

1 **Interkingdom interactions shape the fungal microbiome of mosquitoes.**

2

3 Shivanand Hegde^{1\$#}, Kamil Khanipov², Emily A Hornett^{1,3}, Pornjarim Nilyanimit⁴, Maria
4 Pimenova², Miguel A. Saldaña⁵, Charissa de Becker⁶, Georgiy Golovko², Grant L.
5 Hughes^{1#}

6

7 ¹Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected
8 Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK

9 ²Department of Pharmacology and Toxicology, University of Texas Medical Branch,
10 Galveston, TX, USA.

11 ³Institute of Integrative Biology, University of Liverpool, Liverpool, UK

12 ⁴Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, Thailand.

13 ⁵Department of Microbiology and Immunology, University of Texas Medical Branch,
14 Galveston, TX, USA

15 ⁵Department of Paediatrics and Tropical Medicine, Baylor College of Medicine, Houston,
16 TX, USA

17 ⁶Microbiology, Department of Biology, Utrecht University, 3584 CH Utrecht, The
18 Netherlands

19 # Correspondence: grant.hughes@lstmed.ac.uk, s.m.hegde@keele.ac.uk

20 ^{\$}Current Address. School of Life Sciences, Keele University, Newcastle, United Kingdom

21 Running head: Fungal microbiome of *Aedes* and *Culex* mosquitoes.

22

23 **Keywords.** Inter-kingdom interactions, Mycobiome, *Candida*, *Sachharomyces*, fungi-
24 bacteria interactions, gut fungi, environmental factors, sterile rearing, axenic mosquitoes,
25 microbiome manipulations

26

27 **Abstract.**

28 The mosquito microbiome is an important modulator of vector competence and vectoral
29 capacity. Unlike the extensively studied bacterial microbiome, fungal communities in the
30 mosquito microbiome (mycobiome) remain largely unexplored. To work towards getting
31 an improved understanding of the fungi associated with mosquitoes, we sequenced the
32 mycobiome of three field-collected and laboratory-reared mosquito species (*Aedes*
33 *albopictus*, *Aedes aegypti*, and *Culex quinquefasciatus*). Our analysis showed both
34 environment and host species were contributing to the diversity of the fungal microbiome
35 of mosquitoes. When comparing species, *Ae. albopictus* possessed a higher number of
36 diverse fungal taxa than *Cx. quinquefasciatus*, while strikingly less than 1% of reads
37 from *Ae. aegypti* samples were fungal. Fungal reads from *Ae. aegypti* were <1% even
38 after inhibiting host amplification using a PNA blocker, indicating that this species lacked
39 a significant fungal microbiome that was amplified using this sequencing approach.
40 Using a mono-association mosquito infection model, we confirmed that mosquito-
41 derived fungal isolates colonize and for *Aedes* mosquitoes, support growth and
42 development at comparable rates to their bacterial counterparts. Strikingly, native
43 bacterial taxa isolated from mosquitoes impeded the colonization of symbiotic fungi in
44 *Ae. aegypti* suggesting interkingdom interactions shape fungal microbiome communities.
45 Collectively, this study adds to our understanding of the fungal microbiome of different
46 mosquito species, that these fungal microbes support growth and development, and
47 highlights that microbial interactions underpin fungal colonization of these medically
48 relevant species.

50 **Introduction.**

51 The microbiome profoundly influences many phenotypes in a host. In mosquitoes, much
52 of the focus in this area has centered on how bacterial microbiota play an important role
53 in mosquito biology, particular in relation to vector competence or how bacteria can be
54 exploited for vector control [1-4]. Many of these studies have examined how the bacterial
55 microbiome influences mosquito traits important for vectorial capacity, including growth,
56 reproduction, and blood meal digestion [5-9]. While these studies provide convincing
57 evidence that microbes can influence traits important for vectorial capacity of mosquitoes
58 [9, 10], the role of the fungi on mosquito biology is understudied and less well
59 understood.

60

61 Several studies have characterized the fungal microbiome in different mosquito species
62 using culture-dependant and -independent methods [11-27]. In general, these studies
63 indicate the majority of fungal taxa that colonize mosquitoes are within the *Ascomycota*
64 and *Basidiomycota* phyla [16, 19, 22, 28-31]. Shotgun metagenomic sequencing of *Cx.*
65 *pipiens*, *Culiseta incidunt*, and *Olcheimerotatus sierrensis* uncovered a diverse array of
66 fungal taxa in mosquitoes, but only two fungal genera, *Cladosporium* and
67 *Chromocliesta*, were present in multiple mosquitoes [13]. Amplicon sequencing of
68 bacterial and fungal microbiomes of *Ae. aegypti* found fewer eukaryotic taxa compared
69 to bacterial, although the majority of eukaryotic reads in mosquitoes were designated to
70 gregarine parasites, rather than fungal species [18]. While our appreciation of the fungal

71 community is expanding, we have a poor understanding of its functional relavance or
72 interactions with other members of the microbiome.

73 Fungal community composition and abundance appear to be influenced by several
74 factors, similar to their bacterial counterparts [28]. Aspects that appear to affect fungal
75 microbiota include habitat, host species, diet, and pathogen infection [16, 22, 23, 30, 31].

76 For instance, in the tree hole mosquitoes *Ae. triseriatus* and *Ae. japonicus*, both blood
77 feeding and La Cross virus infection were shown to reduce fungal richness [17]. Like the
78 bacterial microbiome, mycobiome community structure varies between mosquito species
79 and habitats [16-19, 27] and fungal diversity is seen between mosquito tissues [19, 22,
80 30]. While it is evident that mosquitoes possess diverse fungal taxa, sequence based
81 assessment of the fungal microbome can be challenging due to inadvertent amplification
82 of the host. To overcome these challenges, methods to selectively amplify the fungal
83 sequences at the expense of host sequence have been accomplished [11].

84

85 Fungi can influence mosquito phenotypes that have important ramifications for vectorial
86 capacity. For instance, the presence of a common mosquito-associated *Ascomycete*
87 fungus *Penicillium chrysogenum* in the midgut of *An. gambiae* enhances the mosquito's
88 susceptibility to *Plasmodium* infection [30]. Similarly, *Talaromyces* fungus increased *Ae.*
89 *aegypti* permissiveness to dengue virus infection [31], while *Beauverua bassiana*
90 reduces vectorial capacity of *Ae. albopictus* to Zika virus [32]. Other studies have
91 examined the effect of yeast on mosquito development and survival, which are traits that
92 could influence vectorial capacity. Supplementation of *Saccharomyces cerevisiae* or
93 native yeast strains supported the development of *Cx. pipiens* [22], although there was a

94 strain-specific effect on the overall growth and development [12]. Recent advances in
95 rearing approaches have enabled mono-association infections to be undertaken
96 whereby a single (or group) of microbe(s) is inoculated in to germ-free L1 larvae to
97 enable mosquito growth and development [7, 23, 33, 34]. While studies using mono-
98 axenic rearing approaches have focused on the influence of the bacterial microbiome on
99 their ontogeny [7, 23, 35-38], the ability of fungal isolates native to mosquito fungi have
100 not been evaluated using this innovative mosquito rearing approach.

101
102 To address these gaps in our knowledge regarding fungal-host association in
103 mosquitoes, we used high-throughput sequencing to examine the fungal microbiome of
104 *Ae. aegypti*, *Ae. albopictus* and *Cx. quinquefasciatus* mosquitoes caught in the field or
105 reared in the lab. Using gnotobiotic infection approaches, we reared these mosquitoes
106 mono-axonically with fungal isolates to examine colonization and effects on mosquito
107 development. Our results provide insights into the role of the environment on the
108 composition and abundance of the fungal microbiome, microbe-microbe interactions in
109 mosquitoes, and the influence of native fungal isolates on mosquito life history traits.

110

111 Material and Methods.

112 **Mosquito samples and high-throughput sequencing.** We used the DNA from *Ae.*
113 *aegypti*, *Ae. albopictus*, and *Cx. quinquefasciatus* samples either collected from the field
114 or reared in the lab for high-throughput sequencing to examine the fungal microbiome
115 [35]. The field collection of mosquitoes were followed as described previously[35]. To
116 characterize the fungal microbiome of these mosquito species, the internal transcribed
117 sequence (ITS) was sequenced. The region spanning ITS2 was sequenced according to
118 the Illumina metagenomic sequencing protocol. Libraries were prepared following the
119 amplicon protocol which includes the use of indexes from the Nextera XT Index Kit v2
120 (Illumina). Library preparation was done according to Illumina amplicon protocol
121 (Illumina) (Table S1, ITS primers) [39]. Libraries were sequenced on the MiSeq System
122 with the MiSeq Reagent Kit v3 (Illumina, Catalog No. MS-102-3003). All MiSeq runs
123 were performed with a run configuration of 2 x 251 cycles for PNA blocker PCR samples
124 (see next section) and 1x501 cycles for all other samples. To enable the calculation of
125 error-rate metrics and to increase nucleotide base diversity for more accurate base-
126 calling, all libraries were spiked with 5% PhiX Control v3 (Illumina, Catalog No. FC-110-
127 3001). The NCBI Genbank accession number for the raw sequencing data reported here
128 is PRJNA999749.

129
130 **PNA blocker PCR with microbiome samples.** To block host amplification, PNA
131 blocker was designed and synthesised (PNA Bio, USA). The PCR was performed with 1
132 μ M of each primer (Table S1), 2 μ M PNA,1X KAPA master mix (NEB) and 50 ng of

133 template DNA. The PCR conditions were as follows: 3 min at 95°C for initial
134 denaturation; 30 cycles of 30 sec at 95°C, 30 sec at 70°C, 30 sec at 55°C, 30 sec at
135 72°C, 5 min at 72°C, then 30 sec at 70°C clamping step for PNA. The product was
136 digested with *SphI* which cuts the fungal ITS amplicon but not the region in mosquitoes
137 (Fig. S1). The PCR products were purified and sequenced as described above.

