

1 Linking spontaneous and stimulated spine dynamics

2 M. F. Eggl^{1,*}, T. E. Chater^{2, 5, *}, J. Petkovic^{1,*}, Y. Goda^{2,4}, and T. Tchumatchenko^{1,3,†}

3 ¹University of Mainz Medical Center, Anselm-Franz-von-Bentzel-Weg 3, 55128 Mainz, Germany

4 ²Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan

5 ³ Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Venusberg-Campus 1, 53127
6 Bonn, Germany

7 ⁴Synapse Biology Unit, Okinawa Institute for Science and Technology Graduate University, Onna-son, Kunigami-gun, Okinawa, Japan

8 ⁵Department of Physiology, Keio University School of Medicine, Tokyo, Japan

9 *These authors contributed equally

10 [†]corresponding author

11 Abstract

12 Our brains continuously acquire and store memories through synaptic plasticity. However, spontaneous synaptic changes
13 can also occur and pose a challenge for maintaining stable memories. Despite fluctuations in synapse size, recent studies
14 have shown that key population-level synaptic properties remain stable over time. This raises the question of how local
15 synaptic plasticity affects the global population-level synaptic size distribution and whether individual synapses undergoing
16 plasticity escape the stable distribution to encode specific memories. To address this question, we (i) studied spontaneously
17 evolving spines and (ii) induced synaptic potentiation at selected sites while observing the spine distribution pre- and post-
18 stimulation. We designed a stochastic model to describe how the current size of a synapse affects its future size under baseline
19 and stimulation conditions and how these local effects give rise to population-level synaptic shifts. Our study offers a new
20 understanding of how seemingly spontaneous synaptic fluctuations and local plasticity both contribute to population-level
21 synaptic dynamics.

22 Introduction

23 Memory and learning are thought to rely on changes in synaptic strength, characterized by the strengthening and weakening
24 of specific synaptic connections (Stevens and Sullivan, 1998; Maletic-Savatic et al., 1999; Engert and Bonhoeffer, 1999;
25 Trachtenberg et al., 2002; Yuste and Bonhoeffer, 2001; Magee and Grienberger, 2020). Several studies have targeted the
26 molecular mechanisms of synaptic plasticity both on short time scales (Zucker and Regehr, 2002) and on the time scales of
27 hours or even days (Bliss and Lømo, 1973; Redondo et al., 2010).

28 While synaptic plasticity is often directed at specific synaptic sites, synapses can also be dynamic in the absence of
29 directed plasticity, and disentangling spontaneous from directed synaptic changes can be challenging (Ziv and Brenner,
30 2018). Synapses undergo significant size changes over hours and days, most likely driven by spontaneous dynamics of
31 synaptic molecules (Yasumatsu et al., 2008; Minerbi et al., 2009; Kasai et al., 2010; Loewenstein et al., 2011; Cane et al.,
32 2014; Ziv and Fisher-Lavie, 2014; Ishii et al., 2018). Despite each synapse being subject to potentially large fluctuations over
33 time, average population features show remarkable stability in time (Murthy et al., 1997; Harms et al., 2005; Minerbi et al.,
34 2009; Loewenstein et al., 2011; Zeidan and Ziv, 2012; Statman et al., 2014; Scheler, 2017; Hazan and Ziv, 2020).

35 Many experimentally reported synaptic size distributions are asymmetric and exhibit a long right tail, which has been
36 hypothesized to be linked to optimality with respect to information storage capacity, neuronal firing rates, and long-distance
37 information transfer (Buzsáki and Mizuseki, 2014; Humble et al., 2019). While it is commonly assumed that these distributions
38 arise from the cumulative action of spines shrinking and growing (Van Rossum et al., 2000; Scheler, 2017), the interaction
39 between activity-independent and activity-dependent components is not fully understood (Hazan and Ziv, 2020).

40 Additionally, modeling studies often make one essential assumption: synapses retain their properties indefinitely when
41 not actively driven to change. This assumption is fundamental because otherwise, spontaneously occurring changes would
42 lead to modifications in the network function or unlearning newly acquired skills. However, the fact that synaptic changes

†tatjana.tchumatchenko@uni-bonn.de

43 are driven by molecular processes that are inherently noisy (e.g., lateral diffusion, active trafficking, endocytosis, and exocytosis, Choquet and Triller, 2013; Ziv and Fisher-Lavie, 2014) implies that such spontaneous changes are inevitable. Thus, 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

studying how fundamental characteristics of the synapse populations are retained (e.g., probability of release, total receptor conductance, size, morphology, ultrastructure, composition) over longer time scales is another crucial aspect of understanding memory. This capacity of the synapses to retain their features is known in the literature as synaptic tenacity (Fisher-Lavie et al., 2011; Ziv and Brenner, 2018).

Models linking these findings to single spine dynamics using various approaches already exist (Statman et al., 2014; Bonilla-Quintana et al., 2020, 2021; Loewenstein et al., 2011; Yasumatsu et al., 2008). In this study, we introduce a model that can reproduce both long-term potentiation (LTP)-triggered spine changes and activity-independent spine fluctuations within a common framework. It is hypothesized that LTP impacts small spines more because they have more room to grow (Matsuzaki et al., 2004), while larger spines could represent stable long-term memory storage (Grutzendler et al., 2002; Holtmaat et al., 2005). Within the activity-independent context, it has been shown that large spines vary more (Loewenstein et al., 2011; Yasumatsu et al., 2008; Hazan and Ziv, 2020).

Our model, which is inspired by the Kesten process and the multiplicative dynamics of previous studies, allowed us to recreate the experimental results relating to spontaneous spine fluctuations while relying on their lognormal nature. We also were able to use our model to describe spines after LTP induction and report a distinct increase in entropy (a measure of the capacity of a dendrite to store information). Our results describing the spontaneous spine fluctuations are consistent with previously reported effects such as the variance of the large spines, stable population distribution, and the oscillatory behavior of the spines due to a negative correlation between timesteps (Yasumatsu et al., 2008; Minerbi et al., 2009; Bonilla-Quintana et al., 2021) and can explain how LTP-signals impact the spontaneous spine distributions.

