Simple Combinations of
- 1118 Lineage-Determining Transcription Factors Prime cis -Regulatory Elements
- 1119 Required for Macrophage and B Cell Identities. *Mol. Cell* *38*, 576–589.
- 1120 10.1016/j.molcel.2010.05.004.
- 1121 68. Edgar, R., Domrachev, M., and Lash, A.E. (2002). Gene Expression Omnibus:
- 1122 NCBI gene expression and hybridization array data repository. *Nucleic Acids*
- 1123 *Res.* *30*, 207–210.
- 1124
- 1125

1126 **FIGURE LEGENDS**

1127 **Figure 1. Treg-specific deletion of *IkE5* causes fatal systemic autoimmunity.**

1128 (A) Schematic representation of the *Ikzf1*-deletion mutants constructed. Exons are
1129 shown as light blue boxes dark blue bars indicate zinc finger domains.

1130 (B) A representative image of the interaction between *Foxp3* and *Ikzf1* (WT) or *Ikzf1*-
1131 deletion mutants, which are deleted C-terminal region (ΔC) or N-terminal region (ΔN)
1132 of *Ikzf1*, in HEK293T cells by Co-IP.

1133 (C) A representative image of interaction between *Foxp3* and *Ikzf1* (WT) or *Ikzf1*-
1134 deletion mutants, which are deleted exon 4 ($\Delta E4$), exon 5 ($\Delta E5$) or exon 6/7 ($\Delta E6/7$)
1135 of *Ikzf1*, in HEK293T cells by Co-IP.

1136 (D) Kaplan-Meier survival curve of *Foxp3*^{Cre} ($n = 22$), *Foxp3*^{Cre}/*IkE5*^{f/f} ($n = 20$) and
1137 *Foxp3*^{Cre}/*IkE5*^{f/f} mice ($n = 22$).

1138 (E) A representative appearance (left) and body weight (right) of *Foxp3*^{Cre} and
1139 *Foxp3*^{Cre}/*IkE5*^{f/f} mice at 3 to 4 weeks of age (mean \pm SD, $n = 16$ per group).

1140 (F) A representative appearance of spleen and peripheral lymph nodes (LN) from
1141 *Foxp3*^{Cre} and *Foxp3*^{Cre}/*IkE5*^{f/f} mice at 3 to 4 weeks of age.

1142 (G) Hematoxylin and eosin (HE) staining of several tissues from *Foxp3*^{Cre} and
1143 *Foxp3*^{Cre}/*IkE5*^{f/f} mice at 3 to 4 weeks of age. Representative HE staining images (left)
1144 and histopathologic scoring (right) of indicated tissues from above mice are shown (n
1145 = 5 per group). Horizontal lines indicate mean. Scale bars, 100 μ m.

1146 (H) Kaplan-Meier survival curve of CD45.1⁺*Rag2*^{-/-} mice transferred with splenocytes
1147 (3×10^7) from either *Foxp3*^{Cre} or *Foxp3*^{Cre}/*IkE5*^{f/f} mice ($n = 4$ per group).

1148 (I) HE staining of several tissues from CD45.1⁺*Rag2*^{-/-} mice transferred as indicated in
1149 (H). Representative HE staining images (left) and histopathologic scoring (right) of
1150 indicated tissues from above mice are shown ($n = 4$ per group). Horizontal lines indicate
1151 mean. Scale bars, 100 μ m.

1152 (J) Absolute numbers of CD4⁺ and CD8⁺ T cells in the spleen and LN from *Foxp3*^{Cre}
1153 and *Foxp3*^{Cre}/*IkE5*^{f/f} mice at 3 to 4 weeks of age (mean \pm SD, $n = 7$ per group).

1154 (K) Frequencies of CD4⁺CD44^{hi}CD62L^{lo} and CD8⁺CD44^{hi}CD62L^{lo} T cells in the spleen
1155 and LN from *Foxp3*^{Cre} and *Foxp3*^{Cre}/*IkE5*^{f/f} mice at 3 to 4 weeks of age (mean \pm SD, n
1156 = 7 per group).

1157 (L) Frequencies of indicated molecules-expressing CD4⁺ T cells in the spleen and LN

1158 from *Foxp3*^{Cre} and *Foxp3*^{Cre}/*IkE5*^{fl/fl} mice at 3 to 4 weeks of age (mean \pm SD, $n = 7$ per
1159 group).

1160 (M) Frequencies of CD4⁺Bcl-6⁺CXCR5⁺ T (Tfh) cells in the spleen from *Foxp3*^{Cre} and
1161 *Foxp3*^{Cre}/*IkE5*^{fl/fl} mice at 3 to 4 weeks of age (right)(mean \pm SD, $n = 3$ per group). A
1162 representative flow cytometry plot of CD4⁺ splenocytes in the above mice (left).

1163 (N) Concentration of anti-dsDNA antibody in serum of *Foxp3*^{Cre} and *Foxp3*^{Cre}/*IkE5*^{fl/fl}
1164 mice at 3 to 4 weeks of age, determined by ELISA (mean \pm SD, $n = 15$ per group).

1165 (O) Concentration of anti-PC antibody in serum of *Foxp3*^{Cre} and *Foxp3*^{Cre}/*IkE5*^{fl/fl} mice
1166 at 3 to 4 weeks of age, determined by ELISA (mean \pm SD, $n = 10$ per group).

1167 Data are representative of at least three independent experiments (B,C,F) or summary
1168 of at least two independent experiments (D,E,G-O). *P* values determined by two-tailed
1169 unpaired *t*-tests (E,M-O), log-rank test (D,H) or unpaired *t*-tests followed by Holm-
1170 Sídák multiple comparisons test (G,I-L). **P*< 0.05; ***P*< 0.01; ****P*< 0.001.

1171 Also see Figure S1.

1172

1173 **Figure 2. *IkE5*-deficient Treg cells show impaired suppressive function and
1174 functional instability.**

1175 (A) A representative flow cytometry plot of CD4⁺ T cells (left) and the ratio of
1176 YFP⁺/YFP⁻ Treg cells (right) in the spleen and LN from *Foxp3*^{Cre/+} and *Foxp3*^{Cre/+}/*IkE5*^{fl/fl}
1177 mice at 3 to 4 weeks of age (mean \pm SD, $n = 10$ per group).

1178 (B) A representative flow cytometry histogram of *Foxp3* in CD4⁺CD45.2⁺ cells (left)
1179 and frequencies of CD4⁺CD45.2⁺*Foxp3*⁻ (exTreg) cells (right) in the spleen and LN
1180 from CD45.1⁺*Rag2*^{-/-} mice transferred with CD4⁺CD45.2⁺YFP⁺ Treg cells (1×10^5) from
1181 either *Foxp3*^{Cre/+} ($n = 4$) or *Foxp3*^{Cre/+}/*IkE5*^{fl/fl} ($n = 4$) mice at day 8 after the transfer
1182 (mean \pm SEM).

1183 (C) A representative flow cytometry plot of CD4⁺ T cells (left) and frequencies of
1184 CD4⁺YFP-RFP⁺ T (exTreg) cells (right) in the spleen and LN from *Foxp3*^{Cre/+}*R26*^{rfp/+}
1185 and *Foxp3*^{Cre/+}/*IkE5*^{fl/fl}*R26*^{rfp/+} mice at 3 to 4 weeks of age (mean \pm SD, $n = 6$ per group).

1186 (D) CTV-labeled Purified CD4⁺CD45.1⁺ naïve T (Tresp) cells (5×10^4) were cultured
1187 with CD3⁺ T cell-depleted splenocytes (1×10^5) and CD4⁺CD45.2⁺YFP⁺ Treg cells
1188 from *Foxp3*^{Cre/+} or *Foxp3*^{Cre/+}/*IkE5*^{fl/fl} mice at the indicated Treg : Tresp ratios in the

1189 presence of anti-CD3 antibody (1 μ g/ml) for 3 days. Absolute numbers of Tresp cells
1190 were assayed with flow cytometry (mean \pm SD, $n = 3$ per group).
1191 (E) A representative appearance of non-transferred *Rag2*^{-/-} mice (NT) and recipient
1192 *Rag2*^{-/-} mice transferred with CD4⁺CD45.1⁺CD45RB^{hi} naïve T cells (1×10^5) alone (n
1193 = 8)(black) or along with CD4⁺CD45.2⁺YFP⁺ Treg cells (1×10^5) from either *Foxp3*^{Cre/+}
1194 ($n = 8$)(blue) or *Foxp3*^{Cre/+}*IkE5*^{f/f} mice ($n = 7$)(red) at 6 weeks after transfer (left).
1195 Kinetics of body weight changes of *Rag2*^{-/-} recipients over 6 weeks after transfer
1196 (right)(mean \pm SEM).
1197 (F) A representative appearance (left) and length (right) of colons from non-transferred
1198 *Rag2*^{-/-} mice (NT) and *Rag2*^{-/-} recipients transferred as indicated in (E) at 6 weeks after
1199 transfer (mean \pm SEM).
1200 (G) A representative HE staining image of colons from *Rag2*^{-/-} recipients transferred
1201 as indicated in (E) at 6 weeks after transfer (left). Magnification is x100 (top) and x300
1202 (bottom). Histopathologic scoring of colons from above recipients (right). Horizontal
1203 lines indicate mean.
1204 (H) A representative flow cytometry plot of CD4⁺ T cells (up) and frequencies of
1205 CD4⁺CD45.2⁺ Treg and CD4⁺CD45.1⁺ Tresp cells (bottom) in LN from *Rag2*^{-/-}
1206 recipients transferred as indicated in (E) at 6 weeks after transfer (mean \pm SEM). (I)
1207 Representative flow cytometry histograms of IFN- γ in CD4⁺CD45.1⁺ Tresp cells (left)
1208 and frequencies of CD4⁺CD45.1⁺IFN- γ ⁺ Tresp cells (right) in LN from *Rag2*^{-/-} recipients
1209 transferred as indicated in (E) at 6 weeks after transfer (mean \pm SEM).
1210 (J) Representative flow cytometry histograms of *Foxp3* (left) and frequency of exTreg
1211 cells (right) in CD4⁺CD45.2⁺ Treg cells in LN from *Rag2*^{-/-} recipients transferred as
1212 indicated in (E) at 6 weeks after transfer (mean \pm SEM).
1213 Data are summary of at least three independent experiments (A-J). P values
1214 determined by unpaired *t*-tests followed by Holm-Sídák multiple comparisons test (A-
1215 C), two-way ANOVA followed by Sídák multiple comparisons test (D), two-way
1216 ANOVA followed by Tukey's multiple comparisons test (E), ordinary one-way ANOVA
1217 followed by Tukey's multiple comparisons test (F,G,I) or two-tailed unpaired *t*-tests
1218 (H,J). ns, not significant, * $P < 0.05$; ** $P < 0.01$; *** $P < 0.001$.
1219 Also see Figure S2.
1220

1221 **Figure 3. Treg-specific deletion of *IkE5* evokes strong anti-tumor immunity.**

1222 (A) Schematic representation of procedure for murine tumor models conducted. (B)
1223 *Foxp3*^{eGFP-Cre-ERT2} ($n = 7$) and *Foxp3*^{eGFP-Cre-ERT2}/*IkE5*^{f/f} ($n = 8$) mice were intradermally
1224 inoculated with MC38 murine colon adenocarcinoma cells (2×10^5) into their shaved
1225 flanks (Day 0) and intraperitoneally injected with tamoxifen on day 0, 1 and 3. Tumor
1226 area (mm^2) was measured over 18 days (mean \pm SEM). (C) Tumor weight in
1227 *Foxp3*^{eGFP-Cre-ERT2} and *Foxp3*^{eGFP-Cre-ERT2}/*IkE5*^{f/f} mice inoculated as indicated in (B) was
1228 measured on 18 days (mean \pm SEM, $n = 5$ per group).
1229 (D) Representative flow cytometry plots of CD4⁺ T cells (left) and frequencies of
1230 CD4⁺*Foxp3*⁺ Treg cells (right) in Tumor, dLNs and ndLNs from each mouse inoculated
1231 as indicated in (B) at 10 days (mean \pm SEM, $n = 10$ per group).
1232 (E) Ratio of CD8⁺/CD4⁺*Foxp3*⁺ Treg cells in Tumor, dLNs and ndLNs from each mice
1233 inoculated as indicated in (B) at 10 days (mean \pm SEM, $n = 10$ per group).
1234 (F) Frequencies of indicated cytokines-producing Tconv or CD8⁺ T cells in Tumor from
1235 each mouse inoculated as indicated in (B) at 10 days (mean \pm SEM, $n = 10$ per group).
1236 Data are summary of at least two independent experiments (B-F). *P* values determined
1237 by ordinary two-way ANOVA followed by Sídák multiple comparisons test (B) or two-
1238 tailed unpaired *t*-tests (C) or unpaired *t*-tests followed by Holm-Sídák multiple
1239 comparisons test (D-F). ns, not significant, **P* < 0.05; ***P* < 0.01; ****P* < 0.001.

