

1 A vast repertoire of secondary metabolites influences community

2 dynamics and biogeochemical processes in cold seeps

Xiyang Dong^{1, 2 # *}, Tianxueyu Zhang^{3, 4 #}, Weichao Wu⁵, Yongyi Peng^{1, 6},
Xinyue Liu¹, Yingchun Han¹, Xiangwei Chen¹, Zhizeng Gao⁶,
Jinmei Xia^{1*}, Zongze Shao^{1 *}, Chris Greening⁷

¹ Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China

² Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China

¹⁰ ³ School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China

⁴ Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310005, China

⁵ Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Science, Shanghai Ocean University, Shanghai 201306, China

¹⁵ ⁶ School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China

⁷ Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia

Correspondence can be addressed to Liyang Dong (dongliyang@tio.org.cn), Jiajia Xia (xiajinmei@tio.org.cn) or Zongze Shao (shaozz@163.com).

22 Abstract

23 In deep sea cold seeps, diverse microbial communities thrive on the geological
24 seepage of hydrocarbons and inorganic compounds. These chemosynthetically-driven
25 communities are unique in composition, ecology, and biogeochemical activities
26 compared to photosynthetically-driven ecosystems. However, their biosynthetic
27 capabilities remain largely unexplored. Here, we analyzed 81 metagenomes, 33
28 metatranscriptomes, and seven metabolomes derived from nine globally distributed
29 areas of cold seeps to investigate the secondary metabolites produced by cold seep
30 microbiomes. Cold seep microbiomes encode diverse, abundant, and novel
31 biosynthetic gene clusters (BGCs). Most BGCs are affiliated with understudied
32 bacteria and archaea, including key mediators of methane and sulfur cycling, and
33 multiple candidate phyla. The BGCs encode diverse antimicrobial compounds (e.g.
34 NRPS, PKSs, RiPPs) that potentially shape community dynamics, as well as
35 compounds predicted to influence biogeochemical cycling, such as phosphonates,
36 iron-acquiring siderophores, nitrogenase-protecting glycolipids, and methyl-CoM
37 reductase-modifying proteins. BGCs from key players in cold seeps are widely
38 distributed and highly expressed, with their abundance and expression levels varying
39 with different sediment depths. Numerous unique natural products were detected
40 through untargeted sediment metabolomics, demonstrating a vast, unexplored
41 chemical space and validating *in situ* expression of the BGCs in cold seep sediments.
42 Overall, these results demonstrate cold seep sediments potentially serve as a reservoir
43 of hidden natural products and provide insights into microbial adaptation in
44 chemosynthetically-driven ecosystems.

45 **Introduction**

46 Deep sea cold seeps are unique and extraordinary ecosystems primarily located at
47 continental margins. These seepages originate from the upward migration of
48 hydrocarbon-rich fluids (mainly methane) through submarine microfractures^{1, 2}.
49 Chemosynthetic microbial consortia transform these geologically-derived
50 hydrocarbons and inorganic compounds into biomass. Particularly dominant are
51 anaerobic methane-oxidizing archaea (ANME) that live syntrophically with sulfate-
52 reducing bacteria (SRB)³. Due to these activities, cold seeps are hotspots of biomass
53 and diversity in the deep sea⁴, harbouring compositionally and functionally unique
54 microbial communities^{5, 6}. Nevertheless, extensive competition for resources and
55 space in these sediments exerts strong eco-evolutionary pressures⁷⁻⁹. Thus, microbes
56 employ a plethora of strategies to adapt to these unique environments.

57 Microorganisms encode biosynthetic gene clusters (BGCs) to synthesize natural
58 products (NPs), also known as secondary or specialised metabolites (SMs). Microbes
59 collectively produce an extraordinary array of NPs, which vary in their chemical
60 structures, biosynthesis pathways, and physiological functions, many of which have
61 pharmaceutical applications¹⁰⁻¹². The major classes produced include ribosomally
62 synthesized and post-translationally modified peptides (RiPPs), polyketide synthases
63 (PKSs), non-ribosomal synthetic peptides (NRPS), PKS-NRPS hybrids, and terpenes.
64 Many NPs have antimicrobial properties: microbes employ them as biological
65 weapons¹³⁻¹⁵ to kill or inhibit competition, protect the host cells from predators and
66 pathogens¹⁶, and gain a competitive advantage in nutrients and space¹⁷. However, NPs
67 also enable microbes to adapt to their environments in other ways. For example,
68 siderophores enhance iron transport and bioavailability in cells¹⁸, aryl polyenes (APEs)
69 covalently attached in biofilms protect cells from damage caused by reactive oxygen
70 species (ROS)¹⁹, and compatible solutes protect against osmotic stress²⁰. In addition
71 to facilitating environmental adaptation of microbes, NPs more broadly contribute to
72 the evolutionary pressures and ecological dynamics shaping ecosystems²¹⁻²³.

73 Comparative genomics data indicate that numerous unknown and hidden NPs remain
74 to be discovered in uncultivated bacteria and archaea²⁴⁻²⁶. Several tools are available
75 to analyze the secondary metabolic potential of these uncultured microorganisms,
76 such as antiSMASH²⁷, DeepBGC²⁸, SanntiS²⁹, and GECCO³⁰; these identify BGCs by
77 searching homologues of core biosynthetic genes or via utilization of deep learning
78 and natural language processing (NLP) strategy^{29, 31, 32}. Seminal studies in this area
79 focused on soil ecosystems and emphasized that both well-known antimicrobial
80 producers (i.e. Actinobacteriota) and understudied phyla (e.g. Acidobacteriota and
81 Verrucomicrobiota) dominate NP biosynthesis^{24, 31}. More recent studies have
82 examined the production of bioactive NPs by the microbiota of plants and animals in
83 recent years, such as in the human and animal digestive tracts^{33, 34}, plant
84 rhizospheres³⁵ and marine sponges³⁶, and highlighted their importance in regulating
85 health and disease within their hosts. BGC repertoires have been explored in
86 numerous other environments, spanning global seawaters^{37, 38}, anoxic basins³⁹, coastal
87 marine sediments⁴⁰, Antarctic deserts⁴¹, and glaciers⁴², as well as engineered biomes⁴³.
88 However, the secondary metabolite potential of the deep biosphere and
89 chemosynthetically-driven ecosystems such as cold seeps has largely been overlooked.
90 Most NP research has also focused on bacteria, with minimal ecosystem-level
91 research on the potential of archaea to produce secondary metabolites⁴⁴.

92 In this study, we addressed these knowledge gaps by performing an in-depth analysis
93 of the BGCs encoded by microorganisms and their synthesized NPs in global cold
94 seeps. To do so, we analyzed metagenomics, metatranscriptomics, and metabolomics
95 datasets from nine cold seeps (**Figure 1 and Supplementary Table 1**). By integrating
96 these data, we identified a wide variety of microbial BGCs from 2,479 metagenome-
97 assembled genomes (MAGs), including multiple uncultivated (candidate) bacterial
98 and archaeal phyla. We also detected numerous novel NPs through mass spectrometry.
99 These findings enhance understanding of the adaptive mechanisms and interspecies
100 competition of microbial communities in the deep biosphere. Moreover, they provide
101 a pathway to identify new antimicrobial compounds and other types of drugs.

102 Results and Discussion

103 Cold seep microbiomes harbor diverse and unique BGCs

104 We investigated the biosynthetic potential of the cold seep microbiome at global scale
105 by first analyzing 2,479 previous constructed metagenome-assembled genomes
106 (MAGs; 1,992 bacterial, 487 archaeal) spanning 89 phyla^{7, 45} (**Figure 1**,
107 **Supplementary Figure 1 and Supplementary Table 2**). A total of 2,865 BGCs
108 (longer than 10 kb; 2,627 bacterial and 238 archaeal) were predicted (**Figure 2a, b**
109 **and Supplementary Table 3**). These BGCs encoded for seven of the eight BiG-
110 SCAPE classes⁴⁶: ribosomally synthesized and post-translationally modified peptides
111 (RiPPs, n = 580), terpenes (n = 480), non-ribosomal peptides (NRPS, n = 444), type I
112 polyketide synthases (PKSI, n = 117), other polyketide synthases (Other PKSs, n =
113 353), polyketide-non-ribosomal peptide combinations (PKS-NRPS hybrids, n = 19),
114 and Others (n = 872). In line with other studies^{39, 41, 43, 47}, multiple incomplete BGCs
115 were retrieved at the end of metagenomic contigs.

116 BGCs were identified in MAGs retrieved from most phyla, namely 11 of 16 archaeal
117 phyla and 52 out of 73 bacterial phyla (**Supplementary Table 3**). For bacteria
118 (**Figure 2c**), the most BGC-rich phyla are highly understudied^{44, 48, 49}: the candidate
119 phylum SZUA-182 (normalized counts of up to 12), Myxococcota (n ≈ 6) and
120 DSWW01 (n ≈ 6). In agreement with their prevalence in cold seep sediments (**Figure**
121 **1b and Supplementary Figure 1**) and known capacity to produce specialized
122 metabolites^{7, 44, 48}, MAGs from phyla of Proteobacteria, Acidobacteriota,
123 Planctomycetota, Desulfobacterota and Bacteroidota also encoded numerous
124 biosynthetic gene clusters (**Figure 2c and Supplementary Table 3**). For archaea,
125 EX4484-52 and Micrarchaeota from the DPANN superphylum (n ≈ 2) were the most
126 BGC-rich (**Figure 2d**), in agreement with other observations⁴⁴. Thermoproteota,
127 Halobacteriota, Asgardarchaeota, Thermoplasmatota, Altarchaeota, Hadarchaeota,
128 Nanoarchaeota, PWEA01, and QMZS01 were also inferred to encode RiPPs,

129 Terpenes, NRPS, polyketide synthases and other NPs.

130 The 2,865 BGCs clustered into 296 gene cluster families (GCFs) and 1,990 singletons
131 (**Figure 2e**) based on BiG-SCAPE groupings⁴⁶. Only three of the 2,865 cold seep
132 BGCs grouped into GCFs together with reference BGCs⁵⁰, specifically two NRPS
133 (GCF_00393 and GCF_02819) and Other PKSs (GCF_01844). Most BGCs have
134 unique structures and fewer similarity region modules (5-25%) compared to reference
135 BGCs, and more are individually dispersed in the network (e.g. the 19 BGCs from
136 PKS-NRPS hybrids; **Supplementary Figure 2**). We further compared the cold seep
137 sediment BGCs with those from 16 other habitats (**Supplementary Figure 3**),
138 including three artificial environments (bioreactors and wastewater), six host-
139 associated environments (e.g. rumen and human gut), and seven natural environments
140 (e.g. soil, freshwater and seawater)^{24, 34, 41, 43, 51}. These data showed the relative
141 proportions and dominant types of BGCs differ in cold seep sediments from other
142 environments (**Supplementary Figure 3**), further highlighting the uniqueness of the
143 deep biosphere.

144 **Natural products likely influence community dynamics and biogeochemical**
145 **processes in cold seeps**

146 We analyzed the potential function of the NPs based on wider integration with the
147 literature. A large proportion of the BGCs likely encode for antimicrobial compounds,
148 serving as chemical weapons for host defense and competition within the microbial
149 community. Indeed, the most frequently predicted RiPPs were bacteriocins (**Figure 3a**
150 **and Supplementary Table 3**), which bacteria typically produce to inhibit and thereby
151 outcompete other, often closely related, bacteria⁵². Also abundant were BGCs for
152 various types of peptides, such as lasso peptides, thiopeptides, and lanthipeptides,
153 which often have antimicrobial activities⁵³. Among them, thiopeptides, also known as
154 thiazolyl peptides, are structurally complex natural products with exquisite
155 antibacterial activities and ability to overcome antibiotic resistance⁵⁴. For the class of

156 Others (**Figure 3a**), aryl polyenes and beta-lactones were at high prevalence,
157 indicating cold seep microbes synthesize NPs both for antimicrobial warfare and
158 wider purposes such as protection against environmental stresses³⁷. For example,
159 exposure of cells to oxidative and reductive stress in high hydrostatic pressure cold
160 seep environments can lead to the production of excess ROS, potentially causing
161 cellular damage^{55, 56}. The antioxidant action of aryl polyenes (APEs, like carotenoids)
162 in microbes can scavenge external ROS, thereby preventing more extensive damage
163 to essential cellular molecules and increasing bacterial fitness^{19, 57}.

