

1 of 45

1 **Phylogenetic and functional analyses of *N*⁶-methyladenosine RNA methylation factors**
2 **in the wheat scab fungus *Fusarium graminearum***

3

4 Hyeonjae Kim^a, Jianzhong Hu^{b,*}, Hunseung Kang^b, and Wonyong Kim^{a,b}#

5

6 ^aKorean Lichen Research Institute, Sunchon National University, Suncheon, Jeonnam,
7 57922, South Korea

8 ^bDepartment of Applied Biology, College of Agriculture and Life Sciences, Chonnam

9 National University, Gwangju, 61186, South Korea

10

11 #Address correspondence to Wonyong Kim, wykim@scnu.ac.kr

12

13

14 Keywords: *N*⁶-methyladenosine, m⁶A RNA methylation, MT-A70, *MTA1*, *Fusarium*
15 *graminearum*

16

17 Running Title: m⁶A RNA methylation factors in fungi

18

19

20

21

22

23 **Abstract**

24 In eukaryotes, N^6 -methyladenosine (m^6A) RNA modification plays crucial roles in
25 governing the fate of RNA molecules and has been linked to various developmental
26 processes. However, the phyletic distribution and functions of genetic factors responsible
27 for m^6A modification remain largely unexplored in fungi. To get insights into evolution of
28 m^6A machineries, we reconstructed global phylogenies of potential m^6A writers, readers,
29 and erasers in fungi. Substantial copy number variations were observed, ranging from up to
30 five m^6A writers in early-diverging fungi to a single copy in the subphylum
31 Pezizomycotina, which primarily comprises filamentous fungi. To characterize m^6A factors
32 in a phytopathogenic fungus *Fusarium graminearum*, we generated knockout mutants
33 lacking potential m^6A factors including the sole m^6A writer *MTA1*. However, the resulting
34 knockouts did not exhibit any noticeable phenotypic changes during vegetative and sexual
35 growth stages. As obtaining a homozygous knockout lacking *MTA1* was likely hindered by
36 its essential role, we generated *MTA1*-overexpressing strains (*MTA1*-OE). The *MTA1*-OE5
37 strain showed delayed conidial germination and reduced hyphal branching, suggesting its
38 involvement during vegetative growth. Consistent with these findings, the expression levels
39 of *MTA1* and a potential m^6A reader *YTH1* were dramatically induced in germinating
40 conidia, followed by the expression of potential m^6A erasers at later vegetative stages.
41 Several genes including transcription factors, transporters and various enzymes were found
42 to be significantly up- and down-regulated in the *MTA1*-OE5 strain. Overall, our study
43 highlights the functional importance of the m^6A methylation during conidial germination in

3 of 45

44 *F. graminearum* and provides a foundation for future investigations into m⁶A modification
45 sites in filamentous fungi.

46

47 **Importance**

48 *N*⁶-methyladenosine (m⁶A) RNA methylation is a reversible posttranscriptional
49 modification that regulates RNA function and plays a crucial role in diverse developmental
50 processes. This study addresses the knowledge gap regarding phyletic distribution and
51 functions of m⁶A factors in fungi. The identification of copy number variations among fungal
52 groups enriches our knowledge regarding the evolution of m⁶A machinery in fungi.

53 Functional characterization of m⁶A factors in a phytopathogenic filamentous fungus
54 *Fusarium graminearum* provides insights into the essential role of the m⁶A writer *MTA1* in
55 conidial germination and hyphal branching. The observed effects of overexpressing *MTA1*
56 on fungal growth and gene expression patterns of m⁶A factors throughout the life cycle of *F.*
57 *graminearum* further underscore the importance of m⁶A modification in conidial
58 germination. Overall, this study significantly advances our understanding of m⁶A
59 modification in fungi, paving the way for future research into its roles in filamentous growth
60 and potential applications in disease control.

61

62

63

64

65 Introduction

66 Eukaryotic RNA undergoes over 100 chemical modifications that can impact RNA
67 processing and metabolism (1–3). These modifications include mRNA capping, mRNA
68 polyadenylation, RNA splicing, and RNA methylation (4). Among various RNA
69 methylation, N^6 -methyladenosine (m^6A) is characterized by the methylation of the sixth
70 nitrogen atom on adenosine within RNA. m^6A was first described in mammalian cells fifty
71 years ago, and is the most prevalent and abundant modification found in eukaryotic mRNA
72 (5, 6). This modification is reversible and regulated by a set of enzymes that function as
73 writers (methyltransferases), erasers (demethylases), and readers (RNA-binding proteins that
74 recognize m^6A) (7). Due to its reversible nature, m^6A modification serves as a rapid response
75 to environmental stress and regulates various processes including development, immune
76 reactions, and cancer progression in animals, fungi and plants (8–15).

77 m^6A RNA modification is estimated to occur in approximately 0.1–0.4% of adenosine
78 nucleotides found in mammalian mRNAs (16, 17). In mammals, the methyltransferase
79 complex responsible for m^6A methylation includes proteins, such as methyltransferase-like
80 protein 3 (METTL3), methyltransferase-like protein 14 (METTL14), and the
81 pre-mRNA-splicing regulator Wilms tumor 1-associated protein (WTAP) (18–20). METTL3
82 serves as the catalytic subunit, forming a heterodimer with its parologue, METTL14. WTAP
83 is a regulatory subunit whose function is to recruit the m^6A methyltransferase complex to the
84 target mRNA in nuclear speckles, and is believed to act as a bridge between the METTL3/
85 METTL14 heterodimer and accessory proteins (21). Among the accessory proteins,
86 virilizer-like methyltransferase-associated protein (VIRMA) is implicated in stabilizing the

87 methyltransferase complex, and plays a role in the selection of specific sites for the m⁶A
88 modification (22). YT521-B homology (YTH)-domain proteins are known as m⁶A readers
89 located in the cytoplasm that influence on translation of methylated mRNAs and their
90 subsequent degradation (23, 24). In humans, the YTH domain family 2 protein (YTHDF2) is
91 involved in controlling mRNA stability by specifically binding to m⁶A-modified mRNAs
92 and relocating them from ribosomes to processing bodies (25). Demethylation of m⁶A is
93 catalyzed by 2-oxoglutarate and iron-dependent [2OG-Fe(II)] dioxygenases AlkB-like
94 domain-containing proteins and the fat mass and obesity associated protein in mammals
95 (26, 27). These diverse m⁶A factors collectively contribute to m⁶A RNA modification,
96 playing a significant role in RNA metabolism and gene regulation.

97 In the budding yeast *Saccharomyces cerevisiae*, the m⁶A writer IME4 (Inducer of
98 meiosis 4) is homologous to human METTL3 that catalyzes m⁶A modification of specific
99 target RNAs involved in the initiation of sexual development and sporulation (28). *IME4* is
100 required for proper entry into sexual development and progression through meiotic divisions
101 in diploid cells, and is also known to regulate triacylglycerol metabolism, vacuolar
102 morphology and mitochondrial morphology in haploid cells (29, 30). A yeast two-hybrid
103 screening identified core components of the methyltransferase complex composed of two
104 catalytic factors IME4 and KAR4 (Karyogamy 4, orthologous to human METTL14), as well
105 as two non-catalytic factors MUM2 (Muddled meiosis 2, orthologous to human WTAP), and
106 SLZ1 (Sporulation leucine zipper 1 orthologous to human ZCH13H3) in the budding yeast
107 (31). Recent work revealed that an interacting protein with KAR4, Ygl036wp (thereafter,
108 coined VIR1), in the budding yeast shares a folding pattern similar to VIRMA, despite lack
109 of discernable protein domains (32, 33). In the budding yeast, SLZ1 enables the

110 methyltransferase complex comprising IME4, KAR4, MUM2 (WTAP), and VIR1 to
111 function in m⁶A deposition (33).

112 The genome of the budding yeast encodes a single YTH domain-containing protein,
113 PHO92 (Phosphate metabolism 92), that has been originally described to be involved in
114 phosphate metabolism and response (34, 35). Recently, it became clear that PHO92
115 recognizes m⁶A-modified transcripts, facilitates protein synthesis and subsequent decay of
116 m⁶A-modified transcripts, and promotes meiotic recombination (36, 37). In the fission yeast
117 *Schizosaccharomyces pombe*, an YTH domain-containing protein, Mmi1 (Meiotic mRNA
118 interception 1), was involved in selective elimination of meiosis-specific transcripts via
119 post-transcriptional gene silencing (38). However, Mmi1 lacks the ability to bind to the m⁶A
120 consensus motif, suggesting that the function of YTH domain-containing proteins are not
121 limited to m⁶A recognition and implicated in diverse cellular functions (39). Although m⁶A
122 writers and m⁶A readers have been studied in yeasts, to our best knowledge, m⁶A erasers
123 await its discovery in fungi.

124 *Fusarium graminearum* is a filamentous phytopathogenic fungus, causing devastating
125 diseases on our staple crops, such as wheat, barley and corn (40). The fungus has served as an
126 excellent model organism for investigating various biological aspects, including
127 host-pathogen interactions, sexual development, mycotoxin production, and RNA editing
128 (41–45). Recently, in the rice blast fungus *Magnaporthe oryzae*, MT-A70 domain protein 1
129 (MTA1, orthologous to human METTL4) was shown to play an important role in
130 appressorium formation during infection process via regulation of autophagy process (46,
131 47). However, the roles of the m⁶A factors are poorly understood in *F. graminearum* and
132 other filamentous fungi. Thus, the aims of this study were to (i) investigate phyletic
133 distribution and copy number variations of m⁶A factors in the kingdom Fungi, (ii)
134 functionally characterize putative m⁶A factors in *F. graminearum*, and (iii) identify

135 potential targets of the m⁶A writer MTA1, which is the sole m⁶A writer found in the
136 Pezizomycotina.

137

138 **Results**

139 **Divergence of m⁶A writers in the kingdom Fungi**

140 To resolve phylogenetic relationships of genes encoding an MT-A70 protein domain
141 (Pfam domain: PF05063), we collected 1,568 protein sequences from the UniProt database
142 (accessed on May 21, 2023; <https://www.uniprot.org/>) and curated the list of
143 MT-A70-containing proteins, excluding redundant entries or sequences with an *E*-value of
144 smaller than 10⁻⁵ for PF05063 (see Materials and Methods). Following the manual curation,
145 a maximum likelihood tree was reconstructed for 1,116 protein sequences containing an
146 MT-A70 domain in 829 diverse fungal species. This tree revealed the presence of three
147 distinct clades, each including the three previously characterized m⁶A writers in fungi:
148 IME4, KAR4, and MTA1 (Fig. 1A). Within the IME4 and KAR4 clades, there was a
149 branch exhibiting an early divergence, which exclusively consists of sequences derived
150 from early-diverging fungi, such as species belonging to the phyla Chytridiomycota,
151 Mucromycota, and Zoopagomycota (see clades labelled with red asterisks in Fig. 1A).
152 Significantly distinct patterns were observed in the phyletic distribution of
153 MT-A70-containing proteins among different taxonomic groups in fungi (Fig. 1B). Notably,
154 many early-diverging fungi and certain species within the Pucciniomycotina subphylum
155 were found to possess more than two MT-A70-containing proteins. The Basidiomycota
156 species (mushroom-forming fungi) and Saccharomycotina species (budding yeasts),
157 typically had one or two MT-A70-containing proteins, whereas nearly all of the

158 Pezizomycotina species that are comprised of entirely of filamentous fungi were found to
159 possess a single MT-A70-containing protein.

160 Independently reconstructed maximum likelihood trees were generated for the IME4,
161 KAR4, and MTA1 clades including their respective homologs of METTL3, METTL14, and
162 METTL4, which were found in humans (*Homo sapiens*), mouse (*Mus musculus*), zebrafish
163 (*Danio rerio*), fruit fly (*Drosophila melanogaster*), and a model plant (*Arabidopsis thaliana*)
164 serving as an outgroup (Figs. 1C, 1D, and 1E; see Supplementary Fig. S1 for bootstrap
165 values and protein IDs). The phylogenetic patterns of the IME4 and KAR4 clades exhibited
166 resemblance, encompassing early-diverging fungi and species from Basidiomycota and
167 Saccharomycotina. Among species possessing either IME4 (294 species) or KAR4 (286
168 species), three quarters of the species (221 species) had both m⁶A writers (Supplementary
169 Table S1). As previously mentioned, certain early-diverging fungi exhibited the presence of
170 two copies of IME4 and KAR4. One of these copies appears to have undergone divergence
171 before the emergence of Dikarya (commonly known as “higher fungi”), forming distinct
172 clades with robust 100% bootstrap support (Fig. 1F; Supplementary Fig. S1). The
173 phylogeny of MTA1 exhibited significant monophyly and demonstrated topological
174 congruence with the species phylogeny of Pezizomycotina (Fig. 1E). While species
175 belonging to Pezizomycotina possessed MTA1 as a sole MT-A70-containing protein, many
176 early diverging fungi and species from Pucciniomycotina exhibited the presence of three
177 m⁶A writers, IME4, KAR4, and MTA1 (Fig. 1F).

178 Recent studies revealed the components of yeast m⁶A methyltransferase complexes
179 were highly conserved with those found in mammals, insects, and plants, including IME4,
180 KAR4, MUM2 (a homolog of WTAP), and VIR1 (32, 33). Thus, we conducted a search in
181 the UniProt database for relevant Pfam domains, specifically PF17098 for the
182 WTAP/Mum2p family and PF15912 for the N-terminal domain of *virilizer* (hereafter

183 coined VIRN). We identified 172 and 53 fungal proteins that harbor PF17098 for WTAP
184 and PF15912 for VIRN, respectively, in the current UniProt database (accessed on June 4,
185 2023; Supplementary Table S1). After manual curation, we reconstructed phylogenetic
186 trees for WTAP and VIRN, together with homologs found in humans, mouse, zebrafish,
187 fruit fly, and *Arabidopsis thaliana* as an outgroup. WTAP orthologs including Mum2 in
188 yeasts were found only in early-diverging fungi and species from Basidiomycota, and
189 Saccharomycotina, lacking in Pezizomycotina species (Supplementary Fig. S1). Only 37
190 fungal species that belong to early-diverging fungi and Basidiomycota were shown to have
191 genes encoding a VIRN domain (Supplementary Fig. S1). The paucity of homologous
192 sequences in fungi may be attributable to the fact that WTAP and VIRN sequences have
193 diverged significantly from the known sequences, making their identification challenging
194 especially in Ascomycetous fungi, such as Saccharomycotina and Pezizomycotina. Indeed,
195 a homolog of the virilizer protein, VIR1, was recently found in the budding yeast, which
196 lacks the apparent Pfam domain for VIRN, but it exhibits a 3D structure similar to the
197 human homolog VIRMA (32).

