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Abstract

Background : Predicting protein-ligand binding sites is crucial in studying
protein interactions with applications in biotechnology and drug discovery. Two
distinct paradigms have emerged for this purpose: sequence-based methods, which
leverage protein sequence information, and structure-based methods, which rely
on the three-dimensional (3D) structure of the protein. We propose to study a
hybrid approach combining both paradigms’ strengths by integrating two recent
deep learning architectures: protein language models (pLMs) from the sequence-
based paradigm and Graph Neural Networks (GNNs) from the structure-based
paradigm. Specifically, we construct a residue-level Graph Attention Network
(GAT) model based on the protein’s 3D structure that uses pre-trained pLM
embeddings as node features. This integration enables us to study the interplay
between the sequential information encoded in the protein sequence and the spa-
tial relationships within the protein structure on the model’s performance.
Results : By exploiting a benchmark dataset over a range of ligands and ligand
types, we have shown that using the structure information consistently enhances
the predictive power of baselines in absolute terms. Nevertheless, as more com-
plex pLMs are employed to represent node features, the relative impact of the
structure information represented by the GNN architecture diminishes.
Conclusions : The above observations suggest that, although using the exper-
imental protein structure almost always improves the accuracy binding site
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prediction, complex pLMs still contain structural information that lead to good
predictive performance even without using 3D structure.

Keywords: protein-ligand binding sites, binding residues prediction, graph neural
networks, graph attention, protein language models, protein embeddings
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1 Introduction

Proteins are fundamental biomolecules that play a critical role in the functioning of
all living organisms. They are involved in various biological processes such as sig-
nal transduction or cell regulation and interact with other macromolecules and small
molecules to perform their functions. The interaction is mediated through binding
sites on the protein surface. These binding sites contain residues crucial for the ligand
molecule’s recognition and binding. Thus, the study of protein-ligand binding sites
and binding residues is essential for understanding the fundamental mechanisms of
biological processes with profound impact on applications such as drug discovery [1, 2]
and biotechnology [3].

With the rapid advances in computational techniques in the last two decades,
various methods have been developed for detecting protein-ligand binding sites. The
methods use diverse algorithms and exploit different types of information from protein
sequences and 3D structure, broadly categorizing the approaches into sequence-based
and structure-based methods [4, 5].

Before describing the existing methods, we should emphasize that the problem of
predicting protein-ligand interactions can be approached in two main ways: binding
residue prediction, where sequence-based methods are mainly used, and binding site
prediction, where structure-based methods are the most appropriate. Binding residue
prediction involves labeling individual residues of the protein depending on whether
they belong to a binding site. In contrast, binding site prediction aims at detecting
surface regions capable of accommodating ligands that can potentially bind to the
protein.

Sequence-based methods operate on amino acid sequences and are characterized by
their ability to identify binding residues solely from protein sequence data. Although
sequence-based methods can only predict individual binding residues and not full
binding sites they can still be relevant in many applications, such as variant effect
prediction (VEP) as the mutation of a binding residue increases the probability of
a detrimental impact of such mutation by hampering the protein’s ability to bind
ligands [3].

Traditional sequence-based tools, such as ConSurf [6] and S-Site [7], are template-
based methods that use proteins with known binding sites as templates together with
the evolutionary conservation information to predict binding residues from highly
conserved regions of the protein.

In contrast, more recent methods rely on machine learning algorithms to make
predictions. With the exponential increase in the size of biological databases [8], there
has been an explosion of machine learning methods to solve all kinds of tasks in
bioinformatics [9]. In the context of sequence-based methods for protein-ligand binding
site prediction, different machine learning-based methods utilize different types of
information about a protein sequence and its amino acids.

Several methods use Support Vector Machines (SVM) and Random Forest (RF) as
their main classification algorithms and various input features. TargetS [10] constructs
features using evolutionary information from Position Specific Scoring Matrix (PSSM),
predicted secondary structure, and ligand-specific binding propensities of residues.
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ATPint [11] utilizes evolutionary information, hydrophobicity, and other predicted fea-
tures such as average accessible surface area. NsitePred [12] computes features from the
predicted secondary structure and uses additional information such as the predicted
relative solvent accessibility (RSA) and dihedral angles, as well as PSSM features
and residue conservation scores. LigandDSES [13] and LigandRFs [14] use amino acid
physico-chemcial properties provided by the AAIndex database [15].

Deep learning methods have attracted enormous attention of bioinformaticians in
recent years [16] due to their potential of automatic learning of complex representa-
tions from vast amounts of available data and due to their recent success in other fields,
such as Natural Language Processing (NLP) [17] and Computer Vision (CV) [18]. Deep
learning has also been used for binding residue detection in methods such as Deep-
Bind [19] and DeepCSeqSite [20]. These approaches use Convolutional Neural Networks
(CNNs) on protein sequences to predict binding residues. DeepBind uses residue types
as input features, while DeepCSeqSite relies on various types of information, such
as position-specific scoring matrix (PSSM), secondary structure (SS), dihedral angle
(DA), and conservation scores (CS).

Recently, language models (LMs) have emerged as a viable option to represent
protein sequences. Large LMs have become the standard method in NLP [21] due to
their remarkable performance in a wide range of language-related tasks. An example
of a very successful LM is the famous ChatGPT, based on the GPT-3 architecture [22],
which can generate human-like responses in conversation. In bioinformatics, LMs have
also been applied to address various challenges related to protein analysis [23–25].

A LM is a deep learning model architecture that is trained to learn complex rep-
resentations of text input, also called embeddings, from an extensive corpus of text.
LMs are built upon two basic successful ideas in NLP: masked language modeling and
Transformer architecture. Masked language modeling [26] is a self-supervised learning
strategy based on masking parts of the text and training the model to predict the
missing parts. This strategy benefits from vast amounts of available unannotated data
and forces the model to learn general embeddings that can be fine-tuned on down-
stream tasks where the data is scarce. The Transformer architecture [27] relies on the
famous attention mechanism that helps the model attend only to relevant parts of the
input by learning the attention weights of different parts of a text input.

Treating protein amino acids as words and sequences as sentences of a natural lan-
guage opens a way to apply language modeling techniques to proteomics. Recently,
several protein language models (pLMs) [28] were constructed by training Transformer
architectures on large protein sequence datasets. The learned embeddings of protein
sequences were then successfully applied to the prediction of various protein charac-
teristics, such as protein structure [29, 30], or protein-protein interactions [31, 32]. In
our recent work, we explored the potential of pLMs to predict protein-ligand binding
residues showing superior performance over several state-of-the-art methods on mul-
tiple datasets [33]. In a broader view, the binding residue prediction problem can be
viewed as a type of more general task of protein residue annotation, such as post-
translational modification prediction, where, indeed, pLMs have also been successfully
applied [34, 35].
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On the other hand, structure-based methods for protein-ligand binding site predic-
tion utilize features derived from the protein 3D structure. Different structure-based
methods vary in the way of representing the 3D protein structure and in the algorithm
used for making the predictions.

FINDSITE [36] is a 3D template-based method that uses a threading algorithm
based on binding-site similarity to groups of template structures. 3DLigandSite [37]
and FunFOLD [38] are also template-based methods that combine sequence and
structure similarity to extract homologous proteins from PDB from which ligands
are extracted, superimposed, and clustered to determine the binding site associated
with each cluster. Various other methods apply geometrical measurements over the
3D structure to detect cavities or hollows on the protein’s surface. SURFNET [39]
is a method that positions spheres within the space between two protein atoms.
LIGSITE [40] detects pockets with a series of simple operations on a cubic grid.
FPocket [41] is based on Voronoi tessellation and alpha spheres. CurPocket [42] defines
the binding sites by identifying clusters of concave regions from the curvature dis-
tribution of the protein surface. Methods such as Q-SiteFinder [43], FTSite [44] and
SiteComp [45] are energy-based methods. Such methods place probes on the protein
surface and subsequently locate cavities by estimating the energy potentials between
the probes and the cavities. In addition to template-based, geometry-based, and
energy-based methods, machine learning methods rely on 3D structural features, some-
times combined with other features, to train various machine learning algorithms. For
instance, P2Rank [46] labels solvent-accessible surface points of the protein by using
the Random Forest algorithm on a set of handcrafted physicochemical and struc-
tural features. The ligandable points are then clustered to obtain the binding pockets.
Recently, deep-learning methods have been introduced for structure-based binding
residue/site prediction as well. Often, the methods represent the protein structure as a
3D grid of voxels and use a 3D Convolutional Neural Network (CNN) [47] as their pri-
mary model architecture to learn the binding sites. These methods differ mainly in the
input features and model hyperparameters. DeepSite [48], PUResNet [49] and Deep-
Surf [50] employ atomic chemical properties, DeepDrug3D [51] is based on interaction
energies of ligand atoms with protein residues, while Deeppocket [52] uses atom types.
More recent methods such as SiteRadar [53], GraphPLBR [54], EquiPocket [55], Graph-
Bind [56] and GraphSite [57] use different variations of the Graph Neural Network
(GNN) architecture and have demonstrated state-of-the-art performance.

