

1 **WOX11-mediated adventitious lateral root formation modulates tolerance of**
2 **Arabidopsis to cyst nematode infections**

3
4 Jaap-Jan Willig¹¶, Nina Guarneri¹¶, Thomas van Loon¹, Sri Wahyuni¹, Ivan E. Astudillo-Estévez¹#, Lin Xu²,
5 Viola Willemse³, Aska Goverse¹, Mark G. Sterken¹, José L. Lozano-Torres¹, Jaap Bakker¹, Geert Smant¹

6
7 ¹Laboratory of Nematology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
8 ²National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant
9 Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032,
10 China

11 ³Cluster of Plant Developmental Biology, Cell and Developmental Biology, Wageningen University &
12 Research, 6708 PB Wageningen, the Netherlands

13 # - Present address: Instituto de Microbiología, Universidad San Francisco de Quito, Quito, Ecuador

14 ¶ - These authors have contributed equally.

15
16 **Running title:** WOX11 modulates tolerance to cyst nematodes

17
18 **Author for correspondence:**

19 Geert Smant
20 Postbus 8123
21 6700ES, Wageningen
22 Tel: +31317483137
23 Email: geert.smant@wur.nl

24
25 **ORCIDs:**

26 Jaap-Jan Willig 0000-0003-1872-1300
27 Nina Guarneri 0000-0002-0399-9230
28 Lin Xu 0000-0003-4718-1286

29 Viola Willemsen 0000-0002-6420-0605

30 Aska Goverse 0000-0002-7399-8743

31 Mark G. Sterken 0000-0001-7119-6213

32 José L. Lozano-Torres 0000-0002-0021-5947

33 Geert Smant 0000-0001-6094-8686

34

35 Key words:

36 Adventitious lateral root, COI1, damage, *de novo* root organogenesis, ERF109, *Heterodera schachtii*,
37 LBD16, plasticity, root system architecture, WOX11, tolerance

38

39 **Abstract:**

40 The transcription factor *WUSCHEL-RELATED HOMEOBOX 11* (WOX11) in *Arabidopsis* initiates the
41 formation of adventitious lateral roots upon mechanical injury in primary roots. Root-invading nematodes
42 also induce *de novo* root organogenesis leading to excessive root branching, but it is not known if this
43 symptom of disease involves mediation by WOX11 and if it benefits the plant. Here, we show with targeted
44 transcriptional repression and reporter gene analyses in *Arabidopsis* that the beet cyst nematode
45 *Heterodera schachtii* activates WOX11-adventitious lateral rooting from primary roots close to infection
46 sites. The activation of WOX11 in nematode-infected roots occurs downstream of jasmonic acid-dependent
47 damage signaling via *ETHYLENE RESPONSIVE FACTOR109*, linking adventitious lateral root formation
48 to nematode damage to host tissues. By measuring different root system components, we found that
49 WOX11-mediated formation of adventitious lateral roots compensates for nematode-induced inhibition of
50 primary root growth. Our observations further demonstrate that WOX11-mediated rooting reduces the
51 impact of nematode infections on aboveground plant development and growth. Altogether, we conclude
52 that the transcriptional regulation by WOX11 modulates root system plasticity under biotic stress, which is
53 one of the key mechanisms underlying tolerance of *Arabidopsis* to cyst nematode infections.

54

55 **Introduction:**

56 Soil-borne infections by cyst nematodes affect above- and below-ground plant development and growth,
57 sometimes resulting in large yield losses in agriculture (Jones et al., 2013). Biotic stress induced by cyst
58 nematodes in roots of host plants occurs at different stages of their infection cycle. Firstly, the infective
59 second stage juveniles (J2s) invade host roots and migrate intracellularly through the epidermis and cortex,
60 causing extensive damage to root tissue. Secondly, after becoming sedentary, cyst nematodes take up
61 large amounts of plant assimilates during feeding from modified plant cells, which therefore develop strong
62 metabolic sink activity (Gheysen and Mitchum, 2011; Jones et al., 2013; Bebber et al., 2014). As a response
63 to nematode infections, plants remodel their root system by forming additional secondary roots (Goverse
64 et al., 2000; Olmo et al., 2020; Willig et al., 2022; Guarneri et al., 2023). The *de novo* formation of secondary
65 roots in response to endoparasitism by nematodes might be a mechanism to compensate for primary root
66 growth inhibition caused by nematode infection (Guarneri et al., 2023). However, whether such a form of
67 root system plasticity contributes to overall plant tolerance to cyst nematode infections remains to
68 investigated.

69 Depending on where and how secondary roots are formed, they are either classified as lateral roots
70 or adventitious lateral roots (Sheng et al., 2017). During post-embryonic development in *Arabidopsis*,
71 periodic oscillations of auxin maxima at the root tip prime cells to form lateral roots that emerge in a regular
72 acropetal pattern from the growing primary root (Fukaki and Tasaka, 2009; van den Berg et al., 2016). The
73 emergence of lateral roots is controlled by AUXIN RESPONSE FACTOR (ARF)7 and ARF19, which directly
74 regulate *LATERAL ORGAN BOUNDARIES DOMAIN (LBD)16* and other *LBD* genes (Okushima et al.,
75 2007). In contrast, adventitious lateral roots do not follow an acropetal pattern as they emerge in between
76 and opposite of existing lateral roots. Moreover, adventitious lateral roots emerge in response to tissue
77 damage, and their formation is regulated by a separate pathway mediated by the transcription factor
78 WUSCHEL-RELATED HOMEOBOX (WOX)11 (Liu et al., 2014; Hu and Xu, 2016; Sheng et al., 2017). After
79 cutting the primary root, local accumulation of auxin activates *WOX11* transcriptional activity through auxin
80 response elements in its promotor region (Liu et al., 2014). Subsequently, *WOX11* induces the expression
81 of *LBD16* but also the expression of other *WOX* genes (Hu and Xu, 2016; Sheng et al., 2017). Ultimately,
82 this leads to the *de novo* formation of secondary roots close to the injury site (Cai et al., 2014; Liu et al.,
83 2014; Hu and Xu, 2016; Sheng et al., 2017). Cyst nematode infection in primary roots of *Arabidopsis* triggers

84 the formation of secondary roots which does not follow an acropetal patterning (Guarneri et al., 2022).
85 Instead, secondary roots often form clusters at nematode infection sites. As to whether the formation of
86 these secondary roots depends on the WOX11-mediated pathway and whether they should thus be
87 classified as adventitious lateral roots is still a knowledge gap.

88 We have recently demonstrated that the formation of secondary roots near nematode infection
89 sites involves damage-induced jasmonic acid (JA) signalling (Guarneri et al., 2023). Tissue damage caused
90 by intracellular migration of infective juveniles of *H. schachtii* induces the biosynthesis of JA, which activates
91 the transcription factor *ETHYLENE RESPONSIVE FACTOR* (ERF)109 via the JA receptor *CORONATINE*
92 *INSENSITIVE* (COI)1. ERF109, in turn, can trigger local biosynthesis of auxin by directly binding to the
93 promoters of auxin biosynthesis genes *ASA1* and *YUC2* (Cai et al., 2014). Indeed, our data showed that
94 COI1/ERF109-mediated formation of secondary roots from nematode-infected primary roots depends on
95 local biosynthesis and accumulation of auxin (Guarneri et al., 2023). WOX11-mediated formation of
96 adventitious lateral roots upon root injury also involves local accumulation of auxin (Liu et al., 2014).
97 However, it remains to be demonstrated if WOX11 becomes activated by COI1- and ERF109-mediated
98 damage signalling in nematode-infected roots.

99 Several recent reports in the literature point at a role for WOX11-mediated root plasticity in
100 modulating plant responses to abiotic stresses. For instance, *WOX11*, designated as *PagWOX11/*
101 *WOX12a*, in poplar mediates changes in root system architecture in response to drought and salt stress
102 (Wang et al., 2020; Wang et al., 2021). Overexpression and dominant repression of this gene in poplar
103 plants alters the number of adventitious roots formed under high saline conditions (Liu et al., 2022).
104 Likewise, the loss-of-function mutant *wox11* in rice exhibits reduced root system development in response
105 to drought as compared to wildtype plants (Cheng et al., 2016). Based on these findings, WOX11-mediated
106 root plasticity is thought to enhance plant tolerance to abiotic stress. However, whether WOX11-mediated
107 root plasticity is also involved in mitigating the impact of biotic stresses on the root system is not known.

108 In this study, we first addressed whether cyst nematode-induced secondary roots qualify as
109 damage-induced adventitious lateral roots. Hereto, we monitored *de novo* secondary root formation in
110 *Arabidopsis* seedlings of the double mutant *arf7arf19* and the WOX11 transcriptional repressor mutant
111 *35S:WOX11-SRDX* in the *arf7arf19* background (Hiratsu et al., 2003) infected with *H. schachtii*. Next, we

112 asked whether the regulation of *WOX11* in nematode-infected *Arabidopsis* roots occurs downstream of JA-
113 dependent damage signalling through *COI1* and *ERF109*. To answer this question we performed a time
114 course experiment measuring *pWOX11::GFP* expression with confocal microscopy in wild-type, *coi1-2*, and
115 *erf109* infected mutant seedlings. Third, we assessed if *WOX11*-mediated root system plasticity
116 compensates for the inhibition of primary root growth upon cyst nematode infection. For this, we measured
117 different components of root system architecture of nematode-infected *WOX11* transcriptional repressor
118 mutant and wildtype *Arabidopsis* plants. Last, we tested if *WOX11*-mediated root system plasticity
119 contributes to the overall tolerance of *Arabidopsis* to cyst nematode infections. To this end, we compared
120 the aboveground plant growth and development of cyst nematode-infected 35S:*WOX11-SRDX* mutants
121 and wildtype *Arabidopsis* for a period of three weeks after inoculation. Based on our data, we propose a
122 model wherein the formation of *WOX11*-mediated adventitious lateral roots enhances tolerance of
123 *Arabidopsis* to biotic stress by cyst nematode infections.

124

125 **Materials and Method**

126

127 **Plant material and culturing**

128 The *Arabidopsis* (*Arabidopsis thaliana*) lines wild-type Col-0 (N60.000), 35S:*WOX11-SRDX/arf7-1/19-1*,
129 *arf7-1/19-1*, *LBD16pro:LBD16-GUS* and 35S:*WOX11-SRDX/LBD16pro:LBD16-GUS* (Sheng et al., 2017),
130 *pWOX11::GFP*, *pWOX11::GFP-coi1-2*, *pWOX11::GFP-erf109*, *coi1-2* and *erf109* were used. For in vitro
131 experiments, seeds were vapor sterilized for 3-4 hours using a mixture of hydrochloric acid (25%) and
132 sodium hypochlorite (50 g/L). Finally, sterile seeds were stratified for 4 days at 4 °C, after which they were
133 sown on square Petri dishes (120x120 mm) containing modified Knop medium (Sijmons et al., 1991) in a
134 growth chamber with a 16-h-light/8-h-dark photoperiod at 21°C. For in vivo pot experiments, seeds were
135 stratified for 4 days and sown on silver sand in 200 mL pots. Seedlings were grown at 19 °C and 16-h-
136 light/8-h-dark conditions with LED light (150 lumen), as previously described in (Willig et al., 2023).

137

138 **Hatching and sterilization of *Heterodera schachtii***

139 *H. schachtii* cysts (Woensdrecht population from IRS, the Netherlands) were separated from sand of
140 infected *Brassica oleracea* plants as previously described (Baum et al., 2000). Cysts were transferred into
141 a clean Erlenmeyer containing water with 0.02% sodium azide. This mixture was gently stirred for 20 min.
142 Later, sodium azide was removed by washing with tap water. Cysts were then incubated for 4-7 days in a
143 solution containing 1.5 mg/mL gentamycin sulfate, 0.05 mg/mL nystatin and 3 mM ZnCl₂. Hatched J2s were
144 purified by centrifugation on a 35% sucrose gradient, transferred to a 2 mL Eppendorf tube and surface
145 sterilized for 15 minutes in a solution containing 0.16 mM HgCl₂, 0.49 mM NaN₃, and 0.002% (v/v) Triton
146 X-100. After washing the J2s three times with sterile tap water, *H. schachtii* J2s were re-suspended in a
147 sterile 0.7% Gelrite (Duchefa Biochemie, Haarlem, the Netherland) solution. A similar concentration of
148 Gelrite solution was used as mock treatment.

149 For *in vivo* pot experiments, J2s were hatched and collected in a similar way as described above.
150 Non-sterile J2s were purified by centrifugation on a 35% sucrose gradient and washed three times with tap
151 water. Nematodes were resuspended in tap water for specific inoculation densities.