198 **Identification of putative m⁶A reader and eraser in Fungi**

199 Among RNA-binding proteins specifically recognizing and binding to m⁶A, the best
200 studied readers are YTH domain-containing proteins. PHO92 was found as the only protein
201 containing the YTH domain in the budding yeast, while animals can have up to five such
202 proteins and plants can have more than 10. A recent study revealed target transcripts of
203 PHO92 and its important roles during meiosis in the budding yeast (37). However, little is
204 known about m⁶A readers in other fungal taxa. Therefore, we searched for proteins
205 containing an YTH domain (PF04146) in the UniProt database (accessed on May 21, 2023)
206 and found 2,029 fungal sequences. To shorten the list of potential m⁶A readers, entries with
207 irrelevant protein names (e.g. DNA repair protein RAD51) were excluded, and protein

10 of 45

208 sequences below 300 or above 1,000 amino acids in length were filtered out. After manual
209 curation, we reconstructed a phylogenetic tree for the final list of 868 YTH
210 domain-containing proteins in 695 diverse fungal species (Fig. 2A; see Supplementary Fig.
211 S1 for bootstrap values and protein IDs). The tree was rooted to YTH domain-containing
212 proteins outside of fungi, including human YTHDF2. The tree was composed of three main
213 clades that were strongly supported by high bootstrap values. One clade contained PHO92
214 homologs from species belonging to Saccharomycotina and Basidiomycota, as well as YTH
215 domain-containing proteins found in mammals, an insect, and a plant. Another clade
216 exclusively comprised species from Pezizomycotina and was placed sister to the PHO92
217 clade. The third clade, here dubbed YTH1, consisted of early-diverging fungi and species
218 from Basidiomycota and Ascomycota, displaying a topology that largely matched the
219 species phylogeny. Approximately half of the Agaricomycotina species (67 out of 128) and
220 one fifth of the Pezizomycotina species (98 out of 498) examined in this study were found
221 to possess both PHO92 and YTH1, while early-diverging fungi and species belonging to
222 Pucciniomycotina, Ustilaginomycotina, and Wallemiomycotina, were found to have only
223 PHO92 (Figs. 2B and 2C). While the majority of species belonging to Saccharomycotina
224 (30 out of 37) were found to possess PHO92, there were several species including *Yarrowia*
225 *lipolytica* (a lipid-producing yeast) that lacked PHO92 and instead exhibited the presence of
226 YTH1 (Fig. 2C; Supplementary Table S1).

227 2OG-Fe[II] dioxygenase AlkB-like domain-containing proteins were known to play
228 roles as m⁶A erasers by removing the methyl group from m⁶A in mammals and plants (26,
229 48–50). However, there has been no information on AlkB homologs (ALKBHs) in fungi.
230 Thus, we searched for protein sequences containing a 2OG-Fe(II) dioxygenase superfamily
231 domain in the genome of *F. graminearum* strain PH-1. We identified five genes harboring a
232 2OG-Fe(II) dioxygenase domain (PF13532) with an *E*-value of smaller than 10⁻¹⁰ (gene ID:

11 of 45

233 FGRRES_01255, FGRRES_09872, FGRRES_16456, FGRRES_16652, and
234 FGRRES_20373) (Table 1). 2OG-Fe(II) dioxygenases are involved in diverse cellular
235 processes, such as demethylation of DNA/RNA and modification of histone proteins, as
236 well as secondary metabolite production. To get insights into evolutionary relationships of
237 different types of ALKBH, we reconstructed a phylogenetic tree of ALKBH proteins found
238 in 27 selected fungi, including several functionally characterized ALKBH proteins in
239 humans and Arabidopsis (Fig. 3). Early-diverging fungi, such as *Basidiobolus*
240 *meristosporus* and *Spizellomyces punctatus*, possessed 10 and 9 2OG-Fe(II) dioxygenases,
241 whereas yeasts that belong to Saccharomycotina tend to have only one or two
242 (Supplementary Table S2). ALKBH2 (FGRRES_09872), ALKBH3 (FGRRES_16456), and
243 ALKBH4 (FGRRES_01255) were closely-related to human ALKBH3 and Arabidopsis
244 ALKBH2, which are responsible for repairing DNA damage caused by alkylation (51, 52).
245 ALKBH5 (FGRRES_20373) was placed sister to the clade containing human ALKBH6,
246 which plays a role in DNA repair (53, 54). ALKBH1 (FGRRES_16652) formed a
247 well-supported clade with human and Arabidopsis ALKBH1s, known for their versatile
248 functions in removing methyl groups from DNA/RNA, as well as modifying histone H2A
249 (55–57). It was shown that human ALKBH5 and Arabidopsis ALKBH9B and ALKBH10B
250 demethylate m⁶A (48, 58–60). These m⁶A erasers in mammals and plants formed a clade
251 ancestral to clades including ALKBH1 and ALKBH5 in *F. graminearum* (Fig. 3).

252 **Functional characterization of putative m⁶A factors in *F. graminearum***

253 In order to examine the functions of m⁶A factors in *F. graminearum* during sexual
254 development, we conducted a search for Pfam domains associated with m⁶A writer, reader,
255 and eraser, and discovered several potential m⁶A factors (Table 1). Among them, *F.*
256 *graminearum* possessed genes homologous to *MTA1* and *YTH1*, along with the previously
257 mentioned five *ALKBHs*. Additionally, we identified two genes that encoded hypothetical

258 proteins harboring PF17098 for WTAP and PF15912 for VIRN, respectively, with *E*-values
259 of greater than 10^{-5} (Table 1). Despite the low sequence similarity to *WTAP* and *VIRN*
260 found in fungi, we included these potential m⁶A writers in the knockout study because their
261 expression levels were observed to increase during sexual development (see Fig. 6 in the
262 section “Roles of MTA1 in conidial germination and hyphal growth”). We individually
263 deleted m⁶A factors in *F. graminearum* strain PH-1 (wild-type, WT). The authenticity of
264 the resulting knockout mutants were verified by diagnostic PCRs (Fig. 4A). The knockouts
265 displayed normal growth and produced perithecia, which are characterized by their dark
266 purple coloration and flask-shaped or spherical structures (Fig. 4B). Morphologies of
267 ascospores (the products of meiosis) enveloped in sac-like structures called asci were also
268 normal in the knockouts, indicating that m⁶A factors did not affect sexual development in *F.*
269 *graminearum* (Supplementary Fig. S2).

270 Since m⁶A writer, *IME4*, in the budding yeast plays a crucial role in initiating sexual
271 development, we carefully examined the genotype of $\Delta mta1$. Although genotyping
272 confirmed the deletion of *MTA1* in $\Delta mta1$, we were intrigued to find that a PCR band
273 specific to *MTA1* could still be amplified from $\Delta mta1$. This suggested that $\Delta mta1$ is
274 heterokaryotic, indicating that it still contains one or more “wild-type” nuclei. To obtain
275 homokaryons, we performed additional single spore isolations, using $\Delta mta1$, and examined
276 10 single-spored isolates derived from $\Delta mta1$. Diagnostic PCR analysis confirmed the
277 deletion of *MTA1* in all 10 isolates, yet a fragment of *MTA1* was still amplified from these
278 isolates (Supplementary Fig. S3). The expression levels of *MTA1* were markedly reduced in
279 $\Delta mta1$, suggesting a lower abundance of wild-type nuclei compared to the WT (Fig. 4C).
280 This observation was further supported by RNA-seq analysis. When examining the mapped
281 reads on the *MTA1* locus in both WT and $\Delta mta1$, we found a decrease in the number of
282 reads mapped to the *MTA1* locus in $\Delta mta1$ compared to the WT (Supplementary Fig. S3).
283 The presence of RNA-seq reads mapping to the *MTA1* locus, which should have been

13 of 45

284 absent in homokaryotic $\Delta mta1$, served as additional proof for the heterokaryotic nature of
285 $\Delta mta1$ and indicated that $\Delta mta1$ is, in fact, a knockdown strain. Consequently, we will refer
286 to $\Delta mta1$ as the *MTA1*-KD1 strain hereafter.

287

288 **MTA1 as an m⁶A writer in *F. graminearum***

289 Extensive efforts were unsuccessful to obtain knockouts completely lacking *MTA1*
290 (Supplementary Fig. S3), presumably due to its indispensable role in *F. graminearum*. To
291 get better insight into the roles of m⁶A RNA methylation in *F. graminearum*, we generated
292 strains overexpressing *MTA1*. RT-PCR analysis confirmed that two strains, *MTA1*-OE4 and
293 *MTA1*-OE5, exhibited overexpression of *MTA1* (Fig. 5A). It was notable that *MTA1* was
294 overexpressed to a greater extent in the *MTA1*-OE5 strain, compared to *MTA1*-OE4. Both
295 semi-quantitative RT-PCR and RNA-seq analyses indicated that the expression level of the
296 *MTA1*-OE5 strain was approximately 100 times greater than that of the WT
297 (Supplementary Fig. S4). The WT and *MTA1*-OE4 strains produced normal asci containing
298 mature ascospores six days after the induction of sexual development, while it was not until
299 11 days after the induction that the *MTA1*-OE5 strain produced fully developed asci (Fig.
300 5B). The difference in the observed phenotypes in the two *MTA1*-overexpressing strains
301 could likely be attributable to the variation in the degrees of *MTA1* expression, and thus the
302 *MTA1*-OE5 strain which displayed substantial overexpression of *MTA1* was used for
303 further analysis and investigation. To determine whether MTA1 is required for m⁶A RNA
304 methylation in *F. graminearum*, we compared total m⁶A RNA methylation levels between
305 the WT and *MTA1*-OE5 strain. The amount of m⁶A RNA in WT was $0.075 \pm 0.015\%$ of the
306 total RNA, which was approximately half of that in the *MTA1*-OE5 strain ($0.152 + 0.033\%$
307 of the total RNA), which indicated that the m⁶A RNA methylation level was significantly
308 increased in the *MTA1*-OE5 strain compared to the WT (Fig. 5C).

309 **Roles of *MTA1* in conidial germination and hyphal growth**

310 In previous studies, we obtained transcriptome data for conidial germination on Bird
311 agar medium (61), as well as for perithecial development on Carrot agar medium (62). By
312 integrating these datasets with the RNA-seq data obtained in the present study
313 (freshly-harvested conidia), we conducted a comprehensive analysis of expression level
314 changes in m⁶A factors throughout the life cycle of *F. graminearum*, encompassing various
315 stages of vegetative growth and perithecial development (Fig. 6A). The m⁶A writer *MTA1*
316 and a potential m⁶A reader *YTH1* demonstrated a synchronized expression pattern, as
317 indicated by a high Pearson correlation coefficient of 0.94. Their expression levels
318 exhibited a significant increase during stage 1 (S1, 15 minutes after incubation of conidia
319 on Bird agar medium), followed by a decline during hyphal growth (S2 and S3), and
320 remained at a basal level during perithecial development (S4–S9). Interestingly, the
321 expression levels of *ALKBH1* and *ALKBH5*, the two most probable m⁶A erasers in *F.*
322 *graminearum*, reached their peak at stage 2 (S2, 3 h after incubation), at which conidia
323 germinated and hyphae started to extend (Supplementary Fig. S5). During active hyphal
324 growth at stage 3 (S3, 11 h after incubation), the major components of fungal cytoskeleton,
325 actin (FGRRES_07735) α -tubulin (FGRRES_00639), and β -tubulin (FGRRES_09530) that
326 play a crucial role in polarity establishment, maintenance and polar growth, displayed the
327 greatest induction during the life cycle of *F. graminearum*.

328 Taking into account the expression profile, we proceeded to investigate the phenotypic
329 characteristics of the *MTA1*-OE5 strain during conidial germination and hyphal growth. In
330 contrast to the WT, the hyphal tips did not exhibit elongation in an overnight culture of the
331 *MTA1*-OE5 strain cultivated in quarter-strength potato dextrose broth (q-PDB) medium
332 (Fig. 6B). Furthermore, in the *MTA1*-OE5 strain growing on potato dextrose agar (PDA)
333 medium, the hyphae at the leading edge displayed a tendency to have fewer branches

15 of 45

334 compared to the WT (Supplementary Fig. S6). Next, we conducted measurements of the
335 total biomass of the WT and *MTA1*-OE5 strains cultured in q-PDB medium for a duration
336 of 8 days. The *MTA1*-OE5 strain exhibited a slower growth rate compared to the WT,
337 particularly during the initial two days of cultivation (Fig. 6C). To investigate genes
338 responsible for the delayed conidial germination observed in the *MTA1*-OE5 strain, we
339 performed differential gene expression analyses between the WT, *MTA1*-KD1, and
340 *MTA1*-OE5 strains, using RNA-seq data obtained from freshly harvested conidia (stage 0,
341 S0). In this analysis, we identified a total of 20 differentially-expressed (DE) genes ($|\log_2$
342 fold-change| > 2), when comparing the WT and *MTA1*-OE5 strains, as well as 21 DE genes
343 when comparing the *MTA1*-KD1 and *MTA1*-OE5 strains (Fig. 6D). Notably, 16 genes were
344 found to be commonly differentially expressed in both comparisons, including *MTA1*.
345 There was no DE genes observed between the WT and *MTA1*-KD1 strains (Supplementary
346 Fig. S7). Among the DE genes, we found that 17 genes were transcriptionally upregulated,
347 and 8 genes were downregulated in the *MTA1*-OE5 strain (Table 2). The DE genes included
348 9 genes encoding hypothetical proteins without any predicted protein domain and 16
349 functionally annotated genes encoding two transcription factors, two transporters, and
350 diverse enzymes.

351

352 **Discussion**

353 **Roles of m⁶A writer in filamentous fungi**

354 In the phylum Ascomycota, the biological functions of m⁶A writers in budding yeasts
355 (Saccharomycotina) and filamentous fungi (Pezizomycotina) may have evolved
356 independently. Species belonging to the Pezizomycotina possess only single m⁶A writer
357 *MTA1*, a homolog of *METTL4*, while species belonging to the Saccharomycotina have two
358 m⁶A writers, *IME4* and *KAR4* that are homologs of *METTL3* and *METTL14*, respectively.

