

1

2 Synergistic effects of inhibitors targeting PI3K and Aurora Kinase A in preclinical 3 inflammatory breast cancer models

4

5 Nadia Al Ali, Jacob Kment, Stephanie Young and Andrew W.B. Craig*

6

7 Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario,
8 Canada; Division of Cancer Biology & Genetics, Queen's Cancer Research Institute, Kingston,
9 Ontario, Canada

10

11

12 *Correspondence: andrew.craig@queensu.ca

13

14

15

16

17

18 **Abstract**

19 **Background:** Inflammatory breast cancer (IBC) is an aggressive clinical subtype of breast cancer
20 often diagnosed in young women. Lymph node and distant metastases are frequently detected at
21 diagnosis of IBC, and improvements in systemic therapies are needed. For IBC that lack hormone
22 or HER2 expression, no targeted therapies are available. Since the phosphatidyl inositol 3' kinase
23 (PI3K) pathway is frequently deregulated in IBC, some studies have tested the pan PI3K inhibitor
24 Buparlisib (BKM120). Although the SUM149 IBC cell line was resistant to Buparlisib, a
25 functional genomic screen showed that silencing of Aurora kinase A (AURKA) sensitized cells to
26 killing by Buparlisib. In this study, we tested whether combination treatments of PI3K and
27 AURKA inhibitors act synergistically to kill IBC cells and tumors.

28 **Methods:** SUM149 cells were treated with increasing doses of PI3K inhibitor Buparlisib
29 (BKM120) and AURKA inhibitor Alisertib as monotherapies or combination therapies. Effects on
30 target pathways, cytotoxicity, cell cycle, soft agar colony growth and cell migration were analyzed.
31 The individual and combined treatments were also tested in a mammary orthotopic SUM149 tumor
32 xenograft model to measure effects on tumor growth and metastasis

33 **Results:** The SUM149 IBC cell line treated with Buparlisib showed reduced PI3K/AKT activation
34 but no significant skewing of cell cycle progression. Parallel studies of Alisertib treatment showed
35 that AURKA inhibition led to a significant block in G2/M transition in SUM149 cells. In
36 cytotoxicity assays, Buparlisib and Alisertib combination treatments were highly synergistic
37 compared to monotherapy controls. Evidence of synergy between Buparlisib and Alisertib also
38 extended to soft agar colony growth and wound healing motility in SUM149 cells. The

39 combination of Buparlisib and Alisertib also reduced IBC tumor growth in mammary orthotopic
40 xenograft assays and reduced spontaneous metastases development in lung tissue.

41 **Conclusions:** Although SUM149 IBC cells were relatively resistant to killing by the PI3K
42 inhibitor Buparlisib, our study showed that co-targeting the mitotic kinase AURKA with Alisertib
43 synergized to limit IBC cell growth and motility, as well as IBC tumor growth and metastasis.

44

45 **Key words:** Inflammatory Breast Cancer, Targeted therapy, Combination therapy, PI3K inhibitor,
46 Aurora Kinase A inhibitor

47

48

49

50

51

52

53

54

55

56 **Background**

57 Inflammatory breast cancer (IBC) is an aggressive clinical subtype of breast cancer that often
58 presents as breast swelling and redness of the breast's skin (1, 2). IBC is frequently diagnosed in
59 young women and often at later stages, with metastases to lymph nodes or distant sites (1). IBC
60 represents ~6% of all breast cancer cases worldwide (3). When categorized by molecular subtypes,
61 12% of IBC tumors are triple-negative (lacking ER/PR/HER2) breast cancers (TNBC). TNBC
62 have high metastatic capabilities and worse prognosis compared to other subtypes with more
63 options for targeted therapies (1).

64 Driver mutations of IBC remain unclear, however a study profiling somatic mutations in IBC
65 tumors revealed high heterogeneity and high mutational burden compared to non-IBC breast
66 tumors (4). The three most frequent pathways altered in IBC were PI3K/AKT, Ras/MAPK, and
67 cell cycle pathways (4). The Phosphoinositide 3' kinase (PI3K) pathway regulates cell growth,
68 survival, metabolism, motility, and angiogenesis (5). Considerable efforts have been underway to
69 target aberrant PI3K activity in breast cancer with direct PI3K inhibitors, or inhibitors of effectors
70 AKT and mTOR kinases (5, 6). Limited responses to monotherapies and acquired drug resistance
71 must be overcome to optimize treatments targeting the PI3K pathway (5, 7).

72

73 A recent study investigating resistance mechanisms in IBC and non-IBC models treated with pan
74 PI3K inhibitor Buparlisib reported that gene silencing of several protein kinases, from a kinome-
75 wide screen, overcame resistance in breast cancer cell lines (8). The authors validated MEK1 &
76 PI3K synthetic lethality across breast cancer models with both gene silencing and

77 Selumetinib/Buparlisib combination treatments in cell lines and brain metastatic mouse models
78 (8). Another gene silencing hit that sensitized SUM149 IBC cells to killing by Buparlisib was
79 Aurora Kinase A (AURKA), but this synthetic lethal interaction was not validated (8). AURKA is
80 a nuclear serine/threonine kinase that is activated in G2 phase of the cell cycle and regulates cell
81 division (9). Specifically, AURKA regulates centrosome maturation, entry to mitosis and assembly
82 of the mitotic spindle (10). AURKA overexpression and gene amplification occurs in multiple
83 cancers with links to poor prognosis and increased genomic instability (11). Alisertib (ALS) is an
84 orally available AURKA inhibitor (12), and is one of several AURKA inhibitors to be tested in
85 early phase clinical trials for several cancer types, including hormone receptor-positive breast
86 cancer (9, 13).

87
88 In this study, we investigate whether combination treatments of PI3K and AURKA inhibitors can
89 limit IBC cell growth, viability and motility in 2D and 3D cell culture models. Buparlisib and
90 Alisertib were also tested as both monotherapies and in combination in mammary orthotopic
91 SUM149 tumor xenograft models. In most of the above assays, the combination of Buparlisib and
92 Alisertib showed synergistic effects in limiting the IBC cell/colony growth and motility, and tumor
93 growth *in vivo*.

94 **Methods**

95 **IBC cell line and media**

96 The human SUM149PT cell line was isolated from an IBC tumor and purchased from a
97 commercial source (BIOIVT). SUM149 cells were cultured in Ham's F-12 media supplemented
98 with antibiotic-antimycotic (1%), and 5% fetal bovine serum (FBS). SUM149 cells were routinely
99 tested for mycoplasma contamination and were confirmed mycoplasma free.

100

101 **Drug preparations**

102 Buparlisib and Alisertib were purchased from Med Chem Express (MCE), and solubilized in
103 dimethyl sulfoxide (DMSO) for *in vitro* assays. For *in vivo* studies, Buparlisib and Alisertib were
104 solubilized stepwise in 10% DMSO, 40% PEG300, 5% Tween-80 and 45% sterile saline.

105

106 **Cell synchronization, lysates and immunoblotting**

107 For testing effects of inhibitors on PI3K/AKT pathway, lysates were prepared from subconfluent
108 SUM149 cells treated with a vehicle control (DMSO), Buparlisib (5 μ M), Alisertib (5 μ M) or a
109 combination of both drugs at the same concentration for 1 hour. To measure the effects of the
110 inhibitors on pAURKA/AURKA protein levels, we performed a double thymidine block and
111 release to synchronize SUM149 cells prior to preparing cell lysates. Briefly, subconfluent
112 SUM149 cells were treated with thymidine at a final concentration of 2 mM for 19 hours.

