

1 *AePUb* promoter length modulates gene expression in *Aedes aegypti*

2 Michelle A.E. Anderson^{*1,2}, Philip T. Leftwich^{1,3}, Ray Wilson^{1,2}, Leonela Z. Carabajal Paladino¹, Sanjay

3 Basu^{1,4}, Sara Rooney^{1,5}, Zach N. Adelman⁶, Luke Alphey^{*1,2}

4 ¹Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0HN, U.K.

5 ²Department of Biology, University of York, Heslington, YO10 5DD, U.K.

6 ³Current address: School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, U.K.

7 ⁴Current address: Molecular Biology Team, R&D Division, Oxitec, Oxford, UK.

8 ⁵Current address: Department of Vector Biology and Department of Tropical Disease Biology,

9 Liverpool School of Tropical Medicine, Liverpool, UK.

10 ⁶Department of Entomology, Texas A&M University, College Station, Texas, U.S.A.

11 *Correspondence to: michelle.anderson@york.ac.uk, luke.alphey@york.ac.uk

12 Abstract

13 Molecular tools for modulating transgene expression in *Aedes aegypti* are few. Here we
14 demonstrate that adjustments to the *AePUb* promoter length can alter expression levels of two
15 reporter proteins in *Ae. aegypti* cell culture and in mosquitoes. This provides a simple means for
16 increasing or decreasing expression of a gene of interest and easy translation from cells to whole
17 insects.

18 Introduction

19 *Aedes aegypti* is a mosquito of medical importance to countries worldwide. This invasive pest has
20 spread to every continent except Antarctica. It is the primary vector of the yellow fever virus, the
21 dengue viruses, Zika virus and chikungunya virus, among others (1). These diseases cause the highest
22 burden to tropical and subtropical areas and disproportionately affect the poorest populations. New
23 technologies for the control of this invasive pest are required as widespread insecticide use has led
24 to insecticide-resistant populations of this species.

25 Molecular tools are required to study this mosquito and develop new genetic strategies to control it.

26 Most tools used today were originally developed in the model insect *Drosophila melanogaster*. The

27 optimization of these for use in mosquitoes has enabled developments in gene editing tools such as

28 CRISPR/Cas9 (2,3). Promoter fragments for the expression of genes of interest in both cell culture

29 and whole insects play a crucial role in our ability to investigate this mosquito. There are a few select

30 promoters identified that function in a wide range of tissues and cell types. Highly active *D. mel*

31 promoters such as *DmAct5C* have been used (4). Other promoters such as *Hr5/IE1* and *OpIE2* are of

32 of baculoviral origin (5,6) and were identified for use in *Drosophila* and then translated directly to

33 mosquitoes. Relatively few *Ae. aegypti* native promoters have been characterized and used;

34 exceptions include *UbL40* and *PUb* (7) and, more recently, *Hsp83* (8), which display ubiquitous

35 expression. Th handful of promoters are used in various applications (9) and are frequently used to

36 express mRNAs encoding fluorescent proteins, to provide markers for transgenesis/transfection,

37 revealing the presence of a transgene construct otherwise lacking visible phenotype. Other

38 promoters commonly characterized have tissue-specific expression patterns, such carboxypeptidase

39 in the midgut, *zpg*, *nos*, *vasa* in ovaries or *β2-tubulin* in testes (10–13); this is useful for some genes

40 of interest where expression in a specific tissue is vital. With advances in CRISPR/Cas9, new panels of

41 germline specific promoters have also been characterized from *Ae. aegypti* (14,15).

42 A more refined set of promoters which modulate expression levels in a broad range of cell and tissue

43 types would enable a more modular approach to research in *Ae. aegypti*. A single promoter that

44 could be used in cultured cells and then directly used *in vivo* in insects could enable higher

45 throughput screens that more easily translate from flask to insect. Expression of certain genes may

46 prove detrimental or toxic to specific cells at high levels, and the ability to ‘de-tune’ expression

47 would be advantageous. Here we sought to determine if the *PUb* promoter could be manipulated to

48 enhance or decrease the expression of a reporter gene in both cells and transgenic *Ae. aegypti*

49 mosquitoes.

50 Materials and Methods

51 Plasmids and cloning

52 Firefly and Renilla luciferase expression plasmids were cloned by standard methods starting with the
53 pGL3 *PUB*-luc plasmid described previously (7) and pSLfa-*PUB*-MCS (Addgene plasmid # 52908).
54 Transgenesis plasmids were generated using NEBuilder HiFi Assembly Master Mix (NEB) and primers
55 listed in Supplementary Table 2. Complete sequences are available through NCBI accession numbers
56 OR236189-OR236199 (16).