Results

We hypothesize that a baseline process that gives rise to the spontaneous spine distribution (activity-independent spine plasticity) is modified by plasticity induction such that both spontaneous and induced spine distributions can be described using the same model with different model states. Therefore, before considering the stimulation effects, we wanted to understand the model mechanisms needed to capture the activity-independent, spontaneous spine fluctuations.

To this end, we imaged spines on apical oblique dendrites of GFP-expressing CA1 pyramidal neurons in cultured hippocampal organotypic slices. For one set of experiments, we quasi-simultaneously potentiated a subset of spines using glutamate uncaging to induce structural LTP (sLTP) (the activity-dependent or stimulation set, see methods and Fig. S1). In another independent set of experiments, the caged glutamate molecule was omitted from the bath, and thus spines did not undergo sLTP following laser illumination. This sham stimulation dataset acted as our activity-independent set. For both cases, over 55 minutes (15 minutes pre- and 40 minutes post-stimulation), we collected spine sizes across eight time points (at -15, -10, -5, 2, 10, 20, 30, 40 minutes, where the negative numbers refer to the pre-stimulation) to study the spine dynamics. This data set consisted of three baseline observations, followed by glutamate uncaging or sham-uncaging, followed by another five time points. This allowed us to directly observe the effects of the LTP induction on spine populations and incorporate how the newly potentiated synapses and their unstimulated neighbors evolve within a single model.

We estimated the synaptic strength at each time point by measuring the size of the spine head (Matsuzaki et al., 2004; Yang et al., 2009; Hayashi-Takagi et al., 2015) since many synaptic parameters correlate with head volume (Harris and Stevens, 1989; Bourne and Harris, 2008). To this end, we biolistically overexpressed GFP in single neurons and imaged short stretches of dendrite over time. We show an example image, including semi-automatically generated ROIs used for measuring spine head size in Fig. 1a. We have highlighted a synapse with a gray rectangle in Fig. 1a and depicted its different sizes at different time points in Fig. 1b to emphasize the variable dynamics spines undergo. These recordings are performed in an imaging solution containing tetrodotoxin (TTX), picrotoxin, and with nominally 0 mM Mg²⁺. Under these conditions, in the absence of neuronal spiking and experimentally imposed stimulation, spines constantly fluctuate spontaneously in size over time.

However, despite this variability, the distribution of spine sizes (Fig. 1c) is remarkably stable over time. Its shape is right skewed and exhibits a long right tail, in line with results reported previously across a variety of experimental studies (Loewenstein et al., 2011; Hazan and Ziv, 2020). Notably, we observed that the mean of the spine population is also remarkably stable, in contrast to the dynamics of the individual spines (see inset of Fig. 1c). We note that the distributions of spine size changes (Fig. 1d, Fig. S2) exhibit Gaussian behavior with no significant difference between time points (Kolmogorov-Smirnov (KS) test not significant except for the change from +10 minutes to +20 minutes, which is marked by an *). We can also collect all these changes into one distribution and estimate the sample mean, μ , and sample

