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ABSTRACT

Despite significant research, discovering causal relationships from fMRI remains a challenge.14

Popular methods such as Granger Causality and Dynamic Causal Modeling fall short in handling15

contemporaneous effects and latent common causes. Methods from causal structure learning16

literature can address these limitations but often scale poorly with network size and need17

acyclicity. In this study, we first provide a taxonomy of existing methods and compare their18

accuracy and efficiency on simulated fMRI from simple topologies. This analysis demonstrates a19

pressing need for more accurate and scalable methods, motivating the design of Causal discovery20
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for Large-scale Low-resolution Time-series with Feedback (CaLLTiF). CaLLTiF is a21

constraint-based method that uses conditional independence between contemporaneous and22

lagged variables to extract causal relationships. On simulated fMRI from the macaque23

connectome, CaLLTiF achieves significantly higher accuracy and scalability than all tested24

alternatives. From resting-state human fMRI, CaLLTiF learns causal connectomes that are highly25

consistent across individuals, show clear top-down flow of causal effect from attention and default26

mode to sensorimotor networks, exhibit Euclidean distance-dependence in causal interactions,27

and are highly dominated by contemporaneous effects. Overall, this work takes a major step in28

enhancing causal discovery from whole-brain fMRI and defines a new standard for future29

investigations.30

AUTHOR SUMMARY

Discovering causal relationships from fMRI data is challenging due to contemporaneous effects31

and latent causes. Popular methods like Granger Causality and Dynamic Causal Modeling32

struggle with these issues, especially in large networks. To address this, we introduce CaLLTiF, a33

scalable method that uses both lagged and contemporaneous variables to identify causal34

relationships. CaLLTiF outperforms various existing techniques in accuracy and scalability on35

simulated fMRI data. When applied to human resting-state fMRI, it reveals consistent and36

biologically-plausible patterns across individuals, with a clear top-down causal flow from37

attention and default mode networks to sensorimotor areas. Overall, this work advances the field38

of causal discovery in large-scale fMRI studies.39

INTRODUCTION

A major step in the global drive for understanding the brain (Adams et al., 2020; Amunts et al.,40

2016; Jorgenson et al., 2015; Okano, Miyawaki, & Kasai, 2015; Poo et al., 2016) is to move41

beyond correlations and understand the causal relationships among internal and external factors –42

a process often referred to as causal discovery (Assaad, Devijver, & Gaussier, 2022; Glymour,43

Zhang, & Spirtes, 2019). When possible, causal discovery can be greatly simplified by44
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intervening in one variable and observing the effect in others. However, such interventions are45

often costly and/or infeasible, necessitating the significantly more challenging task of causal46

discovery from purely observational data.47

A particularly rich set of observational data for the brain comes from functional MRI48

(fMRI) (Goense & Logothetis, 2008; Winder AT & PJ, 2017). The whole-brain coverage allowed49

by fMRI is valuable for causal discovery not only because it allows for purely data-driven and50

unbiased discovery of potentially unexpected causal relationships (Bressler & Menon, 2010;51

Bullmore & Sporns, 2012; Fornito & Bullmore, 2015), but also because of the great extent to52

which the presence of unobserved variables can complicate delineating causal adjacencies and53

orientations (Entner & Hoyer, 2010; Gerhardus & Runge, 2020; Hasan, Hossain, & Gani, 2023;54

Malinsky & Spirtes, 2018). Nevertheless, many characteristics of fMRI also make causal55

discovery challenging, including its large dimensionality, low temporal resolution, and indirect56

reflection of underlying neural processes (Ramsey et al., 2010).57

This has motivated a large and growing body of literature on causal discovery from fMRI. A58

common approach for causal discovery using neuroimaging and neurophysiology data is Granger59

Causality (GC) (Seth, Barrett, & Barnett, 2015). GC has a long history in neuroscience (Barnett60

& Seth, 2014; Seth et al., 2015), but also has well-known limitations, including its lack of ability61

to account for contemporaneous causal relationships and the presence of latent nodes (see62

Supplementary Note 1 for a formal definition of ‘contemporaneous’ causal effects). The former is63

particularly important for fMRI. The temporal resolution in fMRI is typically within a few64

hundred milliseconds to several seconds (Huettel, Song, & McCarthy, 2009), which is about one65

order of magnitude slower than the time that it takes for neural signals to travel across the brain66

(Nunez & Srinivasan, 2006; Sutton & Begleiter, 1979; Sutton, Braren, Zubin, & John, 1965).67

Therefore, from one fMRI sample to the next, there is enough time for causal effects to flow68

between almost all pairs of nodes in the network (cf. a related in-depth discussion in (Nozari,69

Pasqualetti, & Cortés, 2019, Appendix A)). Such fast sub-TR interactions demonstrate70

themselves as causal effects that appear to be “contemporaneous” and can even be cyclic, making71

causal discovery significantly more challenging (cf. Supplementary Note 1). Similar to GC,72

Dynamic Causal Modeling (DCM) has also been widely used with fMRI data (K. Friston,73
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Harrison, & Penny, 2003; K. Friston et al., 2019; K. J. Friston, Kahan, Biswal, & Razi, 2014;74

Stephan & Roebroeck, 2012) and fundamentally relies on the temporal order of a generative75

dynamical model to infer causation from correlations, making it similarly unable to account for76

contemporaneous causal relationships (K. Friston, Moran, & Seth, 2013; K. J. Friston, 2011;77

Logothetis, 2008).78

Discovering causal relationships without reliance on time has been the subject of extensive79

research in the causal inference literature (Glymour et al., 2019; Pearl, 1988, 2009a, 2009b;80

Spirtes, Glymour, & Scheines, 2000; Spirtes & Zhang, 2016). A wide range of algorithmic81

solutions have been proposed (Chickering, 2002a; Glymour et al., 2019; Henry & Gates, 2017;82

Meek, 1995, 1997; Pearl, 2009a; Ramsey et al., 2010; Shimizu, Hoyer, Hyvärinen, & Kerminen,83

2006; Smith et al., 2011; Spirtes & Glymour, 1991; Spirtes, Meek, & Richardson, 1995), which84

are often classified based on their methodology into constraint-based (Dawid, 1979; Pearl, 1988,85

2009b), noise-based (Shimizu, 2014; Shimizu et al., 2006), and score-based (Chickering, 2002b;86

Heckerman, Geiger, & Chickering, 1995). However, it has remained largely unknown which of87

these algorithms are best suited for whole-brain fMRI causal discovery and how they perform88

relative to one another in terms of accuracy and scalability.89

In this study, we first discuss and compare existing causal discovery algorithms for their90

suitability for whole-brain fMRI, demonstrate a large gap between what causal discovery for91

fMRI needs and what existing algorithms can achieve, propose CaLLTiF to address this gap, and92

demonstrate its higher accuracy and scalability on synthetic and real fMRI. Unless otherwise93

noted, all references to the words ‘graph’/‘network’ and ‘cycle’ mean a directed graph and94

directed cycle, respectively.95

RESULTS

A Taxonomy of Causal Discovery for Whole-Brain fMRI96

A vast array of algorithmic solutions exist for learning causal graphs from observational data, but97

not all are suitable for fMRI data. We selected a subset of state-of-the-art algorithms suitable for98

whole-brain fMRI data based on four criteria: (1) ability to learn cycles, (2) ability to learn99

contemporaneous effects, (3) assuming complete coverage of relevant variables in observed data,100
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Table 1: List of causal discovery methods suitable for use with whole-brain fMRI, divided by methodological category (constraint-, noise-, and

score-based). All these methods (1) allow for cycles, (2) allow for contemporaneous effects, (3) assume complete coverage of relevant variables

in observed data, and (4) learn linear relationships. The FASK algorithm is fundamentally hybrid and therefore listed as both constraint-based and

noise-based.

Type

Category Constraint-based Noise-based Score-based

Time-series

PCMCI (Runge, Nowack,

Kretschmer, Flaxman, &

Sejdinovic, 2019),

PCMCI+ (Runge, 2020)

VARLiNGAM (Hyvärinen,

Zhang, Shimizu, & Hoyer, 2010)

DYNOTEARS (Pamfil et al.,

2020)

Cross-sectional

with cycles

FASK (Sanchez-Romero et al.,

2019)

FASK (Sanchez-Romero et al.,

2019), LiNG (Lacerda, Spirtes,

Ramsey, & Hoyer, 2008)

DGlearn (Ghassami, Yang,

Kiyavash, & Zhang, 2020)

and (4) linearity (see Discussions). Table 1 shows several state-of-the-art methods that satisfy101

criteria (1)-(4). Multivariate Granger Causality (MVGC) (Barnett & Seth, 2014; Granger, 1969)102

does not satisfy criteria (2), but we still included it in our subsequent analyses due to its103

popularity in neuroscience (Ding, Chen, & Bressler, 2006; Goebel, Roebroeck, Kim, &104

Formisano, 2003; Liao et al., 2010; Roebroeck, Formisano, & Goebel, 2005). On the other hand,105

we excluded LiNG (Ramsey et al., 2018) from further analysis since it is considered by its106

proposers as generally inferior to the hybrid FASK algorithm (Sanchez-Romero et al., 2019). We107

also chose FASK for implementation over GANGO (Rawls, Kummerfeld, Mueller, Ma, &108

Zilverstand, 2022), a similarly hybrid method with the additional caveat of not having a unified109

publicly available code distribution.110

We compared the accuracy of the resulting list of algorithms (MVGC, PCMCI, PCMCI+,111