138

139 **Bioinformatic analysis.** To identify the presence of known fungi, sequences were
140 analyzed using the CLC Genomics Workbench 12.0.3 Microbial Genomics Module.
141 Reads containing nucleotides below the quality threshold of 0.05 (using the modified
142 Richard Mott algorithm) and those with two or more unknown nucleotides were excluded
143 and finally the sequencing adapters were trimmed out. Reference based OTU picking
144 was performed using the UNITE v7.2 Database [40]. Sequences present in more than
145 one copy but not clustered in the database were placed into *de novo* OTUs (97%
146 similarity) and aligned against the reference database with an 80% similarity threshold to
147 assign the “closest” taxonomical name where possible. Chimeras were removed from
148 the dataset if the absolute crossover cost was three using a kmer size of six.
149 Additionally, OTU’s were reclassified using BLASTn 2.7.1+[41] against the nt nucleotide
150 collection database. The blast results were used for taxonomic categorization of the
151 origin of ITS sequences between those from the host, metazoan, and fungi. Alpha
152 diversity was measured using Shannon entropy (OTU level), rarefaction sampling
153 without replacement, and with 100,000 replicates at each point.

154

155 Isolation and identification of fungal isolates from mosquitoes. Homogenates
156 of five adult female mosquitoes were from *Ae. albopictus* (Galveston strain) and *Cx.*
157 *quinquefasciatus* (Galveston strain) were plated on Brain Heart Infusion (BHI) agar (BD
158 Difco), Yeast Peptone Dextrose (YPD) agar (BD Difco), malt extract agar (BD Difco),
159 Yeast Malt agar (BD Difco), and Sabouraud Dextrose Broth (BD Difco). Colonies were
160 purified by streaking a colony on a fresh agar plate and incubated at 30 °C for 2 days
161 and transferred to 22-25°C until colonies to appeared before proceeding with culturing in
162 the respective media. Five colonies from each growth media type were screened based
163 on the colony characteristics (Table S2). Genomic DNA was isolated and PCR used to
164 amplify ITS as the way to identify the isolated fungi. The PCR was completed using 1x
165 reaction buffer (NEB), 200 µM dNTPs, 1 µM of each primer (Table S1), and 1U of Taq
166 DNA polymerase (NEB). The PCR conditions were an initial denaturation of 1 min, 30
167 sec at 95°C, then 35 cycles of 30 sec 95°C, 30 sec at 55°C, 30 sec 72°C and a final
168 extension of 5 min at 72°C. The PCR products were separated on agarose gels before
169 Sanger sequencing with ITS3 and ITS4 primers. Sequences were analysed using the
170 BLAST tn NCBI database.

171
172 In vitro growth analysis of fungal isolates. The growth of *R. mucilaginosa*, *C.*
173 *oleophila*, *S. cereviciae* and *L. thermotolerance* were undertaken by culturing in liquid
174 YPD medium at 28°C. Overnight cultures of fungal isolates were diluted 1:100 in YPD
175 medium and were grown at 28°C for 48 hours. The growth was assessed by recording

176 OD at 600nm at 0, 2, 4, 8, 24 and 48 hours (Fig. S2). The assay was done in five
177 replicates and repeated twice.

178

179 Mosquito mono-association infection with fungi. Mono-association (MA) rearing
180 was used to assess the colonization of fungi in absence of a natural microbiome. Axenic
181 L1 larvae were generated as described previously [7, 35]. The 45 axenic larvae (N=15
182 per flask) were infected with 1×10^7 cfu/ml fungi *R. mucilogenosa*, *C. oleophila*, *L.*
183 *thermotolerance*, *S. cerevisiae* and *C. neteri* bacteria. Fungi *R. mucilogenosa*, *C.*
184 *oleophila*, *L. thermotolerance* are the culturable fungi present in the lab colonies of *Ae.*
185 *albopictus* and *Cx. quinquefasciatus* mosquitoes and *C. neteri* is the abundant culturable
186 bacteria found in the laboratory *Ae. aegypti* mosquito colony. All the procedures related
187 to mono-association infection of mosquitoes were undertaken in a sterile environment
188 and sterility was verified by plating larval water on LB agar plates. The mono-associated
189 larvae were fed with sterile fish food at the concentration of 20 ug/ml. The axenic L1
190 larvae without microbes have slow growth rates and do not reach pupation. For the
191 mono-associated infections, larvae were maintained in the T75 flask till they reached
192 pupae stage and the pupae were transferred to a container to eclose into adults. The
193 adults were maintained on sterile 10% sucrose solution until they were harvested for
194 CFU quantification. The infection in the T75 flasks were maintained till day 16 by this
195 time most of the larvae had pupated. To quantify their fungal or bacterial symbionts
196 loads, we surface sterilized L4 larvae with 70% ethanol for 3 min and 2 times 1X PBS
197 for 5 min. Larvae were then homogenized and plated on YPD agar for fungi and LB agar

198 for bacteria. After incubation for 2 days, colonies were counted. Five larvae from each
199 flask (total N=15) were tested for CFU analysis. Both bacterial and fungal quantification
200 were done from the same larval and adult sample. Time to pupation and the percentage
201 of L1 larvae to reach adult stage were recorded to determine the effect of fungi on
202 mosquito growth and development. Time to pupation was recorded as the day when
203 pupae were collected from the flask post infection. The number of adults emerged from
204 each flasks (N = 15 larvae per flasks) were recorded and the percentage of L1 that
205 emerged as adults was calculated. To assess the interkingdom interactions between
206 native microbiome and fungi, *Ae. aegypti* mosquitoes were also infected with *R.*
207 *mucilogenosa*, *C. oleophila*, *L. thermotolerance*, *S. cerevisiase* either in mono-
208 association or in conventional rearing settings. The bacteria *C. neteri* was used as a
209 control for inter-microbial interactions which we described in our previous study [35]. To
210 assess the interkingdom interactions between fungi and bacterial microbiome, we did
211 the fungi and bacteria infection of mosquito with and without native microbiome. All the
212 procedures relating in in the interkingdom interactions study were followed as did for the
213 mono-association infection.

214

215

216 **Fungal qPCR analysis.** We used qPCR to determine the fungal load in *Ae. aegypti*,
217 *Ae. albopictus*, and *Cx. quinquefasciatus* using 18S rRNA primers and probes [42].
218 PCRs consisted of 50-100 ng of DNA, 1 μ M of each primer (Table S1), 225 nM of the
219 TaqMan probe (Table S1) 1% formamide, 1X Platinum Quantitative PCR SuperMix-UDG

220 wROX (Invitrogen Corp.) and molecular biology grade water. We used the following
221 PCR conditions: 3 min at 50°C for UNG treatment, 10 min at 95°C for *Taq* activation, 15
222 sec at 95°C for denaturation, and 1 min at 65°C for annealing and extension for 40
223 cycles. We used host S7 or actin gene specific primers as endogenous control. The
224 relative fungal copies were compared to host genome copies.

225

226 **Statistical analysis.** All statistical analysis of the CFU and mosquito growth analysis
227 data were done using GraphPad Prism software. We first D'Agostino & Pearson test and
228 Shapiro-Wilk tests to assess the normal distribution of data. The data sets which
229 followed Gaussian distribution were analysed by One-Way ANOVA. The nonparametric
230 Tukey's multiple comparison test was performed on data sets which did not follow
231 Gaussian distribution. The prevalence data were analysed by a Fisher exact test with
232 2x2 matrix where number of infected and uninfected for each treatment was compared
233 with every other treatment for each mosquito species. P-value 0.05 was considered
234 significant.

235

236 **Results.**

237 **Fungal microbiome sequencing and analysis.**

238 We sequenced the ITS2 region from field-collected and lab-reared mosquitoes to
239 characterize their fungal microbiome. Across all samples, we obtained 9,310,520 reads
240 and recorded, on average, 155,175 reads per mosquito sample. However, similar to
241 other high throughput sequencing (HTS) studies characterizing the fungal microbiota in
242 eukaryotic hosts [11, 43, 44], our attempts were hampered due to the amplification of
243 host or metazoan sequences. This was most pronounced for *Ae. aegypti* where about
244 99% of the reads were nonfungal derived (Fig. 1), while *Cx. quinquefasciatus* and *Ae.*
245 *albopictus* had an average 21% and 8% fungal reads, respectively. To block
246 nonselective amplification in *Ae. aegypti* samples, we employed a PCR clamping
247 approach using a PNA blocking probe. While we saw evidence of suppression of host
248 ITS amplification in PCR-based assays (Fig. S1) and a large reduction of host ITS reads
249 (38% reduced to 0%), this did not result in a substantial increase in fungal reads (Fig. 1;
250 a change from 0 to 1%). PNA blockers have been previously used to exclude *Anopheles*
251 18S rRNA reads when sequencing [11] but we saw little difference in the fungal reads,
252 mainly due to an increase in amplification of metazoan sequences as a percentage of
253 the overall reads in the PNA blocker treatment (Fig. 1). We speculated that these *Ae.*
254 *aegypti* lacked significant fungal communities and therefore we saw non-specific
255 amplification of host DNA in this sample as there was a lack of fungi ITS template to
256 amplify. To further address this we completed qPCR to estimate total fungal density in
257 lab-reared mosquitoes using universal fungal primers. Here we saw significantly reduced
258 fungal loads in *Ae. aegypti* compared to the other two mosquito species (Fig. S3;

259 ANOVA with Dunn's multiple comparison test, $P < 0.0001$). Given the evidence for
260 reduced fungal loads in *Ae. aegypti*, our attention then focused on examining the fungal
261 microbiome of *Cx. quinquefasciatus* and *Ae. albopictus* mosquitoes (Table S3). Despite
262 the fungal reads comprising a relatively small proportion of the overall reads in *Cx.*
263 *quinquefasciatus* and *Ae. albopictus*, rarefaction curve analysis indicated that our
264 sampling depth was sufficient to observe the majority of fungal OTUs in the majority of
265 individual mosquitoes (Fig. S4).