GNN is a class of neural networks designed to operate on graphs and other struc-
tured data [58]. GNNs are based on the idea of representing the input data as a graph
and propagating node information between the graph nodes. Each node is associ-
ated with a feature vector containing the node features. These features are iteratively
updated by aggregating information from neighboring nodes using a series of message-
passing steps. This property of GNNs enables the model to capture the graph’s local
structure and learn more structure-based and context-aware embeddings. Methods
based on GNNs may also benefit from large libraries of predicted protein structures
by methods like AlphaFold [59, 60]. The primary output of a GNN is node feature
vectors, which can be used for various node-level and graph-level downstream tasks.
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In recent years GNNs have been applied extensively in bioinformatics and have shown
state-of-the-art results across multiple tasks [61].

In the following sections, we analyze the interplay of protein sequence and structure
information by building a machine learning model that exploits two recent state-of-
the-art deep learning architectures; a Graph Neural Network augmented with protein-
language model embeddings. Particularly, we want to address the following research
questions: Can we improve the prediction performance by fusing both approaches?
How much does the structure information from GNNs contribute to the predictive
power of the solely sequence-based pLMs?

2 Methods

The high-level view of our approach, sketched in figure 1, is as follows. The first input
of the pipeline is the protein sequence of single-letter amino acid codes. The sequence
is processed by a pLM (Embedder), which computes embeddings of each amino acid
in the sequence, i.e., residue-level embeddings. The second input is the corresponding
protein 3D structure, described as a set of atom 3D coordinates. The structure is
converted to a graph by the protein graph constructor (described inProtein graph
construction). In the protein graph, nodes correspond to residues labeled by the
residue-level embeddings and edges to residues close in the 3D space. The protein
graph is then processed by a GNN that predicts binding probabilities for each residue.
Using a threshold, the predicted probabilities are converted to binding residue labels
(binding vs. non-binding).

Furthermore, we measured the effect of the structure information that comes from
the GNN models by comparing them to a baseline model, which is a sequence-based
model that lacks graph structure information. The sequence baseline takes the residue-
level embeddings as input and feeds it to a multi-layer perceptron which predicts the
binding residue probability.

As mentioned, we use the Graph Neural Network (GNN) as our primary model
architecture. Different GNN architectures vary in how they aggregate information
from other nodes to transform the feature vectors. In our approach, we compare two
well-known GNN architectures - Graph Convolutional Network (GCN) [62] and Graph
Attention Network (GAT) [63].

The GCN uses convolutional operations to learn feature representations of nodes
in a graph. The principle of GCNs is based on the idea of adapting convolutional
neural networks (CNNs) [47] to the graph domain by replacing the regular grid-like
structure of image data with an irregular graph structure. By analogy, GCNs define
a convolution operation on graphs, which involves aggregating information from the
node’s neighbors and updating the node’s feature representation accordingly. The
graph convolution works by learning a trainable weight matrix shared across all nodes
enabling the GCN to learn a set of filters specific to the graph structure.

The GAT follows the trend of the attention mechanism of the NLP Transformer
architectures [27]. The model attends differently to different parts of a given node
neighborhood by assigning importance scores to each neighbor based on their relevance
to the current node. The attention mechanism enables the GAT to focus on the most
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Fig. 1: General architecture of our models

relevant nodes in the graph while ignoring noise and irrelevant information. Figure 2
shows the architectural differences between GCNs and GATs.

2.1 Protein graph construction

To use the GNN architecture, the protein needs to be represented as a graph with
node features. In general, the strength of electrostatic interactions is inversely propor-
tional to the distances between atoms. Therefore, it is physically plausible to enable
information sharing between parts of the protein close to each other. Therefore, to
construct the protein graph, we started with the 3D structure of the protein, and
we constructed a proximity graph on the residue level. Nodes correspond to residues
of the protein, and edges represent the closeness relationship of the residues to each
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other. Two residues are connected if the distance between their alpha-carbon atoms
is less than the threshold distance. In this work, we explored the following thresholds:
4, 6, 8, and 10 Å.

2.2 Protein language model embeddings

PLMs process sequences of amino acid letters and return two kinds of embeddings: an
embedding for the whole protein sequence and an embedding for each sequence letter,
i.e., residue-level embeddings. The latter embeddings can be directly used as node
features of the protein graph. In this work, we used the following pLMs : two pLMs
that are part of the ProtTrans project [64], ProtBERT-BFD that was pre-trained on
BFD [65], and ProtT5-XL-UniRef50 (Prot-T5), that was pre-trained on BFD and fine-
tuned on UniRef50 [66]. Both embeddings were computed using the bio-embeddings

Python library [67]. Moreover, we used SeqVec [68] embeddings, obtained also using
the bio-embeddings library as well as ESM-2 embeddings [69] obtained using the
model file esm2 t36 3B UR50D from ESM GitHub repository [70]. Both SeqVec and
ESM-2 pLMs were pretrained on the UniRef50 dataset. For all the above pLMs, the
encoder part of the model was used to compute the embeddings which were extracted
from the last layer of the encoder. This represents the standard strategy used for
evaluating the pre-trained embeddings on downstream tasks in the original papers
[64, 68, 69]. Further information about embeddings, such as the number of parameters
and embedding dimension, can be found in the supplementary table 5.

2.3 AA Index

PLMs are context-aware, resulting in different feature vectors for the same amino
acid in different sequential contexts. To test the effect of information propagation
through the protein graph (see section How much does the GNN architecture
contribute to the performance?), we also generated context-independent feature
vectors, i.e., vectors whose values are not dependent on the neighborhood, serving as
good baseline node features for our GNN models. For that purpose, we used the AAIn-
dex database [15], a large collection of physicochemical and biochemical properties of
amino acids. Using the AAIndex database, we constructed node features by collect-
ing all returned properties of the respective amino acid into one vector. We used the
Python AAIndex library [71] to extract AAIndex features. The AAIndex features were
normalized over all amino acids, resulting in 566-dimensional feature vectors.

2.4 Datasets

As our main dataset, we used a benchmark designed by Yu et al. [10] involving 12
different ligands to build and test our models. Second, to validate that our methodology
is on par with recent GNN-based approaches, we evaluated it on another dataset for
protein-DNA and protein-RNA binding sites from the works of GraphBind [56] and
GraphSite [57], details of which are given in Supplementary table 7.

The benchmarking dataset designed by Yu et al. [10] contains training and inde-
pendent test sets of protein sequences and their corresponding actual binding residues
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Training sets Independent test sets

Ligand Sequences Missing
protein graphs

Binding
residues

Non-Binding
residues

Sequences Binding
residues

Non-Binding
residues

ATP 221 0 3021 72334 50 647 16639
ADP 296 0 3833 98740 47 686 20327
AMP 145 0 1603 44401 33 392 10355
GDP 82 0 1101 26244 14 194 4180
GTP 54 1 745 21205 7 89 1868
Ca2+ 965 4 4914 287801 165 785 53779
Zn2+ 1168 16 4705 315235 176 744 47851
Mg2+ 1138 7 3860 350716 217 852 72002
Mn2+ 335 1 1496 112312 58 237 17484
Fe3+ 173 1 818 50453 26 120 9092
DNA 335 0 6461 71320 52 973 16225
HEME 206 1 4380 49768 27 580 8630

Table 1: Yu benchmark summary.

for 12 different ligands, which include: 5 nucleotides (AMP, ADP, ATP, GTP, GDP),
5 ions (CA, MG, MN, FE, ZN), DNA, and HEME.