113 Following a rinse with PBS, cells were allowed to recover for 9 hours in fresh medium prior to a
114 second round of thymidine (2 mM) treatment for 16 hours at 37 °C. Cells were released from G1/S
115 block by washing with prewarmed PBS and incubated in fresh media for 5 hours before adding
116 DMSO, Buparlisib (5 µM), Alisertib (5 µM) or a combination of both drugs. Cells were collected
117 at 0, 5, 8, 10, and 12 hours of treatment for flow cytometry analysis of cell cycle by DNA content
118 following DAPI staining (CytoFLEX, Beckmann). Cell lysates were analyzed by immunoblotting
119 with pan AURKA and phospho-AURKA (pAURKA) antibodies (CST). For both methods, cells
120 were lysed on ice with supplemented RIPA buffer (50 mM Tris, 5 mM EDTA, 150 mM NaCl, 1%
121 NP-40, 0.5% Sodium Deoxycholate, 0.1% SDS, 10 µg/mL aprotinin, 10 µg/mL leupeptin, 1 mM
122 Na₃VO₄, 100 µM phenylmethylsulfonyl fluoride, 50 mM NaF) and centrifuged at 3000 × g for 15
123 min at 4°C. Supernatants were collected and proteins concentrations were measured with Bradford
124 assay. An amount of 100 µl sample was resolved by sodium dodecyl sulfate polyacrylamide gel
125 electrophoresis (SDS-PAGE) sample loading buffer and electrophoresed on 10% SDS-PAGE gel
126 after thermal denaturation at 95°C for 5 min. Samples were transferred onto PVDF membrane at
127 25 mA for 15 min at RT (TurboBlot, BioRad). After blocking, the membranes were probed with
128 indicated primary antibodies from CST overnight at 4°C: pan AKT (1:1000), phosphoS274-AKT
129 (1:1000), pan AURKA (1:1000), and phosphoT288-AURKA (1:1000), all primary antibodies
130 were anti-rabbit except for the loading control B-actin, anti-mouse. After washing, fluorophore-
131 conjugated secondary antibodies (Goat anti-Rabbit IgG (H+L) Dylight™ 800 4X PEG and Goat
132 anti Mouse IgG (H+L) Dylight™ 680 secondary antibodies from Invitrogen, Thermofisher) were
133 incubated for 1 hour at room temperature prior to detection and quantification using an Odyssey
134 CLx scanner (LI-COR).

135 **Cell cycle analysis**

136 SUM149 cells (10^6) were incubated with drugs for 48 hours at Buparlisib or Alisertib 5 μ M, and
137 same for combination. At the end of the 48 hours, cells were treated according to the Abcam
138 protocol. Cells were harvested and washed in PBS, then fixed in 70% cold ethanol by adding drop
139 wise to pellet while on vortex. Cooled at 4°C and centrifuged and the supernatants were discarded
140 carefully. Treated with ribonuclease and PI respectively then cell cycle distribution was analyzed
141 by flow cytometry (FACS Aria III, BD). Analysis was done using the Flow Jo flow cytometry
142 analysis software.

143 **Cell viability assay**

144 SUM-149 cells were seeded at 1×10^4 cells per well in a 96-well plate overnight prior to addition
145 of vehicle (DMSO), Buparlisib or Alisertib alone (0.1, 1 or 10 μ M), or in combinations at the
146 different doses. Alamar Blue 10% was added to each well and incubated for 4 hours under standard
147 conditions of 37 °C and 5% CO₂ in a humidified atmosphere and absorbance at 570 nm (600 nm
148 reference wavelength) using a plate reading spectrometer at 48 hours. All analyses were performed
149 using graphing and statistic packages in GraphPad Prism was used for calculations and statistics.
150 SynergyFinder Bliss model was also used to calculate and present the interaction between
151 Buparlisib and Alisertib in vitro with a dose matrix test. Graphs and statistics were produced by
152 the SynergyFinder application (14).

153

154 **Soft agar assay**

155 SUM149 cells were plated at low density in 6-well plates and cultured for 21 days in low melt agar
156 with media + drugs (Buparlisib 2.5 μ M, Alisertib 5 μ M and combination of 2.5 + 5 μ M) changed
157 every 2 days depending on half-life of each drug. At the end of the culture days, the colonies were
158 stained with 5 % crystal violet for 1 hour then washed. The images of the colonies were captured
159 using QCapture pro software attached to a camera on a dissection microscope. Each assay was
160 performed in triplicate, plates were maintained at 37C under 5% CO2 for three weeks. Colonies
161 greater or equal to 100 μ m in diameter were counted, as described previously (15).

162

163 **Wound healing migration assay**

164 SUM149 cells were seeded at a density of 3.0×10^5 cells per well in 96-well culture plates
165 overnight so that the cells would attach. A single wound was made on each well for each cell line
166 by scratching the attached cells using ESSEN Bioscience Wound Maker 96. The plates were
167 washed with PBS to remove cellular debris from the scraped surface. Drugs were added to
168 SUM149 cells (Buparlisib 1 μ M, Alisertib 1 μ M and combination 1+1 μ M). Cells were incubated
169 in Incucyte Zoom (Sartorius) for 24 hours and the images of the cells were taken immediately and
170 every 2 hours using Incucyte Zoom with a 10X objective.

171 **Mammary orthotopic IBC tumor xenograft model**

172 Mammary orthotopic tumor xenograft assays were performed using SUM149 cell model and
173 Rag2^{-/-}:IL2R γ c^{-/-} recipient female mice, lacking natural killer, B, and T cells. Animals were
174 housed in a specific pathogen-free facility (Queen's University Animal Care Services), with

175 ventilated cages and sterilized food and water supply. All procedures with mice were approved by
176 the Queen's University Animal Care Committee. Cells were grown to 70–85% confluence before
177 trypsinization and counting. For xenografting, 5×10^5 SUM149 cells (transduced with WPI-
178 Luciferase) were injected into the right thoracic mammary fat pads of the
179 $\text{Rag2}^{-/-}:\text{IL2R}\gamma c^{-/-}$ female mice in a volume of 100 μl containing 50% Matrigel using a hypodermic
180 syringe. Tumours were screened to have average initiating size. Mice were grouped into 4 groups
181 each with 6 individuals. One group received vehicle, the other two, one received Buparlisib and
182 the other Alisertib, and the last received the combination. Drugs and doses were based on previous
183 conducted studies (25 mg/kg) per each drug and per combination. Treatment started on day 10 post
184 injection for a (5+2) regimen, at end points 5 weeks, mice were killed, and primary tumor mass
185 recorded. Several tissues were removed for detection of metastases, which were primarily
186 observed in the lungs. The primary tumors and lungs from each mouse were used for histological
187 analysis. For lung inflation, use a 3mL syringe with a 22g needle, this time held parallel to the
188 trachea, insert the needle into the trachea and inject 10% formalin with rate of flow no greater than
189 $\sim 200 \mu\text{L}/\text{second}$ until the lungs have fully inflated. Once the lungs are inflated, formalin will
190 backflow out of the trachea. Samples were fixed in formalin and embedded in paraffin, and 5 μm
191 sections were stained with hematoxylin and eosin.

192 **Statistical Analysis**

193 Statistical analyses were performed in GraphPad Prism (version 9.4.1, GraphPad Software). * = p
194 < 0.05 , ** = $p < 0.01$, *** = $p < 0.001$, **** = $p < 0.0001$, ns = $p \geq 0.05$.