266

267 **Figure 1. Average of percentage of reads from ITS2 sequencing:** Average of
268 percentage of ITS2 sequencing reads from *Ae. aegypti*, *Ae. albopictus* and *Cx.*
269 *quinquefasciatus*. Reads were assigned to phyla. *Ae. aegypti* samples were sequencing
270 again with the addition of a PNA blocker targeting the host ITS sequence. To generate
271 average reads per species 11 laboratory reared and 22 field collected samples from *Ae.*
272 *albopictus* and *Cx. quinquefasciatus* were analysed to generate average reads per
273 species. For *Ae. aegypti* 22 field collected samples were assessed while 16 field
274 collected samples were amplified with the PNA blocker.

275

276 **Fungal richness, diversity, and community structure.**

277 We examined the species richness of the fungal microbiome in *Cx. quinquefasciatus*
278 and *Ae. albopictus* by evaluating the difference between field-collected mosquitoes
279 caught in either the gravid (G) or BG traps. When comparing within each species, we
280 saw no significant difference in the Shannon diversity between traps (BG or gravid traps,
281 Fig. S5A; Tukey's multiple comparison test, $P > 0.05$) for either species nor did we see
282 significant differences between traps for beta diversity estimates (Fig. S5B and S5C;
283 Bray-Curtis dissimilarity, $P > 0.05$). As such, we combined these mosquitoes for further
284 analyses and considered them "field-collected". When comparing between mosquito

285 species, we found that the field-collected *Ae. albopictus* had significantly elevated
286 Shannon diversity compared to *Cx. quinquefasciatus* (Fig. 2A; Tukey's multiple
287 comparison test, $P < 0.05$), but no difference was seen between species in lab-reared
288 mosquitoes. Similarly, there was no significant difference in Shannon diversity when
289 comparing within a species between environments (i.e. field vs lab; Fig 2A). This was
290 also true for the number of OTUs with no difference within a species but *Ae. albopictus*
291 had significantly more OTUs compared to *Cx. quinquefasciatus* regardless of
292 environment (Fig 2B; Tukey's multiple comparison test, $P < 0.05$). We then examined
293 the community structure of the fungal microbiome using Bray-Curtis NMDS analysis.
294 Overall, the fungal microbiome clustered distinctly with both species and environment
295 were identified as significant factors (Fig. 2C; Bray-Curtis dissimilarity, $P = 0.0009$). This
296 was predominantly driven by the field samples which, when analyzed separately, were
297 significantly different between each species (Fig 2D; Bray-Curtis dissimilarity, $P =$
298 0.0009), but when mosquito species were reared in a common lab environment the
299 fungal microbiomes were similar (Fig 2E; Bray-Curtis dissimilarity, $P = 0.05295$). When
300 comparing field-caught and lab-reared mosquitoes, both *Ae. albopictus* (Fig 2F; Bray-
301 Curtis dissimilarity, $P = 0.002997$) and *Cx. quinquefasciatus* (Fig 2G; Bray-Curtis
302 dissimilarity, $P = 0.0009$) had distinct microbiomes, indicating environmental factors
303 contributing to the diversity of fungal communities.

304

305 **Figure 2. Alpha and Beta diversity analysis of fungal microbiome.** Shannon entropy
306 measuring abundance of fungal microbiome in *Ae. albopictus* and *Cx. quinquefasciatus*
307 (A). Number of operational taxonomic units represents species richness of fungal

308 microbiome in *Ae. albopictus* and *Cx. quinquefasciatus* (B). Non-metric Multi-
309 dimensional Scaling (NMDS) plots showing Bay-Curtis analysis of relative abundance of
310 fungal OTUs. The fungal diversity was compared between laboratory and field samples
311 between *Ae. albopictus* and *Cx. quinquefasciatus* (C). The fungal microbiome in the field
312 collected samples (D) and laboratory reared mosquitoes (E) were compared between
313 the two species. The fungal diversity between different environments (lab v field) was
314 compared within *Cx. quinquefasciatus* (F) and *Ae. albopictus* (G). Numbers inside the
315 graph indicates the p-value between groups. The field samples includes mosquitoes
316 were collected in G and BG traps. Key for coloured squares and circles is within each
317 panel. The data were analyzed by one-way ANOVA with Tukey's multiple comparison
318 test where P<0.05 considered significant.

319

320 Next, we examined the taxa present in each mosquito species. There were 244 fungal
321 OTUs in mosquitoes, of which 76 and 97 were present above a 0.1% threshold in *Cx.*
322 *quinquefasciatus* and *Ae. albopictus*, respectively (Table S3). While the majority of taxa
323 were unidentified (Fig. 3 and S6), of the known OTUs, most were classified within the
324 *Ascomycota* and *Basidiomycota* phyla, (Fig S6), which was similar to other studies [16,
325 18, 45]. *Saccharomycetaceae* were the most abundant in *Ae. albopictus* while the
326 *Malasseziaceae* were dominant in *Cx. quinquefasciatus* (Fig 3A and S6).
327 Unsurprisingly, considering the beta diversity analysis, the microbiomes of the lab-reared
328 mosquitoes were comparable, however when examining the diversity between
329 individuals, there was variation (Fig S6), which is also a feature of the bacterial
330 microbiome [35]. In many cases, OTUs that were dominant in one individual were absent
331 or at low abundances from others (Fig S5).

332

333 **Figure 3. Relative abundance of fungal taxa.** The relative abundance of fungal OTUs
334 at family level with 0.01% cut-off between *Ae. albopictus* and *Cx. quinquefasciatus* field

335 and laboratory samples.

336

337 **Fungal isolates colonize and supports mosquito growth in mono-association**

338 Microbes are required for mosquito growth and development [7, 37]. Eukaryotic
339 microbes such as the model yeast, *S. cerevisiae*, are known to promote larval growth
340 [23], however it is not clear how symbiotic fungi affect mosquito growth and
341 development. We cultured and identified symbiotic fungi from *Ae. albopictus* and *Cx.*
342 *quinquefasciatus*. To determine if these native fungal taxa colonize mosquitoes and
343 supported growth of their hosts, we reared mosquitoes in a mono-association using four
344 fungal species. Three of these species, *Candida oleophila*, *Rhodotorula mucilagenosa*,
345 and *Lachancea thermotolerans* were native mosquito isolates while the model yeast
346 *Sachharomyces cerevisiae* was used as a positive control. The growth of mosquitoes
347 infected with fungi was also compared to a native bacterial isolate, *Cedecae neteri*,
348 which is a common bacterium present in our lab-reared *Ae. aegypti* and complements
349 growth of mosquitoes in a mono-association [35]. When colonizing germ-free
350 mosquitoes, fungi were more effective at colonizing *Ae. aegypti* and *Cx.*
351 *quinquefasciatus* (Fig. 4A and 4C, circles, Fisher's exact test, $P>0.05$) having high
352 prevalence rates in adults while prevalence was reduced for all microbes in *Ae.*
353 *albopictus* (Fig. 4B, circles, Fisher's exact test, $P<0.05$). Intriguingly, colonization rates of
354 100% were observed in both larvae and adults of *Ae. aegypti* for all microbes (Fig. 4A,
355 circles). Additionally, the native fungal densities were comparable to that of the symbiotic
356 bacteria *C. neteri* (Fig. 4A, Dunn's multiple comparison test, $P<0.05$). Both *C. oleophila*

357 and *R. mucilaginosa* poorly infected adult *Ae. albopictus* despite infecting larvae (Fig.
358 4B, Dunn's multiple comparition test, $P<0.05$). Similar to *Ae. aegypti*, the native fungal
359 infection prevalence was 100% in larvae while there was no significant difference in the
360 infection prevalence of microbes in adults (Fig. 4C, circles, Fisher's exact test, $P>0.05$)
361 although variable infection densities were observed in both life stages (Fig. 4C, Dunn's
362 multiple comparisonn test, $P<0.05$).

363

364 **Figure 4. Fungal colonization of axenic mosquitoes.** The scattered plot shows
365 CFUs/mosquito of *Ae. aegypti* (A), *Cx. quinquefasciatus* (B) and *Ae. albopictus* (C) larvae
366 and adults. The CFU data were analysed by Kruskal-Wallis Test with a Dunn's multiple
367 comparisons test. The circle above each scattered plot shows prevalence of infection for
368 that treatment. Prevalence data were analysed by Fisher exact test. Letters above each
369 scattered plot and prevalence circle indicate significance between the treatments. For all
370 statistical analysis $P<0.05$ was considered significant. Sample size was $N \geq 10$ for larvae
371 and $N \geq 5$ for adults – each dot on the graph represents an individual mosquito. The dotted
372 horizontal line inidicates threshold detection limit.

373

374 **Mosquito development assay**

375 Given bacterial microbiota can influence development we also determined the life history
376 traits associated with mono-association infection. In *Ae. albopictus*, mosquitoes infected
377 with *L. thermotolerans* had reduced times to pupation compared to the other native
378 fungal microbes, while there was variability in pupation times in *Ae. aegypti* but no
379 differences in *Cx. quinquefasciatus* between microbes (Fig 5A-C). We also measured
380 the percentage of L1 larvae that reached adulthood in these mono-associations. In
381 general, *Ae. albopictus* had higher rates of mosquitoes reaching adulthood for all
382 microbes, while the percentage of *Culex* mosquitoes emerging as adults was below 40%

383 for all fungal taxa (Fig 5D-F). In *Ae. aegypti* mosquitoes, *R. mucilaginosa* infections
384 had significantly different effects compared to the other two native fungi, while in *Ae.*
385 *albopictus* its effects were only significantly different from *S. cerevisiae* (Fig 5D &E,
386 Tukey's multiple comparison test, $P<0.05$).