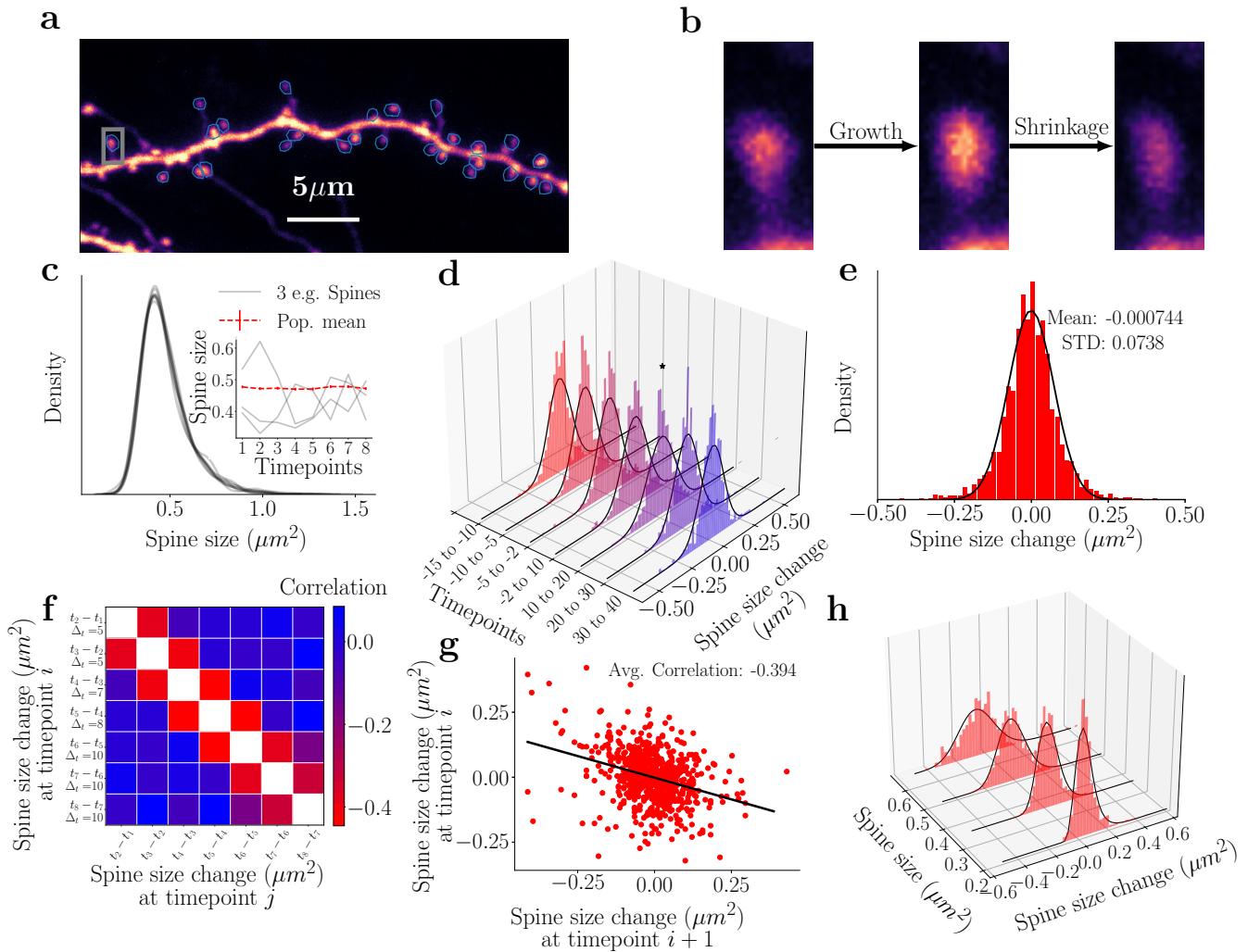


Figure 1: Experimentally measured population dynamics of activity-independent spine turn-over. **a)** An example of a GFP-expressing CA1 neuron whose spine dynamics we analyze and model. **b)** Example of spontaneous dynamics at the single spine level. The spine (marked by a gray rectangle in a) exhibits both growth and shrinkage in the observed time frame. **c)** The spine sizes follow a temporally stable right-skewed distribution with a long tail. Each gray line refers to a different snapshot distribution, which shows significant overlap. Inset: The mean size of the full spine population (red) is shown across time along with the dynamics of selected spines (gray) at each time point, where the time points are at (-15, -10, -5, 2, 10, 20, 30 and 40 minutes). **d)** Collective distributions of the spine size changes (Δs) from time point to time point follow a Gaussian distribution. The black lines denote the corresponding Gaussian fits. The * denotes the single distribution that is significantly different. Another depiction of these changes, which highlights the difference in the distribution is seen in Fig. S2. **e)** The sum of all spine changes across all time points follows a zero mean Gaussian distribution and a standard deviation of ≈ 0.074 . **f)** Spine sizes display correlations across time, whereby the neighboring time points are negatively correlated (negative off-diagonal values). **g)** Correlation of two time points. **h)** Evaluating spine size changes as a function of the spine size across time points shows that small spines exhibit a narrow distribution of spine size changes while larger spines show larger variability, black lines represent the corresponding log-normal (with no statistical difference seen between the dataset and a lognormal distribution) fits of the data.

94 standard deviation, σ . The resulting distribution and sample statistics are seen in Fig. 1e. The spine size changes are
 95 robustly negatively correlated between neighboring time steps (see darker red colors in Fig. 1f). This effect is on the scale
 96 of 10s of minutes in our data, which is much shorter than the day-long spine correlations (which also have smaller values)
 97 reported by previous studies (Yasumatsu et al., 2008; Bonilla-Quintana et al., 2020). We note that this correlation also
 98 persists over the entirety of our experiments, as long as the timesteps immediately follow each other, e.g., computing the
 99 correlation of timestep 4 - timestep 2 and timestep 6 - timestep 4 (see Fig. S3i). Finally, differently sized spines exhibit
 100 different spine change distributions (see Fig. 1h) (KS-test performed between samples led to p values all under 0.05), which
 101 are all well-described by log-normal distributions (black lines).

102 These experimentally observed results in our data lead us to the following question: **given the dynamics of the**
 103 **individual spines (oscillatory, small vs big), how is the steady size distribution maintained?** We answer this
 104 question by introducing an abstract stochastic model that includes the lowest number of model parameters to maintain model
 105 tractability such that it captures the following key features of our experimental data:

- 106 1. The temporal spine dynamics need to remain stable around the distribution observed in the dataset (Fig. 1c). As a
 107 consequence, the mean of the distribution needs to remain stable through time (Fig. 1c - inset).
- 108 2. If we start at another distribution, e.g., a uniform or delta distribution, the model should return to the original stable
 109 distribution. This assumption does not arise directly from the observed data but more from the fact that as neurons
 110 grow and change, the initial spines could start small and still end up at the stable distribution of (Fig. 1c) within the
 111 timescales we consider (approximately 10 minutes). Therefore, to retain biological realism, we will include this feature.
- 112 3. The dynamics of spine changes and their distribution from one time point to another should follow a Gaussian distri-
 113 bution, (Fig. 1d and e)
- 114 4. time points immediately following each other should be negatively correlated with each other (Fig. 1f and g). This
 115 negative correlation suggests an oscillatory dynamic component.

116 The Log-normal based model

117 To understand the necessary noise profile driving spine size changes, we start with a more in-depth observation of the
 118 experimental data. The overall distribution of spine size changes over time appears to be Gaussian (Fig. 1e), which may
 119 imply a model that is based on Gaussian dynamics. However, when we attempted such a model, we observed that there
 120 were fundamental problems that did not reconcile with the experimental results (see methods and Fig. S4). In fact, we note
 121 that the overall profile of the spine size population is a skewed, log-normal-like profile (Fig. 2a). Furthermore, when we
 122 consider the changes in spines with different initial values separately, the distribution of changes also exhibits a skewed profile
 123 (Fig. 1h). Moreover, we note that these distributions differ from each other, suggesting that spines belonging to different
 124 size intervals behave in a fundamentally different way. Thus, we introduce a model with a noise profile, η_i , which is sampled
 125 from a set of log-normal distributions such that

$$V_{i+1} = V_i + \eta_i, \quad \eta_i \sim \text{Lognormal}(\mu_{log}(V_i), \sigma_{log}(V_i), -\hat{\delta}), \quad (1)$$

where μ_{log} and σ_{log} are parameters that depend on the spine size V_i and determine the shape of the log-normal sampling distribution and $\hat{\delta}$ is a shift parameter (see Methods for more detail). To determine the dependence of $\mu_{log,i}$ and $\sigma_{log,i}$ on the size of the spine V_i we assume, following observations seen in Yasumatsu et al. (2008); Loewenstein et al. (2011); Hazan and Ziv (2020), that there exist two linear functions f_μ and f_σ that map spine sizes onto the corresponding log-normal change parameters. However, rather than finding the linear functions that are optimal for all spines which *i*) becomes computationally expensive, *ii*) can lead to overfitting, or *iii*) leads to difficulty inferring the underlying distribution due to insufficient data, we simplify the above model by binning spines in equal-size bins and then evaluating the sample means and standard deviations of those bins. This provides exactly the linear functions f_μ and f_σ which allows us to estimate the sample means and deviations for all spine sizes (denoted by \cdot_s), i.e.,

$$\mu_s(V) = f_\mu(V) \quad (2)$$

$$\sigma_s(V) = f_\sigma(V), \quad (3)$$

126 These values can be used to estimate the parameters of the underlying normal distribution, which can then be transformed
 127 into the parameters to define that log-normal distribution (μ_{log} and σ_{log}) using equations (12) and (13) and that we use to