164 The NPs are also likely to be critical for the capacity of cold seep microbes to acquire
165 nutrients and mediate biogeochemical cycling. For example, most diazotrophs with
166 the phylum Desulfobacterota^{58, 59} (Desulfobacterales, Desulfatiglandales, C00003060
167 or SEEP-SRB1c and Syntrophales, **Figure 3b**) encoded heterocyst glycolipid
168 synthase-like PKS (HglE-KS), which contributes to the synthesis of heterocyst-
169 specific glycolipids (Hgls) to protect nitrogenase from oxygen damage^{60, 61}. Six
170 archaeal and 13 bacterial phyla also encoded BGCs to produce phosphonates (**Figure**
171 **3c**), which have diverse structural, antimicrobial, and storage roles and are central to
172 marine phosphorus cycling⁶². Certain taxa, including multiple Gemmatimonadota
173 MAGs (**Figure 3d**), encode siderophores to scavenge the presumably limiting
174 micronutrient iron⁶³.

175 Also notable are the BGCs encoded by Halobacteriota, the main players of anaerobic
176 oxidation of methane occurring in cold seeps⁷. A total of 62 TfuA-related BGCs
177 (**Figure 3e**) were encoded by the orders Methanosaecinales, Methanomicrobiales,
178 Methanotrichales, and ANME-1 from this phylum. These gene clusters encode TfuA-
179 like and YcaO proteins⁶⁴ that mediate the post-translational modification of methyl-
180 coenzyme M reductase (MCR)^{65, 66}, a large protein ubiquitous to methanogenic and
181 methanotrophic archaea that catalyzes the anaerobic production and consumption of
182 methane⁶⁶. Indeed, the predicted amino acid sequences of the TfuA-like protein is
183 related to the McrA-glycine thioamidation proteins (**Supplementary Figure 4**).

184 Structural predictions confirmed that these cold seep proteins are identical in
185 secondary and tertiary structure to experimentally determined thioamidation proteins⁶⁵
186 and form the required substrate-binding pockets (**Figure 3f, 3g, and Supplementary**
187 **Figure 5**). Thus, we predict that cold seep Halobacteriota encode YcaO and Tfua
188 proteins to help catalyse the thioamidation of the MCR, thereby enabling anaerobic
189 methane oxidation.

190 **BGCs from key players in cold seeps are widely distributed, highly expressed,**
191 **and depth stratified**

192 At the ecosystem level, the BGCs from the 63 different phyla were encoded in at least
193 one cold seep site, though their abundance and occupancy varied (**Figure 4a,**
194 **Supplementary Figure 6 and Supplementary Table 4**). Gene-centric surveys
195 suggested that the phosphonate biosynthesis gene from Caldtribacteriota
196 (ENP_sbin_8_3) was the most abundant across different samples. Notably, the
197 abundance of BGCs in Asgardarchaeota, Hadarchaeota, Halobacteriota,
198 Thermoproteota, Actinobacteriota, Aerophobota, Caldtribacteriota, Desulfobacterota,
199 and UBA6262 were also globally high across different sites, with the mean abundance
200 greater than 500 GPM (**Figure 4b; see Methods**). For archaea, a high abundance of
201 BGCs from Halobacteriota, Asgardarchaeota, Thermoproteota, and Thermoplasmatota
202 were observed across globally distributed cold seep sediments in almost every depth.

203 Metatranscriptome analyses confirmed expression of BGCs from various
204 microorganisms at different sites and depths (**Figure 4c, Supplementary Figure 7**
205 **and Supplementary Table 5**). For example, 42 bacterial (>80%) and 7 archaeal
206 phyla (>63%) expressed BGCs in the Jiaolong cold seep sediments. In bacteria, BGC
207 expression was dominated by Actinobacteriota, Bipolaricauota, Chloroflexota,
208 Desulfobacterota, and WOR-3 (**Supplementary Figure 7**), especially biosynthesis
209 genes for bacteriocins, beta-lactones, aryl polyenes, and polyketides with inferred
210 antibiotic and oxidative stress resistance activities³⁹. For example, these genes were

211 highly expressed in Haima cold seep sediments (HM5 and S11), especially those for
212 T3PKS (up to 932,163 TPM; **see Methods**) and aryl polyene (up to 842,651 TPM)
213 synthesis (**Figure 4c**). The genes to produce nitrogenase-protecting glycopeptides (up
214 to 171,389 TPM in Desulfobacterales), siderophores (up to 201 TPM in
215 Longimicrobiales) and phosphonates (up to 54,264 TPM in SB-45) were also
216 expressed (**Figure 3h**). Among archaea, we also observed a high expression of
217 various Halobacteriota BGCs, including thiopeptides associated with antimicrobial
218 defenses (up to 502,455 TPM in ANME-1) and TfuA-related genes for methyl-CoM
219 reductase biosynthesis (up to 172,569 TPM in Methanosaecinales).

220 To determine the distribution characteristics of biosynthetic gene clusters, each
221 metagenome was categorized in terms of its sediment depth (i.e. surface, <1 mbsf;
222 shallow, 1–10 mbsf; deep, >10 mbsf). BGC compositions were stratified by depth
223 (**Figure 4d**), with significantly differences being observed among surface, shallow
224 and deep layers ($p = 0.001$, $R = 0.459$, 999-permutations test). Likewise, we
225 observed depth-related differences in BGC expression (**Supplementary Figure 7**). In
226 general, very few BGC transcripts were detected at deeper sediment sites, though
227 some transcripts were still highly expressed such as a lasso peptide biosynthesis gene
228 (up to 482,852 TPM) at QDN W01B and W03B sites.

229 **Sediment metabolomes confirm BGC expression and NP novelty**

230 To generate chemical evidence that confirms the presence of diverse secondary
231 metabolites, we utilized untargeted mass-spectrometry-based metabolomics to
232 examine metabolomes in the sediment samples of Qiongdongnan cold seeps (QDN;
233 **Figure 1**) at depths of 0–30 cmbsf. This resulted in the identification of 9,145
234 lipophilic and 1,061 hydrophilic molecular features based on MS/MS spectra
235 comparisons with the GNPS online platform⁶⁷ (**Figure 5a, Supplementary Tables 6**
236 **and 7**). A total of 3,054 molecular features (29.9%) were shared between more than
237 two depths. Most other metabolites were only detected in sediment at a specific depth

238 (Supplementary Figures 8-9), suggesting spatial stratification of cold seep sediment
239 metabolomes. Like BGCs detected in the metagenomes, the generated molecular
240 networks (Figure 5b and Supplementary Figure 8) displayed a significant number
241 of singleton nodes (5145, 50.4%), suggesting that a substantial amount of structurally
242 dissimilar compounds were detected.

243 Despite extensive manual inspection, different database searches, and other
244 cheminformatic predictions, most detected molecular features in QDN sites could not
245 be matched with known compounds⁶⁸⁻⁷⁰. A total of 778 molecular features (Figure 5)
246 were classified into thirteen classes by the initial structural predictions based on
247 MS/MS spectra comparisons with chemical structure databases (including HMDB,
248 SUPNAT, CHEBI, DRUGBANK, and FooDB) by the MolNetEnhancer workflow⁷⁰.
249 This suggests that most molecular features remain unidentified and there is a vast,
250 unexplored chemical space associated with sediment metabolomes in cold seeps. The
251 773 annotated lipophilic molecular features were classified into twelve classes
252 (Figure 5b and Supplementary Table 7), with 436 being identified as peptides,
253 including 356 cyclic peptides (cyclopeptides) and 80 oligopeptides.

254 A total of 68 hydrophilic and 462 lipophilic compounds were predicted with the
255 database Natural Products Atlas by SNAP-MS⁷¹ (Supplementary Tables 8 and 9). A
256 range of peptides were predicted in the lipophilic network (Figure 5c and
257 Supplementary Table 10), including cyclic hexapeptides and octapeptides, the
258 antimicrobial compound champacyclin⁷², and the proteasome inhibitors phepropeptin
259 B and D^{73, 74} (Figure 5c). Nostamides (Figure 5c and Supplementary Figure 10),
260 predicted to be synthesised by 16 NRPS biosynthetic gene clusters from five phyla
261 (Calditrichota, Chloroflexota, Cloacimonadota, Planctomycetota and Proteobacteria),
262 were also identified. These cyclic hexapeptides, also known as anabaenopeptins, can
263 be potent inhibitors of blood clot stabilizing carboxypeptidases⁷⁵. Besides, there were
264 other classes of bioactive natural products (Figure 5d and 5e), such as macrolides,
265 bahamaolide A with antifungal activity⁷⁶ and oligomycin A with cytotoxicity⁷⁷.

266 **Conclusions**

267 This meta-omic study, bridging metagenomic, metatranscriptomic, and metabolomic
268 analysis, suggests a vast diversity of natural products are produced in an
269 underexplored deep-sea chemosynthetic ecosystem. BGCs were encoded by 63
270 microbial phyla from nine seeps, with 7 archaeal and 42 bacterial phyla expressing
271 these genes in at least one sampling location. In turn, this expands our knowledge of
272 the biosynthetic potential of uncultivated anaerobic microbes, especially the rarely
273 investigated archaeal domain^{39, 78, 79}. The derived natural products likely influence
274 community dynamics, for example through their inferred roles in antimicrobial
275 warfare, oxidative stress defences, and potentially biofilm formation, but also likely
276 also influence biogeochemical cycling for example through their roles in facilitating
277 methyl-CoM reductase biosynthesis in anaerobic methanotrophic archaea. Together,
278 the metagenomic and metabolomic analysis suggest these microorganisms synthesize
279 many unknown metabolites, though it is challenging with current understanding to
280 accurately predict what NPs are synthesized from BGCs. Further biochemical analysis,
281 for example through heterologous expression of BGCs and production of NPs, will be
282 required to gain a more comprehensive understanding of these links and explore the
283 pharmaceutical potential of the cold seep metabolome.

284

285 **Methods**

286 **Collection of metagenomes, metatranscriptomes and MAGs**

287 For this study, the 81 metagenomes and 33 metatranscriptomes used were derived
288 from nine globally distributed cold seeps (**Figure 1a and in Supplementary Table 1**).
289 These sites are as follows: Eastern Gulf of Mexico (EGM), Northwestern Gulf of
290 Mexico (GOM), Scotian Basin (SB), Haima seep (HM1, HM3, HM5, S11, SY5, SY6),
291 Haiyang4 (HY4), Site F cold seep (SF), Qiongdongnan Basin (QDN), Shenhua area

292 (SH), and Jiaolong cold seep (JL). Detailed descriptions of the sampling sites and
293 sequencing information for the metagenomic and metatranscriptomic data can be
294 found in our previous work^{7, 45, 58, 80}. Paired-end raw reads were quality-controlled by
295 trimming primers and adapters and filtering out artifacts and low-quality reads using
296 the Read_QC module within the metaWRAP pipeline (v1.3.2; –skip-bmtagger)⁸¹.
297 Clean reads from each sample at individual depths were assembled, and clean reads
298 from each sampling station from all depths were co-assembled, both using MEGAHIT
299 (v1.1.3; default parameters, length > 1000 bp). For each assembly, contigs were
300 binned using the binning module (parameters: –maxbin2 –concoct –metabat2) and
301 consolidated into a final bin set using the Bin_refinement module (parameters: –c 50
302 –x 10) within metaWRAP. The quality of the obtained MAGs was estimated by the
303 lineage-specific workflow of CheckM (v1.0.12)⁸². MAGs estimated to be at least 50%
304 complete and with less than 10% contamination were retained. MAGs reconstructed
305 from individual assemblies and co-assemblies were combined and dereplicated for
306 strains-level clustering using dRep (v3.2.2)⁸³ with an average nucleotide identity (ANI)
307 cutoff value of 99%, resulting in 2,479 strains-level representative MAGs. These
308 MAGs obtained were taxonomically annotated using the GTDB-Tk (v1.5.0)⁸⁴ against
309 Genome Taxonomy Database GTDB (release 06-RS202). Phylogenetic trees produced
310 by GTDB-Tk were uploaded to iTOL (v6.7.5; <https://itol.embl.de/>)⁸⁵ for visualization.