195

196 **Results**

197 **Cell cycle block by AURKA inhibitor but not PI3K inhibitor in SUM149 IBC cells**

198 In a previous pharmacogenomics screening study, the cytotoxicity of pan-PI3K inhibitor
199 Buparlisib in SUM149 IBC cells was significantly improved by silencing the *Aurka* gene (8). Here,
200 we investigated whether pharmacological inhibition of AURKA using Alisertib would phenocopy
201 the sensitizing effects to killing of IBC cells by Buparlisib. First, we tested the effects of Alisertib
202 (ALS) and Buparlisib (BKM120) treatments alone or in combination (combo) on the PI3K
203 pathway as indicated by phosphorylation of AKT (Fig. 1A). At a dose of 5 μ M for each drug,
204 treatments of SUM149 cells for 1 hour with Buparlisib alone, or in combination with Alisertib, led
205 to greatly reduced AKT phosphorylation (pAKT) visualized by immunoblotting (Fig. 1A). As
206 expected, Alisertib treatment alone did not alter AKT phosphorylation compared to DMSO vehicle
207 control (Fig. 1A). Several experiments were analyzed by densitometry, and showed a significant
208 reduction in relative levels of pAKT in Buparlisib and combo treatment groups (Fig. 1B). To
209 investigate the effects of Alisertib treatments on AURKA activation, we attempted to measure
210 phosphorylation of AURKA (pAURKA) in lysates from asynchronously growing SUM149 cells
211 and failed to observe sufficient pAURKA signal (data not shown). However, using a double
212 thymidine block to synchronize SUM149 cells in G1 phase, we released the cells for various time
213 points to assess cell cycle status by DNA content analyzed by flow cytometry. We observed a high
214 percentage of SUM149 cells in G2/M phase between 5 and 8 hours post release (Supplementary
215 Figure 1). We used the double thymidine block and 7 hour release of SUM149 cells for testing
216 effects of Alisertib on pAURKA, and observed a strong reduction compared to vehicle control
217 (Fig. 1C/D). Buparlisib treatments did not impair pAURKA, but it was impaired in combination

218 treatments with Alisertib (Fig. 1C/D). Thus, both inhibitors act on their target pathways in
219 SUM149 cells and are compatible in combination treatments.

220 Since both PI3K and AURKA pathways can impact cell growth and cell cycle, we tested
221 the effects of vehicle control, Alisertib or Buparlisib alone (5 μ M), or in combination, on
222 asynchronously growing SUM149 cells treated for 48 hours. Using propidium iodide (PI) staining
223 of permeabilized cells from each treatment group, we analyzed the cell cycle profiles using flow
224 cytometry. We observed a significant increase in percentage of SUM149 cells in G2/M with
225 Alisertib treatment compared to the control and Buparlisib treatments (Fig. 1E). A similar block
226 in G2/M was observed in combination treatments (Fig. 1E), and analysis of several experiments
227 revealed that the G2/M block by Alisertib and combo were significant (Fig. 1F). These results
228 showed that Alisertib treatments triggered a cell cycle arrest in SUM149 cells, distinct from the
229 limited effects of Buparlisib alone on cell cycle.

230

231 **Buparlisib and Alisertib treatments caused synergistic killing of IBC cells**

232 Using Alamar Blue as a metabolic indicator of SUM149 cell viability, we next performed dose
233 response analyses with Buparlisib (BKM120) and Alisertib (ALS) treatments for 48 hours.
234 Consistent with the relative resistance of SUM149 cells to Buparlisib, only a modest dose-
235 dependent reduction in cell viability was observed with ~70% viable cells at 10 μ M dose (Fig. 2A).
236 A similar dose-dependent reduction in SUM149 cell viability was observed with Alisertib (Fig.
237 2A). Next, we examined combinations of Buparlisib and Alisertib at each dose, and tested for
238 synergistic effects by calculating the Bliss synergy score (15). We detected a robust synergy score
239 of 36.117 for Buparlisib and Alisertib combination treatments on IBC SUM149 cells (Fig. 2B). At
240 several doses of Alisertib and Buparlisib, the reduction in cell viability with the combination was

241 significantly greater than either drug alone (Fig. 2C, Supplementary Fig. 2). Overall, these results
242 demonstrated that pharmacological inhibition of AURKA can sensitize SUM149 IBC cells to
243 killing by PI3K inhibitor Buparlisib, and this warranted further investigation in IBC models.

244

245 **Buparlisib and Alisertib treatments caused synergistic reduction of anchorage-independent**
246 **growth and cell migration of IBC cells**

247 Anchorage-independent growth of cancer cells has been used to test effects of genes or drugs on
248 the transformed phenotype and resistance to anoikis. Here, SUM149 cells were seeded in soft agar
249 and treated with vehicle control, Alisertib (5 μ M) or Buparlisib (2.5 μ M) alone, or in combination
250 for 21 days (media was supplemented with drugs every 2 days). At endpoint, the colonies were
251 stained with Crystal Violet and imaging revealed overt differences in some treatment groups
252 compared to control (Fig. 3A). Alisertib treatments reduced colonies compared to controls,
253 whereas Buparlisib treatments had no effect (Fig. 3B). Importantly, the reduction in colonies was
254 greatest in the combination treatments, showing strong synergistic effects of Alisertib and
255 Buparlisib in this relatively long term assay of IBC cell growth.

256 Next, we tested the effects of Alisertib and Buparlisib treatments on SUM 149 cell motility
257 using wound healing assays. The cells were seeded at confluence in a 96-well plate, and a scratch
258 wound was created prior to applying drug treatments or vehicle control. Phase-contrast images
259 were captured every 2 hours for 24 hours. Representative images of the wound area at time 0 or
260 24 hours show that SUM149 cells completely close the wound area with control, but less so with
261 Alisertib, Buparlisib or combination treatments (Fig. 4A). Quantification of the percentage wound
262 confluence was calculated for each treatment group, and showed reduced motility with Alisertib

263 or Buparlisib alone compared to control (Fig. 4B). Importantly, the wound healing migration was
264 reduced most significantly by the combination treatments (Fig. 4B). In summary, these results
265 demonstrated that the combination of Alisertib and Buparlisib significantly impaired cell migration
266 in SUM149 cells *in vitro*, and this may help restrain the metastatic properties of IBC *in vivo*.

267

268 **Reduced tumor growth and metastasis in IBC tumor-bearing mice treated with Alisertib and**
269 **Buparlisib**

270 To extend studies of Alisertib and Buparlisib treatments to tumor growth and metastasis, we
271 performed mammary orthotopic tumor xenograft assays with SUM149 cells implanted within
272 immunocompromised female mice (Rag2^{-/-}:IL2R γ c^{-/-}). When palpable tumors were detected, mice
273 were randomized into 4 different groups with 6 mice per group on day 12. The control group
274 received intraperitoneal (i.p.) injections with the vehicle used to solubilize both drugs for *in vivo*
275 studies. Both Alisertib (ALS) and Buparlisib (BKM120) were dosed at 25 mg/kg (i.p.; once daily)
276 as either monotherapies or combination therapy with a 5 days on and 2 days off treatment schedule
277 (5 + 2; Fig. 5A). After 35 days, the animals were culled, and tumors and tissues were harvested
278 for further processing. Significant reductions in tumor weights were observed in Alisertib and
279 combination treatment groups (Fig. 5B). Upon histological analysis of tumor tissue sections, we
280 observed necrotic areas within the tumors from the Alisertib and Buparlisib or combo treatment
281 groups (Fig. 5C; annotated by areas labeled N). Quantification of the percent necrosis area showed
282 an increasing trend in the combination group, and thus showed the most promising control of IBC
283 tumor growth in this IBC xenograft model.