Kim et al. 2023

359 In the budding yeast, *IME4* and *KAR4* are crucial for initiation of meiosis for the ascospore
360 formation (29, 63). However, the m⁶A writer *MTA1* is dispensable for perithecial
361 development and ascospore production in filamentous fungi, *F. graminearum* and *M.*
362 *oryzae* (46). The relative abundance of m⁶A in *M. oryzae* (0.069 ± 0.003%) was
363 comparable to that in *F. graminearum* (0.075 ± 0.015%) (47), suggesting that the degree of
364 m⁶A levels of total mRNA is similar in these two filamentous fungi. In the rice blast fungus
365 *M. oryzae*, a knockout strain lacking *MTA1* showed a defect in appressorium formation
366 during the infection process on epidermal cells of rice (47). Expression levels of
367 autophagy-related genes in *M. oryzae* were changed according to the degree of m⁶A level,
368 which is important for normal appressorium formation. Although the homozygous $\Delta mta1$
369 strain in *M. oryzae* was viable, our extensive efforts to obtain homozygous $\Delta mta1$ was
370 unsuccessful in *F. graminearum*, suggesting its essential role. Given the significant impact
371 on conidial germination and hyphal growth observed in the *MTA1*-overexpressing strain in
372 *F. graminearum*, the role of *MTA1* appears to have diverged in the two plant pathogenic
373 fungi.

374 Most importantly, *F. graminearum* does not form appressoria and utilizes distinct
375 strategies to penetrate epidermal cells of the host plants. Both *F. graminearum* and *M.*
376 *oryzae* belong to the Sordariomycetes, but fall into different orders, Hypocreales and
377 Magnaportheales, respectively (64). RNA-seq analyses indicated significant divergence in
378 gene expression including autophagy-related genes during conidial germination and
379 infection processes between *F. graminearum* and *M. oryzae* (61). Although we did not
380 assess the virulence of the *MTA1*-OE5 strain due to their abnormal growth phenotype, it is
381 most likely that the *MTA1*-OE5 strain would exhibit reduced virulence on host plants,
382 compared to the WT. The m⁶A writers *IME4* and *KAR4* were crucial for the initiation of
383 sexual cycle and formation of ascospores in the budding yeast. However, the m⁶A writers
384 *MTA1* does not appear to be responsible for perithecial development and ascospore

17 of 45

385 production in *F. graminearum* and *M. oryzae*. Although the *MTA1*-OE5 strain exhibited
386 delayed perithecial development, it produced normal ascospores. In the Pezizomycotina,
387 A-to-I RNA editing, one of the eukaryotic RNA modifications, is crucial for sexual
388 development and ascospore formation (43–45, 65–67).

389 **Evolutionary perspectives of m⁶A factors in fungi**

390 Several ancestral traits observed in early-diverging fungi are shared with metazoans or
391 unicellular opisthokonts, which have been subjected to extensive parallel loss across the
392 Dikarya lineages (68, 69). As with metazoans, many species of early-diverging fungi and
393 the Pucciniomycotina (the earliest-diverging subphylum within Basidiomycota) possess all
394 three m⁶A writers, IME4, MTA1, and KAR4. These suggested that budding yeasts
395 (Saccharomycotina) may have lost the m⁶A writer MTA1. Conversely, species belonging to
396 Pezizomycotina, which entirely consist of filamentous fungi, may have lost the m⁶A writers
397 IME4 and KAR4. The phyletic distribution of m⁶A writers in fungi suggested that
398 Pezizomycotina species including *F. graminearum* and *M. oryzae* have likely embraced
399 m⁶A machineries, such as *MTA1*, as a means to regulate filamentous growth and facilitate
400 host penetration. This adoption of m⁶A machinery may have played a crucial role in the
401 development and maintenance of the filamentous morphology that is characteristic of these
402 fungi, allowing them to effectively colonize and interact with their respective hosts.

403 In contrast to well-characterized yeast m⁶A methyltransferase complexes including
404 *IME4* and *KAR4* m⁶A writers, our understanding of m⁶A machineries in filamentous fungi
405 is still limited. Despite our functional characterization of potential *WTAP* and *VIR1*
406 homologs in *F. graminearum*, it is unlikely that these represent the genuine homologs. This
407 is because the homologs of *WTAP/MUM2* and *VIR1* are missing in species within all the
408 Pezizomycotina species. The failure to identify homologs of *WTAP* and *VIR1* in our study
409 is likely due to significant sequence divergence of these m⁶A factors within the

410 Pezizomycotina. The sequence differences might have hindered their detection using
411 conventional homology search methods, indicating that these m⁶A factors in
412 Pezizomycotina may have undergone substantial changes in the primary amino acid
413 sequences. Until recently, the existence and function of *VIR1* in the budding yeast had
414 remained unknown, but through the application of protein folding prediction tools, its
415 identity was revealed (32). Recent advancements in protein 3D structure prediction tools to
416 uncover hidden homologs (70, 71) hold promise for identifying homologous members of
417 the m⁶A methyltransferase complexes in Pezizomycotina species. Alternatively, it is
418 possible that components of m⁶A machineries associated with MTA1 are completely
419 distinct from those found in the yeast m⁶A methyltransferase complexe associated with
420 IME4 and KAR4. In this case, it will be necessary to identify components that interact with
421 MTA1 via co-immunoprecipitation.

422 In addition, it is worth to mention that, considering the number of putative m⁶A writers
423 and m⁶A eraser found in early-diverging fungi and species from the Pucciniomycotina (up
424 to five m⁶A writers in a species), not many m⁶A readers containing an YTH domain were
425 identified, suggesting that there may be different types of RNA-binding proteins that
426 recognize m⁶A modification. It would be interesting to study possibly divergent roles of
427 m⁶A factors in these relatively understudied fungal taxa.

428 **Expression levels of m⁶A factors throughout the life cycle of *F. graminearum***

429 The levels of *MTA1* and *YTH1* expression were significantly elevated at 15 minutes
430 after placing conidia on Bird medium (S1) and then decreased sharply to a basal level
431 during polar growth and hyphal branching (S2–S3). These findings suggest that the
432 potential m⁶A writer and m⁶A reader likely have a role during the initial stage of conidial
433 germination. In line with this hypothesis, we observed slower conidial germination and less
434 hyphal branching in the *MTA1*-OE5 strain. Although m⁶A demethylase activities of *ALKBH*

19 of 45

435 genes have never been confirmed in fungi, the three putative m⁶A erasers, *ALKBH1*,
436 *ALKBH4*, and *ALKBH5*, were induced during polar growth (S2) or hyphal branching (S3).
437 These possible m⁶A erasers might be involved in maintaining low m⁶A levels during active
438 vegetative growth. The significant increase in expression of actin and tubulin genes at S2–
439 S3 reflected extensive hyphal growth and branching. Specifically, the expression level of
440 *ALKBH4* reached its peak at S0 (fresh conidia), but experienced a sharp decline at S1 (the
441 initial stage of conidial germination). However, it was gradually induced during polar
442 growth and hyphal branching stages (S2–S3), exhibiting an opposite expression pattern
443 compared to *MTA1* and *YTH1*. Although we did not observe any phenotypic changes in the
444 knockout mutant lacking *ALKBH1*, it would be possible that other *ALKBH* genes may be
445 involved in the regulation of conidial germination and hyphal growth by maintaining low
446 m⁶A level in *F. graminearum*. Among the five putative m⁶A erasers, *ALKBH2* showed
447 dramatic increase in expression during the ascospore formation. These expression dynamics
448 of m⁶A factors highlight the complex regulation and involvement of m⁶A factors
449 throughout different stages of the *F. graminearum* life cycle.

450 **Concluding remarks**

451 The largest subphylum Pezizomycotina in fungi underscores their importance and their
452 complex interactions with humans, encompassing a wide range of fungi that have
453 significant influences on humans, both negative and positive. Examples include the
454 opportunistic human pathogen *Aspergillus fumigatus* and the dermatophyte *Trichophyton*
455 *rubrum*, as well as many plant pathogenic fungi causing serious diseases on our staple
456 crops, such as *F. graminearum* and *M. oryzae*. The Pezizomycotina also includes several
457 ecologically significant species, encompassing those that play crucial roles in wood and
458 litter decay processes, as well as those that form symbiotic associations with other
459 organisms, including lichens. In filamentous fungi, the m⁶A writer *MTA1* appears to have

20 of 45

460 evolved to have important roles in adapting to diverse ecological niches, particularly in
461 relation to filamentous growth. To identify target genes of *MTA1* that caused delayed
462 conidial germination and slower hyphal growth in the *MTA1*-OE5 strain, we are under
463 investigation for potential m⁶A sites in transcripts, using an Oxford Nanopore direct RNA
464 sequencing technology.

465

466 **Materials and methods**

467 **Phylogenetic analyses of m⁶A factors in fungi**

468 We downloaded protein sequences from the UniProt database
469 (<https://www.uniprot.org/>) that possessed pfam domains associated with m⁶A factors. These
470 domains include PF05063 (MT-A70), PF04146 (YTH), PF13532 (ALKB), PF17098
471 (WTAP/MUM2), and PF15912 (Virilizer, N-terminal). However, the initial lists of potential
472 m⁶A factors contained duplications and likely misannotated sequences. To address this issue,
473 we conducted a manual inspection of the lists, excluding sequences that were either too short
474 or too long, as well as sequences with small *E* -values, applying specific thresholds (e.g. *E*
475 -value > 10-5). Whenever a sequence was removed from the lists, we also eliminated all
476 entries from the corresponding species to ensure an accurate estimation of the number of m⁶A
477 factors per species. The sequences for each pfam domain were aligned using MAFFT
478 (v7.310) with the ‘auto’ setting (72). Poorly aligned regions of the resulting multiple
479 sequence alignment were trimmed, using the Trimal program, with the parameter setting ‘–
480 gappyout’ (73). To determine the best protein substitution model for each pfam domain, we
481 used a perl script that can be found in the following website
482 (<https://github.com/stamatak/standard-RAXML/blob/master/usefulScripts/ProteinModelSelection.pl>). We selected protein substitution models GAMMALG for m⁶A writers,
483 GAMMAJTF for m⁶A readers, GAMMALGF for ALKBHs and VIRN, and GAMMAJTT
484 Kim et al. 2023

21 of 45

485 for WTAP. Maximum likelihood trees were constructed using the RAxML program (v8.2)
486 (74). Outgroup was set to the homologue of m⁶A factors in *Arabidopsis thaliana* and nodal
487 supports were evaluated by 1,000 bootstrap replications.

488 **Genetic transformation for gene deletion and overexpression**

489 To generate gene deletion mutants in *F. graminearum* PH-1 strain, we employed a split
490 marker strategy (75). This involved amplifying the left and right flanking regions of the
491 target genes and combining them with a minimal gene cassette that carried the hygromycin
492 phosphotransferase (*HPH*) gene under the control of the *trpC* promoter from *Aspergillus*
493 *nidulans*. To achieve this, we conducted fusion PCR, following the previously described
494 method (76), and the specific primers used for targeted gene deletion can be found in
495 Supplementary Table S3. In brief, we amplified the left and right flanking regions of the
496 target genes separately, using L5 and L3 primer pairs and R5 and R3 primer pairs,
497 respectively. The L3 and R5 primers contained 27-nucleotide (nt)-long overhang sequences
498 that were complementary to the 5' and 3' ends of the minimal *HPH* cassette (1,376-bp in
499 length). The *HPH* cassette was obtained from the pCB1004 plasmid (77), amplified using
500 HYG-F and HYG-R primers. Subsequently, we merged the PCR amplicons through overlap
501 extension, assembling the left flanking region and the *HPH* cassette, or the right flanking
502 region and the *HPH* cassette. The split marker constructs were obtained by amplifying the
503 fused amplicons using nested primer pairs (N5 and HY-R primers for the left-half construct
504 and YG-F and N3 primers for the right-half construct). Finally, we introduced the two split
505 marker constructs into protoplasts through polyethylene glycol-mediated transformation
506 (78). Following transformation, transformants resistant to 200 mg/mL of hygromycin were
507 examined for replacement of the target gene with the *HPH* cassette by diagnostic PCR
508 checks, in which L5 and R3 primers that aneal to flanking sequences of the homologous

22 of 45

509 recombination event were used to confirm homologous integration of the *HPH* cassette into
510 the target loci.

511 For generation of *MTA1*-overexpressing strains, the coding sequence of *MTA1* was
512 cloned to pDS23 plasmid digested with BglII and HindIII restriction enzymes (79), using
513 the In-Fusion HD Cloning kit (Takara Bio, Otsu, Japan). Five micrograms of the plasmid
514 harboring *MTA1* were transformed into protoplasts of the WT strain. Following
515 transformation, transformants resistant to 200 mg/mL of nourseothricin (Jena Bioscience,
516 Jena, Germany) were examined for introduction of an additional copy of *MTA1* by diagnostic
517 PCR check using primer pair, MTA1_OE_RT_fwd and MTA1_RT_rev. Primers used in this
518 study are listed in Supplementary Table S3.

519 **Sexual development and hyphal growth measurement**

520 Carrot agar plates (60 mm in diameter) (80) were inoculated by placing an agar block
521 containing hyphae of *F. graminearum* at the center. The plates were incubated at room
522 temperature under constant light. Six days after incubation, mycelia were removed by gently
523 scraping the surface with a spatula, and then 0.9 ml of 2.5% Tween 60 (Sigma-Aldrich, St.
524 Louis, MO, USA) was applied to the surface to assist the formation of perithecia. Sexual
525 development in knockout mutants was observed by a stereomicroscopy for size and number
526 formed. Squash mounts of young developing perithecia in water were examined using a
527 compound microscope to check morphology and maturity of ascospores.

528 To obtain macroconidia of the WT and *MTA1*-overexpressing strains, small agar blocks
529 containing each strain were inoculated and cultured in carboxymethylcellulose medium for 3
530 days at 20°C (81). Macroconidia were harvested by filtration through two layers of
531 Miracloth. Concentrations of macroconidia were adjusted to 1×10^8 spores per mL, and 40
532 μ L of spore suspensions were inoculated into 100 mL of q-PDB. Cultures were shaken at

23 of 45

533 150 rpm at room temperature. Mycelia were collected by filtration through one layer of
534 Miracloth and oven-dried at 55°C for two days.

535 **m⁶A quantification**

536 The m⁶A RNA methylation level was assessed using the EpiQuikTM m6A RNA
537 methylation quantitative kit (Epigentek, Farmingdale, NY, USA). Briefly, 200 ng of total
538 RNA was added and bound with antibody in the strip wells, followed by the process of
539 washing, capture and detection of antibody. Finally, the signals were detected
540 colorimetrically by reading the absorbance at 450 nm. m⁶A levels were eventually calculated
541 based on a constructed standard curve.