128 generate our noise profile. We note that previous work (including that of [Hazan and Ziv, 2020](#)) found linear relations between
 129 the spine size squared and the variance and mean. We saw that such fits were equally effective as the fits presented here, and
 130 lead to similar results (see Fig. [S5](#)). The fits for f_μ and f_σ can be seen in Fig. [2b](#) and lead to the following interesting results:
 131 (i) small spines have a positive mean change and have smaller standard deviation, so they tend to grow but are less variable.
 132 and (ii) large spines have a negative mean change and larger standard deviation, so they tend to shrink and are more variable.
 133 We can use these insights to generate the first model, which we call the *Best fit LN Model* (LN for Lognormal) in Fig. [2](#),
 134 and study the properties of arising size dynamics (Fig. [2c,d](#)). The generated results, reported in Fig. [2c](#), do not recreate the
 135 desired experimental characteristics, i.e., the mean of the simulated distributions (inset of the same figure) decreases, and
 136 the negative correlation is too small (compare Fig. [2d](#) and Fig. [1g](#)).

137 We notice, however, one crucial fact: by slightly altering the “best” linear fits of the means and standard deviations (raising
 138 the mean and lowering the standard deviation - see Fig. [2e](#)), we obtain a new model (*Alt. Fit LN Model*) and excellent
 139 agreement with the experimental size distribution (Fig. [2f](#)), still, however, underestimating significantly the correlation
 140 between subsequent changes (Fig. [2g](#)). We can alleviate this by implementing the negative momentum term (see equation
 141 [\(9\)](#) in the methods) and using the altered fits (see Fig. [S3a](#) and b, where we replicate the size distribution and the negative
 142 correlation). Despite the excellent agreement with the experimental results, we found it necessary to use the manually
 143 tuned fits for obtaining the mean and the standard deviation. As such, when implementing the Alt. Fit LN model, we were
 144 not using the optimal fits shown in Fig. [2b](#). We assume that the discrepancy in using the optimal fits is not due to any
 145 noise arising from the experimental set-up but, instead, because we are missing a crucial facet which the “altered” fits are
 146 accounting for. These observations lead us to introduce two key modifications in model [\(1\)](#):

- 147 1. to recover the negative correlation between subsequent size changes, we introduce the negative momentum term (also
 148 introduced in the methods section (equation [\(9\)](#)) and Fig. [S4d,f](#));
- 149 2. by noticing that the manual changes applied to the fits are equal across all spine bins (Fig. [2e](#)), we propose that an
 150 additional global drift term can recover the experimentally reported dynamics of the spine while allowing the differential
 151 analysis of spine dynamics in different size groups. Therefore, we also add a global OU drift term (referred to as *Drift*
 152 below).

The parameters of our final model, referred to as the Lognormal-Ornstein-Uhlenbeck model, or *LN-OU model*,

$$V_{i+1} = V_i + \underbrace{\text{Lognormal}(\mu_{\log}(V_i), \sigma_{\log}(V_i), -\hat{\delta})}_{\text{Long-term stochasticity}} - \underbrace{\tilde{\theta}(V_i - \hat{\mu})}_{\text{Drift}} - \underbrace{\theta(V_i - V_{i-1})}_{\text{Negative momentum}} \quad (4)$$

153 are fitted to achieve the best match to the experimental data. The resulting simulation is illustrated in Fig. [2h-j](#) and indicates
 154 that we correctly reproduced all the experimental data we started out with in Fig. [1](#). Both the size distribution and the
 155 collective size change distributions are captured accurately and maintain a correct degree of negative correlation between
 156 subsequent size changes.

157 In summary, we have introduced a combination of two simple log-normal models that satisfy all our modeling requirements
 158 (see Fig. [2e-j](#) for conditions 1,3 and 4 and Fig. [S3e-h](#) for condition 2). Constructed with the linear relations between spine
 159 size and mean and standard deviation of subsequent changes in mind, the model satisfies all modeling conditions we had
 160 set ourselves. Furthermore, this model introduces a slow-time scale (long-term stochasticity and drift) as well as a fast-time
 161 scale (negative momentum) that allows us to gain insight into the underlying processes of activity-dependent plasticity. For
 162 plausible links to biological mechanisms, see the Supplementary Material. Finally, this model is simple to implement and
 163 provides insights into the process that possibly underlies activity-independent plasticity.

164 How LTP alters the spine size distribution

165 Previously, all spines along the imaged dendritic branch were combined into one set, as there was no obvious manner to
 166 differentiate them (apart from their initial size). However, as we deliberately elicited plasticity by uncaging glutamate at a
 167 group of spines, we can now introduce two distinct spine sets: those that have been stimulated (homosynaptic, i.e., those
 168 synaptic targets which have specifically been targeted for sLTP) and those that are left untouched (heterosynaptic, i.e., spines
 169 on the same dendritic stretch that are not directly potentiated). We emphasize that the heterosynaptic spines, which were
 170 not targeted by the laser for glutamate uncaging despite sharing the same dendritic branch as the homosynaptic spines, are
 171 distinct from the spines from the previous sham stimulation spines, which were targeted by the laser, but due to the omission
 172 of glutamate did not undergo potentiation. We restrict the heterosynaptic spines to be within 4 μm of the stimulation sites
 173 and treat them as one distinct group. Finally, to have a sufficient number of homosynaptic spines we chose to stimulate 15