284 We next analyzed the lung tissues from the above mammary orthotopic IBC xenograft
285 study to analyze treatment effects on spontaneous metastases to the lungs of these mice. We
286 stitched together phase contrast images of hematoxylin/eosin-stained lung tissue sections spanning
287 an entire lobe of the lung from all the animals. Representative images from each treatment group
288 showed areas with micrometastases (Fig. 6A, see high magnification inserts). Scoring of these
289 metastases was performed by two independent investigators, and the average numbers of
290 metastases were determined for each animal (Fig. 6B). Treatments with Alisertib or Buparlisib
291 alone reduced the frequency of lung metastases, with the fewest detected within the combination
292 treatment group (Fig. 6B). Together, these results support the potential benefits of treating IBC
293 with Alisertib and Buparlisib combination therapy to restrain both tumor growth and metastases.

294

295

296 **Discussion**

297 In this study, we provide rationale and evidence that inhibiting AURKA can sensitize IBC cells
298 and tumors to killing by the pan-PI3K inhibitor Buparlisib. Our findings address the limited
299 targeted therapy options for IBC (16), and the need to identify additional pathways that provide
300 resistance to PI3K inhibitors (8). The PI3K pathway is hyperactivated in almost all breast cancer
301 types, including IBC (17),(18), including gain-of-function hot spot mutations in PIK3CA and
302 deletions of the PTEN tumor suppressor gene (19). Dysregulation in the PI3K pathway hinders the
303 action of several anticancer drugs, which led to the development of several PI3K inhibitors
304 (8),(17),(18). This study focused on the AURKA pathway as a potential co-target with the PI3K
305 pathway since Aurka gene silencing was shown to enhance killing of IBC cells by Buparlisib (8).
306 The AURKA pathway plays a crucial role in cell cycle progression, particularly during mitosis
307 (20). Cross-talk between the AURKA pathway as also been observed with other oncogenic
308 pathways (21). We chose AURKA inhibitor Alisertib to test in combination with Buparlisib since
309 it has shows some efficacy in breast cancer cell lines and modest toxicities (21). Alisertib
310 treatments disrupt key processes in mitosis, including chromosome alignment and spindle
311 bipolarity (22). This is consistent with our findings that IBC cells accumulate in G2 phase upon
312 treatments with Alisertib, and this may explain synergy with Buparlisib in killing these checkpoint
313 restricted cells.

314 While Buparlisib has shown efficacy in killing IBC cell lines, clinical trials has shown
315 limited efficacy as monotherapy and raised concerns of toxicity profiles (20),(23),(24),(25). We
316 suggest exploring alternative, class-specific PI3K inhibitors such as Alpelisib in future studies. In
317 fact, Alpelisib has demonstrated efficacy in targeting PIK3CA-mutated cancer models and has

318 received FDA approval for patients with advanced ER-positive breast cancer (26),(27). It will be
319 interesting to test for synergy between Alpelisib and Alisertib in both IBC and non-IBC cell and
320 tumor models in future.

321 Metastasis is a significant concern in IBC, particularly with lung involvement (28),(29). In
322 this study, we show that the combination of Alisertib and Buparlisib inhibited cell migration of
323 IBC cells in vitro, and reduced lung metastases in IBC tumor xenograft assays. We observed more
324 areas of necrosis within the tumors from mice treated with the combination of Buparlisib and
325 Alisertib. Future studies will be needed to understand if treatments impact local invasion in the
326 mammary tissue, killing of the lung-resident metastatic cells, or both. Furthermore, recent studies
327 highlight the involvement of extrinsic factors and genes controlling epithelial-mesenchymal
328 plasticity, migration, and invasion in IBC (19),(30),(31),(32). Since the siRNA screening study of
329 kinase genes that are synthetically lethal with PI3K inhibitor treatment in IBC cells (8), it would
330 be interesting to extend these studies to genome-wide screens using CRISPR/Cas9 approaches.

331 **Conclusions**

332 Our study provides evidence supporting efficacy of a combination therapy comprising Buparlisib
333 and Alisertib to treat IBC. By concurrently targeting two pivotal pathways, namely PI3K and
334 AURKA, our approach effectively disrupts the oncogenic addiction of IBC cells to these pathways.
335 The strong synergistic effects of Buparlisib and Alisertib may overcome resistance mechanisms to
336 either inhibitor as a monotherapy. Further testing in additional models will likely be needed to
337 advance these findings to future human clinical trials in IBC.

338

339 **Abbreviation List**

340 **IBC:** Inflammatory breast cancer, **ER/PR/HER2:** oestrogen/progesterone/ human epidermal
341 growth factor 2 receptors, **PI3K:** phosphoinositide-3-kinase, **AURKA:** Aurora kinase A,
342 **BKM120:** Buparlisib, **ALS:** Alisertib, **DMSO:** Dimethyl sulfoxide.

343

344 **Availability of Data and Material**

345 The datasets used and/or analysed during the current study are available from the corresponding
346 author upon reasonable request.

347

348 **Funding**

349 This research was funded by Queen's University Research Opportunity Fund grant and by a grant
350 from Canadian Institutes of Health Research to AWC. Salary support for NAA and JK was
351 provided by Queen's Graduate awards and Queen's Health Sciences Dean's award.

352 **Authors' contributions**

353 **Acknowledgements**

354 The authors thank other Craig lab members for providing helpful advice and support during the
355 course of this research.

356 **Declarations**

357 **Ethical Approval**

358 Research with human cancer cell lines and animals were approved by the Queen's University
359 Biohazard and Animal Care committees, respectively.

360 **Competing interests**

361 The authors declare no financial or personal competing interests related to this research.

362 **Authors' contributions**

363 NAA, JK, and SY performed the experiments and analyzed the results. NAA wrote the initial draft
364 of the manuscript. AWBC conceived of the study, helped interpret the results and edited the
365 manuscript.

366 **References**

367 1. Devi GR, Hough H, Barrett N, Cristofanilli M, Overmoyer B, Spector N, et al. Perspectives
368 on Inflammatory Breast Cancer (IBC) Research, Clinical Management and Community
369 Engagement from the Duke IBC Consortium. *J Cancer*. 2019;10(15):3344-51.

370 2. Costa R, Santa-Maria CA, Rossi G, Carneiro BA, Chae YK, Gradishar WJ, et al.
371 Developmental therapeutics for inflammatory breast cancer: Biology and translational directions.
372 *Oncotarget*. 2017;8(7):12417-32.

373 3. Mamouch F, Berrada N, Aoullay Z, El Khanoussi B, Errihani H. Inflammatory Breast
374 Cancer: A Literature Review. *World J Oncol*. 2018;9(5-6):129-35.

375 4. Liang X, Vacher S, Boulai A, Bernard V, Baulande S, Bohec M, et al. Targeted next-
376 generation sequencing identifies clinically relevant somatic mutations in a large cohort of
377 inflammatory breast cancer. *Breast Cancer Res*. 2018;20(1):88.

378 5. Yang J, Nie J, Ma X, Wei Y, Peng Y, Wei X. Targeting PI3K in cancer: mechanisms and
379 advances in clinical trials. *Mol Cancer*. 2019;18(1):26.

380 6. Vagia E, Mahalingam D, Cristofanilli M. The Landscape of Targeted Therapies in TNBC.
381 *Cancers (Basel)*. 2020;12(4).

382 7. Wright SCE, Vasilevski N, Serra V, Rodon J, Eichhorn PJA. Mechanisms of Resistance to
383 PI3K Inhibitors in Cancer: Adaptive Responses, Drug Tolerance and Cellular Plasticity. *Cancers*
384 (Basel). 2021;13(7).

385 8. Van Swearingen AED, Sambade MJ, Siegel MB, Sud S, McNeill RS, Bevill SM, et al.

386 Combined kinase inhibitors of MEK1/2 and either PI3K or PDGFR are efficacious in intracranial

387 triple-negative breast cancer. *Neuro Oncol.* 2017;19(11):1481-93.