As the benchmark was used to test several sequence-based methods such as [10]
and [33], and given that our method has a structural component, we needed to collect
the corresponding 3D structures of the protein sequences. To achieve this, we down-
loaded the entire BioLip dataset [72], which was used to construct the benchmark, and
we extracted the tertiary structures of the sequences by matching their PDB IDs and
chain IDs. For sequences whose corresponding structures were not found in BioLip,
we used the latest version of PDB [73] to extract the structures.

The PDB files were first parsed by the Biopython library [74] in order to obtain
the sequences and the atomic coordinates. Some of the sequences obtained from
the Biopython parser underwent minor manual corrections to match them with the
sequences from the benchmark dataset. In total, the letters of some modified residues
were changed for 12 sequences, one residue was skipped for 13 sequences, and 2
sequences were skipped due to a high mismatch between the sequence retrieved from
the benchmark and the sequence retrieved after processing the PDB file. Finally, each
residue from a sequence was associated with a 3D coordinate. The obtained coordi-
nates were used to construct the protein graphs as described in sectionProtein graph
construction using the Python Deep Graph Library (DGL) [75].

We also need to note that due to technical problems with the ProtT5 embeddings,
we could not obtain embeddings for all of the proteins. In total, we could not obtain
the protein graphs for 31 sequences. The sequences for which we could not generate
the embeddings consisted of training sequences only, so this issue did not affect the
reported results, as those were based on the test sets. Table 1 illustrates statistics of
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the benchmark datasets as well as the number of obtained protein graphs after the
preprocessing phase.

2.5 Model hyperparameters

For building our models, we used the implementation of GCN and GAT provided
by the Python library DGL-LifeSci [76], and we’ve trained and evaluated the models
using the Pytorch Python library [77]. Our GCN architecture consisted of graph con-
volutional layers of size 512 with ReLU activation, a dropout rate of 0.5 [78], residual
connections [79] and batch normalization [80]. At the same time, our GAT architecture
consisted of graph attention layers of size 512, ReLU activations, dropout rate of 0.5,
4 attention heads, and residual connections. We used a dense layer with two softmax
units on top of the GCN and GAT models to compute the node-level outputs. We
also utilized a weighted version of the binary cross-entropy loss due to the high class
imbalance of the datasets, the AdamW optimizer [81] as the optimization algorithm
with learning rate=3e-4 and weight decay=1e-5, and we trained all the models
for 2000 epochs with a batch size=32. Since the process of training and evaluating
the GNN models on the pLM embeddings is time-consuming, the hyperparameters
of the GNN models were chosen after manual tuning on a random validation split
from the training set. The range of values tried in the manual tuning is described in
Supplementary table 6.

Regarding the sequence baseline models, we compared three model classes : Multi-
Layer Perceptron (MLP), Random Forest (RF) and Support Vector Machines (SVM).
The models were built using the embeddings from the ProtT5 language model. To
select the sequence baseline architecture that will be used in the remaining experi-
ments, we have performed 5-fold Cross-Validation (CV) on the ADP ligand training
set using different hyperparameters of the model classes. The results of the 5-fold CV
can be found in supplementary table 4. The SVM and RF models were implemented
using the Scikit-learn Python library [82]. Moreover, the MLP classifiers were trained
using the Pytorch Python library for 2000 epochs with a batch size of 32, and the
reported validation scores of the MLPs represent the best validation scores obtained
during the 2000 epochs training. To account for class imbalance in the sequence base-
lines, we used weighted binary cross-entropy as the loss function for the MLPs, and we
assigned the class weight parameter to ’balanced’ in the Scikit-learn implementa-
tion of the RF and SVM. Based on the 5-fold CV results, we have chosen the sequence
baseline model in all remaining experiments to be a single-layer MLP with 512 units
and with a dropout rate of 0.1 , as it has the best mean CV score.

3 Results and Discussion

To evaluate the residue-level predictions of our models, we used standard binary clas-
sification metrics. Specifically, we have chosen to show our results with respect to
the Matthews Correlation Coefficient (MCC) due to the significant class imbalance
present in the datasets, as it has been shown that the MCC metric is one of the most
suitable metrics in such cases [83].
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Our recent work [33] shows that more complex LMs often yield better performance.
Therefore we used the ProtT5 embeddings in most of our experiments as one of the
most complex pLMs.

We used a random split of the processed benchmark training sets to obtain training
and validation sets. The training/validation split ratio was designed for the validation
sets to have the same size as the independent test sets. The validation sets were used
to define the early stopping epoch while training the models. The training was stopped
at the epoch with the best validation MCC. In the subsequent sections, we report the
results of the independent test sets.

3.1 Effect of the number of graph convolutional layers

The effect of information propagation through the protein graph can best be seen by
varying the number of convolutional layers. One round of graph convolution collects
information from the neighborhood of a given node. Thus, as the number of graph
convolutions increases, a given node will have access to more distant neighbors since
the one-hop neighbors will already contain information about farther neighbors in
their hidden features computed from previous rounds of graph convolution. Therefore,
increasing the number of convolutional layers enables information propagation between
distant parts of the graph. To test the effect of the number of convolutional layers
on the prediction performance, we used graphs constructed using 6 Å cutoff distance,
ProtT5 embeddings, and we varied the number of graph convolutional layers in our
standard GCN architecture; specifically we tried 1, 2, 4 and 6 layers. Furthermore, we
report the mean and standard deviation of the MCC score for 5-fold cross-validation
splits. The results are shown in figure 3 which was created using the supplementary
table 1. The reported validation scores represent the best validation score obtained
while training the models for 2000 epochs.

We can observe that for about half of the ligand datasets the models constructed
using different number of convolutional layers have very similar performance. More-
over, for most of the remaining ligand datasets, adding more graph convolutional layers
decreases the performance. This suggests that there is little positive effect of adding
more graph convolutional layers.

Based on the above observations, we decided to use a single-layered GNN archi-
tecture and an arbitrary random split with the same random seed in the remaining
experiments. Another reason for choosing a single layer in the following experiments is
to avoid the common oversmoothing problem in GNNs [84], where deep GNNs result
in nearly indistinguishable node features in the last layers of the network, which may
result in a poor performance in downstream tasks.

3.2 Effect of graph cutoff distances

Next, we tested the effect of the graph cutoff distance. The cutoff distance influences
the graph’s connectivity as a higher cutoff distance results in more connections and
thus leads to a more densely connected graph. In such a graph, a given node has more
neighbors, and therefore more nodes are taken into account in information propagation
to determine the state of the given node. A typical cutoff seen in other works is 6 Å
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Fig. 3: Effect of the number of graph convolutional layers. The bars represent the
mean of the validation MCC scores for 5-fold Cross Validation splits. The error bars
represent the standard deviation of the validation MCC scores. The colors correspond
to the number of graph convolutional layers of 512 units.

computed based on the distance of alpha carbons [85]. This work tested the following
cutoff distances: 4 Å, 6 Å, 8 Å, and 10 Å. Moreover, we constructed an ensemble model
using models trained on graphs built using the above cutoff distances. This model
combines the predicted binary classes from each cutoff distance and outputs the most
often observed class. An ensemble model that uses multiple cutoff distances removes
the bias of choosing a predefined cutoff distance. Therefore it has the potential to
improve the generalization capability of the GNN.