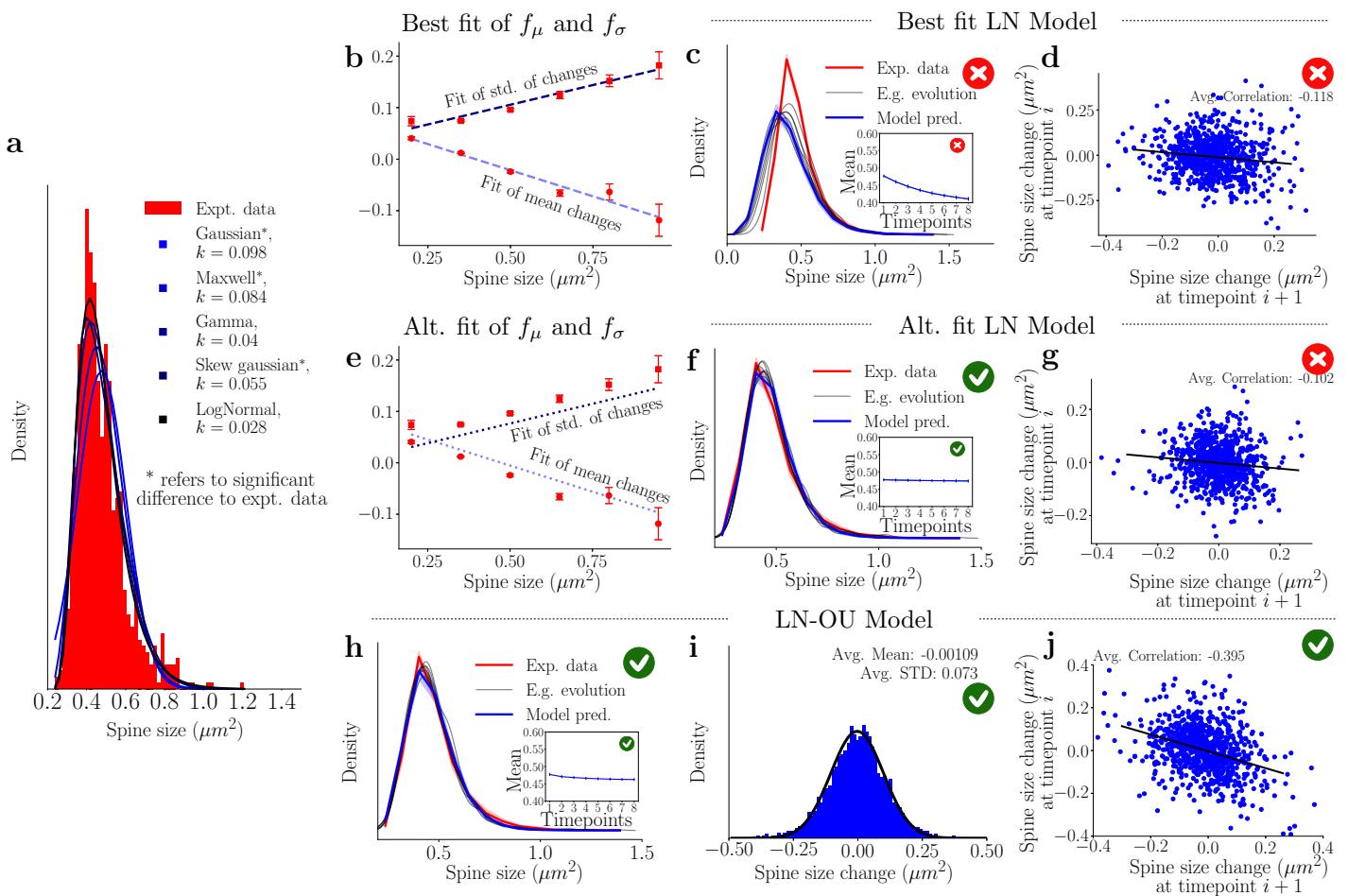


Figure 2: Utilizing the spine size dependencies to define the lognormal models. Red crosses denote when the plotted model violates experimental observations, while green ticks indicate agreement with experimental data. **a)** Fitting of different distributions to the spine size distribution, with k -values from the Kolmogorov-Smirnov test that show the best fit. The log-normal distribution best fits the spine size distribution. **b)** Sample means and standard deviations of activity-independent plasticity for different subsets of spines can be used to obtain a linear fit between spine size and mean and standard deviation of their future size changes. **c)** Simulations using the linear fits from **b**) do not result in a stable distribution. *E.g. evolution* refers to one example simulation of spine sizes. The inset represents the simulated mean, which decreases significantly. **d)** The correlation obtained from one example step of the best fits log-normal simulations. The value of the slope is ≈ 0.1 , which is smaller than the correlations required. **e)** Altered linear fits are used to achieve modeling goals. **f)** Distribution obtained from the simulation when the altered linear fits of the sample mean and standard deviation are used. The stability of the distribution is achieved as well as that of the mean (inset). **g)** The correlation obtained from one example step of the altered fits log-normal simulations. The value of the slope is ≈ 0.1 , which is smaller than the correlations required. **h)** The distribution obtained from using the best linear fits (**b**) for the LN-OU (equation (4)). Significant stability is observed (the inset represents the mean of the simulations). **i)** Simulated activity-independent plasticity of the interpolated LN-OU model, showing clear Gaussian properties. **j)** The correlation of the LN-OU process demonstrates a significantly more negative correlation in line with the desired model goals.