388 9. Mou PK, Yang EJ, Shi C, Ren G, Tao S, Shim JS. Aurora kinase A, a synthetic lethal target

389 for precision cancer medicine. *Exp Mol Med.* 2021;53(5):835-47.

390 10. Courtheoux T, Diallo A, Damodaran AP, Reboutier D, Watrin E, Prigent C. Aurora A

391 kinase activity is required to maintain an active spindle assembly checkpoint during prometaphase.

392 *J Cell Sci.* 2018;131(7).

393 11. Damodaran AP, Vaufrey L, Gavard O, Prigent C. Aurora A Kinase Is a Priority

394 Pharmaceutical Target for the Treatment of Cancers. *Trends Pharmacol Sci.* 2017;38(8):687-700.

395 12. Manfredi MG, Ecsedy JA, Chakravarty A, Silverman L, Zhang M, Hoar KM, et al.

396 Characterization of Alisertib (MLN8237), an investigational small-molecule inhibitor of aurora A

397 kinase using novel in vivo pharmacodynamic assays. *Clin Cancer Res.* 2011;17(24):7614-24.

398 13. Cervantes A, Elez E, Roda D, Ecsedy J, Macarulla T, Venkatakrishnan K, et al. Phase I

399 pharmacokinetic/pharmacodynamic study of MLN8237, an investigational, oral, selective aurora

400 a kinase inhibitor, in patients with advanced solid tumors. *Clin Cancer Res.* 2012;18(17):4764-74.

401 14. Ianevski A, Giri AK, Aittokallio T. SynergyFinder 2.0: visual analytics of multi-drug

402 combination synergies. *Nucleic Acids Res.* 2020;48(W1):W488-W93.

403 15. Buchheit CL, Angarola BL, Steiner A, Weigel KJ, Schafer ZT. Anoikis evasion in
404 inflammatory breast cancer cells is mediated by Bim-EL sequestration. *Cell Death Differ.*
405 2015;22(8):1275-86.

406 16. Chainitikun S, Espinosa Fernandez JR, Long JP, Iwase T, Kida K, Wang X, et al.
407 Pathological complete response of adding targeted therapy to neoadjuvant chemotherapy for
408 inflammatory breast cancer: A systematic review. *PLoS One.* 2021;16(4):e0250057.

409 17. Criscitiello C, Viale G, Curigliano G, Goldhirsch A. Profile of buparlisib and its potential
410 in the treatment of breast cancer: evidence to date. *Breast Cancer (Dove Med Press).* 2018;10:23-
411 9.

412 18. Du R, Huang C, Liu K, Li X, Dong Z. Targeting AURKA in Cancer: molecular
413 mechanisms and opportunities for Cancer therapy. *Mol Cancer.* 2021;20(1):15.

414 19. Carbognin L, Miglietta F, Paris I, Dieci MV. Prognostic and Predictive Implications of
415 PTEN in Breast Cancer: Unfulfilled Promises but Intriguing Perspectives. *Cancers (Basel).*
416 2019;11(9).

417 20. Nikanova AS, Astsatuov I, Serebriiskii IG, Dunbrack RL, Golemis EA. Aurora A kinase
418 (AURKA) in normal and pathological cell division. *Cell Mol Life Sci.* 2013;70(4):661-87.

419 21. Jalalirad M, Haddad TC, Salisbury JL, Radisky D, Zhang M, Schroeder M, et al. Aurora-
420 A kinase oncogenic signaling mediates TGF- β -induced triple-negative breast cancer plasticity and
421 chemoresistance. *Oncogene.* 2021;40(14):2509-23.

422 22. Niu H, Manfredi M, Ecsedy JA. Scientific Rationale Supporting the Clinical Development
423 Strategy for the Investigational Aurora A Kinase Inhibitor Alisertib in Cancer. *Front Oncol.*
424 2015;5:189.

425 23. Patsouris A, Augereau P, Frenel JS, Robert M, Gourmelon C, Bourbouloux E, et al. Benefits
426 versus risk profile of buparlisib for the treatment of breast cancer. *Expert Opin Drug Saf.*
427 2019;18(7):553-62.

428 24. Garrido-Castro AC, Saura C, Barroso-Sousa R, Guo H, Ciruelos E, Bermejo B, et al. Phase
429 2 study of buparlisib (BKM120), a pan-class I PI3K inhibitor, in patients with metastatic triple-
430 negative breast cancer. *Breast Cancer Res.* 2020;22(1):120.

431 25. Xing J, Yang J, Gu Y, Yi J. Research update on the anticancer effects of buparlisib. *Oncol*
432 *Lett.* 2021;21(4):266.

433 26. Narayan P, Prowell TM, Gao JJ, Fernandes LL, Li E, Jiang X, et al. FDA Approval
434 Summary: Alpelisib Plus Fulvestrant for Patients with HR-positive, HER2-negative, PIK3CA-
435 mutated, Advanced or Metastatic Breast Cancer. *Clin Cancer Res.* 2021;27(7):1842-9.

436 27. André F, Ciruelos EM, Juric D, Loibl S, Campone M, Mayer IA, et al. Alpelisib plus
437 fulvestrant for PIK3CA-mutated, hormone receptor-positive, human epidermal growth factor
438 receptor-2-negative advanced breast cancer: final overall survival results from SOLAR-1. *Ann*
439 *Oncol.* 2021;32(2):208-17.

440 28. van Uden DJP, van Maaren MC, Strobbe LJA, Bult P, van der Hoeven JJ, Siesling S, et al.

441 Metastatic behavior and overall survival according to breast cancer subtypes in stage IV

442 inflammatory breast cancer. *Breast Cancer Res.* 2019;21(1):113.

443 29. Dano D, Lardy-Cleaud A, Monneur A, Quenel-Tueux N, Levy C, Mouret-Reynier MA, et

444 al. Metastatic inflammatory breast cancer: survival outcomes and prognostic factors in the

445 national, multicentric, and real-life French cohort (ESME). *ESMO Open.* 2021;6(4):100220.

446 30. Kvokačková B, Remšík J, Jolly MK, Souček K. Phenotypic Heterogeneity of Triple-

447 Negative Breast Cancer Mediated by Epithelial-Mesenchymal Plasticity. *Cancers (Basel).*

448 2021;13(9).

