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ABSTRACT

w«  Despite significant research, discovering causal relationships from fMRI remains a challenge.
s Popular methods such as Granger Causality and Dynamic Causal Modeling fall short in handling
1 contemporaneous effects and latent common causes. Methods from causal structure learning

w7 literature can address these limitations but often scale poorly with network size and need

s acyclicity. In this study, we first provide a taxonomy of existing methods and compare their

1o accuracy and efficiency on simulated fMRI from simple topologies. This analysis demonstrates a

2 pressing need for more accurate and scalable methods, motivating the design of Causal discovery
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for Large-scale Low-resolution Time-series with Feedback (CaLLTiF). CaLLTiF is a
constraint-based method that uses conditional independence between contemporaneous and
lagged variables to extract causal relationships. On simulated fMRI from the macaque
connectome, CaLLTiF achieves significantly higher accuracy and scalability than all tested
alternatives. From resting-state human fMRI, CaLLTiF learns causal connectomes that are highly
consistent across individuals, show clear top-down flow of causal effect from attention and default
mode to sensorimotor networks, exhibit Euclidean distance-dependence in causal interactions,
and are highly dominated by contemporaneous effects. Overall, this work takes a major step in
enhancing causal discovery from whole-brain fMRI and defines a new standard for future

investigations.

AUTHOR SUMMARY

Discovering causal relationships from fMRI data is challenging due to contemporaneous effects
and latent causes. Popular methods like Granger Causality and Dynamic Causal Modeling
struggle with these issues, especially in large networks. To address this, we introduce CaLLTiF, a
scalable method that uses both lagged and contemporaneous variables to identify causal
relationships. CaLLTiF outperforms various existing techniques in accuracy and scalability on
simulated fMRI data. When applied to human resting-state fMRI, it reveals consistent and
biologically-plausible patterns across individuals, with a clear top-down causal flow from
attention and default mode networks to sensorimotor areas. Overall, this work advances the field

of causal discovery in large-scale fMRI studies.

INTRODUCTION

A major step in the global drive for understanding the brain (Adams et al., 2020; Amunts et al.,
2016; Jorgenson et al., 2015; Okano, Miyawaki, & Kasai, 2015; Poo et al., 2016) is to move
beyond correlations and understand the causal relationships among internal and external factors —
a process often referred to as causal discovery (Assaad, Devijver, & Gaussier, 2022; Glymour,

Zhang, & Spirtes, 2019). When possible, causal discovery can be greatly simplified by

2
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intervening in one variable and observing the effect in others. However, such interventions are
often costly and/or infeasible, necessitating the significantly more challenging task of causal

discovery from purely observational data.

A particularly rich set of observational data for the brain comes from functional MRI
(fMRI) (Goense & Logothetis, 2008; Winder AT & PJ, 2017). The whole-brain coverage allowed
by fMRI is valuable for causal discovery not only because it allows for purely data-driven and
unbiased discovery of potentially unexpected causal relationships (Bressler & Menon, 2010;
Bullmore & Sporns, 2012; Fornito & Bullmore, 2015), but also because of the great extent to
which the presence of unobserved variables can complicate delineating causal adjacencies and
orientations (Entner & Hoyer, 2010; Gerhardus & Runge, 2020; Hasan, Hossain, & Gani, 2023;
Malinsky & Spirtes, 2018). Nevertheless, many characteristics of fMRI also make causal
discovery challenging, including its large dimensionality, low temporal resolution, and indirect

reflection of underlying neural processes (Ramsey et al., 2010).

This has motivated a large and growing body of literature on causal discovery from fMRI. A
common approach for causal discovery using neuroimaging and neurophysiology data is Granger
Causality (GC) (Seth, Barrett, & Barnett, 2015). GC has a long history in neuroscience (Barnett
& Seth, 2014; Seth et al., 2015), but also has well-known limitations, including its lack of ability
to account for contemporaneous causal relationships and the presence of latent nodes (see
Supplementary Note 1 for a formal definition of ‘contemporaneous’ causal effects). The former is
particularly important for fMRI. The temporal resolution in fMRI is typically within a few
hundred milliseconds to several seconds (Huettel, Song, & McCarthy, 2009), which is about one
order of magnitude slower than the time that it takes for neural signals to travel across the brain
(Nunez & Srinivasan, 2006; Sutton & Begleiter, 1979; Sutton, Braren, Zubin, & John, 1965).
Therefore, from one fMRI sample to the next, there is enough time for causal effects to flow
between almost all pairs of nodes in the network (cf. a related in-depth discussion in (Nozari,
Pasqualetti, & Cortés, 2019, Appendix A)). Such fast sub-TR interactions demonstrate
themselves as causal effects that appear to be “contemporaneous” and can even be cyclic, making
causal discovery significantly more challenging (cf. Supplementary Note 1). Similar to GC,

Dynamic Causal Modeling (DCM) has also been widely used with fMRI data (K. Friston,

33—
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2 Harrison, & Penny, 2003; K. Friston et al., 2019; K. J. Friston, Kahan, Biswal, & Razi, 2014;
5 Stephan & Roebroeck, 2012) and fundamentally relies on the temporal order of a generative
7 dynamical model to infer causation from correlations, making it similarly unable to account for

7 contemporaneous causal relationships (K. Friston, Moran, & Seth, 2013; K. J. Friston, 2011;

» Logothetis, 2008).

»  Discovering causal relationships without reliance on time has been the subject of extensive

s research in the causal inference literature (Glymour et al., 2019; Pearl, 1988, 2009a, 2009b;

s Spirtes, Glymour, & Scheines, 2000; Spirtes & Zhang, 2016). A wide range of algorithmic

&2 solutions have been proposed (Chickering, 2002a; Glymour et al., 2019; Henry & Gates, 2017,
s Meek, 1995, 1997; Pearl, 2009a; Ramsey et al., 2010; Shimizu, Hoyer, Hyvérinen, & Kerminen,
s 2006; Smith et al., 2011; Spirtes & Glymour, 1991; Spirtes, Meek, & Richardson, 1995), which
s are often classified based on their methodology into constraint-based (Dawid, 1979; Pearl, 1988,
s 2009b), noise-based (Shimizu, 2014; Shimizu et al., 2006), and score-based (Chickering, 2002b;
& Heckerman, Geiger, & Chickering, 1995). However, it has remained largely unknown which of
s these algorithms are best suited for whole-brain fMRI causal discovery and how they perform

s relative to one another in terms of accuracy and scalability.

« In this study, we first discuss and compare existing causal discovery algorithms for their

o« suitability for whole-brain fMRI, demonstrate a large gap between what causal discovery for

«» fMRI needs and what existing algorithms can achieve, propose CaL.LTiF to address this gap, and
s demonstrate its higher accuracy and scalability on synthetic and real fMRI. Unless otherwise

« noted, all references to the words ‘graph’/‘network’ and ‘cycle’ mean a directed graph and

»s directed cycle, respectively.

RESULTS

% A Taxonomy of Causal Discovery for Whole-Brain fMRI

o A vast array of algorithmic solutions exist for learning causal graphs from observational data, but
s not all are suitable for fMRI data. We selected a subset of state-of-the-art algorithms suitable for
» whole-brain fMRI data based on four criteria: (1) ability to learn cycles, (2) ability to learn

w0 contemporaneous effects, (3) assuming complete coverage of relevant variables in observed data,

4
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Table 1: List of causal discovery methods suitable for use with whole-brain fMRI, divided by methodological category (constraint-, noise-, and

score-based). All these methods (1) allow for cycles, (2) allow for contemporaneous effects, (3) assume complete coverage of relevant variables

in observed data, and (4) learn linear relationships. The FASK algorithm is fundamentally hybrid and therefore listed as both constraint-based and

noise-based.

Category

Type

Constraint-based

Noise-based

Score-based

Time-series

PCMCI (Runge, Nowack,
Kretschmer, Flaxman, &
Sejdinovic, 2019),
PCMCI™ (Runge, 2020)

VARLINGAM (Hyvirinen,
Zhang, Shimizu, & Hoyer, 2010)

DYNOTEARS (Pamfil
2020)

et al,

Cross-sectional

with cycles

FASK (Sanchez-Romero et al.,
2019)

FASK (Sanchez-Romero et al.,
2019), LiNG (Lacerda, Spirtes,
Ramsey, & Hoyer, 2008)

DGlearn  (Ghassami,

Kiyavash, & Zhang, 2020)

Yang,

and (4) linearity (see Discussions). Table 1 shows several state-of-the-art methods that satisfy

criteria (1)-(4). Multivariate Granger Causality (MVGC) (Barnett & Seth, 2014; Granger, 1969)

does not satisfy criteria (2), but we still included it in our subsequent analyses due to its

popularity in neuroscience (Ding, Chen, & Bressler, 2006; Goebel, Roebroeck, Kim, &

Formisano, 2003; Liao et al., 2010; Roebroeck, Formisano, & Goebel, 2005). On the other hand,

we excluded LiING (Ramsey et al., 2018) from further analysis since it is considered by its

proposers as generally inferior to the hybrid FASK algorithm (Sanchez-Romero et al., 2019). We

also chose FASK for implementation over GANGO (Rawls, Kummerfeld, Mueller, Ma, &

Zilverstand, 2022), a similarly hybrid method with the additional caveat of not having a unified

publicly available code distribution.