VARLiNGAM, DYNOTEARS, FASK, and DGlearn) using simulated fMRI data from a112

benchmark of simple (5-10 nodes) networks introduced in (Sanchez-Romero et al., 2019). The113

ground truth graphs are shown in Figure 1a, and details on the fMRI time series generation for114

each node in these graphs are provided under Methods. To evaluate the success of each algorithm,115

we treated the causal discovery problem as a binary classification problem for each directed edge116
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and calculated the resulting F1 score, both for the directed graphs as well as their underlying117

undirected graphs (see Methods for details). Figure 1b illustrates the distribution of F1 scores for118

all algorithms, combined across nine simple networks. The results show that the PCMCI119

algorithm achieved significantly higher median F1 score compared to all other algorithms over120

the directed graphs (all Cohen’s d > 0.23 and p < 10−4, pairwise one-sided Wilcoxon121

signed-rank test) and compared to all but DYNOTEARS over the underlying undirected graphs122

(Supplementary Figure 3, all Cohen’s d > 0.44 and p < 10−29, pairwise one-sided Wilcoxon123

signed-rank test. Also see Supplementary Figures 4 and 5 for precision and recall). The PCMCI124

algorithm also has the smallest computational complexity on simple networks, as seen from125

Figure 1c. Furthermore, our results indicate that FASK, DGlearn, and PCMCI+ (at their best126

values of hyperparameters) do not scale well with network size, forcing us to exclude them from127

further analysis as we move on to larger networks (see Supplementary Figures 13, 14, and 15).128

Next, we compared the remaining four algorithms (PCMCI, MVGC, DYNOTEARS, and129

VARLiNGAM) on a larger-scale, more realistic simulated benchmark. The graph shown in130

Figure 2a, referred to as the Macaque SmallDegree network, derived from the original131

Macaque Full anatomical connectome and pruned to achieve average in-degree and out-degree of132

1.8, consists of 28 nodes and 52 directed edges (Sanchez-Romero et al., 2019) but the generative133

model used to simulate fMRI data from this graph remains the same (see Methods for details).134

The distributions of F1 scores are shown in Figure 2b. PCMCI and MVGC achieved very similar135

success in learning both the directed graph and its underlying undirected graph, while136

significantly outperforming DYNOTEARS and VARLiNGAM. A similar result is obtained when137

comparing adjacency F1 scores for detecting the network’s underlying undirected graph138

(Supplementary Figure 17, also see Supplementary Figures 18 and 19 for precision and recall).139

As far as execution time is concerned, however, MVGC showed a significant advantage over140

PCMCI (Figure 2c). Therefore, despite its simplistic nature, MVGC was found most successful in141

causal discovery from Macaque SmallDegree fMRI data (but also see Figure 3).142

CaLLTiF: A New Causal Discovery Algorithm for Whole-Brain fMRI143
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Figure 1: Results of comparing several state-of-the-art causal discovery algorithms over a benchmark of simulated fMRI (Sanchez-Romero

et al., 2019) generated from simple networks with 5-10 nodes each. (a) Ground truth graphs of the simple networks in the benchmark. Despite

all being small-scale, the graphs vary widely in their density, number of cycles, etc. (b) F1 scores of seven state-of-the-art algorithms (six from

Table 1 and MVGC) for correctly identifying the full (directed) graphs. All methods are evaluated using optimized values of their respective

hyperparameters (see Methods). The benchmark data includes 60 repetitions of fMRI data from each of the 9 graphs, so each violin plot is based

on 540 F1 score samples. The PCMCI method achieves the highest median F1 score, both directed and undirected (see Supplementary Figure 3).

(c) The mean execution time (averaged over all 60 repetitions) of different algorithms as a function of network size. Note the logarithmic scaling of

the vertical axis. Error bars, though hardly visible, show 1 s.e.m.

The best-performing algorithms on Macaque SmallDegree, i.e., PCMCI and MVGC, suffer from144

three main drawbacks: (1) poor scalability (only for PCMCI), (2) inability to learn directed145

contemporaneous effects (PCMCI only learns undirected contemporaneous effects while MVGC146

learns none), and (3) having sparsity-controlling hyperparameters that are subjectively selected in147

the absence of ground-truth graphs. In this section, we describe the design of a new algorithm148

based on PCMCI that mitigates these drawbacks and demonstrate its superior performance over149

existing methods.150

Our first modification to PCMCI is with regard to scalability and computational complexity.151

The computational complexity of PCMCI depends heavily on the value of its ‘PC Alpha’152

hyperparameter, which controls the sparsity of the set of potential common causes on which the153
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Figure 2: Comparing the scalable subset of algorithms from Figure 1 over simulated fMRI data from the Macaque SmallDegree bench-

mark (Sanchez-Romero et al., 2019). (a) ground-truth Macaque SmallDegree network. (b) F1 scores of identifying the directed graph. Each

distribution consists of 10 F1 scores calculated based on 10 repetitions of simulated data from the same underlying graph. (c) Mean execution times

for each method (error bars show one standard deviation).

algorithm conditions when checking the conditional independence of each pair of nodes154

(Supplementary Figures 16a and 37). Higher values of PC Alpha make these sets denser and155

accordingly decrease statistical power in the subsequent conditional independence tests,156

ultimately conditioning on all other nodes (and all of their lags) when PC Alpha = 1.157

Nevertheless, interestingly, our experiments on the Macaque SmallDegree data show that the158

maximum achievable accuracy of PCMCI (i.e., F1 score maximized over Alpha Level for each159

fixed value of PC Alpha) monotonically increases with PC Alpha, reaching its maximum at PC160

Alpha = 1 (Supplementary Figures 16b and 16c). Therefore, while this may seem to cause a161

trade-off between accuracy and scalability, it is in fact an opportunity for maximizing both. At PC162

Alpha = 1, the PC part of PCMCI (a.k.a. the S1 algorithm in (Runge et al., 2019)) is theoretically163

guaranteed to return a complete conditioning set for all pairs of nodes, and can thus be skipped164

entirely. The PC part is further responsible for the poor scalability of PCMCI. Thus its removal165

significantly improves the computational efficiency of the resulting algorithm without166

compromising accuracy (cf. Discussions for a potential explanation of why conditioning on all167

other nodes may improve accuracy despite lowering statistical power).168

Our second modification addresses the lack of directed contemporaneous causal effects (see169

Introduction for why these effects are particularly important in fMRI). By default, MVGC returns170

no contemporaneous edges and PCMCI returns ◦−◦ ones which only indicate the presence of171

–8–

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2024. ; https://doi.org/10.1101/2023.08.12.553067doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.12.553067
http://creativecommons.org/licenses/by-nc/4.0/


== D R A F T ==

Journal: NETWORK NEUROSCIENCE / Title: Whole-Brain Causal Discovery Using fMRI

significant partial correlations but does not resolve between→,←, or ←→. However, we know from172

decades of tract tracing studies that reciprocal connections are significantly more common than173

unidirectional connections in the primate brain (Felleman & Van Essen, 1991; Markov et al.,174

2014; Tigges, Spatz, & Tigges, 1973). Therefore, we replace all ◦−◦ edges returned by PCMCI175

by the more likely choice of ←→. The only exception comes from (the often minority of) pairs of176

nodes that have a lagged directed edge between them (i.e., an edge of the form177

Xi(t− τ)→ Xj(t) for τ > 0, see Methods), in which case we leave the direction of the178

contemporaneous effect between them the same as their lagged effect.179

Figure 3 shows how the resulting CaLLTiF algorithm performs on a synthetic fMRI dataset180

generated from the significantly larger macaque structural connectome called Macaque Full with181

91 nodes and 1,615 ground-truth edges (Figure 3a, see also Methods). CaLLTiF has a182

significantly higher F1 score compared to PCMCI, VARLiNGAM, DYNOTEARS, and MVGC in183

its discovery of the directed graph (Figure 3b, all Cohen’s d > 15, p < 10−6, one-sided Wilcoxon184

signed-rank test) as well as its underlying undirected graph (Figure 3c, all Cohen’s d > 7,185

p < 10−6, one-sided Wilcoxon signed-rank test). Precisions and recalls are also shown in186

Supplementary Figures 26 and 27. We also compared CaLLTiF (and PCMCI) against a187

middle-ground ‘Mixed-PCMCI’ variant where the ◦−◦ edges returned by PCMCI are used only188

in the computation of adjacency F1 score (Supplementary Figures 28-30, see also Methods).189

Mixed-PCMCI benefits from contemporaneous effects as much as CaLLTiF in terms of adjacency190

F1 score, but not so in terms of full F1 score, further motivating the inclusion of directed191

contemporaneous connections as done in CaLLTiF. Detailed performances of all compared192

algorithms are provided in Supplementary Figures 29-36.193

Finally, the third aspect in which CaLLTiF departs from PCMCI is the choice of194

sparsity-controlling hyperparameter ‘Alpha Level’. Most, if not all, algorithms for causal195

discovery have at least one hyperparameter (often a threshold) that controls the sparsity of the196

resulting graphs. Different from PC Alpha described earlier, Alpha Level in PCMCI is the197

standard type-I error bound in determining statistical significance in each partial correlation test198

(cf. Supplementary Figure 16). By default, Alpha Level is selected subjectively, based on domain199

knowledge and expected level of sparsity. However, in CaLLTiF, we select Alpha Level200
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Figure 3: Comparisons between the proposed algorithm (CaLLTiF) and state-of-the-art alternatives over simulated fMRI from the

Macaque Full connectome. (a) ground-truth Macaque Full network (See Supplementary Figure 25 for the heat map of the directed connec-

tivity matrix). (b,c) Distributions of F1 scores for CaLLTiF and state-of-the-art alternatives in discovering the directed graph (b) and its underlying

undirected graph (c). For all repetitions, the best performance of MVGC occurs at α = 0.5 which returns a complete graph, hence the point

distributions for MVGC. ∗∗∗ denotes p < 0.001. All statistical comparisons are performed using a one-sided Wilcoxon signed-rank test. In all

boxplots, the center line represents the median, the box spans the interquartile range (IQR), and the whiskers extend up to 1.5 times the IQR from

the box limits.