387

388 **Figure 5. Life history traits in mono-association infections.** Time to pupation of each
389 species in mono-axenic associations (A-C). Data were analysed by one-way ANOVA with
390 Dunn's multiple comparison test. Growth was determined by percentage of L1 larvae to
391 reach adulthood (D-E). Data were analysed by one-way ANOVA with Tukey's multiple
392 comparison test. None of the axenic larvae pupated and hence, the percentage to
393 adulthood are zero for all axenic controls.

394

395 **Fungal infection in presence and absence of native bacterial microbiome.**

396 We have previously shown that colonization of symbiotic bacteria is influenced by
397 members of the native bacterial microbiome [35, 46]. Given the ability of fungi to infect
398 *Ae. aegypti* in a mono-association but the lack of fungal reads in field-collected
399 mosquitoes, we speculated that bacteria may inhibit fungal infection. To determine if
400 cross kingdom interactions influenced fungal colonization, we infected fungi into
401 conventionally reared or axenic *Ae. aegypti*, which either possessed or lacked their
402 native bacterial microbiome, respectively. Strikingly, we did not recover any fungal CFUs
403 in either larvae or adults when the mosquitoes were grown conventionally in the
404 presence of a native microbiome, however in stark comparison, fungal isolates were
405 able to effectively colonize germ-free mosquitoes (Fig. 6, Mann Whitney Test, $P<0.05$).
406 Intriguingly, the reduced colonization capacity of fungi of conventionally reared

407 mosquitoes was seen in both larvae (Fig. 6A, Mann Whitney Test, $P<0.05$) and adults
408 (Fig. 6B, Mann Whitney Test, $P<0.05$). In agreement with our previous study [38], the
409 positive control, *C. neteri* also was more effective at colonizing germ-free mosquitoes
410 compared to their conspecific's that possessed a conventional microbiome, however this
411 effect here was more subtle compared to the almost complete blockage of fungi seen
412 when mosquitoes had bacterial microbiota.

413

414 **Figure 6. Fungal colonization in presence or absence of a native microbiome.** *R. mucilaginosa*, *C. oliophila*, *L. thermotolerans* were inculcated into conventionally (C) reared
415 *Ae. aegypti* mosquitoes that possessed their native microbiota or axenic germ-free
416 mosquitoes to create a mono-association (MA). CFUs were quantified in **A**) L2-L3 larvae
417 and **B**) three to four day old adults. The bacterium *C. neteri* was used as a positive control.
418 A contamination control was undertaken by rearing axenic larvae without infection. These
419 mosquitoes did not develop confirming sterility. The CFU/mosquito data were analysed by
420 unpaired t test and prevalence data by a Fishers exact test. Asterisks (*) indicates
421 significance, while ns denotes non-significant.

423

424 **Discussion.**

425 We characterised the fungal microbiome of *Ae. aegypti*, *Ae. albopictus* and *Cx.*
426 *quinquesfaciatus* collected from different environments. Sufficient fungal reads were
427 obtained from *Cx. quinquesfaciatus* and *Ae. albopictus* to evaluate their fungal
428 microbiomes. In these species, we found the fungal composition varied substantially
429 between species and environments. These findings were similar to other reports
430 whereby environment has been shown to be a major determinant of fungal microbiome
431 composition [16, 18, 19]. At the individual level, there was variability in the composition

432 of fungal taxa within mosquitoes. Of the known taxa, *Malassezia*, *Saccharomycetales*,
433 and to a lesser extent, *Candida* were fungi that were frequently seen in either species
434 and other studies have identified these genera in mosquitoes suggesting they may
435 commonly infect these vectors [13, 16, 29, 47, 48].

436

437 Strikingly, our sequencing data suggest that the fungal microbiome of *Ae. aegypti* is
438 dramatically reduced as we only observed a small fraction of fungal reads in these
439 mosquitoes. Initially we speculated that the low number of fungal reads was due to
440 preferential amplification of the host, and as such we used blocking PNA
441 oligonucleotides to suppress host reads, in a similar fashion to other studies [11, 43, 44].
442 Despite our blocking primer reducing host ITS reads, there was no significant increase in
443 the number of fungal reads, but rather an increase in off target host reads, indicating that
444 these field caught mosquitoes lacked fungi at an amplifiable level. Supporting this
445 finding, qPCR analysis of lab-reared *Ae. aegypti* found significantly reduced fungal
446 densities compared to *Ae. albopictus* and *Cx. quinquefasciatus*. Together these data
447 indicate that these *Ae. aegypti* mosquitoes have a reduced fungal microbiome. Further
448 studies are required to determine if this is consistent across other lab-reared or field
449 collected *Ae. aegypti* mosquitoes.

450

451 Little is known about the capacity of members of the fungal microbiome to colonize their
452 mosquito host. Although our sequencing data indicate *Ae. aegypti* lacked a robust fungal
453 microbiome, specific taxa were able to colonize when infected into germ-free
454 mosquitoes. The ability of germ-free mosquitoes to harbour fungi suggests that the

455 reduced fungal load that we saw in *Ae. aegypti* by sequencing or qPCR was not due to
456 an incompatibility between the fungal species and the mosquito, but rather due to
457 microbial incompatibility. To empirically test this, we compared infection of fungal taxa in
458 germ-free compared to conventionally reared mosquitoes and found fungi infected the
459 mosquitoes in absence of native microbiome. While the microbiome can be composed of
460 a variety of microbes, we speculated that bacterial microbiota were interfering with
461 fungal infections. We have previously identified several bacterial co-occurrence
462 interactions in these mosquitoes and experimentally validated inter-bacterial interactions
463 in co-infection studies [35, 46, 49]. However, fungal-bacterial co-occurrence has not been
464 exclusively investigated. Several other studies identified fungal and bacterial
465 communities co-existing from individual mosquitoes, but these were not in *Ae. aegypti*
466 [13-15]. More generally, the influence of bacteria-fungi interactions on colonization has
467 been observed in diverse microbial systems including the soil microbiome, and the
468 microbiota of livestock and humans [50-53], so further investigations of these
469 interactions in mosquitoes are warranted.

470

471 Several studies have shown that the bacterial microbiome is required for mosquito
472 growth and development [7, 38, 54]. Other eukaryotic microbes can also facilitate
473 development including the model yeast *S. cerevisiae* and insect cells [23, 55]. Here we
474 show that native fungal species that associate with mosquitoes also have the ability to
475 support mosquito growth and development. We did observe developmental variation
476 between fungal microbes and between mosquito species, however, *S. cerevisiae* had
477 similar developmental rates compared to previous studies [23, 55]. Interestingly, we saw

478 variability between replicates in terms of *S. cerevisiae* infections. These replicate
479 experiments (Fig 4A [*S. cerevisiae* had high prevalence and density] and Fig 6 [lack of
480 *S. cerevisiae* infection]) were performed on the same mosquito lines but reared at
481 different institutions. Our most recent analysis of microbiome from these mosquito lines
482 reared at these different insectaries revealed they possessed significantly different
483 microbiomes [56] and given our findings regarding fungal-bacterial interactions, it is
484 tempting to speculate that differences in the native microbiota were responsible for the
485 variation in *S. cerevisiae* colonization. These findings will be important to confirm given
486 that *S. cerevisiae* is being investigated for novel vector control strategies [57].

487

488 In summary, here we showed that *Ae. albopictus* and *Cx. quinquefasciatus* harbor
489 fungal taxa as part of their microbiome, but, *Ae. aegypti* appear to lack mycobiome. The
490 lack of fungal taxa in *Ae. aegypti* appears to be due to cross kingdom microbial
491 interactions. Despite this, when the bacterial microbiome is removed, fungi can infected
492 these mosquitoes and support their growth. Together, our findings have shed a light on
493 an understudied aspect of the mosquito microbiome and shown that native fungal
494 symbionts influence mosquito biology.

495

496 **Supplementary tables and figures legends.**

497 **Table S1.** Sequences of PCR primers used in the study

498 **Table S2.** Characteristics of mosquito derived fungal isolates. The size, color of the
499 colony screened for each species isolated from the *Ae. albopictus* Galveston and *Cx.*
500 *quinquefasciatus* colony. The fungal species were indentified by Sanger sequencing.

501 **Table S3.** Complete and filtered OTU table with relative abundance from each individual
502 mosquito (*Ae. albopictus* and *Cx. quinquefasciatus*).

503 **Figure S1. PNA blocker PCR :** (Left) Schematic representation of PNA blocking PCR
504 against host ITS. The amplicon was digested with *SphI*, which specifically cuts fungal ITS.
505 (Right) Agarose gel showing the PCR products done with *Ae. aegypti* laboratory samples in
506 presence or absence of PNA blocker. The PCR product was digested with *SphI*.

507 **Figure S2. In vitro growth analysis of fungi.** The fungal isolates were grown in YPD
508 medium at 28 C for 48 hrs and OD₆₀₀ was recorded at indicated time points. The
509 experiment was repeated twice each with 5 replicates. The data were analysed by two-way
510 ANOVA with Tukey's multiple comparision test. The assay was done twice each in 5
511 replicates.

512 **Figure S3. Total fungal abundance.** The fungal load in the laboratory reared mosquitoes is
513 analysed by qPCR using primer specific 18S rRNA gene and host endogenous gene S7
514 and Actin were used as control. The Ct values were normalized to host genes are

515 represented in the graph. The data were analysed by one-way ANOVA with Dunn's multiple
516 comparision test. The P<0.05 considered significant.

517 **Figure S4. Rarefaction curve:** Alpha diversity species richness at intervals between 0 and
518 30,000 reads in each sample from different groups lab and field samples in *Ae. albopictus*
519 and *Cx. Quinquefasciatus*.