542 **RT-PCR and quantitative RT-PCR analyses**

543 Total RNA was extracted from fresh conidia, hyphae and perithecial tissues ground in
544 liquid nitrogen using TRIzol reagent (Thermo Fisher Scientific) according to the
545 manufacturer's instructions together with the following extraction steps: two phenol (pH
546 4.6)-chloroform-isoamyl alcohol (25:24:1) extraction steps followed by two chloroform
547 extraction steps after the initial TRIzol-chloroform phase separation. RNA pellets were
548 dissolved in 88 µL of nuclease-free water and subjected to genomic DNA digestion with
549 DNase (Qiagen Inc.). RNA samples were then concentrated using RNA Clean &
550 Concentrator (Zymo Research). For reverse transcription (RT)-PCR analysis of *MTA1*, 200
551 ng of RNAs were reverse transcribed and amplified using the OneStep RT-PCR kit (Qiagen
552 Inc.). *MTA1* and *EF1α* (FGRRES_08811) were amplified for 34 cycles in the experiment for
553 Figure 4C, or for 30 cycles in the experiment for Figure 5A, respectively. Annealing
554 temperature was 62°C. The primer set for amplifying *EF1α* was designed to amplify flanking
555 exons, including two introns in order to detect possible genomic DNA contamination. For
556 semi-quantitative RT-PCR assays, first-strand cDNA synthesis was prepared from 200 ng of
557 total RNA using the iScript cDNA Synthesis Kit (Bio-Rad), according to the manufacturer's

24 of 45

558 instructions. Real-time RT-PCR analyses were performed using the CFX96 Touch
559 Real-Time PCR Detection System (Bio-Rad). RT-PCR mixtures were composed of 1.5 μ l of
560 each primer (10 μ M), 5 μ l of SYBR Green Supermix (Bio-Rad), and 2 μ l of cDNA (100
561 ng/mL). The PCR conditions consisted of an initial denaturing step at 95°C for 3 min, a
562 denaturation step at 95°C for 10 s, both annealing and extension steps at 65°C for 30 s for 40
563 cycles, and 65 to 95°C with a 0.5°C increment and each temperature for 5 s to obtain the
564 melting curve. The quantification of the relative expression levels was performed with the
565 comparative cycle threshold method normalization (82), in that the expression level of *MTA1*
566 was normalized against the reference gene *EF1 α* . The averages of the three biological
567 replicates and standard deviations of the relative expression values were presented
568 (Supplementary Fig. S4). Primers used in the expression analysis are listed in Supplementary
569 Table S3.

570 RNA-seq and differential expression analyses

571 Total RNA samples were extracted from fresh conidia of the WT, *MTA1*-KD1, and
572 *MTA1*-OE5 strains that have been harvested from carboxymethylcellulose medium 4 days
573 after incubation at 20°C (81). Three separate experiments were performed to produce
574 conidia, and the conidia samples from each experiment were used as replicates for RNA-seq
575 analysis. Two micrograms of total RNA were sent to Macrogen Inc. (Seoul, Korea) for
576 cDNA library construction, using the TruSeq Stranded Total RNA Library Prep Gold Kit
577 (Illumina, San Diego, CA, USA), and for sequencing on the HiSeq4000 platform (Illumina).
578 Raw reads (paired-end, 100 bp) were further processed and filtered, using the TrimGalore
579 (v0.6.6) (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). Filtered reads
580 were mapped to the genome sequence of *F. graminearum* (NCBI accession:
581 GCA_000240135.3), using the HISAT2 program (v2.1.0). The gene annotation file used in
582 this study was Ensembl annotation v.32 (83). Mapped reads on genomic features, such as

25 of 45

583 exon and intron, were calculated, using the htseq-count program. Gene expression levels in
584 reads per kilobase per million mapped reads (RPKM) values were computed and normalized
585 by effective library size estimated by trimmed mean of M values, using the edgeR R package
586 (v3.26.8). For differential expression analysis, only genes with CPM values greater than 1 in
587 at least 3 samples were kept for further analyses (9,792 out of 16,001 gene loci). Then,
588 differentially expressed (DE) genes showing greater than 4-fold difference at an FDR of 5%
589 were identified between of the WT, *MTA1*-KD1, and *MTA1*-OE5 strains, using the limma R
590 package (v3.28.21).

591 **DATA accessions**

592 The RNA-seq data generated in the present work have been deposited in NCBI's
593 Sequence Read Archive and are accessible through SRA accessions from SRX21157089 to
594 SRX21157097, which belong to the BioProject (accession, PRJNA998561). RNA-seq data
595 for investigating the expression level changes in m⁶A factors throughout the life cycle of *F.*
596 *graminearum* can be found in NCBI's Gene Expression Omnibus GSE109088 for the
597 conidial germination stages (S1–S3) and GSE109094 for the sexual development (S4–S9).

598

599 **Availability of data and material:** All data generated or analyzed during this study are
600 included in this published article and its supplementary information files.

601

602 **Competing interests** The authors declare that they have no competing interests.

603

604 **Acknowledgements**

605 This publication is based upon work supported by the Basic Science Research Program
606 through the National Research Foundation of Korea, funded by the Ministry of Education
Kim et al. 2023

26 of 45

607 (2019R1I1A1A01057502). The funders had no role in study design, data collection and
608 analysis, decision to publish, or preparation of the manuscript.

609

610 **Authors' contributions:** HK performed functional analyses of m⁶A factors. JH and HK
611 conducted m⁶A quantification. WK conducted phylogenetic analyses of m⁶A factors. HK and
612 WK analyzed and interpreted the data. HK and WK wrote the manuscript. All authors read
613 and approved the final manuscript.

614

615 **References**

- 616 1. Hu J, Cai J, Xu T, Kang H. 2022. Epitranscriptomic mRNA modifications governing
617 plant stress responses: underlying mechanism and potential application. *Plant
618 Biotechnol J* 20:2245–2257.
- 619 2. Manavella PA, Godoy Herz MA, Kornblihtt AR, Sorenson R, Sieburth LE,
620 Nakaminami K, Seki M, Ding Y, Sun Q, Kang H, Ariel FD, Crespi M, Giudicatti AJ,
621 Cai Q, Jin H, Feng X, Qi Y, Pikaard CS. 2023. Beyond transcription: compelling open
622 questions in plant RNA biology. *Plant Cell* 35:1626–1653.
- 623 3. Motorin Y, Helm M. 2011. RNA nucleotide methylation. *WIREs RNA* 2:611–631.
- 624 4. Saletoye Y, Meyer K, Korlach J, Vilfan ID, Jaffrey S, Mason CE. 2012. The birth of the
625 Epitranscriptome: deciphering the function of RNA modifications. *Genome Biol*
626 13:175.
- 627 5. Perry RP, Kelley DE. 1974. Existence of methylated messenger RNA in mouse L cells.
628 *Cell* 1:37–42.

629 6. Desrosiers R, Friderici K, Rottman F. 1974. Identification of Methylated Nucleosides in
630 Messenger RNA from Novikoff Hepatoma Cells. Proc Natl Acad Sci U S A 71:3971–
631 3975.

632 7. Fu Y, Dominissini D, Rechavi G, He C. 2014. Gene expression regulation mediated
633 through reversible m6A RNA methylation. Nat Rev Genet 15:293–306.

634 8. Wang S, Sun C, Li J, Zhang E, Ma Z, Xu W, Li H, Qiu M, Xu Y, Xia W, Xu L, Yin R.
635 2017. Roles of RNA methylation by means of N6-methyladenosine (m6A) in human
636 cancers. Cancer Lett 408:112–120.

637 9. Bodz Z, Button JD, Grierson D, Fray RG. 2010. Yeast targets for mRNA methylation.
638 Nucleic Acids Res 38:5327–5335.

639 10. Hsu PJ, Shi H, He C. 2017. Epitranscriptomic influences on development and disease.
640 Genome Biol 18:197.

641 11. Cai J, Hu J, Amara U, Park SJ, Li Y, Jeong D, Lee I, Xu T, Kang H. 2023. Arabidopsis
642 N6-methyladenosine methyltransferase FIONA1 regulates floral transition by affecting
643 the splicing of FLC and the stability of floral activators SPL3 and SEP3. J Exp Bot
644 74:864–877.

645 12. Fabian M, Gao M, Zhang X-N, Shi J, Vrydag L, Kim S-H, Patel P, Hu AR, Lu H.
646 2023. The flowering time regulator FLK controls pathogen defense in *Arabidopsis*
647 *thaliana*. Plant Physiol 191:2461–2474.

648 13. Amara U, Hu J, Cai J, Kang H. 2023. FLK is an mRNA m6A reader that regulates floral
649 transition by modulating the stability and splicing of FLC in Arabidopsis. Mol Plant
650 16:919–929.

651 14. Hu J, Manduzio S, Kang H. 2019. Epitranscriptomic RNA Methylation in Plant
652 Development and Abiotic Stress Responses. Front Plant Sci 10:500. doi:
653 10.3389/fpls.2019.00500

654 15. Jeon J, Lee SH. 2021. RNA Modification and Its Implication in Plant Pathogenic Fungi.
655 Plant Pathol J 37:505–511.

656 16. Yang Y, Hsu PJ, Chen Y-S, Yang Y-G. 2018. Dynamic transcriptomic m6A decoration:
657 writers, erasers, readers and functions in RNA metabolism. Cell Res 28:616–624.

658 17. Zaccara S, Ries RJ, Jaffrey SR. 2019. Reading, writing and erasing mRNA methylation.
659 Nat Rev Mol Cell Biol 20:608–624.

660 18. Bokar JA, Shambaugh ME, Polayes D, Matera AG, Rottman FM. 1997. Purification
661 and cDNA cloning of the AdoMet-binding subunit of the human mRNA
662 (N6-adenosine)-methyltransferase. RNA 3:1233–1247.

663 19. Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, Jia G, Yu M, Lu Z, Deng X, Dai Q, Chen
664 W, He C. 2014. A METTL3–METTL14 complex mediates mammalian nuclear RNA
665 N6-adenosine methylation. Nat Chem Biol 10:93–95.

666 20. Ping X-L, Sun B-F, Wang L, Xiao W, Yang X, Wang W-J, Adhikari S, Shi Y, Lv Y,
667 Chen Y-S, Zhao X, Li A, Yang Y, Dahal U, Lou X-M, Liu X, Huang J, Yuan W-P, Zhu
668 X-F, Cheng T, Zhao Y-L, Wang X, Danielsen JMR, Liu F, Yang Y-G. 2014.
669 Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine
670 methyltransferase. Cell Res 24:177–189.

671 21. Horiuchi K, Kawamura T, Iwanari H, Ohashi R, Naito M, Kodama T, Hamakubo T.
672 2013. Identification of Wilms' Tumor 1-associating Protein Complex and Its Role in
673 Alternative Splicing and the Cell Cycle. J Biol Chem 288:33292–33302.

674 22. Yue Y, Liu J, Cui X, Cao J, Luo G, Zhang Z, Cheng T, Gao M, Shu X, Ma H, Wang F,
675 Wang X, Shen B, Wang Y, Feng X, He C, Liu J. 2018. VIRMA mediates preferential
676 m6A mRNA methylation in 3'UTR and near stop codon and associates with alternative
677 polyadenylation. Cell Discov 4:1–17.

678 23. Zhang Z, Theler D, Kaminska KH, Hiller M, Grange P de la, Pudimat R, Rafalska I,
679 Heinrich B, Bujnicki JM, Allain FH-T, Stamm S. 2010. The YTH Domain Is a Novel
680 RNA Binding Domain. *J Biol Chem* 285:14701–14710.

681 24. Du H, Zhao Y, He J, Zhang Y, Xi H, Liu M, Ma J, Wu L. 2016. YTHDF2 destabilizes
682 m6A-containing RNA through direct recruitment of the CCR4–NOT deadenylase
683 complex. *Nat Commun* 7:12626.

684 25. Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, Ren
685 B, Pan T, He C. 2014. N6-methyladenosine-dependent regulation of messenger RNA
686 stability. *Nature* 505:117–120.

687 26. Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang C-M, Li CJ, Vågbø CB, Shi Y, Wang
688 W-L, Song S-H, Lu Z, Bosmans RPG, Dai Q, Hao Y-J, Yang X, Zhao W-M, Tong
689 W-M, Wang X-J, Bogdan F, Furu K, Fu Y, Jia G, Zhao X, Liu J, Krokan HE, Klungland
690 A, Yang Y-G, He C. 2013. ALKBH5 Is a Mammalian RNA Demethylase that Impacts
691 RNA Metabolism and Mouse Fertility. *Mol Cell* 49:18–29.

692 27. Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T, Pan T, Yang Y-G, He
693 C. 2011. N6-Methyladenosine in nuclear RNA is a major substrate of the
694 obesity-associated FTO. *Nat Chem Biol* 7:885–887.

695 28. Yadav PK, Rajasekharan R. 2017. The m6A methyltransferase Ime4
696 epitranscriptionally regulates triacylglycerol metabolism and vacuolar morphology in
697 haploid yeast cells. *J Biol Chem* 292:13727–13744.

698 29. Clancy MJ, Shambaugh ME, Timpte CS, Bokar JA. 2002. Induction of sporulation in
699 *Saccharomyces cerevisiae* leads to the formation of N6-methyladenosine in mRNA: a
700 potential mechanism for the activity of the IME4 gene. *Nucleic Acids Res* 30:4509–
701 4518.

702 30. Yadav PK, Rajasekharan R. 2018. The m6A methyltransferase Ime4 and mitochondrial
703 functions in yeast. *Curr Genet* 64:353–357.

704 31. Agarwala SD, Blitzblau HG, Hochwagen A, Fink GR. 2012. RNA Methylation by the
705 MIS Complex Regulates a Cell Fate Decision in Yeast. *PLoS Genet* 8:e1002732.

706 32. Park ZM, Belnap E, Remillard M, Rose MD. 2023. Vir1p, the yeast homolog of
707 virilizer, is required for mRNA m6A methylation and meiosis. *Genetics* 224:iyad043.
708 doi: 10.1093/genetics/iyad043

709 33. Ensinck I, Maman A, Albihlal WS, Lassandro M, Salzano G, Sideri T, Howell SA,
710 Calvani E, Patel H, Bushkin G, Ralser M, Snijders AP, Skehel M, Casañal A, Schwartz
711 S, van Werven FJ. 2023. The yeast RNA methylation complex consists of conserved yet
712 reconfigured components with m6A-dependent and independent roles. *eLife* 12:
713 NaN:RP87860. doi:10.7554/eLife.87860

714 34. Kang H-J, Jeong S-J, Kim K-N, Baek I-J, Chang M, Kang C-M, Park Y-S, Yun C-W.
715 2014. A novel protein, Pho92, has a conserved YTH domain and regulates phosphate
716 metabolism by decreasing the mRNA stability of PHO4 in *Saccharomyces cerevisiae*.
717 *Biochem J* 457:391–400.