1240 Also see Figure S3.

1241

1242 **Figure 4. *IkE5* is required for *Foxp3*-dependent gene repression in Treg cells.**

1243 (A) RNA-seq analysis of CD4⁺YFP⁺ Treg cells from *Foxp3*^{Cre/+} or *Foxp3*^{Cre/+}/*IkE5*^{f/f} mice
1244 at 3 to 4 weeks of age. Volcano-plot comparing the expression of genes in wild-type
1245 and *IkE5*-deficient Treg cells. Transcripts Per Kilobase Million (TPM) were averaged
1246 from three biological replicates. Differential Expressed Genes (DEGs)(fold change, 2-
1247 fold; FDR < 0.1) are shown in red (Up) and blue (Down). Exact numbers of DEGs and
1248 name of representative genes are described.

1249 (B) Ranked enrichment plots of “Treg down genes” (up) and “Treg up genes” (bottom)
1250 in gene set enrichment analysis (GSEA) of *Foxp3*^{Cre/+}/*IkE5*^{f/f} versus *Foxp3*^{Cre/+} Treg
1251 cells.

1252 (C) Cumulative distribution function (CDF) analysis of the gene expression in wild-type

1253 and *IkE5*-deficient Treg cells for “Treg down genes” and “Treg up genes”.
1254 (D) Ranked enrichment plot of “Foxp3 dependent genes” in GSEA of *Foxp3*^{Cre/+}/*IkE5*^{f/f}
1255 versus *Foxp3*^{Cre/+} Treg cells.
1256 (E) CDF analysis of the gene expression in wild-type and *IkE5*-deficient Treg cells For
1257 “Foxp3 dependent genes”.
1258 (F) Normalized read counts of selected Treg up-regulated genes (up) and Treg down-
1259 regulated genes (bottom) in CD4⁺YFP⁺ Treg cells from *Foxp3*^{Cre/+} or *Foxp3*^{Cre/+}/*IkE5*^{f/f}
1260 mice (mean ± SD, *n* = 3 per group).
1261 (G) A representative flow cytometry plot of CD4⁺YFP⁺ Treg cells (up) and frequencies
1262 of indicated cytokine-producing Treg cells (bottom) in the spleen and LN from
1263 *Foxp3*^{Cre/+} and *Foxp3*^{Cre/+}/*IkE5*^{f/f} mice at 3 to 4 weeks of age (mean ± SEM, *n* = 4 per
1264 group).
1265 (H) Ranked enrichment plots of “Inflammatory response”, “IL-2 STAT5 signaling” and
1266 “IFN-gamma response” in GSEA of *Foxp3*^{Cre/+}/*IkE5*^{f/f} versus *Foxp3*^{Cre/+} Treg cells.
1267 (I) Heatmap of selective genes related to “Inflammatory response”, “IL-2 STAT5
1268 signaling” and “IFN-gamma response” in GSEA (*n* = 3 per group).
1269 Data are representative of two independent experiments (A-F,H,I) or summary of three
1270 independent experiments (G). *P* values determined by Kolmogorov-Smirnov test (C,E)
1271 or unpaired *t*-tests followed by Holm-Sídák multiple comparisons test (F,G). ns, not
1272 significant, **P* < 0.05; ***P* < 0.01; ****P* < 0.001.
1273 Also see Figure S4.
1274

1275 **Figure 5. Overproduction of IFN-γ promotes the instability and dysfunction of**
1276 ***IkE5*-deficient Treg cells.**

1277 (A) Kaplan-Meier survival curve of *Foxp3*^{Cre}, *Foxp3*^{Cre}/*IkE5*^{f/f}, *Foxp3*^{Cre}/*Ifng*^{-/-} and
1278 *Foxp3*^{Cre}/*IkE5*^{f/f}/*Ifng*^{-/-} mice (*n* = 12 per group).
1279 (B) A representative flow cytometry plot of CD4⁺ T cells (left) and frequencies of
1280 CD4⁺YFP⁺RFP⁺ Treg (exTreg) cells (right) in the spleen and LN from *Foxp3*^{Cre/+}/*R26*^{rfp/+}
1281 (*n* = 9), *Foxp3*^{Cre/+}/*IkE5*^{f/f}/*R26*^{rfp/+} (*n* = 8) and *Foxp3*^{Cre/+}/*IkE5*^{f/f}/*Ifng*^{-/-}/*R26*^{rfp/+} (*n* = 7) mice
1282 at 3 to 4 weeks of age (mean ± SEM).
1283 (C) A representative flow cytometry histogram of Foxp3 in CD4⁺CD45.2⁺ cells (left)
1284 and frequencies of CD4⁺CD45.2⁺Foxp3⁻ (exTreg) cells (right) in the spleen and LN

1285 from CD45.1⁺*Rag2*^{-/-} mice transferred with CD4⁺CD45.2⁺YFP⁺ Treg cells (1 x 10⁵) from
1286 either *Foxp3*^{Cre/+} (n = 4) or *Foxp3*^{Cre/+}/*IkE5*^{f/f} (n = 4) mice at day 7 after the transfer
1287 (mean ± SEM).

1288 (D) Purified CD4⁺YFP⁺ Treg cells (1 x 10⁵) from *Foxp3*^{Cre/+} and *Foxp3*^{Cre/+}/*IkE5*^{f/f} were
1289 cultured with Dynabeads mouse CD3/CD28 T cell stimulator (25 µl/ml) and IL-2 (100
1290 U/ml) in the presence of anti-IFN-γ or anti-IgG antibody (10 µg/ml) for 7 days. A
1291 representative flow cytometry histogram of *Foxp3* (left) and frequencies of *Foxp3*-
1292 population (right) in cultured CD4⁺ T cells (mean ± SD, n = 3 per group). (E) CTV-
1293 labeled Purified CD4⁺CD45.1⁺ naïve T (Tresp) cells (5 x 10⁴) were cultured with CD3⁺
1294 T cell-depleted splenocytes (1 x 10⁵) and CD4⁺CD45.2⁺YFP⁺ Treg cells from
1295 *Foxp3*^{Cre/+} or *Foxp3*^{Cre/+}/*IkE5*^{f/f} mice at 1 : 2 Treg/Tresp ratio in the presence of anti-
1296 CD3 antibody (1 µg/ml) and anti-IFN-γ (10 µg/ml) or anti-IgG antibody (10 µg/ml) for 3
1297 days. Absolute numbers of Tresp cells were assayed with flow cytometry (mean ± SD,
1298 n = 3 per group).

1299 (F) CD4⁺CD45.1⁺CD25⁻CD45RB^{hi} naïve T cells (1 x 10⁵) and CD4⁺CD45.2⁺YFP⁺ Treg
1300 cells (1 x 10⁵) from *Foxp3*^{Cre/+} or *Foxp3*^{Cre/+}/*IkE5*^{f/f} mice were mixed and intravenously
1301 transferred into *Rag2*^{-/-} recipients. For IFN-γ neutralization, anti-IFN-γ antibody (250
1302 µg/mouse) intraperitoneally injected into *Rag2*^{-/-} recipients transferred with *IkE5*-
1303 deficient Treg cells (green) every 3 days. As control, anti-IgG antibody (250 µg/mouse)
1304 intraperitoneally injected into *Rag2*^{-/-} recipients transferred with wild-type (blue) or
1305 *IkE5*-deficient Treg cells (red) every 3 days. A representative appearance of recipient
1306 *Rag2*^{-/-} mice transferred as indicated above at 6 weeks after transfer (left). Kinetics of
1307 body weight changes of recipient *Rag2*^{-/-} mice over 6 weeks after transfer (right)(mean
1308 ± SEM, n = 3 per group).

1309 (G) A representative appearance (left) and length (right) of colons from *Rag2*^{-/-}
1310 recipients transferred as indicated in (F) at 6 weeks after transfer (mean ± SEM, n = 3
1311 per group).

1312 (H) Representative HE staining images of colons from *Rag2*^{-/-} recipients transferred
1313 as indicated in (F) at 6 weeks after transfer (left). Magnification is x100 (top) and x300
1314 (bottom). Histopathologic scoring of colons from above recipients (right). Horizontal
1315 lines indicate mean.

1316 (I) Absolute number of CD4⁺CD45.1⁺ Tresp cells in LN from *Rag2*^{-/-} recipients

1317 transferred as indicated in (F) at 6 weeks after transfer (mean \pm SEM, $n = 3$ per group).
1318 (J) A representative flow cytometry histogram of Foxp3 (left) and frequency of exTreg
1319 cells (right) in CD4 $^+$ CD45.2 $^+$ Treg cells in LN from *Rag2* $^{-/-}$ recipients transferred as
1320 indicated in (F) at 6 weeks after transfer (mean \pm SEM, $n = 3$ per group).
1321 Data are summary of at least three independent experiments (A-E) or representative
1322 of two independent experiments (F-J). P values determined by log-rank test (A),
1323 unpaired t -tests followed by Holm-Sídák multiple comparisons test (D), two-way
1324 ANOVA followed by Tukey's multiple comparisons test (B,E,F) or ordinary one-way
1325 ANOVA followed by Tukey's multiple comparisons test (C,G-J). ns, not significant, * $P <$
1326 0.05; ** $P < 0.01$; *** $P < 0.001$.

1327 Also see Figure S5.

1328

1329 **Figure 6. The Foxp3-Ikzf1 complex controls chromatin architecture through the**
1330 **NuRD complex to repress gene expression in Treg cells.**

1331 (A) Venn diagram of Foxp3 ChIP-seq peaks in CD4 $^+$ YFP $^+$ Treg cells from *Foxp3* $^{\text{Cre}}$
1332 (blue) and *Foxp3* $^{\text{Cre}}$ /*IkE5* $^{fl/fl}$ (red) mice (left). Normalized density plots of Foxp3 binding
1333 peaks around the Reduced Foxp3-binding Sites, Maintained Foxp3-binding Sites and
1334 Enhanced Foxp3-binding Sites in CD4 $^+$ YFP $^+$ Treg cells from *Foxp3* $^{\text{Cre}}$ (blue) and
1335 *Foxp3* $^{\text{Cre}}$ /*IkE5* $^{fl/fl}$ (red) mice (right). Normalized signal density is plotted within a window
1336 ± 1 kb centered on Foxp3-binding sites.

1337 (B) Peak annotation of the Reduced Foxp3-binding Sites, Maintained Foxp3-binding
1338 Sites and Enhanced Foxp3-binding Sites.

1339 (C) Pie chart illustrated the percentage of Foxp3- and Ikzf1-binding within the Reduced
1340 Foxp3-binding Sites (top) and Enhanced Foxp3-binding Sites (bottom).

1341 (D) Bar graph illustrated the percentage of genes harbored with altered Foxp3 binding
1342 sites among differentially Up and Down genes in *IkE5*-deficient Treg cells.

1343 (E) CDF analysis of the gene expression in wild-type and *IkE5*-deficient Treg cells for
1344 the genes corresponding to each the Reduced Foxp3-binding Sites and Enhanced
1345 Foxp3-binding Sites.

1346 (F) A representative image of interaction between Foxp3 and indicated factors, such
1347 as CHD4, HDAC1 and p300, in CD4 $^+$ YFP $^+$ Treg cells from *Foxp3* $^{\text{Cre}}$ and
1348 *Foxp3* $^{\text{Cre}}$ /*IkE5* $^{fl/fl}$ mice by Co-IP.

1349 (G) Normalized density plots of ATAC and H3K27ac peaks around the Enhanced
1350 Foxp3-binding Sites in CD4⁺YFP⁺ Treg cells from *Foxp3*^{Cre} (blue) and *Foxp3*^{Cre}/*IkE5*^{f/f}
1351 (red) mice. Normalized signal density is plotted within a window \pm 1-3 kb centered on
1352 Foxp3-binding sites.
1353 (H) Normalized density plots of indicated factors binding peaks around the Enhanced
1354 Foxp3-binding Sites in CD4⁺YFP⁺ Treg cells from *Foxp3*^{Cre} (blue) and *Foxp3*^{Cre}/*IkE5*^{f/f}
1355 (red) mice. Normalized signal density is plotted within a window \pm 1 kb centered on
1356 Foxp3-binding sites.
1357 (I) *Foxp3*, p300, NFAT1, H3K27ac ChIP-seq and ATAC-seq signal tracks at the Treg
1358 down-regulated genes, such as *Ifng* and *Il2* genes loci in CD8⁺ T cells (green) as well
1359 as in CD4⁺YFP⁺ Treg cells from *Foxp3*^{Cre} (blue) and *Foxp3*^{Cre}/*IkE5*^{f/f} (red) mice. Data
1360 of CD8⁺ T cells (green) is from the previous report.⁴¹ Sequence conservation among
1361 vertebrates (black) is also shown. The Increased sites were highlighted in gray.
1362 Data are representative of two independent experiments (A-J).
1363 Also see Figure S6.