We compared the accuracy of the resulting list of algorithms (MVGC, PCMCI, PCMCI,
VARLINGAM, DYNOTEARS, FASK, and DGlearn) using simulated fMRI data from a

benchmark of simple (5-10 nodes) networks introduced in (Sanchez-Romero et al., 2019). The

ground truth graphs are shown in Figure 1a, and details on the fMRI time series generation for

each node in these graphs are provided under Methods. To evaluate the success of each algorithm,

we treated the causal discovery problem as a binary classification problem for each directed edge

5
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and calculated the resulting F1 score, both for the directed graphs as well as their underlying
undirected graphs (see Methods for details). Figure 1b illustrates the distribution of F1 scores for
all algorithms, combined across nine simple networks. The results show that the PCMCI
algorithm achieved significantly higher median F1 score compared to all other algorithms over
the directed graphs (all Cohen’s d > 0.23 and p < 10~%, pairwise one-sided Wilcoxon
signed-rank test) and compared to all but DYNOTEARS over the underlying undirected graphs
(Supplementary Figure 3, all Cohen’s d > 0.44 and p < 102, pairwise one-sided Wilcoxon
signed-rank test. Also see Supplementary Figures 4 and 5 for precision and recall). The PCMCI
algorithm also has the smallest computational complexity on simple networks, as seen from
Figure 1c. Furthermore, our results indicate that FASK, DGlearn, and PCMCI™ (at their best
values of hyperparameters) do not scale well with network size, forcing us to exclude them from

further analysis as we move on to larger networks (see Supplementary Figures 13, 14, and 15).

Next, we compared the remaining four algorithms (PCMCI, MVGC, DYNOTEARS, and
VARLiINGAM) on a larger-scale, more realistic simulated benchmark. The graph shown in
Figure 2a, referred to as the Macaque SmallDegree network, derived from the original
Macaque_Full anatomical connectome and pruned to achieve average in-degree and out-degree of
1.8, consists of 28 nodes and 52 directed edges (Sanchez-Romero et al., 2019) but the generative
model used to simulate fMRI data from this graph remains the same (see Methods for details).
The distributions of F1 scores are shown in Figure 2b. PCMCI and MVGC achieved very similar
success in learning both the directed graph and its underlying undirected graph, while
significantly outperforming DYNOTEARS and VARLiINGAM. A similar result is obtained when
comparing adjacency F1 scores for detecting the network’s underlying undirected graph
(Supplementary Figure 17, also see Supplementary Figures 18 and 19 for precision and recall).
As far as execution time is concerned, however, MVGC showed a significant advantage over
PCMCI (Figure 2c). Therefore, despite its simplistic nature, MVGC was found most successful in

causal discovery from Macaque_SmallDegree fMRI data (but also see Figure 3).

CaLLTiF: A New Causal Discovery Algorithm for Whole-Brain fMRI

—6—


https://doi.org/10.1101/2023.08.12.553067
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.12.553067; this version posted November 28, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

144

145

146

147

148

149

150

151

152

153

available under aCC-BY-NC 4.0 International license.

Net 1 Net 2 Net 3 Net 4 Net 5 Net 6 Net 7 Net 8 Net 9
X2 X2 X2 X4_ X3 X2 X3 X3 «—X2 X3 X3
v N X4+
Xz '\ Xz \ Xz \ xs”, 2 X3 }(4 X2 / "\ }‘4 X2\ V) x2
i X5 X
l X1 l X1 I X1 X6 1 I X1 X5 X1 x4 X1 X5 X1 X1
\\ X6
X4 / X4 / X4 / X7 10 X4 X6 X8 X6 X8 Y X9
s TTxs T X8+X9 Xs X7 X5—»X6 Tx7 X7—x8
()
o) —4— PcMCI —— MVGC  —— DGlearn
0.8 ° VARLINGAM ~ —— FASK PcMCI*
0.7 | _Eloz — DYNOTEARS
‘ c
g 0.6 'S
20.5 =1
@ g 10t
$ @ E—
o4 / \ ‘ \/ > &5
03 “ & —t
> Vgl e
- >
<
PCMCI  VARLINGAM DYNOTEARS ~ MVGC FASK DGlearn  PCMCI* 5 6 Net k7S' ( b 8f des) 9 10
etworl 1ze (number of nodes
(b) (c)

Figure 1: Results of comparing several state-of-the-art causal discovery algorithms over a benchmark of simulated fMRI (Sanchez-Romero
et al., 2019) generated from simple networks with 5-10 nodes each. (a) Ground truth graphs of the simple networks in the benchmark. Despite
all being small-scale, the graphs vary widely in their density, number of cycles, etc. (b) F1 scores of seven state-of-the-art algorithms (six from
Table 1 and MVGC) for correctly identifying the full (directed) graphs. All methods are evaluated using optimized values of their respective
hyperparameters (see Methods). The benchmark data includes 60 repetitions of fMRI data from each of the 9 graphs, so each violin plot is based
on 540 F1 score samples. The PCMCI method achieves the highest median F1 score, both directed and undirected (see Supplementary Figure 3).
(¢) The mean execution time (averaged over all 60 repetitions) of different algorithms as a function of network size. Note the logarithmic scaling of

the vertical axis. Error bars, though hardly visible, show 1 s.e.m.

The best-performing algorithms on Macaque_SmallDegree, i.e., PCMCI and MVGC, suffer from
three main drawbacks: (1) poor scalability (only for PCMCI), (2) inability to learn directed
contemporaneous effects (PCMCI only learns undirected contemporaneous effects while MVGC
learns none), and (3) having sparsity-controlling hyperparameters that are subjectively selected in
the absence of ground-truth graphs. In this section, we describe the design of a new algorithm
based on PCMCI that mitigates these drawbacks and demonstrate its superior performance over

existing methods.

Our first modification to PCMCI is with regard to scalability and computational complexity.
The computational complexity of PCMCI depends heavily on the value of its ‘PC Alpha’

hyperparameter, which controls the sparsity of the set of potential common causes on which the

-
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Figure 2: Comparing the scalable subset of algorithms from Figure 1 over simulated fMRI data from the Macaque_SmallDegree bench-
mark (Sanchez-Romero et al., 2019). (a) ground-truth Macaque_SmallDegree network. (b) F1 scores of identifying the directed graph. Each
distribution consists of 10 F1 scores calculated based on 10 repetitions of simulated data from the same underlying graph. (¢) Mean execution times

for each method (error bars show one standard deviation).

algorithm conditions when checking the conditional independence of each pair of nodes
(Supplementary Figures 16a and 37). Higher values of PC Alpha make these sets denser and
accordingly decrease statistical power in the subsequent conditional independence tests,
ultimately conditioning on all other nodes (and all of their lags) when PC Alpha = 1.
Nevertheless, interestingly, our experiments on the Macaque_SmallDegree data show that the
maximum achievable accuracy of PCMCI (i.e., F1 score maximized over Alpha Level for each
fixed value of PC Alpha) monotonically increases with PC Alpha, reaching its maximum at PC
Alpha = 1 (Supplementary Figures 16b and 16c). Therefore, while this may seem to cause a
trade-off between accuracy and scalability, it is in fact an opportunity for maximizing both. At PC
Alpha = 1, the PC part of PCMCI (a.k.a. the S1 algorithm in (Runge et al., 2019)) is theoretically
guaranteed to return a complete conditioning set for all pairs of nodes, and can thus be skipped
entirely. The PC part is further responsible for the poor scalability of PCMCI. Thus its removal
significantly improves the computational efficiency of the resulting algorithm without
compromising accuracy (cf. Discussions for a potential explanation of why conditioning on all

other nodes may improve accuracy despite lowering statistical power).

Our second modification addresses the lack of directed contemporaneous causal effects (see
Introduction for why these effects are particularly important in fMRI). By default, MVGC returns

no contemporaneous edges and PCMCI returns o—o ones which only indicate the presence of

8-
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significant partial correlations but does not resolve between —, <—, or . However, we know from
decades of tract tracing studies that reciprocal connections are significantly more common than
unidirectional connections in the primate brain (Felleman & Van Essen, 1991; Markov et al.,
2014; Tigges, Spatz, & Tigges, 1973). Therefore, we replace all o—o edges returned by PCMCI
by the more likely choice of . The only exception comes from (the often minority of) pairs of
nodes that have a lagged directed edge between them (i.e., an edge of the form

Xi(t — 1) = X;(t) for 7 > 0, see Methods), in which case we leave the direction of the

contemporaneous effect between them the same as their lagged effect.

Figure 3 shows how the resulting CaL.LTiF algorithm performs on a synthetic fMRI dataset
generated from the significantly larger macaque structural connectome called Macaque_Full with
91 nodes and 1,615 ground-truth edges (Figure 3a, see also Methods). CaLLTiF has a
significantly higher F1 score compared to PCMCI, VARLINGAM, DYNOTEARS, and MVGC in
its discovery of the directed graph (Figure 3b, all Cohen’s d > 15, p < 107°, one-sided Wilcoxon
signed-rank test) as well as its underlying undirected graph (Figure 3c, all Cohen’s d > 7,

p < 107°, one-sided Wilcoxon signed-rank test). Precisions and recalls are also shown in
Supplementary Figures 26 and 27. We also compared CaLLTiF (and PCMCI) against a
middle-ground ‘Mixed-PCMCI’ variant where the o—o edges returned by PCMCI are used only
in the computation of adjacency F1 score (Supplementary Figures 28-30, see also Methods).
Mixed-PCMCI benefits from contemporaneous effects as much as CaLLTiF in terms of adjacency
F1 score, but not so in terms of full F1 score, further motivating the inclusion of directed
contemporaneous connections as done in CaLLTiF. Detailed performances of all compared

algorithms are provided in Supplementary Figures 29-36.