718 35. Schwartz S, Agarwala SD, Mumbach MR, Jovanovic M, Mertins P, Shishkin A, Tabach
719 Y, Mikkelsen TS, Satija R, Ruvkun G, Carr SA, Lander ES, Fink GR, Regev A. 2013.
720 High-Resolution Mapping Reveals a Conserved, Widespread, Dynamic mRNA
721 Methylation Program in Yeast Meiosis. *Cell* 155:1409–1421.

722 36. Varier RA, Sideri T, Capitanchik C, Manova Z, Calvani E, Rossi A, Edupuganti RR,
723 Ensinck I, Chan VW, Patel H, Kirkpatrick J, Faull P, Snijders AP, Vermeulen M, Ralser
724 M, Ule J, Luscombe NM, van Werven FJ. 2022. N6-methyladenosine (m6A) reader
725 Pho92 is recruited co-transcriptionally and couples translation to mRNA decay to
726 promote meiotic fitness in yeast. *eLife* 11:e84034.

727 37. Scutenaire J, Plassard D, Matelot M, Villa T, Zumsteg J, Libri D, Séraphin B. 2023. The
728 *S. cerevisiae* m6A-reader Pho92 promotes timely meiotic recombination by controlling
729 key methylated transcripts. *Nucleic Acids Res* 51:517–535.

730 38. Harigaya Y, Yamashita A, Tsutsumi C, Tanaka H, Tanaka K, Yamamoto M, Yamanaka
731 S, Hiraoka Y, Watanabe Y, Chikashige Y. 2006. Selective elimination of messenger
732 RNA prevents an incidence of untimely meiosis. *Nature* 442:45–50.

733 39. Shichino Y, Otsubo Y, Kimori Y, Yamamoto M, Yamashita A. 2018.
734 YTH-RNA-binding protein prevents deleterious expression of meiotic proteins by
735 tethering their mRNAs to nuclear foci. *eLife* 7:e32155.

736 40. Trail F. 2009. For Blighted Waves of Grain: *Fusarium graminearum* in the
737 Postgenomics Era. *Plant Physiol* 149:103–110.

738 41. Wang Z, Kim W, Wang Y-W, Yakubovich E, Dong C, Trail F, Townsend JP, Yarden
739 O. 2023. The Sordariomycetes: an expanding resource with Big Data for mining in
740 evolutionary genomics and transcriptomics. *Front Fungal Biol* 4:1214537.

741 42. Ma L-J, Geiser DM, Proctor RH, Rooney AP, O'Donnell K, Trail F, Gardiner DM,
742 Manners JM, Kazan K. 2013. *Fusarium* Pathogenomics. *Annu Rev Microbiol* 67:399–
743 416.

744 43. Feng C, Cao X, Du Y, Chen Y, Xin K, Zou J, Jin Q, Xu J-R, Liu H. 2022. Uncovering
745 Cis-Regulatory Elements Important for A-to-I RNA Editing in *Fusarium graminearum*.
746 *mBio* 13:e01872-22.

747 44. Xin K, Zhang Y, Fan L, Qi Z, Feng C, Wang Q, Jiang C, Xu J-R, Liu H. 2023.
748 Experimental evidence for the functional importance and adaptive advantage of A-to-I
749 RNA editing in fungi. *Proc Natl Acad Sci U S A* 120:e2219029120.

750 45. Cao S, He Y, Hao C, Xu Y, Zhang H, Wang C, Liu H, Xu J-R. 2017. RNA editing of the
751 AMD1 gene is important for ascus maturation and ascospore discharge in *Fusarium*
752 *graminearum*. *Sci Rep* 7:4617.

753 46. Shi Y, Wang H, Wang J, Liu X, Lin F, Lu J. 2019. N6-methyladenosine RNA
754 methylation is involved in virulence of the rice blast fungus *Pyricularia oryzae* (syn.
755 *Magnaporthe oryzae*). *FEMS Microbiol Lett* 366:fny286

756 47. Ren Z, Tang B, Xing J, Liu C, Cai X, Hendy A, Kamran M, Liu H, Zheng L, Huang J,
757 Chen X. 2022. MTA1-mediated RNA m⁶A modification regulates autophagy and is
758 required for infection of the rice blast fungus. *New Phytologist* 235:247–262.

759 48. Duan H-C, Wei L-H, Zhang C, Wang Y, Chen L, Lu Z, Chen PR, He C, Jia G. 2017.
760 ALKBH10B Is an RNA N 6-Methyladenosine Demethylase Affecting Arabidopsis
761 Floral Transition. *Plant Cell* 29:2995–3011.

762 49. Amara U, Shoaib Y, Kang H. 2022. ALKBH9C, a potential RNA m6A demethylase,
763 regulates the response of Arabidopsis to abiotic stresses and abscisic acid. *Plant Cell*
764 *Environ* 45:3566–3581.

765 50. Shoaib Y, Hu J, Manduzio S, Kang H. 2021. Alpha-ketoglutarate-dependent
766 dioxygenase homolog 10B, an N6-methyladenosine mRNA demethylase, plays a role
767 in salt stress and abscisic acid responses in *Arabidopsis thaliana*. *Physiol Plant*
768 173:1078–1089.

769 51. Meza TJ, Moen MN, Vågbø CB, Krokan HE, Klungland A, Grini PE, Falnes PØ. 2012.
770 The DNA dioxygenase ALKBH2 protects *Arabidopsis thaliana* against methylation
771 damage. *Nucleic Acids Res* 40:6620–6631.

772 52. Liefke R, Windhof-Jaidhauser IM, Gaedcke J, Salinas-Riester G, Wu F, Ghadimi M,
773 Dango S. 2015. The oxidative demethylase ALKBH3 marks hyperactive gene
774 promoters in human cancer cells. *Genome Med* 7:66.

775 53. Zhao S, Devega R, Francois A, Kidane D. 2021. Human ALKBH6 Is Required for
776 Maintenance of Genomic Stability and Promoting Cell Survival During Exposure of
777 Alkylating Agents in Pancreatic Cancer. *Front Genet* 12:635808.

778 54. Ma L, Lu H, Tian Z, Yang M, Ma J, Shang G, Liu Y, Xie M, Wang G, Wu W, Zhang Z,
779 Dai S, Chen Z. 2022. Structural insights into the interactions and epigenetic functions of
780 human nucleic acid repair protein ALKBH6. *J Biol Chem* 298:101671.

781 55. Westbye MP, Feyzi E, Aas PA, Vågbø CB, Talstad VA, Kavli B, Hagen L, Sundheim
782 O, Akbari M, Liabakk N-B, Slupphaug G, Otterlei M, Krokan HE. 2008. Human AlkB
783 Homolog 1 Is a Mitochondrial Protein That Demethylates 3-Methylcytosine in DNA
784 and RNA. *J Biol Chem* 283:25046–25056.

785 56. Ougland R, Lando D, Jonson I, Dahl JA, Moen MN, Nordstrand LM, Rognes T, Lee JT,
786 Klungland A, Kouzarides T, Larsen E. 2012. ALKBH1 is a Histone H2A Dioxygenase
787 Involved in Neural Differentiation. *Stem Cells* 30:2672–2682.

788 57. Liu F, Clark W, Luo G, Wang X, Fu Y, Wei J, Wang X, Hao Z, Dai Q, Zheng G, Ma H,
789 Han D, Evans M, Klungland A, Pan T, He C. 2016. ALKBH1-Mediated tRNA
790 Demethylation Regulates Translation. *Cell* 167:816-828.e16.

791 58. Zhang C, Samanta D, Lu H, Bullen JW, Zhang H, Chen I, He X, Semenza GL. 2016.
792 Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and
793 ALKBH5-mediated m6A-demethylation of NANOG mRNA. *Proc Natl Acad Sci U S A*
794 113:E2047–E2056.

795 59. Zhang S, Zhao BS, Zhou A, Lin K, Zheng S, Lu Z, Chen Y, Sulman EP, Xie K, Bögler
796 O, Majumder S, He C, Huang S. 2017. m6A Demethylase ALKBH5 Maintains
797 Tumorigenicity of Glioblastoma Stem-like Cells by Sustaining FOXM1 Expression and
798 Cell Proliferation Program. *Cancer Cell* 31:591-606.e6.

799 60. Martínez-Pérez M, Aparicio F, López-Gresa MP, Bellés JM, Sánchez-Navarro JA,
800 Pallás V. 2017. *Arabidopsis* m6A demethylase activity modulates viral infection of a
801 plant virus and the m6A abundance in its genomic RNAs. *Proc Natl Acad Sci U S A*
802 114:10755–10760.

803 61. Miguel-Rojas C, Cavinder B, Townsend JP, Trail F. 2023. Comparative
804 Transcriptomics of *Fusarium graminearum* and *Magnaporthe oryzae* Spore
805 Germination Leading up To Infection. *mBio* 14:e02442-22.

806 62. Kim W, Miguel-Rojas C, Wang J, Townsend JP, Trail F. 2018. Developmental
807 Dynamics of Long Noncoding RNA Expression during Sexual Fruiting Body
808 Formation in *Fusarium graminearum*. *mBio* 9:e01292-18.

809 63. Park ZM, Sporer A, Kraft K, Lum K, Blackman E, Belnap E, Yellman C, Rose MD.
810 2023. Kar4, the Yeast Homolog of METTL14, is Required for mRNA m6A
811 Methylation and Meiosis. *bioRxiv* <https://doi.org/10.1101/2023.01.29.526094>.

812 64. Kim W, Wang Z, Kim H, Pham K, Tu Y, Townsend JP, Trail F. 2022. Transcriptional
813 Divergence Underpinning Sexual Development in the Fungal Class Sordariomycetes.
814 *mBio* 13:e01100-22.

815 65. Liu H, Li Y, Chen D, Qi Z, Wang Q, Wang J, Jiang C, Xu J-R. 2017. A-to-I RNA
816 editing is developmentally regulated and generally adaptive for sexual reproduction in
817 *Neurospora crassa*. *Proc Natl Acad Sci USA* 114:E7756–E7765.

818 66. Wang C, Xu J-R, Liu H. 2016. A-to-I RNA editing independent of ADARs in
819 filamentous fungi. *RNA Biol* 13:940–945.

820 67. Teichert I, Dahlmann TA, Kück U, Nowrousian M. 2017. RNA Editing During Sexual
821 Development Occurs in Distantly Related Filamentous Ascomycetes. *Genome Biol
822 Evol* 9:855–868.

823 68. Amses KR, Simmons DR, Longcore JE, Mondo SJ, Seto K, Jerônimo GH, Bonds AE,
824 Quandt CA, Davis WJ, Chang Y, Federici BA, Kuo A, LaButti K, Pangilinan J,
825 Andreopoulos W, Tritt A, Riley R, Hundley H, Johnson J, Lipzen A, Barry K, Lang BF,
826 Cuomo CA, Buchler NE, Grigoriev IV, Spatafora JW, Stajich JE, James TY. 2022.
827 Diploid-dominant life cycles characterize the early evolution of Fungi. *Proc Natl Acad
828 Sci U S A* 119:e2116841119.

829 69. Merényi Z, Krizsán K, Sahu N, Liu X-B, Bálint B, Stajich JE, Spatafora JW, Nagy LG.
830 2023. Genomes of fungi and relatives reveal delayed loss of ancestral gene families and
831 evolution of key fungal traits. *Nat Ecol Evol* 1–11.

832 70. van Kempen M, Kim SS, Tumescheit C, Mirdita M, Lee J, Gilchrist CLM, Söding J,
833 Steinegger M. 2023. Fast and accurate protein structure search with Foldseek. *Nat
834 Biotechnol.* <https://doi.org/10.1038/s41587-023-01773-0>.

835 71. Ruperti F, Papadopoulos N, Musser JM, Mirdita M, Steinegger M, Arendt D. 2023.
836 Cross-phyla protein annotation by structural prediction and alignment. *Genome Biol
837* 24:113.

838 72. Katoh K, Standley DM. 2013. MAFFT Multiple Sequence Alignment Software Version
839 7: Improvements in Performance and Usability. *Mol Biol Evol* 30:772–780.

840 73. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. trimAl: a tool for
841 automated alignment trimming in large-scale phylogenetic analyses. *Bioinformatics*
842 25:1972–1973.

843 74. Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and
844 post-analysis of large phylogenies. *Bioinformatics* 30:1312–1313.

845 75. Catlett NL, Lee B, Yoder OC, Turgeon BC. 2003. Split-marker recombination for
846 efficient targeted deletion of fungal genes. *Fungal Genet News* 50:9–11.

847 76. Yu J-H, Hamari Z, Han K-H, Seo J-A, Reyes-Domínguez Y, Scazzocchio C. 2004.
848 Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous
849 fungi. *Fungal Genet Biol* 41:973–981.

850 77. Carroll AM, Sweigard JA, Valent B. 1994. Improved vectors for selecting resistance to
851 hygromycin. *Fungal Genet News* 41:22.

852 78. Hallen-Adams HE, Cavinder BL, Trail F. 2011. *Fusarium graminearum* from
853 expression analysis to functional assays, p 79–101. In Xu J-R, Bluhm BH (ed), *Fungal*
854 *genomics: methods in molecular biology*. Humana Press, Totowa, NJ.

855 79. Teichert I, Wolff G, Kück U, Nowrousian M. 2012. Combining laser microdissection
856 and RNA-seq to chart the transcriptional landscape of fungal development. *BMC*
857 *Genomics* 13:511.

858 80. Klittich CJR, Leslie JF. 1988. Nitrate Reduction Mutants of *Fusarium moniliforme*
859 (*Gibberella fujikuroi*). *Genetics* 118:417–423.

860 81. Cappellini RA, Peterson JL. 1965. Macroconidium Formation in Submerged Cultures
861 by a Non-Sporulating Strain of *Gibberella zae*. *Mycologia* 57:962–966.

862 82. Schmittgen TD, Livak KJ. 2008. Analyzing real-time PCR data by the comparative CT
863 method. *Nat Protoc* 3:1101–1108.

864 83. King R, Urban M, Hammond-Kosack MCU, Hassani-Pak K, Hammond-Kosack KE.
865 2015. The completed genome sequence of the pathogenic ascomycete fungus *Fusarium*
866 *graminearum*. *BMC Genomics* 16:544.