311 **BGCs mining and net-work analysis**

312 BGCs were identified from MAGs using antiSMASH (v5.1.2)²⁷ using the following
313 parameters: -fullhmmer -cb-general -cb-subclusters -cb-knownclusters -genefinding-
314 tool prodigal-m -clusterhmmer -ASF -smcog-trees -pfam2go. Only BGCs on contigs of >
315 10 kb were considered. BiG-SCAPE (v1.1.0)⁴⁶ was run in -auto mode with -mibig
316 enabled to identify BGCs families. Networks using the similarity threshold of 0.3
317 were examined, generating proposed BGC families (Gene Cluster Family, GCF).

318 **Phylogenetic analyses of functional genes**

319 The TfuA-like phylogenetic tree was produced by aligning the predicted TfuA-like
320 protein sequences with 25 reference sequences. All sequences were aligned using
321 MAFFT (v7.505, –auto option)⁸⁶ and gap sequences were trimmed using TrimAl
322 (v1.2.59, –gappyout option)⁸⁷. The maximum likelihood tree was constructed with IQ-
323 Tree (v2.1.2; with best-fit models and 1000 bootstrapped replicates)⁸⁸ on the CIPRES
324 server⁸⁹. Three-dimensional structures of TfuA-like protein sequences were predicted
325 using ColabFold by combining the fast homology search of MMseqs2 with
326 AlphaFold2^{90, 91}.

327 **BGCs abundance calculations and in situ activities**

328 The relative abundance of BGCs across difference metagenomes were calculated from
329 the combined BGC catalog (n = 2,865) with the program Salmon (v1.8.0)⁶² in the
330 mapping-based mode (parameters: -validateMappings -meta). GPM (genes per
331 million) values were used as a proxy for BGC abundance. The ribosomal RNAs in
332 quality-filtered metatranscriptomic reads were removed by comparing with rRNA
333 sequences in the Rfam and Silva databases using SortMeRNA (v4.2.0)⁹².
334 Preprocessed reads were mapped to the combined BGC catalog to generate read count
335 quantification TPM (Transcripts Per Million) of each transcript using Salmon
336 (v1.8.0)⁹³. The sum of all TPM values is the same in all samples and gene expression
337 levels between samples are comparable in principle, but it is noted that the differences
338 in the abundance of some highly expressed genes are likely to affect the relative
339 abundance of all transcripts in a sample, thus may leading to high TPM values of
340 some genes in a sample⁹⁴.

341 **Analysis of metabolites from sediment samples**

342 *Extraction of metabolites from sediment samples.* Metabolite extraction was
343 conducted using established protocols⁶⁸. Hydrophilic and lipophilic metabolites were

344 prepared separately. About two grams of each sediment sample stored at -80 °C were
345 taken and directly suspended in 10 ml of 1:1 dichloromethane/methanol (vol/vol) in a
346 glass tube. The tubes were shaken carefully and sonicated for 10 min. The supernatant
347 was collected. Fresh solvents were added to the tubes twice to repeat the extraction
348 process and all supernatants were combined. The mixtures were filtrated using 0.45
349 µm filters and solvents were then removed by rotary evaporation (30 °C). The
350 obtained crude extracts were redissolved by adding 20 ml of
351 chloroform/methanol/water (2:1:1, vol/vol/vol). The mixtures were vortex-mixed for
352 2 min and centrifuged at 10,000 g for 10 min at 4 °C. Both the upper (water-soluble
353 metabolites) and the bottom phases (lipid-soluble metabolites) were recovered and
354 vacuum-dried using a vacuum evaporator. The hydrophilic and the lipophilic
355 metabolites were reconstituted using 2 ml of acetonitrile/water (1:1, vol/vol) and
356 isopropanol/acetonitrile/water 4:3:1 (vol/vol/vol), respectively. Two reagent blank
357 samples (one hydrophilic and one lipophilic sample) were also prepared using the
358 same procedure while no sediment sample was added in the first step.

359 *Analysis of metabolites samples using LC-MS/MS.* Liquid chromatography tandem-
360 mass spectrometry (LC-MS/MS) analyses were performed on a Vion™ ion-mobility
361 quadrupole time-of-flight mass spectrometer (Waters, MA, USA) with an electrospray
362 interface and coupled with an Acquity UPLC system (Waters, MA, USA). The ESI
363 conditions were as follows: capillary voltage 2500 V, source temperature 120 °C,
364 desolvation temperature 350 °C, cone gas flow 80 L/h, desolvation gas flow of 850
365 L/h. Detection was performed in positive ion mode in the m/z range of 50–2000 with
366 a scan time of 0.2 s. The MS^E acquisition mode, which allows simultaneous
367 acquisition of full scan data (low-energy scan, 6 eV) and collision-induced
368 fragmentation data (high-energy scan, ramp from 25 to 35 eV), was used. Leucine-
369 enkephalin (Sigma–Aldrich, Steinheim, Germany) of 200 ng/mL was used as a
370 reference and was introduced into the system at a flow rate of 10 µl/min. The
371 separation of hydrophilic metabolites was carried out on an ACQUITY UPLC BEH
372 Amide column (2.1 × 150 mm, particle size 1.7 µm). Acetonitrile and water (both

373 with 0.1% (vol/vol) formic acid) were used as mobile phases A and B, respectively.
374 The column temperature was set to 30 °C, the flow rate to 0.4 ml/min, the injection
375 volume to 3 µl, and the autosampler temperature to 10 °C. The following elution
376 gradient was used: 0-6 min, 1 % to 60 % B; 6-8 min, 60 % to 1 % B; and 1% B was
377 kept for 2 min. The gradient was run four times without injecting any sample to
378 equilibrate the column. All samples were diluted ten times before analysis. Lipophilic
379 metabolites were separated on an ACQUITY UPLC CSH C18 column (2.1 × 100 mm,
380 particle size 1.7 µm). Acetonitrile/water (60:40, vol/vol) with 10 mM ammonium
381 formate and 0.1% (vol/vol) formic acid was used as mobile phase A.
382 Isopropanol/acetonitrile (90:10, vol/vol) with 10 mM ammonium formate and 0.1%
383 (vol/vol) formic acid was used as mobile phase B. The column temperature was set at
384 50 °C, the flow rate at 0.4 ml/min, the injection volume at 3 µl, and the autosampler
385 temperature at 10 °C. The following elution gradient was used: 0- 2 min, 40 % to 43 %
386 B; 2–2.1 min, 43 % to 50 % B; 2.1–10 min, 50 % to 54 % B; 10–10.1 min, 54 % to
387 70 % B; 10.1–14 min, 70 % to 99 % B; 14–14.1 min, 99 % to 40 % B; and 14.1–16
388 min, kept 40% B. The gradient was run four times without injecting any sample to
389 equilibrate the column.

390 *Metabolite annotation using GNPS platform.* Raw data generated from LC-MS/MS
391 analysis were converted into the mgf format using UNIFI v. 1.8 (Waters). The mgf
392 files were uploaded and deposited in the MassIVE Public GNPS (Global Natural
393 Products Social Molecular Networking) data set (<https://massive.ucsd.edu/>)^{67, 69}.
394 Firstly, the MS/MS data were analyzed with the GNPS pipeline (METABOLOMICS-
395 SNETS) using the following parameters: precursor ion mass tolerance = 0.01 Da,
396 fragment ion mass tolerance = 0.01 Da, minimal pairs cosine = 0.7, minimum
397 matched fragment ions = 6, and minimum cluster size = 1. The options “Search
398 Analogs” was checked. One no-injection blank sample and one reagent blank sample
399 were put in G6 to filter the contaminants and/or noises from UPLC analysis as well as
400 sample preparation procedures. Compounds were identified using the GNPS reference
401 library, which contains over 220,000 curated spectra. Library matches were assigned

402 if they shared at least 6 MS/MS peaks and had a similarity score above 0.7. For all
403 spectral matches, the generated mirror spectra plots were manually investigated.
404 Secondly, the Dereplicator tool⁹⁵ was used for the identification of known peptidic
405 natural products from the generated molecular network. The precursor ion mass
406 tolerance and fragment ion mass tolerance were both set as 0.02 Da. The option
407 “Search Analogs (VarQuest)” was checked. The molecular networks were also
408 subjected to MS2LDA (<http://ms2lda.org/>) workflow^{96, 97}. The bin width was set as
409 0.01. The minimum MS2 intensity and LDA free motifs were set as 100 and 200,
410 respectively. Subsequently, the Network Annotation Propagation (NAP) workflow
411 was used⁹⁸. The following parameters were applied: 10 first candidates for consensus
412 score, accuracy for exact mass candidate search within 15 ppm, and search against
413 structure databases including HMDB, SUPNAT, CHEBI, DRUGBANK, and FooDB.
414 Lastly, the results generated from the above-mentioned workflows were integrated by
415 MolNetEnhancer into the generated molecular network⁷⁰. All the nodes annotated by
416 the library search or in silico prediction were submitted to chemical classification
417 using ClassyFire hierarchical chemical ontology software⁹⁹. The molecular network
418 was then visualized using Cytoscape (v3.8.2)¹⁰⁰. Compound family annotations were
419 also carried out through matching chemical similarity grouping in the Natural
420 Products Atlas to grouping of mass spectrometry features from molecular networks by
421 Structural similarity Network Annotation Platform for Mass Spectrometry (SNAP-
422 MS)⁷¹.

423 **Statistical analyses**

424 All statistical analyses were performed in R (v4.1.3). Beta diversity of biosynthetic
425 gene clusters was calculated using vegan package (v2.5–6)¹⁰¹. Shapiro–Wilk and
426 Bartlett’s tests were employed to test data normality and homoscedasticity prior to
427 other statistical analysis. Non-metric multidimensional scaling (NMDS) was used to
428 reduce dimensionality using the function capscale, based on Bray–Curtis
429 dissimilarities generated with gene abundances (GPM) values using the vegdist

430 function. The groupings of cold seep sediments into three different sample depths
431 (surface: <1 mbsf, shallow: 1-10 mbsf, and deep: >10 mbsf) were individually
432 verified using Analysis of Similarity (ANOSIM), performed with 999 permutations
433 based on Bray–Curtis dissimilarity.

434 **Data availability**

435 MAGs, BGCs and other related information have been uploaded to figshare
436 (10.6084/m9.figshare.23364041). Raw data generated from LC-MS/MS analysis were
437 converted into the mgf format using UNIFI v. 1.8 (Waters). The mgf files were
438 uploaded and deposited in the MassIVE Public GNPS (Global Natural Products
439 Social Molecular Networking) data set (<https://massive.ucsd.edu/>). The accession
440 numbers for polar and nonpolar metabolites data are MSV000090350 and
441 MSV000090349, respectively.

442 **Code availability**

443 The present study did not generate codes, and mentioned tools used for the data
444 analysis were applied with default parameters unless specified otherwise.

445 **References**

- 446 1. Boetius, A. & Wenzhöfer, F. Seafloor oxygen consumption fuelled by methane from cold
447 seeps. *Nature Geoscience* **6**, 725-734 (2013).
- 448 2. Peckmann, J. & Thiel, V. Carbon cycling at ancient methane-seeps. *Chemical Geology* **205**,
449 443-467 (2004).
- 450 3. Knittel, K. & Boetius, A. Anaerobic oxidation of methane: progress with an unknown process.
451 *Annu Rev Microbiol* **63**, 311-334 (2009).
- 452 4. Gibson, R. et al. Ecology of cold seep sediments: Interactions of fauna with flow, chemistry
453 and microbes. *An Annual Review* **43**, 1-46 (2005).
- 454 5. Emil Ruff, S. in *Marine Hydrocarbon Seeps*. (eds. A. Teske & V. Carvalho) 1-19 (Springer
455 International Publishing, Cham; 2020).
- 456 6. Ruff, S.E. et al. Global dispersion and local diversification of the methane seep microbiome.
457 *Proc Natl Acad Sci U S A* **112**, 4015-4020 (2015).
- 458 7. Dong, X. et al. Evolutionary ecology of microbial populations inhabiting deep sea sediments

459 associated with cold seeps. *Nat Commun* **14**, 1127 (2023).