1364

1365 **Figure 7. Both *Ikzf1* and *Ikzf3* association with *Foxp3* is required for the**
1366 **maintenance of Treg cell homeostasis in mice and humans.**

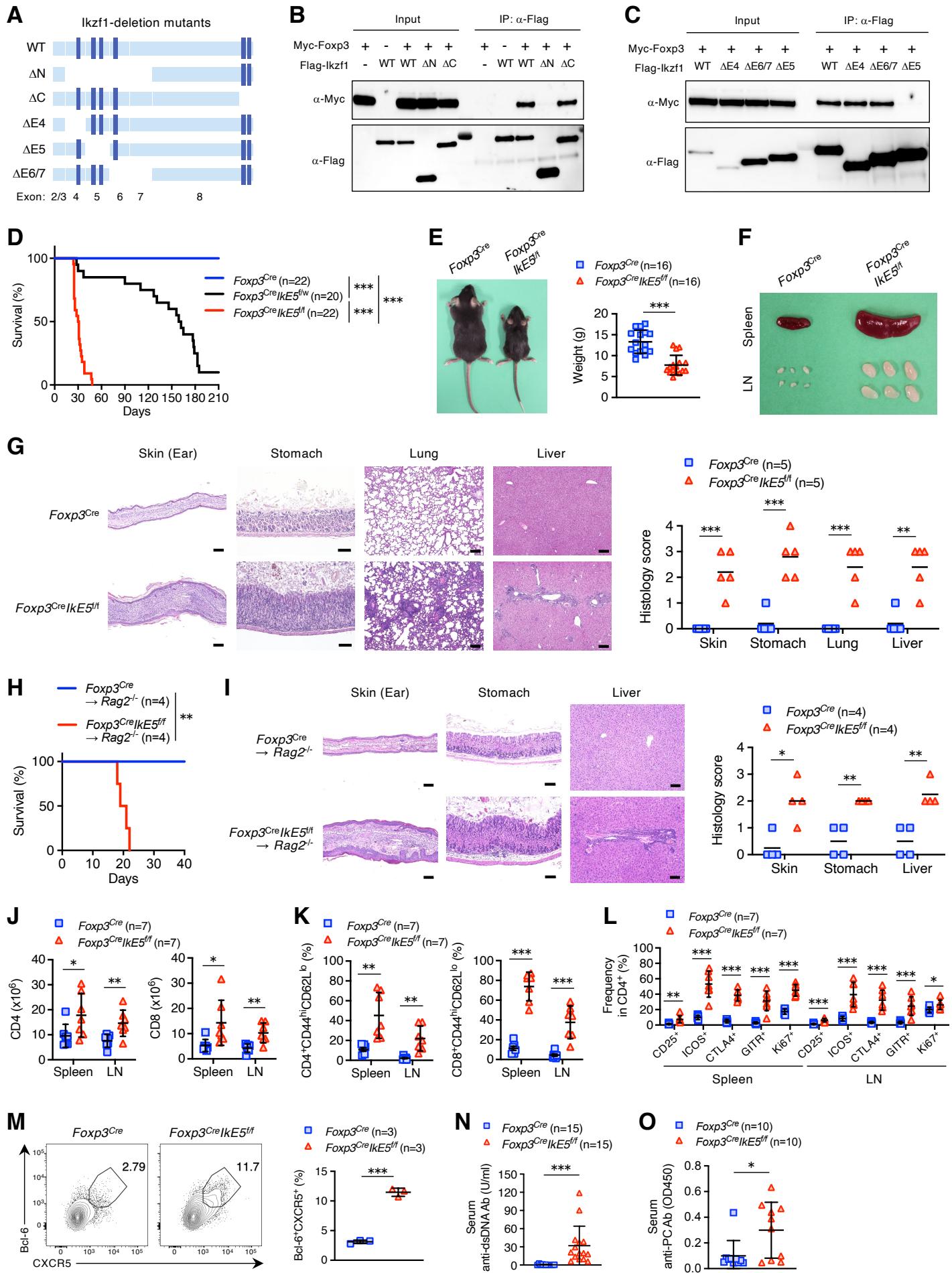
1367 (A) Cas9 protein and indicated gRNAs were introduced into the activated Treg cells (2
1368 $\times 10^6$) by nucleofection. Nucleofected cells were stimulated with Dynabeads mouse
1369 CD3/CD28 T cell stimulator (25 μ l/ml) and IL-2 (1500 U/ml) for 3 days, followed by flow
1370 cytometry analysis. A representative flow cytometry plot of CD4⁺ T cells (up) and
1371 frequencies of CD4⁺IFN- γ ⁺ cells (bottom left) and exTreg cells (bottom right) in
1372 nucleofected cells (mean \pm SD, $n = 4$ -5 per group).

1373 (B) A representative image of the interaction between *Foxp3* and *Ikzf1* (WT) in the
1374 presence of *Ikzf1*-mutants in HEK293T cells by Co-IP.

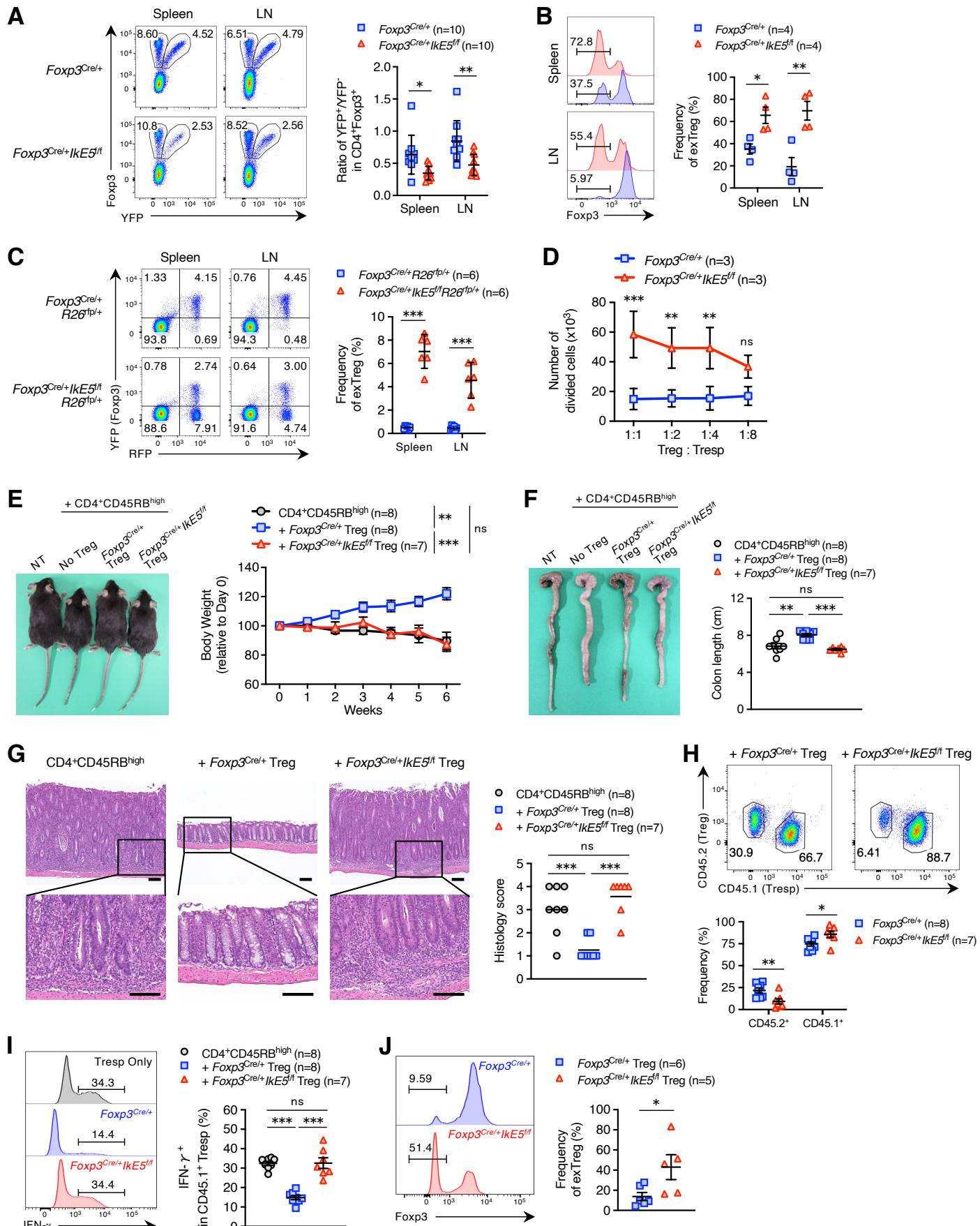
1375 (C) Purified CD4⁺YFP⁺ Treg cells (1×10^5) were stimulated with α -CD3 (1 μ g/ml), α -
1376 CD28 (1 μ g/ml) and IL-2 (100 U/ml) for 24 hrs. Activated Treg cells were transduced
1377 with fresh retrovirus supernatant by spin-infection, and then were cultured under the
1378 above conditions and harvested on day 4 for flow cytometric analysis. A representative
1379 flow cytometry plot of CD4⁺ T cells (up) and frequencies of CD4⁺IFN- γ ⁺ cells (bottom
1380 left) and exTreg cells (bottom right) in transduced cells (mean \pm SD, $n = 6$ -8 per group).

1381 (D) Whole cell lysates from CD4⁺FYP⁺ Treg cells were pre-cleared with 5 µg ant-IgG
1382 (-) or anti-Ikzf1 (+) antibody overnight at 4°C. Subsequently, pre-cleared lysates were
1383 immunoprecipitated with 5 µg ant-IgG or anti-Foxp3 antibody overnight at 4°C,
1384 followed by Simple Western assay with anti-Ikzf1, anti-Ikzf2 and anti-Ikzf3 as primary
1385 antibodies (WB). A representative image of Simple Western (left) and percentages of
1386 immunoprecipitates relative to amount in input from pre-cleared lysates (right)(mean
1387 ± SD, $n = 6$ per group).

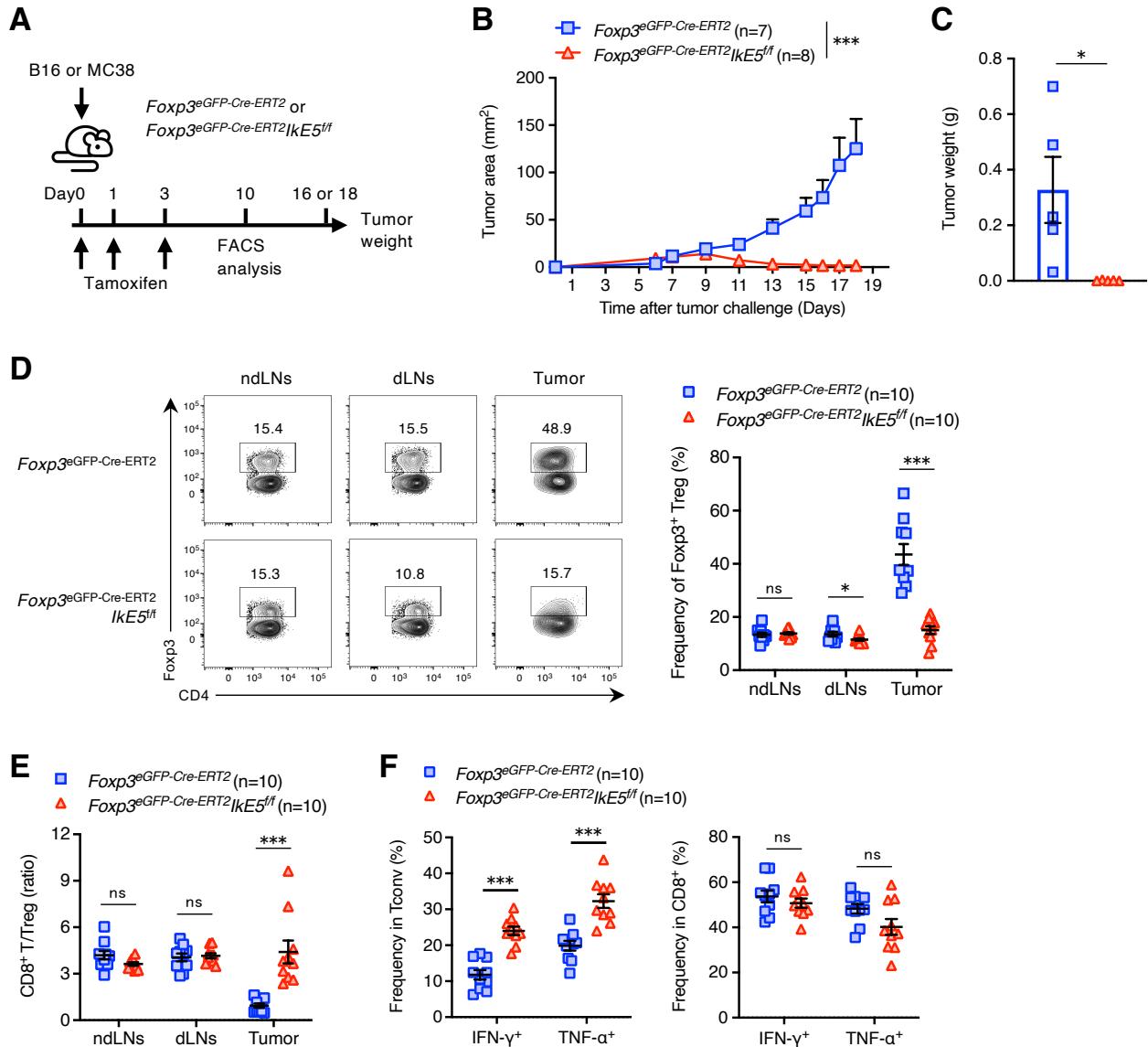
1388 (E) A representative image of interaction between Foxp3 and indicated factors, such
1389 as Ikzf2 and Ikzf3, in CD4⁺YFP⁺ Treg cells from *Foxp3*^{Cre} and *Foxp3*^{Cre}/*Ikzf1*^{f/f} mice by
1390 Co-IP.