520 **Figure S5. Abundance and diversity of fungal microbiome field samples.** (A)Alpha
521 diversity analysis of fungal communities in *Ae. albopictus* and *Cx. quinquefasciatus* samples
522 collected using gravid (G) and BG sentinel traps. The statistical significance was determined
523 by one-way ANOVA with Tukey's multiple comparison test. The P<0.05 considered
524 significant. The diversity of communities in the G and BG samples of *Ae. albopictus* (B) and
525 *Cx. quinquefasciatus* (C) were analysed by Bray-Curtis metric.

526 **Figure S6: Beta diversity analysis:** The detailed view of the comparison of abundance at
527 family level between *Ae. albopictus* and *Cx. quinquefasciatus* field and laboratory samples.

528

529

530 **Acknowledgements.**

531 We would like to thank the UTMB insectary core for providing the lab mosquitoes. GLH
532 was supported by the BBSRC (BB/T001240/1, BB/V011278/1, BB/X018024/1, and
533 BB/W018446/1), the UKRI (20197 and 85336), the EPSRC (V043811/1), a Royal
534 Society Wolfson Fellowship (RSWFR1\180013), the NIHR (NIHR2000907), and the Bill
535 and Melinda Gates Foundation (INV-048598). SH was supported by a Director's
536 Catalyst Fund at the Liverpool School of Tropical Medicine and Royal Society Research
537 Grant (RGS\R1\231156).

538

539 **Data accessibility**

540 The NCBI accession number for the raw sequencing data reported here is
541 PRJNA999749.

542

543 **Author Contributions**

544 SH, KK, EAH, and GLH designed the experiments. SH, PN, MAS, and MP completed
545 the experiments. KK, GG, SH, EAH and GLH undertook analysis. SH, KK, and GLH
546 wrote the first draft and SH, KK, CDB, and GLH, edited the manuscript. All authors
547 agreed to the final version. GLH acquired funding and supervised the work.

548

549 References.

550 1. Saldaña MA, Hegde S, Hughes GL. Microbial control of arthropod-borne disease. *Mem Inst Oswaldo Cruz.* 2017;112(2):81-93. doi: 10.1590/0074-02760160373.

551 2. Hegde S, Rasgon JL, Hughes GL. The microbiome modulates arbovirus transmission in
552 mosquitoes. *Current Opinion in Virology.* 2015;15:97-102. doi:
553 10.1016/j.coviro.2015.08.011. PubMed PMID: 10.1016/j.coviro.2015.08.011.

554 3. Saraiva RG, Kang S, Simões ML, Angleró-Rodríguez YI, Dimopoulos G. Mosquito gut
555 antiparasitic and antiviral immunity. *Developmental and comparative immunology.*
556 2016;64(c):53-64. doi: 10.1016/j.dci.2016.01.015.

557 4. Shaw WR, Catteruccia F. Vector biology meets disease control: using basic research
558 to fight vector-borne diseases. *Nat Microbiol.* 2019;4(1):20-34. Epub 2018/08/29. doi:
559 10.1038/s41564-018-0214-7.

560 5. Chouaia B, Rossi P, Epis S, Mosca M, Ricci I, Damiani C, et al. Delayed larval
561 development in *Anopheles* mosquitoes deprived of *Asaia* bacterial symbionts. *BMC
562 Microbiology.* 2012;12(Suppl 1):S2-S. doi: 10.1186/1471-2180-12-S1-S2.

563 6. Gaio AdO, Gusmão DS, Santos AV, Berbert-Molina MA, Pimenta PFP, Lemos FJA.
564 Contribution of midgut bacteria to blood digestion and egg production in *aedes aegypti*
565 (diptera: culicidae) (L.). *Parasites &amp; Vectors.* 2011;4:105-. doi: 10.1186/1756-
566 3305-4-105.

567 7. Coon KL, Vogel KJ, Brown MR, Strand MR. Mosquitoes rely on their gut microbiota
568 for development. *Molecular Ecology.* 2014;23(11):2727-39. doi: 10.1111/mec.12771.

569 8. Dickson LB, Jiolle D, Minard G, Moltini-Conclois I, Volant S, Ghozlane A, et al.
570 Carryover effects of larval exposure to different environmental bacteria drive adult trait
571 variation in a mosquito vector. *Science Advances.* 2017;3(8):e1700585-e. doi:
572 10.1126/sciadv.1700585.

573 9. Cansado-Utrilla C, Zhao SY, McCall PJ, Coon KL, Hughes GL. The microbiome and
574 mosquito vectorial capacity: rich potential for discovery and translation. *Microbiome.*
575 2021;9(1):111-. doi: 10.1186/s40168-021-01073-2.

576 10. Turley AP, Moreira LA, O''Neill SL, McGraw EA. Wolbachia Infection Reduces
577 Blood-Feeding Success in the Dengue Fever Mosquito, *Aedes aegypti*. *PLOS Neglected
578 Tropical Diseases.* 2009;3(9):e516-e. doi: 10.1371/journal.pntd.0000516.

579 11. Belda E, Coulibaly B, Fofana A, Beavogui AH, Traore SF, Gohl DM, et al. Preferential
580 suppression of *Anopheles gambiae* host sequences allows detection of the mosquito
581 eukaryotic microbiome. *Scientific Reports.* 2017;7(1):3241-. doi: 10.1038/s41598-017-
582 03487-1.

583 12. Steyn A, Roets F, Botha A. Yeasts Associated with *Culex pipiens* and *Culex theileri*
584 Mosquito Larvae and the Effect of Selected Yeast Strains on the Ontogeny of *Culex pipiens*.
585 *Microbial Ecology.* 2015. doi: 10.1007/s00248-015-0709-1.

586 13. Chandler JA, Liu RM, Bennett SN. RNA shotgun metagenomic sequencing of northern
587 California (USA) mosquitoes uncovers viruses, bacteria, and fungi. *Frontiers in
588 microbiology.* 2015;6:185-. Epub 2015/04/09. doi: 10.3389/fmicb.2015.00185.

589

590 14. Hyde J, Gorham C, Brackney DE, Steven B. Antibiotic resistant bacteria and
591 commensal fungi are common and conserved in the mosquito microbiome. PLOS ONE.
592 2019;14(8):e0218907-e. Epub 2019/08/15. doi: 10.1371/journal.pone.0218907.

593 15. Guegan M, Martin E, Valiente Moro C. Comparative Analysis of the Bacterial and
594 Fungal Communities in the Gut and the Crop of *Aedes albopictus* Mosquitoes: A Preliminary
595 Study. *Pathogens* (Basel, Switzerland). 2020;9(8). doi: 10.3390/pathogens9080628.

596 16. Luis P, Vallon L, Tran F-H, Hugoni M, Tran-Van V, Mavingui P, et al. *Aedes albopictus*
597 mosquitoes host a locally structured mycobiota with evidence of reduced fungal diversity in
598 invasive populations. *Fungal Ecology*. 2019;39:257-66. doi:
599 <https://doi.org/10.1016/j.funeco.2019.02.004>.

600 17. Muturi EJ, Bara JJ, Rooney AP, Hansen AK. Midgut fungal and bacterial microbiota of
601 *Aedes triseriatus* and *Aedes japonicus* shift in response to La~Crosse virus infection.
602 *Molecular Ecology*. 2016;25(16):4075-90. doi: 10.1111/mec.13741.

603 18. Thongsripong P, Chandler JA, Green AB, Kittayapong P, Wilcox BA, Kapan DD, et al.
604 Mosquito vector-associated microbiota: Metabarcoding bacteria and eukaryotic symbionts
605 across habitat types in Thailand endemic for dengue and other arthropod-borne diseases.
606 *Ecology and Evolution*. 2017;16(Suppl 2):118-. doi: 10.1002/ece3.3676.

607 19. Tawidian P, Coon KL, Jumpponen A, Cohnstaedt LW, Michel K. Host-Environment
608 Interplay Shapes Fungal Diversity in Mosquitoes. *mSphere*. 2021;6(5). doi:
609 10.1128/mSphere.00646-21.

610 20. Ricci I, Mosca M, Valzano M, Damiani C, Scuppa P, Rossi P, et al. Different mosquito
611 species host *Wickerhamomyces anomalus* (*Pichia anomala*): perspectives on vector-borne
612 diseases symbiotic control. *Antonie van Leeuwenhoek*. 2010;99(1):50. doi:
613 10.1007/s10482-010-9532-3.

614 21. Muturi EJ, Kim C-H, Bara J, Bach EM, Siddappaji MH. *Culex pipiens* and *Culex restuans*
615 mosquitoes harbor distinct microbiota dominated by few bacterial taxa. *Parasites &*
616 *Vectors*. 2016;9(1):18-. doi: 10.1186/s13071-016-1299-6.

617 22. Díaz-Nieto LM, D Alessio C, Perotti MA, Berón CM. *Culex pipiens* Development Is
618 Greatly Influenced by Native Bacteria and Exogenous Yeast. *PLOS ONE*.
619 2016;11(4):e0153133-e. doi: 10.1371/journal.pone.0153133.

620 23. Valzania L, Martinson VG, Harrison RE, Boyd BM, Coon KL, Brown MR, et al. Both
621 living bacteria and eukaryotes in the mosquito gut promote growth of larvae. *PLOS*
622 *Neglected Tropical Diseases*. 2018;12(7):e0006638-e. doi: 10.1371/journal.pntd.0006638.

623 24. Guegan M, Martin E, Tran Van V, Fel B, Hay AE, Simon L, et al. Mosquito sex and
624 mycobiota contribute to fructose metabolism in the Asian tiger mosquito *Aedes albopictus*.
625 *Microbiome*. 2022;10(1):138. Epub 20220830. doi: 10.1186/s40168-022-01325-9. PubMed
626 PMID: 36038937; PubMed Central PMCID: PMCPMC9425969.

627 25. Badran RAM, Aly MZY. Studies on the mycotic inhabitants of *Culex pipiens* collected
628 from fresh water ponds in Egypt. *Mycopathologia*. 1995;132(2):105-10. doi:
629 10.1007/BF01103782.