Table 2, compares the different cutoff distances and the ensemble model. We can
observe that although the graph cutoff distance significantly affects the performance of
the GCN model, there is no observable consistent trend by varying the cutoff distance.
For instance, for some ligands such as ADP and HEME, a low cutoff distance (4 Å)
results in higher performance of the GCN, while for other ligands such as CA and MG,
a high cutoff distance (10 Å) improves the performance. Moreover, supplementary table
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GCN GAT Sequence Baseline

Ligand 4 Å 6 Å 8 Å 10 Å Ensemble 4 Å 6 Å 8 Å 10 Å Ensemble Baseline

ADP 0.569 0.564 0.581 0.557 0.584 0.571 0.578 0.597 0.582 0.583 0.553
AMP 0.450 0.412 0.424 0.419 0.445 0.449 0.463 0.489 0.475 0.482 0.416
ATP 0.546 0.537 0.538 0.557 0.569 0.566 0.575 0.572 0.587 0.583 0.501
CA 0.396 0.382 0.403 0.420 0.421 0.383 0.408 0.408 0.411 0.426 0.513
DNA 0.473 0.476 0.470 0.459 0.490 0.460 0.483 0.510 0.488 0.499 0.371
FE 0.618 0.645 0.614 0.645 0.645 0.704 0.668 0.692 0.719 0.703 0.651
GDP 0.665 0.668 0.737 0.693 0.710 0.696 0.695 0.746 0.705 0.744 0.651
GTP 0.537 0.514 0.575 0.564 0.556 0.666 0.669 0.670 0.573 0.695 0.524
HEME 0.689 0.672 0.736 0.675 0.691 0.675 0.674 0.743 0.682 0.685 0.720
MG 0.343 0.344 0.351 0.362 0.365 0.325 0.347 0.364 0.349 0.364 0.332
MN 0.617 0.606 0.594 0.590 0.634 0.602 0.642 0.607 0.642 0.638 0.585
ZN 0.660 0.681 0.673 0.693 0.699 0.670 0.672 0.685 0.690 0.699 0.671
Average 0.547 0.542 0.558 0.553 0.567 0.564 0.573 0.590 0.575 0.592 0.541

Table 2: Effect of graph cutoff distance and the graph attention mechanism.

3 shows the effect of cutoff distances across multiple classification metrics, namely
MCC, together with Precision and Recall.

3.3 Effect of graph attention mechanism

For GAT, we tested the effect of the graph attention mechanism initially designed
as a regularization strategy for the GNN models. The attention may contribute to a
better generalization performance as the model attends only to relevant parts of the
neighborhood of a node. To test the added value of the graph attention mechanism,
we compared our shallow GCN model, with a shallow version of GAT where we used
our standard GAT architecture with a single graph attention layer. Table 2 compares
the GCN and GAT models for the different cutoff distances.

We see that, unlike in the case of GCN, for most datasets, there is a consistent
improvement in the performance of the GAT model with increasing cutoff distance.
This observation can be explained by the capacity of the attention mechanism to
reduce noise in larger neighborhoods. For graphs obtained using a high cutoff distance,
each node has a bigger neighborhood and collects information from more (distant)
neighbors. Without using the attention mechanism, the model does not have the capac-
ity to filter out irrelevant information. The graph attention mechanism fixes this issue
by adjusting the neighbor weights to attend only to neighbors relevant for making the
prediction.

Moreover, we observe that for all ligands and both for GAT and GCN, the ensemble
models have better average performance across ligand datasets than all cutoff dis-
tances, and this performance is very similar to the average performance of the model
with cutoff 8. These observations may suggest that the model with cutoff 8 can be
considered as a lightweight proxy for the ensemble model in terms of the number of
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parameters and the required preprocessing steps. We will call those models GCN8
and GAT8 in the rest of the work. Table 2 shows that GAT8 has significantly higher
performance than the GCN8 for the GTP ligand, while it is slightly more performant
for most other ligands. Furthermore, the GAT8 significantly outperforms the sequence
baseline for most ligands. In the following experiments, we, therefore, consider our
best-performing model architecture to be the GAT8. Supplementary table 2 then also
includes a comparison of GAT and GCN using more classification metrics.

3.4 What is the attention attentive to?

In the previous section, we showed that attention helps to improve the accuracy of
predictions in comparison with GCN; we were further wondering what amino acids
were helpful and therefore investigated a number of binding sites of Zn ion, GTP
and HEME as three variable representatives of studied ligands. We were specifically
investigating cases where a ligand-binding residue was not predicted by GCN but was
correctly predicted with GAT. To do that, we used 10 Å protein graphs; for every
binding residue, we extracted the attention value for each neighbor. As our model
uses four attention heads, the attention values were averaged across the heads. Then,
individually for each binding residue, we colored the binding site with a relative con-
tribution of attention of the binding residue neighbors. We observed that in many
cases, the residues with the highest attention were the other ligand-binding residues
(and sequence neighbors of the studied residue). In many cases, the binding residues
were often physically close to the ligand, but we also observed cases where the residues
with the highest attention were on the other part of the binding site and away from
the studied residue (see Figure 4).

We should emphasize that the goal of this exercise was to offer a visual way of
inspecting the attention, but a more quantitative approach should be taken to draw
a conclusive statement regarding the attention. This is further supported by the fact
that we also encountered instances where it was not clear how could the residues with
high attention contributed to the accurate prediction of the studied residue.

3.5 Comparison with existing methods

To put the proposed approach in the context of existing research, we compared our
GAT8 model with the Prot-T5 embeddings, which consistently demonstrated higher
performance in the previous experiments, to other approaches which were trained and
tested using the Yu benchmark dataset. Namely, TargetS [10], EC-RUS [86], and SXG-
Bsite [87], which are based on different hand-crafted, but context-dependent features
as described in section 1. For each of the three methods, we show the results of the best-
performing versions of those methods as presented in the respective papers. Table 3
compares the methods using the area under ROC curve (ROC-AUC) and MCC. Our
GAT8 model with ProtT5 embeddings outperforms all of the methods on the MCC
metric for all ligand datasets, and on the ROC-AUC metric for most datasets. How-
ever, it should be emphasized that the presented methods are sequence-based, using
only predicted structural features (such as predicted secondary structure). On the
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other hand, the presented approach does not incorporate 3D structure directly, as the
protein graph only approximates the 3D information.

Finally, we also validate that our approach is comparable with recently published
methods that predict nucleic acid binding using GNNs. Specifically, supplementary
table 8 compares our approach with GraphBind [56] and GraphSite [57] which used
variations of GNNs, in addition to GeoBind [88] and EquiPNAS [89] that used com-
binations of GNNs and PLMs.For each of the presented methods, we report the
best-performing version which relied on the experimental protein structure to con-
struct the protein graph. We compare the methods using the area under ROC curve
(AUC), the area under the Precision-Recall curve (AUPR), and MCC. We report the
scores directly from the original published results of the methods whenever the score
was available. While EquiPNAS and GeoBind showed the best performance on the
DNA/RNA benchmarks, our GAT8 model with ProtT5 embeddings shows similar
performance to GraphBind and GraphSite especially on the DNA benchmark.

3.6 How much does the GNN architecture contribute to the
performance?

In the previous sections, we observed that the GNN architecture improves the per-
formance of the ProtT5 pLM. This observation prompted us to the necessity of
quantifying how much the structural information processed by the GNN architecture
contributes to the predictive performance of sequence-based pLMs. To this end, we

(a) Structure of Zn binding
site on zinc finger antiviral
protein (3u9g) – Cys 73 was
correctly predicted with the
help of attention – the biggest
contribution came from Cys
78 (green) and His 86 and Leu
85 (both brown) - Cys 78 and
His 86 are directly interacting
Zn 226.

(b) Structure of GTP binding
site of dethiobiotin synthetase
(3qxj) – Thr 15 was correctly
predicted with the help of
attention – the biggest con-
tribution came from Gly 12
(green) and Asp 53 (brown).
Gly 12 is directly interacting
with GTP.

(c) Structure of HEME bind-
ing site of fungal magkatg2
(3UT2) – His 314 was cor-
rectly predicted with the help
of attention – the biggest con-
tribution came from Lys 318
(green), Trp 365, and Gly 317
(brown). All three residues
are directly interacting with
heme.