152

153 **Quantifying root system architecture of nematode-infected *Arabidopsis***

154 Seven-day-old 35S:WOX11-SRDX/*arf7-1/19-1* and *arf7-1/19-1* *Arabidopsis* seedlings were inoculated with
155 either 90 *H. schachtii* J2s or a mock solution. Root architecture was inspected at 7 dpi using an Olympus
156 SZX10 binocular with a 1.5x objective and 2.5x magnification. Scans were made of whole seedlings using
157 an Epson Perfection V800 photo scanner. Pictures of nematode infections were taken with a AxioCam
158 MRc5 camera (Zeiss) and the ZEN 3.2 blue edition software (Zeiss).

159 Nine-day-old 35S:WOX11-SRDX and wild-type Col-0 seedlings, grown on 120x120 mm square
160 Petri dishes were inoculated with 0 (mock), 0.5, 1.0, 2.5, 5.0, and 7.5 *H. schachtii* J2s per mL of modified
161 Knop medium as previously described (Guarneri et al., 2023). Inoculations were done with two 5 μ l drops
162 that were pipetted at opposite sides of each seedling while keeping the petri dishes vertical. At 7 dpi, scans
163 were made of whole seedlings using an Epson Perfection V800 photo scanner. The architecture (i.e., total
164 root length, primary root length, total secondary root length) was measured using the WinRHIZO package
165 for *Arabidopsis* (WinRHIZO pro2015, Regent Instrument Inc., Quebec, Canada). The number of root tips
166 was counted manually based on the scans.

167

168 **Acid fuchsine staining of nematodes**

169 Nematodes within the roots were stained with acid fuchsin and counted as previously described
170 (Warmerdam et al., 2018). For comparisons between genotypes, the background effect of the mutation on
171 the root architecture was corrected by normalizing each measured root architecture component in infected
172 seedlings to the median respective component in mock-inoculated roots.

173

174 **Histology and brightfield microscopy**

175 Four-day-old *Arabidopsis* seedlings were inoculated with 20 *H. schachtii* J2s or a mock solution. For
176 histochemical staining of β -glucuronidase (GUS) activity, seedlings were incubated in a GUS staining
177 solution (1 mg/mL X-GlcA in 100 mM phosphate buffer pH 7.2, 2 mM potassium ferricyanide, 2 mM
178 potassium ferrocyanide, and 0.2 % Triton X-100) at 37 °C (Zhou et al., 2019) for 3 hours. Stained seedlings
179 were mounted in a chloral hydrate clearing solution (12 M chloral hydrate, 25% glycerol) and inspected with
180 an Axio Imager nM2 light microscope (Zeiss) via a 20x objective. Differential interference contrast (DIC)
181 images were taken with an AxioCam MRc5 camera (Zeiss) and the ZEN 3.2 blue edition software (Zeiss).

182

183 **Confocal laser microscopy of single *H. schachtii* infection sites**

184 Four-day-old *Arabidopsis* seedlings were inoculated with roughly five sterile *H. schachtii* J2s in 10 μ L 0.7%
185 Gelrite. Single nematode infection sites were selected for observation at 2, 3, 4, and 7 dpi. Infection sites
186 were inspected using a Zeiss LSM 710 confocal laser scanning microscope and a 40x objective. After a
187 single infection site was located, a Z-stack of ten 13 μ m-slices was made. Z-stacks were taken using the
188 ZEN 2009 software (Zeiss). The imaging settings in ZEN 2009 were as follows: Laser 488 at 50%, Pinhole
189 41.4 μ m, eGFP 645 nm, TPMT 217 nm. Z-stacks were processed with ImageJ Version 1.53 to quantify the
190 fluorescence integrated density.

191 The post-processing in ImageJ of one individual image was as follows: Firstly, an auto-scaled
192 compressed-hyper-Z-stack was created of the 10 layers made with the confocal microscope by using the
193 Z-compression function at max intensity (Supplemental Figure S4). Secondly, a duplicate of the original Z-
194 stack was created, and a Gaussian filter with a sigma value of 2.0 was applied to this duplicate. This

195 duplicate was subtracted from the original image by using the image calculator function. Thirdly, the image
196 threshold limits were set to a specific range ranging from 0 to 100 depending on the quality of the image.
197 The same threshold limits were applied on all images that were taken on the same day. Lastly, the particles
198 were analysed using Analyse Particles at size 0-Infinity and circularity 0.00-1.00.

199

200 **High throughput analysis of the green canopy area of nematode-infected Arabidopsis**
201 **plants**

202 Plants were imaged and analyzed as previously described (Willig et al., 2023). Prior to sowing, pots, were
203 filled with silver sand, covered with black coversheets, and were watered with Hyponex (1.7 mM/L NH₄⁺,
204 4.1 mM/L K⁺, 2 mM/L Ca₂⁺, 1.2 mM/L Mg₂⁺, 4.3 mM/L NO₃⁻, 3.3 mM/L SO₄²⁻, 1.3 mM/L H₂PO₄⁻, 3.4 µm/L
205 Mn, 4.7 µm/L Zn, B 14 µm/L, 6.9 µm/L Cu, 0.5 µm/L Mo, 21 µm/L Fe, pH 5.8) for five minutes. Seven days
206 after sowing, seedlings were watered again for five minutes. Nine-day-old seedlings were inoculated with
207 increasing densities of *H. schachtii* (0 to 10 juveniles per g dry sand). For our experiments we did not use
208 a blocking design as it would greatly increase the chance for error when manually inoculating plants. Every
209 hour, pictures were taken of the plants (15 pictures per day) for a period of 21 days. At the end of the
210 experiment, colour corrections were done using Adobe Photoshop (Version: 22.5.6 20220204.r.749
211 810e0a0 x64). The surface area of the rosette was determined using a custom-written ImageJ macro
212 (ImageJ 1.51f; Java 1.8.0_321 [32-bit]) and Java was used to make GIFs.

213

214 **Plant growth analysis and tolerance modelling using a high-throughput phenotyping**
215 **platform**

216 To analyse the growth data of the plants obtained from the high-throughput platform, we followed the same
217 approach and used the same functions as in our previously published analytical pipeline (Willig et al., 2023);
218 available via Gitlab: https://git.wur.nl/published_papers/willig_2023_camera-setup.

219 In short, the measurement used was the median daily leaf area (cm²), calculated from the 15 daily
220 measurements. We used log₂-transformed data, where the rate of growth was determined per day per plant
221 by (equation 1)

222

223 $R_{x,t} = \log_2(A_{x,t-1} - A_{x,t})$

224

225 where $R_{x,t}$ is the transformed growth rate of plant x at day t from day $t-1$ to day t based on the median Green
226 canopy area $A_{x,t}$.

227 The tolerance limit was modelled using a previously described method based on fitting growth
228 models (Willig et al., 2023). Here we fitted a logistic growth model using the *growthrates* package on the
229 median daily leaf area A_t (cm^2) (equation 2),

230

231
$$A_t = \frac{K \times A_0}{A_0 + (K - A_0) \times e^{(-r \times t)}}$$

232

233 where K is the maximum green canopy area (cm^2), A_0 is the initial canopy area (cm^2), and r is the intrinsic
234 growth rate (d^{-1}), which were determined as a function of time t (d) ($p < 0.1$).

235 Based on the relation between K and density we could identify the tolerance limit (equation 3)

236

237
$$K = K_B + \frac{K_\sigma}{P_\sigma} \times e^{-\left(\frac{P_i - P_M}{P_\sigma}\right)^2}$$

238

239 where P_i is the initial nematode density in nematodes per gram soil, K_B is the basal canopy size, K_σ is the
240 normalized maximum canopy area that can be achieved over the P_i range, P_σ is the deviation around the
241 nematode density allowing maximum growth, P_M is the nematode density at which maximum growth is
242 achieved. We modelled the parameter values using *nls* and extracted confidence intervals using the *nlstools*
243 package (Baty et al., 2015). The tolerance limit, 2^*P_M , could such be determined (as in (Willig et al., 2023)).

244

245 Statistical analyses

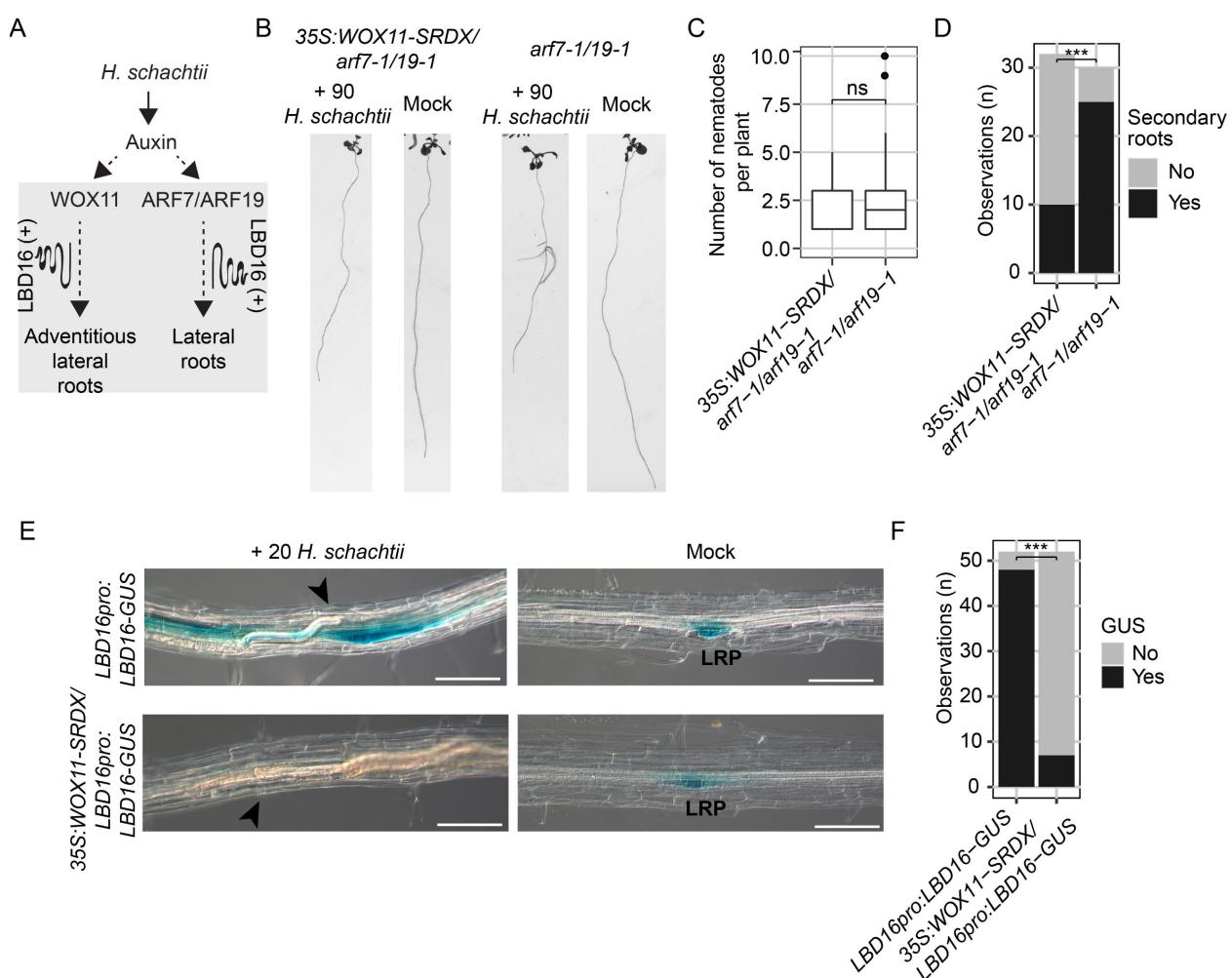
246 Statistical analyses were performed using the R software version 3.6.3 (Windows, x64). The R packages
247 used are *tidyverse* (<https://CRAN.R-project.org/package=tidyverse>), *ARTool* (<https://CRAN.R-project.org/package=ARTool>) and *multcompView* (<https://CRAN.R-project.org/package=multcompView>).
249 Correlation between variables was calculated using Spearman Rank-Order Correlation coefficient. For

250 binary data, significance of the differences between proportions was calculated by a Pairwise Z-test. For
251 normally distributed data, significance of the differences among means was calculated by ANOVA followed
252 by Tukey's HSD test for multiple comparisons. A non-parametric pairwise Wilcoxon test followed by false
253 discovery rate correction for multiple comparisons was used for data with other distributions and one
254 grouping factor. For the high-throughput platform data we used the Wilcoxon test as implemented in the
255 *ggpubr* package (<https://cran.r-project.org/web/packages/ggpubr/index.html>). The confidence interval of
256 the inoculum density-response curves was calculated by LOESS regression (as per default in
257 *geom_smooth*) in R.