57 Cells, transfections and luciferase assays

58 *Aedes aegypti* Aag2 cells, *Aedes albopictus* C6/36 and U4.4 cells were cultured as previously
59 described (2). Briefly, cells were maintained at 28°C without CO₂ or humidification. All cells were
60 cultured in Leibovitz's L-15 (Gibco) supplemented with 10% Fetal Bovine Serum (Gibco), 10%
61 tryptose phosphate broth (Gibco) and 1% pen-strep (5,000 u/mL, Gibco). Cells were seeded into 96-
62 well plates the day before transfecting with TransIT Pro (Mirus). Transfections were performed using
63 10ng/well of firefly expression plasmid and 5ng/well of *PUB*-RL Renilla luciferase normalization
64 control plasmid (17). Two days after transfection cells were washed with phosphate buffered saline
65 (PBS) and lysed in 50µl 1X passive lysis buffer. Luciferase assays were carried out as previously
66 described with the Dual Luciferase Assay kit (Promega) and a GloMax+ plate reader (Promega).

67 Analysis

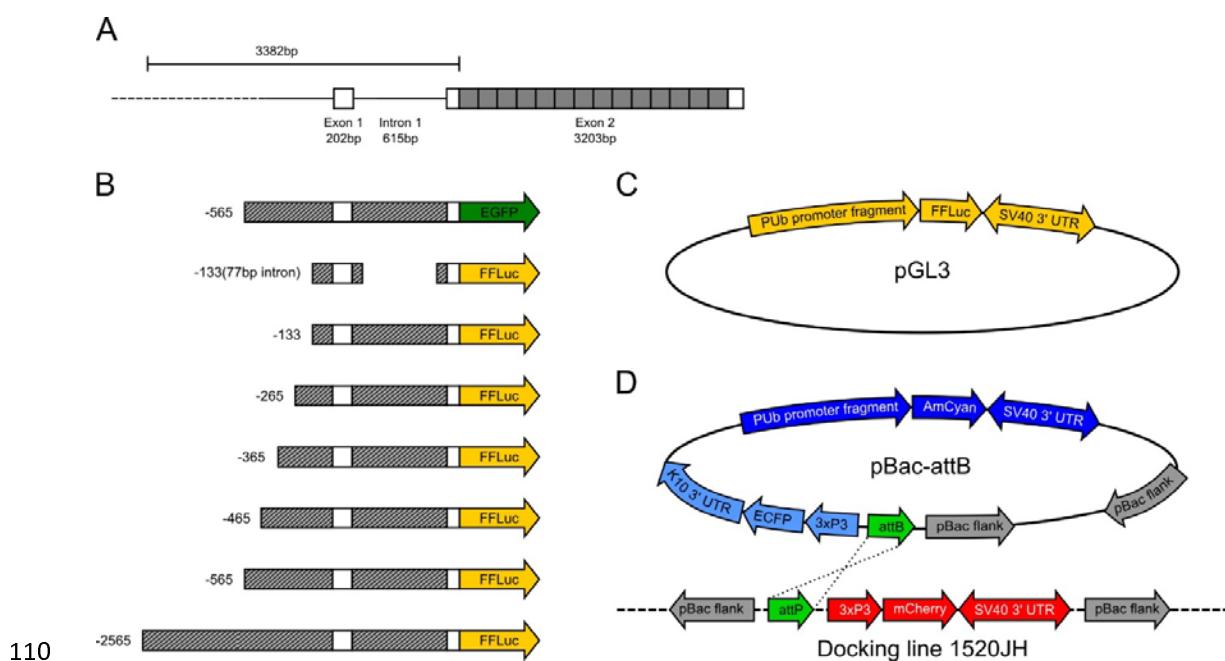
68 We carried out all analyses in R version 4.1.0 (R Development Core Team). Data sets were
69 summarised with the 'tidyverse' range of packages and figures were generated using ggplot2.
70 Generalized linear mixed models were fitted with the glmmTMB package using a negative binomial
71 distribution with a log-link function and summarized with emmeans (18, 19).
72 Briefly the FF/RR ratio was analysed with the promoter construct and cell lines as fixed factors with
73 an interaction term. To account for the data structure, we included random effects for experimental
74 replicate. Promoter length was considered as both a factorial and continuous variable with the best

75 fit model found with a factorial design. Model residuals were checked for violations of assumptions
76 with the DHARMA package (20). Pairwise contrasts were made with a tukey adjustment. The script is
77 available on Github (<https://github.com/Philip-Leftwich/AePUB-promoter-length->)