–10–

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2024. ; https://doi.org/10.1101/2023.08.12.553067doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.12.553067
http://creativecommons.org/licenses/by-nc/4.0/


== D R A F T ==

Journal: NETWORK NEUROSCIENCE / Title: Whole-Brain Causal Discovery Using fMRI

objectively based on a novel method for correction for multiple comparisons (see Methods) that201

occur when collapsing a time-series graph over lagged variables into a final summary graph. This202

step is critical, particularly in the absence of ground-truth connectivity, to ensure that we have203

statistical confidence in every edge of the final summary graph returned by CaLLTiF.204

In summary, CaLLTiF starts by constructing an extended time-lagged graph among all the205

variables Xi(t− τ), i = 1, . . . , n and all lags τ = 0, 1, . . . , τmax. To establish a causal link206

between any pair of variables Xi(t− τ) and Xj(t), CaLLTiF performs a conditional207

independence test (using linear partial correlation) between Xi(t− τ) and Xj(t), conditioned on208

all other lagged variables (Xk(t− s), s = 1, . . . , τmax). A causal link is established if the null209

hypothesis of conditional independence is rejected at a significance threshold ‘Alpha Level’. By210

default, ‘Alpha Level’ is selected based on CaLLTiF’s type I error control, but it can also be211

optimized in simulated data using ground-truth knowledge. If τ > 0, the direction of the edge is212

clearly Xi(t− τ)→ Xj(t). When τ = 0, CaLLTiF returns Xi(t)←→Xj(t) if no other edges exist213

between Xi and Xj at higher lags, and places the edge(s) consistent with the corresponding214

lagged direction(s) otherwise. Finally, the extended time-lagged graph is collapsed into a215

summary graph by taking an OR operation for each edge across all lags. For further details about216

CaLLTiF, see Methods. A pseudocode for CaLLTiF is given in Algorithm 1 and a formal analysis217

of its computational complexity can be found in Supplementary Note 4.218

Causal Discovery from Resting-State Human fMRI219

We next applied CaLLTiF on resting-state fMRI from 200 subjects from the Human Connectome220

Project (HCP) (See Methods). Each scan from each subject was parcellated into 100 cortical and221

16 subcortical regions. CaLLTiF was then performed on all four resting-state scans for each222

subject, resulting in one causal graph per individual.223

Learned causal graphs are highly consistent across subjects. Despite individual differences,224

a remarkably common causal connectome emerged across subjects. Figure 4a shows the average225

causal graph among the subjects and Figure 4b shows the intersection graph that contained the226

edges common across all subjects. Due to the binary nature of individual graphs, the former can227

also be viewed as a matrix of probabilities, where entry (i, j) shows the probability of region i228
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causing region j across all subjects. As a result of the significant commonalities that exist in the229

causal graphs among subjects, the average graph has a bimodal distribution, with the vast230

majority of average weights being close to either 0 or 1. These extreme values of average weights231

can also be seen as a measure of the confidence of the algorithm in the presence or lack of most232

edges, and have a clear contrast (p = 0, Kolmogorov-Smirnov test) with the weights of the233

average of randomized surrogate graphs generated independently across subjects (Supplementary234

Figure 44). In the absence of a ground truth causal connectivity for direct comparison, such235

strong commonalities among subjects serve as an alternative measure of validation and provide236

insights into the general patterns and characteristics of the causal relationships in a resting brain.237

Nodal centralities also show strong consistency among the subjects. Figure 4c shows the nodal238

degrees for all subjects (gray lines) as well as its mean across subjects (black line, also depicted in239

Figure 4d). Statistically significant differences exist between the degree distributions of many240

pairs of nodes (about 90% of the pairs have p < 0.001, two-sided Wilcoxon signed-rank test,241

computed between nodal degrees of each pair of parcels), while significant correlations exist242

between nodal degrees for all pairs of subjects (all pairs have 0.56 ≤ r ≤ 0.96, p < 10−10,243

Pearson Correlation Coefficient, computed based on the nodal degrees of each pair of subjects244

separately). Note that the correlations of degrees across subjects are also remarkably higher than245

what would be implied by the correlations of the graphs themselves (Supplementary Figure 43e).246

Similar consistency for in-degree, out-degree, betweenness, and eigenvector centralities can be247

observed among subjects (Supplementary Figures 45-48). Consistently across subjects, medial248

ventral attention regions, cingulate cortices, and lateral primary sensorimotor areas show249

particularly low nodal degrees across both hemispheres, whereas bilateral default mode areas,250

particularly the left ventromedial prefrontal cortex, show notably strong nodal degrees. Bilateral251

anterior thalami are particularly causally connected compared to other subcortical regions, even252

though subcortical areas have significantly lower degrees than cortical areas in general, with253

bilateral posterior thalami, nuclei accumbens, and globus pallidi showing the least causal254

connections across the whole brain at rest.255

Causal graphs are also sparser and more consistent across subjects compared to functional256

connectivity. A major motivation for building causal connectomes is the removal of spurious257
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Figure 4: Learned causal graphs are highly consistent across subjects. (a) Average causal graph, computed as the mean of all the causal graphs

of 200 subjects. The color of the (i, j) entry in this matrix shows how likely it is for node i to cause node j. A clear distinction can be seen

in the causal links among cortical regions (colored labels) and subcortical ones (black labels). (b) The shared causal graph, containing only the

edges that are present in all 200 subjects. This graph is dominated by diagonal elements (self- and within-subnetwork causation) and links among

symmetrically located regions across the two hemispheres. (c) Distribution of nodal degree, computed separately for each node in the causal graph

and each subject. Gray colors correspond to different subjects and the black line shows the average nodal degrees across subjects. (d) Average

cortical nodal degree (black line in (c)) shown over the brain cortical surface.
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connections in functional connectivity (FC) profiles that reflect mere correlation but no causation.258

For causal graphs learned by CaLLTiF, we indeed observed significantly lower edge density259

compared to FC graphs (see Methods for details on the computation of FC graphs)260

(Supplementary Figures 43a,43b, no overlap existing between the support of the two261

distributions). In fact, FC graphs included approximately 95% of CaLLTiF’s discovered causal262

edges (Supplementary Figure 43c), while only about half of all functional connectivity edges are263

also causal (Supplementary Figure 43d). Interestingly, among the approximately 5% of causal264

edges that were not in the FC graphs, the majority came from non-zero lags. This is remarkable,265

given that causal edges from non-zero lags are significantly fewer in general (cf. Figure 6a), but266

are fundamentally not discoverable by FC which only measures contemporaneous co-fluctuations.267

Moreover, causal connectomes are significantly more consistent across subjects compared to FC268

connectomes (Supplementary Figure 43e, Cohen’d > 2, p < 0.001, one-sided Wilcoxon269

signed-rank test), further reinforcing the expectation that causal edges are “pruned” and more270

reliable compared to functional edges.271

Net resting-state causal effect flows from attention and default mode to sensorimotor272

networks. One of the main advantages of directed causal connectomes over undirected functional273

and structural connectomes is the former’s ability to show the directed flow of causal effect274

between brain regions. In graphs learned by CaLLTiF, nodal causal flows (outflow minus inflow,275

see Methods) are also highly consistent across subjects (Figure 5c,5d), even though the two276

notions of centrality are generally dissociated across parcels (Figure 5b and Supplementary277

Figure 53). On average across all subjects, we observed particularly high causal flows278

(source-ness) in several regions of bilateral medial ventral attention networks, specific dorsal279

attention areas (ventral precentral, ventral frontal cortices, and frontal eye fields), and bilateral280

hippocampi, even though subcortical areas are much less connected to the rest of the network in281

general. In contrast, bilateral visual areas show the strongest negative causal flow (sink-ness)282

across all subjects. There is also notable variability among parcels within a subnetwork, such as283

the notable bilateral contrast between the strongly positive and weakly negative causal flows of284

frontal and posterior parts of the dorsal attention network, respectively.285
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To better assess the overall net causal effects between different functional networks, we286

computed an average “subnetwork graph” in which each node represents a functional cortical287

network and edges denote thresholded average directed connectivity from one functional network288

to another (see Methods for detailed computations). The result is illustrated in Figure 5a. Ventral289

attention and visual networks are clearly the strongest source and sink of causal flow, respectively.290

The dorsal attention and somatomotor networks are also a clear (though weaker) source and sink,291

respectively. The default mode network (DMN) is also a net source of causal flow, even though its292

outflows and inflows are nearly balanced. Similarly, the control and limbic networks have293

near-zero causal flows (near-balanced inflow and outflow). Several directed paths, however, can294

be seen from both attention and default mode networks to sensorimotor networks through the295

limbic and control networks. Therefore, in summary, causal graphs learned by CaLLTiF show the296

strongest net resting state causal effect to flow from the ventral and dorsal attention as well as the297

default mode networks, through control and limbic networks, towards sensorimotor networks.298