258

259 **Results**

260


261 **Cyst nematodes induce the formation of adventitious lateral roots**

262 Our earlier work showed that *H. schachtii* induces the *de novo* formation of secondary roots between or
263 across fully developed lateral roots near nematode infection sites (Guarneri et al., 2023). Here, we
264 hypothesized that these secondary roots are adventitious lateral roots, the formation of which depends on
265 WOX11-mediated transcriptional regulation (Fig. 1A). To test this hypothesis, we inoculated *H. schachtii* on
266 the lateral root-deficient *arf7-1/19-1* double mutant, which is unable to form acropetal lateral roots, and the
267 transcription repressor mutant 35S:WOX11-SRDX/*arf7-1/19-1* (Hiratsu et al., 2003), which is unable to form
268 neither acropetal nor adventitious lateral roots (Fig. 1B-D). Importantly, we observed no difference in the
269 number of nematodes per plant between *arf7-1/19-1* and 35S:WOX11-SRDX/*arf7-1/19-1* (Fig. 1C),
270 indicating that both *Arabidopsis* lines were exposed to similar levels of biotic stress. However, while *H.*
271 *schachtii* induced the formation of secondary roots on *arf7-1/19-1* mutant line (Fig. 1B, D and Supplemental
272 Fig. S1), no secondary roots emerged from nematode-infected roots of the 35S:WOX11-SRDX/*arf7-1/19-*
273 *1* mutant. From this, we concluded that the induction of secondary roots by *H. schachtii* is mediated by
274 WOX11 and that these secondary roots therefore qualify as adventitious lateral roots.

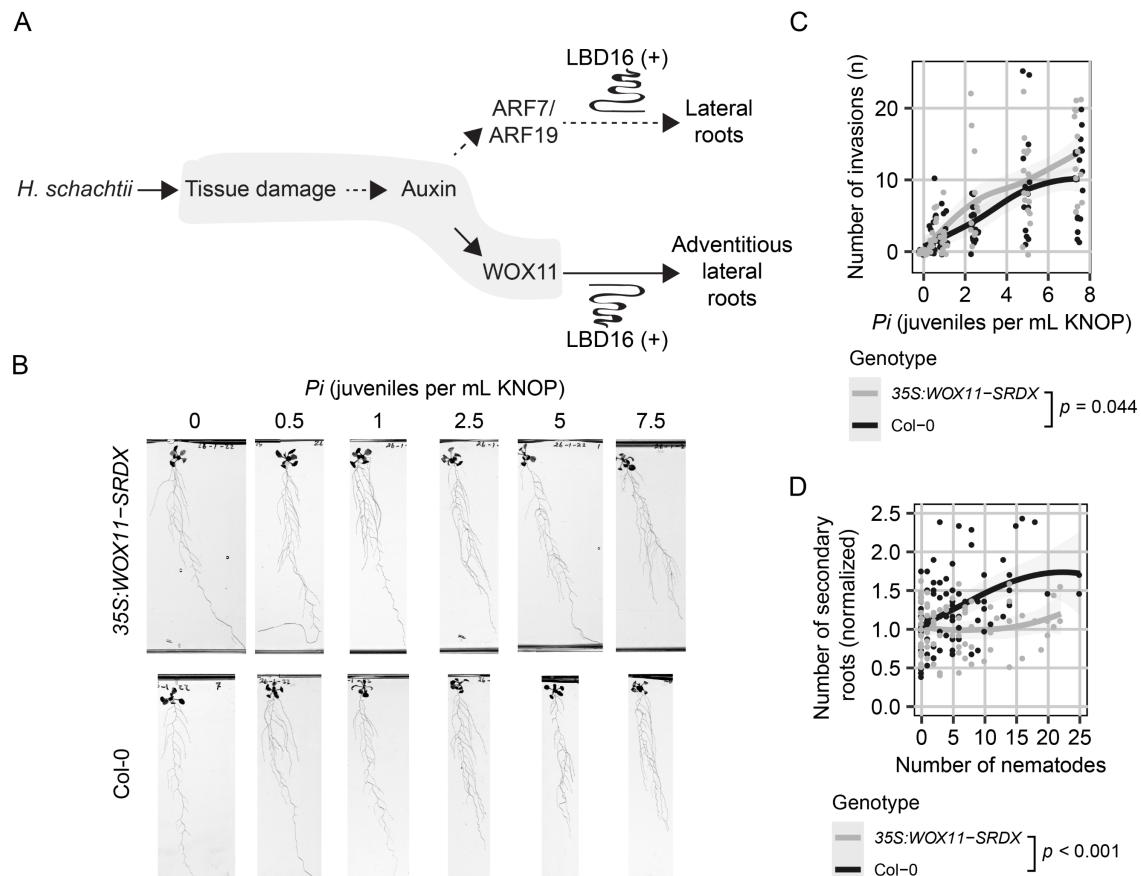
275 WOX11-mediated formation of adventitious lateral roots from primary roots of *Arabidopsis* involves
276 the downstream transcriptional activation of *LBD16* (Fig. 1A) (Sheng et al., 2017). To test if WOX11
277 activates *LBD16* in nematode-infected *Arabidopsis* roots, we monitored the expression of *LBD16* fused to

278 *GUS* in wildtype (*LBD16pro:LBD16-GUS*) and 35S:WOX11-SRDX (35S:WOX11-SRDX/*LBD16pro:LBD16-GUS*) seedlings inoculated with *H. schachtii* (Fig. 1E and F). We found that *LBD16* was highly expressed in nematode infection sites in the wildtype, but not in the 35S:WOX11-SRDX background. This demonstrates that *H. schachtii* activates *LBD16* expression in a WOX11-dependent manner. Based on these observations, we concluded that cyst nematode infections activate the WOX11/LBD16-mediated pathway to form adventitious lateral roots from primary roots.

284

285

286 **Figure 1: *Heterodera schachtii* induces adventitious lateral root formation in a WOX11- and LBD16-dependent manner.** **A)** Schematic diagram of *H. schachtii*- and WOX11-mediated adventitious lateral root emergence. Grey area indicates the tested part of the pathway. Curling line and '+' indicate involvement of multiple proteins, including LBD16. **B-D)** Seven-day old 35S:WOX11-SRDX/arf7-1/19-1 and arf7-1/arf19-1 mutant seedlings were inoculated with 90 *H. schachtii* juveniles or mock. At 7dpi, scans were made of the root system. **B)** Representative pictures of 35S:WOX11-SRDX/arf7-1/19-1 and arf7-1/arf19-1 mutant seedlings inoculated with 90 *H. schachtii* or with mock solution. **C)** Number of juveniles that invaded the primary roots. **D)** Number of seedlings that show


292 secondary roots (Yes) that are associated with *H. schachtii* infection sites or no secondary roots at all (No). Data from three
293 independent biological repeats of the experiment was combined. Statistical significance was calculated by a Pairwise Z-test n=30-32,
294 ***: p<0.001). **E-F)** Four-day-old Arabidopsis seedlings expressing the *LBD16pro:LBD16-GUS* and *35S:WOX11-*
295 *SRDX/LBD16pro:LBD16-GUS* reporters were inoculated with 20 *H. schachtii* juveniles. At 4dpi, GUS expression was stained for 3
296 hours and seedlings were imaged **e)** *LBD16pro:LBD16-GUS* and *35S:WOX11-SRDX/LBD16pro:LBD16-GUS* expression at nematode
297 infection sites in roots. Black arrowheads indicate the nematode head. LRP indicates lateral root primordia. Scale bar = 100 μ m. **F)**
298 Number of observations with (Yes) or without (No) GUS staining at the nematode infection site in roots of wild-type Col-0 seedlings.
299 Data from three independent biological repeats of the experiment were combined. Statistical significance was calculated by a Pairwise
300 Z-test n=52, ***: p<0.001).

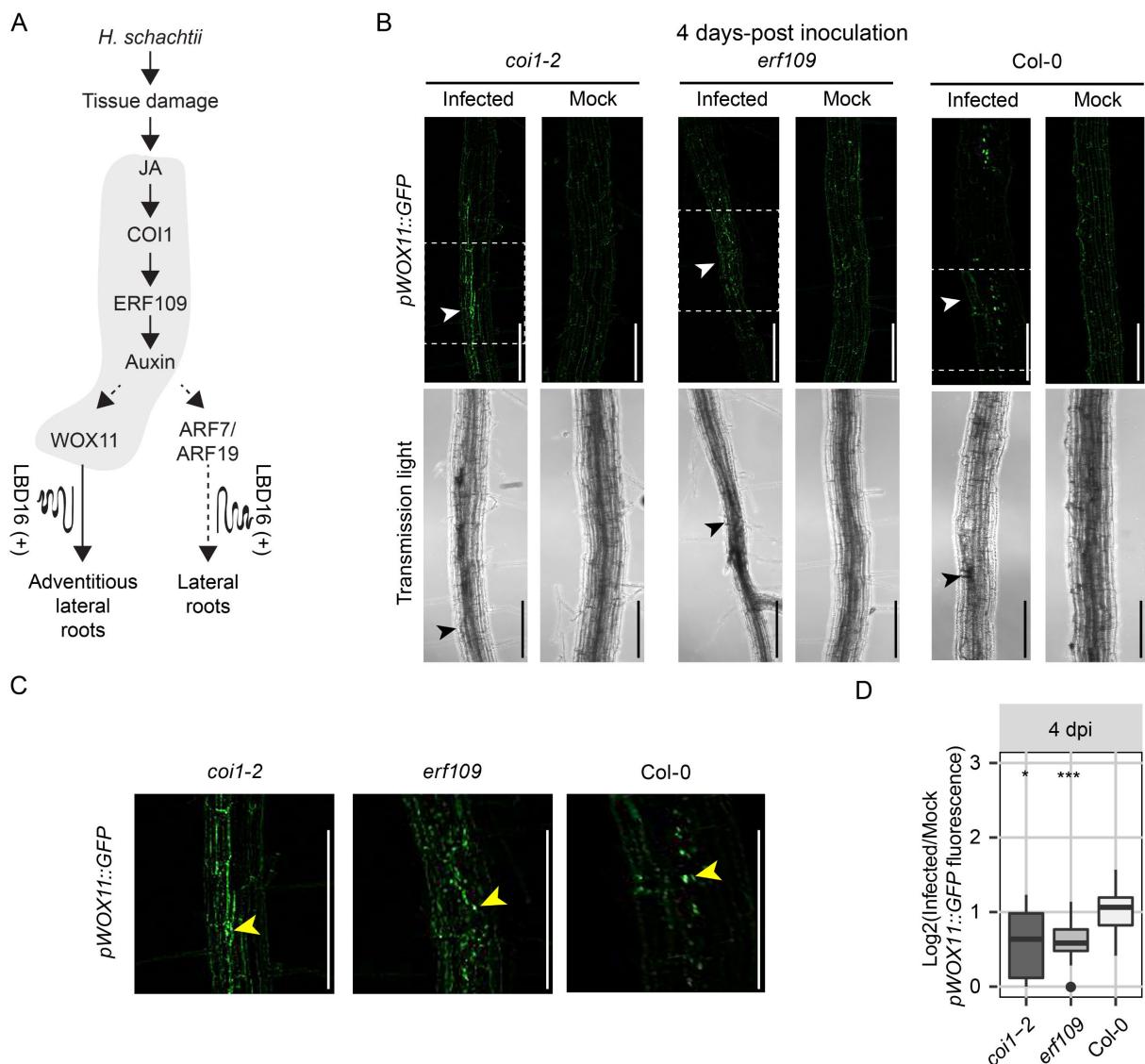
301

302 **Emergence of adventitious lateral roots correlates with damage in primary roots**

303 Previously, we showed that increasing nematode inoculation densities result in more tissue damage in
304 Arabidopsis leading to a higher number of secondary roots emerging from infected primary roots (Guarneri
305 et al., 2023). To test the hypothesis that WOX11 mediates this quantitative relationship between inoculation
306 density and the number of secondary roots emerging from cyst nematode-infected primary roots (Fig. 2A),
307 we inoculated nine-day-old seedlings of *35S:WOX11-SRDX* and wildtype plants with increasing densities
308 of *H. schachtii* (Fig. 2B). At 7 dpi, the number of nematodes that had successfully penetrated the roots was
309 counted after staining with acid fuchsin (Fig. 2C). The number of infective juveniles in *35S:WOX11-SRDX*
310 plants by inoculation density was significantly higher compared to wild-type Col-0 plants. This indicates that
311 the transcriptional regulation by WOX11 in wild-type Arabidopsis plants reduces susceptibility to penetration
312 by *H. schachtii*. Next, we counted the number of secondary roots to determine whether this correlates with
313 the number of nematodes inside the roots. It should be noted that uninfected *35S:WOX11-SRDX* plants
314 have more secondary roots than wild-type Col-0 plants (Supplemental Fig. S2). To correct for this
315 background effect of the SRDX-transcriptional repressor construct on root system architecture, we
316 normalized the total number of secondary roots in infected seedlings to the average respective number in
317 uninfected seedlings (Fig. 2D). As expected, after normalization, the number of secondary roots emerging
318 from primary roots increased with the number of successful invasions of *H. schachtii* in wild-type
319 Arabidopsis. However, no such correlation was observed in *35S:WOX11-SRDX* plants. We therefore
320 concluded that the density-dependent adaptations in root system architecture to increasing levels of

321 damage in nematode-infected roots are brought about by WOX11-mediated formation of adventitious
322 lateral roots.
323

324
325 **Figure 2: WOX11 is required in *Heterodera schachtii* induced adventitious lateral root formation in a density-dependent**
326 **manner. A)** Schematic diagram of *H. schachtii*- and WOX11-mediated adventitious lateral roots emergence. Grey area indicates the
327 tested part of the pathway. Curling line and '+' indicate the involvement of multiple proteins, including LBD16. **B-D)** Nine-day-old
328 35S:WOX11-SRDX and wild-type Col-0 seedlings were inoculated with nematode densities (P_i) ranging from 0-7.5 *H. schachtii* J2s
329 (mL modified KNOP media). Roots were scanned and nematodes were counted after acid fuchsin staining at 7 dpi. **B)** Representative
330 images of Arabidopsis root systems at 7 dpi. **C)** Number of nematodes that successfully penetrated the roots per plant. **D)** Secondary
331 roots formed per number of nematodes inside the roots. The total number of secondary roots of infected seedlings was normalized to
332 the median respective component in mock-inoculated roots. Data from two independent biological repeats of the experiment were
333 combined. Significance of differences between genotypes was calculated by analysis of variance ($n=14-18$). Grey area indicates the
334 95% confidence interval.