460 8. Peng, Y. et al. Viruses in deep-sea cold seep sediments harbor diverse survival mechanisms
461 and remain genetically conserved within species. *bioRxiv*, 2023.2003.2012.532262 (2023).

462 9. Anderson, R.E. Tracking Microbial Evolution in the Subseafloor Biosphere. *mSystems* **6**,
463 e0073121 (2021).

464 10. Newman, D.J. & Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly
465 Four Decades from 01/1981 to 09/2019. *J Nat Prod* **83**, 770-803 (2020).

466 11. Scherlach, K. & Hertweck, C. Chemical Mediators at the Bacterial-Fungal Interface. *Annu
467 Rev Microbiol* **74**, 267-290 (2020).

468 12. Mullis, M.M., Rambo, I.M., Baker, B.J. & Reese, B.K. Diversity, Ecology, and Prevalence of
469 Antimicrobials in Nature. *Front Microbiol* **10**, 2518 (2019).

470 13. Abrudan, M.I. et al. Socially mediated induction and suppression of antibiosis during bacterial
471 coexistence. *Proc Natl Acad Sci U S A* **112**, 11054-11059 (2015).

472 14. van Bergeijk, D.A., Terlouw, B.R., Medema, M.H. & van Wezel, G.P. Ecology and genomics
473 of Actinobacteria: new concepts for natural product discovery. *Nat Rev Microbiol* **18**, 546-558
474 (2020).

475 15. Wright, E.S. & Vetsigian, K.H. Inhibitory interactions promote frequent bistability among
476 competing bacteria. *Nat Commun* **7**, 11274 (2016).

477 16. Xia, L. et al. Biosynthetic gene cluster profiling predicts the positive association between
478 antagonism and phylogeny in *Bacillus*. *Nat Commun* **13**, 1023 (2022).

479 17. Cornforth, D.M. & Foster, K.R. Antibiotics and the art of bacterial war. *Proc Natl Acad Sci U
480 S A* **112**, 10827-10828 (2015).

481 18. Neilands, J.B. Siderophores. *Arch Biochem Biophys* **302**, 1-3 (1993).

482 19. Johnston, I. et al. Identification of essential genes for *Escherichia coli* aryl polyene
483 biosynthesis and function in biofilm formation. *NPJ Biofilms Microbiomes* **7**, 56 (2021).

484 20. Sadeghi, A. et al. Diversity of the ectoines biosynthesis genes in the salt tolerant *Streptomyces*
485 and evidence for inductive effect of ectoines on their accumulation. *Microbiol Res* **169**, 699-
486 708 (2014).

487 21. Woon, S.A. & Fisher, D. Antimicrobial agents - optimising the ecological balance. *BMC Med*
488 **14**, 114 (2016).

489 22. Junkins, E.N., McWhirter, J.B., McCall, L.-I. & Stevenson, B.S. Environmental structure
490 impacts microbial composition and secondary metabolism. *ISME Communications* **2**, 15
491 (2022).

492 23. Shaffer, J.P. et al. Standardized multi-omics of Earth's microbiomes reveals microbial and
493 metabolite diversity. *Nat Microbiol* **7**, 2128-2150 (2022).

494 24. Crits-Christoph, A., Diamond, S., Butterfield, C.N., Thomas, B.C. & Banfield, J.F. Novel soil
495 bacteria possess diverse genes for secondary metabolite biosynthesis. *Nature* **558**, 440-444
496 (2018).

497 25. Doroghazi, J.R. et al. A roadmap for natural product discovery based on large-scale genomics
498 and metabolomics. *Nat Chem Biol* **10**, 963-968 (2014).

499 26. Cimermancic, P. et al. Insights into secondary metabolism from a global analysis of
500 prokaryotic biosynthetic gene clusters. *Cell* **158**, 412-421 (2014).

501 27. Blin, K. et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline.
502 *Nucleic Acids Res* **47**, W81-W87 (2019).

503 28. Hannigan, G.D. et al. A deep learning genome-mining strategy for biosynthetic gene cluster
504 prediction. *Nucleic Acids Res* **47**, e110 (2019).

505 29. Sanchez, S. et al. Expansion of novel biosynthetic gene clusters from diverse environments
506 using SanntiS. *bioRxiv*, 2023.2005.2023.540769 (2023).

507 30. Carroll, L.M. et al. Accurate *de novo* identification of biosynthetic gene clusters with GECCO.
508 *bioRxiv*, 2021.2005.2003.442509 (2021).

509 31. Medema, M.H., de Rond, T. & Moore, B.S. Mining genomes to illuminate the specialized
510 chemistry of life. *Nat Rev Genet* **22**, 553-571 (2021).

511 32. Salamzade, R. et al. Evolutionary investigations of the biosynthetic diversity in the skin
512 microbiome using lsaBGC. *Microb Genom* **9** (2023).

513 33. Donia, M.S. et al. A systematic analysis of biosynthetic gene clusters in the human
514 microbiome reveals a common family of antibiotics. *Cell* **158**, 1402-1414 (2014).

515 34. Anderson, C.L. & Fernando, S.C. Insights into rumen microbial biosynthetic gene cluster
516 diversity through genome-resolved metagenomics. *Commun Biol* **4**, 818 (2021).

517 35. Mendes, R. et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria.
518 *Science* **332**, 1097-1100 (2011).

519 36. Rust, M. et al. A multiproducer microbiome generates chemical diversity in the marine sponge
520 Mycale hentscheli. *Proc Natl Acad Sci U S A* **117**, 9508-9518 (2020).

521 37. Paoli, L. et al. Biosynthetic potential of the global ocean microbiome. *Nature* **607**, 111-118
522 (2022).

523 38. Schorn, M.A. et al. Sequencing rare marine actinomycete genomes reveals high density of
524 unique natural product biosynthetic gene clusters. *Microbiology (Reading)* **162**, 2075-2086
525 (2016).

526 39. Geller-McGrath, D. et al. Diverse secondary metabolites are expressed in particle-associated
527 and free-living microorganisms of the permanently anoxic Cariaco Basin. *Nat Commun* **14**,
528 656 (2023).

529 40. Tuttle, R.N. et al. Detection of Natural Products and Their Producers in Ocean Sediments.
530 *Appl Environ Microbiol* **85** (2019).

531 41. Waschulini, V. et al. Biosynthetic potential of uncultured Antarctic soil bacteria revealed
532 through long-read metagenomic sequencing. *ISME J* **16**, 101-111 (2022).

533 42. Liu, Y. et al. A genome and gene catalog of glacier microbiomes. *Nat Biotechnol* **40**, 1341-
534 1348 (2022).

535 43. Nayfach, S. et al. A genomic catalog of Earth's microbiomes. *Nat Biotechnol* **39**, 499-509
536 (2021).

537 44. Galal, A. et al. A survey of the biosynthetic potential and specialized metabolites of archaea
538 and understudied bacteria. *Current Research in Biotechnology* **5**, 100117 (2023).

539 45. Han, Y. et al. A comprehensive catalog with 100 million genes and 3,000 metagenome-
540 assembled genomes from global cold seep sediments. *bioRxiv*, 2023.2004.2010.536201 (2023).

541 46. Navarro-Munoz, J.C. et al. A computational framework to explore large-scale biosynthetic
542 diversity. *Nat Chem Biol* **16**, 60-68 (2020).

543 47. Wei, B. et al. Global analysis of the biosynthetic chemical space of marine prokaryotes.
544 *Microbiome* **11**, 144 (2023).

545 48. Gavriilidou, A. et al. Compendium of specialized metabolite biosynthetic diversity encoded in
546 bacterial genomes. *Nat Microbiol* **7**, 726-735 (2022).

547 49. Hoffmann, T. et al. Correlating chemical diversity with taxonomic distance for discovery of
548 natural products in myxobacteria. *Nat Commun* **9**, 803 (2018).

549 50. Medema, M.H. et al. Minimum Information about a Biosynthetic Gene cluster. *Nat Chem Biol*
550 **11**, 625-631 (2015).

551 51. Sharrar, A.M. et al. Bacterial Secondary Metabolite Biosynthetic Potential in Soil Varies with
552 Phylum, Depth, and Vegetation Type. *mBio* **11** (2020).

553 52. Negash, A.W. & Tsehai, B.A. Current Applications of Bacteriocin. *Int J Microbiol* **2020**,
554 4374891 (2020).

555 53. Shen, X., Mustafa, M., Chen, Y., Cao, Y. & Gao, J. Natural thiopeptides as a privileged
556 scaffold for drug discovery and therapeutic development. *Medicinal Chemistry Research* **28**,
557 1063-1098 (2019).

558 54. Vinogradov, A.A. & Suga, H. Introduction to Thiopeptides: Biological Activity, Biosynthesis,
559 and Strategies for Functional Reprogramming. *Cell Chem Biol* **27**, 1032-1051 (2020).

560 55. Poljsak, B., Suput, D. & Milisav, I. Achieving the balance between ROS and antioxidants:
561 when to use the synthetic antioxidants. *Oxid Med Cell Longev* **2013**, 956792 (2013).

562 56. Zhang, Y., Li, X., Bartlett, D.H. & Xiao, X. Current developments in marine microbiology:
563 high-pressure biotechnology and the genetic engineering of piezophiles. *Curr Opin Biotechnol*
564 **33**, 157-164 (2015).

565 57. Schoner, T.A. et al. Aryl Polyenes, a Highly Abundant Class of Bacterial Natural Products,
566 Are Functionally Related to Antioxidative Carotenoids. *Chembiochem* **17**, 247-253 (2016).

567 58. Dong, X. et al. Phylogenetically and catabolically diverse diazotrophs reside in deep-sea cold
568 deep sediments. *Nat Commun* **13**, 4885 (2022).

569 59. Metcalfe, K.S., Murali, R., Mullin, S.W., Connon, S.A. & Orphan, V.J. Experimentally-
570 validated correlation analysis reveals new anaerobic methane oxidation partnerships with
571 consortium-level heterogeneity in diazotrophy. *ISME J* **15**, 377-396 (2021).

572 60. Awai, K., Lechno-Yossef, S. & Wolk, C.P. in Lipids in Photosynthesis. (eds. H. Wada & N.
573 Murata) 179-202 (Springer Netherlands, Dordrecht; 2009).

574 61. Garg, R. & Maldener, I. The Dual Role of the Glycolipid Envelope in Different Cell Types of
575 the Multicellular Cyanobacterium *Anabaena variabilis* ATCC 29413. *Front Microbiol* **12**,
576 645028 (2021).

577 62. Lockwood, S., Greening, C., Baltar, F. & Morales, S.E. Global and seasonal variation of
578 marine phosphonate metabolism. *ISME J* **16**, 2198-2212 (2022).

579 63. Kramer, J., Ozkaya, O. & Kummerli, R. Bacterial siderophores in community and host
580 interactions. *Nat Rev Microbiol* **18**, 152-163 (2020).

581 64. Malit, J.J.L., Wu, C., Liu, L.L. & Qian, P.Y. Global Genome Mining Reveals the Distribution
582 of Diverse Thioamidated RiPP Biosynthesis Gene Clusters. *Front Microbiol* **12**, 635389
583 (2021).

584 65. Liu, A. et al. Functional elucidation of TfuA in peptide backbone thioamidation. *Nat Chem
585 Biol* **17**, 585-592 (2021).

586 66. Nayak, D.D., Mahanta, N., Mitchell, D.A. & Metcalf, W.W. Post-translational thioamidation
587 of methyl-coenzyme M reductase, a key enzyme in methanogenic and methanotrophic
588 Archaea. *Elife* **6** (2017).

589 67. Nothias, L.F. et al. Feature-based molecular networking in the GNPS analysis environment.
590 *Nat Methods* **17**, 905-908 (2020).