78 **Mosquitoes, transgenesis and rearing**

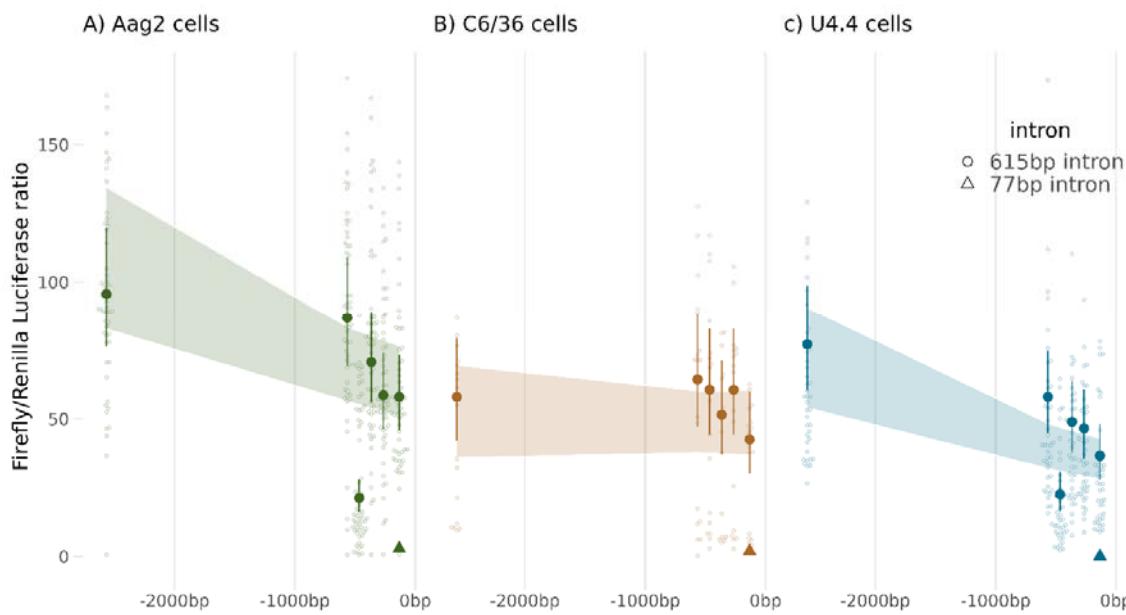
79 *Aedes aegypti* were reared in insectary conditions with 27-28°C, 60-70% RH, and a 12/12 hour
80 day/night cycle with one hour of dusk/dawn. Mosquitoes were provided 10% sucrose, *ad libitum*,
81 and bloodfed on defibrinated horse blood (TCS) using a Hemotek artificial bloodfeeding system
82 (Hemotek). All insect procedures were reviewed and approved by the Biological Agent and Genetic
83 Modification Safety Committee (BAGMSC) at The Pirbright Institute.

84 Embryo microinjections were performed as previously described. Injection mixes comprised of
85 500ng/μl of *PUB* expression plasmid and 300ng/μl of AGG1733 AePUB(-565)¶C31-SV40 3'UTR (21).
86 The AGG1520 transgenic line which contains the 3xP3-mCherry-SV40 3'UTR transgenic marker, an
87 attP docking site, and a secondary cassette not relevant to this study, was used for insertion of
88 plasmids AGG2143-2146. This line has been identified by adapter-mediated PCR to be inserted on
89 chromosome 2: 139436120-139437196 (reverse orientation) (unpublished). Insertion into the
90 correct site was verified by PCR using the primers listed in Table 2.


91 **Imaging**

92 Photographs of each life-cycle stage and dissected adult tissues (midgut and reproductive organs)
93 were taken using a Leica M165FC fluorescence microscope fitted with an AmC filter. The
94 magnification and exposure times were identical for each of the lines with respect to the life-cycle
95 stage or tissue. Exposure times used were as follows: larvae 344ms; pupae 640ms; adult males and
96 adult females 1500ms; male midguts 640ms; female midguts 485ms; testes 640ms and ovaries
97 485ms.

98 **Results**


99 *In vitro* expression in mosquito cells

100 The polyubiquitin (*PUb*, AAEL003888) derived promoter fragment is highly active during all life
101 stages with constitutive expression in most tissues in *Aedes aegypti* mosquitoes. Initially
102 characterised by Anderson et al (2010) this 1393 bp promoter fragment comprises 565bp of
103 upstream sequence relative to the transcription start, then a transcribed region producing a 213bp
104 5'UTR after splicing removes a 615bp intron.
105 In total, we produced seven different variants of the *PUb* promoter, systematically increasing or
106 decreasing the region upstream of the 5'UTR from -2500bp to ~ 133bp (Fig 1). We also produced a
107 version of this last promoter fragment (133bp), from which much of the intron was removed,
108 retaining only the splice junctions and 41bp and 36bp of genomic sequence from the 5' and 3' of the
109 intron respectively.