The DMN, control, and limbic networks have large average degrees (Supplementary Figure 52)299

and near-balanced causal flows, making them hubs that largely distribute the flow of causal effect300

in the resting-state causal connectome (see the Discussion section for a more detailed analysis of301

this network).302

Casual graphs are strongly dominated by contemporaneous and lag-1 connections. Given303

that the final causal graph returned by CaLLTiF is a union over subgraphs at different lags (cf.304

Methods), we can go back and ask how much causal effects in each lag have contributed to the305

final graph. Figure 6a shows the percentage of edges in the final graph that exist only in one lag306

(including lag 0, or contemporaneous edges). Increasing the lag order resulted in significantly307

sparser single-lag subgraphs, which contributed less to the end result. In particular, approximately308

70% of the end graphs came from lag 0 alone, a pattern that appears consistently across all309

subjects (Supplementary Figure 57). Even further, such contemporaneous edges are substantially310

stronger than edges from lags 1-3 (Figure 6b). This further confirms that the contemporaneous311

effects are particularly important for fMRI, where most neural dynamics occur at timescales312

shorter than 1 TR (typically shorter than 1-2 seconds). This is even the case in HCP data, with TR313

= 0.72s which is among the shortest TRs currently available in fMRI research. That being said, all314
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Figure 5: Patterns of causal flow across subjects. (a) The average subnetwork graph, computed as the mean of subnetwork graphs of all the

subjects. In the subnetwork graph of each subject, the weight of an edge from subnetwork i to j is the number of nodes in subnetwork i that

connect to nodes in subnetwork j, normalized by the number of all possible edges between these subnetworks. Edges with weights less than 0.5

are removed for better visualizations. To further ease the visual inspection of causal flows, if two networks are bidirectionally coupled we have

shown the stronger edge with a thicker line (see Supplementary Figures 51, 52 for the weight matrix before thresholding and the corresponding

nodal degrees and causal flows.) (b) The joint distributions of causal flow and degree for each ”node” of the subnetwork graphs across all subjects.

(c) Distribution of nodal causal flow, computed separately for each node in the causal graph and each subject. Gray colors correspond to different

subjects and the black line shows the average nodal degrees across subjects. (d) Average cortical nodal causal flows (black line in (c)) shown over

the brain cortical surface.
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Figure 6: The contributions of each lag to the final causal graph in CaLLTiF. (a) For each lag, the box plot shows the distribution of the

percentage of edges that come only from that lag across subjects. In all boxplots, the center line represents the median, the box spans the interquartile

range (IQR), the whiskers extend up to 1.5 times the IQR from the box limits, and individual points beyond the whiskers indicate outliers.(b) The

strength (statistical significance) of edges across lags. For each edge within the subgraph of each lag, we define its strength as the p-value of the

partial correlation test that was used to conclude the presence of that edge (see Methods) even though all edges have a statistically significant p-value

by definition, edges in larger lags are significantly closer to the threshold for significance than those in smaller lags. ∗∗∗ = p < 0.001, one-sided

Wilcoxon rank-sum test.

lags had a non-zero (and significant by construction) contribution to the end graph in all subjects.315

Even lag 3 had a median of approximately 0.2% unique contributions to the final graph across316

subjects. We also found very small intersections among lags. This not only highlights the317

importance of considering multiple lags rather than just the first one or two but also demonstrates318

that it is incorrect to assume that if one region causes another, that causation will appear319

continuously across all lags. In summary, we found contemporaneous effects dominant in the320

final causal graphs of CaLLTiF, even though all lags had significantly non-zero and mostly unique321

contributions.322

Causal connections are modulated by pairwise Euclidean distance. As one would expect323

from a network learned over a set of nodes embedded in physical space, the causal graphs learned324

by CaLLTiF are modulated in a number of ways by the Euclidean distance between pairs of325

nodes. First, we found degree similarity (correlation coefficient between nodal degrees of two326

parcels over all subjects) to decay statistically significantly, though weakly in effect size, with327

parcel distance (Pearson r = −0.12, p = 10−43, 95% confidence interval (−0.14,−0.1)) as328
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Figure 7: Effect of Euclidean distance on edge attributes. (a)Degree similarity (correlation coefficient between nodal degrees of two parcels

over all subjects) as a function of the Euclidean distance between the parcels. Parcel pairs in the same hemisphere (intra-hemispheric) and parcels

in two different hemispheres (inter-hemispheric) are shown in blue and red, respectively. Degree similarity decays statistically significantly with

parcel distance (Pearson r = −0.12, p = 10−43, 95% confidence interval (−0.14,−0.1)), much more so among intra-hemispheric parcels

(Pearson r = −0.27, p = 10−82, 95% confidence interval (−0.29,−0.24)) than inter-hemispheric ones (Pearson r = −0.09, p = 10−5, 95%

confidence interval (−0.13,−0.05)). (b) Edge strength (as in Figure 6b) as a function of Euclidean distance between edge endpoints (note the

inverted vertical axis). The solid line shows the corresponding moving average of log(p) with 10mm window size and 8mm window overlap. The

upper limit of the vertical axis is limited to −30 for better visualization.

shown in Figure 7a (See Supplementary Figures 54 and 55 for separate maps of degree329

similarities and pairwise nodal distances). This relationship is stronger among intra-hemispheric330

parcels (Pearson r = −0.27, p = 10−82, 95% confidence interval (−0.29,−0.24)) where331

connections are denser and shorter-distance, compared to inter-hemispheric parcels (Pearson332

r = −0.09, p = 10−5, 95% confidence interval (−0.13,−0.05)). Thus, in summary, nodes that333

are physically closer to each other also have more similar causal connections to the rest of the334

network, particularly if they belong to the same hemisphere.335

The strength of CaLLTiF edges is also modulated by the Euclidean distance between edge336

endpoints, even though we observed that there are approximately as many long-distance edges as337
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short ones (See Supplementary Figures 56). We define the strength of each edge in the final graph338

(union over lags) as the minimum p-value of respective partial correlation tests across all lags (cf.339

Methods). As seen from Figure 7b, the mean strength of causal edges (black solid line) initially340

increases with the Euclidean length of the edge until about 20mm and then decays with Euclidean341

edge length thereafter.342

Finally, we found no major differences between the Euclidean distances of edges contributed343

by different lags. Given that causal effects take time to spread along axonal fibers throughout the344

brain, one might expect physically-closer pairs of nodes to be connected by lower-lag edges and345

more distant pairs of nodes to be connected by larger-lag edges. However, as seen in346

Supplementary Figure 58, this is not quite the case. Given the slow sampling of fMRI, even the347

most distant regions can causally affect each other in time scales shorter than 1 TR. Thus, the348

observation that the physical distance of pairs of nodes was not related to edge lag should not be349

taken as an indication that such relationships would – or would not – be observed when sampling350

with higher temporal precision.351

Degree, but not casual flow, shows significant laterality and gender differences. We352

observed that nodal degrees were statistically significantly higher in the right hemisphere353

(Figure 8a, Cohen’s d = 0.07 and p = 10−48, one-sided Wilcoxon signed-rank test), even though354

no such laterality was found in nodal causal flows (Figure 8b, Cohen’s d = 0.02 and p = 0.23,355

one-sided Wilcoxon signed-rank test). To understand which subnetworks might be playing a356

stronger role in the hemispheric asymmetry observed in the distribution of nodal degrees,357

Figure 8c shows the mean degrees of corresponding pairs of regions in the left and right358

hemispheres, color-coded by functional subnetworks (cf. Supplementary Figures 49 for separate359

plots per subnetwork). The ventral attention, dorsal attention, and executive control networks360

show clearly larger causal degrees in the right hemisphere, whereas the limbic network and DMN361

have larger causal degrees in the left hemisphere. A similar plot for causal flows (Figure 8d,362

Supplementary Figure 50) shows a lot more symmetry, except for the limbic network which363

shows exceptionally higher causal flows (i.e., source-ness) in the right compared to the left364

hemispheres. The DMN also shows some asymmetry in its causal flow, where right DMN nodes365

are mostly sources of causal flow whereas left DMN causal flows are more evenly distributed366
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around zero. Thus, in summary, various functional subnetworks show laterality in degree367

distributions, culminating in a net increase in right vs. left nodal degrees. Causal flows, however,368

are mostly symmetric, except for the limbic network which shows a strong flow from the right to369

the left hemisphere.370

Similarly, degree, but not casual flow, shows a small but statistically significant difference371

between men and women. In causal connectomes learned by CaLLTiF, we found nodal degrees to372

be statistically significantly higher in women compared to men (Figure 8e, Cohen’s d > 0.05,373

p < 10−5, one-sided Wilcoxon rank-sum test). Nodal causal flows, on the other hand, were374

statistically indistinguishable between men and women (Figure 8f, Cohen’s d = −3.77× 10−18,375

p = 0.81, one-sided Wilcoxon rank-sum test). These result demonstrate that nodal degrees in376

causal connectomes are generally more heterogeneous and sensitive while causal flows tend to be377

more homogeneous and stereotyped across individuals and hemispheres. Further research is378

needed to pinpoint the root causes of these differences (and lacks thereof) as well as potential379

implications of them in health and disease.380

DISCUSSION

In this study, we investigated the problem of whole-brain causal discovery from fMRI. We first381

comprehensively compared existing causal discovery techniques suitable for whole-brain fMRI by382

examining both theoretical properties and numerical outcomes on simulated fMRI. To address the383

limitations of existing algorithms, we proposed CaLLTiF which improves upon the state of the art384

in several directions including learning contemporaneous edges and cycles, type I error control,385

and scalability. A core aspect of CaLLTiF is its treatment of contemporaneous effects. Our results386

with the HCP data (Figures 6a and 6b) confirmed the importance of being able to reveal such387