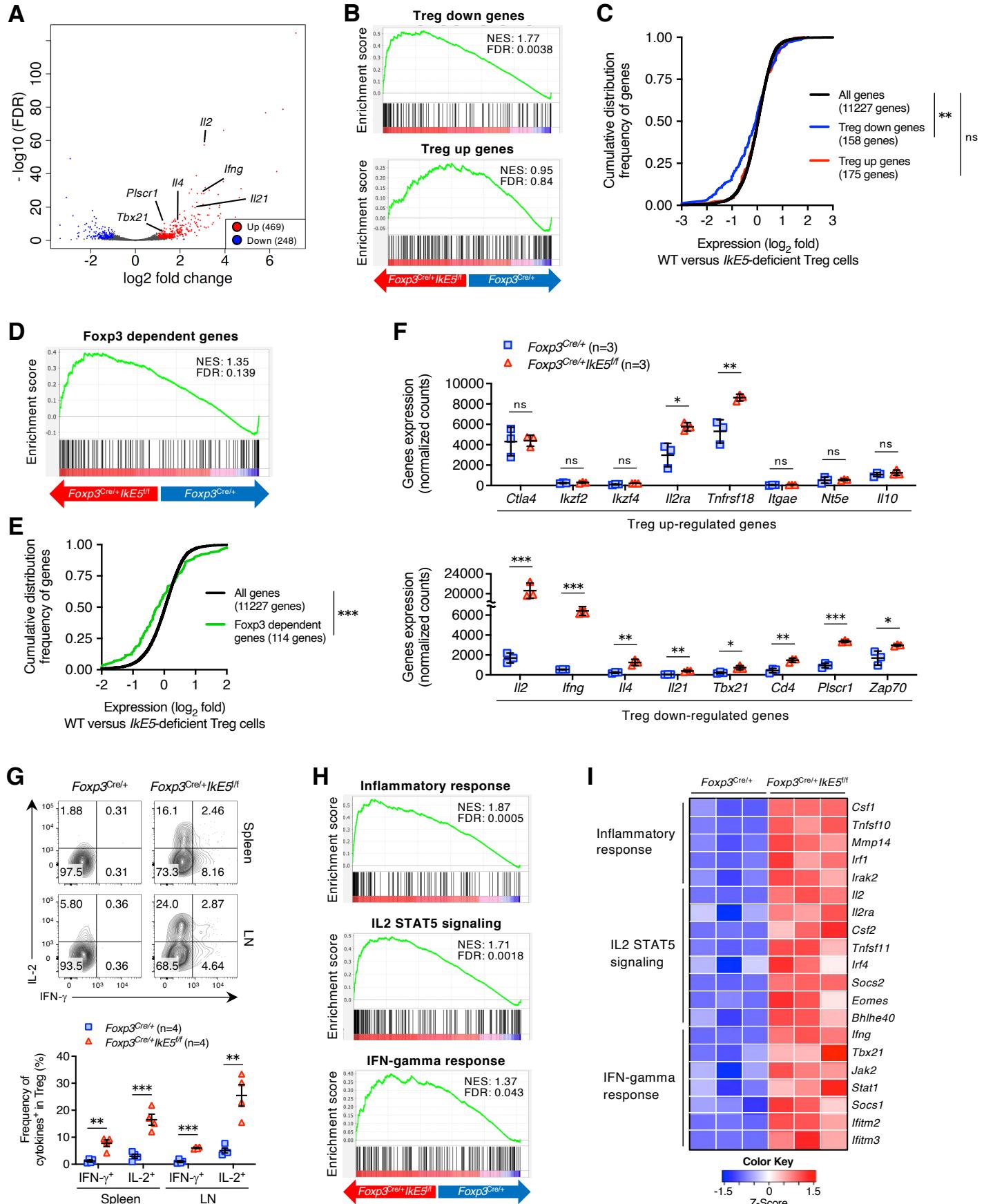

1391 (F) A representative image of interaction between FOXP3 and IKZF1 in human
1392 CD4⁺CD25⁺CD127^{lo} naive Treg cells by Co-IP.

1393 (G) Sorted human CD4⁺CD25⁺CD45RA⁺ and CD4⁺CD25^{hi}CD45RA⁻ Treg cells (5×10^4)
1394 were cultured with Dynabeads Human CD3/CD28 T cell stimulator and IL-2 (100 U/ml) in the presence of DMSO, Pomalidomide (10 µM) or REF001329 (10 µM) for 9
1395 days, followed by flow cytometry analysis. A representative flow cytometry plot of
1396 CD4⁺Foxp3⁺ T cells (up) and frequencies of CD4⁺Foxp3⁺IFN- γ ⁺ Treg cells (bottom) in
1397 cultured cells (mean ± SEM, $n = 6$ per group).

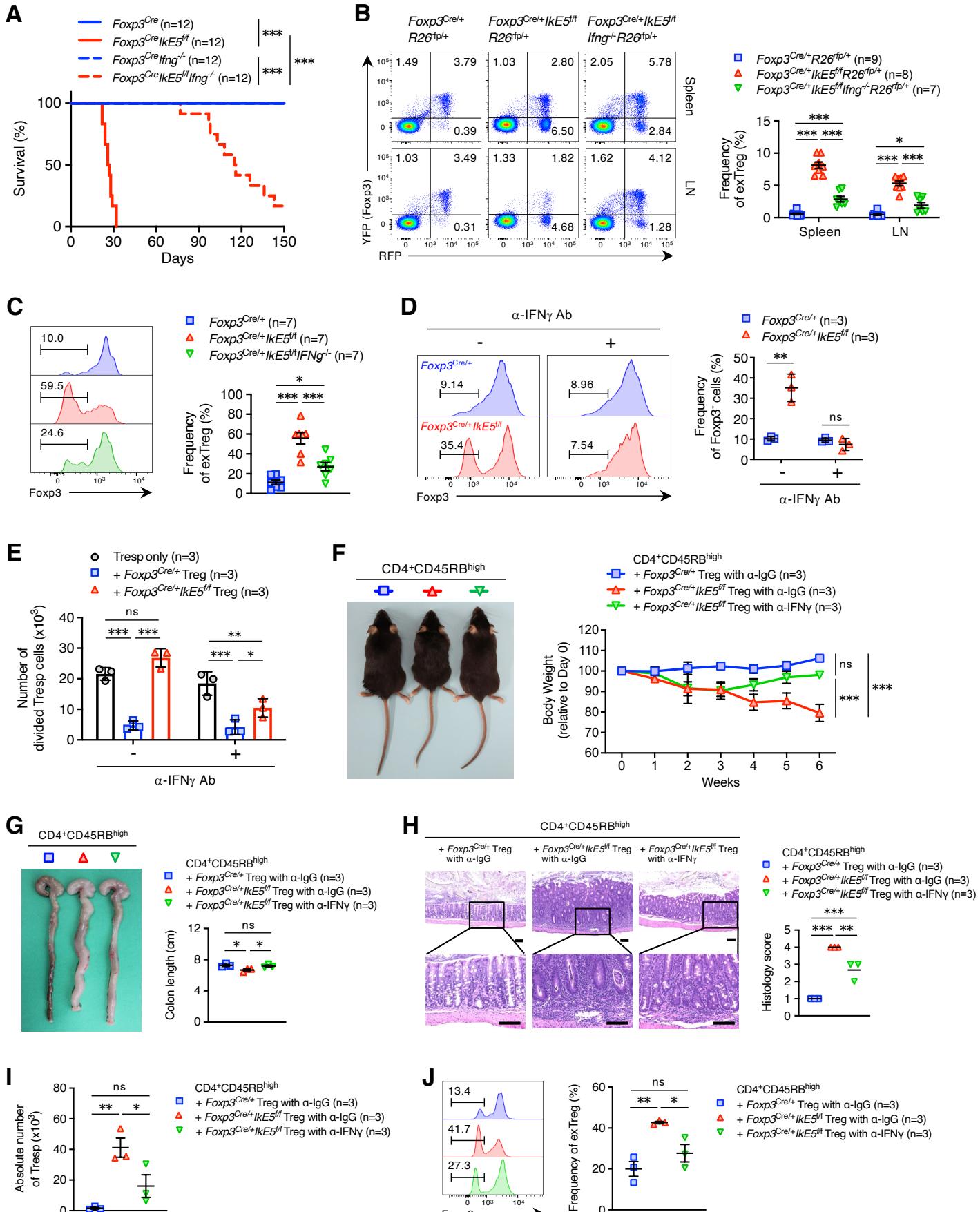

1398 Data are summary of at least three independent experiments (A,C,D,G) or
1399 representative of three independent experiments (B,E,F). *P* values determined by
1400 ordinary one-way ANOVA followed by Dunnett's multiple comparisons (A,C) or
1401 unpaired *t*-tests followed by Holm-Sídák multiple comparisons test (D) or ordinary one-
1402 way ANOVA followed by Tukey's multiple comparisons test (G). ns, not significant,
1403 **P* < 0.05; ***P* < 0.01; ****P* < 0.001.

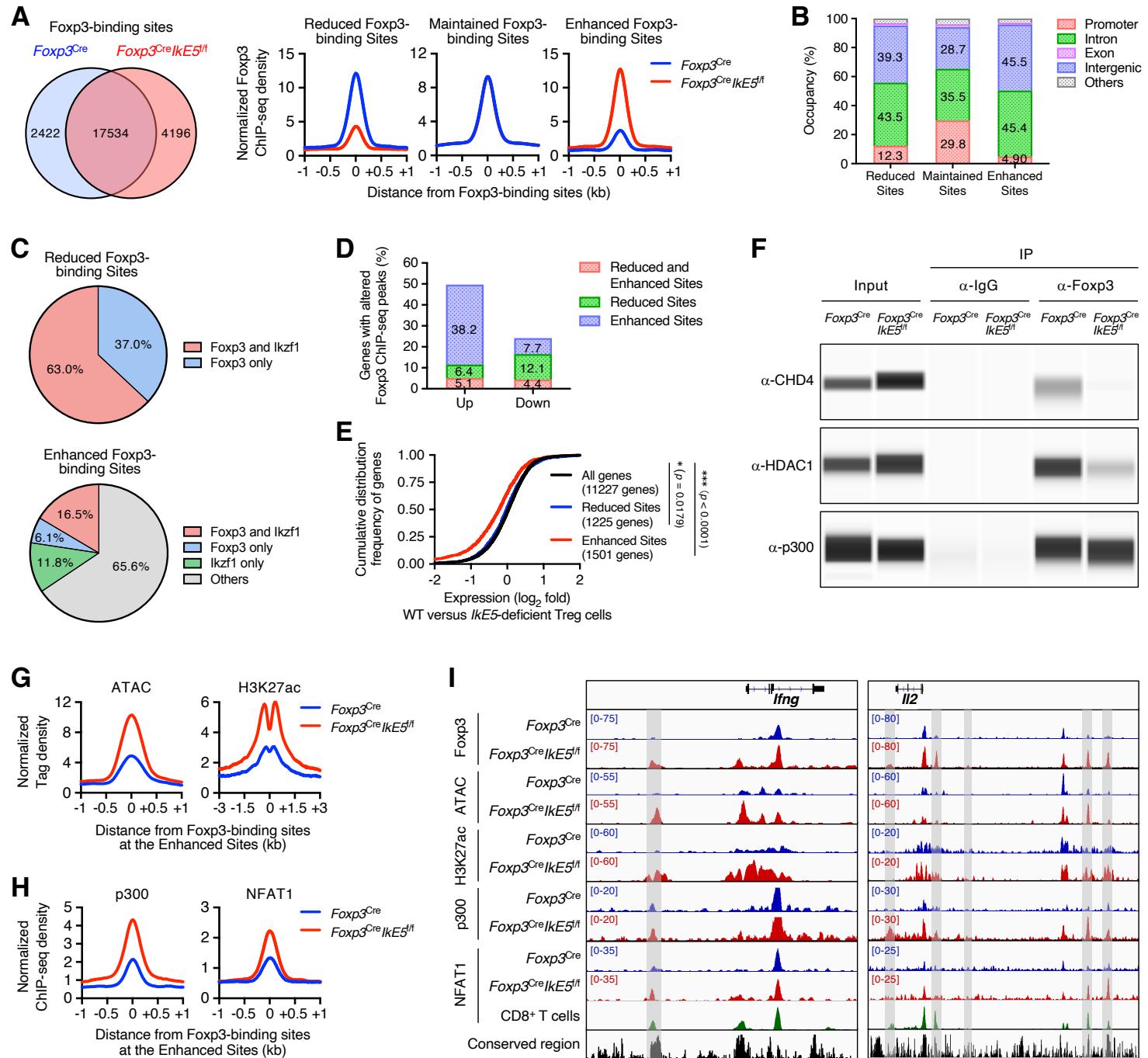
1404 Also see Figure S7.