Fig. 4: Visualization of the attention. The binding residue and its neighbors are
represented as sticks. The binding residue is colored yellow with neighbors going from
green (highest attention) to red (lowest attention). The low-attention neighbors are
partially transparent. The ligand is colored gray.
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AUC MCC

Ligand TargetS EC-RUS SXGBsite ProtT5 GAT8 TargetS EC-RUS SXGBsite ProtT5 GAT8

ADP 0.896 0.872 0.907 0.945 0.507 0.511 0.521 0.597
AMP 0.83 0.815 0.851 0.892 0.359 0.393 0.366 0.489
ATP 0.898 0.871 0.886 0.936 0.502 0.506 0.448 0.572
CA 0.767 0.77 0.757 0.882 0.243 0.225 0.167 0.408
DNA 0.836 0.814 0.827 0.932 0.377 0.319 0.27 0.510
FE 0.945 0.936 0.913 0.986 0.479 0.49 0.454 0.692
GDP 0.896 0.872 0.93 0.963 0.55 0.579 0.678 0.746
GTP 0.855 0.861 0.883 0.932 0.617 0.641 0.572 0.670
HEME 0.907 0.935 0.9 0.976 0.598 0.64 0.555 0.743
MG 0.706 0.78 0.819 0.782 0.294 0.317 0.326 0.364
MN 0.888 0.891 0.888 0.920 0.449 0.31 0.329 0.607
ZN 0.936 0.958 0.892 0.962 0.527 0.437 0.363 0.685

Table 3: Comparison with existing methods - Yu benchmark

designed two experiments to analyze the interplay of sequence information represented
by node embeddings and structural information embedded in the graph connectivity.

The first experiment involved comparing the GAT8 architecture with the sequence
baseline model for several node embeddings using the Yu benchmark. Specifically,
we compared one embedding with context-independent features and four embeddings
from four different pLMs. The first embedding uses the context-independent AAIndex
physico-chemical properties of amino acids, where a residue is represented by the same
feature vector independently of its sequential context. The four remaining models use
different context-aware pLMs of varying complexity. SeqVec embeddings and Prot-
BERT, which are relatively less complex, as well as ProtT5 and ESM-2 embeddings,
which are relatively more complex. The embedding complexity can be measured by
two main indicators: the number of parameters of the pLM, and the dimensionality
of the embedding (see supplementary table 5). The model complexity increases when
one or both indicators increase. We measured the effect of the structure information
by calculating the absolute (absolute ∆) and relative improvements (relative ∆) of the
GAT8 models over their respective sequence baselines. The different test MCC scores
and their respective absolute and relative improvements are presented in table 4. A
more detailed comparison using more classification metrics between the embeddings
is available in supplementary table 3.

Table 4 indicates that the absolute improvement in the test MCC score of the GAT8
model over the sequence baseline is positive on average across all ligand datasets. More-
over, although different embeddings have varying degrees of absolute improvement
depending on the ligand dataset, they have similar values on average. Nevertheless,
in the case of the less complex AAIndex, SeqVec and ProtBERT embeddings, we
can observe the lowest relative improvements in the MCC score of the GAT8 model
over the sequence baseline for most ligands, while the more complex ESM-2 and
ProtT5 embeddings show smaller relative improvements. These observations show that
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while the protein structural information almost always improves the sequence baseline
regardless of the chosen embedding, the relative effect is more pronounced for simple
embeddings and decreases with the complexity of the language models.

To consolidate the relative improvement observations, we have performed statisti-
cal significance tests in a 5-fold cross-validation setting for all embeddings and across
all ligand datasets. Table 5 presents the results of t-tests for the mean relative improve-
ment scores of the GAT8 model over the sequence baseline in a 5-fold CV setting. The
null hypothesis of the t-tests is that there is no relative improvement, and the signif-
icance threshold is chosen to be 0.01. Table 5, shows that for all embeddings, most
relative improvement values are statistically significant (P − value < 0.01.)

To quantify how much improvement is caused by the concrete graph topology as
opposed to random propagation of information, we devised the following experiment.
We compared the GAT8 model with graphs constructed using the experimental PDB
structure called ”original” with a ”random” version of the same model, where the
original graph was replaced by a random graph with perturbed edges. Specifically,
we randomly assigned edges between residues and explicitly removed every edge in
the original graph. The ”random” model provides a solid baseline against which to
measure the effect of the experimental structure information in the GNN architec-
ture and its relationship with pLMs. In table 6, we report the absolute and relative
improvements in test MCC scores of the GAT8 model with original graphs over their
respective random graph baselines. We observe from the absolute improvement scores
that for all embeddings, the original structure almost always contributes positively to
the performance. Nevertheless, this effect tends to decrease on average both in terms
of absolute and relative improvement, especially for more complex pLMs.

The results of both experiments suggest that due to the fact that more complex
embeddings significantly improve the performance of the sequence and the random
graph baselines, a significant part of the structure information necessary for predict-
ing protein-ligand binding sites is already encoded in the protein language models.
This may be explained by the fact that as complex protein language models were
built using masked language modeling, large number of parameters and huge training
sets, important relationships between residues that correlate with structural features
may already be captured in the embeddings and can thus be used for binding site
predictions.

4 Conclusion

In this work, we integrated sequence-based and structure-based paradigms for predict-
ing protein-ligand binding sites by designing a GNN model augmented with protein
language model embeddings. While the model’s performance varies with the cutoff
distance used to construct the protein graph, the introduction of the graph atten-
tion mechanism significantly enhances predictive performance for densely connected
graphs. Our findings indicate that although the structural information processed by
the GNN architecture generally contributes positively to the model’s performance,
this effect is more pronounced with simple node features and diminishes with the
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Embedding Ligand ADP AMP ATP CA DNA FE GDP GTP HEME MG MN ZN Average

AAIndex

Sequence 0.067 0.057 0.065 0.115 0.122 0.180 0.106 0.108 0.116 0.065 0.170 0.257 0.119

GAT8 0.142 0.101 0.106 0.122 0.168 0.241 0.215 0.192 0.214 0.083 0.204 0.331 0.177

Absolute ∆ 0.075 0.044 0.041 0.007 0.046 0.061 0.109 0.084 0.098 0.018 0.034 0.074 0.058

Relative ∆ 1.119 0.772 0.631 0.061 0.377 0.339 1.028 0.778 0.845 0.277 0.200 0.288 0.560

SeqVec

Sequence 0.519 0.266 0.428 0.286 0.254 0.498 0.580 0.498 0.523 0.243 0.423 0.537 0.421

GAT8 0.571 0.365 0.512 0.310 0.322 0.587 0.640 0.613 0.602 0.298 0.480 0.598 0.492

Absolute ∆ 0.052 0.099 0.084 0.024 0.068 0.089 0.060 0.115 0.079 0.055 0.057 0.061 0.070

Relative ∆ 0.101 0.370 0.196 0.084 0.266 0.179 0.104 0.230 0.150 0.226 0.135 0.115 0.180

ProtBERT

Sequence 0.426 0.286 0.381 0.298 0.348 0.594 0.543 0.405 0.477 0.287 0.437 0.573 0.421

GAT8 0.504 0.326 0.445 0.378 0.381 0.635 0.580 0.552 0.564 0.324 0.514 0.618 0.485

Absolute ∆ 0.078 0.040 0.064 0.080 0.033 0.041 0.037 0.147 0.087 0.037 0.077 0.045 0.064

Relative ∆ 0.184 0.140 0.167 0.268 0.096 0.069 0.067 0.362 0.183 0.128 0.175 0.078 0.160

ProtT5

Sequence 0.553 0.416 0.501 0.513 0.371 0.651 0.651 0.524 0.720 0.332 0.585 0.671 0.541

GAT8 0.597 0.489 0.572 0.408 0.510 0.692 0.746 0.670 0.743 0.364 0.607 0.649 0.587

Absolute ∆ 0.044 0.073 0.071 -0.105 0.139 0.041 0.095 0.146 0.023 0.032 0.022 -0.023 0.047

Relative ∆ 0.080 0.176 0.142 -0.205 0.376 0.063 0.146 0.277 0.032 0.097 0.038 -0.034 0.099

ESM-2

Sequence 0.570 0.476 0.540 0.382 0.462 0.641 0.702 0.677 0.722 0.309 0.576 0.647 0.559

GAT8 0.616 0.493 0.597 0.401 0.647 0.643 0.750 0.671 0.755 0.350 0.597 0.683 0.600

Absolute ∆ 0.046 0.017 0.057 0.019 0.185 0.002 0.048 -0.006 0.033 0.041 0.021 0.036 0.042

Relative ∆ 0.082 0.036 0.106 0.051 0.401 0.002 0.069 -0.009 0.046 0.132 0.036 0.056 0.084

Table 4: Effect of different embeddings. The relative improvement over the sequence
baseline in the MCC score is computed as the GAT8 model’s MCC score minus the
sequence baseline’s MCC score, divided by the MCC score of the sequence baseline.
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Embedding Ligand ADP AMP ATP CA DNA FE GDP GTP HEME MG MN ZN