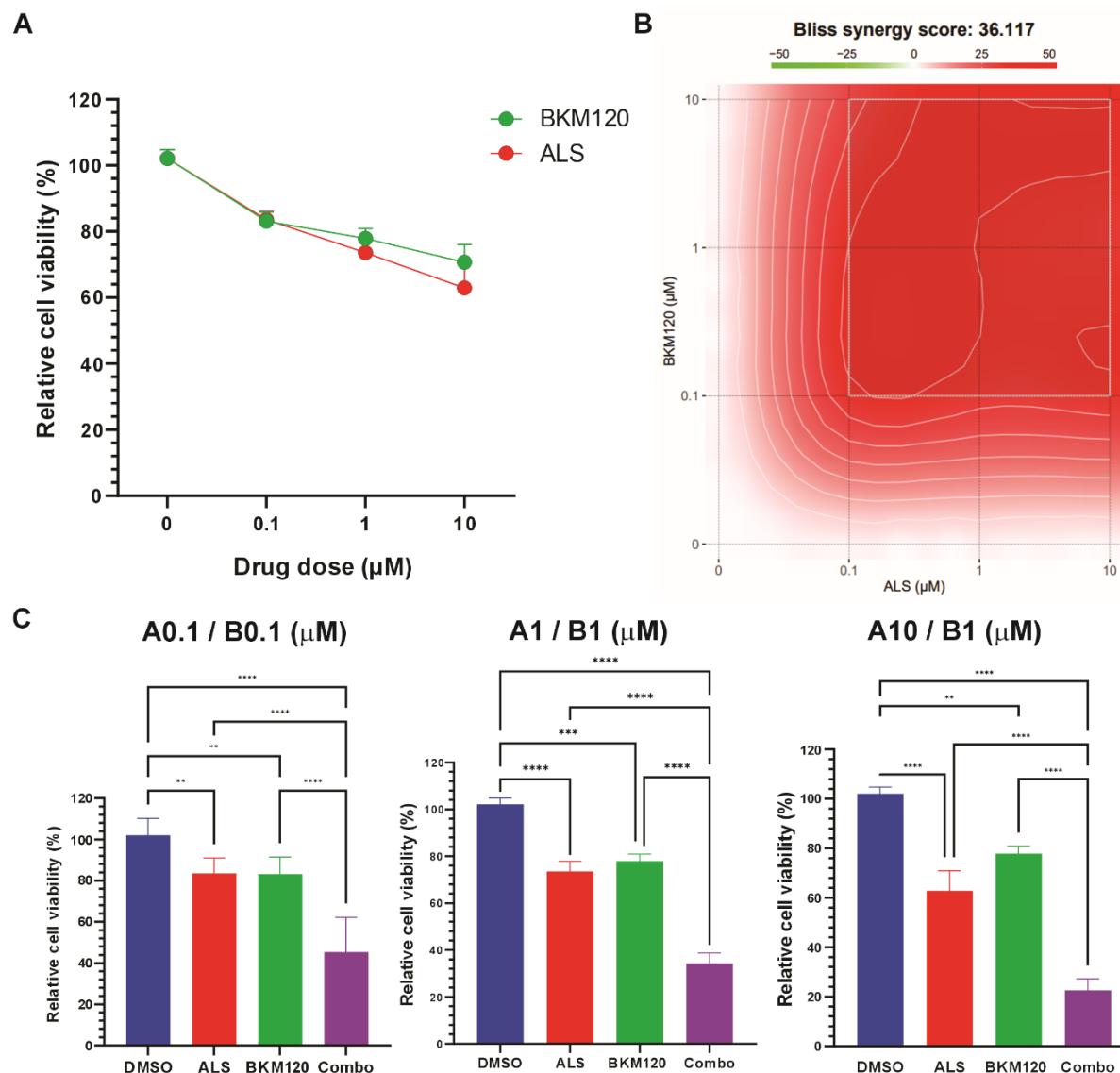
449 31. Li JJ, Sun ZJ, Yuan YM, Yin FF, Bian YG, Long LY, et al. EphB3 Stimulates Cell

450 Migration and Metastasis in a Kinase-dependent Manner through Vav2-Rho GTPase Axis in

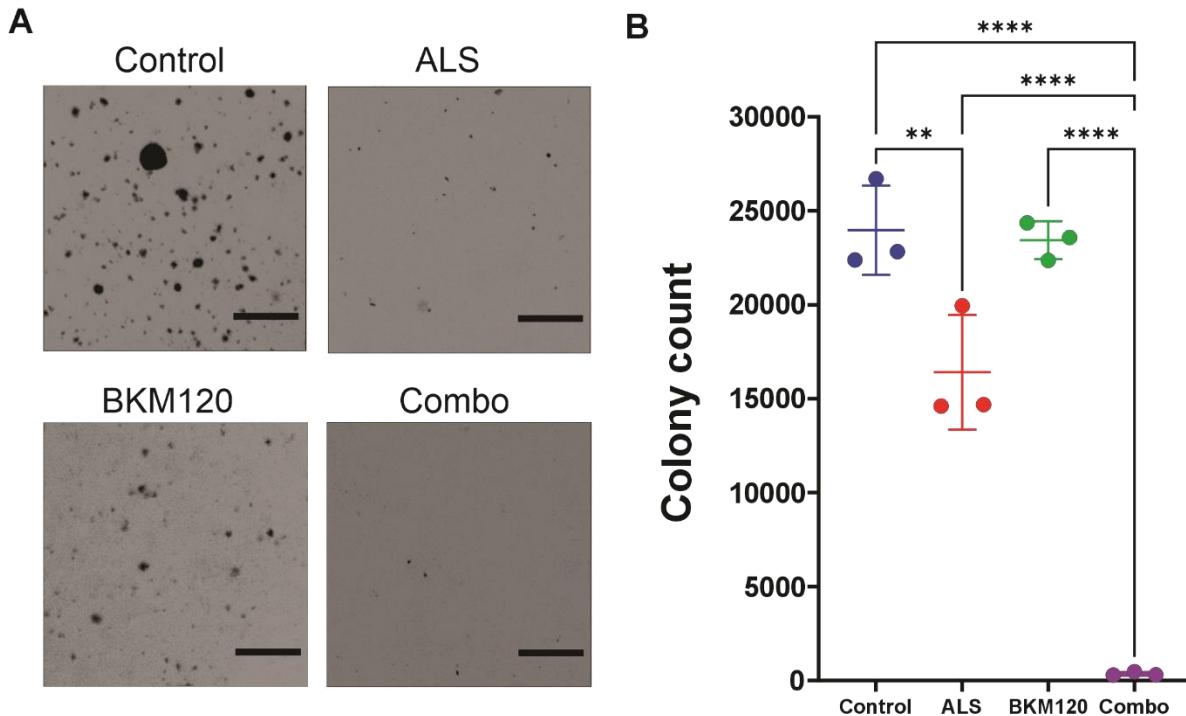
451 Papillary Thyroid Cancer. *J Biol Chem.* 2017;292(3):1112-21.

452 32. Yang Z, He J, Gao P, Niu Y, Zhang J, Wang L, et al. miR-769-5p suppressed cell

453 proliferation, migration and invasion by targeting TGFBR1 in non-small cell lung carcinoma.


454 *Oncotarget.* 2017;8(69):113558-70.