335

336 **COI1 and ERF109 modulate damage-induced activation of *WOX11* at nematode infection**

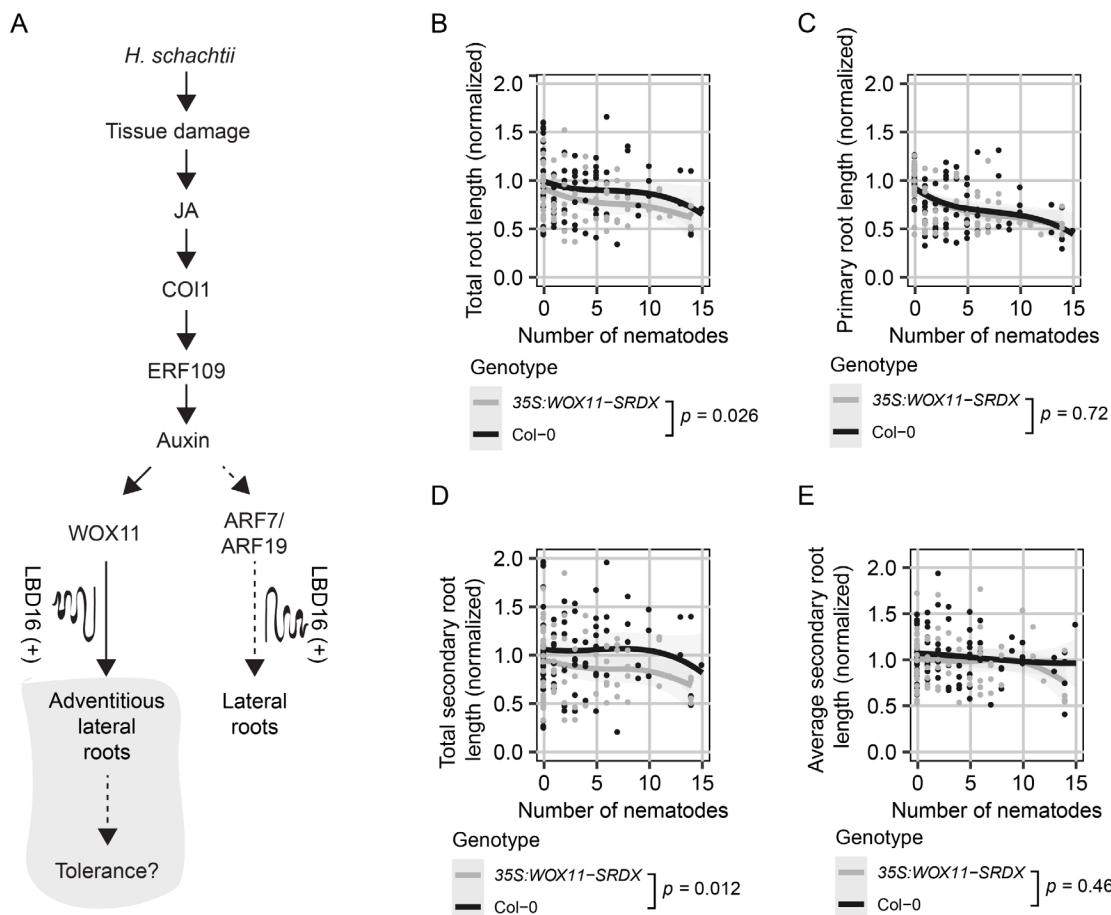
337 **sites**

338 *De novo* formation of secondary roots on nematode-infected primary roots of *Arabidopsis* is mediated by
339 damage-induced activation of JA signaling via COI1 and ERF109 (Guarneri et al., 2023). In this study we
340 tested COI1 and ERF109 are required for the regulation of *WOX11* in nematode-infection sites (Fig. 3A).
341 Hereto, we imaged nucleus-localized *pWOX11::GFP* expression within single-nematode infection sites in
342 the *coi1-2* and *erf109* mutants and wild-type Col-0 at 2, 3, 4, and 7 dpi (Fig. 3 and Supplemental Fig. S3).
343 Cyst nematode infection typically causes tissue autofluorescence in *Arabidopsis* roots (Hoth et al., 2005).
344 To filter out this autofluorescence from the fluorescent signal emitted by the GFP construct, we subtracted
345 a Gaussian blurred image from the original images (Supplemental Fig. S4). Hereafter, we observed a
346 gradual increase in the *pWOX11::GFP*-derived fluorescent signal in nematode infection sites over time in
347 *coi1-2*, *erf109*, and wild-type Col-0 (Fig. S3A-F), with wild-type Col-0 showing the strongest increase
348 (Supplemental Fig. S3F). For instance, at 4 dpi, wild-type Col-0 plants showed significantly more nuclear
349 GFP fluorescence in and around nematode feeding sites compared to *coi1-2* and *erf109* in the processed
350 images (Fig. 3B-D). We, therefore, concluded that two key components of the damage-induced JA
351 signalling pathway, COI1 and ERF109, modulate *WOX11* expression in infection sites of *H. schachtii* in
352 *Arabidopsis*.

353

354

355 **Figure 3: COI1 and ERF109 modulate WOX11 expression upon *H. schachtii* infection. A)** Schematic diagram of *H. schachtii*-and
 356 WOX11-mediated adventitious lateral root emergence. Grey area indicates the tested part of the pathway. Curling line and '+' indicate
 357 involvement of multiple proteins, including LBD16. **B-C)** Four-day-old Arabidopsis seedlings were either inoculated with 10 *H. schachtii*
 358 second-stage juveniles (J2s) or mock-inoculated. At 4 dpi, seedlings were mounted in water and then imaged using a fluorescent
 359 confocal microscope. Single-nematode infection sites were selected for observation. Images are original. **B)** Representative pictures
 360 of infected and mock-inoculated seedlings expressing the *pWOX11::GFP* construct with nuclear localization signal in either wild-type
 361 *Col-0*, mutant *coi1-2*, or mutant *erf109* background at 4 dpi. To make the fluorescence more visible, the brightness was enhanced for
 362 all the representative pictures in the same way. **C)** Zoomed parts of original images fluorescent signal that are indicated by dashed
 363 white box in panel (B). Yellow arrowhead indicates true fluorescent signal of *pWOX11::GFP* in the nucleus. **D)** Quantification of
 364 *pWOX11::GFP* fluorescent intensity induced by infection in wild-type *Col-0*, *coi1-2*, and *erf109* roots. Values represent \log_2 of the
 365 fluorescence ratio between the GFP integrated density of infected and noninfected roots. Scale bar: 200 μ m. Data from three
 366 independent biological repeats of the experiment were combined. Significance of differences between fluorescent intensities in *Co-0*,


367 *coi1-2*, and *erf109* per timepoint was calculated by a Wilcoxon Rank Sum test. ns = not significant, *p< 0.05, **p< 0.01, ***p<0.001
368 (n=15).

369

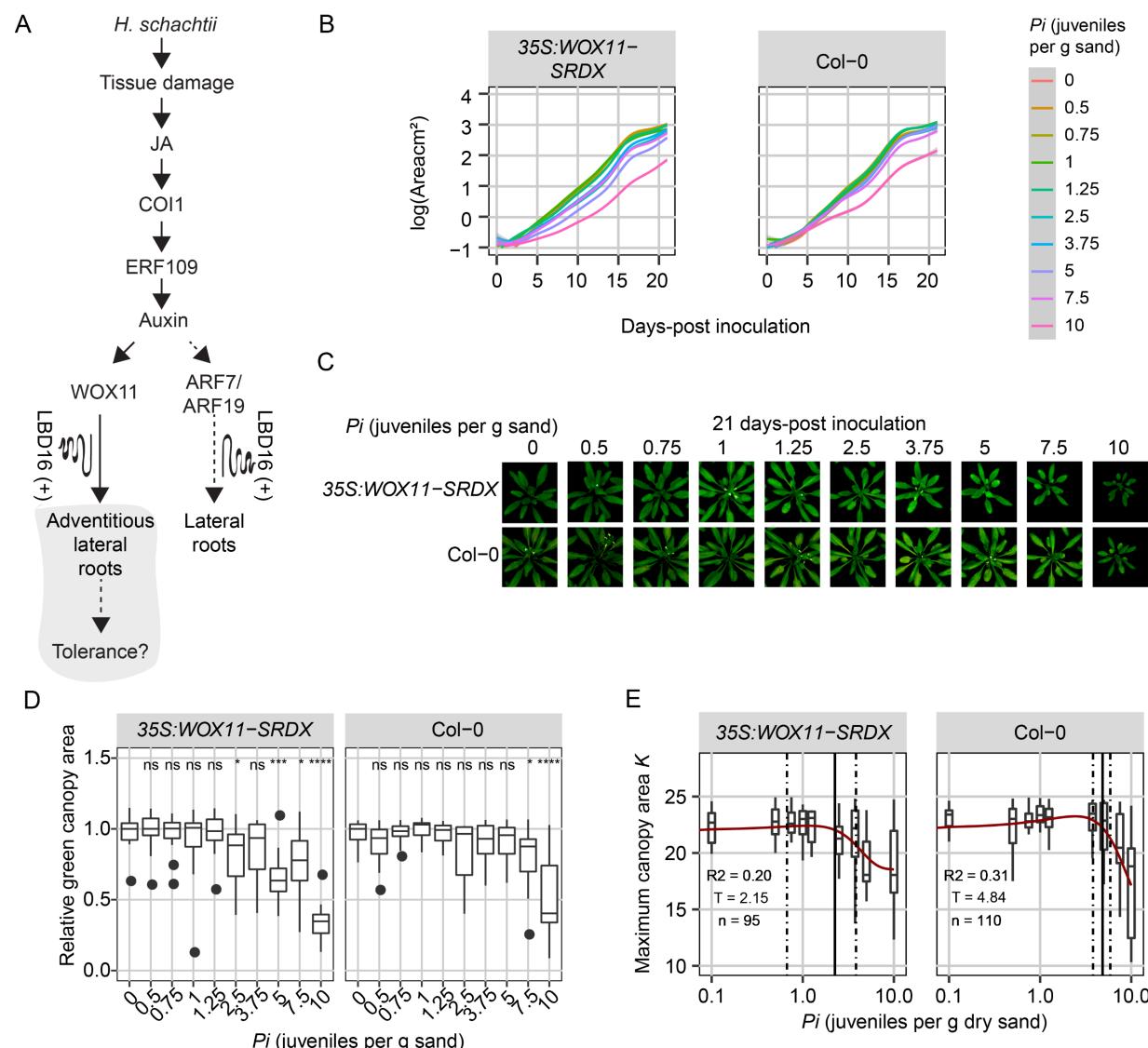
370 **Formation of adventitious lateral roots compensates for nematode-induced primary root
371 growth inhibition**

372 Next, we asked whether WOX11-mediated adventitious lateral roots formation compensates for the
373 inhibition of primary root growth due to nematode infections (Fig. 4A). To this end, we quantified root system
374 architecture components (i.e., total root length, primary root length, total secondary root length, and average
375 secondary root length) of nematode-infected roots of both 35S:WOX11-SRDX and wildtype Col-0 plants
376 (Fig. 2). Initially, we noticed that our measurements of root system architecture components followed a
377 parabolic function with the minimum values at the infection rate of 15 juveniles per root, suggesting the
378 existence of two density dependent counteracting mechanisms (Supplemental Fig. S5). We, therefore,
379 analysed our data for the lower (Fig. 4) and higher infection rates separately (Supplemental Fig. S5). For
380 plants infected with 0 to 15 juveniles per root, we found that the total root length was significantly more
381 reduced by nematode infection in 35S:WOX11-SRDX mutant plants than in wild-type Col-0 plants (Fig. 4B
382 and D). Interestingly, the growth of the primary root was not different between 35S:WOX11-SRDX mutant
383 plants and wild-type plants upon infection with cyst nematodes (Fig. 4C). However, the total length of the
384 secondary roots of nematode-infected 35S:WOX11-SRDX mutant plants was significantly smaller as
385 compared to wild-type Col-0 plants (Fig. 4D). As the average secondary root length did not significantly
386 differ between 35S:WOX11-SRDX and wild-type *Arabidopsis* plants, WOX11 affects the root system
387 architecture by increasing the number of secondary roots but not by extending secondary root growth
388 (Supplemental Fig. 5E). For plants infected with 15 to 25 juveniles per plant, we observed no significant
389 differences for the total root length (Supplemental Fig. S5B) between wild-type Col-0 and 35S:WOX11-
390 SRDX. Likewise, we found no differences in the primary root length (Supplemental Fig. S5C), total
391 secondary root length (Supplemental Fig. S5D), and average secondary root length (Fig. S5E). Based on
392 our analyses, we concluded that WOX11-mediated formation of adventitious lateral roots compensates for
393 nematode-induced inhibition of primary root growth at lower infection rates.