“contemporaneous” effects, where these effects accounted for the majority and strongest of388

network edges. Further, the distributions of edges with different Euclidean distances at each lag389

(Supplementary Figure 58) demonstrates how broadly neural signals can propagate across the390

brain in one TR interval, even with the relatively fast sampling (TR = 0.72s) in the HCP dataset.391

Furthermore, in interpreting CaLLTiF’s outputs, it is important to note its by-design392

conservative method of correction for temporal multiple comparisons. In the Macaque Full393
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Figure 8: Hemispheric laterality and gender differences in causal connectomes. (a) Distributions of nodal degree in the right and left hemi-

spheres, combined across all subjects. (b) Similar to (a) but for causal flows. (c) Nodal degrees, averaged across subjects and color-coded by

functional subnetwork, for pairs of corresponding parcels within the right and left hemispheres. To properly pair nodes across the two hemispheres,

degrees of all the parcels with the same label in the Schaefer/Tian atlas were averaged and then paired. Deviations from the dashed y = x line

indicate laterality. (d) Similar to (c) but for causal flows. (e) Distributions of nodal degrees in female and male subjects, combined across all brain

regions. (f) Similar to (e), but for causal flows.
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simulated dataset where the ground truth is known, we found Alpha Level = 0.01 to maximize the394

F1 score, while CaLLTiF’s correction for temporal multiple comparisons would have suggested395

0.01/32 = 0.0003 (cf. Equation (4)) and thus would have obtained sparser graphs. Similarly, we396

obtained causal graphs from human fMRI that are about 30-55% dense across all subjects and397

40-60% dense among cortical nodes (Supplementary Figure 43a). These are generally consistent398

with, but sparser than, the near-66% cortical density found using tract-tracing results in399

non-human primates (Markov et al., 2014). In other words, graphs returned by CaLLTiF are likely400

to have higher precision but lower recall than what would maximize the F1 score. This401

conservativeness is by design and desirable in the absence of a ground-truth causal graph,402

ensuring that we have strong confidence in all discovered edges (at least 99% confidence in every403

detected edge in our experiments with human fMRI). Nevertheless, CaLLTiF’s level of404

conservativeness can also be tuned as needed by tuning its pre-correction significance threshold (q405

in Equation (4)).406

An unexpected finding of our study was the higher accuracy of causal discovery when407

conditioning pairwise independence tests (see Equation (1)) on all other nodes in the network, as408

done in CaLLTiF, compared to using a more restricted parent set found by PCMCI (cf.409

Supplementary Figure 16). The approach taken by PCMCI increases statistical power (cf. the410

trend of optimal ‘Alpha Level’ values in Supplementary Figure 16b), but can significantly411

increase type I error in the presence of contemporaneous effects. Even further, we found that even412

using the (lagged) ground-truth parent sets for each node leads to a lower F1 score compared to413

using complete conditioning sets (Supplementary Figure 39-41). This is likely because414

CaLLTiF’s conditioning on the past of all variables serves as a proxy for the missing415

contemporaneous parents that should have been conditioned on. On the other hand, one may416

wonder if this issue could have been better resolved by conditioning on contemporaneous417

variables themselves. However, this can result in spurious statistical dependence if conditioning418

on all contemporaneous variables (consider, e.g., testing Xi ⊥̸⊥ Xj|Xk with the ground-truth419

causal graph Xi → Xk ← Xj). For a detailed discussion on this see Supplementary Note 3.420

Causal connectivity during resting state. When applying CaLLTiF to resting state human421

fMRI, we found the strongest causal effect to flow from attention to sensorimotor networks. The422
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strongest sources and sinks were the ventral attention and visual networks, followed by dorsal423

attention and somatomotor networks, respectively. Despite the lack of “ground-truth”424

connectivity as in simulated data, we can still evaluate these findings based on their agreement425

with prior findings on the roles of resting state networks. The dorsal attention network (involving426

regions in the intraparietal and superior frontal cortex) is commonly believed to handle top-down427

selection processes and is only modulated by stimulus detection, while the ventral attention428

network (including areas such as the temporoparietal and inferior frontal cortex) specializes in429

detecting behaviorally relevant stimuli, particularly those that are salient or unexpected, and430

directing attention to them (Corbetta & Shulman, 2002). These networks exhibit internally431

correlated activity patterns (particularly during the task) (Corbetta, Patel, & Shulman, 2008) and432

their flexible interaction facilitates dynamic attentional control aligned with both top-down goals433

and bottom-up sensory inputs (Vossel, Geng, & Fink, 2014). Nonetheless, the ventral attention434

network is more strongly involved in the “reorientation” of attention, namely, interrupting one435

thought process and orienting attention towards something salient, while the dorsal attention436

network is more strongly implicated in focused and guided attentional tasks such as visual search437

under high short-term memory load (Vossel et al., 2014).438

Arguably, resting state activity is more aligned with the former (salience-based reorientation)439

than the latter (goal-driven focused attention). Despite a lack of sensory salience, attention is440

frequently reoriented during periods of rest by endogenously-salient thoughts and memories.441

Intermittent periods of focused attention can also arise, particularly given the long durations of442

each resting-state scan (∼ 15min). Our findings thus confirm and corroborate the existing443

hypotheses about the roles of attention networks and how they jointly but unevenly drive brain444

dynamics during rest. Furthermore, due to the lack of meaningful sensory (particularly visual)445

input during a resting state scan, sensory areas receive more top-down influence from446

higher-order cortices than they provide bottom-up information to them. As such, the sink-ness of447

sensorimotor areas in graphs learned by CaLLTiF is arguably more consistent with the nature of448

resting state activity compared to a contrasting, sensory-driven flow found, e.g., in (Rawls et al.,449

2022). Finally, we found the DMN to be both a hub and a weak source of causal flow, which is450
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consistent with its well-known role in resting state dynamics (Andrews-Hanna, Smallwood, &451

Spreng, 2014; Greicius, Krasnow, Reiss, & Menon, 2003; Raichle et al., 2001).452

Resting-state causal graphs learned by CaLLTiF are also notably aligned with the literature in453

terms of the laterality of different functional subnetworks (Figure 8c and Supplementary454

Figure 49). Several studies have found the ventral attention system to be predominantly455

lateralized to the right hemisphere (Corbetta et al., 2008; Corbetta & Shulman, 2002; Mengotti,456

Käsbauer, Fink, & Vossel, 2020; Vossel et al., 2014). Similarly, the degree distribution of ventral457

attention nodes in graphs learned by CaLLTiF is strongly right-lateralized. We found the dorsal458

attention network to also be right-lateralized, but not as strongly as the ventral network. Similarly,459

The dorsal attention network is found by prior studies to be organized mostly bilaterally, except460

for specific regions (Intraparietal sulcus and frontal eye field) in the right dorsal network that461

show stronger involvement in the attentional control of both hemispheres compared to their left462

counterparts (Mengotti et al., 2020). Also similar is alignment in the lateralization of the default463

mode network, where both CaLLTiF and several past studies have found it to be left464

lateralized (Agcaoglu, Miller, Mayer, Hugdahl, & Calhoun, 2015; Banks et al., 2018; Nielsen,465

Zielinski, Ferguson, Lainhart, & Anderson, 2013; Swanson et al., 2011). Sensorimotor cortices,466

on the other hand, were found to be highly symmetric and not particularly lateralized to either467

hemisphere in causal graphs learned by CaLLTiF, a finding that is also consistent with the468

generally symmetric involvement of primary sensory and motor areas in contralateral469

processing (Agcaoglu et al., 2015). Finally, research on the laterality of the control and limbic470

networks is ongoing and, to the best of our knowledge, inconclusive (see, e.g., (Morton, 2020)).471

In graphs learned by CaLLTiF, however, we observe strong left lateralization of the limbic and472

right lateralization of the control networks, respectively. Thus, in summary, we observe clear473

laterality in all but sensorimotor cortical networks which either corroborate the existing literature474

or clarify previously inconclusive observations.475

Hyperparameter selection and sensitivity. CaLLTiF has two hyperparameters, τmax and476

αlevel. Due to CaLLTiF’s type-I error control over lags (see Methods), these parameters are477

interdependent, as described by Equation (4). This makes τmax the only effectively ‘free’478

hyper-parameter, which can be systematically selected by analyzing how much each additional479

–24–

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2024. ; https://doi.org/10.1101/2023.08.12.553067doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.12.553067
http://creativecommons.org/licenses/by-nc/4.0/


== D R A F T ==

Journal: NETWORK NEUROSCIENCE / Title: Whole-Brain Causal Discovery Using fMRI

lag contributes to the final graph (as in Figure 6a). Furthermore, the end results of CaLLTiF are480

remarkably robust to variations in τmax. Supplementary Figure 59 illustrates the sensitivity of481

CaLLTiF by comparing graphs generated from real HCP data with τmax = 1, 2, and 4 against482

those with τmax = 3 analyzed in the main text. For comparison, we also show the percentage of483

changes in resulting graphs if we fix the value of αlevel (i.e., ignore Equation (4)) so that, e.g.,484

increasing τmax from 3 to 4 only adds lag-4 edges without affecting other lags. As we can see, at485

τmax = 2 and 4 (33% change in τmax), the resulting graphs change less than 6% for fixed type I486

error and less than 3% for fixed αlevel. Similarly, when changing τmax to 1 (67% change in τmax),487

the resulting graphs change by less than 13% and 6% in the two conditions, respectively.488