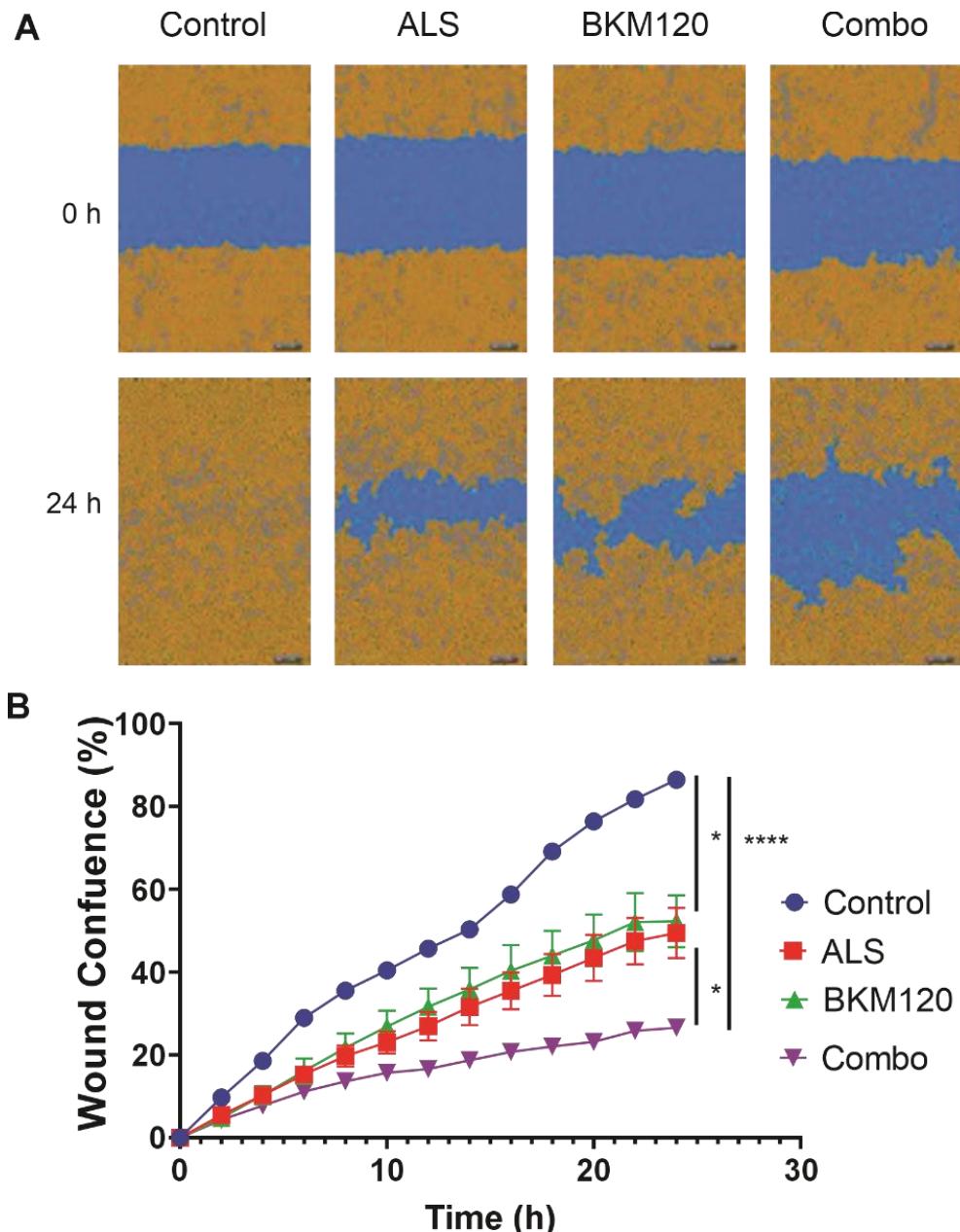
455


456

457 **Fig. 1** On-target effects of Alisertib and Buparlisib in SUM149 cells and cell cycle disruption by
458 Alisertib. **a** SUM-149 cells were treated with DMSO vehicle control, Alisertib (ALS, 5 μ M),
459 Buparlisib (BKM120, 5 μ M), and their combination (same doses) for 1 hour. Lysates were
460 subjected to immunoblotting with phospho-AKT (pAKT) or pan-AKT (AKT) antibodies. **b** Bar
461 graph shows the densitometry of the pAKT/AKT ratio using ImageJ with statistical analysis in
462 GraphPad Prism (mean \pm SEM for N=3 experiments; ** p<0.01 based on ANOVA with multiple
463 comparison testing). **c** Double thymidine blocked SUM-149 cells were released for 7 hours and
464 treated with DMSO vehicle control, Buparlisib (5 μ M), Alisertib (5 μ M), and their combination
465 (same doses). Lysates were subjected to immunoblotting with phospho-AURKA (pAURKA) or
466 pan-AURKA (AURKA) antibodies. **d** Bar graph shows the densitometry of the pAKT/AKT ratio
467 using ImageJ with statistical analysis in GraphPad Prism (mean \pm SEM for N=3 experiments). **e**
468 SUM-149 cells were treated with Buparlisib or Alisertib alone (5 μ M) or in combination (5 μ M
469 each) for 48 hours, and representative flow cytometry histograms are shown for Propidium
470 Iodide-stained, permeabilized cells (DNA content). **f** Graph depicts the percentage of cells in G2
471 phase of the cell cycle from 3 experiments (mean \pm SEM; ** p<0.01 or *** p<0.001 based on
472 ANOVA with multiple comparison testing).

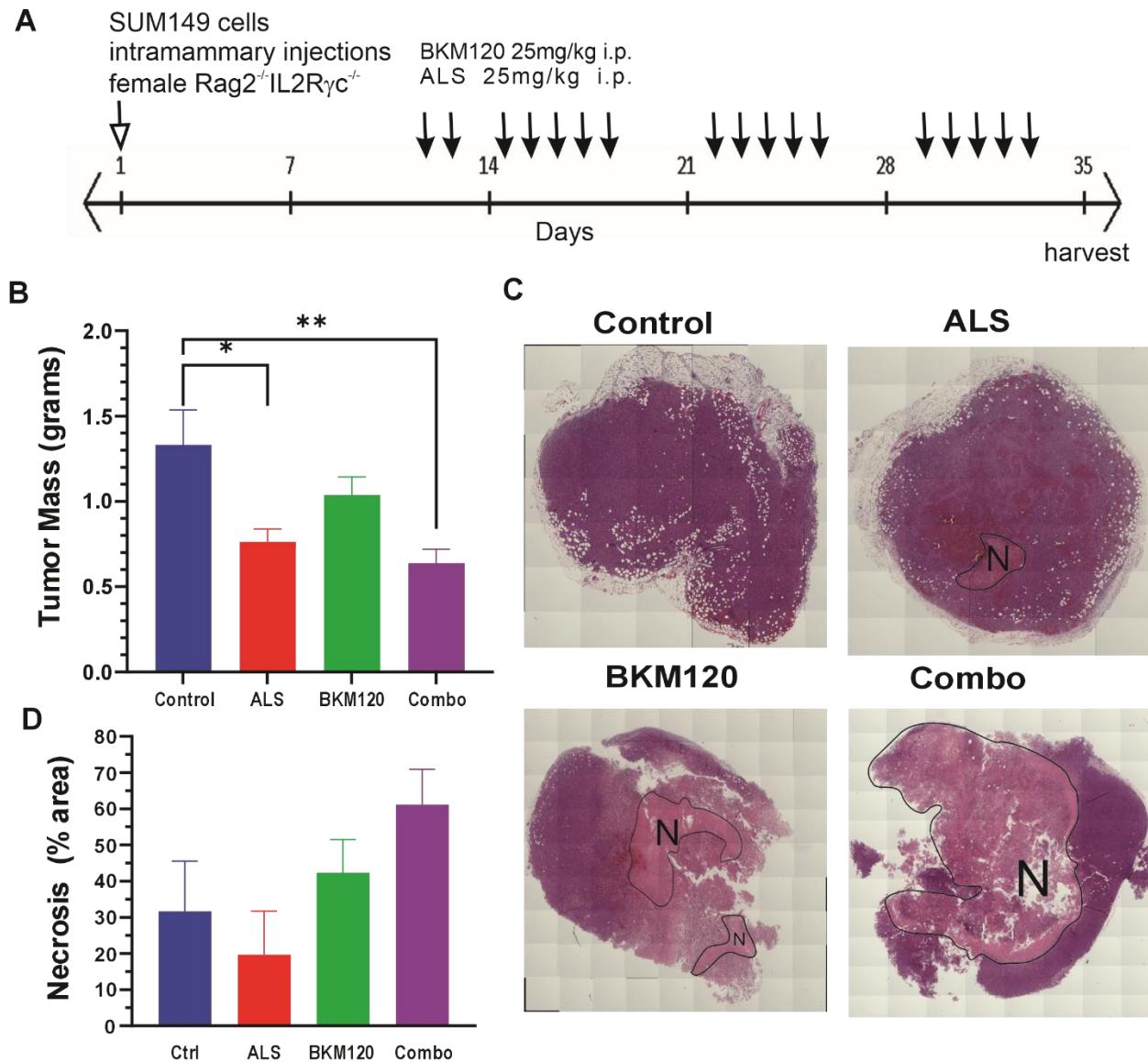
473
474
475
476
477
478
479
480
481
482
483
484
485