Finally, the third aspect in which CaLLTiF departs from PCMCI is the choice of
sparsity-controlling hyperparameter ‘Alpha Level’. Most, if not all, algorithms for causal
discovery have at least one hyperparameter (often a threshold) that controls the sparsity of the
resulting graphs. Different from PC Alpha described earlier, Alpha Level in PCMCI is the
standard type-I error bound in determining statistical significance in each partial correlation test
(cf. Supplementary Figure 16). By default, Alpha Level is selected subjectively, based on domain

knowledge and expected level of sparsity. However, in CaLLTiF, we select Alpha Level

—9_
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Figure 3: Comparisons between the proposed algorithm (CaLLTiF) and state-of-the-art alternatives over simulated fMRI from the
Macaque_Full connectome. (a) ground-truth Macaque_Full network (See Supplementary Figure 25 for the heat map of the directed connec-
tivity matrix). (b,c) Distributions of F1 scores for CaLLTiF and state-of-the-art alternatives in discovering the directed graph (b) and its underlying
undirected graph (c). For all repetitions, the best performance of MVGC occurs at « = 0.5 which returns a complete graph, hence the point
distributions for MVGC. *** denotes p < 0.001. All statistical comparisons are performed using a one-sided Wilcoxon signed-rank test. In all
boxplots, the center line represents the median, the box spans the interquartile range (IQR), and the whiskers extend up to 1.5 times the IQR from

the box limits.
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objectively based on a novel method for correction for multiple comparisons (see Methods) that
occur when collapsing a time-series graph over lagged variables into a final summary graph. This
step is critical, particularly in the absence of ground-truth connectivity, to ensure that we have

statistical confidence in every edge of the final summary graph returned by CaLLLTiF.

In summary, CaLLTiF starts by constructing an extended time-lagged graph among all the
variables X;(t — 7),i=1,...,nand all lags 7 = 0, 1, ..., Tyuax. To establish a causal link
between any pair of variables X;(¢ — 7) and X (), CaLLTiF performs a conditional
independence test (using linear partial correlation) between X (¢ — 7) and X (¢), conditioned on
all other lagged variables (X;.(t — s),s = 1,..., Tmax). A causal link is established if the null
hypothesis of conditional independence is rejected at a significance threshold ‘Alpha Level’. By
default, ‘Alpha Level’ is selected based on CaLLTiF’s type I error control, but it can also be
optimized in simulated data using ground-truth knowledge. If 7 > 0, the direction of the edge is
clearly X;(t — 7) — Xj(t). When 7 = 0, CaLLTiF returns X;(¢)5.X;(¢) if no other edges exist
between X; and X at higher lags, and places the edge(s) consistent with the corresponding
lagged direction(s) otherwise. Finally, the extended time-lagged graph is collapsed into a
summary graph by taking an OR operation for each edge across all lags. For further details about
CalLTiF, see Methods. A pseudocode for CaLLTiF is given in Algorithm 1 and a formal analysis

of its computational complexity can be found in Supplementary Note 4.

Causal Discovery from Resting-State Human fMRI

We next applied CaLLTiF on resting-state fMRI from 200 subjects from the Human Connectome
Project (HCP) (See Methods). Each scan from each subject was parcellated into 100 cortical and
16 subcortical regions. CaLLTiF was then performed on all four resting-state scans for each

subject, resulting in one causal graph per individual.

Learned causal graphs are highly consistent across subjects. Despite individual differences,
a remarkably common causal connectome emerged across subjects. Figure 4a shows the average
causal graph among the subjects and Figure 4b shows the intersection graph that contained the
edges common across all subjects. Due to the binary nature of individual graphs, the former can

also be viewed as a matrix of probabilities, where entry (7, j) shows the probability of region i
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causing region j across all subjects. As a result of the significant commonalities that exist in the
causal graphs among subjects, the average graph has a bimodal distribution, with the vast
majority of average weights being close to either O or 1. These extreme values of average weights
can also be seen as a measure of the confidence of the algorithm in the presence or lack of most
edges, and have a clear contrast (p = 0, Kolmogorov-Smirnov test) with the weights of the
average of randomized surrogate graphs generated independently across subjects (Supplementary
Figure 44). In the absence of a ground truth causal connectivity for direct comparison, such
strong commonalities among subjects serve as an alternative measure of validation and provide

insights into the general patterns and characteristics of the causal relationships in a resting brain.

Nodal centralities also show strong consistency among the subjects. Figure 4c shows the nodal
degrees for all subjects (gray lines) as well as its mean across subjects (black line, also depicted in
Figure 4d). Statistically significant differences exist between the degree distributions of many
pairs of nodes (about 90% of the pairs have p < 0.001, two-sided Wilcoxon signed-rank test,
computed between nodal degrees of each pair of parcels), while significant correlations exist
between nodal degrees for all pairs of subjects (all pairs have 0.56 < r < 0.96, p < 1071,
Pearson Correlation Coefficient, computed based on the nodal degrees of each pair of subjects
separately). Note that the correlations of degrees across subjects are also remarkably higher than
what would be implied by the correlations of the graphs themselves (Supplementary Figure 43e).
Similar consistency for in-degree, out-degree, betweenness, and eigenvector centralities can be
observed among subjects (Supplementary Figures 45-48). Consistently across subjects, medial
ventral attention regions, cingulate cortices, and lateral primary sensorimotor areas show
particularly low nodal degrees across both hemispheres, whereas bilateral default mode areas,
particularly the left ventromedial prefrontal cortex, show notably strong nodal degrees. Bilateral
anterior thalami are particularly causally connected compared to other subcortical regions, even
though subcortical areas have significantly lower degrees than cortical areas in general, with
bilateral posterior thalami, nuclei accumbens, and globus pallidi showing the least causal

connections across the whole brain at rest.

Causal graphs are also sparser and more consistent across subjects compared to functional

connectivity. A major motivation for building causal connectomes is the removal of spurious
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Figure 4: Learned causal graphs are highly consistent across subjects. (a) Average causal graph, computed as the mean of all the causal graphs
of 200 subjects. The color of the (¢, j) entry in this matrix shows how likely it is for node ¢ to cause node j. A clear distinction can be seen
in the causal links among cortical regions (colored labels) and subcortical ones (black labels). (b) The shared causal graph, containing only the
edges that are present in all 200 subjects. This graph is dominated by diagonal elements (self- and within-subnetwork causation) and links among
symmetrically located regions across the two hemispheres. (¢) Distribution of nodal degree, computed separately for each node in the causal graph
and each subject. Gray colors correspond to different subjects and the black line shows the average nodal degrees across subjects. (d) Average

cortical nodal degree (black line in (c)) shown over the brain cortical surface.
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connections in functional connectivity (FC) profiles that reflect mere correlation but no causation.
For causal graphs learned by CaLLTiF, we indeed observed significantly lower edge density
compared to FC graphs (see Methods for details on the computation of FC graphs)
(Supplementary Figures 43a,43b, no overlap existing between the support of the two
distributions). In fact, FC graphs included approximately 95% of CaLLTiF’s discovered causal
edges (Supplementary Figure 43c), while only about half of all functional connectivity edges are
also causal (Supplementary Figure 43d). Interestingly, among the approximately 5% of causal
edges that were not in the FC graphs, the majority came from non-zero lags. This is remarkable,
given that causal edges from non-zero lags are significantly fewer in general (cf. Figure 6a), but
are fundamentally not discoverable by FC which only measures contemporaneous co-fluctuations.
Moreover, causal connectomes are significantly more consistent across subjects compared to FC
connectomes (Supplementary Figure 43e, Cohen’d > 2, p < 0.001, one-sided Wilcoxon
signed-rank test), further reinforcing the expectation that causal edges are “pruned” and more

reliable compared to functional edges.

Net resting-state causal effect flows from attention and default mode to sensorimotor
networks. One of the main advantages of directed causal connectomes over undirected functional
and structural connectomes is the former’s ability to show the directed flow of causal effect
between brain regions. In graphs learned by CaLLTiF, nodal causal flows (outflow minus inflow,
see Methods) are also highly consistent across subjects (Figure 5c,5d), even though the two
notions of centrality are generally dissociated across parcels (Figure 5b and Supplementary
Figure 53). On average across all subjects, we observed particularly high causal flows
(source-ness) in several regions of bilateral medial ventral attention networks, specific dorsal
attention areas (ventral precentral, ventral frontal cortices, and frontal eye fields), and bilateral
hippocampi, even though subcortical areas are much less connected to the rest of the network in
general. In contrast, bilateral visual areas show the strongest negative causal flow (sink-ness)
across all subjects. There is also notable variability among parcels within a subnetwork, such as
the notable bilateral contrast between the strongly positive and weakly negative causal flows of

frontal and posterior parts of the dorsal attention network, respectively.

14—


https://doi.org/10.1101/2023.08.12.553067
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.12.553067; this version posted November 28, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

286

287

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

available under aCC-BY-NC 4.0 International license.