111 **Figure 1. Representation of plasmid constructs.** Diagram of *Aedes aegypti* AAEL003888 gene
112 structure, adapted from Anderson et al 2010 (7). Promoter fragments are designated by the number
113 of nucleotides upstream of the transcription start site (TSS=0). Solid grey boxes indicate ubiquitin
114 monomers, white boxes indicate UTR (A). Diagram of putative promoter fragments cloned into

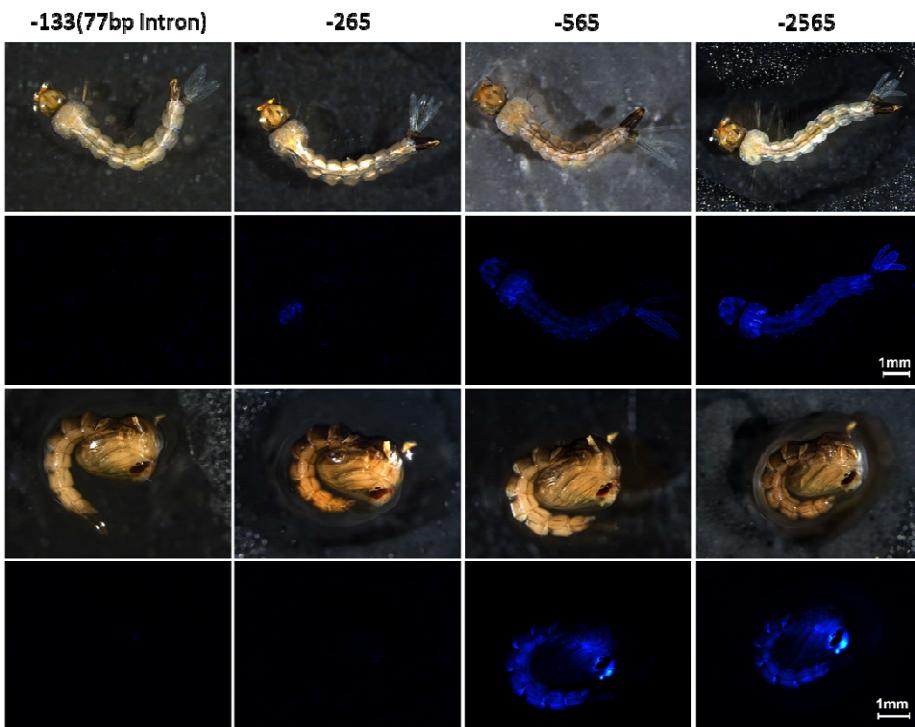
115 reporter plasmids (B). Luciferase reporter plasmid used in cell culture experiments (C). AmCyan
116 reporter plasmid and ϕ C31 docking line used for transgenesis experiments (D).
117 We determined the transcriptional activity of all seven of these synthetic *PUb* promoter sequences
118 by expressing a firefly luciferase (FF) gene in three cell lines derived from disease-relevant Culicine
119 mosquitoes (*A. aegypti* and *A. albopictus*) using a previously described dual-luciferase assay (Fig 2).

120
121 **Figure 2. *PUb* promoter activity *in vitro* correlates with length.** Ratios of FF/RL luciferase normalized
122 to a GFP only control. Promoters are organized in order of distance (bp) 5' of the transcriptional
123 initiation start site (0bp). Large symbols and error bars (vertical lines) represent estimated mean and
124 95% confidence intervals for each promoter construct calculated by a generalized linear mixed
125 model, with a negative binomial ('log' link) error distribution, with raw data shown as small symbols.
126 Circles represent promoter sequences with a full-length intronic sequence, Triangles represent
127 promoters with the truncated 77bp intronic sequence. Shaded areas represent the 95% confidence
128 intervals for mean transcriptional activity modelled with length of promoter (bp) as a continuous
129 variable.

130 We found a highly replicable pattern of gene expression across technical replicates, and levels of
131 promoter activity were broadly in line with the species origin of the promoter, *PUB* activity in *U4.4*
132 cells was only 81% [95% CI: \pm 67-97%] and 61% [\pm 47-79%] in *C6/36* cells compared to *Aag2* cells
133 (Table 1). Overall, there was limited evidence of differential responses in transcriptional activity to
134 promoter editing between cell lines, indicating that the critical components of transcription in this
135 promoter work in an essentially identical manner across species.

136 Truncations of the promoter region produced an exponential drop in transcriptional activity of
137 roughly 8% for every 500bp removed from the 5' of the sequence, however, this model was not
138 quite as good a model fit as comparing each promoter construct as an independent factor ,and we
139 observed a steeper drop in transcriptional activity in truncations closer to the transcription initiation
140 site. This most likely indicates that transcription factor binding sites or other important regulators of
141 transcriptional activity cluster within the 500bp 5' of the transcription initiation site in this promoter.