Limitations. The present study has a number of limitations. From a biological perspective,489

synaptic causation happens at the level of neuronal activity, from which fMRI is a noisy readout.490

This lack of access to the true underlying neural activity limits the accuracy of any causal491

discovery method working with fMRI, and attempting to extract the underlying neural activity492

from fMRI data is often futile (Supplementary Figure 42, also cf. (Nozari et al., 2023)). The low493

temporal resolution of fMRI, even with the TR value of 720ms in the HCP data, also limits the494

precision of causal discovery. As we saw from Supplementary Figure 58, edges of all lengths are495

observed even at lag 0. This indicates the possibility that some of the edges discovered by496

CaLLTiF may be polysynaptic paths but resemble a direct monosynaptic connection at low497

temporal resolution. Finally, similar to most constraint-based methods, the causal graphs returned498

by CaLLTiF are not tied to a generative dynamical model (as is the case with VARLiNGAM,499

DYNOTEARS, DCM, etc). If such generative models are needed, VAR models based on500

CaLLTiF’s extended time-lagged graph constitute a natural choice, but further research is needed501

to compare the dynamic predictive accuracy of such models against potential alternatives (Ljung,502

1999).503

Conclusions. Overall, this study demonstrates the interplay between the theoretical challenges504

of causal discovery and the practical limitations of fMRI, and the design of an algorithmic505

solution that can bridge this gap. This work motivates several follow-up studies, including the506

application of the proposed CaLLTiF method to task fMRI and comparing its outcomes against507

structural connectivity.508
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MATERIAL AND METHODS

Simulated fMRI Data509

When comparing different causal discovery algorithms or different hyperparameters of the same510

algorithm, we used several benchmarks of simulated fMRI data with known ground truth511

connectivity from (Sanchez-Romero et al., 2019). In general, this dataset included two groups of512

networks, one consisting of 9 simple small-scale synthetic graphs and one consisting of two513

graphs extracted from the macaque connectome. From the latter group, we only used the smallest514

(Macaque SmallDegree) and the largest (Macaque Full).515

The details of generating BOLD signals from each graph are detailed in (Sanchez-Romero et516

al., 2019). In brief, the same simulation procedure was used for simple and macaque-based517

graphs, where the authors used the model proposed in (Smith et al., 2011) which is itself based on518

the DCM architecture of (K. Friston et al., 2003). Underlying neural dynamics are simulated519

using the linear differential equation dz/dt = σAz + Cu, where A denotes the ground-truth520

connectivity. To simulate resting-state data, the u input was modeled using a Poisson process for521

each of the regions (C = I). The neuronal signals z were then passed through the522

Balloon-Windkessel model (Buxton, Wong, & Frank, 1998; Smith et al., 2011) to obtain523

simulated BOLD data.524

Resting-State fMRI from the Human Connectome Project525

For the real fMRI analysis, we used ICA-FIX resting-state data from the Human Connectome526

Project S1200 release (Barch, 2017; Burgess et al., 2016; Essen et al., 2013). Resting-state fMRI527

images were collected with the following parameters: TR = 720 ms, TE = 33.1 ms, flip angle = 52528

deg, FOV = 208x108 mm, matrix = 104x90, slice thickness = 2.0 mm, number of slices = 72 (2.0529

mm isotropic), multi-factor band = 8, and echo spacing = 0.58 ms. Brains were normalized to530

fslr32k via the MSM-AII registration and the global signal was removed. We removed subjects531

from further analysis if any of their four resting state scans had excessively large head motion,532

defined by having frames greater than 0.2 mm frame-wise displacement or a derivative root mean533

square (DVARS) above 75. Also, subjects listed in (Elam, 2020) under “3T Functional534

Preprocessing Error of all 3T RL fMRI runs in 25 Subjects” or “Subjects without Field Maps for535
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Structural scans” were removed. Among the remaining 700 subjects, the 200 with the smallest536

head motion (DVARS) were selected for analysis. For all subjects, we parcellated the brain into537

100 cortical regions (Schaefer 100x7 atlas (Schaefer et al., 2018)) and 16 subcortical ones538

(Melbourne Scale I atlas (Tian, Margulies, Breakspear, & Zalesky, 2020)). The Human539

Connectome Project experiments were carried out by the WU-Minn consortium and its adherence540

to ethical standards was approved by the by the Internal Review Board of the respective541

institutions. Explicit informed consent was acquired from all participants involved in the542

study (Essen et al., 2013).543

Causal discovery methods544

One aim of causal inference is to construct a causal graph based on observational data. The545

relationship between a probability distribution and its depiction as a graph plays a significant role546

in this process. Nevertheless, it is not always feasible to deduce a causal graph solely from547

observational data. Further assumptions are therefore required. Here, we briefly summarize the548

main assumptions and principles underlying the list of causal discovery methods studied in this549

work (cf. Table 1).550

PCMCI. PCMCI was proposed in (Runge et al., 2019) as a constraint-based causal discovery551

method designed to work with time-series data. The algorithm is composed of two main steps. In552

the first step, the algorithm selects relevant variables using a variant of the undirected graph553

discovery part of the PC algorithm (Spirtes & Glymour, 1991). This step removes irrelevant554

variables for conditioning and therefore increases statistical power. In the second step, the555

algorithm uses the momentary conditional independence (MCI) test, which measures the556

independence of two variables conditioned on the set of their parents identified in step 1. The557

MCI test helps to reduce the false positive rate, even when the data is highly correlated. PCMCI558

assumes that the data is stationary, has time-lagged dependencies, and has causal sufficiency.559

Even when the stationarity assumption is violated, PCMCI was shown to perform better than560

Lasso regression or the PC algorithm (Runge et al., 2019). However, PCMCI is considered not561

suitable for highly predictable (almost deterministic) systems with little new information at each562

–27–

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2024. ; https://doi.org/10.1101/2023.08.12.553067doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.12.553067
http://creativecommons.org/licenses/by-nc/4.0/


== D R A F T ==

Journal: NETWORK NEUROSCIENCE / Title: Whole-Brain Causal Discovery Using fMRI

time step (Runge et al., 2019). The Python implementation of PCMCI is available in the563

Tigramite package at https://github.com/jakobrunge/tigramite.564

As noted earlier, PCMCI only returns ◦−◦ edges among contemporaneous variables. While this565

allows PCMCI to relax the common DAG assumption and allow for cycles, it results in a mixed566

summary graph, where multiple types of edges (←,→, and/or ◦−◦) can exist between two nodes.567

In contrast, we require all algorithms to output a directed graph. Therefore, when reporting F1568

scores for PCMCI, we only include directed edges coming from lagged relationships and exclude569

the contemporaneous ◦−◦ edges. The only exception is what we call ‘Mixed PCMCI’ (See570

Supplementary Figures 28- 30), where the contemporaneous ◦−◦ edges are also included in the571

computation of adjacency F1 scores.572

PCMCI+. PCMCI+ is an extension of the PCMCI method which incorporates directed573

contemporaneous links in addition to the lagged ones (Runge, 2020). The approach revolves574

around two key concepts. First, it divides the undirected graph edge removal phase into separate575

lagged and contemporaneous conditioning phases, thereby reducing the number of conditional576

independence tests required. Second, it incorporates the idea of momentary conditional577

independence (MCI) tests from PCMCI (Runge et al., 2019) specifically in the contemporaneous578

conditioning phase. PCMCI+ also outputs a time-series graph with different types of579

contemporaneous edges, including directed edges (→ and←), unoriented edges (◦−◦), and580

conflicting edges (×−×). Consistent with our requirement of a regular digraph at the end, we581

disregarded the unoriented and conflicting edges and retained only the directed ones. Similar to582

most other causal discovery algorithms, PCMCI+ does not permit cycles in the contemporaneous583

links, which could potentially account for its relatively underwhelming performance over fMRI584

data. The Python implementation of PCMCI+ is also available in the Tigramite package585

https://github.com/jakobrunge/tigramite.586

VARLiNGAM. VARLiNGAM is a causal discovery method that combines non-Gaussian587

instantaneous models with autoregressive models. This method, proposed in (Hyvärinen et al.,588

2010), builds on the fact that in the absence of unobserved confounders, linear non-Gaussian589

models can be identified without prior knowledge of the network structure. VARLiNGAM is590

capable of estimating both contemporaneous and lagged causal effects in models that belong to591
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the class of structural vector autoregressive (SVAR) models and provides ways to assess the592

significance of the estimated causal relations. These models are a combination of structural593

equation models (SEM) and vector autoregressive (VAR) models. In addition, VARLiNGAM594

emphasizes the importance of considering contemporaneous influences, as neglecting them can595

lead to misleading interpretations of causal effects. Nevertheless, VARLiNGAM does not permit596

cycles in the contemporaneous links either, which could potentially account for its relatively poor597

performance over brain fMRI data with many feedback loops. The VARLiNGAM method is598

available from https://github.com/cdt15/lingam and a tutorial can be found at599

https://lingam.readthedocs.io/en/latest/tutorial/var.html.600

DYNOTEARS. Dynamic NOTEARS (DYNOTEARS) method, proposed in (Pamfil et al.,601

2020), is a score-based method designed to discover causal relationships in dynamic data. It602

simultaneously estimates relationships between variables within a time slice and across different603

time slices by minimizing a penalized loss function while ensuring that the resulting directed604

graph is acyclic (including acyclicity of contemporaneous connections). The goal is to identify605

the best set of conditional dependencies that are consistent with the observed data. DYNOTEARS606

builds on the original NOTEARS method proposed in (Zheng, Aragam, Ravikumar, & Xing,607