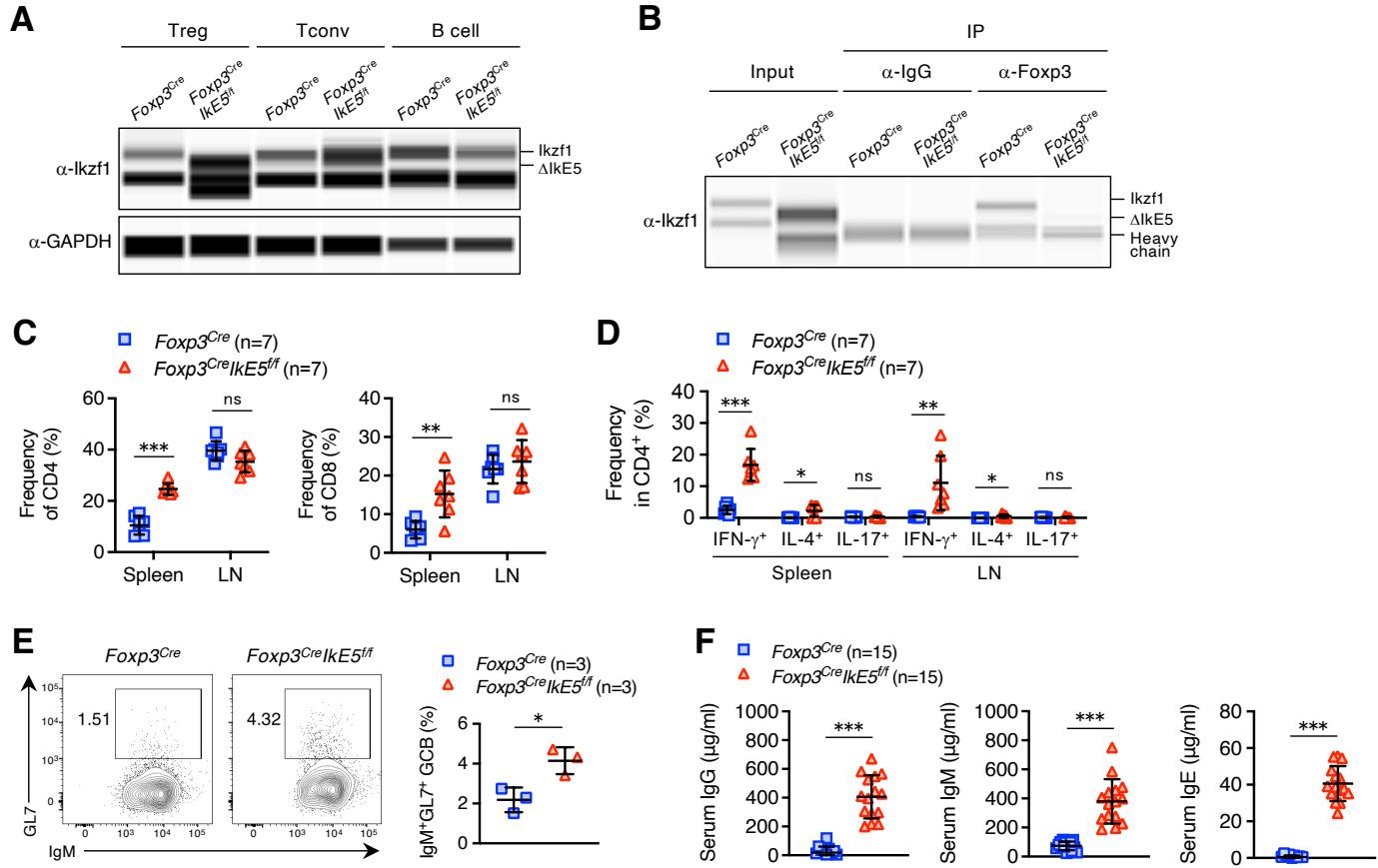

1405



Ichiyama et al. Figure 1




Ichiyama et al. Figure 2


Ichiyama et al. Figure 4

Supplemental Figure 1

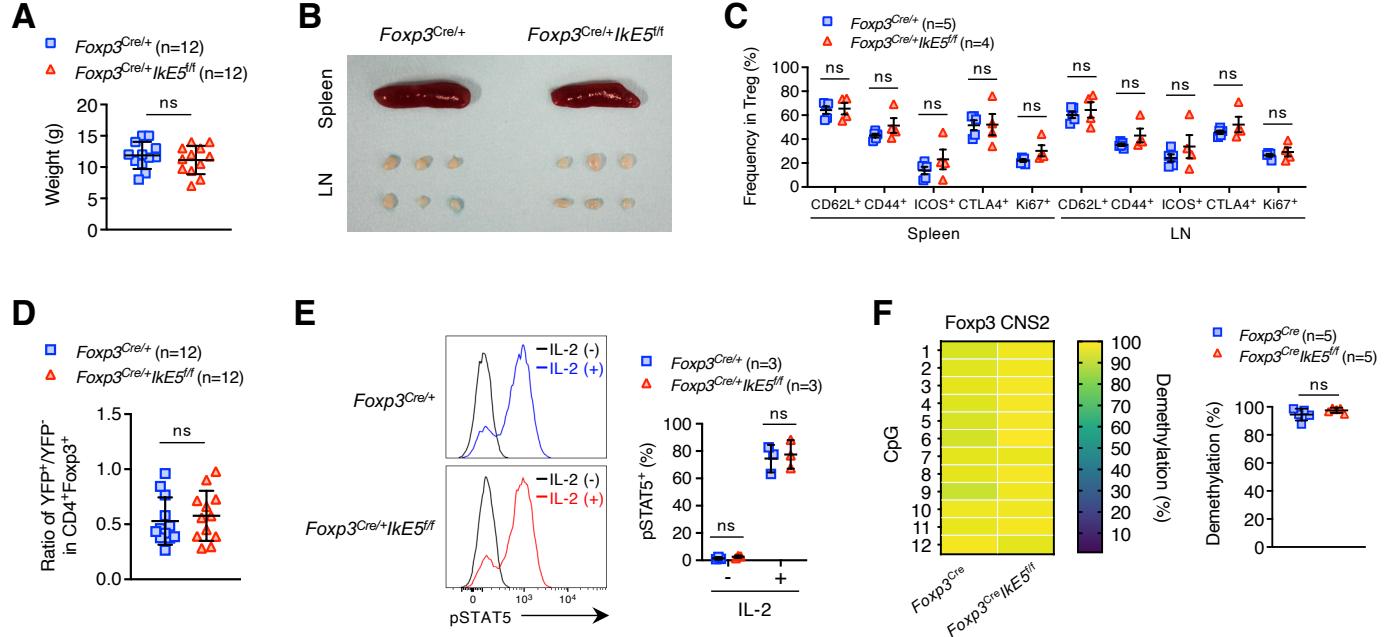


Figure S1. Treg-specific *IkE5*-deficient mice show immune activation.

- (A) Immunoblot analysis of *Ikzf1* and GAPDH in Treg, Tconv and B cells from *Foxp3*^{Cre} and *Foxp3*^{Cre}/*IkE5*^{fl/fl} mice. The shift in band size indicates *IkE5*-deletion.
- (B) A representative image of interaction between *Foxp3* and *Ikzf1* in CD4⁺YFP⁺ Treg cells from *Foxp3*^{Cre} and *Foxp3*^{Cre}/*IkE5*^{fl/fl} mice by Co-IP.
- (C) Frequencies of CD4⁺ and CD8⁺ T cells in the spleen and LN from *Foxp3*^{Cre} and *Foxp3*^{Cre}/*IkE5*^{fl/fl} mice at 3 to 4 weeks of age (mean \pm SD, $n = 7$ per group).
- (D) Frequencies of indicated cytokine-producing CD4⁺ T cells in the spleen and LN from *Foxp3*^{Cre} and *Foxp3*^{Cre}/*IkE5*^{fl/fl} mice at 3 to 4 weeks of age (mean \pm SD, $n = 7$ per group).
- (E) Frequencies of B220⁺IgM⁺GL7⁺ GCB cells in the spleen from *Foxp3*^{Cre} and *Foxp3*^{Cre}/*IkE5*^{fl/fl} mice at 3 to 4 weeks of age (right)(mean \pm SD, $n = 3$ per group). A representative flow cytometry plot of B220⁺ splenocytes in the above mice (left).
- (F) Concentration of anti-IgG, anti-IgM and anti-IgE antibodies in serum of *Foxp3*^{Cre} and *Foxp3*^{Cre}/*IkE5*^{fl/fl} mice at 3 to 4 weeks of age, determined by ELISA (mean \pm SD, $n = 15$ per group).

Data are representative of at least three independent experiments (A,B) or summary of at least three independent experiments (C-F). P values determined by unpaired t -tests followed by Holm-Sídák multiple comparisons test (C,D) or two-tailed unpaired t -tests (E,F). ns, not significant, * $P < 0.05$; ** $P < 0.01$; *** $P < 0.001$.

Supplemental Figure 2

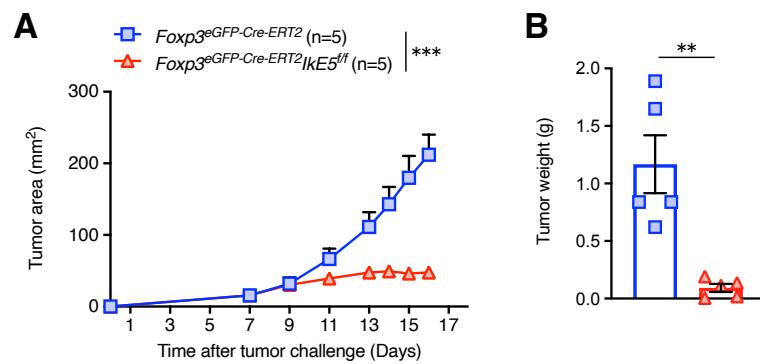
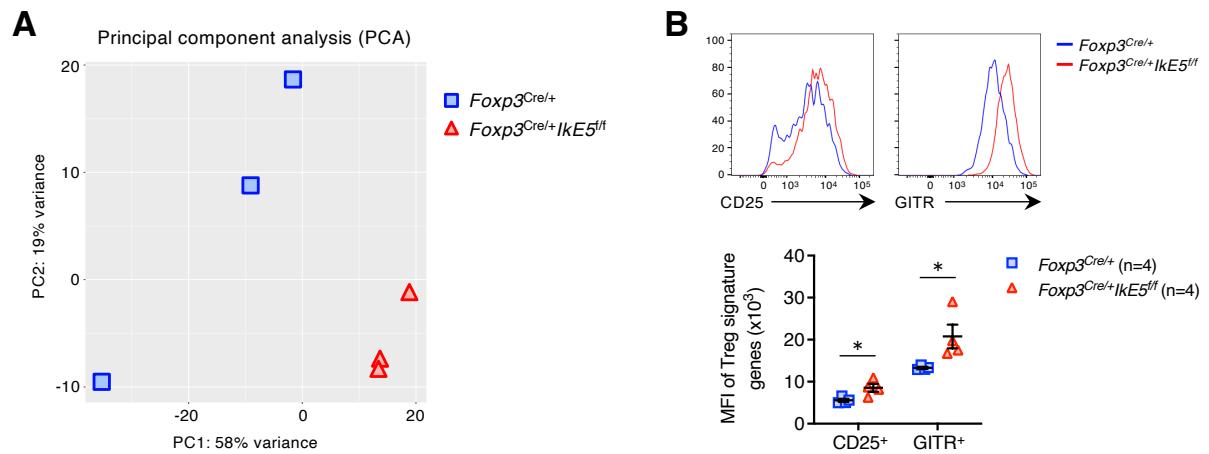


Figure S2. *IkE5*-deletion does not affect the activation status, IL-2/STAT5 signaling and DNA demethylation of Treg cells.