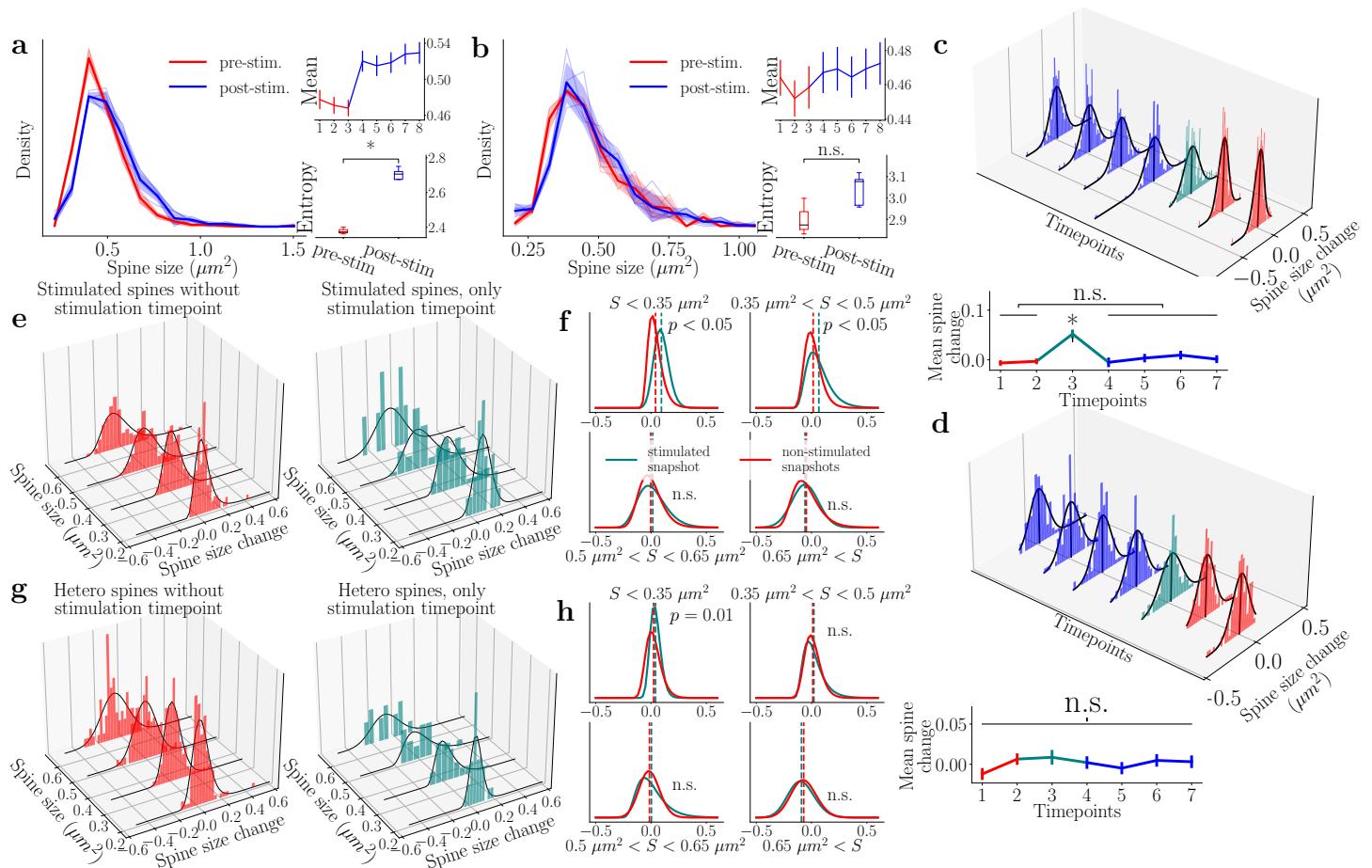


Figure 3: Stimulation of spines leads to a distinct shift of the spine size distribution that is mainly driven by growing small spines

a-b) Homo- and heterosynaptic spine size distribution at different time points, with red and blue referring to pre- and post-stimulation, respectively. Sample mean and entropy are shown. **c)** Top) The collective change dynamics of all homosynaptic spine sizes follow a Gaussian distribution. Teal represents the spine size change directly after the stimulation. Bottom) The mean of spine change from time point to time point computed for all homosynaptic spines together. A one-way ANOVA test reveals that only the stimulation time point is significantly different. All other time points are not significantly different from activity-independent fluctuations. **d)** Distribution dynamics of heterosynaptic spines time point to time point follows a Gaussian distribution. Bottom) Temporal change in the mean of spine changes in the heterosynaptic spines. A one-way ANOVA test reveals lack of statistical differences across time. **e)** Splitting up the size changes in homosynaptic spines according to their initial size reveals a large difference in activity-independent plasticity distributions. The left figure represents all the time points without stimulation, and the right is the single time point immediately after stimulation. The associated black lines represent log-normal fits to the data. **f)** A comparison between the log-normal fits for the size buckets reveal the effects that the stimulation has on the different spine sizes of the homosynaptic spines. Red refers to the non-stimulated time point, and the teal to the stimulated ones. The p value in the figure refers to a KS test performed on the data in figure **e)** to verify whether the samples come from different distributions. **g-h)** Same procedure as **e-f)** but for the heterosynaptic spines.

174 distinct spines sharing the same dendritic branch. Before we apply the previously defined log-normal model to this data set,
 175 we will need to understand the effects of stimulation on activity-independent spine turnover.

Beginning with the collective spine distribution Fig. 3a, we note that the pre- (red) and post-stimulation (blue) stationary distributions are significantly different. This is also reflected in the set of time point means (top inset). This implies that the spine dynamics before and after stimulation can be classified as activity-independent plasticity around the respective stable distribution but that the act of spine stimulation acts instantaneously (at our time resolution) shifting the distribution of spine sizes. To quantify the distributional change further, we measured the amount of information or “uncertainty” within the given spine size distributions (Samavat et al., 2022). Hereby, we use Shannon entropy, which quantifies how many *bits* a distribution has and is defined by

$$H(X) := - \sum_{x \in \mathcal{X}} p(x) \log p(x) = \mathbb{E}[-\log p(X)] \quad (5)$$

176 where \mathcal{X} defines the full set of possible sizes and $p(x)$ is the normalized distribution of different spine sizes. We calculate
 177 the information capacity of the spine size distributions before and after stimulation. We note that the lower inset of Fig. 3a
 178 shows a significant increase in the potential information-retaining capacity of the neuron due to the stimulation. In contrast,
 179 Fig. 3b shows that the heterosynaptic spine ($< 4 \mu m$) size distributions and sample means do not show any significant shift
 180 during stimulation. The entropy does increase, albeit not significantly.