2018), which uses algebraic properties to characterize acyclicity in directed graphs for static data.608

Python implementations are available from the CausalNex library609

(https://github.com/quantumblacklabs/causalnex) as well as610

https://github.com/ckassaad/causal discovery for time series.611

DGlearn. DGlearn is a score-based method for discovering causal relationships from612

observational data. Importantly, it is one of few algorithms that can learn cyclic structures from613

cross-sectional data. The method, introduced in (Ghassami et al., 2020), is based on a novel614

characterization of equivalence for potentially cyclic linear Gaussian directed graphical models.615

Two structures are considered equivalent if they can generate the same set of data distributions.616

DGlearn utilizes a greedy graph modification algorithm to return a graph within the equivalence617

class of the original data-generating structure. The Python implementation of DGlearn is618

available at https://github.com/syanga/dglearn.619
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FASK. The Fast Adjacency Skewness (FASK) method, proposed in (Sanchez-Romero et al.,620

2019), is a hybrid method for causal discovery from cross-sectional data, combining621

constraint-based and noise-based elements. It leverages (and needs) non-Gaussianity in the data622

and allows for cycles. This algorithm is composed of two main steps. The first step, called623

FAS-Stable, outputs an undirected graph G0 by iteratively performing conditional independence624

tests under the increasing size of the conditioning set and using the Bayesian information criterion625

(BIC) to compare the conditioning sets. In the second step, assuming i.i.d. non-Gaussian data,626

each of the X − Y adjacencies in G0 are oriented as a 2-cycle (←→) if the difference between627

corr(X, Y ) and corr(X, Y |X > 0), and corr(X, Y ) and corr(X, Y |Y > 0), are both628

significantly nonzero, and as a unidirectional edge otherwise. The pseudo-code for FASK can be629

found in Supporting Information A of (Sanchez-Romero et al., 2019) and Java source code for it630

is available at http://github.com/cmu-phil/tetrad.631

MVGC. In (Granger, 1969), Granger introduced a statistical version of Hume’s regularity632

theory, stating that Xp Granger-causes Xq, if past values of Xp provide unique, statistically633

significant information about future values of Xq (Assaad et al., 2022). While this allows for634

optimal forecasting of an effect and has been extended to multivariate systems (Barnett & Seth,635

2014), MVGC cannot account for contemporaneous effects and the presence of unobserved636

confounders can result in spurious edges. Python implementation of MVGC is available at637

https://github.com/ckassaad/causal discovery for time series.638

NTS-NOTEARS. NTS-NOTEARS is a nonlinear causal discovery method designed for639

time-series data (Sun, Liu, Poupart, & Schulte, 2021). It employs 1-D convolutional neural640

networks to capture various types of relationships, including linear, nonlinear, lagged, and641

contemporaneous connections among variables. The method ensures that the resulting causal642

structure forms a directed acyclic graph. It builds upon the NOTEARS approach (Zheng et al.,643

2018), and is similarly based on continuous optimization. Similar to other algorithms above, it644

assumes the presence of no hidden confounding factors and stationarity of the data-generating645

process. In our analysis, we compare NTS-NOTEARS as a state-of-the-art nonlinear method646

against the aforementioned linear algorithms in synthetic fMRI (cf. Supplementary Figure 38). A647
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Python implementation of NTS-NOTEARS is available at648

https://github.com/xiangyu-sun-789/NTS-NOTEARS649

CaLLTiF (proposed method). The proposed CaLLTiF method builds upon PCMCI (Runge et650

al., 2019) but, instead of using a PC-type approach in the first step to estimate the set of parents651

for lagged variables, it starts from a complete conditioning set including all lagged variables. This652

choice dramatically decreases computational cost, but surprisingly, it is also optimal, as shown in653

Supplementary Figure 16, because as mentioned in the discussion section, the approach of654

PCMCI discards contemporaneous effects. Using a complete conditioning set, CaLLTiF then655

performs Momentary Conditional Independence (MCI) partial correlation tests between all pairs656

of variables. Specifically, for any pair Xi(t− τ), Xj(t) with i, j ∈ 1, . . . , N and time delays657

τ ∈ 0, 1, . . . , τmax, a causal link is established (Xi(t− τ)→ Xj(t) if τ > 0 and Xi(t)◦−◦Xj(t) if658

τ = 0), if and only if:659

Cond. Ind. Test : Xi(t− τ)⊥̸⊥ Xj(t) | {Xk(t− s) : k = 1, . . . , N, s = 1, . . . , τmax} \ {Xi(t− τ)}.
(1)

Note that, despite being complete, the conditioning sets only include variables from prior time660

lags. As noted earlier, to test a conditional independence of the form X ⊥̸⊥ Y |Z, we compute the661

partial correlation coefficient ρ(X, Y |Z) between X and Y conditioned on the set of variables in662

Z and the corresponding p-value for the null hypothesis that ρ(X, Y |Z) = 0. An edge is placed663

between Xj(t) and Xi(t− τ) if this p-value is less than the hyperparameter ‘Alpha Level’. The664

value of this threshold was selected optimally in simulated fMRI and using temporal correction665

for multiple comparisons (see below) in real data. Finally, for contemporaneous pairs (τ = 0),666

each ◦−◦ edge is replaced with ←→ if there are no other edges between those two variables at other667

lags, and is replaced with a directed edge or a ←→ based on the lagged direction(s) otherwise. For a668

more detailed summary of the partial correlation-based edge discovery in CaLLTiF, see669

Supplementary Note 2. A pseudocode of CaLLTiF is shown in Algorithm 1.670
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Algorithm 1 Causal discovery for Large-scale Low-resolution Time-series with Feedback

(CaLLTiF)
Input: Xi(t) for i = 1, . . . , N and t = 1, . . . , T

Output: Summary causal graph

Hyperparameters: τmax: Maximum Time Lag, αlevel: Per-lag threshold for statistical significance

1: Initialize the extended causal graph with nodes {Xi(t − τ) | i = 1, . . . , N, τ = 0, . . . , τmax}
and no edges

2: Initialize the summary causal graph with nodes {Xi | i = 1, . . . , N} and no edges

3: Build a complete conditioning set: Scond ← {Xk(t− s) | k = 1, . . . , N, s = 1, . . . , τmax}
4: for i ∈ {1, . . . , N} do

5: for j ∈ {1, . . . , N} do

6: for τ ∈ {0, 1, . . . , τmax} do

7: Run Conditional Independence Test: Xi(t− τ) ⊥ Xj(t) | Scond \ {Xi(t− τ)}
8: if p-value < αlevel then

9: if τ > 0 then

10: Add edge Xi(t− τ)→ Xj(t) to the extended causal graph

11: else

12: Add edge Xi(t) ◦−◦Xj(t) to the extended causal graph

13: end if

14: end if

15: end for

16: if At least one lagged edge exists from Xi to Xj then

17: Place a directed edge Xi → Xj in the summary causal graph

18: else if The contemporanous edge Xi(t) ◦−◦Xj(t) exists then

19: Place a two-cycle Xi
←→Xj in the summary causal graph

20: end if

21: end for

22: end for
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Finally, it is imperative to acknowledge the possibility that some of the directed edges detected671

by our methodology do not possess a strictly causal connotation. As previously indicated, the672

orientation method relies on the widely accepted premise that bidirectional connections hold673

notably greater prevalence than unidirectional links. Thus, we believe that the presented approach674

shall yield a proximate representation of the true causal graph, concurrently accommodating675

cyclic structures and circumventing computational barriers.676

Construction of summary causal graphs from causal graphs over lagged variables677

Causal discovery algorithms designed for time series data often return a causal graph among the678

lagged variables679

X1(t− τmax), . . . , X1(t− 1), X1(t)

X2(t− τmax), . . . , X2(t− 1), X2(t) (2)
...

Xn(t− τmax), . . . , Xn(t− 1), Xn(t)

For algorithms other than CaLLTiF, from this we extract a final summary graph among the680

variables X1, . . . , Xn by placing an edge from Xi to Xj if there exists any τ ≥ 0 for which there681

is an edge from Xi(t− τ) to Xj(t). This is equivalent to an OR operation among binary edges (as682

opposed, e.g., to a majority vote) and must be taken into account when interpreting the obtained683

summary graphs. The process is similar in CaLLTiF except that the direction(s) of684

contemporaneous ◦−◦ edges are first resolved using lagged edges before executing the OR across685

lags (cf. Algorithm 1).686

Correction for multiple comparisons across lags in CaLLTiF687

As noted above, CaLLTiF places an edge from Xi to Xj in its summary graph if there exists at688

least one τ ≥ 0 for which there is an edge from Xi(t− τ) to Xj(t). Therefore, the decision to689

place an edge from Xi to Xj depends on the outcomes of τmax + 1 statistical tests, and to maintain690

a desired bound on the probability of type I error for each edge in the summary graph, we need to691

account for multiple comparisons across lags.692
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Formally, for each edge Xi → Xj in the final graph, the null hypothesis (i.e., lack of a direct693

causal effect from Xi to Xj) can be formulated as694

H0 = H0,0 ∩H0,1 ∩ · · · ∩H0,τmax =
τmax⋂
τ=0

H0,τ ,

H0,τ = {Xi(t− τ) ̸→ Xj(t)}.