142 The *PUB*(-133) promoter construct had only 61% [\pm 0.52-0.70] of the transcriptional activity of the
143 full-length promoter -2565, and this fell to only 3% [\pm 0.02-0.04] in the -133(77bp intron) promoter
144 sequence.


145 In *Aag2* and *U4.4* cells, we observed that by adjusting the length of the fragment upstream of the
146 TSS we could modulate expression. In all cell lines the -133(77bp intron) was not significantly
147 different from the no Firefly luciferase or -565 EGFP controls, and all other samples were
148 significantly different from these three. This likely indicates that some positive regulatory elements
149 are contained within the intron of the 5'UTR of this gene or that correct splicing has been disrupted.

150 The pattern of modulation of expression by promoter length was not observed in *C6/36* cells, where
151 only intron removal produced a significant change in transgene expression in pairwise contrasts
152 against other fragments.

153 *In vivo* expression in *A. aegypti*

154 We selected four promoter fragments that were assessed *in vitro* for analysis *in vivo*. We selected
155 the shortest fragment -133(77bp intron) with the lowest expression levels, an intermediate fragment
156 -265, the previously published -565 fragment and the longest and highest expressing promoter
157 fragment -2565 to express AmCyan from a transgene. It is well known that the genomic position of
158 transgenes can influence expression levels. To avoid this “position effect” confounding comparison
159 of different transgenic insertions, we used $\text{\textcircled{C}}$ C31-mediated recombination to insert the experimental
160 cassettes into a known, and previously characterised, insertion site which generated stable
161 expression for previous constructs, AGG1520. This line contains a 3xP3-mCherry marker and an
162 additional cassette irrelevant to this study.

163 The lines were generated by standard embryo microinjection of the donor plasmid and the $\text{\textcircled{C}}$ C31 -
164 helper and the insertions were confirmed by PCR. AmCyan fluorescence was imaged with
165 standardized settings (Figs 3-4). No fluorescence could be detected in the -133(77bp intron)
166 transgenics in any life stage or tissue. A small amount of fluorescence could be detected from -265
167 in the thorax of larvae, Malpighian tubules of male and female adults as well as the fore- and mid-
168 gut of females. No expression was observed in the reproductive organs (Figs 4, 5 and S1) from this
169 promoter fragment. As described previously, expression of AmCyan from the -565 promoter
170 fragment could be readily observed in larvae and pupae, through the cuticle of adult males and
171 females and in the gut of both male and female adults (Fig 3-4). In contrast to the previous
172 publication characterizing this promoter (7) we did not observe substantial levels of expression in
173 ovaries, even after a blood meal (Fig S1). This may be an indication that this genomic locus is
174 somewhat less favourable for expression from this promoter than the originally characterized line
175 where expression in ovaries was observed. We could also detect expression in the testes of adult
176 males, more concentrated in the spermatozoa. A much more robust expression could be observed
177 with the -2565 promoter across all stages and tissues.

178

179 **Figure 3. *PUb* promoter expression across developmental stages in transgenic *A. aegypti*.**

180 Brightfield and AmCyan fluorescence images of larvae (top two rows) and pupae (bottom two rows)
181 with four different *PUb* promoter lengths (number indicates bp upstream of the transcription start
182 site).

183

184

185 **Figure 4. *PUb* promoter expression across adult tissues in transgenic *A. aegypti*.** Brightfield and
186 AmCyan fluorescence for adult males, dissected gut, and testes (left panels, top, middle and bottom,
187 respectively). Brightfield and AmCyan fluorescence for adult females, dissected gut, and ovaries
188 (right panels, top, middle and bottom, respectively).

189

Discussion

190 This study investigated the transcriptional activity of *polyubiquitin (PUb)* promoter sequences in
191 Culicine mosquitoes and cell lines. Our findings provide insights into the functional properties of the
192 *PUb* promoter and shed light on the importance of specific regions, namely the intron within the
193 5'UTR, for gene expression.