181 The changes from time point to time point of both the homosynaptic (Fig. 3c) and heterosynaptic spines (Fig. 3d) mirror
 182 those of the activity-independent plasticity (Gaussian distributions). For Fig. 3c, we see that stimulation protocol (depicted
 183 in teal) induces a significant shift in the location of the change distribution (see figure below, which depicts the mean change)
 184 but no significant change in the shape. In contrast, the heterosynaptic spines do not exhibit a significant difference in shape or
 185 location from the other time points. Furthermore, when considering the averages of the changes at each time point (vertical
 186 black lines in the 3D plot and dynamic plots immediately below), we see that the stimulation time point for the homosynaptic
 187 spines is significantly elevated over the other time points. This elevation supports the “shift” event we observed in Fig. 3a.
 188 We also note no significant difference between all other time points. Given that we assume that the pre-stimulation time
 189 points are akin to activity-independent plasticity (i.e., there is no knowledge that a stimulation event is about to occur), we
 190 can then assume that the distribution of the spine changes after stimulation is also defined by activity-independent plasticity.
 191 The heterosynaptic spines do not demonstrate such an elevation, and so we assume that, for the most part, these spines
 192 undergo activity-independent plasticity.

193 We next divided the population of spines according to their sizes in bins of $0.15 \mu m^2$, which can be seen in Fig. 3e
 194 (homosynaptic spines) and Fig. 3g (heterosynaptic spines). As we assume that all non-stimulation time points represent
 195 activity-independent plasticity, we collect these into one and plot these changes in spine size in the left figures. The figures
 196 on the right only show the time point immediately post-stimulation. We note that these all are approximated by log-normal
 197 distributions (fits in black) (cf. Fig. 1h). We can also compare the distributions of each bin (Fig. 3f and Fig. 3h -
 198 homosynaptic and heterosynaptic spines, respectively). The inset p values refer to a KS-test between the two data sets.
 199 Differences were significant for homosynaptic spines only under $0.5 \mu m^2$, and for the heterosynaptic spines, only under 0.35
 200 μm^2 . This suggests, in line with results seen in Matsuzaki et al. (2004), that small spines are proportionally more affected
 201 by the glutamate uncaging event and play a more important role during the acquisition of new memories. In contrast, larger
 202 spines are more stable and do not change significantly from the baseline activity-independent plasticity. Finally, we observe
 203 that the stimulated spine change distribution is narrower for the small ($< 0.35 \mu m^2$) heterosynaptic spines (Fig. 3h, teal
 204 vs red). This narrowing appears skewed to the right, such that the decrease in activity-independent fluctuations could be
 205 preferentially associated with the shrinkage of the small spines. In contrast to the stimulated small spines that undergo
 206 growth, neighboring small spines experience the stimulation only peripherally. In such a case, the components that induce
 207 growth may not reach levels sufficient to actually cause growth while they may be present at levels that could still counter
 208 (or compete with) activity-independent shrinkage.

209 The LN-OU model applied to stimulated spines

210 To apply our model to the stimulation scenario, we need to determine the new linear dependencies on spine size and
 211 lognormal statistics that arise. As a first step, we analyze the sample means and standard deviations for the homo- (Fig. 4a)
 212 and heterosynaptic spines (Fig. 4b) while omitting the stimulation snapshot. We note that the resulting model agrees well
 213 with the previous fits (in gray), confirming our observation that the pre-stimulation baseline model applies.

214 We next study the stimulation snapshot and observe that the model fits for the heterosynaptic spines in Fig. 4c reveal only
 215 a slight deviation in the smallest spines from the activity-independent baseline. Therefore, for simplicity, we consider that