- (A) Body weight of *Foxp3*^{Cre/+} and *Foxp3*^{Cre/+}/*IkE5*^{f/f} mice at 3 to 4 weeks of age (mean \pm SD, $n = 12$ per group).
- (B) A representative appearance of spleen and peripheral lymph nodes (LN) from *Foxp3*^{Cre/+} and *Foxp3*^{Cre/+}/*IkE5*^{f/f} mice at 3 to 4 weeks of age.
- (C) Frequencies of indicated molecule-expressing Treg cells in the spleen and LN from *Foxp3*^{Cre/+} ($n = 5$) and *Foxp3*^{Cre/+}/*IkE5*^{f/f} ($n = 4$) mice at 3 to 4 weeks of age (mean \pm SD).
- (D) The ratio of YFP⁺/YFP⁻ Treg cells in the thymus from *Foxp3*^{Cre/+} ($n = 12$) and *Foxp3*^{Cre/+}/*IkE5*^{f/f} ($n = 12$) mice at 3 to 4 weeks of age (mean \pm SD).
- (E) Purified CD4⁺YFP⁺ Treg cells from *Foxp3*^{Cre/+} and *Foxp3*^{Cre/+}/*IkE5*^{f/f} mice at 3 to 4 weeks of age were first starved for 45 min at 37°C, followed by stimulation with IL-2 (100 U/ml) for 30 min at 37°C. A representative flow cytometry histogram of pSTAT5 (left) and frequencies of pSTAT5⁺ population (right) in stimulated Treg cells (mean \pm SD, $n = 3$ per group).
- (F) CpG methylation status within *Foxp3* CNS2 region in CD4⁺YFP⁺ Treg cells from *Foxp3*^{Cre} and *Foxp3*^{Cre}/*IkE5*^{f/f} mice at 3 to 4 weeks of age (mean \pm SD, $n = 5$ per group).

Data are summary of at least three independent experiments (A,C-F) or representative of three independent experiments (B). P values determined by unpaired t -tests followed by Holm-Sidák multiple comparisons test (C,E) or two-tailed unpaired t -tests (A,D,F). ns, not significant.

Supplemental Figure 3

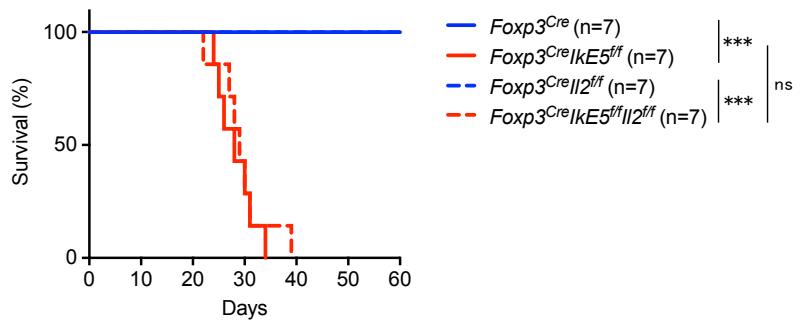

Figure S3. Treg-specific *IkE5*-deficient mice suppress progression of B16 melanoma.

(A) *Foxp3*^{eGFP-Cre-ERT2} and *Foxp3*^{eGFP-Cre-ERT2}/*IkE5*^{f/f} mice were intradermally inoculated with B16F0 murine melanoma cells (5×10^5) into their shaved flanks (Day 0) and intraperitoneally injected with tamoxifen on day 0, 1 and 3. Tumor area (mm^2) was measured over 16 days (mean \pm SEM, $n = 5$ per group).

(B) Tumor weight in *Foxp3*^{eGFP-Cre-ERT2} and *Foxp3*^{eGFP-Cre-ERT2}/*IkE5*^{f/f} mice inoculated as indicated in (A) was measured on 16 days (mean \pm SEM, $n = 5$ per group).

Data are representative of two independent experiments (A,B). P values determined by ordinary two-way ANOVA followed by Sídák multiple comparisons test (A) or two-tailed unpaired *t*-tests (B). ** $P < 0.01$; *** $P < 0.001$.

Supplemental Figure 4


Figure S4. RNA-seq analysis in CD4⁺YFP⁺ Treg cells from *Foxp3*^{Cre/+} and *Foxp3*^{Cre/+}/*IkE5*^{f/f} mice.

(A) Principal component analysis (PCA) of gene expression in CD4⁺YFP⁺ Treg cells from *Foxp3*^{Cre/+} and *Foxp3*^{Cre/+}/*IkE5*^{f/f} mice at 3 to 4 weeks of age ($n = 3$ per group).

(B) Representative flow cytometry histograms (up) and the mean fluorescence intensity (MFI)(bottom) of indicated Treg signatures in CD4⁺YFP⁺ Treg cells from *Foxp3*^{Cre/+} and *Foxp3*^{Cre/+}/*IkE5*^{f/f} mice at 3 to 4 weeks of age (mean \pm SEM, $n = 4$ per group).

Data are representative of two independent experiments (A) or summary of three independent experiments (B). P values determined by unpaired t -tests followed by Holm-Sídák multiple comparisons test (B). * $P < 0.05$.

Supplemental Figure 5

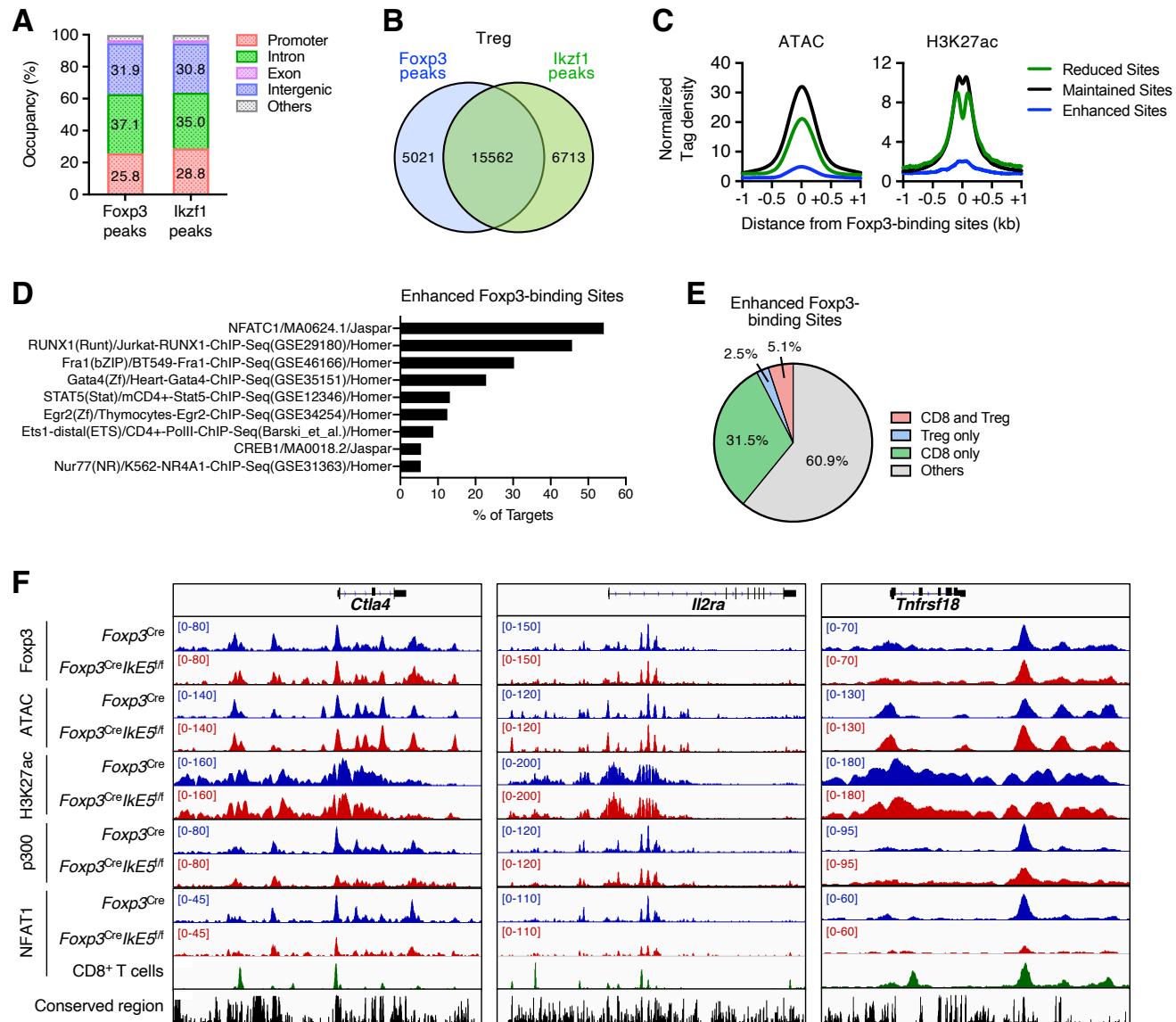
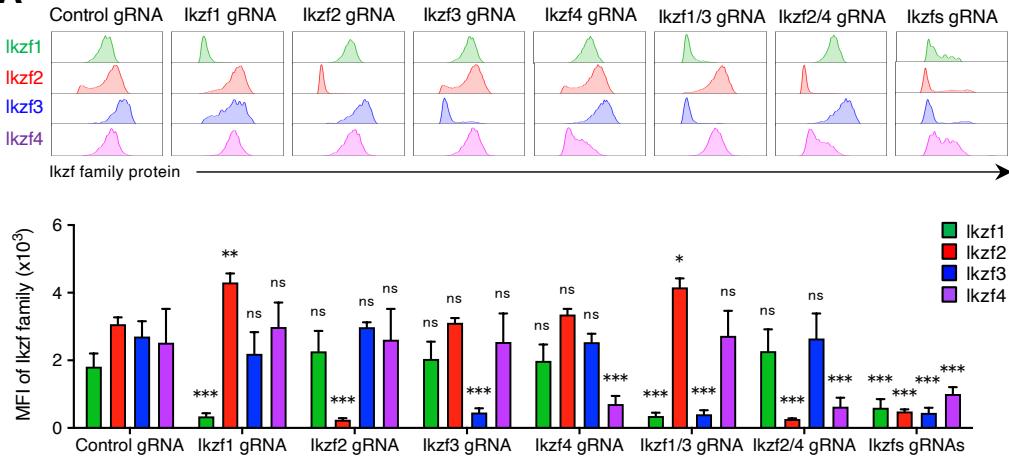


Figure S5. IL-2 is not responsible for the fatal systemic autoimmunity in *Foxp3*^{Cre}*IkE5*^{f/f} mice.

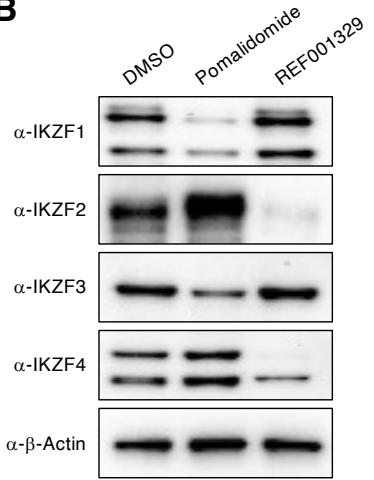
Kaplan-Meier survival curve of *Foxp3*^{Cre}, *Foxp3*^{Cre}*IkE5*^{f/f}, *Foxp3*^{Cre}*Il2*^{f/f} and *Foxp3*^{Cre}*IkE5*^{f/f}*Il2*^{f/f} mice ($n = 7$ per group).

Data are summary of two independent experiments. P values determined by log-rank test. ns, not significant, *** $P < 0.001$.

Supplemental Figure 6


Figure S6. ChIP-seq analysis in CD4⁺YFP⁺ Treg cells from *Foxp3*^{Cre} and *Foxp3*^{Cre}/*IkE5*^{f/f} mice.

- (A) Peak annotation of *Foxp3* and *Ikzf1* ChIP-seq peaks in CD4⁺YFP⁺ Treg cells from *Foxp3*^{Cre} mice.
- (B) Venn diagram of *Foxp3* (blue) and *Ikzf1* (green) ChIP-seq peaks in CD4⁺YFP⁺ Treg cells from *Foxp3*^{Cre} mice.
- (C) Normalized density plots of ATAC and H3K27ac peaks around the Reduced *Foxp3*-binding Sites (green), Maintained *Foxp3*-binding Sites (black) and Enhanced *Foxp3*-binding Sites (blue) in CD4⁺YFP⁺ Treg cells from *Foxp3*^{Cre} mice. Normalized signal density is plotted within a window ± 1 kb centered on *Foxp3*-binding sites.
- (D) Motif enrichment analysis on the Enhanced *Foxp3*-binding Sites.
- (E) Pie chart illustrated the percentage of NFAT1-binding within the Enhanced *Foxp3*-binding Sites in CD8⁺ T and Treg cells.
- (F) *Foxp3*, p300, NFAT1, H3K27ac ChIP-seq and ATAC-seq signal tracks at the Treg up-regulated genes, such as *Ctla4*, *Il2ra* and *Tnfrsf18* genes loci in CD4⁺YFP⁺ Treg cells from *Foxp3*^{Cre} (blue) and *Foxp3*^{Cre}/*IkE5*^{f/f} (red) mice. Data of CD8⁺ T cells (green) is from the previous report.⁴¹ Sequence conservation among vertebrates (black) is also shown.