194 One of the key findings of our study is the consistent pattern of gene expression observed across
195 technical replicates. The observed levels of promoter activity were broadly in line with the species
196 origin of the promoter, with the highest activity in Aag2 cells compared to C6/36 and U4.4 cells,
197 suggesting that fundamental mechanisms of transcriptional regulation in the *PUb* promoter are
198 largely conserved across these mosquito species. Truncations of the promoter fragment produced a

199 roughly exponential decline in gene activity, with a severe decline in activity with a truncated
200 intronic sequence. This abrupt decline indicates that some important sequences that regulate
201 expression may be situated within the intron rather than 5' to the transcription start.
202 Our *in vivo* work used a β C31-mediated recombination technique to provide a fixed genomic
203 integration site, allowing us to study the effects of promoter manipulation without the noise of
204 random genomic integration sites. Consistent with the cell culture data, PUb-133 (77bp intron)
205 expression of an AmCyan fluorescent marker was undetectable in our samples or tissues. At the
206 same time, expression from promoters with intact intronic sequences was increasingly bright and
207 ubiquitous as promoter fragment length increased. Interestingly, the full-length promoter sequence
208 produced both the brightest fluorescence and the broadest tissue expression, while -565 and -265
209 showed increasingly dimmer and tissue-restricted expression. This may indicate that the loss of
210 elements can include enhancers, silencers, or binding sites for transcription factors required for
211 proper regulation of gene expression, with the absence of these regulatory elements in the shorter
212 fragment leading to tissue-specific variation in visibility. It is also possible that the -565 fragment is
213 more susceptible to the influence of neighbouring chromatin, while the -2565 fragment is better
214 insulated from this. A wealth of future work is available to elucidate the relative importance of
215 genomic insertion effects, tissue-specific effects, intron-based gene regulation and potential
216 insulators of transgene expression.
217 Our study provides valuable insights into the transcriptional activity of synthetic *PUb* promoter
218 fragments in *A. aegypti* mosquitoes. Characterizing these promoter fragments and identifying
219 genomic locus influences contribute to expanding the genetic toolbox for precise gene expression
220 manipulation in *A. aegypti*, facilitating further investigations into mosquito biology and the
221 development of targeted vector control strategies.

222 Acknowledgements

223 MAEA was funded by Defense Advanced Research Projects Agency (DARPA) award [N66001-17-2-
224 4054] to Kevin Esvelt at MIT. PTL, RW and LZCP were funded by a Wellcome Trust Investigator Award
225 [110117/Z/15/Z] to LA. LA was supported through strategic funding from the UK Biotechnology and
226 Biological Sciences Research Council (BBSRC) to The Pirbright Institute (BBS/E/I/00007033,
227 BBS/E/I/00007038 and BBS/E/I/00007039). The views, opinions and/or findings expressed are those
228 of the authors and should not be interpreted as representing the official views or policies of the U.S.
229 Government. The funders had no role in study design, data collection and analysis, decision to
230 publish, or preparation of the manuscript.

231 Author contributions

232 MAEA, LZCP and RW performed the experiments. PTL analysed the data. MAEA, ZNA and LA
233 conceived the experiments. SB and SR provided reagents. MAEA and PTL wrote the first draft of the
234 manuscript and all authors reviewed and approved the manuscript.

235 Data availability statement

236 All data generated is included in the manuscript and supplemental files.

237 Competing interest statement

238 The authors declare they have no competing interests.

239 References

240 1. Viglietta M, Bellone R, Blisnick AA, Failloux AB. Vector Specificity of Arbovirus Transmission.
241 Front Microbiol [Internet]. 2021 [cited 2023 Jun 17];12. Available from:
242 <https://www.frontiersin.org/articles/10.3389/fmicb.2021.773211>

243 2. Anderson MAE, Purcell J, Verkuij SAN, Norman VC, Leftwich PT, Harvey-Samuel T, et al.
244 Expanding the CRISPR Toolbox in Culicine Mosquitoes: In Vitro Validation of Pol III Promoters. ACS
245 Synth Biol. 2020 Mar 20;9(3):678–81.

246 3. Rozen-Gagnon K, Yi S, Jacobson E, Novack S, Rice CM. A selectable, plasmid-based system to
247 generate CRISPR/Cas9 gene edited and knock-in mosquito cell lines. Sci Rep. 2021 Jan 12;11:736.

248 4. Pinkerton AC, Michel K, O’Brochta DA, Atkinson PW. Green fluorescent protein as a genetic
249 marker in transgenic *Aedes aegypti*. Insect Mol Biol. 2000 Feb;9(1):1–10.

250 5. Pfeifer TA, Hegedus DD, Grigliatti TA, Theilmann DA. Baculovirus immediate-early promoter-
251 mediated expression of the Zeocin resistance gene for use as a dominant selectable marker in
252 dipteran and lepidopteran insect cell lines. Gene. 1997 Apr 1;188(2):183–90.

253 6. Theilmann DA, Stewart S. Molecular analysis of the trans-activating IE-2 gene of *Orgyia*
254 *pseudotsugata* multicapsid nuclear polyhedrosis virus. Virology. 1992 Mar;187(1):84–96.