To better assess the overall net causal effects between different functional networks, we
computed an average “subnetwork graph” in which each node represents a functional cortical
network and edges denote thresholded average directed connectivity from one functional network
to another (see Methods for detailed computations). The result is illustrated in Figure 5a. Ventral
attention and visual networks are clearly the strongest source and sink of causal flow, respectively.
The dorsal attention and somatomotor networks are also a clear (though weaker) source and sink,
respectively. The default mode network (DMN) is also a net source of causal flow, even though its
outflows and inflows are nearly balanced. Similarly, the control and limbic networks have
near-zero causal flows (near-balanced inflow and outflow). Several directed paths, however, can
be seen from both attention and default mode networks to sensorimotor networks through the
limbic and control networks. Therefore, in summary, causal graphs learned by CaLLTiF show the
strongest net resting state causal effect to flow from the ventral and dorsal attention as well as the
default mode networks, through control and limbic networks, towards sensorimotor networks.
The DMN, control, and limbic networks have large average degrees (Supplementary Figure 52)
and near-balanced causal flows, making them hubs that largely distribute the flow of causal effect
in the resting-state causal connectome (see the Discussion section for a more detailed analysis of

this network).

Casual graphs are strongly dominated by contemporaneous and lag-1 connections. Given
that the final causal graph returned by CaLLTiF is a union over subgraphs at different lags (cf.
Methods), we can go back and ask how much causal effects in each lag have contributed to the
final graph. Figure 6a shows the percentage of edges in the final graph that exist only in one lag
(including lag 0, or contemporaneous edges). Increasing the lag order resulted in significantly
sparser single-lag subgraphs, which contributed less to the end result. In particular, approximately
70% of the end graphs came from lag O alone, a pattern that appears consistently across all
subjects (Supplementary Figure 57). Even further, such contemporaneous edges are substantially
stronger than edges from lags 1-3 (Figure 6b). This further confirms that the contemporaneous
effects are particularly important for fMRI, where most neural dynamics occur at timescales
shorter than 1 TR (typically shorter than 1-2 seconds). This is even the case in HCP data, with TR

= (.72s which is among the shortest TRs currently available in fMRI research. That being said, all
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Figure 5: Patterns of causal flow across subjects. (a) The average subnetwork graph, computed as the mean of subnetwork graphs of all the
subjects. In the subnetwork graph of each subject, the weight of an edge from subnetwork ¢ to j is the number of nodes in subnetwork ¢ that
connect to nodes in subnetwork 7, normalized by the number of all possible edges between these subnetworks. Edges with weights less than 0.5
are removed for better visualizations. To further ease the visual inspection of causal flows, if two networks are bidirectionally coupled we have
shown the stronger edge with a thicker line (see Supplementary Figures 51, 52 for the weight matrix before thresholding and the corresponding
nodal degrees and causal flows.) (b) The joint distributions of causal flow and degree for each “node” of the subnetwork graphs across all subjects.
(c) Distribution of nodal causal flow, computed separately for each node in the causal graph and each subject. Gray colors correspond to different
subjects and the black line shows the average nodal degrees across subjects. (d) Average cortical nodal causal flows (black line in (c)) shown over

the brain cortical surface.
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Figure 6: The contributions of each lag to the final causal graph in CaLLTiF. (a) For each lag, the box plot shows the distribution of the
percentage of edges that come only from that lag across subjects. In all boxplots, the center line represents the median, the box spans the interquartile
range (IQR), the whiskers extend up to 1.5 times the IQR from the box limits, and individual points beyond the whiskers indicate outliers.(b) The
strength (statistical significance) of edges across lags. For each edge within the subgraph of each lag, we define its strength as the p-value of the
partial correlation test that was used to conclude the presence of that edge (see Methods) even though all edges have a statistically significant p-value
by definition, edges in larger lags are significantly closer to the threshold for significance than those in smaller lags. *** = p < 0.001, one-sided

‘Wilcoxon rank-sum test.

lags had a non-zero (and significant by construction) contribution to the end graph in all subjects.
Even lag 3 had a median of approximately 0.2% unique contributions to the final graph across
subjects. We also found very small intersections among lags. This not only highlights the
importance of considering multiple lags rather than just the first one or two but also demonstrates
that it is incorrect to assume that if one region causes another, that causation will appear
continuously across all lags. In summary, we found contemporaneous effects dominant in the
final causal graphs of CalLLTiF, even though all lags had significantly non-zero and mostly unique

contributions.

Causal connections are modulated by pairwise Euclidean distance. As one would expect
from a network learned over a set of nodes embedded in physical space, the causal graphs learned
by CaLLTiF are modulated in a number of ways by the Euclidean distance between pairs of
nodes. First, we found degree similarity (correlation coefficient between nodal degrees of two
parcels over all subjects) to decay statistically significantly, though weakly in effect size, with

parcel distance (Pearson r = —0.12, p = 10743, 95% confidence interval (—0.14, —0.1)) as

-17-


https://doi.org/10.1101/2023.08.12.553067
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.12.553067; this version posted November 28, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

329

330

331

332

333

334

335

336

337

available under aCC-BY-NC 4.0 International license.

101 - ispheri 30 r
. - Intra-Hemispheric - Intra-Hemispheric
Inter-Hemispheric g L Inter-Hemispheric
0.8 : 5 —251 " itserl —— Moving Average
2 z '
o o
D6 o —201
£ 2
wn
© 0.4 %—15—
g c
> g
o2 & -101
)
0.0 - : ke
ir=2012, p=10"% H-5

0 25 50 75 100 125 150 0 20 40 60 80 100 120 140 160
Parcel Distance (mm) Parcel Distance (mm)

(a) (b)

Figure 7: Effect of Euclidean distance on edge attributes. (a)Degree similarity (correlation coefficient between nodal degrees of two parcels
over all subjects) as a function of the Euclidean distance between the parcels. Parcel pairs in the same hemisphere (intra-hemispheric) and parcels
in two different hemispheres (inter-hemispheric) are shown in blue and red, respectively. Degree similarity decays statistically significantly with
parcel distance (Pearson r = —0.12, p = 1073, 95% confidence interval (—0.14, —0.1)), much more so among intra-hemispheric parcels
(Pearson r = —0.27, p = 1082, 95% confidence interval (—0.29, —0.24)) than inter-hemispheric ones (Pearson 7 = —0.09, p = 105, 95%
confidence interval (—0.13, —0.05)). (b) Edge strength (as in Figure 6b) as a function of Euclidean distance between edge endpoints (note the
inverted vertical axis). The solid line shows the corresponding moving average of log(p) with 10mm window size and 8mm window overlap. The

upper limit of the vertical axis is limited to —30 for better visualization.

shown in Figure 7a (See Supplementary Figures 54 and 55 for separate maps of degree
similarities and pairwise nodal distances). This relationship is stronger among intra-hemispheric
parcels (Pearson r = —0.27, p = 107%2, 95% confidence interval (—0.29, —0.24)) where
connections are denser and shorter-distance, compared to inter-hemispheric parcels (Pearson

r = —0.09,p = 107°, 95% confidence interval (—0.13, —0.05)). Thus, in summary, nodes that
are physically closer to each other also have more similar causal connections to the rest of the

network, particularly if they belong to the same hemisphere.

The strength of CaLLTiF edges is also modulated by the Euclidean distance between edge

endpoints, even though we observed that there are approximately as many long-distance edges as

—18-


https://doi.org/10.1101/2023.08.12.553067
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.12.553067; this version posted November 28, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

available under aCC-BY-NC 4.0 International license.

short ones (See Supplementary Figures 56). We define the strength of each edge in the final graph
(union over lags) as the minimum p-value of respective partial correlation tests across all lags (cf.
Methods). As seen from Figure 7b, the mean strength of causal edges (black solid line) initially
increases with the Euclidean length of the edge until about 20mm and then decays with Euclidean

edge length thereafter.

Finally, we found no major differences between the Euclidean distances of edges contributed
by different lags. Given that causal effects take time to spread along axonal fibers throughout the
brain, one might expect physically-closer pairs of nodes to be connected by lower-lag edges and
more distant pairs of nodes to be connected by larger-lag edges. However, as seen in
Supplementary Figure 58, this is not quite the case. Given the slow sampling of fMRI, even the
most distant regions can causally affect each other in time scales shorter than 1 TR. Thus, the
observation that the physical distance of pairs of nodes was not related to edge lag should not be
taken as an indication that such relationships would — or would not — be observed when sampling

with higher temporal precision.

Degree, but not casual flow, shows significant laterality and gender differences. We
observed that nodal degrees were statistically significantly higher in the right hemisphere
(Figure 8a, Cohen’s d = 0.07 and p = 10~*®, one-sided Wilcoxon signed-rank test), even though
no such laterality was found in nodal causal flows (Figure 8b, Cohen’s d = 0.02 and p = 0.23,
one-sided Wilcoxon signed-rank test). To understand which subnetworks might be playing a
stronger role in the hemispheric asymmetry observed in the distribution of nodal degrees,

Figure 8c shows the mean degrees of corresponding pairs of regions in the left and right
hemispheres, color-coded by functional subnetworks (cf. Supplementary Figures 49 for separate
plots per subnetwork). The ventral attention, dorsal attention, and executive control networks
show clearly larger causal degrees in the right hemisphere, whereas the limbic network and DMN
have larger causal degrees in the left hemisphere. A similar plot for causal flows (Figure 8d,
Supplementary Figure 50) shows a lot more symmetry, except for the limbic network which
shows exceptionally higher causal flows (i.e., source-ness) in the right compared to the left
hemispheres. The DMN also shows some asymmetry in its causal flow, where right DMN nodes

are mostly sources of causal flow whereas left DMN causal flows are more evenly distributed
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around zero. Thus, in summary, various functional subnetworks show laterality in degree
distributions, culminating in a net increase in right vs. left nodal degrees. Causal flows, however,
are mostly symmetric, except for the limbic network which shows a strong flow from the right to

the left hemisphere.