Data are representative of two independent experiments (A-F).

Supplemental Figure 7

A

B

Figure S7. Confirmation of Ikzf family proteins disruption by the *in vitro* CRISPR/Cas9 system and thalidomide analogues.

- (A) A representative flow cytometry histogram (up) and MFI (bottom) of Ikzf family proteins in CD4⁺Foxp3⁺ Treg cells in Figure 7A (mean \pm SD, $n = 3$ per group).
- (B) Immunoblot analysis of IKZF family proteins in human CD4⁺CD25⁺CD45RA⁺ and CD4⁺CD25^{hi}CD45RA⁻ Treg cells stimulated with DMSO, Pomalidomide (10 μ M) or REF001329 (10 μ M) for 9 days.

Data are summary of three independent experiments (A) or representative of three independent experiments (B). P values determined by two-way ANOVA followed by Dunnett's multiple comparisons test (A). ns, not significant, * $P < 0.05$; ** $P < 0.01$; *** $P < 0.001$.

Table S1. List of differentially expressed genes between wild-type and *IkE5*-deficient Treg cells.

Symbol	Regulation	Log2 Fold	Symbol	Regulation	Log2 Fold
Il3	Up	7.17	Pdzk1ip1	Up	3.02
Nupr1	Up	6.59	Ifng	Up	2.96
Csf2	Up	6.31	5830411N06Rik	Up	2.92
Ccl1	Up	5.82	Scart2	Up	2.92
Ifitm3	Up	4.72	Npy	Up	2.90
Anxa1	Up	4.64	Fam20a	Up	2.87
Il22	Up	4.47	Egfr	Up	2.85
Spin4	Up	4.01	Marcks	Up	2.81
Ccn4	Up	3.94	Mfhas1	Up	2.80
Hbegf	Up	3.93	Maged1	Up	2.80
Hmga1	Up	3.81	Slc15a3	Up	2.80
Hmga1b	Up	3.81	Sphk1	Up	2.77
Ifitm2	Up	3.76	Rhoc	Up	2.76
Plpp1	Up	3.75	Nrp2	Up	2.74
Six1	Up	3.74	Inhba	Up	2.74
Cacnb3	Up	3.72	Pik3r2	Up	2.74
Scin	Up	3.70	Nrgn	Up	2.73
Axl	Up	3.68	Socs2	Up	2.72
Cst6	Up	3.48	Lgals7	Up	2.68
Kctd1	Up	3.43	Itga5	Up	2.68
Hectd2	Up	3.33	Il21	Up	2.67
Lipg	Up	3.32	Stbd1	Up	2.65
Gpm6b	Up	3.30	Slc23a2	Up	2.64
Mnda	Up	3.28	Aqp3	Up	2.63
Ifi211	Up	3.28	Tnfsf11	Up	2.54
Crabp2	Up	3.25	Sesn2	Up	2.52
Itga9	Up	3.22	Chst11	Up	2.51
Tmem176a	Up	3.15	Marcks1	Up	2.50
Igfbp7	Up	3.12	Cpm	Up	2.50
Hes1	Up	3.08	Rbpms	Up	2.49
Il2	Up	3.07	Sema7a	Up	2.46

Symbol	Regulation	Log2 Fold	Symbol	Regulation	Log2 Fold
Pdgfb	Up	3.06	Tgtp1	Up	2.44
Tgtp2	Up	2.44	Prickle1	Up	2.01
Mpzl2	Up	2.41	Ccdc88a	Up	2.00
Prnp	Up	2.41	Sgk3	Up	2.00
Slc43a1	Up	2.38	Trip10	Up	2.00
Podnl1	Up	2.37	Arhgap5	Up	1.99
Slc45a3	Up	2.35	Atp6v0a1	Up	1.98
Cyfip1	Up	2.33	Ier3	Up	1.98
Gas2l1	Up	2.30	Ptprj	Up	1.98
ligrp1	Up	2.27	Tspan2	Up	1.97
Ssh1	Up	2.26	2900026A02Rik	Up	1.97
Oas1a	Up	2.25	Kiaa1671	Up	1.97
Angptl2	Up	2.25	Arrdc3	Up	1.95
Ppfibp1	Up	2.25	Emp1	Up	1.95
Adad1	Up	2.23	Adcy7	Up	1.92
Irgm1	Up	2.23	Il4	Up	1.92
Cd80	Up	2.21	Pxdc1	Up	1.91
Sft2d2	Up	2.18	Cttn	Up	1.90
Tubb6	Up	2.18	Jup	Up	1.90
Abi3	Up	2.15	Mprip	Up	1.90
Glt8d1	Up	2.12	Niban2	Up	1.90
Muc13	Up	2.11	Dstyk	Up	1.90
Slco4a1	Up	2.11	Fmnl3	Up	1.89
Parp8	Up	2.10	St6gal1	Up	1.89
Sema4c	Up	2.08	St3gal1	Up	1.88
Phldb1	Up	2.07	Rps6ka2	Up	1.88
Csf1	Up	2.07	Tnfsf10	Up	1.86
Ifih1	Up	2.06	Ebi3	Up	1.86
Stc1	Up	2.06	Slc44a1	Up	1.86
Dapk1	Up	2.06	Itgb3	Up	1.85
Adora2b	Up	2.05	Sdc4	Up	1.85
Chst15	Up	2.05	Psme2b	Up	1.83
Mex3b	Up	2.03	PSME2b	Up	1.83
Pwwp2b	Up	2.01	Psme2	Up	1.83

Symbol	Regulation	Log2 Fold	Symbol	Regulation	Log2 Fold
Hivep3	Up	2.01	Slc37a2	Up	1.83
Dusp6	Up	1.80	Carmil1	Up	1.65
Hpcal1	Up	1.80	Lxn	Up	1.65
Ikzf1	Up	1.79	Ctdsp2	Up	1.65
Rassf5	Up	1.79	Olr1	Up	1.64
Serpina3f	Up	1.79	Enc1	Up	1.64
Dlg3	Up	1.77	Rcan1	Up	1.64
Stk38l	Up	1.76	Mink1	Up	1.64
Lif	Up	1.75	Farp1	Up	1.64
Try5	Up	1.75	Nipal1	Up	1.63
Notch2	Up	1.74	Slc35e4	Up	1.63
Hsd3b7	Up	1.74	Irak2	Up	1.62
Gjb2	Up	1.73	Tg	Up	1.62
Dgkh	Up	1.72	Mbp	Up	1.62
Trim16	Up	1.72	Plxnd1	Up	1.62
Phlda1	Up	1.72	Gstm5	Up	1.62
Cln3	Up	1.72	Lgalsl	Up	1.62
Arhgap21	Up	1.71	Ctnna1	Up	1.61
Tnfsf8	Up	1.70	Map4k4	Up	1.61
Vwa5a	Up	1.69	Cbx6	Up	1.59
Ccdc80	Up	1.69	Tgfbr3	Up	1.59
Akr1c18	Up	1.69	Tgtp2	Up	1.59
Rhov	Up	1.69	Tgtp1	Up	1.59
Mmp14	Up	1.69	Plekho2	Up	1.59
Kcnk10	Up	1.69	Stxbp1	Up	1.59
Wls	Up	1.69	Wnt3	Up	1.58
Smtn	Up	1.67	Dock11	Up	1.58
Hipk2	Up	1.67	Vhl	Up	1.58
Fn1	Up	1.67	Flna	Up	1.57
Nfat5	Up	1.67	Fjx1	Up	1.57
H1-0	Up	1.66	Mtg1	Up	1.57
H1f0	Up	1.66	Sestd1	Up	1.56
Zfp61	Up	1.66	Foxj2	Up	1.56
Parp14	Up	1.66	Myh9	Up	1.56

Symbol	Regulation	Log2 Fold	Symbol	Regulation	Log2 Fold
Tle3	Up	1.66	Cerk	Up	1.56
Nrn1	Up	1.55	Adam10	Up	1.43
Itpr1p	Up	1.55	Syde2	Up	1.42
Cemip2	Up	1.55	Elmod2	Up	1.42
Nck2	Up	1.55	Ggta1	Up	1.41
Fndc10	Up	1.54	Pcnx3	Up	1.41
Myo18a	Up	1.54	Apoe	Up	1.40
Tmem161b	Up	1.54	Slco3a1	Up	1.40
Znfx1	Up	1.53	Fbh1	Up	1.40
Car11	Up	1.52	Cpd	Up	1.40
Ca11	Up	1.52	Rhbdf2	Up	1.39
Mpzl3	Up	1.52	Cybb	Up	1.38
Ccl3	Up	1.52	Lmna	Up	1.38
Rnf19b	Up	1.52	Eomes	Up	1.38
Uqcc1	Up	1.51	Rnf103	Up	1.37
Tjp2	Up	1.51	Hs3st3b1	Up	1.36
Furin	Up	1.51	Malt1	Up	1.36
Kctd17	Up	1.51	Il10ra	Up	1.35
Slc41a1	Up	1.50	Abcc1	Up	1.35
9930111J21Rik1	Up	1.50	Ccl20	Up	1.34
9930111J21Rik2	Up	1.50	F3	Up	1.34
Atp11a	Up	1.50	Myo10	Up	1.33
Rreb1	Up	1.49	Actn1	Up	1.33
Zfp949	Up	1.49	Dennd4c	Up	1.33
Sp6	Up	1.48	Polg	Up	1.33
Tmem86b	Up	1.48	Dip2b	Up	1.33
Nf1	Up	1.48	S100a1	Up	1.33
Anapc5	Up	1.47	1110032F04Rik	Up	1.32
Traj56	Up	1.47	Arhgap31	Up	1.32
Arhgef6	Up	1.45	L3mbtl3	Up	1.32
Ramp1	Up	1.45	Gigyf1	Up	1.32
Zfp282	Up	1.44	C1qtnf12	Up	1.32
Rai1	Up	1.44	Myo9b	Up	1.32
Fchsd2	Up	1.44	Socs3	Up	1.31

Symbol	Regulation	Log2 Fold	Symbol	Regulation	Log2 Fold
Abca7	Up	1.43	Myo1c	Up	1.31
Gcfc2	Up	1.31	Clic4	Up	1.26
Septin8	Up	1.31	Il18rap	Up	1.26
Notch1	Up	1.31	Ankfy1	Up	1.26
Mpi	Up	1.31	Snx33	Up	1.26
Atn1	Up	1.31	Mafb	Up	1.25
Kit	Up	1.30	Cсад	Up	1.25
Iqgap1	Up	1.30	Fubp3	Up	1.25
Lta	Up	1.30	Vegfa	Up	1.25
Cd4	Up	1.30	Plcg1	Up	1.24
Creb3l2	Up	1.30	Galnt14	Up	1.24
Ppp1r9b	Up	1.30	Whrn	Up	1.24
Daam1	Up	1.30	Snrnp200	Up	1.24
Atp8b2	Up	1.30	Igf2r	Up	1.24
Plk2	Up	1.29	Eno2	Up	1.24
Tlnrd1	Up	1.29	Inafm2	Up	1.24
Pcnx1	Up	1.29	Oaf	Up	1.23
Pcnx	Up	1.29	Tmem131	Up	1.23
Rarg	Up	1.29	Tap1	Up	1.23
Psme4	Up	1.29	Trip12	Up	1.23
Plscr1	Up	1.29	Zfp456	Up	1.23
Kdm5c	Up	1.29	Gm28041	Up	1.23
Scrib	Up	1.29	Ttyh3	Up	1.23
Camsap2	Up	1.28	Trib1	Up	1.23
Mtmr1	Up	1.28	Tesk1	Up	1.23
Cd9	Up	1.28	Sec16a	Up	1.23
Ypel2	Up	1.28	Tab3	Up	1.22
Med12	Up	1.28	Supt6	Up	1.22
Syt12	Up	1.28	Supt6h	Up	1.22
Rab11fip4	Up	1.28	Phf2	Up	1.22
Klhl20	Up	1.27	Zfp948	Up	1.22
Unc93b1	Up	1.27	Tbx21	Up	1.22
Dot1l	Up	1.27	Tent5c	Up	1.22
1700025G04Rik	Up	1.26	Cnot1	Up	1.22