867

868

869

870

871

872

873

874 **Figure legends**

875 **Figure 1.** Phylogeny of potential m⁶A writers in fungi. **(A)** The maximum-likelihood
876 phylogeny was estimated from 1,116 sequences of MT-A70 domain-containing proteins
877 identified in 829 fungal species. The tree exhibits three distinct subclades, each
878 corresponding to IME4, KAR4, and MTA1 families. Branches marked with red asterisks
879 suggest clades that likely diverged at earlier time points. The branch lengths in the tree
880 reflect the amount of evolutionary change, with the scale indicating 1.0 amino acid
881 sequence substitution per site. **(B)** Phyletic distribution of MT-A70 domain-containing
882 proteins in fungi. **(C)** The phylogeny was estimated from 308 protein sequences that belong
883 to the IME4 subclade and from five METTL3 orthologues found in metazoans and a model
884 plant *Arabidopsis thaliana*. The arrow indicates *Arabidopsis thaliana* METTL3. The
885 branch marked with a red asterisk suggests clades that likely diverged at earlier time points.
886 The color strip outside the tree represents different fungal taxa, with each color indicating a
887 distinct taxonomic group as shown in Figure 1B. **(D)** The phylogeny was estimated from
888 298 protein sequences that belong to the KAR4 subclade and from five METTL14
889 orthologues found in metazoans and a model plant *Arabidopsis thaliana*. The arrow
890 indicates *Arabidopsis thaliana* METTL14. The branch marked with a red asterisk suggests
891 clades that likely diverged at earlier time points. **(E)** The phylogeny was estimated from
892 510 protein sequences that belong to the MTA1 subclade and from five METTL4
893 orthologues found in metazoans and a model plant *Arabidopsis thaliana*. The arrow
894 indicates *Arabidopsis thaliana* METTL4. The inner color strip represents fungal class

38 of 45

895 within the subphylum Pezizomycotina, with each color indicating a distinct taxonomic
896 group as shown in the inset box. **(C–E)** More detailed trees showing UniProt protein IDs
897 and bootstrap values can be found in Supplementary Fig. S1. **(F)** Copy number variation of
898 potential m⁶A writers in fungi. The color strip represents different fungal taxa, with each
899 color indicating a distinct taxonomic group as shown in Figure 1B.

900 **Figure 2.** Phylogeny of potential m⁶A readers in fungi. **(A)** The maximum-likelihood
901 phylogeny was estimated from 868 sequences of YTH domain-containing proteins
902 identified in 695 fungal species. Red arrows indicate highly supported clades representing
903 PHO92 (Agaricomycotina and Saccharomycotina), PHO92 (Pezizomycotina) and YTH1
904 families. The branch lengths in the tree reflect the amount of evolutionary change, with the
905 scale indicating 1.0 amino acid sequence substitution per site. The outer color strip
906 represents subphyla, with each color indicating a distinct taxonomic group as shown in (B),
907 and the inner color strip represents fungal class within the subphylum Pezizomycotina, with
908 each color indicating a distinct taxonomic group as shown in the inset box. **(B)** Phyletic
909 distribution of YTH domain-containing proteins in fungi. **(C)** Copy number variation of
910 potential m⁶A readers in fungi. The color strip represents different fungal taxa, with each
911 color indicating a distinct taxonomic group as shown in Figure 2B.

912 **Figure 3.** Phylogeny of potential m⁶A erasers in fungi. The maximum-likelihood
913 phylogeny was estimated from 125 sequences of 2OG-Fe(II) dioxygenase AlkB-like
914 domain-containing proteins identified in 27 selected fungal species. The color strips on the
915 right side of leaves indicate different fungal taxa: purple–Pezizomycotina, yellow–
916 Saccharomycotina, brown–Basidiomycota, cyan–early-diverging fungi, white–human or
917 *Arabidopsis thaliana*. Highly supported clades each containing an ALKBH identified in *F.*
918 *graminearum* were shaded with different colors. Bootstrap values of greater than 70% were

39 of 45

919 shown. Branch lengths are proportional to the inferred amount of evolutionary change, and
920 the scale represents 1.0 amino acid sequence substitutions per site.

921 **Figure 4.** Generation of knockout mutants lacking potential m⁶A factors in *F. graminearum*. (A) Diagnostic PCRs confirmed homologous integration of the split marker
922 constructs to the target gene loci. Note the PCR band size between the wild-type (WT) and
923 knockout strains (KO) due to the gene replacement. M-1-kb DNA ladder. (B) Perithecia
924 production of the WT and knockout strains grown on carrot agar media. Photographs were
925 taken with a dissecting microscope at 6 days after induction of sexual development. (C)
926 RT-PCR analyses of the WT and $\Delta mta1$ strains. Since *MTA1* lacks introns, distinguishing
927 RNA expression from possible genomic DNA contamination in RT-PCR analysis was
928 challenging. To verify RNA integrity, a primer set was designed for amplifying *EF1 α* ,
929 including two introns. Notably, no band corresponding to genomic DNA amplicon for the
930 *EF1 α* reference gene was observed (658 bp for gDNA, 356 bp for mRNA), indicating the
931 absence of genomic DNA contamination. Expression of *MTA1* was confirmed in the WT,
932 whereas no discernible band was observed in $\Delta mta1$ strain. The samples labeled V were
933 collected before sexual induction (*i.e.* vegetative growth stage), samples labeled S were
934 collected six days after sexual induction (*i.e.* sexual growth stage). M-100-bp DNA ladder.

936 **Figure 5.** Overexpression of the m⁶A writer *MTA1*. (A) RT-PCR analyses of the WT and
937 *MTA1*-overexpressing strains (*MTA1*-OE4 and *MTA1*-OE5). Since *MTA1* lacks introns,
938 distinguishing RNA expression from possible genomic DNA contamination in RT-PCR
939 analysis was challenging. To verify RNA integrity, a primer set was designed for
940 amplifying *EF1 α* , including two introns. Notably, no band corresponding to genomic DNA
941 amplicon for the *EF1 α* reference gene was observed (658 bp for gDNA, 356 bp for mRNA),
942 indicating the absence of genomic DNA contamination. Overexpression of *MTA1* was
943 confirmed in the *MTA1*-OE4 and *MTA1*-OE5 strains. Note that *MTA1* was significantly

944 overexpressed in the *MTA1*-OE5 strain, compared to the WT, from which no discernible
945 band was observed at PCR cycle of 30. M–100-bp DNA ladder. **(B)** m^6A methylation level
946 in RNA extracted from the WT and *MTA1*-OE5 strains. Mann-Whitney U test was
947 performed to compare the means of the ratio for m^6A to A between the WT and *MTA1*-OE5
948 strains. Box and whisker plots indicate the median, interquartile range between the 25th and
949 75th percentiles (box), and 1.5 interquartile range (whisker). **(C)** Perithecia production of
950 the WT, *MTA1*-OE4 and *MTA1*-OE5 strains grown on carrot agar media (upper panels).
951 Photographs were taken with a dissecting microscope at the indicated days after induction
952 of sexual development (DAI). Squash mounts of perithecia were observed with a
953 compound microscope (lower panels, 400 \times magnification). Mature ascospores were
954 observed in the WT and *MTA1*-OE4 strains as early as 7 DAI, whereas in the *MTA1*-OE5
955 strain, it was not until 11 DAI that ascospore formation became evident.

956 **Figure 6.** Conidial germination affected by the m^6A writer *MTA1*. **(A)** Gene expression
957 profiles of potential m^6A factors (left panel) and housekeeping genes (right panel) in
958 *Fusarium graminearum*. Average values for reads per kilobase per million mapped reads
959 (RPKM) values for three replicates samples were plotted. Bands surrounding the line plots
960 indicate 95% confidence intervals of the means. The x-axis are different growth stages of *F.*
961 *graminearum* (S0–S9). See the right box for the description of vegetative and sexual
962 growth stages. Gene ID for potential m^6A factors are ALKBH1 (FGRRES_16652), MTA1
963 (FGRRES_06225), VIRN (FGRRES_06249), and WTAP (FGRRES_01626).
964 Housekeeping genes examined here are α -tubulin (α TUB, FGRRES_00639), β -tubulin (β
965 TUB, FGRRES_09530), and actin 1 (ACT1, FGRRES_07735). **(B)** Conidia germination
966 and polar growth of hyphae in quarter-strength potato dextrose broth (q-PDB) medium.
967 Photos were taken 16 hours after incubation. Note that shorter hyphae germinated from
968 macroconidia of the *MTA1*-OE5 strain, compared to the wild-type (WT) strain. **(C)** Dry

41 of 45

969 weight of mycelia grown in q-PDB medium was measured with two days interval. **(D)** The
970 numbers of differentially expressed genes in fresh macroconidia harvested from
971 carboxymethylcellulos (CMC) medium between the WT and *MTA1*-OE5 strains, and
972 between the *MTA1*-KD1 and *MTA1*-OE5 strains.

973

974 **Supplemental Material**

975 Supplemental material is available online only

976 **Figure S1.** Maximum likelihood Trees of potential m⁶A factors in fungi

977 **Figure S2.** Normal ascospore production in m⁶A factor mutants.

978 **Figure S3.** Genotyping for *MTA1*-deletion mutants.

979 **Figure S4.** *MTA1* overexpression and knockdown.

980 **Figure S5.** Dynamic expression patterns of potential m⁶A eraser genes.

981 **Figure S6.** Reduced hyphal branching in the *MTA1*-OE5 strain.

982 **Figure S7.** MA plots for differential expression analyses.

983 **Table S1.** Metadata for UniProt protein sequences related to MTA1, IME4, KAR4, WTAP,
984 VIRN, YTH1 and ALKBHs.

985 **Table S2.** Numbers of putative m⁶A erasers found in 27 selected fungi.

986 **Table S3.** Primers used in this study.

42 of 45

987

988

989

990 **Table 1.** Putative m⁶A factors found in *F. graminearum*.

Name	ID (FGRRES)	AA	Pfam	E-value	Putative function
MTA1	06225	333	PF05063	1.2e-34	writer
WTAP ¹	01626	266	PF17098	0.069	writer
VIRN ¹	06249	143	PF15912	0.073	writer
YTH1	01159	613	PF04146	9.9e-66	reader
ALKBH1	16652	346	PF13532	3.5e-30	eraser
ALKBH2	09872	933	PF13532	1e-29	eraser
ALKBH3	16456	443	PF13532	5.6e-35	eraser
ALKBH4	01255	326	PF13532	2.8e-28	eraser
ALKBH5	20373	228	PF13532	6.2e-15	eraser

991 ¹ E-value is greater than 10⁻⁵

992

43 of 45

993

994

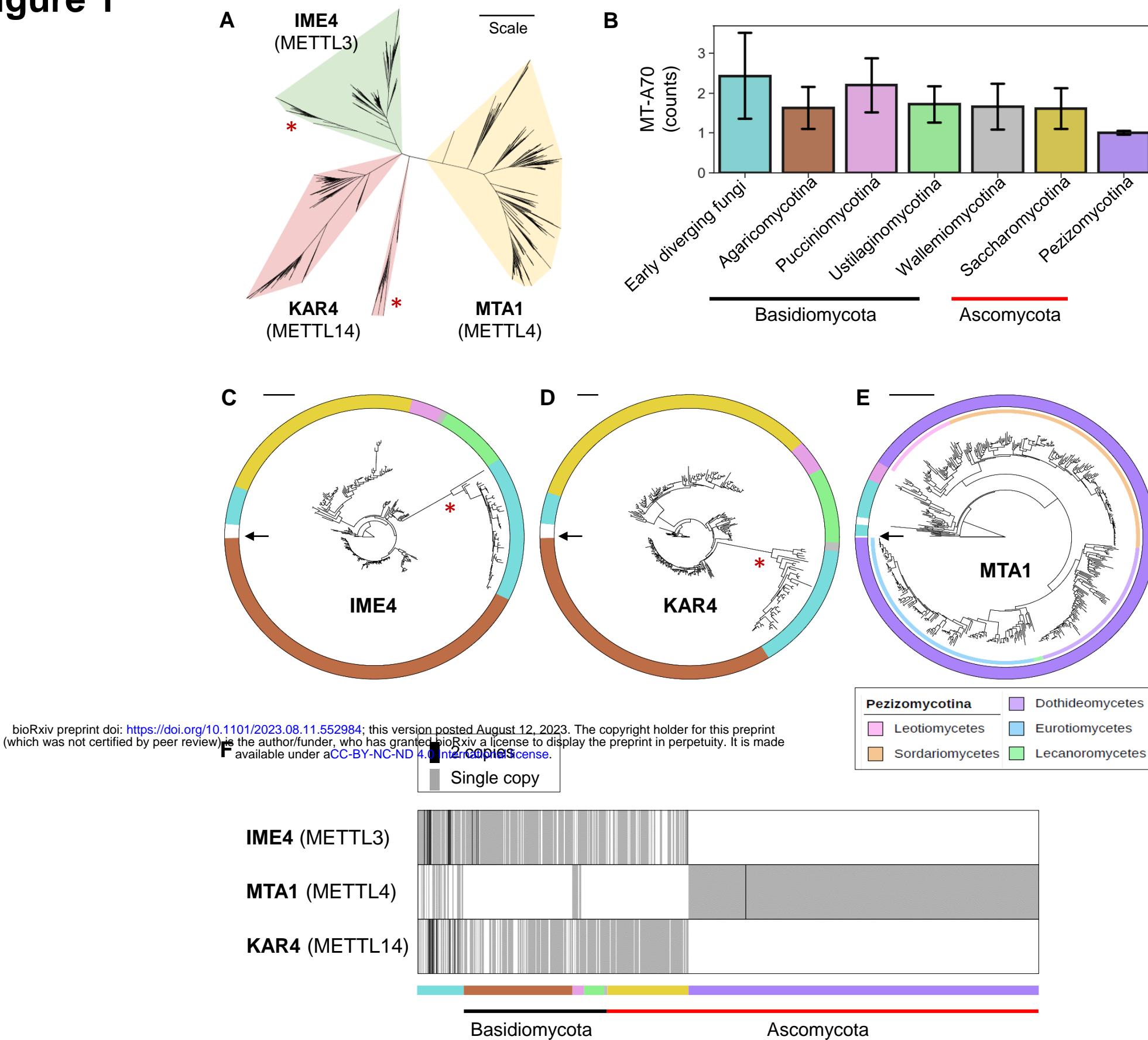
995

996 **Table 2.** Differentially expressed genes in the *MTA1*-overexpressing strain

Gene ID (FGRRES)	FC¹	FDR²	Predicted function
11026	-5.2	0.0212	Nonribosomal peptide synthetase, malonichrome
16138	-6.0	0.0212	Hypothetical protein
11158	-8.1	0.0212	Amidohydrolase family
16091 ³	-4.3	0.0212	Hypothetical protein
17136	5.2	0.0212	Superfamily I DNA and/or RNA helicase
03600	8.2	0.0212	Hypothetical protein
00251	-5.0	0.0212	Probable galactose oxidase precursor
13979	5.5	0.0233	Acetyltransferase (GNAT) domain
4188 ³	4.0	0.0233	Major facilitator transporter
11412	5.5	0.0233	Hypothetical protein

12820	6.9	0.0245	Hypothetical protein
05926	-3.8	0.0245	GAL4-type MHR TF (without a zinc cluster domain)
13561	4.7	0.0245	FAD-dependent oxidoreductase
10598 ³	6.6	0.0245	Hypothetical protein
02139	5.7	0.0245	ABC transporter
11413	6.9	0.0255	CoA-transferase family III domain-containing protein
06225	7.0	0.0306	MTA1, m6A writer
00725 ³	-4.2	0.0499	GAL4-type MHR TF (with a zinc cluster domain)
11736	4.6	0.0499	Hypothetical protein
05829	4.9	0.0499	Prolyl oligopeptidase family
03319 ⁴	4.6	0.0597	AAA family ATPase
11474 ⁴	5.3	0.0901	Nucleotidyltransferase superfamily, GrpB domain-containing
15648 ⁴	5.1	0.0901	Hypothetical protein

08659 ⁴	2.8	0.1125	Hypothetical protein
10446 ⁴	-4.2	0.1479	Pyruvate decarboxylase


997 ¹ log2-transformed fold change in the *MTA1*-overexpressing strain.