Similarly, degree, but not casual flow, shows a small but statistically significant difference
between men and women. In causal connectomes learned by CaL.LTiF, we found nodal degrees to
be statistically significantly higher in women compared to men (Figure 8e, Cohen’s d > (.05,

p < 107°, one-sided Wilcoxon rank-sum test). Nodal causal flows, on the other hand, were
statistically indistinguishable between men and women (Figure 8f, Cohen’s d = —3.77 x 10718,
p = 0.81, one-sided Wilcoxon rank-sum test). These result demonstrate that nodal degrees in
causal connectomes are generally more heterogeneous and sensitive while causal flows tend to be
more homogeneous and stereotyped across individuals and hemispheres. Further research is
needed to pinpoint the root causes of these differences (and lacks thereof) as well as potential

implications of them in health and disease.

DISCUSSION

In this study, we investigated the problem of whole-brain causal discovery from fMRI. We first
comprehensively compared existing causal discovery techniques suitable for whole-brain fMRI by
examining both theoretical properties and numerical outcomes on simulated fMRI. To address the
limitations of existing algorithms, we proposed CaL.LTiF which improves upon the state of the art
in several directions including learning contemporaneous edges and cycles, type 1 error control,
and scalability. A core aspect of CaLLTiF is its treatment of contemporaneous effects. Our results
with the HCP data (Figures 6a and 6b) confirmed the importance of being able to reveal such
“contemporaneous” effects, where these effects accounted for the majority and strongest of
network edges. Further, the distributions of edges with different Euclidean distances at each lag
(Supplementary Figure 58) demonstrates how broadly neural signals can propagate across the

brain in one TR interval, even with the relatively fast sampling (TR = 0.72s) in the HCP dataset.

Furthermore, in interpreting CaLLLTiF’s outputs, it is important to note its by-design

conservative method of correction for temporal multiple comparisons. In the Macaque_Full
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Figure 8: Hemispheric laterality and gender differences in causal connectomes. (a) Distributions of nodal degree in the right and left hemi-
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indicate laterality. (d) Similar to (c) but for causal flows. (e) Distributions of nodal degrees in female and male subjects, combined across all brain

regions. (f) Similar to (e), but for causal flows.
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simulated dataset where the ground truth is known, we found Alpha Level = 0.01 to maximize the
F1 score, while CaLLTiF’s correction for temporal multiple comparisons would have suggested
0.01/32 = 0.0003 (cf. Equation (4)) and thus would have obtained sparser graphs. Similarly, we
obtained causal graphs from human fMRI that are about 30-55% dense across all subjects and
40-60% dense among cortical nodes (Supplementary Figure 43a). These are generally consistent
with, but sparser than, the near-66% cortical density found using tract-tracing results in
non-human primates (Markov et al., 2014). In other words, graphs returned by CaLLTiF are likely
to have higher precision but lower recall than what would maximize the F1 score. This
conservativeness is by design and desirable in the absence of a ground-truth causal graph,
ensuring that we have strong confidence in all discovered edges (at least 99% confidence in every
detected edge in our experiments with human fMRI). Nevertheless, CaLLTiF’s level of
conservativeness can also be tuned as needed by tuning its pre-correction significance threshold (q

in Equation (4)).

An unexpected finding of our study was the higher accuracy of causal discovery when
conditioning pairwise independence tests (see Equation (1)) on all other nodes in the network, as
done in CaLLTiF, compared to using a more restricted parent set found by PCMCI (cf.
Supplementary Figure 16). The approach taken by PCMCI increases statistical power (cf. the
trend of optimal ‘Alpha Level’ values in Supplementary Figure 16b), but can significantly
increase type I error in the presence of contemporaneous effects. Even further, we found that even
using the (lagged) ground-truth parent sets for each node leads to a lower F1 score compared to
using complete conditioning sets (Supplementary Figure 39-41). This is likely because
CaLLTiF’s conditioning on the past of all variables serves as a proxy for the missing
contemporaneous parents that should have been conditioned on. On the other hand, one may
wonder if this issue could have been better resolved by conditioning on contemporaneous
variables themselves. However, this can result in spurious statistical dependence if conditioning
on all contemporaneous variables (consider, e.g., testing X; )X X ;| X}, with the ground-truth

causal graph X; — X, < X;). For a detailed discussion on this see Supplementary Note 3.

Causal connectivity during resting state. When applying CaLLLTiF to resting state human

fMRI, we found the strongest causal effect to flow from attention to sensorimotor networks. The

22


https://doi.org/10.1101/2023.08.12.553067
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.12.553067; this version posted November 28, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

available under aCC-BY-NC 4.0 International license.

strongest sources and sinks were the ventral attention and visual networks, followed by dorsal
attention and somatomotor networks, respectively. Despite the lack of “ground-truth”
connectivity as in simulated data, we can still evaluate these findings based on their agreement
with prior findings on the roles of resting state networks. The dorsal attention network (involving
regions in the intraparietal and superior frontal cortex) is commonly believed to handle top-down
selection processes and is only modulated by stimulus detection, while the ventral attention
network (including areas such as the temporoparietal and inferior frontal cortex) specializes in
detecting behaviorally relevant stimuli, particularly those that are salient or unexpected, and
directing attention to them (Corbetta & Shulman, 2002). These networks exhibit internally
correlated activity patterns (particularly during the task) (Corbetta, Patel, & Shulman, 2008) and
their flexible interaction facilitates dynamic attentional control aligned with both top-down goals
and bottom-up sensory inputs (Vossel, Geng, & Fink, 2014). Nonetheless, the ventral attention
network is more strongly involved in the “reorientation” of attention, namely, interrupting one
thought process and orienting attention towards something salient, while the dorsal attention
network is more strongly implicated in focused and guided attentional tasks such as visual search

under high short-term memory load (Vossel et al., 2014).

Arguably, resting state activity is more aligned with the former (salience-based reorientation)
than the latter (goal-driven focused attention). Despite a lack of sensory salience, attention is
frequently reoriented during periods of rest by endogenously-salient thoughts and memories.
Intermittent periods of focused attention can also arise, particularly given the long durations of
each resting-state scan (~ 15min). Our findings thus confirm and corroborate the existing
hypotheses about the roles of attention networks and how they jointly but unevenly drive brain
dynamics during rest. Furthermore, due to the lack of meaningful sensory (particularly visual)
input during a resting state scan, sensory areas receive more top-down influence from
higher-order cortices than they provide bottom-up information to them. As such, the sink-ness of
sensorimotor areas in graphs learned by CalLLTiF is arguably more consistent with the nature of
resting state activity compared to a contrasting, sensory-driven flow found, e.g., in (Rawls et al.,

2022). Finally, we found the DMN to be both a hub and a weak source of causal flow, which is
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consistent with its well-known role in resting state dynamics (Andrews-Hanna, Smallwood, &

Spreng, 2014; Greicius, Krasnow, Reiss, & Menon, 2003; Raichle et al., 2001).

Resting-state causal graphs learned by CaLLTiF are also notably aligned with the literature in
terms of the laterality of different functional subnetworks (Figure 8c and Supplementary
Figure 49). Several studies have found the ventral attention system to be predominantly
lateralized to the right hemisphere (Corbetta et al., 2008; Corbetta & Shulman, 2002; Mengotti,
Kisbauer, Fink, & Vossel, 2020; Vossel et al., 2014). Similarly, the degree distribution of ventral
attention nodes in graphs learned by CaLLTiF is strongly right-lateralized. We found the dorsal
attention network to also be right-lateralized, but not as strongly as the ventral network. Similarly,
The dorsal attention network is found by prior studies to be organized mostly bilaterally, except
for specific regions (Intraparietal sulcus and frontal eye field) in the right dorsal network that
show stronger involvement in the attentional control of both hemispheres compared to their left
counterparts (Mengotti et al., 2020). Also similar is alignment in the lateralization of the default
mode network, where both CaLLTiF and several past studies have found it to be left
lateralized (Agcaoglu, Miller, Mayer, Hugdahl, & Calhoun, 2015; Banks et al., 2018; Nielsen,
Zielinski, Ferguson, Lainhart, & Anderson, 2013; Swanson et al., 2011). Sensorimotor cortices,
on the other hand, were found to be highly symmetric and not particularly lateralized to either
hemisphere in causal graphs learned by CaLLTiF, a finding that is also consistent with the
generally symmetric involvement of primary sensory and motor areas in contralateral
processing (Agcaoglu et al., 2015). Finally, research on the laterality of the control and limbic
networks is ongoing and, to the best of our knowledge, inconclusive (see, e.g., (Morton, 2020)).
In graphs learned by CaLLTiF, however, we observe strong left lateralization of the limbic and
right lateralization of the control networks, respectively. Thus, in summary, we observe clear
laterality in all but sensorimotor cortical networks which either corroborate the existing literature

or clarify previously inconclusive observations.