AAIndex
Relative ∆ 1.266 0.451 0.851 0.224 0.367 0.423 1.144 0.815 0.572 0.252 0.198 0.284

± 0.336 ± 0.211 ± 0.141 ± 0.071 ± 0.05 ± 0.111 ± 0.134 ± 0.382 ± 0.225 ± 0.05 ± 0.105 ± 0.012

P-Value 0.0011 0.0087 0.0002 0.0021 0.0001 0.0010 0.0000 0.0088 0.0048 0.0003 0.0135 0.0000

SeqVec
Relative ∆ 0.111 0.309 0.18 0.119 0.235 0.28 0.158 0.303 0.122 0.119 0.247 0.107

± 0.034 ± 0.091 ± 0.076 ± 0.047 ± 0.063 ± 0.037 ± 0.07 ± 0.09 ± 0.031 ± 0.027 ± 0.066 ± 0.024

P-Value 0.0019 0.0016 0.0062 0.0048 0.0011 0.0001 0.0072 0.0017 0.0010 0.0006 0.0011 0.0006

ProtBERT
Relative ∆ 0.201 0.18 0.222 0.188 0.128 0.079 0.186 0.328 0.148 0.164 0.138 0.108

± 0.034 ± 0.058 ± 0.09 ± 0.028 ± 0.027 ± 0.124 ± 0.042 ± 0.16 ± 0.015 ± 0.053 ± 0.036 ± 0.014

P-Value 0.0002 0.0023 0.0053 0.0001 0.0005 0.2278 0.0006 0.0102 0.0000 0.0023 0.0010 0.0001

ProtT5
Relative ∆ 0.069 0.127 0.109 0.103 0.066 0.065 0.107 0.218 0.057 0.059 0.064 0.032

± 0.017 ± 0.127 ± 0.027 ± 0.037 ± 0.034 ± 0.114 ± 0.052 ± 0.084 ± 0.019 ± 0.018 ± 0.027 ± 0.012

P-Value 0.0008 0.0902 0.0009 0.0034 0.0118 0.2674 0.0101 0.0043 0.0025 0.0018 0.0062 0.0044

ESM-2
Relative ∆ 0.069 0.126 0.07 0.101 0.035 0.026 0.033 0.056 0.031 0.097 0.05 0.06

± 0.008 ± 0.037 ± 0.012 ± 0.033 ± 0.028 ± 0.013 ± 0.014 ± 0.051 ± 0.019 ± 0.032 ± 0.023 ± 0.014

P-Value 0.0000 0.0015 0.0002 0.0024 0.0468 0.0117 0.0064 0.0676 0.0208 0.0024 0.0078 0.0007

Table 5: Statistical significance tests for relative improvement values. The mean and
standard deviation of the relative improvements are computed from GAT8 MCC scores
and sequence baseline MCC scores of the validation sets from 5-fold CV. The P-values
correspond to the result of the t-test performed on the relative improvement values
from the CV folds. Statistically significant P-values are displayed in bold (P −value <
0.01)

use of more complex language models. Overall, our research demonstrates the poten-
tial utility of combining sequence-based and structure-based approaches—specifically,
using a GNN model enhanced with protein language model embeddings—to improve
protein-ligand binding site prediction. This is particularly promising given the increas-
ing availability of predicted 3D models. Although slight inaccuracies in atom positions
within these predicted structures might pose challenges for tasks like molecular dock-
ing, they should not significantly impact the protein-ligand residue prediction task.
This is because the graph topology, which serves as the input to the GNN, is merely
an approximation of the protein’s three-dimensional structure and remains relatively
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Embedding Ligand ADP AMP ATP CA DNA FE GDP GTP HEME MG MN ZN Average

AAIndex

Original 0.142 0.101 0.106 0.122 0.168 0.241 0.215 0.192 0.214 0.083 0.204 0.331 0.177

Random 0.052 0.054 0.064 0.115 0.122 0.193 0.083 0.090 0.135 0.066 0.165 0.256 0.116

Absolute ∆ 0.090 0.047 0.042 0.007 0.046 0.048 0.132 0.102 0.079 0.017 0.039 0.075 0.060

Relative ∆ 1.734 0.870 0.646 0.065 0.377 0.249 1.579 1.125 0.585 0.261 0.239 0.295 0.669

SeqVec

Original 0.571 0.365 0.512 0.310 0.322 0.587 0.640 0.613 0.602 0.298 0.480 0.598 0.492

Random 0.528 0.352 0.500 0.291 0.298 0.576 0.611 0.613 0.566 0.293 0.479 0.572 0.473

Absolute ∆ 0.043 0.013 0.012 0.019 0.024 0.011 0.029 0.000 0.036 0.005 0.001 0.026 0.018

Relative ∆ 0.082 0.036 0.024 0.064 0.082 0.018 0.048 0.000 0.064 0.017 0.002 0.045 0.040

ProtBERT

Original 0.504 0.326 0.445 0.378 0.381 0.635 0.580 0.552 0.564 0.324 0.514 0.618 0.485

Random 0.468 0.305 0.423 0.337 0.357 0.601 0.589 0.535 0.527 0.297 0.485 0.614 0.462

Absolute ∆ 0.036 0.021 0.022 0.041 0.024 0.034 -0.009 0.017 0.037 0.027 0.029 0.004 0.024

Relative ∆ 0.078 0.068 0.051 0.121 0.067 0.057 -0.016 0.031 0.070 0.090 0.060 0.007 0.057

ProtT5

Original 0.597 0.489 0.572 0.408 0.510 0.692 0.746 0.670 0.743 0.364 0.607 0.649 0.587

Random 0.583 0.471 0.560 0.381 0.494 0.688 0.706 0.635 0.729 0.351 0.589 0.689 0.573

Absolute ∆ 0.014 0.018 0.012 0.027 0.016 0.004 0.040 0.035 0.014 0.013 0.018 -0.040 0.014

Relative ∆ 0.024 0.038 0.021 0.071 0.031 0.005 0.057 0.055 0.020 0.037 0.030 -0.059 0.028

ESM-2

Original 0.616 0.493 0.597 0.401 0.647 0.643 0.750 0.671 0.755 0.350 0.597 0.683 0.600

Random 0.617 0.507 0.603 0.416 0.475 0.674 0.755 0.705 0.750 0.342 0.574 0.680 0.591

Absolute ∆ -0.001 -0.014 -0.006 -0.015 0.172 -0.031 -0.005 -0.034 0.005 0.008 0.023 0.003 0.009

Relative ∆ -0.002 -0.027 -0.010 -0.035 0.363 -0.046 -0.007 -0.048 0.006 0.023 0.040 0.005 0.022

Table 6: Effect of original structure. The relative improvement over the sequence
baseline in the MCC score is computed as the GAT8 model’s MCC score minus the
sequence baseline’s MCC score, divided by the MCC score of the sequence baseline.
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unaffected by minor perturbations in atom positions. Consequently, we believe that
integrating protein sequence information from language models with 3D structure data
is a promising approach for predicting protein-ligand binding residues.
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5 Supplementary material

Number of convolutional layers
Ligand 1 2 4 6
ADP 0.664 ± 0.028 0.646 ± 0.031 0.639 ± 0.034 0.631 ± 0.039
AMP 0.453 ± 0.064 0.447 ± 0.062 0.443 ± 0.063 0.429 ± 0.047
ATP 0.572 ± 0.015 0.566 ± 0.012 0.559 ± 0.012 0.551 ± 0.015
CA 0.485 ± 0.015 0.458 ± 0.015 0.429 ± 0.016 0.409 ± 0.010

DNA 0.499 ± 0.035 0.504 ± 0.027 0.506 ± 0.028 0.510 ± 0.025
FE 0.704 ± 0.059 0.711 ± 0.062 0.699 ± 0.062 0.702 ± 0.062

GDP 0.667 ± 0.054 0.686 ± 0.062 0.645 ± 0.082 0.596 ± 0.095
GTP 0.516 ± 0.084 0.573 ± 0.056 0.541 ± 0.050 0.531 ± 0.054

HEME 0.634 ± 0.031 0.636 ± 0.039 0.632 ± 0.035 0.622 ± 0.037
MG 0.458 ± 0.017 0.452 ± 0.018 0.413 ± 0.020 0.384 ± 0.024
MN 0.609 ± 0.047 0.602 ± 0.041 0.586 ± 0.047 0.571 ± 0.049
ZN 0.685 ± 0.016 0.684 ± 0.015 0.661 ± 0.011 0.636 ± 0.009