255 7. Anderson M a. E, Gross TL, Myles KM, Adelman ZN. Validation of novel promoter sequences
256 derived from two endogenous ubiquitin genes in transgenic *Aedes aegypti*. Insect Mol Biol.
257 2010;19(4):441–9.

258 8. Webster SH, Scott MJ. The *Aedes aegypti* (Diptera: Culicidae) hsp83 Gene Promoter Drives
259 Strong Ubiquitous DsRed and ZsGreen Marker Expression in Transgenic Mosquitoes. J Med Entomol.
260 2021 Nov 9;58(6):2533–7.

261 9. Biomolecules | Free Full-Text | Use of Insect Promoters in Genetic Engineering to Control
262 Mosquito-Borne Diseases [Internet]. [cited 2023 Jun 17]. Available from:
263 <https://www.mdpi.com/2218-273X/13/1/16>

264 10. Kyrou K, Hammond AM, Galizi R, Kranjc N, Burt A, Beaghton AK, et al. A CRISPR–Cas9 gene
265 drive targeting doublesex causes complete population suppression in caged *Anopheles gambiae*
266 mosquitoes. Nat Biotechnol. 2018 Nov;36(11):1062–6.

267 11. Adelman ZN, Jasinskiene N, Onal S, Juhn J, Ashikyan A, Salampessy M, et al. *nanos* gene
268 control DNA mediates developmentally regulated transposition in the yellow fever mosquito *Aedes*
269 *aegypti*. *Proc Natl Acad Sci*. 2007 Jun 12;104(24):9970–5.

270 12. Gantz VM, Jasinskiene N, Tatarenkova O, Fazekas A, Macias VM, Bier E, et al. Highly efficient
271 Cas9-mediated gene drive for population modification of the malaria vector mosquito *Anopheles*
272 *stephensi*. *Proc Natl Acad Sci*. 2015 Dec 8;112(49):E6736–43.

273 13. Smith RC, Walter MF, Hice RH, O’Brochta DA, Atkinson PW. Testis-specific expression of the
274 β 2 tubulin promoter of *Aedes aegypti* and its application as a genetic sex-separation marker. *Insect*
275 *Mol Biol*. 2007;16(1):61–71.

276 14. Anderson MAE, Gonzalez E, Ang JXD, Shackleford L, Nevard K, Verkuij SAN, et al. Closing the
277 gap to effective gene drive in *Aedes aegypti* by exploiting germline regulatory elements. *Nat*
278 *Commun*. 2023 Jan 20;14(1):338.

279 15. Li M, Bui M, Yang T, Bowman CS, White BJ, Akbari OS. Germline Cas9 expression yields highly
280 efficient genome engineering in a major worldwide disease vector, *Aedes aegypti*. *Proc Natl Acad*
281 *Sci*. 2017 Dec 5;114(49):E10540–9.

282 16. Lehwarz P, Greiner S. GB2sequin - A file converter preparing custom GenBank files for
283 database submission. *Genomics*. 2019 Jul 1;111(4):759–61.

284 17. Aryan A, Anderson MAE, Myles KM, Adelman ZN. Germline excision of transgenes in *Aedes*
285 *aegypti* by homing endonucleases. *Sci Rep*. 2013 Apr 3;3(1):1603.

286 18. Brooks M E, Kristensen K, Benthem K J ,van, Magnusson A, Berg C W, Nielsen A, et al. glmmTMB
287 Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed
288 Modeling. *R J*. 2017;9(2):378.

289 19. Lenth RV. emmeans: Estimated Marginal Means, aka Least-Squares Means [Internet]. 2023.
290 Available from: <https://github.com/rvlenth/emmeans>

291 20. Hartig F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression
292 models [Internet]. 2022 [cited 2023 Jun 17]. Available from: <https://cran.r-project.org/web/packages/DHARMa/vignettes/DHARMa.html>

294 21. Paladino LZC, Wilson R, Tng PY, Dhokiya V, Keen E, Cuber P, et al. Optimizing CRE and PhiC31
295 mediated recombination in *Aedes aegypti* [Internet]. bioRxiv; 2023 [cited 2023 Jul 11]. p.
296 2023.07.07.548128. Available from:
297 <https://www.biorxiv.org/content/10.1101/2023.07.07.548128v1>
298

299 **Table 1.** Fixed and random effects table for the generalized linear mixed model (GLMM) fitted to the
 300 Luciferase Ratio detected in the engineered *PUb* promoter truncations.