394

395

396 **Figure 4: Formation of adventitious lateral roots compensates for nematode-induced primary root growth inhibition. A)**
 397 Schematic diagram of *H. schachtii*-and WOX11-mediated adventitious lateral root emergence. Grey area indicates the tested part of
 398 the pathway. Curling line and '+' indicate involvement of multiple proteins, including LBD16. **B-D)** Nine-day old 35S:WOX11-SRDX
 399 and wild-type Col-0 seedlings were inoculated densities (P_i) ranging from 0-7.5 *H. schachtii* J2s (mL modified KNOP media). Roots
 400 were scanned and nematodes were counted after fuchsin staining at 7 dpi. Root architectural components of infected seedlings were
 401 normalized to the median respective component in mock-treated roots. Data of two independent biological repeats of the experiment
 402 was combined. **B)** Representative images of *Arabidopsis* root system at 7dpi. **B)** Total root length per number of nematodes inside
 403 the roots. **C)** Primary root length per number of nematodes inside the roots. **D)** Total secondary root length per number of nematodes
 404 inside the roots. **E)** Average secondary root length per number of nematodes inside the roots. Data from two independent biological
 405 repeats of the experiment were combined. Significance of differences between genotypes was calculated by analysis of variance
 406 ($n=14-18$). Grey area indicates the 95% confidence interval of the LOESS fit.


407

408 **WOX11 modulates tolerance to cyst nematode infections**

409 The growth of the green canopy area over time reflects the tolerance of *Arabidopsis* to biotic stress by root-
 410 feeding cyst nematodes (Willig et al., 2023). To assess if WOX11-mediated *de novo* formation of

411 adventitious lateral roots modulates tolerance of *Arabidopsis* to cyst nematode infection, we monitored the
412 growth of the green canopy area of 35S:WOX11-SRDX mutant and wild-type Col-0 seedlings for a period
413 of 21 days after inoculation with different numbers of *H. schachtii* (Fig. 5A and B). At the end of the
414 experiment, the green canopy area of the 35S:WOX11-SRDX mutant was smaller at higher inoculation
415 densities of *H. schachtii* as compared to wild-type Col-0 plants (Fig. 5C and D). Notably, the first significant
416 reduction in green canopy area of 35S:WOX11-SRDX plants by nematode infection was observed at
417 inoculation densities between P_i 2.5 and 5 J2s per gram sand, while in wild-type Col-0 plants we observed
418 a first significant reduction in green canopy area at P_i 7.5 J2s per gram sand. To quantify more exactly the
419 difference in tolerance of 35S:WOX11-SRDX and wildtype Col-0 plants, we fitted the growth rates of
420 individual plants (Supplemental Fig. S6 and S7) to a logistic growth model. From this, we calculated the
421 maximum projected green canopy area and determined the tolerance limit with 95% confidence interval
422 (95% CI) (Fig. 5E). The relationship between maximum canopy area K and the P_i fitted a Gaussian curve,
423 based on which we estimated the tolerance limit for 35S:WOX11-SRDX at $P_i = 2.25$ (95% CI: 0.67-3.83)
424 and for wild-type Col-0 at $P_i = 4.84$ (95% CI: 3.8-5.89). This difference in tolerance limits led us to conclude
425 that WOX11 modulates tolerance of *Arabidopsis* to cyst nematode infections.

426

427

428 **Figure 5: WOX11 is involved in tolerance to cyst nematode infection.** **A)** Schematic diagram of *H. schachtii*- and WOX11-mediated
 429 adventitious lateral root emergence. Grey area indicates the tested part of the pathway. Curling line and '+' indicate involvement of
 430 multiple proteins, including LBD16. Nine-day-old Arabidopsis seedlings were inoculated with 10 densities (P_i) of *H. schachtii* juveniles
 431 (0 to 10 J2s per g dry sand) in 200 mL pots containing 200 grams of dry sand. **B)** Average growth curve of Arabidopsis plants inoculated
 432 with different inoculum densities of *H. schachtii* from 0-21 dpi. Line fitting was based on a LOESS regression. **C)** Representative
 433 images of plants inoculated with *H. schachtii* at 21-days post inoculation. **D)** Relative green canopy area at 21 dpi. For the relative
 434 green canopy area, all values were normalized to the median of the measurements of the corresponding mock-inoculated plants. Data
 435 was analysed with a Wilcoxon Rank Sum test; ns= not significant, * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$ ($n=10-18$ plants per treatment). **E)**
 436 The maximum canopy area K per inoculation density of *H. schachtii*. The fitted line is from a Gaussian curve. Solid line indicates the
 437 tolerance limit. Dashed line indicates the confidence interval. R^2 is the goodness of the fit, T is the tolerance limit, and n is the number
 438 of plants used for fitting the data.

439

440 **Discussion**

441

442 Excessive root branching is a classical symptom of nematode disease in plants of which the underlying
443 causes nor the functions are well understood. Recently, we showed that endoparasitic cyst nematodes
444 activate a JA-dependent damage signaling pathway leading to local auxin biosynthesis and subsequent *de*
445 *novo* formation of secondary roots near infection sites (Guarneri et al., 2023). At the outset of this study, it
446 was not clear if nematode-induced secondary roots emerge from primary roots following the canonical
447 auxin-dependent pathway for the formation of acropetal lateral roots, or if they emerge following a different
448 pathway. Our current data supports the alternative hypothesis wherein the emergence of secondary roots
449 in response to nematode damage follows the non-canonical WOX11-dependent pathway leading to the
450 formation of adventitious lateral roots. This induction of adventitious lateral roots near nematode infection
451 sites compensates for the inhibition of primary root growth by root-feeding cyst nematodes. We further show
452 that the WOX11-mediated plasticity of root system architecture contributes to the tolerance of *Arabidopsis*
453 to cyst nematode infections.

454 Our observations demonstrate that the *de novo* root organogenesis near cyst nematode infection
455 sites depends on WOX11, but not on ARF7/ARF19. Both WOX11- and ARF7/ARF19-mediated rooting
456 pathways are activated by auxin, but they form a divergence point in the differentiation of adventitious lateral
457 root primordia from lateral root primordia. WOX11 responds to auxin signals brought about by external
458 cues, such as wounding (Sheng et al., 2017), and mediates tissue repair and regeneration mechanisms
459 (Liu et al., 2014). In contrast, the auxin signals activating ARF7/ARF19 are thought to be developmentally
460 regulated following endogenous rooting cues. Interestingly, both WOX11- and ARF7/ARF19-mediated root
461 organogenesis pathways converge on LBD16 (Okushima et al., 2007; Sheng et al., 2017). Our findings
462 indeed show that cyst nematodes induce expression of *LBD16* in a WOX11-dependent manner. However,
463 this observation contradicts earlier work wherein *LBD16* expression was not observed in *Arabidopsis*
464 infected with *H. schachtii* at similar timepoints after inoculation (Cabrera et al., 2014). It should be noted
465 that we used a different *LBD16_{pro}:LBD16-GUS* reporter line containing a much larger genomic region
466 upstream of *LBD16* (Sheng et al., 2017) compared to previous studies (Okushima et al., 2007; Cabrera et
467 al., 2014). This extended promoter region included in the *LBD16_{pro}:LBD16-GUS* line harbours multiple

468 WOX11-binding sites, which are absent in previously used *LBD16-GUS* reporter lines and which may thus
469 explain the differences in observed *LBD16* expression in cyst nematode-infected *Arabidopsis* roots.

470 Our data further shows that both COI1 and ERF109 modulate WOX11 expression in response to
471 cyst nematode infection, which positions WOX11 downstream of ERF109 within the JA-dependent damage
472 signalling pathway. JA-dependent damage signaling induces local auxin biosynthesis, which drives the
473 production of secondary roots (Guarneri et al., 2023). Auxin has been shown to directly activate WOX11
474 expression, and as such WOX11 connects stress-induced auxin signaling to the establishment of
475 adventitious lateral root founder cells (Sheng et al., 2017). ERF109 most likely modulates WOX11 activity
476 by regulating local YUCCA-mediated biosynthesis of auxin (Cai et al., 2014). However, even in the absence
477 of ERF109 (i.e., *erf109* mutant) we observed some *WOX11-GFP* expression in nematode infection sites.
478 This agrees with our earlier observations demonstrating that besides damage-induced local biosynthesis
479 of auxin, auxin transported from the shoots towards nematode infection sites also contributes to local stress-
480 induced auxin maxima (Guarneri et al., 2023). WOX11 may thus integrate local and systemic auxin-based
481 stress response mechanisms leading to formation of adventitious lateral roots in nematode-infected
482 *Arabidopsis*.

483 In our *in vitro* bioassays, WOX11 affected the number of secondary roots emerging from nematode-
484 infected primary roots, but not the average secondary root length. Furthermore, we found that WOX11-
485 mediated adventitious rooting compensated for the inhibition of primary root growth due to nematode
486 infections, which implies that WOX11 mitigates the impact of nematode infections by adapting root system
487 branching. This fits in the current model of wound-induced formation of secondary roots, wherein the
488 activation of WOX11 initiates the cell fate transition of protoxylem cells into adventitious root founder cells
489 (Liu et al., 2014). WOX11 expression is thought to be specific for adventitious root founder cells, where it
490 activates, together with its close homolog WOX12, LBD16- and WOX5-mediated divisions to initiate the
491 formation adventitious root primordia (Liu et al., 2014; Hu and Xu, 2016). During these divisions the
492 expression of WOX11 decreases, because of which it affects the number of secondary roots but is less
493 likely to alter secondary root growth.

494

495 Based on the green canopy area as a proxy for measuring the overall impact of belowground stress
496 on plant fitness, we conclude that WOX11-mediated root system plasticity also contributes to the tolerance
497 of *Arabidopsis* to cyst nematode infections. The estimated tolerance limit of 35S:WOX11-SRDX plants for
498 cyst nematode infections was significantly lower than for wild-type Col-0 plants. Others have shown that
499 homologs of *Arabidopsis* WOX11 in rice, apple, and poplar enhance plant tolerance to abiotic stresses,
500 such as drought and low nitrate conditions, by regulating adventitious lateral root formation (Cheng et al.,
501 2016; Wang et al., 2020; Wang et al., 2021; Tahir et al., 2022). Furthermore, WOX11 functions as a key
502 regulator in the regeneration of primary roots after mechanical injury by inducing the formation of
503 adventitious lateral roots at the cut site (Sheng et al., 2017). Our study provides a first example of WOX11-
504 mediated mitigation of the impact of belowground biotic stress.

505 WOX11-mediated adventitious rooting may contribute to tolerance of *Arabidopsis* to biotic stress
506 by restoring the capacity of the root system to take up and transport water and minerals. Cyst nematodes
507 modify host cells within the vascular cylinder into a permanent feeding structure, which interrupts the
508 continuity of surrounding xylem vessels (Golinowski et al., 1996; Sobczak et al., 1997; Levin et al., 2020).
509 As cyst nematodes develop, their feeding structures expand, consuming a larger part of the vascular
510 cylinder while further impeding the flow of water and minerals (Bohlmann and Sobczak, 2014). This is the
511 reason why aboveground symptoms of cyst nematodes infections are often confused for drought stress.
512 Local and systemic auxin-based stress signals may thus activate WOX11-mediated adventitious lateral
513 rooting to maintain the flow of water and minerals to the xylem vessels above infection sites (Levin et al.,
514 2020). At lower inoculation densities, WOX11-mediated adventitious lateral root formation from cyst
515 nematode infected primary roots may suffice to sustain normal *Arabidopsis* development and growth
516 resulting in a more tolerant phenotype.