Hyperparameter selection and sensitivity. CalL.LTiF has two hyperparameters, 7,,,x and
evel- Due to CaLLTiF’s type-I error control over lags (see Methods), these parameters are
interdependent, as described by Equation (4). This makes 7., the only effectively ‘free’

hyper-parameter, which can be systematically selected by analyzing how much each additional
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lag contributes to the final graph (as in Figure 6a). Furthermore, the end results of CaLLTiF are
remarkably robust to variations in 7,,,x. Supplementary Figure 59 illustrates the sensitivity of
CaLLTiF by comparing graphs generated from real HCP data with 7,,,.x = 1, 2, and 4 against
those with 7., = 3 analyzed in the main text. For comparison, we also show the percentage of
changes in resulting graphs if we fix the value of e (i.€., ignore Equation (4)) so that, e.g.,
increasing Ty,ax from 3 to 4 only adds lag-4 edges without affecting other lags. As we can see, at
Tmax = 2 and 4 (33% change in 7,,.,), the resulting graphs change less than 6% for fixed type I
error and less than 3% for fixed aveye. Similarly, when changing 7,,,.x to 1 (67% change in 7y,,x),

the resulting graphs change by less than 13% and 6% in the two conditions, respectively.

Limitations. The present study has a number of limitations. From a biological perspective,
synaptic causation happens at the level of neuronal activity, from which fMRI is a noisy readout.
This lack of access to the true underlying neural activity limits the accuracy of any causal
discovery method working with fMRI, and attempting to extract the underlying neural activity
from fMRI data is often futile (Supplementary Figure 42, also cf. (Nozari et al., 2023)). The low
temporal resolution of fMRI, even with the TR value of 720ms in the HCP data, also limits the
precision of causal discovery. As we saw from Supplementary Figure 58, edges of all lengths are
observed even at lag 0. This indicates the possibility that some of the edges discovered by
CaLLTiF may be polysynaptic paths but resemble a direct monosynaptic connection at low
temporal resolution. Finally, similar to most constraint-based methods, the causal graphs returned
by CaLLTiF are not tied to a generative dynamical model (as is the case with VARLINGAM,
DYNOTEARS, DCM, etc). If such generative models are needed, VAR models based on
CaLLTiF’s extended time-lagged graph constitute a natural choice, but further research is needed
to compare the dynamic predictive accuracy of such models against potential alternatives (L jung,

1999).

Conclusions. Overall, this study demonstrates the interplay between the theoretical challenges
of causal discovery and the practical limitations of fMRI, and the design of an algorithmic
solution that can bridge this gap. This work motivates several follow-up studies, including the
application of the proposed CaLLTiF method to task fMRI and comparing its outcomes against

structural connectivity.
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MATERIAL AND METHODS

Simulated fMRI Data

When comparing different causal discovery algorithms or different hyperparameters of the same
algorithm, we used several benchmarks of simulated fMRI data with known ground truth
connectivity from (Sanchez-Romero et al., 2019). In general, this dataset included two groups of
networks, one consisting of 9 simple small-scale synthetic graphs and one consisting of two
graphs extracted from the macaque connectome. From the latter group, we only used the smallest

(Macaque_SmallDegree) and the largest (Macaque_Full).

The details of generating BOLD signals from each graph are detailed in (Sanchez-Romero et
al., 2019). In brief, the same simulation procedure was used for simple and macaque-based
graphs, where the authors used the model proposed in (Smith et al., 2011) which is itself based on
the DCM architecture of (K. Friston et al., 2003). Underlying neural dynamics are simulated
using the linear differential equation dz/dt = 0 Az + C'u, where A denotes the ground-truth
connectivity. To simulate resting-state data, the « input was modeled using a Poisson process for
each of the regions (C' = I). The neuronal signals z were then passed through the
Balloon-Windkessel model (Buxton, Wong, & Frank, 1998; Smith et al., 2011) to obtain
simulated BOLD data.

Resting-State fMRI from the Human Connectome Project

For the real fMRI analysis, we used ICA-FIX resting-state data from the Human Connectome
Project S1200 release (Barch, 2017; Burgess et al., 2016; Essen et al., 2013). Resting-state fMRI
images were collected with the following parameters: TR = 720 ms, TE = 33.1 ms, flip angle = 52
deg, FOV =208x108 mm, matrix = 104x90, slice thickness = 2.0 mm, number of slices = 72 (2.0
mm isotropic), multi-factor band = 8, and echo spacing = 0.58 ms. Brains were normalized to
fslr32k via the MSM-AII registration and the global signal was removed. We removed subjects
from further analysis if any of their four resting state scans had excessively large head motion,
defined by having frames greater than 0.2 mm frame-wise displacement or a derivative root mean
square (DVARS) above 75. Also, subjects listed in (Elam, 2020) under “3T Functional
Preprocessing Error of all 3T RL fMRI runs in 25 Subjects” or “Subjects without Field Maps for
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s Structural scans” were removed. Among the remaining 700 subjects, the 200 with the smallest

s7 head motion (DVARS) were selected for analysis. For all subjects, we parcellated the brain into
s 100 cortical regions (Schaefer 100x7 atlas (Schaefer et al., 2018)) and 16 subcortical ones

s (Melbourne Scale I atlas (Tian, Margulies, Breakspear, & Zalesky, 2020)). The Human

s« Connectome Project experiments were carried out by the WU-Minn consortium and its adherence
s+ to ethical standards was approved by the by the Internal Review Board of the respective

s¢2 institutions. Explicit informed consent was acquired from all participants involved in the

ss study (Essen etal., 2013).

s Causal discovery methods

s One aim of causal inference is to construct a causal graph based on observational data. The

s« relationship between a probability distribution and its depiction as a graph plays a significant role
s 1in this process. Nevertheless, it is not always feasible to deduce a causal graph solely from

s Observational data. Further assumptions are therefore required. Here, we briefly summarize the
s main assumptions and principles underlying the list of causal discovery methods studied in this

sso work (cf. Table 1).

sss  PCMCI. PCMCI was proposed in (Runge et al., 2019) as a constraint-based causal discovery
s» method designed to work with time-series data. The algorithm is composed of two main steps. In
sss the first step, the algorithm selects relevant variables using a variant of the undirected graph

s« discovery part of the PC algorithm (Spirtes & Glymour, 1991). This step removes irrelevant

sss variables for conditioning and therefore increases statistical power. In the second step, the

sss algorithm uses the momentary conditional independence (MCI) test, which measures the

s> independence of two variables conditioned on the set of their parents identified in step 1. The

sss  MCI test helps to reduce the false positive rate, even when the data is highly correlated. PCMCI
ss» assumes that the data is stationary, has time-lagged dependencies, and has causal sufficiency.

s0 Even when the stationarity assumption is violated, PCMCI was shown to perform better than

s Lasso regression or the PC algorithm (Runge et al., 2019). However, PCMCI is considered not

2 suitable for highly predictable (almost deterministic) systems with little new information at each
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time step (Runge et al., 2019). The Python implementation of PCMCI is available in the

Tigramite package at https://github.com/jakobrunge/tigramite.

As noted earlier, PCMCI only returns o—o edges among contemporaneous variables. While this
allows PCMCI to relax the common DAG assumption and allow for cycles, it results in a mixed
summary graph, where multiple types of edges («—, —, and/or o—o) can exist between two nodes.
In contrast, we require all algorithms to output a directed graph. Therefore, when reporting F1
scores for PCMCI, we only include directed edges coming from lagged relationships and exclude
the contemporaneous o—o edges. The only exception is what we call ‘Mixed PCMCI’ (See
Supplementary Figures 28- 30), where the contemporaneous o—o edges are also included in the

computation of adjacency F1 scores.

PCMCI*. PCMCI™ is an extension of the PCMCI method which incorporates directed
contemporaneous links in addition to the lagged ones (Runge, 2020). The approach revolves
around two key concepts. First, it divides the undirected graph edge removal phase into separate
lagged and contemporaneous conditioning phases, thereby reducing the number of conditional
independence tests required. Second, it incorporates the idea of momentary conditional
independence (MCI) tests from PCMCI (Runge et al., 2019) specifically in the contemporaneous
conditioning phase. PCMCI™ also outputs a time-series graph with different types of
contemporaneous edges, including directed edges (— and <), unoriented edges (o—o), and
conflicting edges (x — x). Consistent with our requirement of a regular digraph at the end, we
disregarded the unoriented and conflicting edges and retained only the directed ones. Similar to
most other causal discovery algorithms, PCMCI" does not permit cycles in the contemporaneous
links, which could potentially account for its relatively underwhelming performance over fMRI
data. The Python implementation of PCMCI+ is also available in the Tigramite package

https://github.com/jakobrunge/tigramite.