591 68. Paglia, G. & Astarita, G. Metabolomics and lipidomics using traveling-wave ion mobility
592 mass spectrometry. *Nat Protoc* **12**, 797-813 (2017).

593 69. Wang, M. et al. Sharing and community curation of mass spectrometry data with Global
594 Natural Products Social Molecular Networking. *Nat Biotechnol* **34**, 828-837 (2016).

595 70. Ernst, M. et al. MolNetEnhancer: Enhanced Molecular Networks by Integrating Metabolome
596 Mining and Annotation Tools. *Metabolites* **9**, E144 (2019).

597 71. Morehouse, N.J. et al. Annotation of natural product compound families using molecular
598 networking topology and structural similarity fingerprinting. *Nature Communications* **14**, 308
599 (2023).

600 72. Pesic, A. et al. Champacyclin, a New Cyclic Octapeptide from Streptomyces Strain C42
601 Isolated from the Baltic Sea. *Marine Drugs* **11**, 4834-4857 (2013).

602 73. Sekizawa, R. et al. Isolation and structural determination of phepropeptins A, B, C, and D,
603 new proteasome inhibitors, produced by Streptomyces sp. *J Antibiot (Tokyo)* **54**, 874-881
604 (2001).

605 74. Kanamori, Y., Iwasaki, A., Sumimoto, S. & Suenaga, K. Urumamide, a novel chymotrypsin
606 inhibitor with a β -amino acid from a marine cyanobacterium Okeania sp. *Tetrahedron Letters*
607 **57**, 4213-4216 (2016).

608 75. Shishido, T.K. et al. Simultaneous Production of Anabaenopeptins and Namalides by the
609 Cyanobacterium Nostoc sp. CENA543. *ACS Chemical Biology* **12**, 2746-2755 (2017).

610 76. Aiken, S.G. et al. Iterative synthesis of 1,3-polyboronic esters with high stereocontrol and
611 application to the synthesis of bahamaolide A. *Nature Chemistry* **15**, 248-256 (2023).

612 77. Lysenkova, L.N., Turchin, K.F., Danilenko, V.N., Korolev, A.M. & Preobrazhenskaya, M.N.
613 The first examples of chemical modification of oligomycin A. *The Journal of Antibiotics* **63**,
614 17-22 (2010).

615 78. Chen, R. et al. Discovery of an Abundance of Biosynthetic Gene Clusters in Shark Bay
616 Microbial Mats. *Front Microbiol* **11**, 1950 (2020).

617 79. Scherlach, K. & Hertweck, C. Mining and unearthing hidden biosynthetic potential. *Nat
618 Commun* **12**, 3864 (2021).

619 80. Zhang, C. et al. Unexpected genetic and microbial diversity for arsenic cycling in deep sea
620 cold seep sediments. *NPJ Biofilms Microbiomes* **9**, 13 (2023).

621 81. Uritskiy, G.V., DiRuggiero, J. & Taylor, J. MetaWRAP—a flexible pipeline for genome-
622 resolved metagenomic data analysis. *Microbiome* **6**, 158 (2018).

623 82. Parks, D.H., Imelfort, M., Skennerton, C.T., Hugenholtz, P. & Tyson, G.W. CheckM: assessing
624 the quality of microbial genomes recovered from isolates, single cells, and metagenomes.
625 *Genome Res* **25**, 1043-1055 (2015).

626 83. Olm, M.R., Brown, C.T., Brooks, B. & Banfield, J.F. dRep: a tool for fast and accurate
627 genomic comparisons that enables improved genome recovery from metagenomes through de-
628 replication. *The ISME Journal* **11**, 2864-2868 (2017).

629 84. Chaumeil, P.A., Mussig, A.J., Hugenholtz, P. & Parks, D.H. GTDB-Tk v2: memory friendly
630 classification with the genome taxonomy database. *Bioinformatics* **38**, 5315-5316 (2022).

631 85. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree
632 display and annotation. *Nucleic Acids Res* **49**, W293-W296 (2021).

633 86. Katoh, K. & Standley, D.M. A simple method to control over-alignment in the MAFFT
634 multiple sequence alignment program. *Bioinformatics* **32**, 1933-1942 (2016).

635 87. Capella-Gutierrez, S., Silla-Martinez, J.M. & Gabaldon, T. trimAl: a tool for automated
636 alignment trimming in large-scale phylogenetic analyses. *Bioinformatics* **25**, 1972-1973
637 (2009).

638 88. Nguyen, L.T., Schmidt, H.A., von Haeseler, A. & Minh, B.Q. IQ-TREE: a fast and effective
639 stochastic algorithm for estimating maximum-likelihood phylogenies. *Mol Biol Evol* **32**, 268-
640 274 (2015).

641 89. Miller, M.A., Pfeiffer, W. & Schwartz, T. in 2010 Gateway Computing Environments
642 Workshop (GCE) 1-8 (2010).

643 90. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. *Nature* **596**, 583-
644 589 (2021).

645 91. Sullivan, M.J., Petty, N.K. & Beatson, S.A. Easyfig: a genome comparison visualizer.
646 *Bioinformatics* **27**, 1009-1010 (2011).

647 92. Kopylova, E., Noe, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal
648 RNAs in metatranscriptomic data. *Bioinformatics* **28**, 3211-3217 (2012).

649 93. Patro, R., Duggal, G., Love, M.I., Irizarry, R.A. & Kingsford, C. Salmon provides fast and
650 bias-aware quantification of transcript expression. *Nat Methods* **14**, 417-419 (2017).

651 94. Zhao, Y. et al. TPM, FPKM, or Normalized Counts? A Comparative Study of Quantification
652 Measures for the Analysis of RNA-seq Data from the NCI Patient-Derived Models Repository.
653 *Journal of Translational Medicine* **19**, 269 (2021).

654 95. Mohimani, H. et al. Dereplication of peptidic natural products through database search of
655 mass spectra. *Nat Chem Biol* **13**, 30-37 (2017).

656 96. Wandy, J. et al. Ms2lda.org: web-based topic modelling for substructure discovery in mass
657 spectrometry. *Bioinformatics* **34**, 317-318 (2018).

658 97. van der Hooft, J.J., Wandy, J., Barrett, M.P., Burgess, K.E. & Rogers, S. Topic modeling for
659 untargeted substructure exploration in metabolomics. *Proc Natl Acad Sci U S A* **113**, 13738-
660 13743 (2016).

661 98. da Silva, R.R. et al. Propagating annotations of molecular networks using in silico
662 fragmentation. *PLoS Comput Biol* **14**, e1006089 (2018).

663 99. Djoumbou Feunang, Y. et al. ClassyFire: automated chemical classification with a
664 comprehensive, computable taxonomy. *J Cheminform* **8**, 61 (2016).

665 100. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular
666 interaction networks. *Genome Res* **13**, 2498-2504 (2003).

667 101. Dixon, P. VEGAN, a package of R functions for community ecology. *Journal of Vegetation
668 Science* **14**, 927-930 (2003).

669

670 **Acknowledgments**

671 The work was supported by the Natural Science Foundation of Fujian Province (No.
672 2023J06042), Scientific Research Foundation of Third Institute of Oceanography,
673 MNR (No. 2022025 and No. 2023022), State Key Laboratory of Marine Geology,
22

674 Tongji University (No. MGK202303), and China Postdoctoral Science Foundation
675 (2023M734096). We thank Chuwen Zhang, Chuan Huang, Max Cryle and Lu Zhang
676 for providing valuable comments.

677 **Author contributions**

678 X.D. designed this study. X.D., T.Z., Y.P., and X.L. performed metagenomic and
679 metatranscriptomic analyses. T.Z., W.W., X.C., J.X., and Z.S contributed to sediment
680 metabolomes. X.D., T.Z., W.W., Y.H., Z.G., J.X., Z.S and C.G. interpreted the data.
681 T.Z., X.D., and C.G. wrote the paper, with input from other authors.

682 **Competing interests**

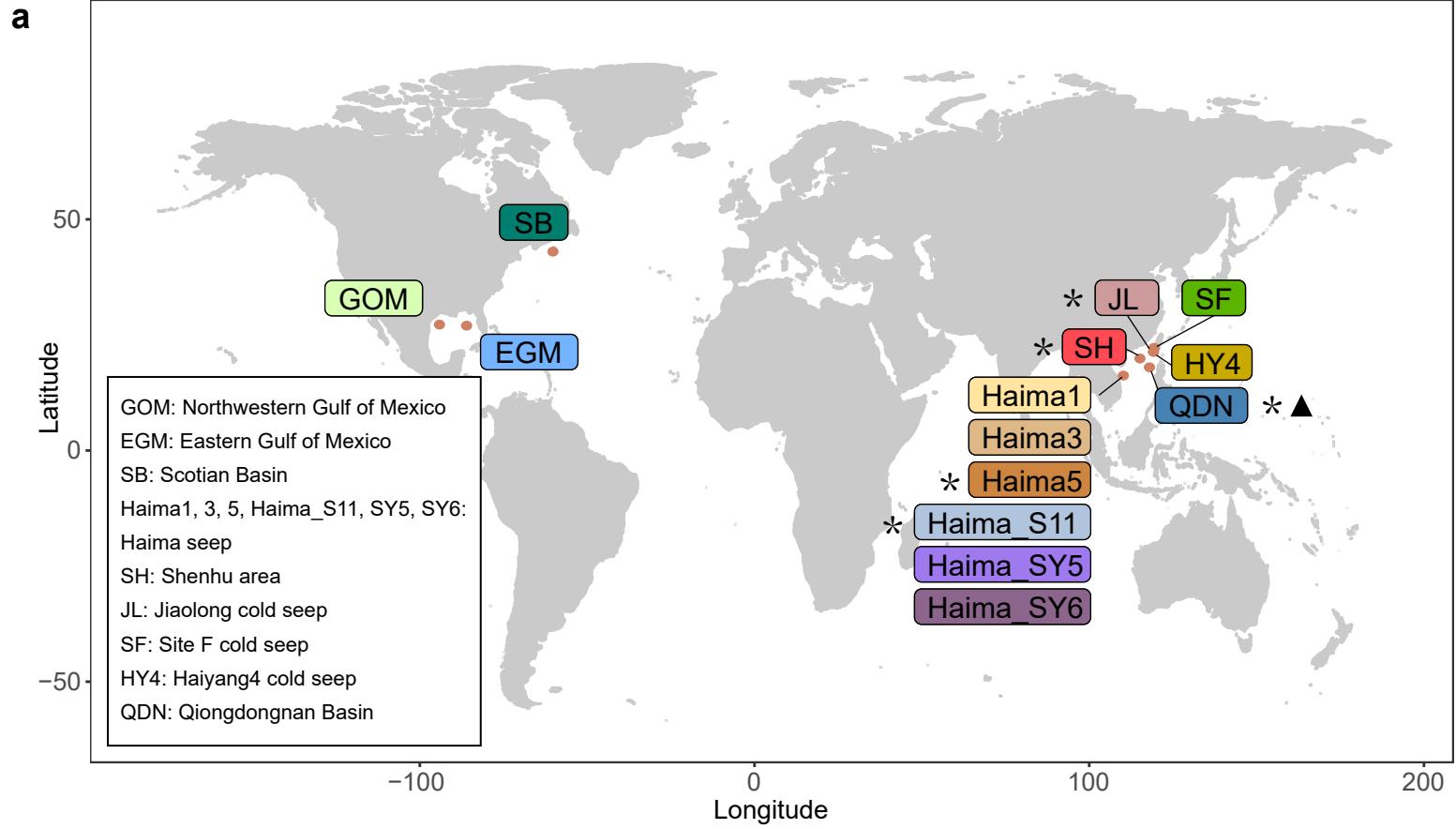
683 The authors declare no competing interests.