517 Recent research suggests that the cellular processes targeted by transcriptional activity of WOX11
518 includes the modulation of reactive oxygen species (ROS)-homeostasis. In poplar, PagWOX11/12a has
519 been shown to regulate the expression of enzymes involved in scavenging ROS under salt stress conditions
520 (Wang et al., 2021). In crown root meristem cells of rice, WOX11 modulates ROS-mediated post-
521 translational modifications (i.e., protein acetylation) of proteins required for crown root development (Xu et
522 al., 2022). ROS are required for the induction of adventitious root formation from *Arabidopsis* explants (Shin

523 et al., 2022). There is also evidence that ROS modulate auxin levels during the initiation of adventitious
524 roots from *Arabidopsis* explants (Huang et al., 2020). Moreover, we have recently linked tolerance of
525 *Arabidopsis* to cyst nematode infections, ROS-mediated processes, and root system plasticity (Willig et al.,
526 2022). However, further research is needed to investigate if *WOX11* influences ROS-related processes, or
527 vice versa, in infection sites of cyst nematodes in *Arabidopsis* roots, and if such a mechanism plays a role
528 in *WOX11*-mediated root plasticity and tolerance to nematode infections.

529

530 **Supporting Information:**

531 Additional supporting information may be found in the online version of this article.

532

533 **Supplemental Figure S1.** Primordia formed in response to *H. schachtii* infection in *arf7-1/19-1* mutant
534 seedlings.

535 **Supplemental Figure S2.** Root architecture comparison between 35S:WOX11-SRDX seedlings and wild-
536 type Col-0 seedlings.

537 **Supplemental Figure S3.** COI1 and ERF109 contribute to *WOX11* expression upon *H. schachtii* infection.

538 **Supplemental Figure S4.** Noise removal process using Gaussian Blur option in ImageJ.

539 **Supplemental Figure S5.** Adventitious lateral roots increase the total secondary root length upon
540 nematode infection.

541 **Supplemental Figure S6.** Growth rates of *coi1-2*, *erf109*, and 35S:WOX11-SRDX, and wild-type Col-0
542 plants over time.

543 **Supplemental Figure S7.** Growth rates of *coi1-2*, *erf109*, and 35S:WOX11-SRDX plants are more affected
544 during *H. schachtii* than wild-type.

545

546 **Funding:**

547 This work was supported by the Graduate School Experimental Plant Sciences (EPS). JJW is funded by
548 Dutch Top Sector Horticulture & Starting Materials (TU18152). JLLT was supported by NWO domain
549 Applied and Engineering Sciences VENI (14250) and VIDI (18389) grants. MGS was supported by NWO
550 domain Applied and Engineering Sciences VENI grant (17282).

551

552 **Acknowledgments:**

553 We thank Prof. Viola Willemsen for providing the *pWOX11::GFP*, *pWOX11::GFP-coi1-2*, *pWOX11::GFP-*
554 *erf109* reporter lines, and Lin Xu for providing the 35S:WOX11-SRDX/*arf7-1/19-1*, *arf7-1/19-1*,
555 *LBD16pro:LBD16-GUS* and 35S:WOX11-SRDX/*LBD16pro:LBD16-GUS* mutant lines.

556

557 **Author contributions:**

558 JJW, NG, JB, and GS conceived the project. JJW, NG, TvL, SW, IEAE designed and performed the
559 experiments. MGT provided scripts for SYLM analysis. Data analysis was designed analyzed and
560 interpreted by JJW, NG, and MGS. JJW, NG, and GS wrote the article. VW performed crosses of *coi1-2*,
561 *erf109* with wildtype plants expressing *pWOX11::GFP*. VW and LX provided *Arabidopsis* mutant and
562 reporter lines. VW, LX, AG, MGS, and JLLT provided critical feedback on the manuscript. All co-authors
563 provided input for the submitted version.

564

565 **Conflict of interest:**

566 The authors declare no conflict of interest.

567

568

569 **References**

570

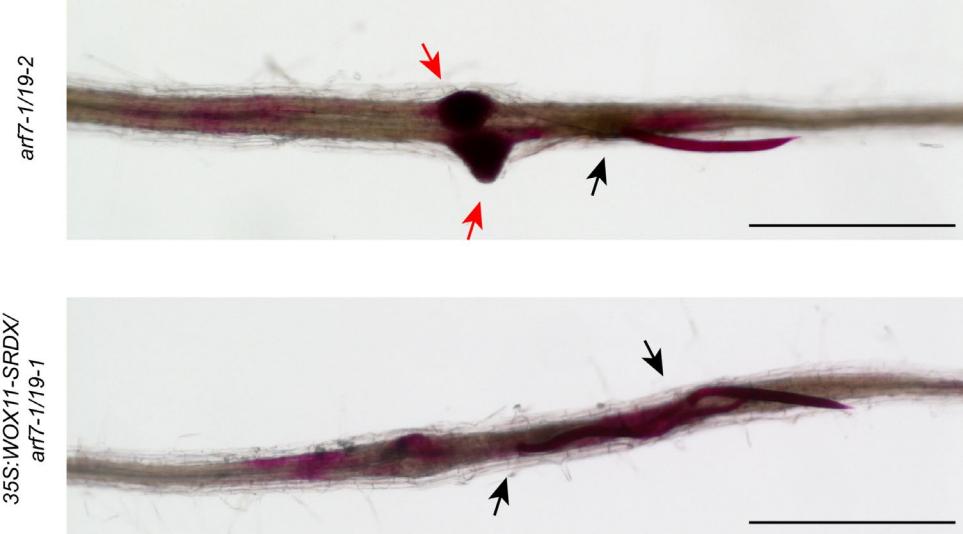
571 **Baty F, Ritz C, Charles S, Brutsche M, Flandrois J-P, Delignette-Muller M-L** (2015) A Toolbox for
572 Nonlinear Regression in R: The Package nlstools.

573 **Bebber DP, Holmes T, Gurr SJ** (2014) The global spread of crop pests and pathogens. *Global Ecology*
574 and Biogeography

1398–1407

575 **van den Berg T, Korver RA, Testerink C, ten Tusscher KHWJ** (2016) Modeling halotropism: A key role
576 for root tip architecture and reflux loop remodeling in redistributing auxin. *Development* (Cambridge)

577 143: 3350–3362

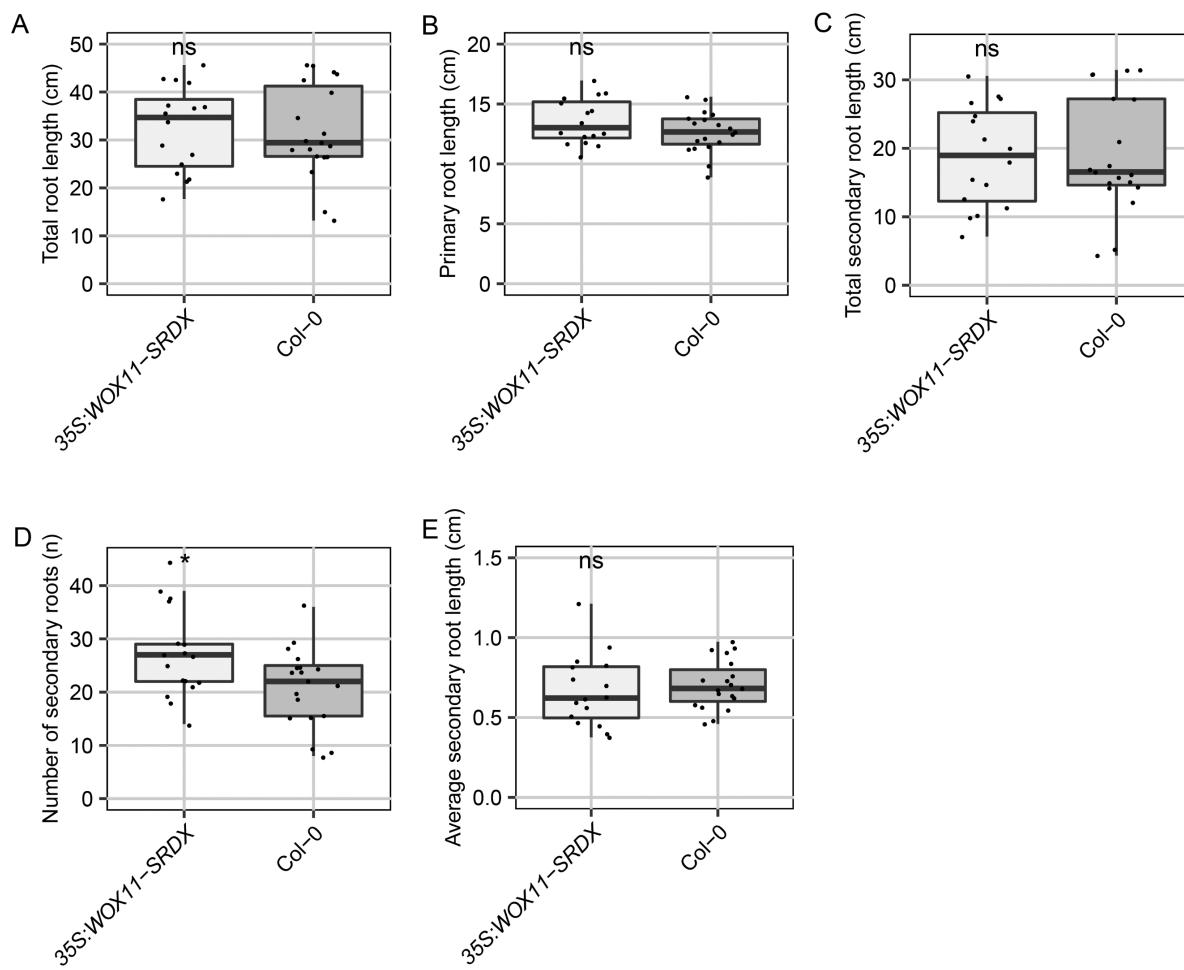

- 578 **Bohlmann H, Sobczak M** (2014) The plant cell wall in the feeding sites of cyst nematodes. *Front Plant Sci*
579 **5**: 1–10
- 580 **Cabrera J, Fernando ED, Melillo T, Fukaki H, Cabello S, Hofmann J, Fenoll C, Escobar C, Díaz-**
- 581 **Manzano FE, Sanchez M, et al** (2014) A role for LATERAL ORGAN BOUNDARIES-DOMAIN 16
582 during the interaction *Arabidopsis*-*Meloidogyne* spp. provides a molecular link between lateral root
583 and root-knot nematode feeding site development. *New Phytologist* **203**: 632–645
- 584 **Cai XT, Xu P, Zhao PX, Liu R, Yu LH, Xiang C Bin** (2014) *Arabidopsis* ERF109 mediates cross-talk
585 between jasmonic acid and auxin biosynthesis during lateral root formation. *Nat Commun.* doi:
586 10.1038/ncomms6833
- 587 **Cheng S, Zhou DX, Zhao Y** (2016) WUSCHEL-related homeobox gene WOX11 increases rice drought
588 resistance by controlling root hair formation and root system development. *Plant Signal Behav.* doi:
589 10.1080/15592324.2015.1130198
- 590 **Fukaki H, Tasaka M** (2009) Hormone interactions during lateral root formation. *Plant Mol Biol* **69**: 437–449
- 591 **Gheysen G, Mitchum MG** (2011) How nematodes manipulate plant development pathways for infection.
592 *Curr Opin Plant Biol* **14**: 415–421
- 593 **Golinowski W, Grundler FMW, Sobczak M** (1996) Changes in the structure of *Arabidopsis thaliana* during
594 female development of the plant-parasitic nematode *Heterodera schachtii*. *Protoplasma* **194**: 103–
595 116
- 596 **Goverse A, Overmars H, Engelbertink J, Schots A, Bakker J, Helder J** (2000) Both induction and
597 morphogenesis of cyst nematode feeding cells are mediated by auxin. *Molecular Plant-Microbe
598 Interactions* **13**: 1121–1129
- 599 **Guarneri N, Willig J-J, Sterken MG, Zhou W, Hasan MS, Sharon L, Grundler FMW, Willemse V,**
600 **Goverse A, Smant G, et al** (2023) Root architecture plasticity in response to endoparasitic cyst
601 nematodes is mediated by damage signaling. *New Phytologist* **237**: 807–822
- 602 **Hiratsu K, Matsui K, Koyama T, Ohme-Takagi M** (2003) Dominant repression of target genes by chimeric
603 repressors that include the EAR motif, a repression domain, in *Arabidopsis*. *Plant Journal* **34**: 733–
604 739