Supplementary Table 1: Effect of the number of graph convolutional layers with
ProtT5 embeddings and cutoff distance of 6 Å. The displayed scores are means and
standard deviations of validation MCC scores from 5-fold cross-validation.
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,

GCN GAT
Ligand Cutoff Precision Recall MCC Precision Recall MCC

ADP

4 0.663 0.51 0.569 0.674 0.504 0.571
6 0.658 0.504 0.564 0.704 0.493 0.578
8 0.656 0.536 0.581 0.674 0.55 0.597
10 0.661 0.491 0.557 0.641 0.551 0.582

Ensemble 0.726 0.487 0.584 0.713 0.496 0.583

AMP

4 0.49 0.449 0.45 0.398 0.561 0.449
6 0.443 0.423 0.412 0.465 0.503 0.463
8 0.448 0.441 0.424 0.67 0.378 0.489
10 0.458 0.421 0.419 0.618 0.388 0.475

Ensemble 0.54 0.395 0.445 0.632 0.39 0.482

ATP

4 0.578 0.547 0.546 0.567 0.598 0.566
6 0.543 0.567 0.537 0.651 0.533 0.575
8 0.554 0.558 0.538 0.62 0.556 0.572
10 0.579 0.567 0.557 0.66 0.547 0.587

Ensemble 0.651 0.522 0.569 0.677 0.526 0.583

CA

4 0.526 0.308 0.396 0.473 0.322 0.383
6 0.531 0.284 0.382 0.522 0.329 0.408
8 0.551 0.303 0.403 0.533 0.322 0.408
10 0.595 0.304 0.42 0.524 0.332 0.411

Ensemble 0.647 0.28 0.421 0.613 0.303 0.426

DNA

4 0.48 0.53 0.473 0.442 0.552 0.46
6 0.476 0.541 0.476 0.459 0.579 0.483
8 0.411 0.625 0.47 0.438 0.674 0.51
10 0.43 0.568 0.459 0.474 0.569 0.488

Ensemble 0.519 0.518 0.49 0.5 0.559 0.499

FE

4 0.463 0.842 0.618 0.602 0.833 0.704
6 0.488 0.867 0.645 0.572 0.792 0.668
8 0.467 0.825 0.614 0.594 0.817 0.692
10 0.493 0.858 0.645 0.609 0.858 0.719

Ensemble 0.513 0.825 0.645 0.613 0.817 0.703

GDP

4 0.756 0.608 0.665 0.851 0.588 0.696
6 0.782 0.593 0.668 0.801 0.624 0.695
8 0.879 0.634 0.737 0.937 0.608 0.746
10 0.796 0.624 0.693 0.735 0.701 0.705

Ensemble 0.896 0.577 0.71 0.922 0.613 0.744

GTP

4 0.469 0.674 0.537 0.761 0.607 0.666
6 0.47 0.618 0.514 0.753 0.618 0.669
8 0.553 0.64 0.575 0.731 0.64 0.67
10 0.544 0.629 0.564 0.508 0.697 0.573

Ensemble 0.58 0.573 0.556 0.809 0.618 0.695

HEME

4 0.716 0.7 0.689 0.715 0.676 0.675
6 0.718 0.667 0.672 0.773 0.621 0.674
8 0.755 0.75 0.736 0.799 0.719 0.743
10 0.716 0.674 0.675 0.724 0.679 0.682

Ensemble 0.775 0.648 0.691 0.79 0.624 0.685

MG

4 0.459 0.264 0.343 0.44 0.249 0.325
6 0.443 0.276 0.344 0.471 0.264 0.347
8 0.438 0.292 0.351 0.473 0.289 0.364
10 0.481 0.281 0.362 0.463 0.272 0.349

Ensemble 0.526 0.261 0.365 0.537 0.254 0.364

MN

4 0.6 0.646 0.617 0.625 0.591 0.602
6 0.565 0.662 0.606 0.684 0.612 0.642
8 0.596 0.603 0.594 0.608 0.616 0.607
10 0.55 0.646 0.59 0.652 0.641 0.642

Ensemble 0.64 0.637 0.634 0.679 0.608 0.638

ZN

4 0.64 0.691 0.66 0.667 0.683 0.67
6 0.711 0.661 0.681 0.681 0.672 0.672
8 0.685 0.671 0.673 0.712 0.668 0.685
10 0.729 0.667 0.693 0.713 0.677 0.69

Ensemble 0.755 0.655 0.699 0.746 0.663 0.699

Supplementary Table 2: Comparison of GAT and GCN for ProtT5 embeddings
and for different cutoff distances
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,
AAIndex ProtBERT SeqVec ESM-2

Ligand Cutoff Precision Recall MCC Precision Recall MCC Precision Recall MCC Precision Recall MCC

ADP

4 0.055 0.557 0.089 0.755 0.324 0.484 0.822 0.741 0.557 0.801 0.814 0.615
6 0.075 0.436 0.115 0.728 0.340 0.487 0.827 0.752 0.575 0.802 0.788 0.590
8 0.077 0.583 0.142 0.659 0.405 0.504 0.836 0.743 0.571 0.807 0.809 0.616
10 0.084 0.573 0.154 0.705 0.359 0.492 0.844 0.760 0.598 0.831 0.791 0.621

Ensemble 0.127 0.430 0.188 0.807 0.324 0.502 0.854 0.738 0.580 0.826 0.789 0.614

AMP

4 0.050 0.648 0.067 0.233 0.429 0.281 0.806 0.629 0.397 0.764 0.747 0.511
6 0.060 0.571 0.092 0.365 0.235 0.272 0.822 0.610 0.376 0.716 0.766 0.480
8 0.060 0.643 0.101 0.321 0.388 0.326 0.769 0.624 0.365 0.782 0.716 0.493
10 0.058 0.737 0.108 0.313 0.370 0.313 0.824 0.628 0.407 0.808 0.702 0.499

Ensemble 0.068 0.569 0.111 0.359 0.278 0.293 0.858 0.613 0.403 0.810 0.718 0.521

ATP

4 0.054 0.567 0.071 0.541 0.366 0.428 0.800 0.717 0.511 0.781 0.800 0.581
6 0.067 0.573 0.106 0.441 0.490 0.443 0.782 0.727 0.506 0.786 0.792 0.577
8 0.073 0.470 0.106 0.449 0.484 0.445 0.783 0.732 0.512 0.821 0.778 0.597
10 0.075 0.516 0.116 0.445 0.539 0.468 0.806 0.721 0.520 0.805 0.797 0.601

Ensemble 0.092 0.454 0.136 0.552 0.440 0.476 0.825 0.712 0.525 0.822 0.783 0.604

CA

4 0.038 0.615 0.110 0.481 0.248 0.339 0.691 0.621 0.303 0.710 0.661 0.367
6 0.038 0.641 0.112 0.543 0.233 0.350 0.741 0.605 0.317 0.750 0.660 0.400
8 0.045 0.575 0.122 0.598 0.246 0.378 0.713 0.613 0.310 0.744 0.665 0.401
10 0.048 0.611 0.134 0.547 0.237 0.354 0.730 0.616 0.327 0.730 0.669 0.394

Ensemble 0.054 0.558 0.139 0.661 0.214 0.372 0.776 0.601 0.334 0.777 0.647 0.404

DNA

4 0.094 0.693 0.138 0.354 0.461 0.363 0.627 0.683 0.305 0.681 0.792 0.460
6 0.103 0.629 0.145 0.352 0.503 0.379 0.652 0.668 0.320 0.692 0.771 0.456
8 0.118 0.597 0.168 0.323 0.562 0.381 0.656 0.667 0.322 0.677 0.808 0.467
10 0.124 0.622 0.184 0.355 0.499 0.380 0.656 0.677 0.332 0.673 0.829 0.477