684 **Figure legends**

685 **Figure 1. The map of nine globally distributed cold seep sites and reconstruction**
686 **of MAGs.** (a) Geographic distribution of all cold seep sites where metagenomic data
687 were collected. Asterisks denote sites where metatranscriptomes were also collected,
688 the triangle denotes the site where metabolomes were collected. Details are shown in
689 **Supplementary Table 1.** (b)-(c) Sanket plots showing recovered MAG information
690 of cold seep sediment microbiome at different taxonomic levels based on GTDB-Tk
691 classification, including (b) archaea and (c) bacteria. The numbers indicate the
692 number of MAGs recovered for the lineage. Detailed trees for recovered MAGs can
693 be found in **Supplementary Figure 1.**

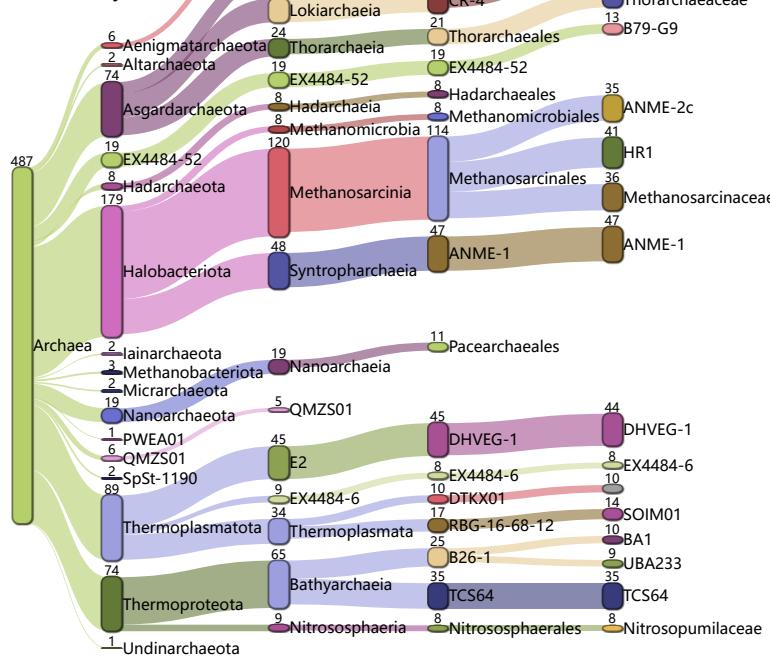
694
695 **Figure 2. Biosynthetic gene clusters detected in cold seep archaeal and bacterial**
696 **MAGs.** Relative proportions of different BGC classes in (a) archaeal and (b) bacterial
697 MAGs derived from 81 cold seep sediment samples based on BiG-SCAPE. (c)
698 Normalized counts of bacterial biosynthetic gene clusters at the phylum level. (d)
699 Normalized counts of archaeal biosynthetic gene cluster at the phylum level. Bold
700 labels indicate phyla with only one representative MAG. Normalized BGC counts
701 were derived by dividing the total count of each BGC type present in a phylum by the
702 total number of MAGs from that phylum. (e) Venn diagram showing the overlap
703 between the MIBiG database and cold seep BGCs. Three cold seep BGCs overlap
704 with four reference BGCs, forming three Gene Cluster Families (GCFs). Detailed
705 BGC statistics are provided in **Supplementary Table 3.**

706 **Figure 3. Biosynthetic gene clusters potentially influencing community dynamics**
707 **and biogeochemical processes in cold seeps.** (a) Detailed diversity of Others and
708 RiPPs in archaeal and bacterial MAGs based on similarity networks. Nodes are
709 colored by biosynthetic class. BGC distributions across different taxonomic levels,
710 including (b) heterocyst glycolipid synthase-like PKS (hglE-KS), (c) phosphonate, (d)
711 siderophore, and (e) TfuA-related. (f-g) Structural comparison between a predicted

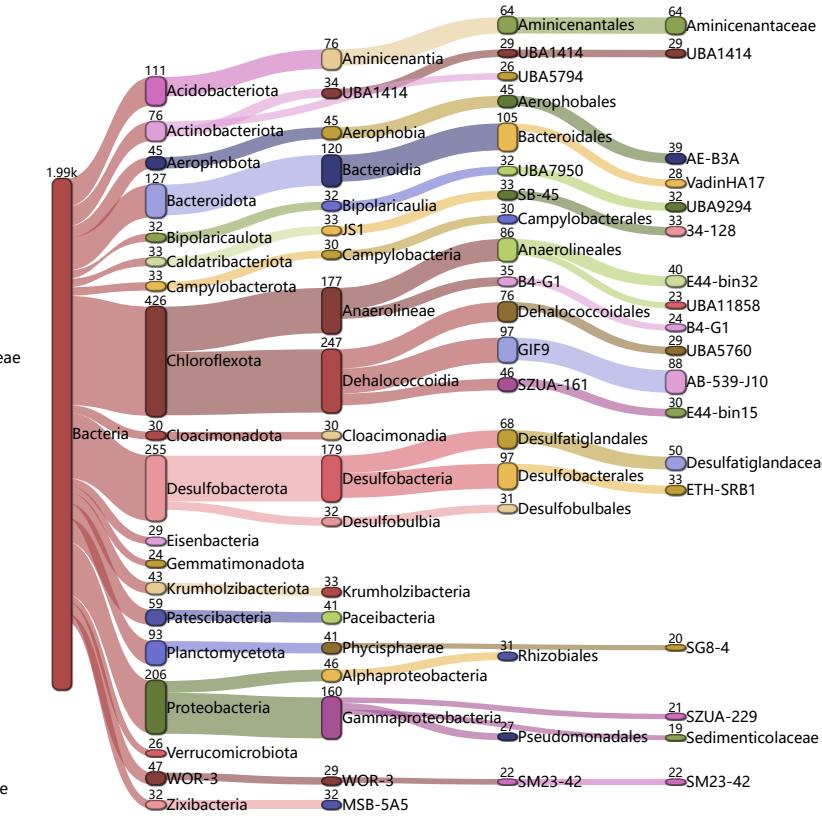

712 TfuA-related McrA-glycine thioamidation proteins and the experimentally determined
713 structure (6XPB, the crystal structure of TfuA involved in peptide backbone
714 thioamidation from *Methanosa*cina *acetivorans*). **(f)** The overall structural
715 comparision showing a unique di-domain fold. The presumptive active site residues of
716 experimental and predicted structure are shown as green and yellow sticks,
717 respectively. **(g)** Close-up view of the putative active site of TfuA-related. Residues
718 predicted to form the ThiS-binding pocket, and the α -helix that is implicated to
719 mediate interactions with YcaO is marked as α 4. **(h)** Wind rose diagram showing
720 expression levels of BGCs from the top 10 or 5 abundant microbes related to N, P, Fe,
721 and CH₄ cycling. Transcript abundances are represented in the units of transcripts per
722 million (TPM).

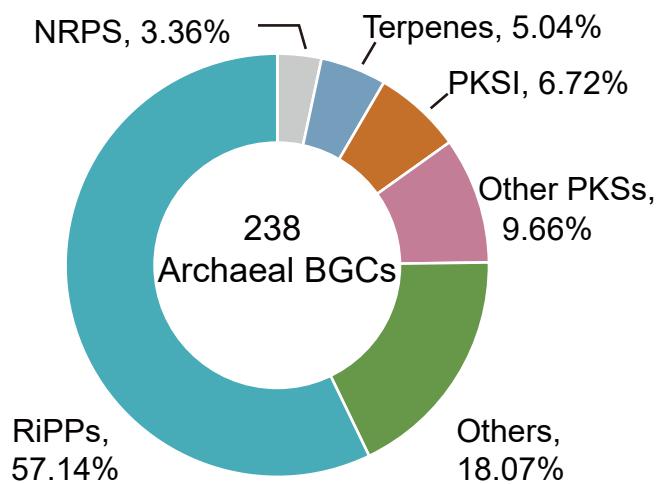
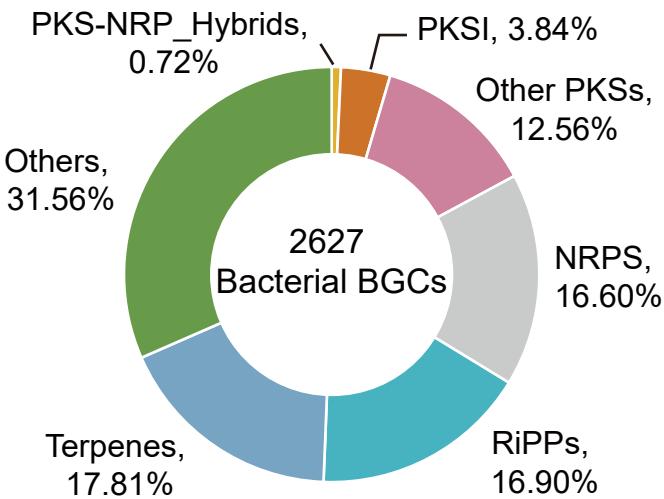
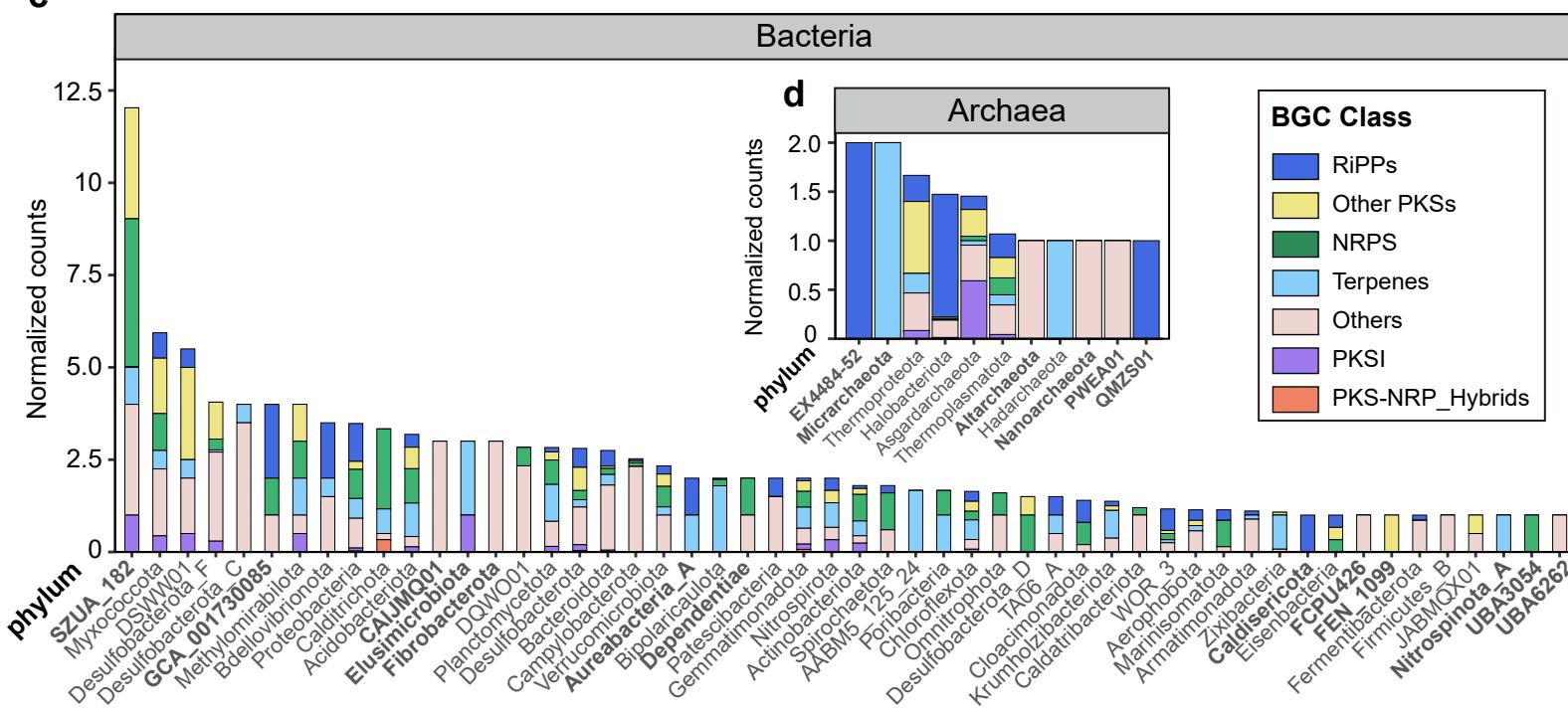
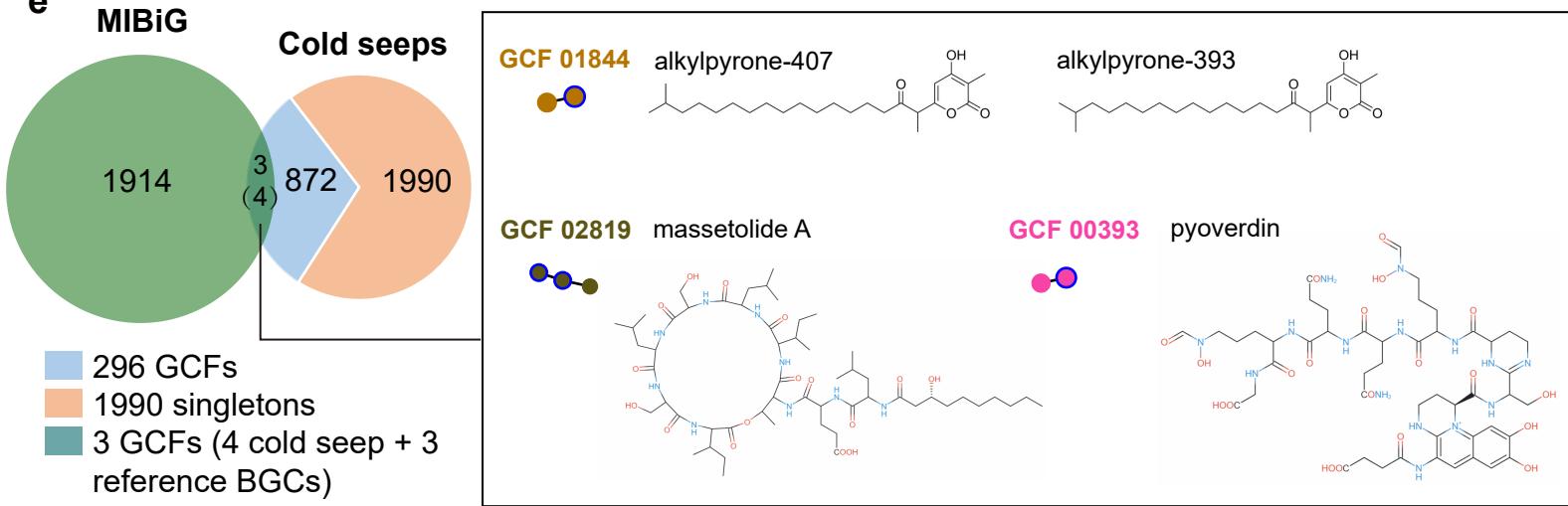
723 **Figure 4. Abundance and expression of biosynthetic gene clusters across different**
724 **phyla and different BGC types in the cold seep sediments. (a)** The heatmap shows
725 the average abundance of BGCs for each phylum. Sediment depth is grouped into:
726 surface, <1 mbsf; shallow, 1–10 mbsf; deep, >10 mbsf. **(b)** Mean relative abundances
727 of BGCs for each phylum. The bars indicate the minima and maxima of BGC
728 abundances. BGC abundances are represented in the units of genes per million (GPM).
729 **(c)** The heatmap shows the average transcript abundance of BGCs for each type.
730 Transcript abundances are represented in the units of transcripts per million (TPM). **(d)**
731 NMDS analysis of a Bray-Curtis dissimilarity matrix calculated from BGC
732 abundances. ANOSIM was applied to test BGC differences in microbial communities
733 among different sediment depths (surface, <1 mbsf; shallow, 1–10 mbsf; deep, >10
734 mbsf), using a 999-permutation test. Detailed data are in **Supplementary Tables 4-5**.