630 26. Lara da Costa G, Cunha de Oliveira P. *Penicillium* species in mosquitoes from two
631 Brazilian regions. *Journal of Basic Microbiology*. 1998;38(5-6):343-7. doi:
632 [https://doi.org/10.1002/\(SICI\)1521-4028\(199811\)38:5/6<343::AID-JOBM343>3.0.CO;2-Z](https://doi.org/10.1002/(SICI)1521-4028(199811)38:5/6<343::AID-JOBM343>3.0.CO;2-Z).

633 27. Zouache K, Martin E, Rahola N, Gangue MF, Minard G, Dubost A, et al. Larval habitat
634 determines the bacterial and fungal microbiota of the mosquito vector *Aedes aegypti*. *FEMS*
635 *Microbiol Ecol*. 2022;98(1). doi: 10.1093/femsec/fiac016. PubMed PMID: 35147188.

636 28. Bascunan P, Nino-Garcia JP, Galeano-Castaneda Y, Serre D, Correa MM. Factors
637 shaping the gut bacterial community assembly in two main Colombian malaria vectors.
638 *Microbiome*. 2018;6(1):148-. Epub 2018/08/29. doi: 10.1186/s40168-018-0528-y.

639 29. Ricci I, Damiani C, Scuppa P, Mosca M, Crotti E, Rossi P, et al. The yeast
640 *Wickerhamomyces anomalus* (*Pichia anomala*) inhabits the midgut and reproductive
641 system of the Asian malaria vector *Anopheles stephensi*. *Environmental Microbiology*.
642 2011. doi: 10.1111/j.1462-2920.2010.02395.x.

643 30. Angleró-Rodríguez YI, Blumberg BJ, Dong Y, Sandiford SL, Pike A, Clayton AM, et al. A
644 natural *Anopheles*-associated *Penicillium chrysogenum* enhances mosquito susceptibility to
645 Plasmodium infection. *Scientific Reports*. 2016;6:34084-. doi: 10.1038/srep34084.

646 31. Angleró-Rodríguez YI, Talyuli OA, Blumberg BJ, Kang S, Demby C, Shields A, et al. An
647 *Aedes aegypti*-associated fungus increases susceptibility to dengue virus by modulating gut
648 trypsin activity. *eLife*. 2017;6:133-. doi: 10.7554/eLife.28844.

649 32. Deng S, Huang Q, Wei H, Zhou L, Yao L, Li D, et al. *Beauveria bassiana* infection
650 reduces the vectorial capacity of *Aedes albopictus* for the Zika virus. *Journal of Pest Science*.
651 2019;92(2):781-9. doi: 10.1007/s10340-019-01081-0.

652 33. Arellano AA, Coon KL. Bacterial communities in carnivorous pitcher plants colonize
653 and persist in inquiline mosquitoes. *Animal Microbiome*. 2022;4(1). doi: 10.1186/s42523-
654 022-00164-1.

655 34. Coon KL, Hegde S, Hughes GL. Interspecies microbiome transplantation recapitulates
656 microbial acquisition in mosquitoes. *Microbiome*. 2022;10(1):58-. Epub 20220411. doi:
657 10.1186/s40168-022-01256-5.

658 35. Hegde S, Khanipov K, Albayrak L, Golovko G, Pimenova M, Saldaña MA, et al. Microbiome
659 interaction networks and community structure from laboratory-reared and
660 field-collected *Aedes aegypti*, *Aedes albopictus*, and *Culex quinquefasciatus* mosquito
661 vectors. *Frontiers in microbiology*. 2018;9:715-. doi: 10.3389/fmicb.2018.02160.

662 36. Coon KL, Brown MR, Strand MR. Gut bacteria differentially affect egg production in
663 the anautogenous mosquito *Aedes aegypti* and facultatively autogenous mosquito *Aedes*
664 *atropalpus* (Diptera: Culicidae). *Parasites & Vectors*. 2016;9(1):375-. doi: 10.1186/s13071-
665 016-1660-9.

666 37. Coon KL, Brown MR, Strand MR. Mosquitoes host communities of bacteria that are
667 essential for development but vary greatly between local habitats. *Molecular Ecology*.
668 2016;25(22):5806-26. doi: 10.1111/mec.13877.

669 38. Coon KL, Valzania L, Brown MR, Strand MR. Predaceous *Toxorhynchites* mosquitoes
670 require a living gut microbiota to develop. *Proceedings of the Royal Society B: Biological*
671 *Sciences*. 2020;287(1919). doi: 10.1098/rspb.2019.2705.

672 39. Bokulich NA, Mills DA. Improved Selection of Internal Transcribed Spacer-Specific
673 Primers Enables Quantitative, Ultra-High-Throughput Profiling of Fungal Communities.
674 *Applied and Environmental Microbiology*. 2013;79(8):2519-26. doi:
675 doi:10.1128/AEM.03870-12.

676 40. Nilsson RH, Larsson KH, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, et al.
677 The UNITE database for molecular identification of fungi: handling dark taxa and parallel
678 taxonomic classifications. *Nucleic Acids Res.* 2019;47(D1):D259-D64. Epub 2018/10/30.
679 doi: 10.1093/nar/gky1022.

680 41. Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA
681 sequences. *J Comput Biol.* 2000;7(1-2):203-14. Epub 2000/07/13. doi:
682 10.1089/10665270050081478.

683 42. Liu CM, Kachur S, Dwan MG, Abraham AG, Aziz M, Hsueh P-R, et al. FungiQuant: a
684 broad-coverage fungal quantitative real-time PCR assay. *BMC Microbiology.*
685 2012;12(1):255-. doi: 10.1186/1471-2180-12-255.

686 43. Fitzpatrick CR, Lu-Irving P, Copeland J, Guttman DS, Wang PW, Baltrus DA, et al.
687 Chloroplast sequence variation and the efficacy of peptide nucleic acids for blocking host
688 amplification in plant microbiome studies. *Microbiome.* 2018;6(1):144-. Epub 2018/08/20.
689 doi: 10.1186/s40168-018-0534-0.

690 44. Liu C, Qi RJ, Jiang JZ, Zhang MQ, Wang JY. Development of a Blocking Primer to Inhibit
691 the PCR Amplification of the 18S rDNA Sequences of *Litopenaeus vannamei* and Its Efficacy
692 in *Crassostrea hongkongensis*. *Frontiers in microbiology.* 2019;10:830-. Epub 2019/05/09.
693 doi: 10.3389/fmicb.2019.00830.

694 45. Jaber S, Mercier A, Knio K, Brun S, Kambris Z. Isolation of fungi from dead arthropods
695 and identification of a new mosquito natural pathogen. *Parasit Vectors.* 2016;9(1):491-.
696 Epub 2016/09/07. doi: 10.1186/s13071-016-1763-3.

697 46. Hughes GL, Dodson BL, Johnson RM, Murdock CC, Tsujimoto H, Suzuki Y, et al. Native
698 microbiome impedes vertical transmission of *Wolbachia* in *Anopheles* mosquitoes.
699 *Proceedings of the National Academy of Sciences of the United States of America.*
700 2014;111(34):12498-503. doi: 10.1073/pnas.1408888111. PubMed PMID: 25114252.

701 47. Krajacich BJ, Huestis DL, Dao A, Yaro AS, Diallo M, Krishna A, et al. Investigation of
702 the seasonal microbiome of *Anopheles coluzzii* mosquitoes in Mali. *PLOS ONE.*
703 2018;13(3):e0194899-e. Epub 2018/03/30. doi: 10.1371/journal.pone.0194899.

704 48. Bozic J, Capone A, Pediconi D, Mensah P, Cappelli A, Valzano M, et al. Mosquitoes can
705 harbour yeasts of clinical significance and contribute to their environmental dissemination.
706 *Environmental Microbiology Reports.* 2017;9(5):642-8. doi: 10.1111/1758-2229.12569.

707 49. Kozlova EV, Hegde S, Roundy CM, Golovko G, Saldaña MA, Hart CE, et al. Microbial
708 interactions in the mosquito gut determine *Serratia* colonization and blood-feeding
709 propensity. *The ISME Journal.* 2020. doi: 10.1038/s41396-020-00763-3.

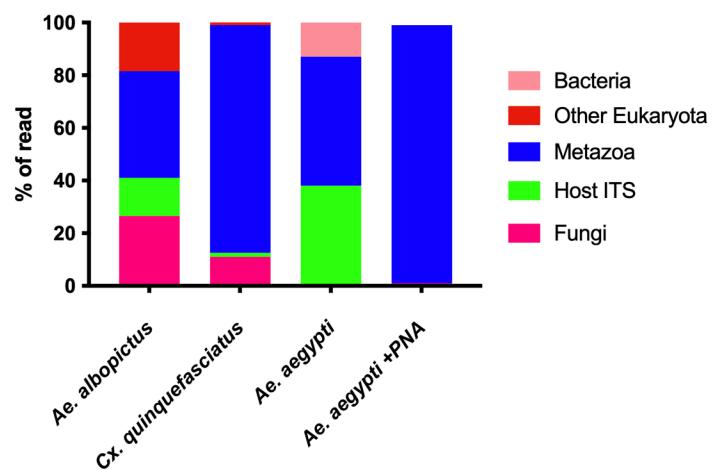
710 50. Frey-Klett P, Burlinson P, Deveau A, Barret M, Tarkka M, Sarniguet A. Bacterial-
711 Fungal Interactions: Hyphens between Agricultural, Clinical, Environmental, and Food
712 Microbiologists. *Microbiology and Molecular Biology Reviews.* 2011;75(4):583-. doi:
713 10.1128/MMBR.00020-11.