Fig. 2 Synergistic killing of IBC cells by combination treatments with Buparlisib and Alisertib. **a** Relative cell viability of SUM149 cells was determined using Alamar blue assays at 48 hours post treatments with either Buparlisib (10, 1, or 0.1 μM) or Alisertib (10, 1, and 0.1 μM), compared to vehicle control (shown as 0 on the x-axis; mean ± SEM). **b** Plot represents the Bliss synergy score for combinations of Alisertib (ALS) and Buparlisib (BKM120) at multiple doses (10, 1, or 0.1 μM) on cell viability determined using Alamar blue at 48 hours. **c** Bar graphs depict relative cell viability at 48 hours for particular doses of Alisertib and Buparlisib at 0.1 μM (A0.1/B0.1), 1 μM (A1/B1), and at a 10:1 ratio of Alisertib:Buparlisib (A10/B1) as measured by Alamar blue. The results were obtained from three independent experiments, each performed in triplicate. The data were analyzed using GraphPad Prism and SynergyFinder software (detailed in Methods; mean ± SEM; ** p<0.01 or *** p<0.001 or **** p<0.0001 based on ANOVA with multiple comparison testing).

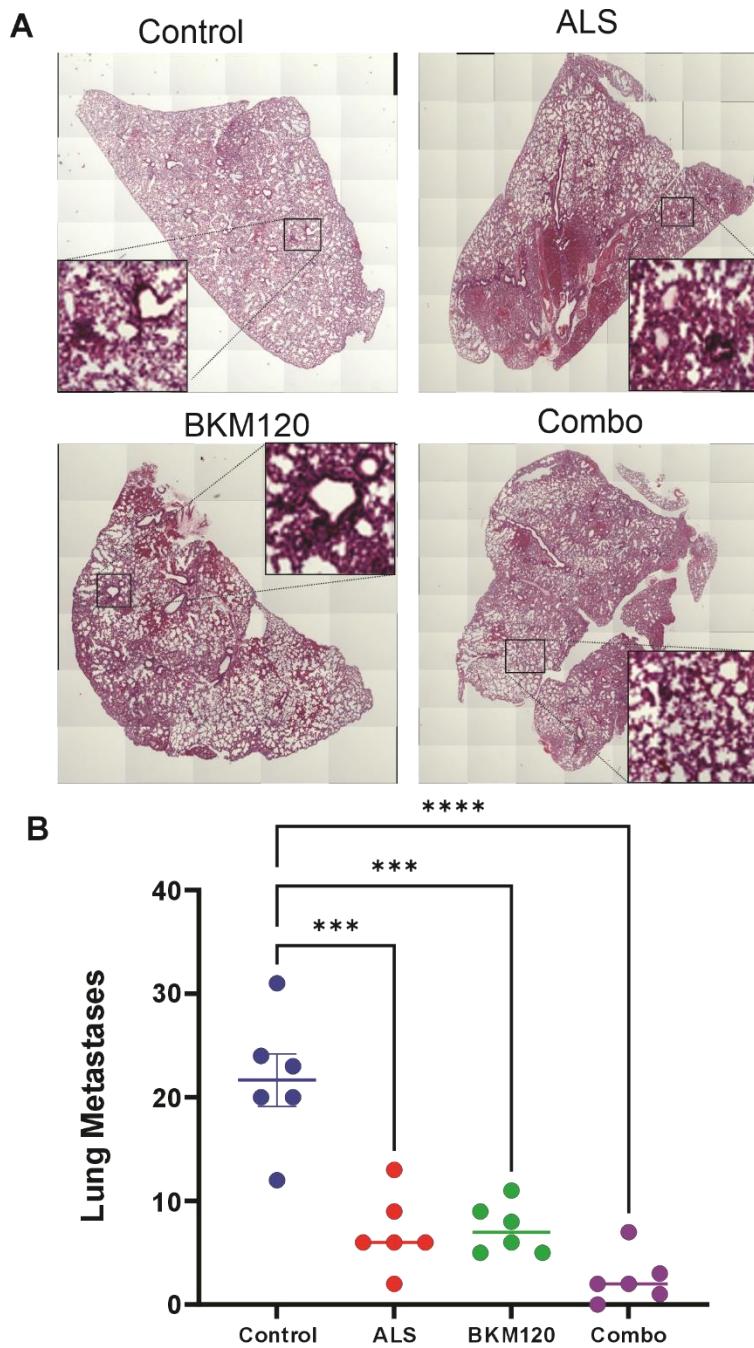


486

487 **Fig. 3** Synergistic effects of Buparlisib and Alisertib limiting anchorage-independent growth of
488 IBC cells. **a** SUM149 cells were subjected to soft agar colony assays in presence of vehicle control,
489 Alisertib (ALS, 5 μ M), Buparlisib (2.5 μ M), or the combination at preceding doses (combo) for 21
490 days with drugs added fresh every 2 days. Representative micrographs of crystal violet-stained
491 wells are shown (scale bar indicates 100 μ m). **b** Graph depicts the scoring of average colony
492 numbers per treatment group from 3 independent experiments (mean \pm SEM; ** p<0.01 or ****
493 p<0.0001 based on ANOVA with multiple comparison testing).


494

495


496

497 **Fig. 4** Alisertib and Buparlisib treatments reduce IBC cell motility. **a** SUM149 cell motility was
498 analyzed using scratch wound assays using an 96 well plate wound maker and Incucyte Zoom
499 system (Sartorius). Treatment groups included vehicle control, Alisertib (ALS, 0.5 μ M),
500 Buparlisib (BKM120, 0.5 μ M), or the combination at preceding doses over 24 hours.
501 Representative images are shown for time 0 and 24 hours of the wound area mask (blue) and cell
502 mask (yellow) for each treatment group. **b** The graph illustrates the increase in percent wound
503 confluence rates for each treatment group (mean \pm SEM; * p<0.05 or **** p<0.0001 based on
504 ANOVA with multiple comparison testing). The results are representative of 3 independent
505 experiments.

507 **Fig. 5** Buparlisib and Alisertib inhibit IBC tumor growth *in vivo*. **a** A timeline of the mammary
508 orthotopic SUM149 tumor xenograft assays using female $Rag2^{-/-}IL2R\gamma c^{-/-}$ mice. Mice were split
509 into four groups (6 mice per group) on day 12 and treated with vehicle control, Buparlisib
510 (BKM120, 25 mg/kg), Alisertib (ALS, 25 mg/kg), and combination treatment by intraperitoneal
511 injections on a 5 on and 2 off schedule. **b** Graph depicts tumor mass measured at endpoint (day
512 35, mean \pm SEM, * $p < 0.05$ or ** $p < 0.01$ based on ANOVA with multiple comparison testing). **c**
513 Representative images showing H&E-stained tumor tissue sections (black freehand shape depicts
514 areas of necrosis). **d** The graph depicts the percentage area of necrosis within tumor cross-sections
515 by treatment group (mean \pm SEM).

516

517

518 **Fig. 6** Reduced IBC lung metastasis in Buparlisib and Alisertib treated mice. **a** Representative
519 images showing H&E-stained lung tissue sections from each treatment group. The areas within
520 the black squares are shown at higher magnification insets for each treatments group. **b** Graph
521 depicts the average scoring of lung metastases for each animal in the mammary orthotopic IBC
522 xenograft model for each treatment group (mean \pm SEM, *** $p < 0.001$ or **** $p < 0.0001$ based on
523 ANOVA with multiple comparison testing).