Let pτ denote the p-value of the partial correlation test between Xi(t− τ) and Xj(t) and αlevel695

denote the significance threshold for each partial correlation test. Then, the probability of type I696

error is697

P(Type I Error) = P
( τmax⋃

τ=0

{pτ < αlevel}
∣∣∣ τmax⋂

σ=0

H0,σ

)
Note that this is different from the family-wise error rate (FWER, bounded by the Bonferroni698

method and its extensions) or the false discovery rate (FDR). In particular, this is different from699

FWER in that only one decision is made and the probability of error is computed for that single700

decision only. So, for instance, if in reality any subset (even one) of {H0,τ} is false and the701

algorithm rejects any subset (even all) of {H0,τ}, there is no type I error, as an edge exists from702

Xi to Xj both in the data-generating process and in the final summary graph.703

The type I error can then be bounded as704

P (Type I Error) = P
( τmax⋃

τ=0

{pτ < αlevel}
∣∣∣ τmax⋂

σ=0

H0,σ

)
≤

τmax∑
τ=0

P
(
{pτ < αlevel}

∣∣∣ τmax⋂
σ=0

H0,σ

)

=
τmax∑
τ=0

P
(
{pτ < αlevel} ∩

⋂τmax

σ=0 H0,σ

)
P
(⋂τmax

σ=0 H0,σ

) ≤
τmax∑
τ=0

P
(
{pτ < αlevel} ∩ H0,τ

)
P
(⋂τmax

σ=0 H0,σ

)
=

τmax∑
τ=0

P (H0,τ )

P
(⋂τmax

σ=0 H0,σ

) P
(
{pτ < αlevel} ∩ H0,τ

)
P (H0,τ )

= αlevel

τmax∑
τ=0

P (H0,τ )

P
(⋂τmax

σ=0 H0,σ

)
(3)
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The last expression has no dependence on the data and depends only on the prior distribution705

we consider on graphs. Assuming a uniform prior, P (H0,τ ) = 1/2. Further,706

P
( τmax⋂

σ=0

H0,σ

)
= P (H0,0|H0,1 ∩ · · · ∩H0,τmax) · · ·P (H0,τmax−1|H0,τmax) · P (H0,τmax)

We assume a prior where knowledge of the lack of an edge from Xi to Xj at one lag either707

increases the probability of lack of an edge between them at other lags or, at least, does not708

decrease it (independence across lags). Then,709

P
( τmax⋂

σ=0

H0,σ

)
≥ P (H0,0) · · ·P (H0,τmax−1) · P (H0,τmax) =

(1
2

)τmax+1

Putting everything together, we get710

P (Type I Error) ≤ αlevel
(τmax + 1)/2

(1/2)τmax+1
= αlevel(τmax + 1)2τmax .

Note, for analogy, that the correction factor (τmax + 1)2τmax takes place of the factor (τmax + 1) in711

a corresponding Bonferroni correction. To have P (Type I Error) less than a prescribed threshold712

α, we choose713

αlevel =
α

(τmax + 1)2τmax
(4)

In our experiments with the HCP data, we have τmax = 3 and α = 0.01, giving a per-lag714

significance threshold of αlevel ≃ 0.0003. This is notably smaller than the Alpha Level values that715

maximized F1 scores in simulated Macaque Full data (0.1 for adjacency F1 score and 0.01 for F1716

score), and is due to the conservative nature of this correction for temporal multiple comparisons.717

Computing Functional Graphs718

In order to calculate the functional graphs for each subject, we consolidated the data from the four719

sessions of each subject in the HCP and computed the pairwise correlations among all pairs of720

parcels. To form a binary functional graph, we placed an edge between any two parcels721

displaying a statistically significant correlation coefficient (p < 0.01, t-test for Pearson correlation722

coefficient).723

Hyperparameter Selection724
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All the methods we described in Table 1 have at least one main hyperparameter that significantly725

affects the end result, particularly in terms of edge density. These include ‘PC Alpha’ and ‘Alpha726

Level’ for PCMCI, ‘PC Alpha’ for PCMCI+, ‘Alpha’ for VARLINGAM, DYNOTEARS, and727

MVGC, and FASK, and ’BIC Coefficient’ for DGlearn. These hyperparameters were swept over728

(simultaneously for PCMCI) using the simulated data and selected such that the F1 score with the729

ground truth graph is maximized in each case. This process was repeated for all algorithms and730

all experiments (simple graphs, Macaque SmallDegree, Macaque Full). Performance metrics731

such as Recall, Precision, and F1 scores of each method for a range of their hyperparameters are732

shown in Supplementary Figures 6-12 for the simulated Simple Network graphs, in733

Supplementary Figures 20-24 for the simulated Macaque SmallDegree data, and in734

Supplementary Figures 31-38 for the simulated Macaque Full data.735

Time-series algorithms (PCMCI, PCMCI+, VARLiNGAM, DYNOTEARS) also have a736

hyperparameter controlling the number of lags used for causal discovery. Based on our prior737

work (Nozari et al., 2023), we set this value to 3 for the HCP data (TR = 0.72s), and confirmed its738

sufficiency based on the contributions of higher-order lags (Figure 6a). For the simulated data,739

(TR = 1.2s), we used a maximum lag of 2 to match its slower sampling.740

Computing F1 Scores, Degrees, and Causal Flows741

In our experiments using simulated fMRI data, access to ground truth graphs allows for742

evaluating the performance of causal discovery methods. In this work, we evaluate causal743

discovery algorithms as binary classifiers deciding the presence or lack of n2 edges among n744

nodes. This allows us to evaluate algorithms using standard classification metrics such as745

precision, recall, and F1 score (Davis & Goadrich, 2006; Fawcett, 2006; Powers, 2020; Sokolova746

& Lapalme, 2009; Tharwat, 2020). Given that the F1 score provides a balanced trade-off between747

precision and recall, we use it as our measure of accuracy. We define two separate metrics, (full)748

F1 score and adjacency F1 score. For the former, each of the n2 edges (including any self-loops749

due to dampening autocorrelation for each node) in the graph is considered as one test sample for750

classification. In the latter, the ground-truth and learned graphs are first transformed into an751

undirected graph, placing an edge between two nodes if a directed edge existed in at least one752
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direction. The resulting
(
n
2

)
possible edges are then treated as test samples for classification and753

computation of adjacency F1 score.754

To determine the degree and causal flow of a node i in a binary directed graph, its in-degree755

(number of edges pointing toward node i) and out-degree (number of edges originating from node756

i) are first computed and normalized by the total number of nodes in the graph. The degree of757

node i is then computed as the sum of the out-degree and in-degree, while the causal flow is758

obtained by subtracting the in-degree from the out-degree. The same process is followed for759

weighted graphs except that the calculation of in-degree and out-degree involves a weighted760

mean. Mathematically,761

Causal F low (i) =
1

N

N∑
j=1

G(i, j)− 1

N

N∑
j=1

G(j, i) , i = 1, 2, ..., N

Degree (i) =
1

N

N∑
j=1

G(i, j) +
1

N

N∑
j=1

G(j, i) , i = 1, 2, ..., N

where G denotes the graph’s (binary or weighted) adjacency matrix.762

Computing Subnetwork Graphs from Parcel-Level Graphs763

Subnetwork graphs were computed by aggregating parcel-level binary graphs into graphs764

between 16 subnetworks. These subnetworks consist of the standard 7 resting-state765

subnetworks (Yeo et al., 2011) plus one subcortical subnetwork, separately for the left and right766

hemispheres. A subnetwork-level graph is then computed for each subject, whereby the weight of767

an edge from subnetwork i to j is the number of nodes in subnetwork i that connect to nodes in768

subnetwork j, normalized by the number of all possible edges between these subnetworks. The769

results are then averaged over the subject, as depicted in Supplementary Figure 51.770

Computing771

All the computations reported in this study were performed on a Lenovo P620 workstation with772

AMD 3970X 32-Core processor, Nvidia GeForce RTX 2080 GPU, and 512GB of RAM.773

SUPPORTING INFORMATION
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All the fMRI data used in this work is publicly available. The simulated fMRI benchmarks can be774

downloaded from https://github.com/cabal-cmu/Feedback-Discovery and the775

human fMRI data can be accessed via the HCP S1200 Release at776

https://www.humanconnectome.org/study/hcp-young-adult/document/777

1200-subjects-data-release. The Python code for this study is publicly available at778

https://github.com/nozarilab/2023Arab CaLLTiF.779
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TECHNICAL TERMS

Causal Discovery: The process of identifying causal relationships between variables from787

observational data, namely, determining how changing the value of each variable causally788

influences others.789

Contemporaneous Causal Effect: A causal relationship occurring within the same790

observation interval when the underlying causal processes are faster than the rate of sampling.791

Causal Flow: The net difference between outgoing and incoming edges in a causal graph,792

indicating whether a node is a source (positive causal flow) or a sink (negative causal flow).793
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Partial Correlation: A statistical measure assessing the direct linear association between two794

variables after regressing out the effects of a set of conditioned variables.795

Conditional Independence Test: A statistical test that evaluates whether two variables are796

independent after conditioning on the influence of one or more other variables. Partial correlation797

is a common method for testing conditional independence in linear models.798

Type I Error: In the context of binary decisions, the incorrect rejection of a true null799

hypothesis, a.k.a. a false positive.800

Correction for Multiple Comparisons: The process of adjusting statistical tests to reduce the801

risk of Type I errors when multiple hypotheses are tested simultaneously.802

F1 Score: A balanced performance metric for binary classification, combining precision and803

recall into a single value that penalizes both false positives and false negatives.804

Subnetwork-Level Graph: A low-dimensional graph in which nodes represent805

functionally-clustered subnetworks of parcels and edges represent average connectivity between806

parcels in two subnetworks.807

Hemispheric Laterality: The asymmetry in the distribution of a variable between the two808

brain hemispheres.809
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