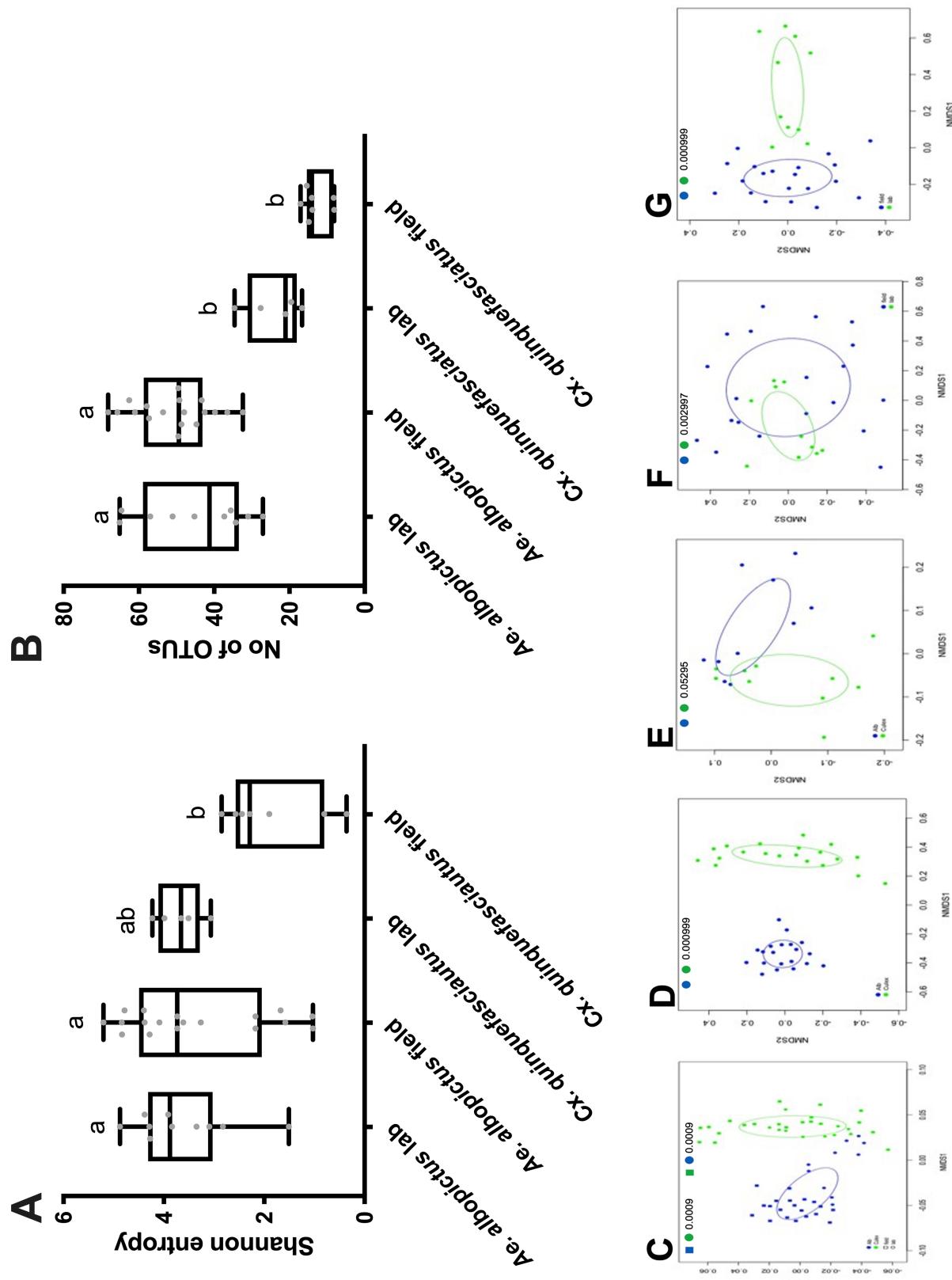
714 51. Wargo MJ, Hogan DA. Fungal--bacterial interactions: a mixed bag of mingling
715 microbes. *Curr Opin Microbiol.* 2006;9(4):359-64. Epub 2006/06/17. doi:
716 10.1016/j.mib.2006.06.001.

717 52. Deveau A, Bonito G, Uehling J, Paoletti M, Becker M, Bindschedler S, et al. Bacterial-
718 fungal interactions: ecology, mechanisms and challenges. *FEMS Microbiology Reviews.*
719 2018;42(3):335-52. doi: 10.1093/femsre/fuy008.

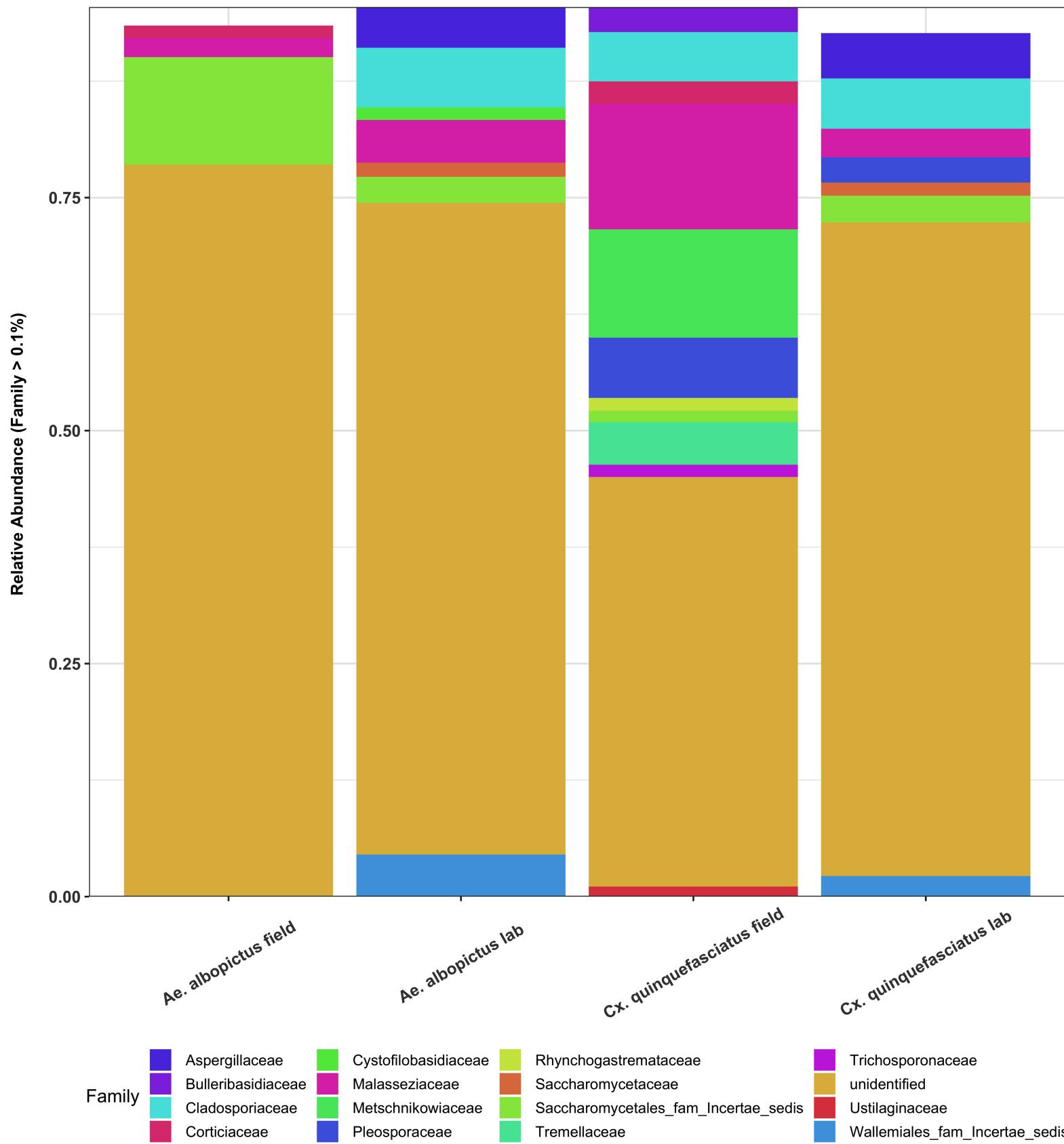
720 53. Mille-Lindblom C, Fischer H, J. Tranvik L. Antagonism between bacteria and fungi:
721 substrate competition and a possible tradeoff between fungal growth and tolerance
722 towards bacteria. *Oikos*. 2006;113(2):233-42. doi: <https://doi.org/10.1111/j.2006.0030-1299.14337.x>.

723 54. Coon KL, Valzania L, McKinney DA, Vogel KJ, Brown MR, Strand MR. Bacteria-
724 mediated hypoxia functions as a signal for mosquito development. *Proceedings of the*
725 *National Academy of Sciences of the United States of America*. 2017;114(27). doi:
726 10.1073/pnas.1702983114.