998 ² False discovery rate.

999 ³ Differentially-expressed genes only in comparison between the wild-type and
1000 *MTA1*-overexpressing strain.

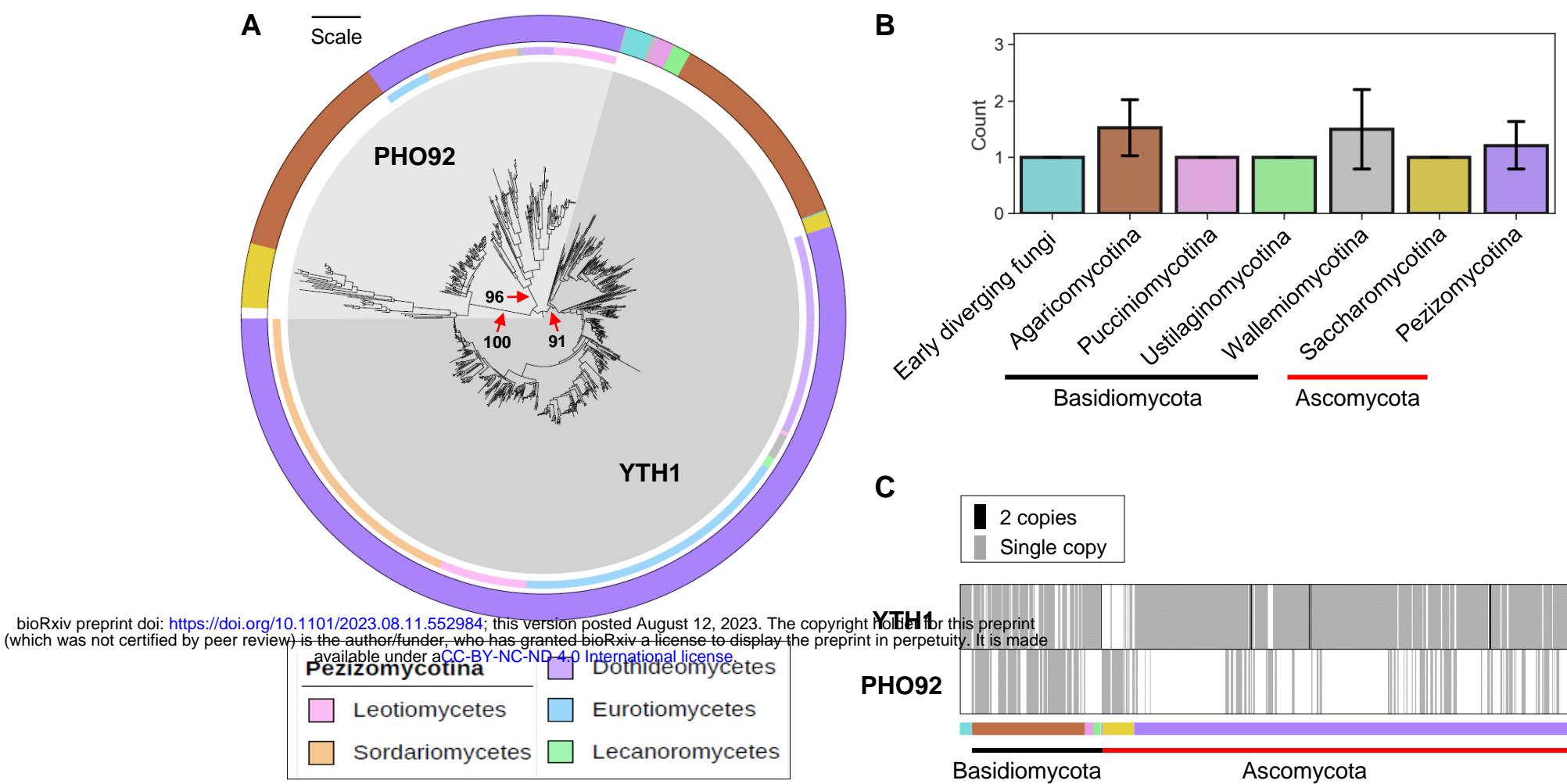

1001 ⁴ Differentially-expressed genes only in comparison between the $\Delta MTA1$ and
1002 *MTA1*-overexpressing strain.

Figure 1

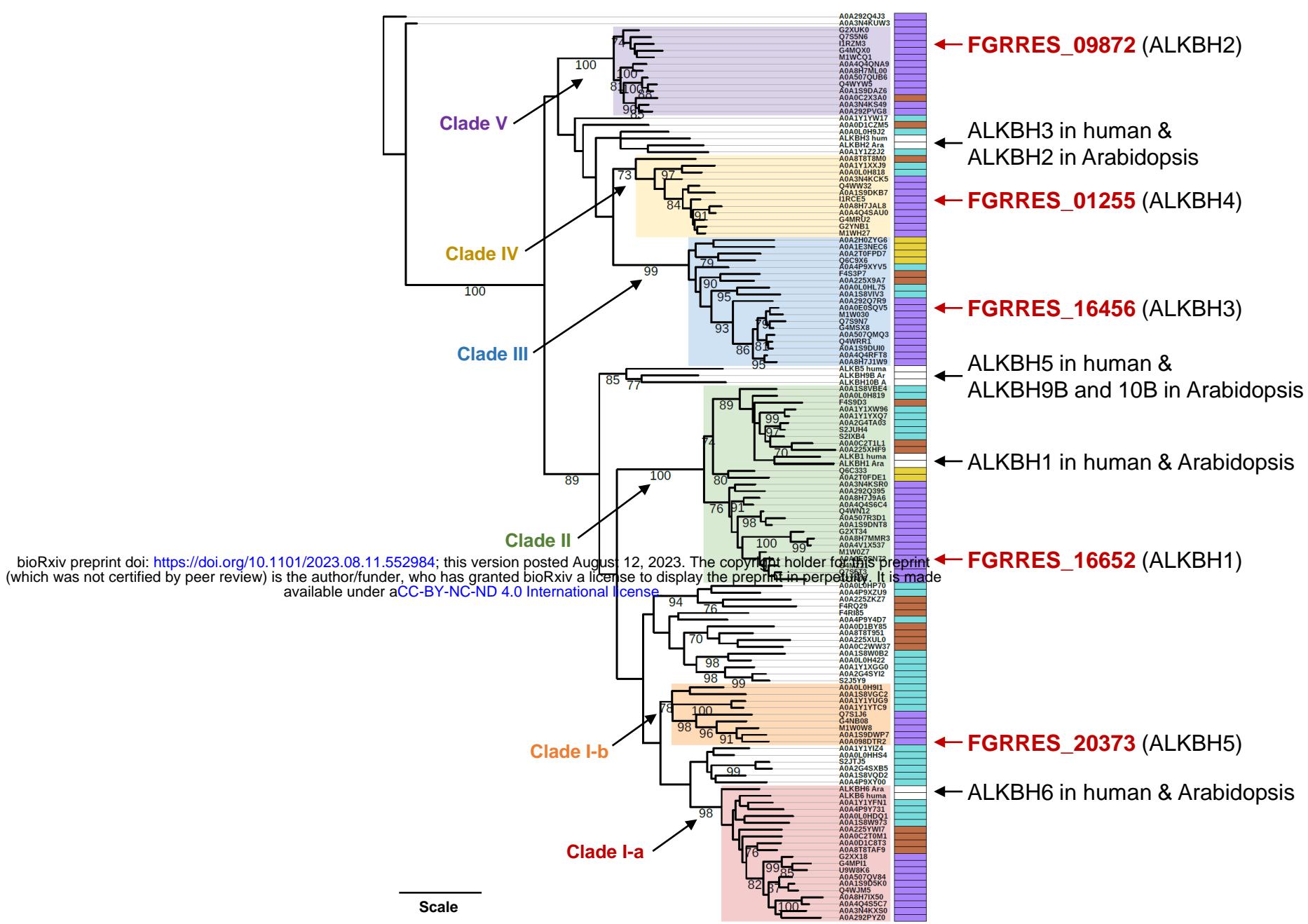

Figure 1. Phylogeny of potential m⁶A writers in fungi. **(A)** The maximum-likelihood phylogeny was estimated from 1,116 sequences of MT-A70 domain-containing proteins identified in 829 fungal species. The tree exhibits three distinct subclades, each corresponding to IME4, KAR4, and MTA1 families. Branches marked with red asterisks suggest clades that likely diverged at earlier time points. The branch lengths in the tree reflect the amount of evolutionary change, with the scale indicating 1.0 amino acid sequence substitution per site. **(B)** Phyletic distribution of MT-A70 domain-containing proteins in fungi. **(C)** The phylogeny was estimated from 308 protein sequences that belong to the IME4 subclade and from five METTL3 orthologues found in metazoans and a model plant *Arabidopsis thaliana*. The arrow indicates *Arabidopsis thaliana* METTL3. The branch marked with a red asterisk suggests clades that likely diverged at earlier time points. The color strip outside the tree represents different fungal taxa, with each color indicating a distinct taxonomic group as shown in Figure 1B. **(D)** The phylogeny was estimated from 298 protein sequences that belong to the KAR4 subclade and from five METTL14 orthologues found in metazoans and a model plant *Arabidopsis thaliana*. The arrow indicates *Arabidopsis thaliana* METTL14. The branch marked with a red asterisk suggests clades that likely diverged at earlier time points. **(E)** The phylogeny was estimated from 510 protein sequences that belong to the MTA1 subclade and from five METTL4 orthologues found in metazoans and a model plant *Arabidopsis thaliana*. The arrow indicates *Arabidopsis thaliana* METTL4. The inner color strip represents fungal class within the subphylum Pezizomycotina, with each color indicating a distinct taxonomic group as shown in the inset box. **(C–E)** More detailed trees showing UniProt protein IDs and bootstrap values can be found in Supplementary Fig. S1. **(F)** Copy number variation of potential m⁶A writers in fungi. The color strip represents different fungal taxa, with each color indicating a distinct taxonomic group as shown in Figure 1B.

Figure 2

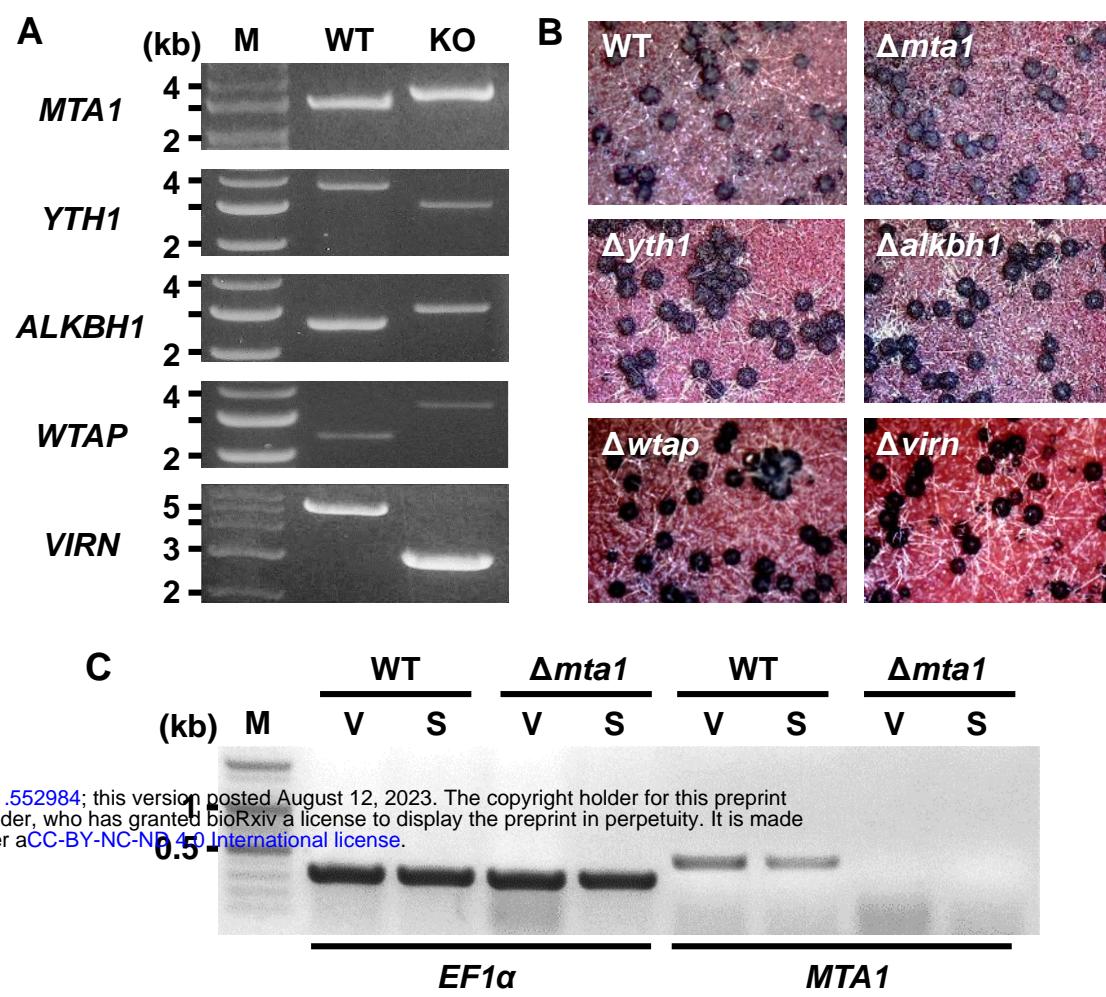

Figure 2. Phylogeny of potential m⁶A readers in fungi. **(A)** The maximum-likelihood phylogeny was estimated from 868 sequences of YTH domain-containing proteins identified in 695 fungal species. Red arrows indicate highly supported clades representing PHO92 (Agaricomycotina and Saccharomycotina), PHO92 (Pezizomycotina) and YTH1 families. The branch lengths in the tree reflect the amount of evolutionary change, with the scale indicating 1.0 amino acid sequence substitution per site. The outer color strip represents subphyla, with each color indicating a distinct taxonomic group as shown in (B), and the inner color strip represents fungal class within the subphylum Pezizomycotina, with each color indicating a distinct taxonomic group as shown in the inset box. **(B)** Phylogenetic distribution of YTH domain-containing proteins in fungi. **(C)** Copy number variation of potential m⁶A readers in fungi. The color strip represents different fungal taxa, with each color indicating a distinct taxonomic group as shown in Figure 2B.