- 605 **Hoth S, Schneidereit A, Lauterbach C, Scholz-Starke J, Sauer N** (2005) Nematode infection triggers
606 the de novo formation of unloading phloem that allows macromolecular trafficking of green fluorescent
607 protein into syncytia. *Plant Physiol* **138**: 383–392
- 608 **Hu X, Xu L** (2016) Transcription Factors WOX11/12 Directly Activate WOX5/7 to Promote Root Primordia
609 Initiation and Organogenesis. *Plant Physiol* **172**: 2363–2373
- 610 **Huang A, Wang Y, Liu Y, Wang G, She X** (2020) Reactive oxygen species regulate auxin levels to mediate
611 adventitious root induction in *Arabidopsis* hypocotyl cuttings. *J Integr Plant Biol* **62**: 912–926
- 612 **Jones JT, Haegeman A, Danchin EGJ, Gaur HS, Helder J, Jones MGK, Kikuchi T, Manzanilla-López
613 R, Palomares-Rius JE, Wesemael WML, et al** (2013) Top 10 plant-parasitic nematodes in molecular
614 plant pathology. *Mol Plant Pathol* **14**: 946–961
- 615 **Levin KA, Tucker MR, Bird DMK, Mather DE** (2020) Infection by cyst nematodes induces rapid
616 remodelling of developing xylem vessels in wheat roots. *Sci Rep*. doi: 10.1038/s41598-020-66080-z
- 617 **Liu J, Sheng L, Xu Y, Li J, Yang Z, Huang H, Xu L** (2014) WOX11 and 12 Are Involved in the First-Step
618 Cell Fate Transition during de Novo Root Organogenesis in *Arabidopsis*. **26**: 1081–1093
- 619 **Liu R, Wen SS, Sun TT, Wang R, Zuo WT, Yang T, Wang C, Hu JJ, Lu MZ, Wang LQ** (2022)
620 PagWOX11/12a positively regulates the PagSAUR36 gene that enhances adventitious root
621 development in poplar. *J Exp Bot* **73**: 7298–7311
- 622 **Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M** (2007) ARF7 and ARF19 regulate lateral root
623 formation via direct activation of LBD/ASL genes in *Arabidopsis*. *Plant Cell* **19**: 118–130
- 624 **Olmo R, Cabrera J, Díaz-Manzano FE, Ruiz-Ferrer V, Barcala M, Ishida T, García A, Andrés MF, Ruiz-
625 Lara S, Verdugo I, et al** (2020) Root-knot nematodes induce gall formation by recruiting
626 developmental pathways of post-embryonic organogenesis and regeneration to promote transient
627 pluripotency. *New Phytologist* **227**: 200–215
- 628 **Sheng L, Hu X, Du Y, Zhang G, Huang H, Scheres B, Xu L** (2017) Non-canonical WOX11-mediated root
629 branching contributes to plasticity in *arabidopsis* root system architecture. *Development* (Cambridge)
630 **144**: 3126–3133
- 631 **Shin SY, Park SJ, Kim HS, Jeon JH, Lee HJ** (2022) Wound-induced signals regulate root organogenesis
632 in *Arabidopsis* explants. *BMC Plant Biol*. doi: 10.1186/s12870-022-03524-w

- 633 **Sobczak M, Golinowski W, Grundler FMW** (1997) Changes in the structure of *Arabidopsis thaliana* roots
634 induced during development of males of the plant parasitic nematode *Heterodera schachtii*. *Eur J*
635 *Plant Pathol* **103**: 113–124
- 636 **Tahir MM, Tong L, Fan L, Liu Z, Li S, Zhang X, Li K, Shao Y, Zhang D, Mao J** (2022) Insights into the
637 complicated networks contribute to adventitious rooting in transgenic MdWOX11 apple microshoots
638 under nitrate treatments. *Plant Cell Environ* **45**: 3134–3156
- 639 **Wang LQ, Li Z, Wen SS, Wang JN, Zhao ST, Lu MZ** (2020) WUSCHEL-related homeobox gene
640 PagWOX11/12a responds to drought stress by enhancing root elongation and biomass growth in
641 poplar. *J Exp Bot* **71**: 1503–1513
- 642 **Wang LQ, Wen SS, Wang R, Wang C, Gao B, Lu MZ** (2021) PagWOX11/12a activates PagCYP736A12
643 gene that facilitates salt tolerance in poplar. *Plant Biotechnol J* **19**: 2249–2260
- 644 **Warmerdam S, Sterken MG, van Schaik C, Oortwijn MEP, Sukarta OCA, Lozano-Torres JL, Dicke M,**
645 **Helder J, Kammenga JE, Goverse A, et al** (2018) Genome-wide association mapping of the
646 architecture of susceptibility to the root-knot nematode *Meloidogyne incognita* in *Arabidopsis thaliana*.
647 *New Phytologist* **218**: 724–737
- 648 **Willig J-J, Guarneri N, van Steenbrugge JJM, de Jong W, Chen J, Goverse A, Lozano Torres JL,**
649 **Sterken MG, Bakker J, Smant G** (2022) The *Arabidopsis* transcription factor TCP9 modulates root
650 architectural plasticity, reactive oxygen species-mediated processes, and tolerance to cyst nematode
651 infections. *Plant Journal* **112**: 1070–1083
- 652 **Willig J-J, Sonneveld D, van Steenbrugge JJM, Deurhof L, van Schaik CC, Teklu MG, Goverse A,**
653 **Lozano-Torres JL, Smant G, Sterken MG** (2023) From root to shoot; Quantifying nematode
654 tolerance in *Arabidopsis thaliana* by high-throughput phenotyping of plant development. *J Exp Bot*
655 *erad266*
- 656 **Xu Q, Wang Y, Chen Z, Yue Y, Huang H, Wu B, Liu Y, Zhou DX, Zhao Y** (2022) ROS-stimulated protein
657 lysine acetylation is required for crown root development in rice. *J Adv Res.* doi:
658 10.1016/j.jare.2022.07.010
- 659

660 **Supplemental information:**

661



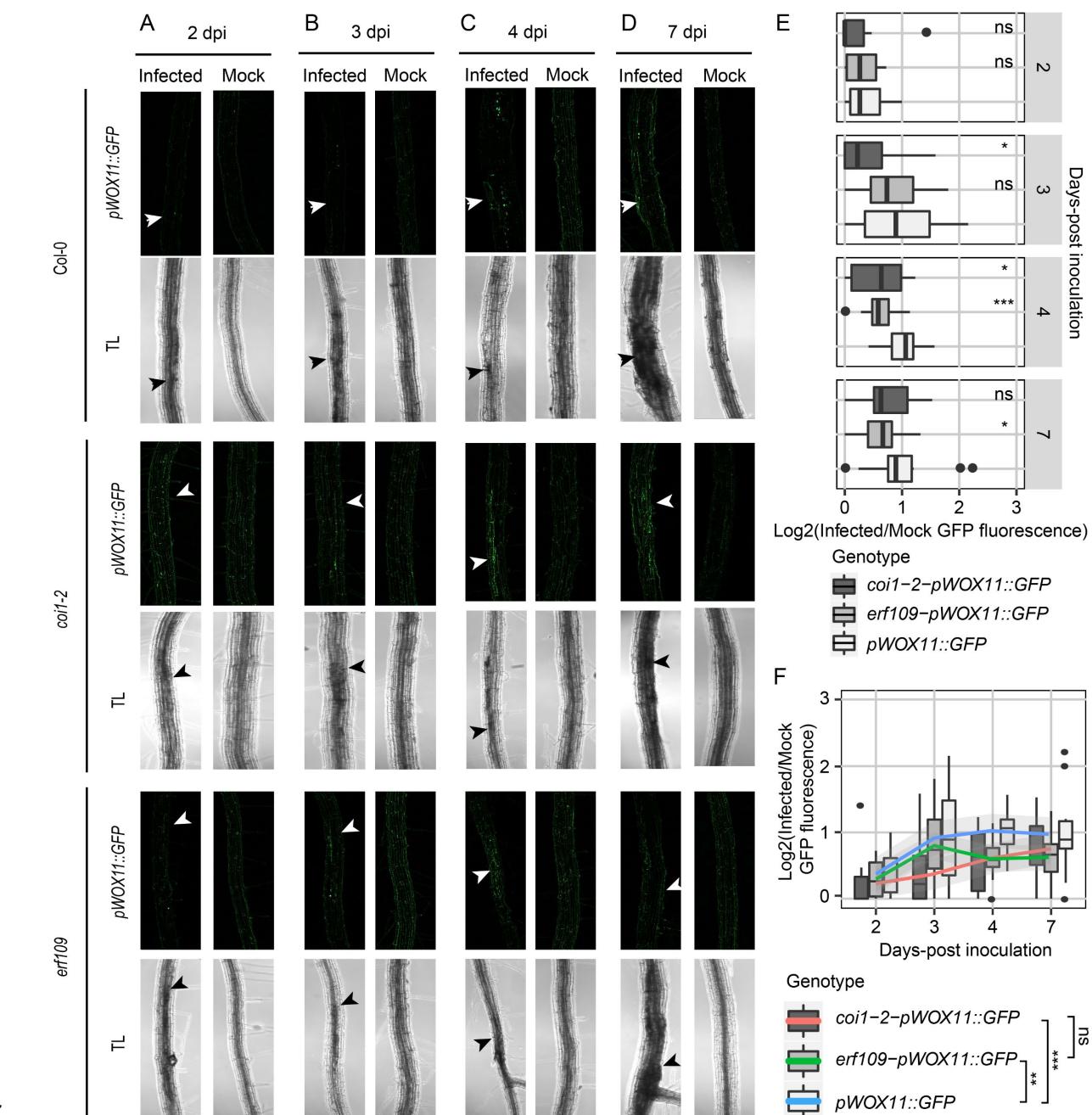
662

663 **Supplemental Figure S1: Primordia formed in response to *H. schachtii* infection in *arf7-1/19-1* mutant seedlings.** Seven-day-old 35S:WOX11-SRDX/*arf7-1/19-1* and *arf7-1/arf19-1* mutant seedlings were inoculated with 90 *H. schachtii* juveniles or mock inoculated. At 7 dpi nematodes were stained with fuchsin and imaged using a dissection microscope. Black arrowheads indicate head of the nematode. Red arrowheads indicate primordia. Scale bar: 500 μ m