VARLINGAM. VARLINGAM is a causal discovery method that combines non-Gaussian
instantaneous models with autoregressive models. This method, proposed in (Hyvirinen et al.,
2010), builds on the fact that in the absence of unobserved confounders, linear non-Gaussian
models can be identified without prior knowledge of the network structure. VARLINGAM is

capable of estimating both contemporaneous and lagged causal effects in models that belong to
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s the class of structural vector autoregressive (SVAR) models and provides ways to assess the

ses significance of the estimated causal relations. These models are a combination of structural

s« equation models (SEM) and vector autoregressive (VAR) models. In addition, VARLINGAM

sss emphasizes the importance of considering contemporaneous influences, as neglecting them can
s lead to misleading interpretations of causal effects. Nevertheless, VARLINGAM does not permit
7 cycles in the contemporaneous links either, which could potentially account for its relatively poor
ss performance over brain fMRI data with many feedback loops. The VARLINGAM method is

0 available from https://github.com/cdt15/1ingam and a tutorial can be found at

w0 https://lingam.readthedocs.io/en/latest/tutorial/var.html.

o DYNOTEARS. Dynamic NOTEARS (DYNOTEARS) method, proposed in (Pamfil et al.,

o2 2020), is a score-based method designed to discover causal relationships in dynamic data. It

s simultaneously estimates relationships between variables within a time slice and across different
s« time slices by minimizing a penalized loss function while ensuring that the resulting directed

es graph is acyclic (including acyclicity of contemporaneous connections). The goal is to identify

«s the best set of conditional dependencies that are consistent with the observed data. DYNOTEARS
«7 builds on the original NOTEARS method proposed in (Zheng, Aragam, Ravikumar, & Xing,

os 2018), which uses algebraic properties to characterize acyclicity in directed graphs for static data.
oo Python implementations are available from the CausalNex library

so (https://github.com/quantumblacklabs/causalnex) as well as

e https://github.com/ckassaad/causal discovery for time_series.

sz DGlearn. DGlearn is a score-based method for discovering causal relationships from

s Observational data. Importantly, it is one of few algorithms that can learn cyclic structures from
s1s cross-sectional data. The method, introduced in (Ghassami et al., 2020), is based on a novel

s characterization of equivalence for potentially cyclic linear Gaussian directed graphical models.
ss 1WO structures are considered equivalent if they can generate the same set of data distributions.

&7 DGlearn utilizes a greedy graph modification algorithm to return a graph within the equivalence
s Class of the original data-generating structure. The Python implementation of DGlearn is

s19 available at https://github.com/syanga/dglearn.
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FASK. The Fast Adjacency Skewness (FASK) method, proposed in (Sanchez-Romero et al.,
2019), is a hybrid method for causal discovery from cross-sectional data, combining
constraint-based and noise-based elements. It leverages (and needs) non-Gaussianity in the data
and allows for cycles. This algorithm is composed of two main steps. The first step, called
FAS-Stable, outputs an undirected graph G by iteratively performing conditional independence
tests under the increasing size of the conditioning set and using the Bayesian information criterion
(BIC) to compare the conditioning sets. In the second step, assuming i.i.d. non-Gaussian data,
each of the X — Y adjacencies in Gy are oriented as a 2-cycle (%55) if the difference between
corr(X,Y) and corr(X,Y|X > 0), and corr(X,Y) and corr(X,Y|Y > 0), are both
significantly nonzero, and as a unidirectional edge otherwise. The pseudo-code for FASK can be
found in Supporting Information A of (Sanchez-Romero et al., 2019) and Java source code for it

is available at http://github.com/cmu-phil/tetrad.

MVGC. In (Granger, 1969), Granger introduced a statistical version of Hume’s regularity
theory, stating that X, Granger-causes X, if past values of X, provide unique, statistically
significant information about future values of X, (Assaad et al., 2022). While this allows for
optimal forecasting of an effect and has been extended to multivariate systems (Barnett & Seth,
2014), MVGC cannot account for contemporaneous effects and the presence of unobserved
confounders can result in spurious edges. Python implementation of MVGC is available at

https://github.com/ckassaad/causal_discovery_for time_series.

NTS-NOTEARS. NTS-NOTEARS is a nonlinear causal discovery method designed for
time-series data (Sun, Liu, Poupart, & Schulte, 2021). It employs 1-D convolutional neural
networks to capture various types of relationships, including linear, nonlinear, lagged, and
contemporaneous connections among variables. The method ensures that the resulting causal
structure forms a directed acyclic graph. It builds upon the NOTEARS approach (Zheng et al.,
2018), and is similarly based on continuous optimization. Similar to other algorithms above, it
assumes the presence of no hidden confounding factors and stationarity of the data-generating
process. In our analysis, we compare NTS-NOTEARS as a state-of-the-art nonlinear method

against the aforementioned linear algorithms in synthetic fMRI (cf. Supplementary Figure 38). A
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«s Python implementation of NTS-NOTEARS is available at

so https://github.com/xiangyu-sun—-789/NTS-NOTEARS

o CaLLTiF (proposed method). The proposed CaLLTiF method builds upon PCMCI (Runge et
st al., 2019) but, instead of using a PC-type approach in the first step to estimate the set of parents

2 for lagged variables, it starts from a complete conditioning set including all lagged variables. This
s choice dramatically decreases computational cost, but surprisingly, it is also optimal, as shown in
s« Supplementary Figure 16, because as mentioned in the discussion section, the approach of

s PCMCI discards contemporaneous effects. Using a complete conditioning set, CaLLTiF then

s performs Momentary Conditional Independence (MCI) partial correlation tests between all pairs
e of variables. Specifically, for any pair X;(t — 7), X;(¢) with ¢, 57 € 1,..., N and time delays

se T €0,1,..., Thax, a causal link is established (X;(t — 7) — X;(t) if 7 > 0 and X;(¢)o—0X;(¢) if

659 T — O), if and 0nly if:

Cond. Ind. Test : X;(t —7) L X;(t) |[{Xk(t —s):k=1,....,N,s=1,..., Tmax} \{Xi(t —7)}.
(1

e  INote that, despite being complete, the conditioning sets only include variables from prior time
e lags. As noted earlier, to test a conditional independence of the form X /. Y'|Z, we compute the
2 partial correlation coefficient p(X,Y'|Z) between X and Y conditioned on the set of variables in
s~ and the corresponding p-value for the null hypothesis that p(X,Y|Z) = 0. An edge is placed
s between X (t) and X, (¢ — 7) if this p-value is less than the hyperparameter ‘Alpha Level’. The
ess value of this threshold was selected optimally in simulated fMRI and using temporal correction
s for multiple comparisons (see below) in real data. Finally, for contemporaneous pairs (7 = 0),

7 each o—o edge is replaced with & if there are no other edges between those two variables at other
es lags, and is replaced with a directed edge or a & based on the lagged direction(s) otherwise. For a
s more detailed summary of the partial correlation-based edge discovery in CaLLTiF, see

eo Supplementary Note 2. A pseudocode of CaLLTiF is shown in Algorithm 1.
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Algorithm 1 Causal discovery for Large-scale Low-resolution Time-series with Feedback

(CaLLTiF)

Input: X;(t)fori=1,... Nandt=1,...,T

Output: Summary causal graph

Hyperparameters: 7,,.,: Maximum Time Lag, a..;: Per-lag threshold for statistical significance

1:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

Initialize the extended causal graph with nodes {X;(t —7) | i =1,...,N,7 = 0,..., Toax }

and no edges

. Initialize the summary causal graph with nodes {X; | i = 1,..., N} and no edges

Build a complete conditioning set: Scong <~ {Xk(t — ) | k=1,...,N, s=1,..., Tmax}
foric {1,...,N} do
forje{1,...,N}do
for 7 € {0,1,..., T} do
Run Conditional Independence Test: X;(t — 7) L X;(t) | Seona \ {Xi(t — 7)}
if p-value < qjeye; then
if 7 > 0 then
Add edge X;(t — 7) — X;(¢) to the extended causal graph
else
Add edge X;(t) o—oX;(t) to the extended causal graph
end if
end if
end for
if At least one lagged edge exists from X; to X; then
Place a directed edge X; — X in the summary causal graph
else if The contemporanous edge X;(t) o—o.X,(¢) exists then
Place a two-cycle X; 5 X in the summary causal graph
end if
end for

end for
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Finally, it is imperative to acknowledge the possibility that some of the directed edges detected
by our methodology do not possess a strictly causal connotation. As previously indicated, the
orientation method relies on the widely accepted premise that bidirectional connections hold
notably greater prevalence than unidirectional links. Thus, we believe that the presented approach
shall yield a proximate representation of the true causal graph, concurrently accommodating

cyclic structures and circumventing computational barriers.

Construction of summary causal graphs from causal graphs over lagged variables

Causal discovery algorithms designed for time series data often return a causal graph among the

lagged variables

X1t = Toan)s - -+ Xa(t — 1), X1 (8)

Xz(t—TmaX),...,XQ(t— 1),X2(t> (2)

Xt = Tona)s - 3 Xt — 1), X,u(8)

For algorithms other than CaLLTiF, from this we extract a final summary graph among the
variables X1, ..., X,, by placing an edge from X; to X if there exists any 7 > 0 for which there
is an edge from X, (¢ — 7) to X;(¢). This is equivalent to an OR operation among binary edges (as
opposed, e.g., to a majority vote) and must be taken into account when interpreting the obtained
summary graphs. The process is similar in CaLLTiF except that the direction(s) of
contemporaneous o—o edges are first resolved using lagged edges before executing the OR across

lags (cf. Algorithm 1).