Ensemble 0.124 0.584 0.175 0.405 0.455 0.393 0.676 0.659 0.334 0.705 0.788 0.486

FE

4 0.061 0.808 0.194 0.557 0.692 0.615 0.772 0.805 0.576 0.759 0.916 0.657
6 0.089 0.675 0.221 0.535 0.767 0.635 0.758 0.809 0.564 0.727 0.931 0.626
8 0.090 0.775 0.241 0.535 0.767 0.635 0.765 0.825 0.587 0.757 0.903 0.643
10 0.084 0.808 0.237 0.458 0.825 0.609 0.761 0.838 0.593 0.769 0.928 0.678

Ensemble 0.121 0.733 0.279 0.544 0.725 0.622 0.787 0.801 0.588 0.765 0.916 0.664

GDP

4 0.089 0.531 0.130 0.624 0.546 0.566 0.919 0.740 0.635 0.934 0.828 0.754
6 0.115 0.474 0.163 0.677 0.552 0.595 0.954 0.741 0.662 0.919 0.814 0.726
8 0.156 0.479 0.215 0.675 0.526 0.580 0.905 0.753 0.640 0.936 0.823 0.750
10 0.145 0.593 0.230 0.603 0.557 0.561 0.930 0.751 0.657 0.935 0.836 0.764

Ensemble 0.201 0.438 0.249 0.768 0.495 0.603 0.948 0.736 0.651 0.951 0.816 0.754

GTP

4 0.088 0.551 0.129 0.694 0.483 0.563 0.899 0.734 0.611 0.876 0.843 0.718
6 0.122 0.517 0.180 0.658 0.562 0.591 0.926 0.768 0.675 0.864 0.837 0.701
8 0.133 0.506 0.192 0.643 0.506 0.552 0.876 0.749 0.613 0.841 0.830 0.671
10 0.097 0.562 0.149 0.613 0.551 0.562 0.934 0.768 0.682 0.876 0.843 0.718

Ensemble 0.184 0.449 0.235 0.789 0.506 0.618 0.938 0.751 0.664 0.889 0.838 0.725

HEME

4 0.105 0.612 0.131 0.577 0.472 0.493 0.830 0.751 0.575 0.868 0.878 0.746
6 0.117 0.617 0.156 0.593 0.495 0.514 0.829 0.742 0.565 0.869 0.875 0.744
8 0.142 0.681 0.214 0.617 0.566 0.564 0.862 0.750 0.602 0.881 0.874 0.755
10 0.136 0.616 0.190 0.552 0.547 0.519 0.849 0.764 0.607 0.876 0.885 0.761

Ensemble 0.153 0.572 0.206 0.699 0.476 0.554 0.878 0.743 0.606 0.891 0.871 0.762

MG

4 0.024 0.546 0.068 0.447 0.244 0.325 0.672 0.602 0.264 0.720 0.636 0.346
6 0.024 0.482 0.065 0.480 0.227 0.325 0.704 0.601 0.287 0.716 0.638 0.345
8 0.032 0.437 0.083 0.412 0.264 0.324 0.700 0.611 0.298 0.713 0.643 0.350
10 0.029 0.482 0.078 0.477 0.232 0.328 0.700 0.606 0.291 0.725 0.641 0.357

Ensemble 0.040 0.417 0.098 0.519 0.219 0.333 0.740 0.597 0.306 0.741 0.634 0.359

MN

4 0.051 0.776 0.165 0.511 0.506 0.502 0.786 0.715 0.496 0.776 0.813 0.588
6 0.076 0.624 0.191 0.552 0.473 0.505 0.764 0.715 0.477 0.789 0.790 0.580
8 0.079 0.667 0.204 0.544 0.498 0.514 0.751 0.729 0.480 0.827 0.772 0.597
10 0.085 0.646 0.210 0.543 0.527 0.529 0.797 0.715 0.506 0.815 0.785 0.599

Ensemble 0.106 0.662 0.243 0.591 0.481 0.527 0.805 0.709 0.505 0.819 0.781 0.599

ZN

4 0.096 0.895 0.268 0.640 0.578 0.602 0.789 0.785 0.574 0.855 0.825 0.679
6 0.131 0.798 0.303 0.648 0.579 0.607 0.809 0.779 0.587 0.854 0.825 0.679
8 0.152 0.810 0.331 0.640 0.609 0.618 0.809 0.790 0.598 0.858 0.825 0.683
10 0.146 0.852 0.334 0.636 0.612 0.618 0.803 0.801 0.604 0.849 0.830 0.678

Ensemble 0.165 0.816 0.349 0.687 0.570 0.621 0.842 0.781 0.620 0.878 0.816 0.691

Note : Here, embeddings are compared for the GAT model.

Supplementary Table 3: Comparison of different embeddings with different cutoff
distances
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Model architecture Hyperparameters Validation MCC

MLP

3 layers, 64 units, dropout 0.5 0.560 ± 0.037
3 layers, 256 units, dropout 0.5 0.609 ± 0.032
3 layers, 512 units, dropout 0.5 0.618 ± 0.033
1 layer, 64 units, dropout 0.1 0.602 ± 0.034
1 layer, 256 units, dropout 0.1 0.629 ± 0.035
1 layer, 512 units, dropout 0.1 0.639 ± 0.036

Linear SVM
C = 1.0 0.400 ± 0.023
C = 10.0 0.461 ± 0.042
C = 0.1 0.387 ± 0.018

Random Forest
n estimators = 100 , max features = all features 0.310 ± 0.035
n estimators = 100 , max features = 0.5 0.307 ± 0.029

Supplementary Table 4: Models and hyperparameters used to select the sequence
baseline. The displayed scores are means and standard deviations of validation MCC
scores from 5-fold cross-validation on the ADP ligand training dataset.

Embedding AAIndex SeqVec ProtBERT ProtT5 ESM-2
Dataset - UniRef50 BFD BFD, UniRef50 UniRef50

Number of Parameters - 93M 420M 3B 3B
Embedding dimension 566 1024 1024 1024 2560

Supplementary Table 5: Comparison of embeddings.

Hyperparameter Values
Number of units in GNN layers 64, 256, 512, 1024

Learning rate 3e-4, 1e-3
Weight decay 1e-5, 1e-2
Dropout rate 0, 0.3, 0.5

Number of attention heads in GAT 1, 2, 4
Residual connections True, False
Batch normalization True, False

Supplementary Table 6: Hyperparameter values tried in manual tuning.
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Dataset Sequences Binding residues Non-Binding residues Missing protein graphs

DNA Train 573 573 14479 145404 18

DNA Test 129 129 2240 35275 2

DNA Test 181 181 3208 72050 18

RNA Train 495 495 14609 122290 36

RNA Test 117 117 2031 35314 10

Supplementary Table 7: Protein-DNA/RNA benchmarks summary. From Graph-
Bind we used the protein-DNA benchmarking set consisting of a training set
DNA Train 573 and a test set DNA Test 129 , and we employed the protein-
RNA benchmarking set consisting of a training set RNA Train 495 and a test
set RNA Test 117. From GraphSite, we used the protein-DNA benchmarking test
set DNA Test 181, and we trained the model on the same protein-DNA set
DNA Train 573 from GraphBind. All protein-DNA/RNA benchmarks were down-
loaded in FASTA format, and underwent the same preprocessing strategy used for
the Yu benchmark. We thus had to discard protein sequences with a high mismatch
between the sequence from the benchmark and the sequence of residues from PDB.
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Dataset Method AUC AUPR MCC

DNA Test 129

GraphBind 0.928 0.519 0.499

GraphSite 0.919 0.502 -

EquiPNAS 0.943 0.582 -

GeoBind 0.940 - 0.526

GAT8 + ProtT5 (ours) 0.922 0.510 0.488

DNA Test 181

GraphBind 0.904 0.339 0.392

GraphSite 0.903 0.336 0.397

EquiPNAS 0.921 0.393 -

GAT8 + ProtT5 (ours) 0.898 0.337 0.364

RNA Test 117

GraphBind 0.854 - 0.322

GeoBind 0.874 - 0.373

EquiPNAS 0.887 0.320

GAT8 + ProtT5 (ours) 0.810 0.261 0.292

Supplementary Table 8: Comparison with existing methods - protein-DNA/RNA
benchmarks.
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