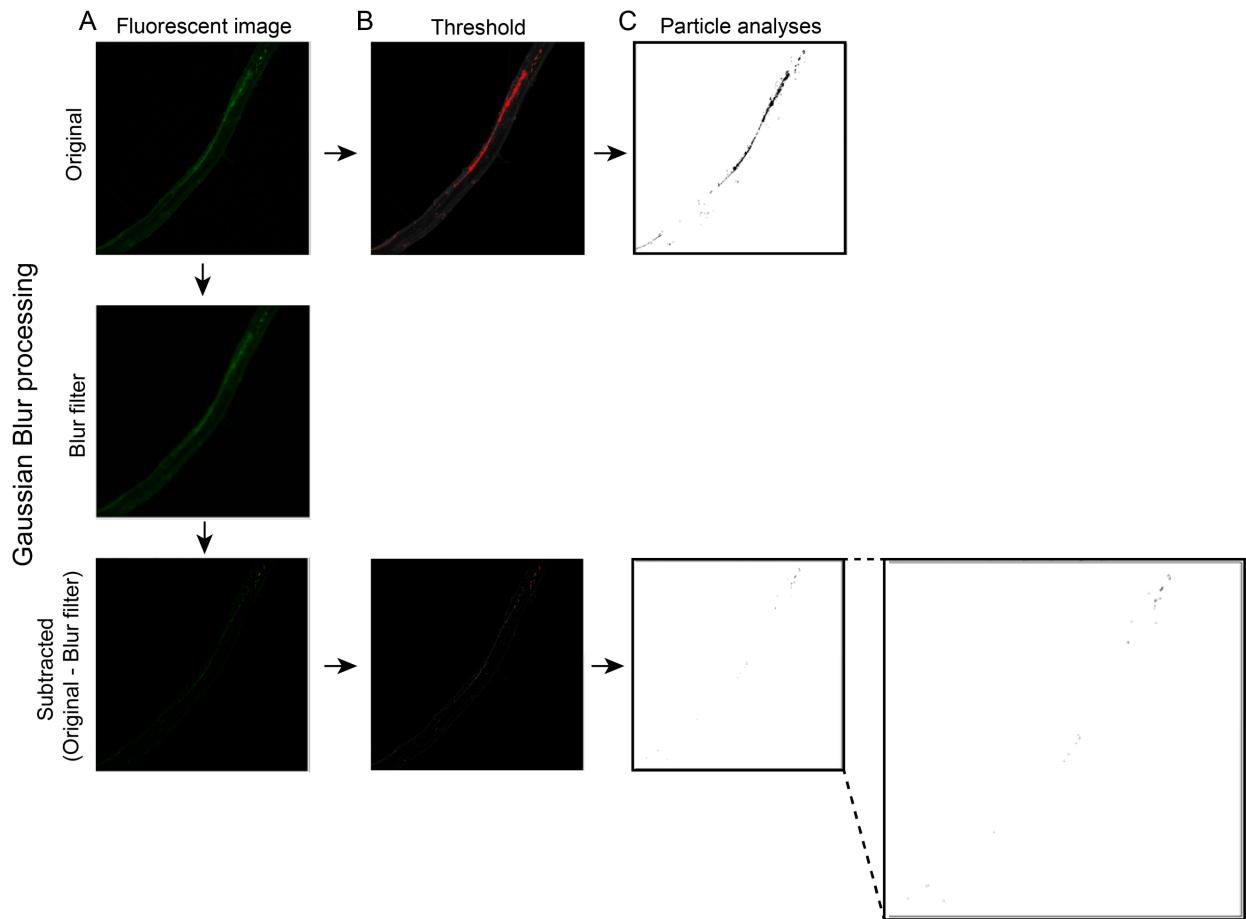
666

667

668

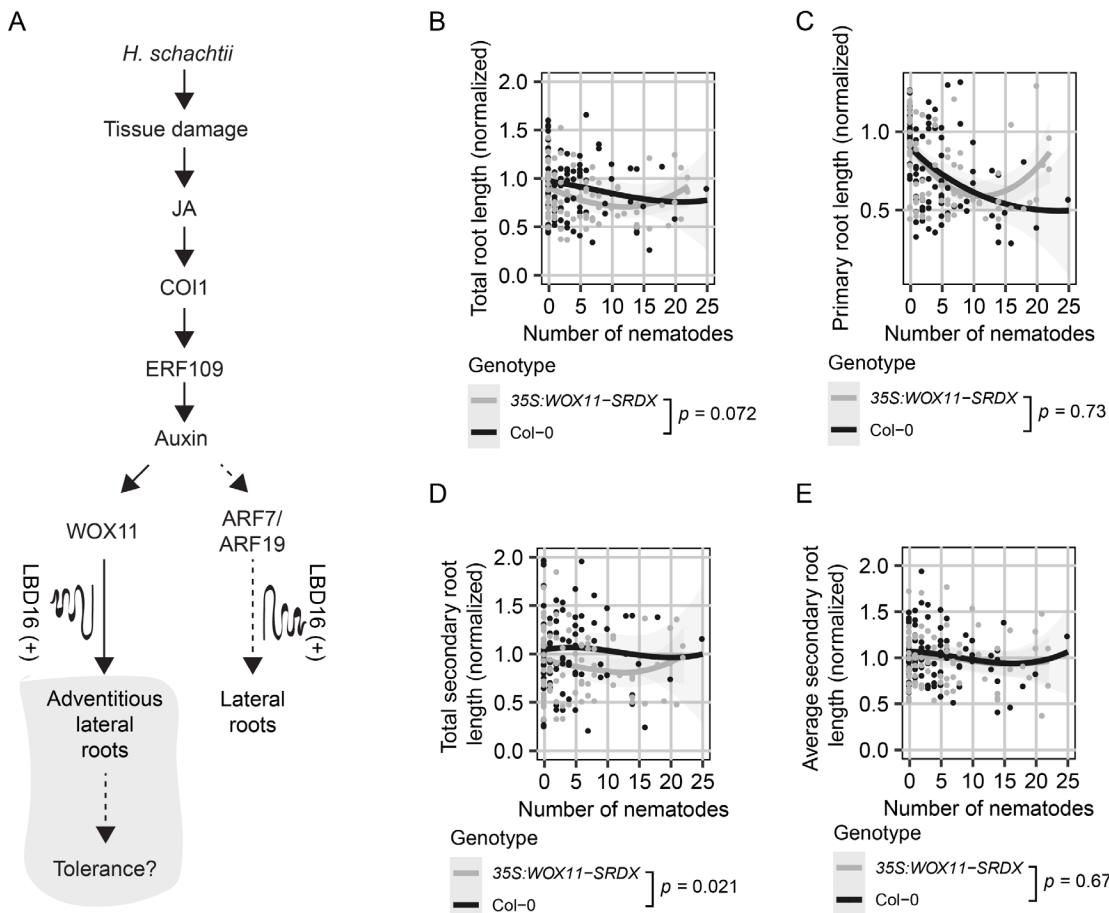

669 **Supplemental Figure S2: Root architecture comparison between 35S:WOX11-SRDX seedlings and wild-type Col-0 seedlings.**

670 35S:WOX11-SRDX and wild-type Col-0 seedlings were grown on modified KNOP medium for 16 days. Roots were scanned and root
671 architectural components were measured. **A**) Total root length. **B**) Primary root length. **C**) Total secondary root length. **D**) Number of
672 secondary roots. **E**) Average secondary root length. Data from two independent biological repeats of the experiment were combined.
673 Significance of differences between genotypes was calculated by a Unpaired Two-Samples Wilcoxon Test. (n = 14-18).


674

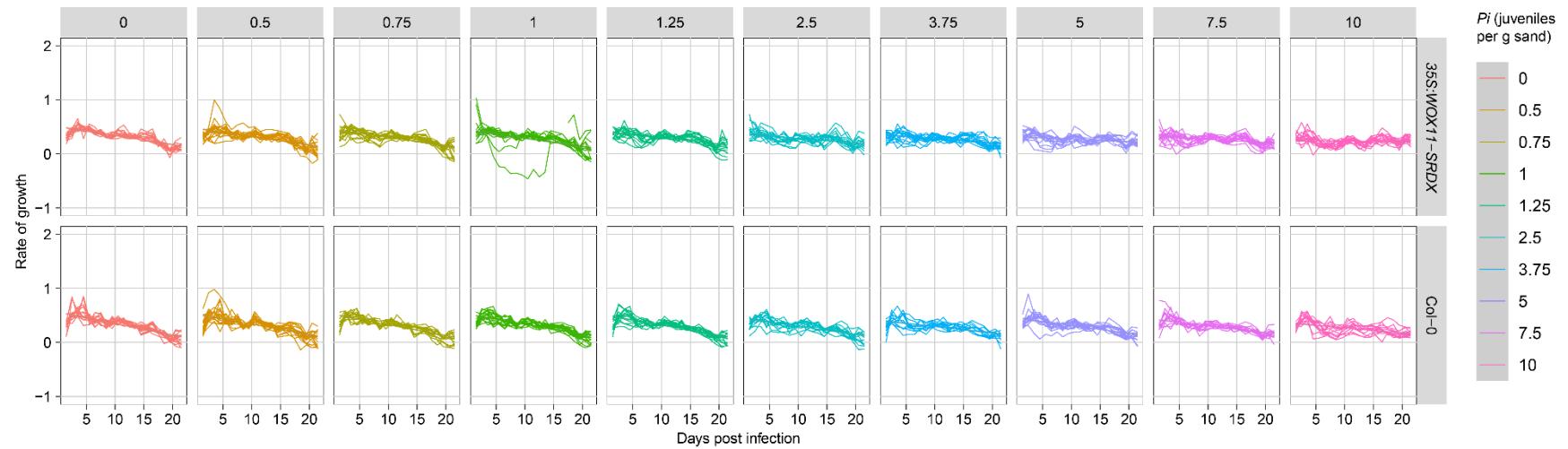
675

676

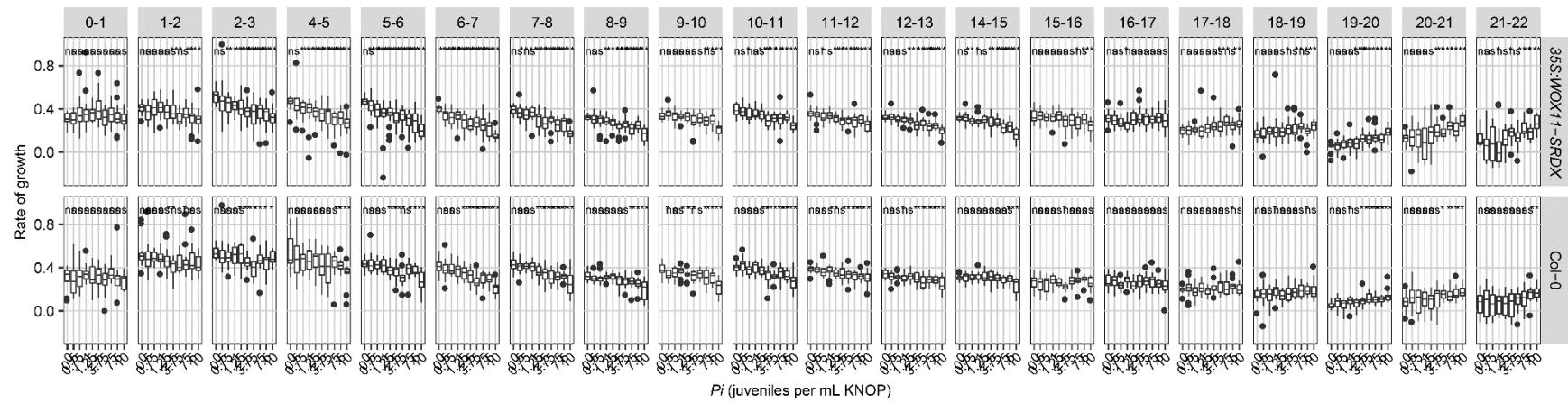


686 repeats of the experiment were combined. Significance of differences between fluorescent intensities in Co-0, *coi1-2*, and *erf109* per
687 timepoint was calculated by a Wilcoxon Rank Sum test. ns = not significant, *p< 0.05, **p< 0.01, ***p<0.001 (n=15). (F) Values
688 represent \log_2 of the fluorescence ratio between the GFP integrated density of infected and noninfected roots. Significance of
689 differences between genotypes was calculated by analysis of variance. Grey area indicates the 95% confidence interval of the loess
690 fit.
691

692


693 **Supplemental Figure S4: Noise removal process using Gaussian Blur option in ImageJ.** A) The original images, which gave a
694 lot of noise in the practical analyses (C) after setting the threshold (B) was duplicated and blurred using the Gaussian blur option in
695 ImageJ. The blurred image was subtracted from the original image and the particles were analysed.

696


697 **Supplemental Figure S5: Adventitious lateral roots increase the total secondary root length upon nematode infection. A)**

698 Schematic diagram of *H. schachtii*- and WOX11-mediated adventitious lateral root emergence. Grey area indicates the tested part of
 699 the pathway. Curling line and '+' indicate involvement of multiple proteins, including LBD16. **B-D)** Nine-day old 35S:WOX11-SRDX
 700 and wild-type Col-0 seedlings were inoculated with densities (*P*) ranging from 0-7.5 *H. schachtii* J2s (per mL modified KNOP media).
 701 Roots were scanned and nematodes were counted after fuchsin staining at 7 dpi. Root architectural components of infected seedlings
 702 were normalized to the median respective component in mock-treated roots. Data of two independent biological repeats of the
 703 experiment were combined. **B)** Total root length per number of nematodes inside the roots. **C)** Primary root length per number of
 704 nematodes inside the roots. **D)** Total secondary root length per number of nematodes inside the roots. **E)** Average secondary root
 705 length per number of nematodes inside the roots. Data from two independent biological repeats of the experiment were combined.
 706 Significance of differences between genotypes was calculated by analysis of variance (n=14-18). Grey area indicates the 95%
 707 confidence interval of the loess fit.

708

709 **Supplemental Figure S6: Growth rates of *coi1-2*, *erf109*, and *35S:WOX11-SRDX*, and wild-type *Col-0* plants over time.** Nine-day-old *Arabidopsis* seedlings (*35S:WOX11-SRDX*
 710 and wild-type *Col-0*) were inoculated with 10 densities (P_i) of *H. schachtii* juveniles (0 to 2000 juveniles per g dry sand). The growth rates of plants were calculated per day. Lines
 711 represent individual plants ($n=10-18$ plants per treatment).

712

713 **Supplemental Figure S7: Growth rates of *coi1-2*, *erf109*, and *35S:WOX11-SRDX* plants are more affected during *H. schachtii* than wild-type *Col-0*.** Nine-day-old *Arabidopsis*
 714 seedlings (*35S:WOX11-SRDX* and wild-type *Col-0*) were inoculated with 10 densities (P_i) of *H. schachtii* juveniles (0 to 2000 juveniles per g dry sand). The growth rates of plants were
 715 calculated per day. Boxplots represent data of x plants, the dots represent outlier measurements (1.5 times the interquartile range). Data was analysed with a Wilcoxon Rank Sum test.
 716 Ns: not significant, *p< 0.05, **p< 0.01, ***p<0.001 (n = 10-18 plants per treatment).

717