Correction for multiple comparisons across lags in CaLLTiF

As noted above, CaLLTiF places an edge from X to X in its summary graph if there exists at
least one 7 > 0 for which there is an edge from X;(¢ — 7) to X (¢). Therefore, the decision to
place an edge from X; to X; depends on the outcomes of 7y, + 1 statistical tests, and to maintain
a desired bound on the probability of type I error for each edge in the summary graph, we need to

account for multiple comparisons across lags.
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e Formally, for each edge X; — X in the final graph, the null hypothesis (i.e., lack of a direct

ss causal effect from X; to X;) can be formulated as

Tmax

Hy = HooNHo1N---NHorp = ﬂ Ho,r,

Hor = {Xi(t —7) # X;(8)}-

s Let p, denote the p-value of the partial correlation test between X;(t — 7) and X;(¢) and yeyel
ess denote the significance threshold for each partial correlation test. Then, the probability of type I

7 EITOr 1S

Tmax Tmax

P(Type I Error) = P ( U {pr < ever} ‘ ﬂ H070>
=0 o=0

s Note that this is different from the family-wise error rate (FWER, bounded by the Bonferroni
es method and its extensions) or the false discovery rate (FDR). In particular, this is different from
no FWER in that only one decision is made and the probability of error is computed for that single
= decision only. So, for instance, if in reality any subset (even one) of { H; , } is false and the

» algorithm rejects any subset (even all) of { Hy , }, there is no type I error, as an edge exists from

ns X; to X both in the data-generating process and in the final summary graph.

n«  The type I error can then be bounded as

Tmax Tmax Tmax Tmax

P(Type I Error) = ( U {pr < Qever } ‘ ﬂ Hy o‘) = Z ({pT < Qlevel } ’ m Hy o‘)

Tmax P({pT < alevel} N mﬂmx HO U) Tmax P({pT < alevel} N Ho T)

- Z P(N2=s Hoy) = ZO P55 How)

Tmax HO 7' P<{p7— < a]evel} N H()ﬂ.) Tmax HO T
N Z Tm‘”‘ = (evel Z dex
" Ho,) P(Hy,,) )

3)
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The last expression has no dependence on the data and depends only on the prior distribution

we consider on graphs. Assuming a uniform prior, P(H, ;) = 1/2. Further,

Tmax

P( ﬂ H070'> = P<H070|H071 m e m HO,Tmax) e P(HO,Tmax_llHomiax) ' P(‘HO,’T’max)
o=0

We assume a prior where knowledge of the lack of an edge from X; to X; at one lag either
increases the probability of lack of an edge between them at other lags or, at least, does not

decrease it (independence across lags). Then,

Tmax 1

Tmax+1
P( ﬂ HO"’) Z P(Hoyo) e P(HO,Tmax_l) ’ P(HO,Tmax> = <§>
o=0

Putting everything together, we get

(Tmax +1)/2

P(Type 1 Error) < cveyel (1/2) 7 t1

- CVlevel(ﬂnax + 1)2ﬂnax-

Note, for analogy, that the correction factor (7,ax + 1)27* takes place of the factor (7y,ax + 1) in
a corresponding Bonferroni correction. To have P(Type I Error) less than a prescribed threshold

o, we choose

«
T + 1) 2700

“)

Olevel = (

In our experiments with the HCP data, we have 7,,,,x = 3 and o = 0.01, giving a per-lag
significance threshold of ayeye; >~ 0.0003. This is notably smaller than the Alpha Level values that
maximized F1 scores in simulated Macaque_Full data (0.1 for adjacency F1 score and 0.01 for F1

score), and is due to the conservative nature of this correction for temporal multiple comparisons.

Computing Functional Graphs

In order to calculate the functional graphs for each subject, we consolidated the data from the four
sessions of each subject in the HCP and computed the pairwise correlations among all pairs of
parcels. To form a binary functional graph, we placed an edge between any two parcels
displaying a statistically significant correlation coefficient (p < 0.01, t-test for Pearson correlation

coefficient).

Hyperparameter Selection
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All the methods we described in Table 1 have at least one main hyperparameter that significantly
affects the end result, particularly in terms of edge density. These include ‘PC Alpha’ and ‘Alpha
Level’ for PCMCI, ‘PC Alpha’ for PCMCI*, ‘Alpha’ for VARLINGAM, DYNOTEARS, and
MVGC, and FASK, and 'BIC Coefficient’ for DGlearn. These hyperparameters were swept over
(simultaneously for PCMCI) using the simulated data and selected such that the F1 score with the
ground truth graph is maximized in each case. This process was repeated for all algorithms and
all experiments (simple graphs, Macaque_SmallDegree, Macaque_Full). Performance metrics
such as Recall, Precision, and F1 scores of each method for a range of their hyperparameters are
shown in Supplementary Figures 6-12 for the simulated Simple Network graphs, in
Supplementary Figures 20-24 for the simulated Macaque_SmallDegree data, and in

Supplementary Figures 31-38 for the simulated Macaque_Full data.

Time-series algorithms (PCMCI, PCMCI", VARLINGAM, DYNOTEARS) also have a
hyperparameter controlling the number of lags used for causal discovery. Based on our prior
work (Nozari et al., 2023), we set this value to 3 for the HCP data (TR = 0.72s), and confirmed its
sufficiency based on the contributions of higher-order lags (Figure 6a). For the simulated data,

(TR = 1.25s), we used a maximum lag of 2 to match its slower sampling.

Computing F1 Scores, Degrees, and Causal Flows

In our experiments using simulated fMRI data, access to ground truth graphs allows for
evaluating the performance of causal discovery methods. In this work, we evaluate causal
discovery algorithms as binary classifiers deciding the presence or lack of n? edges among n
nodes. This allows us to evaluate algorithms using standard classification metrics such as
precision, recall, and F1 score (Davis & Goadrich, 2006; Fawcett, 2006; Powers, 2020; Sokolova
& Lapalme, 2009; Tharwat, 2020). Given that the F1 score provides a balanced trade-off between
precision and recall, we use it as our measure of accuracy. We define two separate metrics, (full)
F1 score and adjacency F1 score. For the former, each of the n? edges (including any self-loops
due to dampening autocorrelation for each node) in the graph is considered as one test sample for
classification. In the latter, the ground-truth and learned graphs are first transformed into an

undirected graph, placing an edge between two nodes if a directed edge existed in at least one
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direction. The resulting (’2‘) possible edges are then treated as test samples for classification and

computation of adjacency F1 score.

To determine the degree and causal flow of a node 7 in a binary directed graph, its in-degree
(number of edges pointing toward node ¢) and out-degree (number of edges originating from node
1) are first computed and normalized by the total number of nodes in the graph. The degree of
node ¢ is then computed as the sum of the out-degree and in-degree, while the causal flow is
obtained by subtracting the in-degree from the out-degree. The same process is followed for
weighted graphs except that the calculation of in-degree and out-degree involves a weighted

mean. Mathematically,

N N
‘ 1 1 . .
Causal Flow (Z)—N;G(Z j)—N;G(j,Z) , 1=1,2,...,N
1 1
Degree (z)—NjZIG(z ])+N;G(j,z) , i=1,2,..,N

where GG denotes the graph’s (binary or weighted) adjacency matrix.

Computing Subnetwork Graphs from Parcel-Level Graphs

Subnetwork graphs were computed by aggregating parcel-level binary graphs into graphs
between 16 subnetworks. These subnetworks consist of the standard 7 resting-state

subnetworks (Yeo et al., 2011) plus one subcortical subnetwork, separately for the left and right
hemispheres. A subnetwork-level graph is then computed for each subject, whereby the weight of
an edge from subnetwork 7 to j is the number of nodes in subnetwork ¢ that connect to nodes in
subnetwork 7, normalized by the number of all possible edges between these subnetworks. The

results are then averaged over the subject, as depicted in Supplementary Figure 51.

Computing

All the computations reported in this study were performed on a Lenovo P620 workstation with

AMD 3970X 32-Core processor, Nvidia GeForce RTX 2080 GPU, and 512GB of RAM.

SUPPORTING INFORMATION
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All the fMRI data used in this work is publicly available. The simulated fMRI benchmarks can be
downloaded from https://github.com/cabal-cmu/Feedback-Discovery and the
human fMRI data can be accessed via the HCP S1200 Release at
https://www.humanconnectome.org/study/hcp-young-adult/document/
1200-subjects—-data-release. The Python code for this study is publicly available at

https://github.com/nozarilab/2023Arab_CaLLTiF.
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TECHNICAL TERMS

Causal Discovery: The process of identifying causal relationships between variables from
observational data, namely, determining how changing the value of each variable causally

influences others.

Contemporaneous Causal Effect: A causal relationship occurring within the same

observation interval when the underlying causal processes are faster than the rate of sampling.

Causal Flow: The net difference between outgoing and incoming edges in a causal graph,

indicating whether a node is a source (positive causal flow) or a sink (negative causal flow).
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Partial Correlation: A statistical measure assessing the direct linear association between two

variables after regressing out the effects of a set of conditioned variables.

Conditional Independence Test: A statistical test that evaluates whether two variables are
independent after conditioning on the influence of one or more other variables. Partial correlation

is a common method for testing conditional independence in linear models.

Type I Error: In the context of binary decisions, the incorrect rejection of a true null

hypothesis, a.k.a. a false positive.

Correction for Multiple Comparisons: The process of adjusting statistical tests to reduce the

risk of Type I errors when multiple hypotheses are tested simultaneously.

F1 Score: A balanced performance metric for binary classification, combining precision and

recall into a single value that penalizes both false positives and false negatives.

Subnetwork-Level Graph: A low-dimensional graph in which nodes represent
functionally-clustered subnetworks of parcels and edges represent average connectivity between

parcels in two subnetworks.

Hemispheric Laterality: The asymmetry in the distribution of a variable between the two

brain hemispheres.
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