Figure 3

Figure 3. Phylogeny of potential m⁶A erasers in fungi. The maximum-likelihood phylogeny was estimated from 125 sequences of 2OG-Fe(II) dioxygenase AlkB-like domain-containing proteins identified in 27 selected fungal species. The color strips on the right side of leaves indicate different fungal taxa: purple—Pezizomycotina, yellow—Saccharomycotina, brown—Basidiomycota, cyan—early-diverging fungi, white—human or *Arabidopsis thaliana*. Highly supported clades each containing an ALKBH identified in *F. graminearum* were shaded with different colors. Bootstrap values of greater than 70% were shown. Branch lengths are proportional to the inferred amount of evolutionary change, and the scale represents 1.0 amino acid sequence substitutions per site.

Figure 4

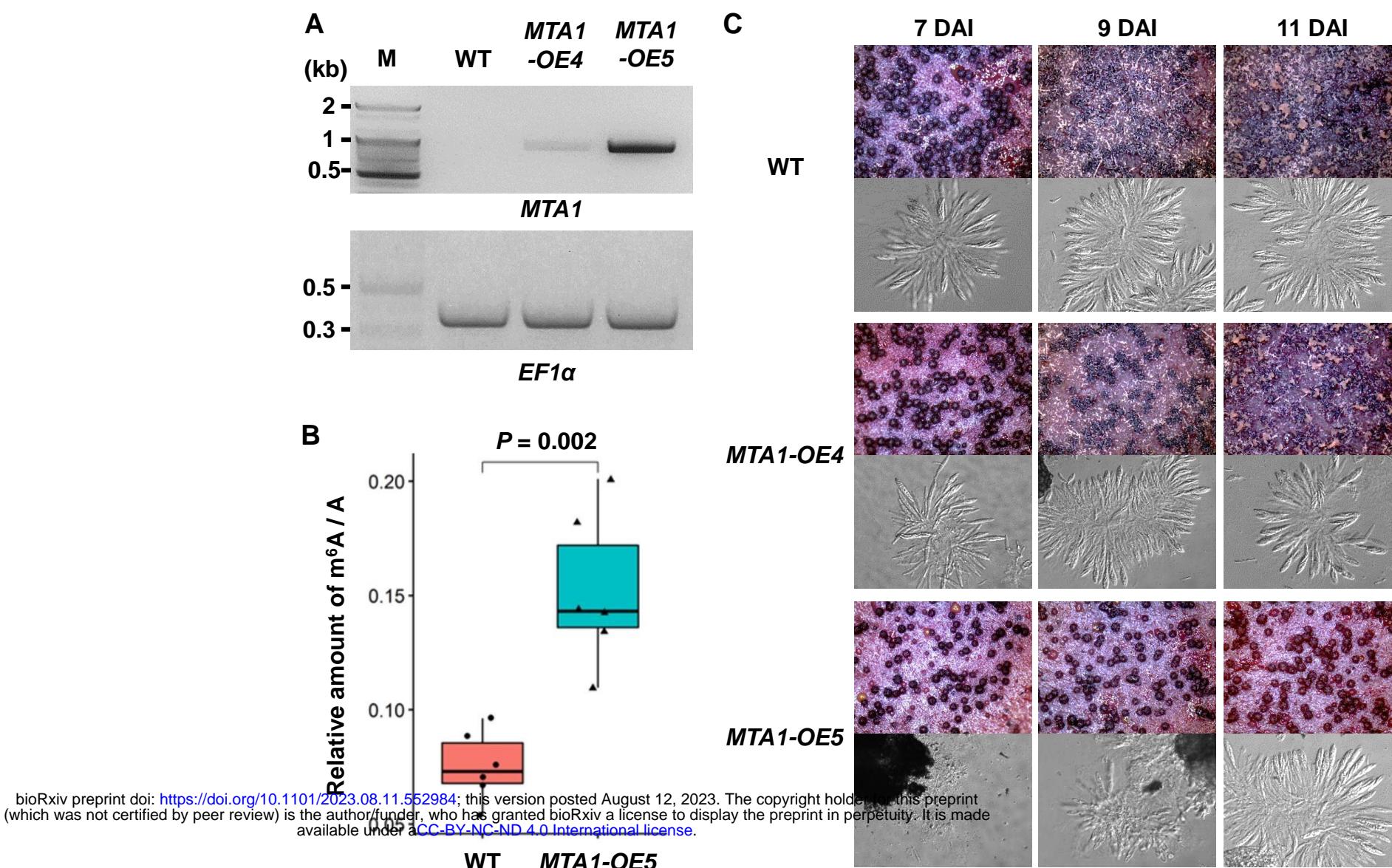


Figure 4. Generation of knockout mutants lacking potential m⁶A factors in *F. graminearum*. **(A)**

Diagnostic PCRs confirmed homologous integration of the split marker constructs to the target gene loci.

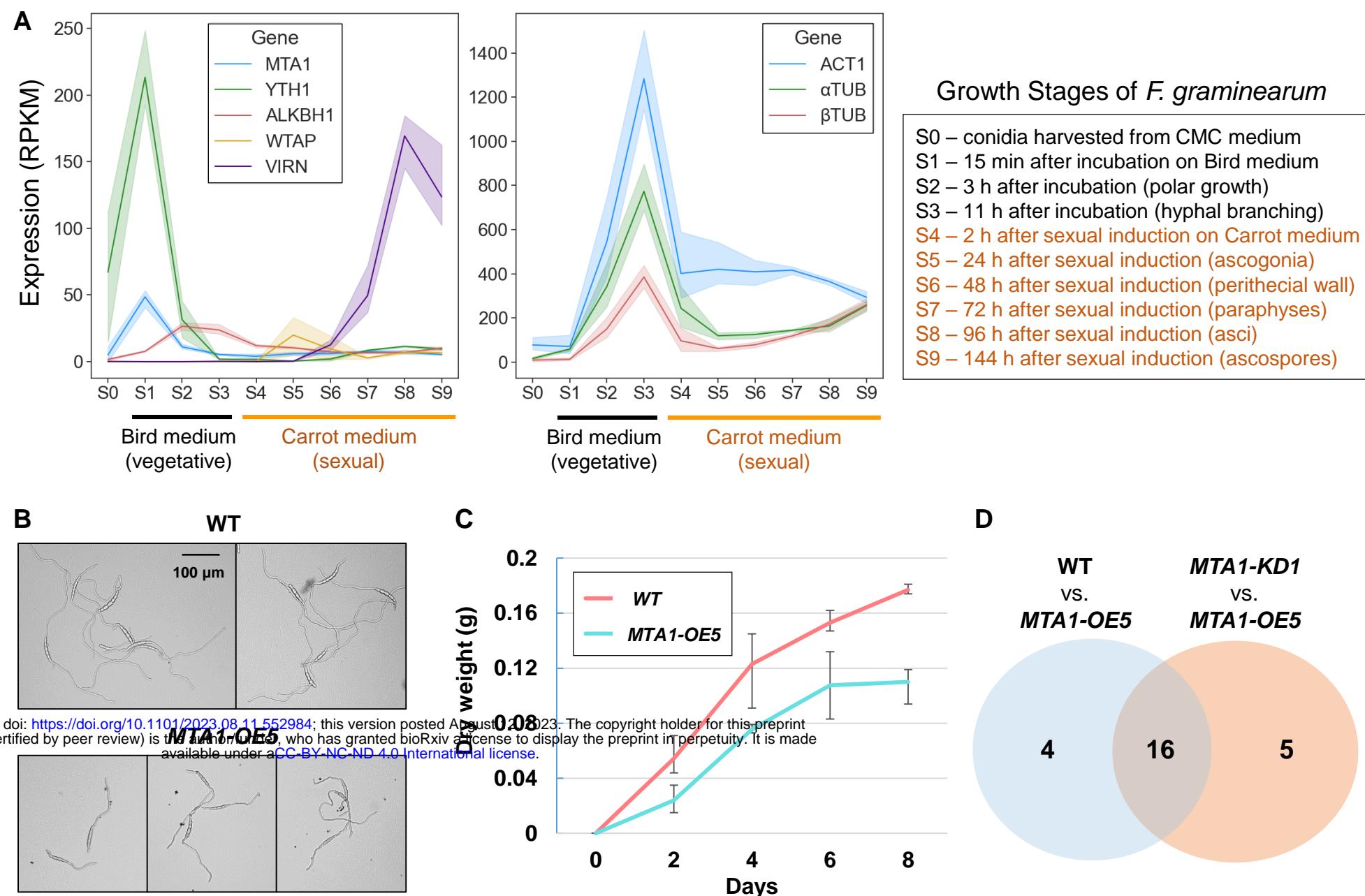

Note the PCR band size between the wild-type (WT) and knockout strains (KO) due to the gene replacement. M–1-kb DNA ladder. **(B)** Perithecia production of the WT and knockout strains grown on carrot agar media. Photographs were taken with a dissecting microscope at 6 days after induction of sexual development. **(C)** RT-PCR analyses of the WT and $\Delta mta1$ strains. Since *MTA1* lacks introns, distinguishing RNA expression from possible genomic DNA contamination in RT-PCR analysis was challenging. To verify RNA integrity, a primer set was designed for amplifying *EF1 α* , including two introns. Notably, no band corresponding to genomic DNA amplicon for the *EF1 α* reference gene was observed (658 bp for gDNA, 356 bp for mRNA), indicating the absence of genomic DNA contamination. Expression of *MTA1* was confirmed in the WT, whereas no discernible band was observed in $\Delta mta1$ strain. The samples labeled V were collected before sexual induction (*i.e.* vegetative growth stage), samples labeled S were collected six days after sexual induction (*i.e.* sexual growth stage). M–100-bp DNA ladder.

Figure 5

Figure 5. Overexpression of the m⁶A writer *MTA1*. **(A)** RT-PCR analyses of the WT and *MTA1*-overexpressing strains (*MTA1*-*OE4* and *MTA1*-*OE5*). Since *MTA1* lacks introns, distinguishing RNA expression from possible genomic DNA contamination in RT-PCR analysis was challenging. To verify RNA integrity, a primer set was designed for amplifying *EF1 α* , including two introns. Notably, no band corresponding to genomic DNA amplicon for the *EF1 α* reference gene was observed (658 bp for gDNA, 356 bp for mRNA), indicating the absence of genomic DNA contamination. Overexpression of *MTA1* was confirmed in the *MTA1*-*OE4* and *MTA1*-*OE5* strains. Note that *MTA1* was significantly overexpressed in the *MTA1*-*OE5* strain, compared to the WT, from which no discernible band was observed at PCR cycle of 30. M-100-bp DNA ladder. **(B)** m⁶A methylation level in RNA extracted from the WT and *MTA1*-*OE5* strains. Mann-Whitney U test was performed to compare the means of ratio for m⁶A to A between the WT and *MTA1*-*OE5* strains. Box and whisker plots indicate the median, interquartile range between the 25th and 75th percentiles (box), and 1.5 interquartile range (whisker). **(C)** Perithecia production of the WT, *MTA1*-*OE4* and *MTA1*-*OE5* strains grown on carrot agar media (upper panels). Photographs were taken with a dissecting microscope at the indicated days after induction of sexual development (DAI). Squash mounts of perithecia were observed with a compound microscope (lower panels, 400 \times magnification). Mature ascospores were observed in the WT and *MTA1*-*OE4* strains as early as 7 DAI, whereas in the *MTA1*-*OE5* strain, it was not until 11 DAI that ascospore formation became evident.

Figure 6

Figure 6. Conidial germination affected by the m⁶A writer *MTA1*. **(A)** Gene expression profiles of potential m⁶A factors (left panel) and housekeeping genes (right panel) in *Fusarium graminearum*. Average values for reads per kilobase per million mapped reads (RPKM) values for three replicates samples were plotted. Bands surrounding the line plots indicate 95% confidence intervals of the means. The x-axis are different growth stages of *F. graminearum* (S0–S9). See the right box for the description of vegetative and sexual growth stages. Gene ID for potential m⁶A factors are ALKBH1 (FGRRES_16652), MTA1 (FGRRES_06225), VIRN (FGRRES_06249), and WTAP (FGRRES_01626). Housekeeping genes examined here are α -tubulin (α TUB, FGRRES_00639), β -tubulin (β TUB, FGRRES_09530), and actin 1 (ACT1, FGRRES_07735). **(B)** Conidia germination and polar growth of hyphae in quarter-strength potato dextrose broth (q-PDB) medium. Photos were taken 16 hours after incubation. Note that shorter hyphae germinated from macroconidia of the *MTA1*-OE5 strain, compared to the wild-type (WT) strain. **(C)** Dry weight of mycelia grown in q-PDB medium was measured with two days interval. **(D)** The numbers of differentially expressed genes in fresh macroconidia harvested from carboxymethylcellulose (CMC) medium between the WT and *MTA1*-OE5 strains, and between the *MTA1*-KD1 and *MTA1*-OE5 strains.