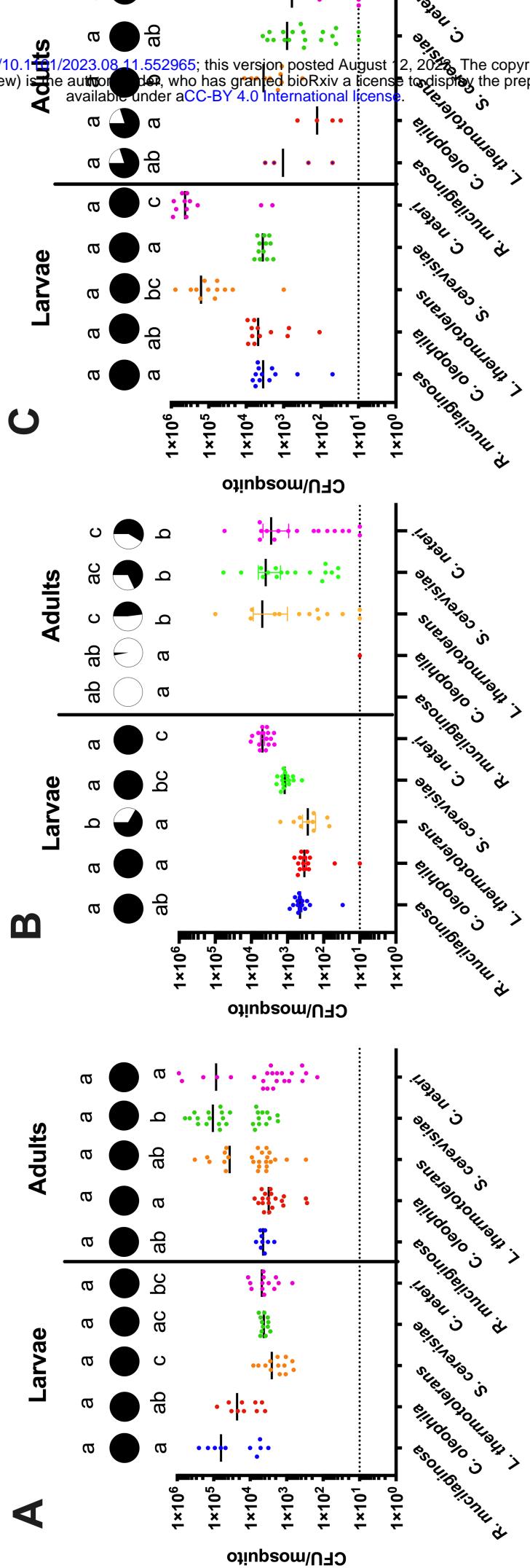

727 55. Correa MA, Matusovsky B, Brackney DE, Steven B. Generation of axenic *Aedes*
728 *aegypti* demonstrate live bacteria are not required for mosquito development. *Nature*
729 *Communications*. 2018;9(1):R37-R. doi: 10.1038/s41467-018-07014-2.

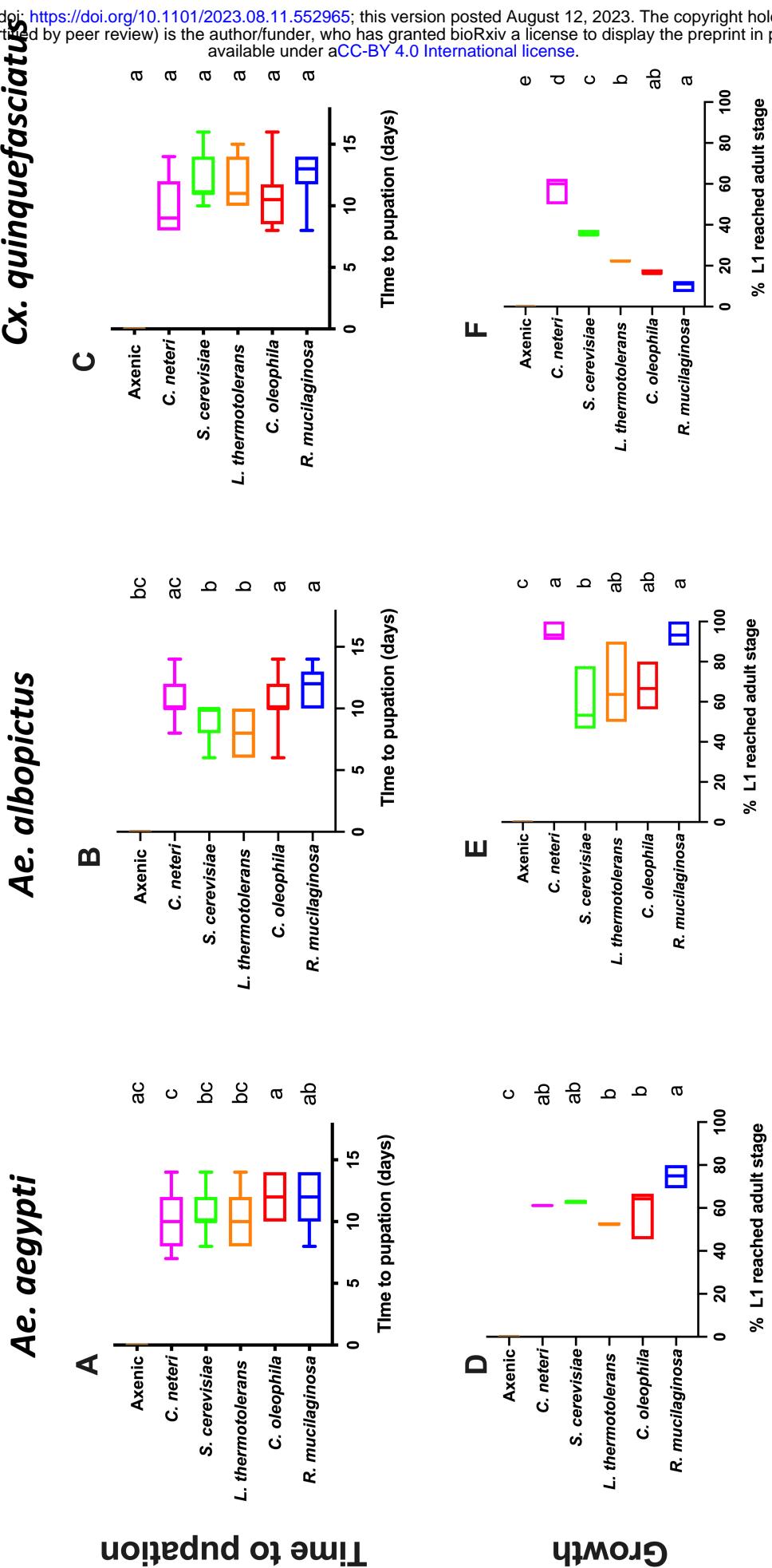

730 56. Anastasia A, Shannon Q, Julia V, Cintia C-U, Enyia RA, Jessica A, et al. Microbiome
731 variability of mosquito lines is consistent over time and across environments. *bioRxiv*.
732 2023:2023.04.17.537119. doi: 10.1101/2023.04.17.537119.

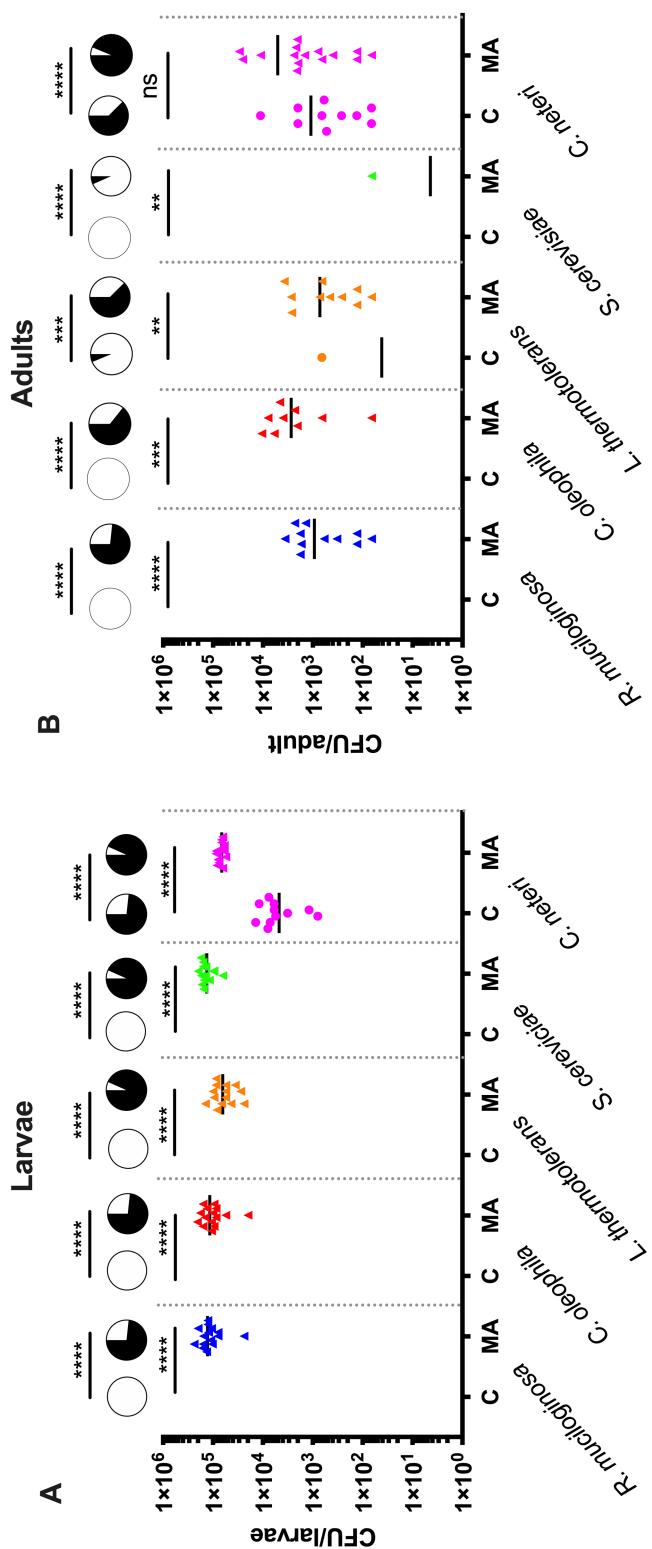
733 57. Mysore K, Li P, Wang CW, Hapairai LK, Scheel ND, Realey JS, et al. Characterization of
734 a broad-based mosquito yeast interfering RNA larvicide with a conserved target site in
735 mosquito semaphorin-1a genes. *Parasit Vectors*. 2019;12(1):256-. Epub 2019/05/24. doi:
736 10.1186/s13071-019-3504-x.


737

738






Family Composition of Fungal Communities

Cx. *quinqefasciatus*