Symbol	Regulation	Log2 Fold	Symbol	Regulation	Log2 Fold
Lad1	Up	1.26	Fnip1	Up	1.22
Soat1	Up	1.21	Nfkbiz	Up	1.16
Egln3	Up	1.21	Cish	Up	1.16
Irf8	Up	1.21	Usp12	Up	1.15
Grn	Up	1.21	Mfsd12	Up	1.15
Abtb2	Up	1.20	Slc30a4	Up	1.15
Klhl9	Up	1.20	Hdac5	Up	1.15
Ahctf1	Up	1.20	Tceal8	Up	1.15
Gcn1	Up	1.19	Cyfip2	Up	1.15
Abcd3	Up	1.19	Gtf3c1	Up	1.15
Raph1	Up	1.19	Esyt2	Up	1.15
Ckap4	Up	1.19	Lamp2	Up	1.15
Serpine2	Up	1.19	Ano6	Up	1.14
Bcor	Up	1.19	Adam19	Up	1.14
Nckap1	Up	1.18	Cxcl16	Up	1.14
Ppic	Up	1.18	Wdr13	Up	1.14
Rnf141	Up	1.18	Dhrs3	Up	1.14
Grk2	Up	1.18	Znf592	Up	1.14
Plekhg2	Up	1.18	Zfp592	Up	1.14
Nxpe3	Up	1.18	Zbtb18	Up	1.13
Chsy1	Up	1.17	Otud7b	Up	1.13
Taok2	Up	1.17	Pitpnm1	Up	1.12
Hdac6	Up	1.17	Tsc2	Up	1.12
Tmem229b	Up	1.17	Map4k3	Up	1.12
TMEM229B	Up	1.17	Rptor	Up	1.11
Tspan31	Up	1.17	Dstn	Up	1.11
Znf598	Up	1.17	Gse1	Up	1.11
Zfp598	Up	1.17	Anxa4	Up	1.11
Polr2a	Up	1.17	Ly75	Up	1.11
Mroh1	Up	1.17	Vav3	Up	1.11
Dkk1	Up	1.17	Ireb2	Up	1.11
Neurl4	Up	1.17	Itgb1	Up	1.10
Tnf	Up	1.16	Stard5	Up	1.10
Serpina3g	Up	1.16	Mex3c	Up	1.10

Symbol	Regulation	Log2 Fold	Symbol	Regulation	Log2 Fold
Abhd4	Up	1.16	Stat5a	Up	1.10
Irf1	Up	1.09	Smad4	Up	1.05
Ric1	Up	1.09	Zmiz1	Up	1.05
Irgm2	Up	1.09	Atp1b1	Up	1.04
Bcam	Up	1.09	Snap47	Up	1.04
Lrrfip1	Up	1.09	Foxp4	Up	1.04
Osm	Up	1.09	Mical3	Up	1.04
Unkl	Up	1.08	Phlpp1	Up	1.04
Pml	Up	1.08	Galm	Up	1.04
Pogz	Up	1.08	Ncoa1	Up	1.04
Klf4	Up	1.08	Trak1	Up	1.04
Numa1	Up	1.08	Gm7072	Up	1.04
Prkd3	Up	1.08	Fance	Up	1.04
Fbxl20	Up	1.08	Rab5b	Up	1.04
Tnfrsf1a	Up	1.07	Rtel1	Up	1.04
Nrp1	Up	1.07	Aak1	Up	1.03
Hexim2	Up	1.07	Mapkapk2	Up	1.03
Lancl2	Up	1.07	Gpat3	Up	1.03
Tmem123	Up	1.07	Rbm12	Up	1.03
Ppp2r3a	Up	1.07	Rem2	Up	1.03
Bhlhe40	Up	1.07	Tnfsf4	Up	1.02
Srgap2	Up	1.07	Zfpm1	Up	1.02
Tet2	Up	1.07	Ube3b	Up	1.02
Carns1	Up	1.07	Tgfb1	Up	1.02
Jak2	Up	1.06	Med13l	Up	1.02
Amigo2	Up	1.06	Il18r1	Up	1.02
Mib1	Up	1.06	Ehd1	Up	1.01
Ifi47	Up	1.06	Lilr4b	Up	1.01
Hps5	Up	1.06	Gp49a	Up	1.01
Nedd9	Up	1.06	Exoc6b	Up	1.00
Plk3	Up	1.06	Tsc22d1	Up	1.00
Gmeb2	Up	1.06	Rgs16	Up	1.00
Fhl2	Up	1.06	Acsbg1	Down	-3.37
Nfatc1	Up	1.05	Depdc5	Down	-3.37

Symbol	Regulation	Log2 Fold	Symbol	Regulation	Log2 Fold
Galnt7	Up	1.05	Sdcbp2	Down	-3.09
Il1r2	Down	-2.92	Fam81a	Down	-1.86
Cd160	Down	-2.80	Prg4	Down	-1.85
Syt1	Down	-2.58	Slamf7	Down	-1.84
Gm49384	Down	-2.56	Gm3488	Down	-1.82
H2-Ob	Down	-2.55	H2bc8	Down	-1.81
Tnnt1	Down	-2.55	H2bc4	Down	-1.81
Il17a	Down	-2.53	Lpxn	Down	-1.81
Psen2	Down	-2.30	Cd101	Down	-1.80
Rasgrp2	Down	-2.26	Pglyrp1	Down	-1.80
Evi2b	Down	-2.23	Gzmb	Down	-1.78
Igflr1	Down	-2.19	Gstt2	Down	-1.78
Pou1f1	Down	-2.17	Matk	Down	-1.76
Spata24	Down	-2.15	Cd48	Down	-1.76
Ptpn5	Down	-2.10	Dapl1	Down	-1.72
Retreg2	Down	-2.07	Ypel4	Down	-1.72
Gimap7	Down	-2.05	Cers4	Down	-1.72
Ankrd55	Down	-2.03	Jazf1	Down	-1.69
Evi2a	Down	-2.02	Gmfg	Down	-1.69
Dnajb13	Down	-1.99	Tmem238	Down	-1.65
Hist1h2an	Down	-1.98	Ppm1m	Down	-1.65
H2ac7	Down	-1.98	Glipr1	Down	-1.64
Hist1h2ap	Down	-1.98	Osgin1	Down	-1.64
H2ac6	Down	-1.98	Gm10800	Down	-1.63
H2ac4	Down	-1.98	Tmem29	Down	-1.62
H2ac8	Down	-1.98	Acot13	Down	-1.62
H2ac11	Down	-1.98	2610042L04Rik	Down	-1.61
Hist1h2ao	Down	-1.98	Ctsw	Down	-1.61
H2ac13	Down	-1.98	Vps13b	Down	-1.61
Hist1h2ad	Down	-1.98	Gm10719	Down	-1.61
Trav7-6	Down	-1.96	Crip1	Down	-1.60
Tigit	Down	-1.93	Traj32	Down	-1.60
Tnk2	Down	-1.93	Metrn	Down	-1.59
Areg	Down	-1.92	Krt10	Down	-1.58

Symbol	Regulation	Log2 Fold	Symbol	Regulation	Log2 Fold
Capn3	Down	-1.89	Dbp	Down	-1.57
Gm10718	Down	-1.57	Ephx1	Down	-1.42
Mlf1	Down	-1.56	Dalrd3	Down	-1.42
Abcb9	Down	-1.56	Gm10801	Down	-1.42
Gm17535	Down	-1.55	Nrarp	Down	-1.41
Gm10721	Down	-1.55	Zfp457	Down	-1.40
Gabrr2	Down	-1.55	Xlr	Down	-1.39
Hndl	Down	-1.55	Ptprcap	Down	-1.38
Fam174c	Down	-1.53	Dnaja4	Down	-1.38
Pomc	Down	-1.53	Pgpep1l	Down	-1.38
Ces2c	Down	-1.52	Tcp11l2	Down	-1.38
Ttc39c	Down	-1.52	Ly6k	Down	-1.37
Gm37240	Down	-1.52	Prelid2	Down	-1.37
Ift27	Down	-1.52	Cd226	Down	-1.37
Ms4a4b	Down	-1.51	Mmp10	Down	-1.37
Cnih2	Down	-1.50	Gm45716	Down	-1.36
Cxcr4	Down	-1.50	SMIM36	Down	-1.36
Glt28d2	Down	-1.49	Boll	Down	-1.36
P2rx7	Down	-1.49	Cd27	Down	-1.36
Bik	Down	-1.48	Olfr1031	Down	-1.36
Zcchc18	Down	-1.48	Sigirr	Down	-1.36
Ccdc30	Down	-1.47	Hcst	Down	-1.35
Knstrn	Down	-1.47	Cdkn2d	Down	-1.34
Utf1	Down	-1.47	Gm10722	Down	-1.33
Ffar4	Down	-1.46	Zfp296	Down	-1.33
Izumo1r	Down	-1.46	Znf296	Down	-1.33
Gm11168	Down	-1.46	Olfr131	Down	-1.32
Trat1	Down	-1.46	Lime1	Down	-1.31
Ifi213	Down	-1.45	Tnfrsf26	Down	-1.31
Selenoh	Down	-1.44	Phf11b	Down	-1.31
Ddt	Down	-1.44	Ankrd37	Down	-1.31
Alcam	Down	-1.44	Ddx43	Down	-1.30
Rpl39l	Down	-1.43	Gm3020	Down	-1.30
Pemt	Down	-1.42	Gm13212	Down	-1.30

Symbol	Regulation	Log2 Fold	Symbol	Regulation	Log2 Fold
Gm10717	Down	-1.42	Zfp268	Down	-1.30
Sult2b1	Down	-1.30	Got1	Down	-1.18
Il12rb1	Down	-1.29	Prr7	Down	-1.18
Nucb2	Down	-1.29	Traj2	Down	-1.17
Gng2	Down	-1.29	Gm3667	Down	-1.17
Tspo	Down	-1.29	Gpr83	Down	-1.17
Gpr18	Down	-1.29	Dusp28	Down	-1.16
Tasp1	Down	-1.28	Acyp1	Down	-1.16
Rab29	Down	-1.28	Ifi27l2a	Down	-1.16
Castor1	Down	-1.27	Cyba	Down	-1.16
Mgst2	Down	-1.26	Gm20594	Down	-1.16
Fam124b	Down	-1.26	Id3	Down	-1.15
Ccr6	Down	-1.26	Pard6a	Down	-1.15
Lbh	Down	-1.25	Olfr774	Down	-1.15
Gsta4	Down	-1.24	Tpbpa	Down	-1.15
Gm8369	Down	-1.24	Ccdc69	Down	-1.15
Ncmap	Down	-1.23	S100a11	Down	-1.14
Serpini1	Down	-1.23	Kif20b	Down	-1.14
Cyb561d2	Down	-1.23	Susd3	Down	-1.14
Rhox8	Down	-1.23	Cxcr6	Down	-1.12
Olfr1284	Down	-1.22	Sat1	Down	-1.12
Ccdc92	Down	-1.22	Ubxn11	Down	-1.12
Tmem256	Down	-1.22	Stambpl1	Down	-1.12
H1-5	Down	-1.22	Txk	Down	-1.11
H1f5	Down	-1.22	Fosl1	Down	-1.11
Mctp1	Down	-1.22	Marchf3	Down	-1.11
NA	Down	-1.21	Ap1s3	Down	-1.10
Gm10563	Down	-1.21	Nlrp9b	Down	-1.10
Pigbos1	Down	-1.20	Ms4a4c	Down	-1.10
Grap	Down	-1.20	Rpa3	Down	-1.10
Tpi1	Down	-1.20	Anapc13	Down	-1.10
Rida	Down	-1.19	Tmem160	Down	-1.09
Rfesd	Down	-1.19	Fam89a	Down	-1.09
Zmat5	Down	-1.19	Mif	Down	-1.08

Symbol	Regulation	Log2 Fold	Symbol	Regulation	Log2 Fold
Scrn2	Down	-1.18	Cep170	Down	-1.08
Med11	Down	-1.08	Cic	Down	-1.04
Adat3	Down	-1.08	Acp5	Down	-1.04
Cst7	Down	-1.07	Ccdc51	Down	-1.04
Coq8a	Down	-1.07	Rusc1	Down	-1.04
Cks1b	Down	-1.07	Pih1d1	Down	-1.04
Slc25a19	Down	-1.07	Tmem243	Down	-1.03
Dpcd	Down	-1.07	Stx11	Down	-1.03
Gm17018	Down	-1.07	Trappc6a	Down	-1.03
Ccs	Down	-1.06	Selenow	Down	-1.03
Cd83	Down	-1.06	Capg	Down	-1.02
Lpcat4	Down	-1.06	Hsd11b1	Down	-1.02
Rab37	Down	-1.06	Cstb	Down	-1.01
Naa38	Down	-1.06	Arsb	Down	-1.01
Pold4	Down	-1.06	Dhrs7	Down	-1.01
Galk1	Down	-1.05	Papss1	Down	-1.01
Adk	Down	-1.05	Tesc	Down	-1.01
Pycard	Down	-1.05	S100a10	Down	-1.01
Pld3	Down	-1.04	Xcl1	Down	-1.01
Gpr65	Down	-1.04	S100a6	Down	-1.00
Praf2	Down	-1.04	Ftl1	Down	-1.00