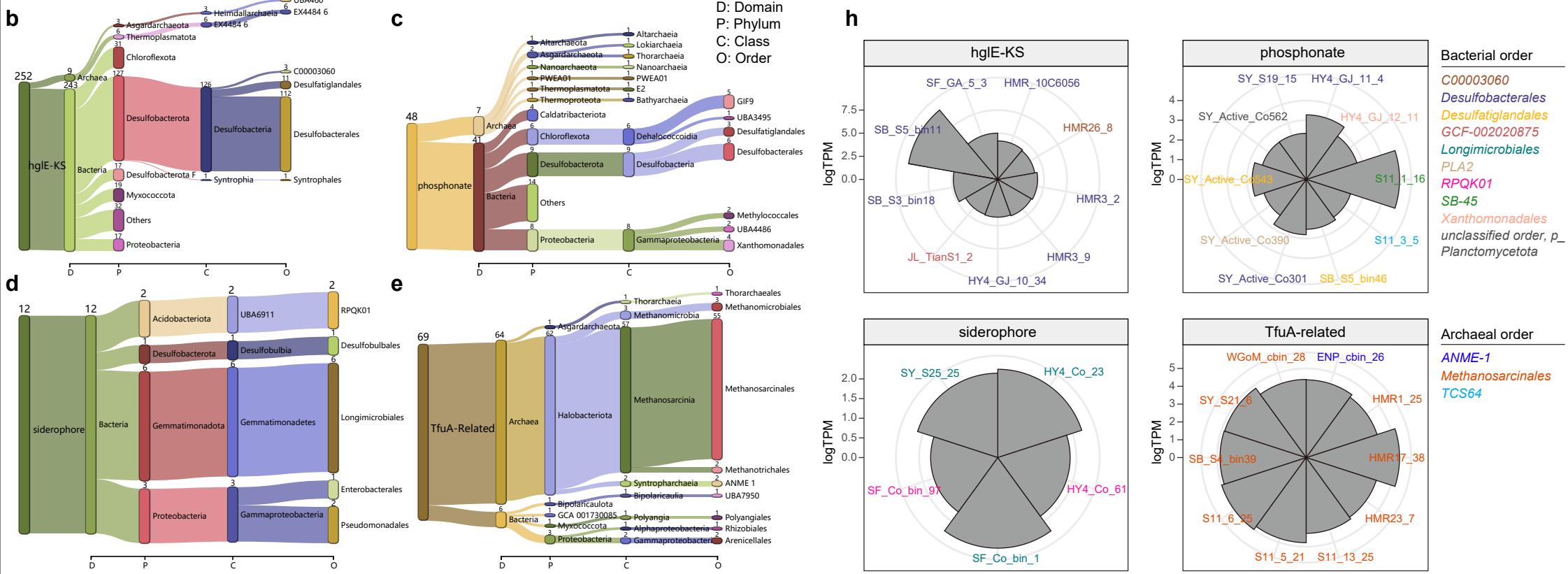
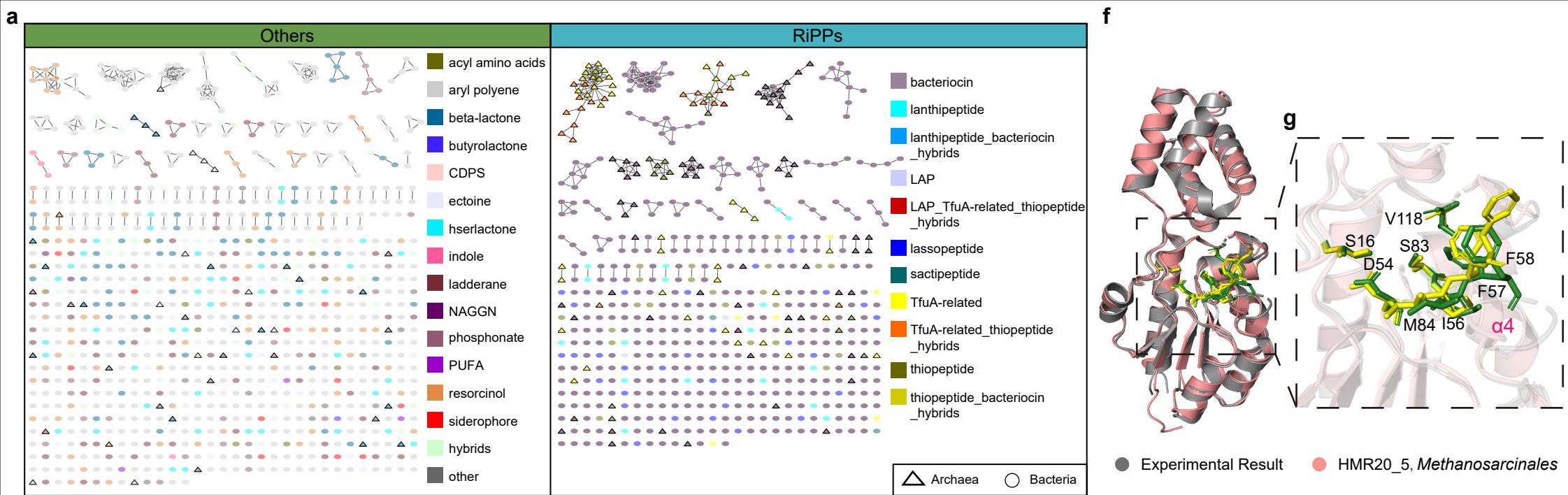
735 **Figure 5. Metabolomes in Qiongdongnan cold seep sediments. (a)** Annotated and
736 unannotated molecular features were classified into two groups: hydrophilic and
737 lipophilic metabolites. Annotated hydrophilic metabolites are grouped into three
738 classes. **(b)** A molecular network of 9,145 nodes was created, 773 of which fall into
739 12 molecular families and are indicated with different colors while the remaining