Values			
Predictors	<i>Estimates</i>	<i>CI</i>	<i>p</i>
(Intercept)	95.65	76.44 – 119.70	<0.001
Promoter-565	0.91	0.79 – 1.04	0.158
Promoter-465	0.22	0.18 – 0.27	<0.001
Promoter-365	0.74	0.64 – 0.85	<0.001
Promoter-265	0.61	0.53 – 0.71	<0.001
Promoter-133	0.61	0.52 – 0.70	<0.001
Promoter-133 (77bp intron)	0.03	0.02 – 0.04	<0.001
Promoter [no FF]	0.00	0.00 – Inf	0.991
cell line [C636]	0.61	0.47 – 0.79	<0.001
cell line [u4.4]	0.81	0.67 – 0.97	0.022
Promoter-565:cell_lineC636	1.22	0.86 – 1.74	0.266
Promoter-465:cell_lineC636	4.68	3.18 – 6.89	<0.001
Promoter-365:cell_lineC636	1.20	0.83 – 1.74	0.327
Promoter-265:cell_lineC636	1.71	1.19 – 2.45	0.004
Promoter-133:cell_lineC636	1.21	0.82 – 1.78	0.333
Promoter-133 (77bp intron):cell_lineC636	1.13	0.46 – 2.78	0.796
Promoter [no FF] × cell line [C636]	0.70	0.00 – Inf	1.000
Promoter-565:cell_lineu4.4	0.83	0.65 – 1.06	0.127
Promoter-465:cell_lineu4.4	1.31	0.95 – 1.82	0.102
Promoter-365:cell_lineu4.4	0.86	0.67 – 1.11	0.237
Promoter-265:cell_lineu4.4	0.99	0.76 – 1.28	0.914
Promoter-133:cell_lineu4.4	0.78	0.60 – 1.02	0.075
Promoter-133 (77bp intron):cell_lineu4.4	0.06	0.01 – 0.42	0.005
Promoter [no FF] × cell line [u4.4]	0.40	0.00 – Inf	1.000
Random Effects			
σ^2	0.27		
τ_{00} experiment	0.10		
ICC	0.28		
N experiment	10		
N _{obs}	941		
Observations	941		
Marginal R² / Conditional R²	0.993 / 0.995		

301

302

303

304

305 **Table 2.** Primers used in this study.

Primer Number	Primer Name	Sequence	Use
LA6439	PUb upF	ctctatcgataggtagccgagctttacgcgACCCGCTGCT ATTCAAGAGCAAGCTGA	PUb promoter F: 2196
LA6440	PUb upR	GATTCAATGCACAAGCTACATGTAAAGATATCA CTTGAGTGGTTCGTTTATTCAACA	PUb promoter R: 2196
LA6561	FrgA from 1447_fwd	gtcacggccggcatgtcgacttaattaaccggccggaggtt cccac	transformation marker F: 2143-2146
LA6562	FrgA from 1447_rev	cgatcgaatatggccggcccccacgcgc	transformation marker R: 2143
LA6563	FrgB from 1752_fwd	gggcggggccggccatattcgatcgatagag	PUb promoter F: 2143
LA6564	FrgB from 1752_rev	ggacaggccatgggttaatctctgttag	PUb promoter R: 2143-2146
LA6565	FrgC from 1037_fwd	agagattcaaccatggccctgtccaacaagg	AmCyan F: 2143-2146
LA6566	FrgC from 1037_rev	cgtcgcccttaggagcggagtccggagaag	AmCyan R: 2143-2146
LA6567	FrgD from 1037_fwd	ggactccgtcctaaggccgcacgtctc	SV40 3'UTR F: 2143-2146
LA6568	FrgD from 1037_rev	aagtatcctaggacttagtggcgccctattaagatacatt atgatgttgg	SV40 3'UTR R: 2143-2146
LA6571	FrgA from 1447_rev	cgtaagagctggccggcccccacgcgc	transformation marker R: 2145
LA6572	FrgB from 1747_fwd	gggcggggccggccgagcttacgcgtatc	PUb promoter F: 2145
LA6573	FrgA from 1447_rev	cgtaagagctggccggcccccacgcgc	transformation marker R: 2146
LA6574	FrgB from - 2565_fwd	gggcggggccggccgagcttacgcgc	PUb promoter F: 2146
LA6945	FrgB from 2150	cggggccggccTATGCCATATACACGAAg	PUb promoter F: 2144
LA6946	FrgA from 1447	TATGGCATAgccggcccccacgcgc	transformation marker R: 2144
LA3873	attL-F	TTTATCGAATTGCTTCGGCGCCAAGTAGTG	Confirmation of insertion - attL
LA7385	attL-R	CGTCGCCGTCCAGCTCGACCA	Confirmation of insertion - attL
LA7384	attR-F	CGGATAACAATTACACACAG	Confirmation of insertion - attR
LA5816	attR-R	cgtggtaactacgtgtcgccgtggaaagcgagg	Confirmation of insertion - attR

306