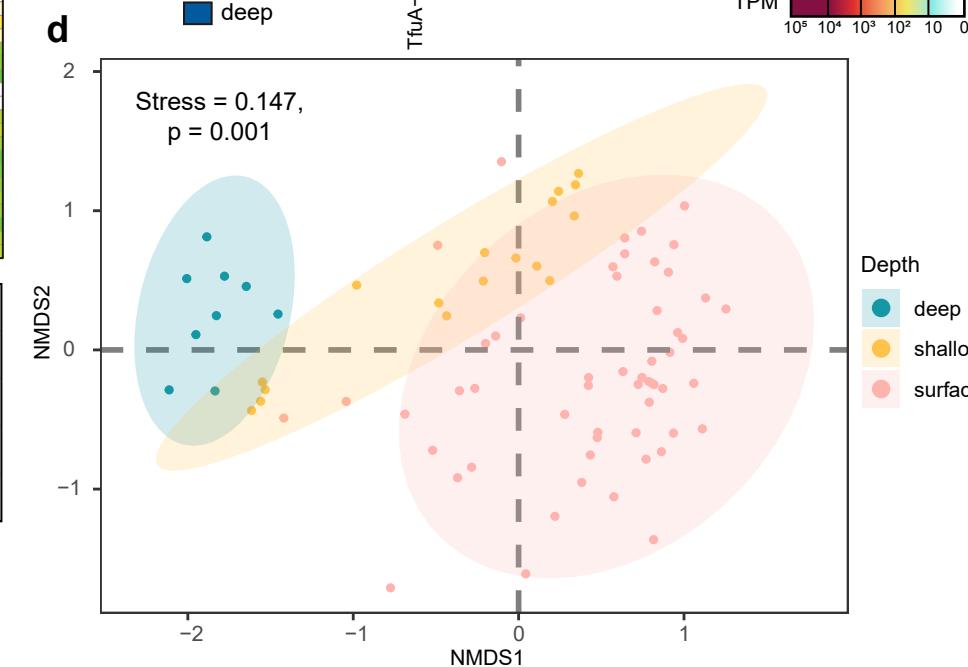
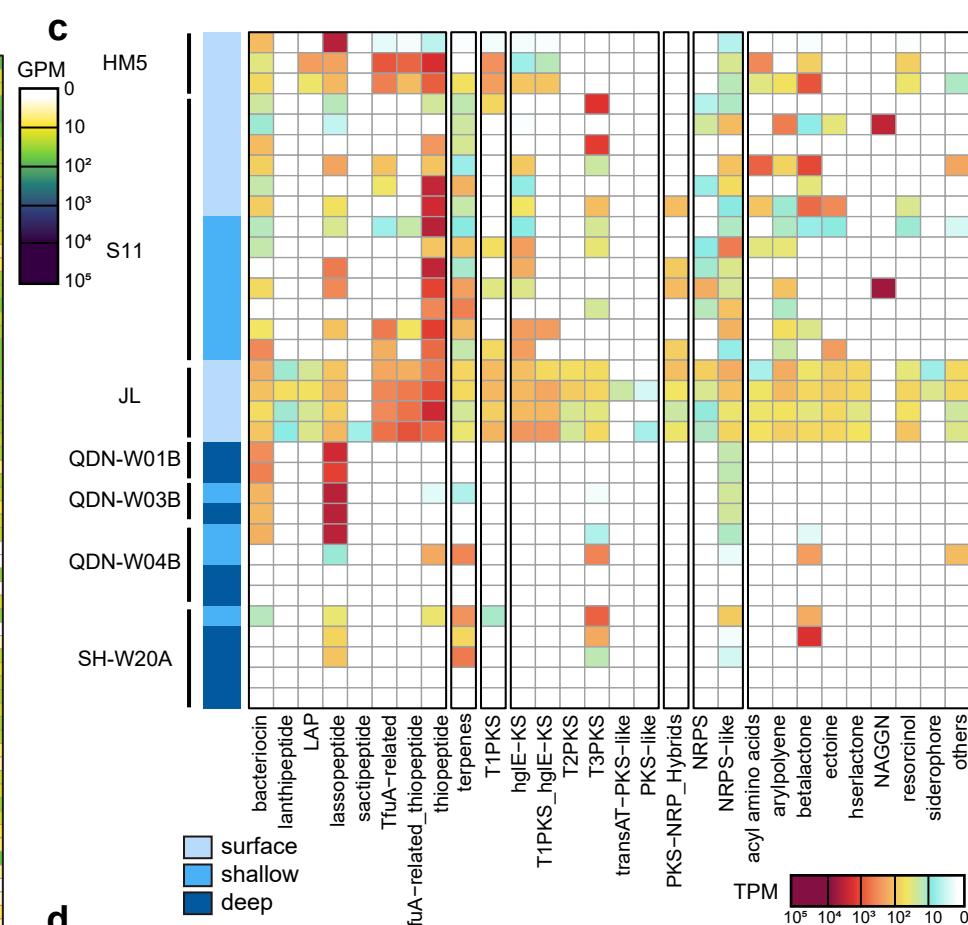
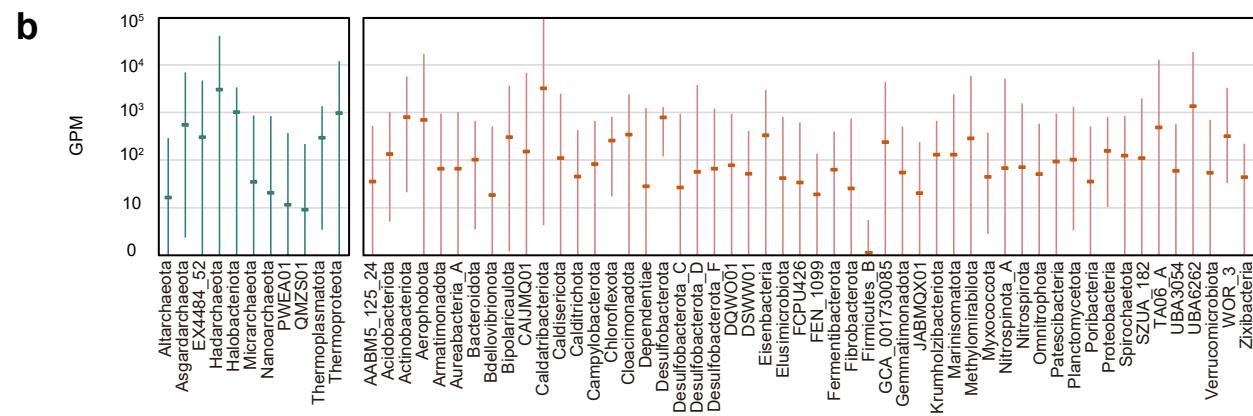
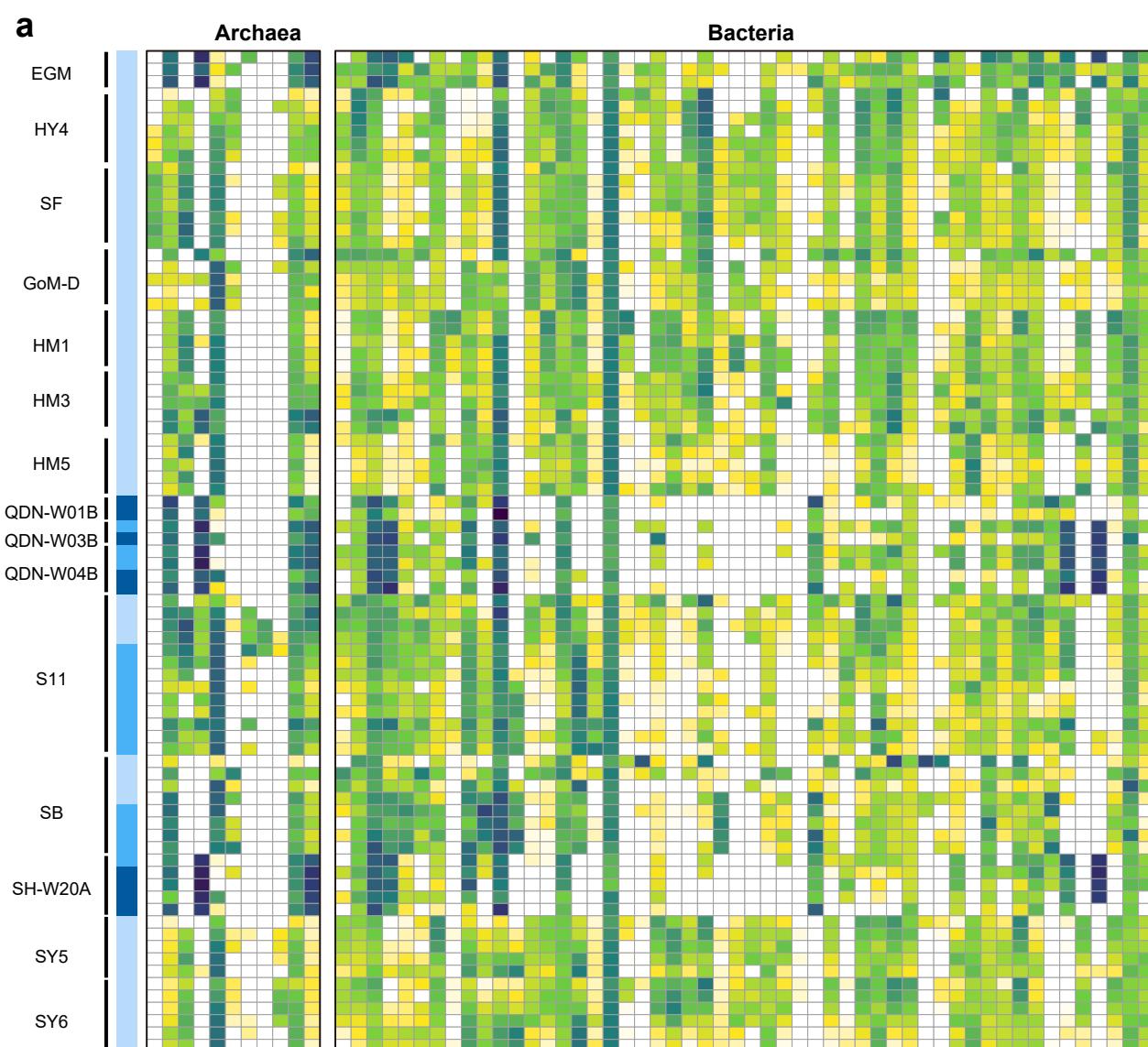

740 were colored in grey to represent unannotated lipophilic metabolites. (c-e) Clusters of
741 notable identified lipophilic metabolites. Cluster I (c) were peptides, with nodes
742 identified to cyclic peptides. The cluster II (d) and III (e) belonged to macrolides.
743 Detailed data are in **Supplementary Tables 6-9**.

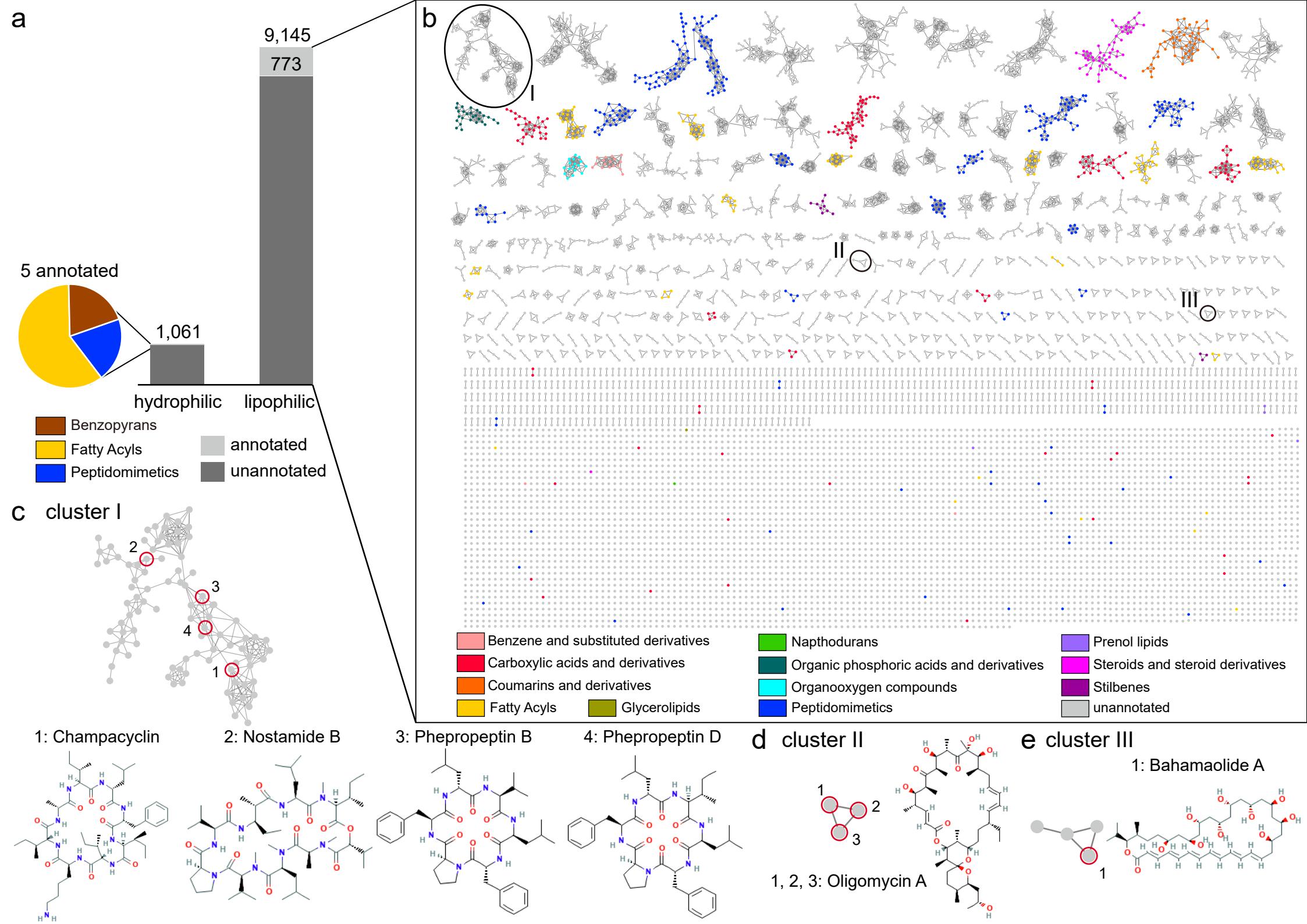
a







b



D: Domain
P: Phylum
C: Class
O: Order
F: Family


C

a**b****c****e**