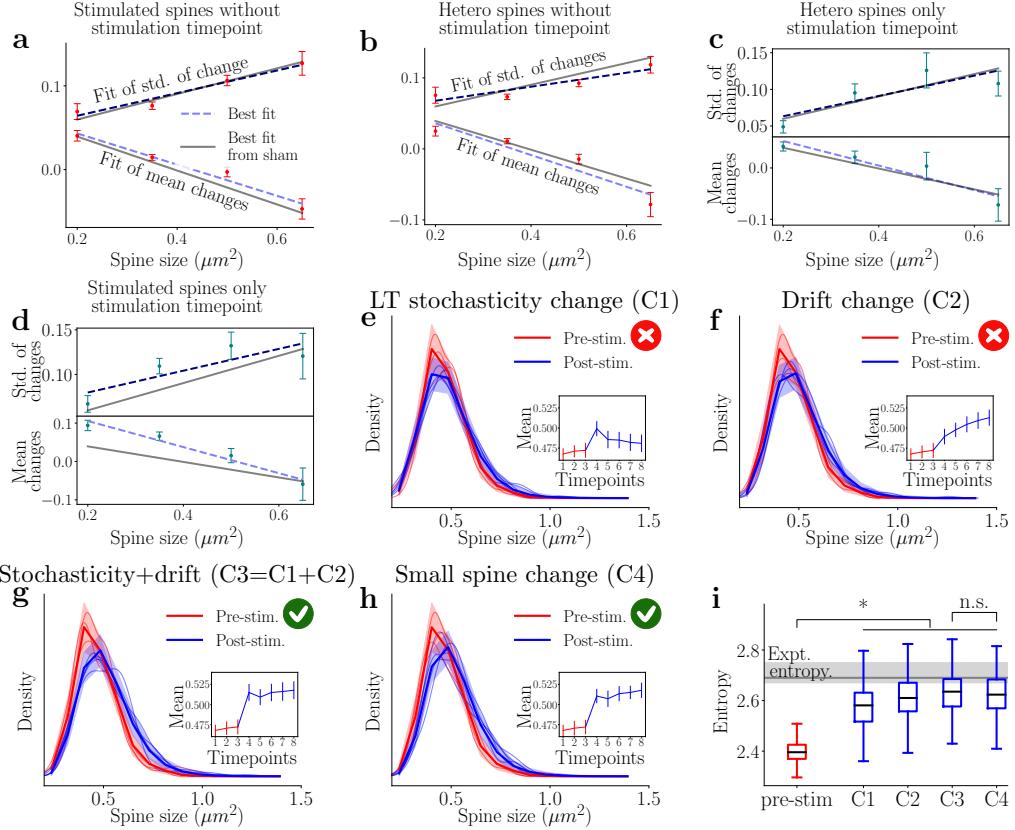


Figure 4: Lognormal-Ornstein-Uhlenbeck (LN-OU) model can reproduce homosynaptic spines dynamics even if only small spines are altered. The figure shows how the model can reproduce the dynamics of homosynaptic spines by changing the behavior of small spines only. The red crosses denote when the model violates experimental observation, and the green tick denotes agreement with the data. **a-d)** Subsets of homo- and heterosynaptic spines were split according to size, and linear fits were carried out for the sample mean and standard deviation of the spine activity. **a-c)** Fit of the non-stimulation snapshot of the homosynaptic spine and all snapshots of the heterosynaptic spines show good agreement with the activity-independent plasticity fits (gray). **d)** Stimulation snapshot of the homosynaptic spine shows a difference in the fit for smaller spines. **e)** Model simulation dynamics pre- and post-stimulation. The immediate growth is observed but not sustained when only changing the stochastic portion. **f)** Simulation results when the long-time stochasticity was kept the same as the model in Fig. 2e, and only $\tilde{\mu}$ was changed to reflect a new stable point. **g)** Represents the simulation results when the two previous changes are implemented in tandem, mirroring the sustained LTP seen in Fig. 3a. **h)** A simpler change in the stimulation model is introduced, where $\tilde{\mu}$ is changed as in the previous figures while the long-time stochasticity are only shifted for the spines $< 0.35 \mu\text{m}^2$ in size. **i)** The Shannon entropy of the simulated distributions is calculated and compared to the experimental value. The stimulation event adds significant information in all cases, and there is no significant difference when the fast change is only applied to small spines. Center lines of the whisker-plots refer to the median simulated entropy and whiskers to the inter-quartile range.

216 the heterosynaptic spines undergo activity-independent baseline dynamics at all time points. For the homosynaptic spines
217 in Fig. 4d, a different behavior emerges. We see that the standard deviation is tilted upwards, meaning that the resulting
218 log-normal distribution has increased its standard deviation and that the spines became more variable during stimulation.
219 We note that this increase follows intuitively for the following reasons; as the spines are rapidly enlarged by the potentiation
220 protocol, their variance will also be increased because *i*) they have grown beyond the normal size of activity-independent
221 plasticity and *ii*) they are now large spines, which have been demonstrated to have larger variance compared to small spines.
222 This increase in the standard deviation is only observed in the medium-sized bins and not for the small or large spines. This
223 could be explained by the fact that the medium spines, which are able to grow to be the size of large spines, now exhibit the
224 characteristics of those large spines, including an increased variance. Furthermore, the mean spine change exhibits a distinct
225 linear trend, i.e., the smaller the spine, the larger the mean increment compared to the fit from the activity-independent
226 plasticity.

227 To understand which parameters of the model need to be altered to replicate the stimulation time point for the homosynaptic spines (Fig. 3a), we will alter each component, long-term stochasticity and drift, of the log-normal model, individually.
228 Additionally, we assume that the negative momentum term is a term that is inherent to activity-independent plasticity, i.e.,
229 it occurs as a stabilization mechanism and counters the previous stochastic change. As stimulation is a directed activity,
230 negative momentum would hinder the growth of spines after stimulation by promoting shrinkage and imply that the previous
231 stochastic activity-independent plasticity directly affects the subsequent activity-dependent change. Consequently, we choose
232 to deactivate this term in the model during the stimulation step to avoid this scenario. However, future studies could consider
233 including this or a generalized negative momentum term and study its role for the resulting synaptic size distribution.

234 First, we changed the long-term stochasticity component of the model by using the linear fits for the stimulation time
235 point (Fig. 4e). The fast component of the stimulation is reproduced; however, by keeping the drift constant, we slowly
236 return to the original distribution. This is not what we observe in our experiment with the stimulation of 15 spines (Fig. 3a).
237 We note that we do observe the decay back to baseline for a separate case in which only seven spines were stimulated (Fig. S6a). From this, we can assume that the sustained LTP response is linked to the higher drift term and implies that
238 the long-term stochasticity component replicates the immediate potentiation while the drift portion leads to the sustained
239 effect. Further evidence for this assumption can be seen in Fig. 4f, where only the drift term is altered at all points after
240 stimulation, and the linear fits are taken from the activity-independent plasticity. The change in the mean and distribution is
241 slower and does not include instantaneous potentiation. Previously, the long-term stochasticity and drift components were
242 active on similar time scales. For the stimulation we see that the long-term stochasticity enacts instantaneous changes to
243 the structure of the spines over the timescale we considered, while the drift towards the new steady state occurs afterwards
244 on a longer time scale.

245 Finally, we alter both components by changing linear fits at the time point post-stimulation and the drift parameter μ
246 after stimulation. Fig. 4g demonstrates that we reproduce a distinct set of stable distributions before and after stimulation on
247 the required timescales (cf. Fig. 3a). Thus, the LN-OU model reproduces the experimental results of both types of plasticity.
248 To achieve the jump in distributions seen in the simulations, the full linear fits seen in Fig. 4d were used for the long-term
249 stochasticity. Furthermore, given the observation that small spines are most affected by stimulation, we examined the effect
250 of only changing the parameters of the smallest spines in the model (Fig. 4h). We, therefore, only increased the sample mean
251 of the spines with an initial area of $< 0.35 \mu\text{m}^2$ during the stimulation and treated the stochastic component of all other
252 spines as if they were undergoing activity-independent plasticity. The drift parameters were applied as above, as they affect
253 all spines equally. In other words, we were altering the slow component of all spines but only altering the fast potentiating
254 component of the smallest spines. With this change, we can reproduce the experimental results with no noticeable difference
255 from when we used the full linear fits (compare Fig. 4h and Fig. 4g).

256 We also calculated the Shannon entropy of the simulated distributions (Strong et al., 1998; Granot-Atedgi et al., 2013;
257 Samavat et al., 2022). The result of this calculation can be seen in Fig. 4i. In all cases, we significantly increase the
258 information encoding capabilities of the synaptic weight distribution after stimulation. However, only changing the long-
259 term stochasticity (i.e. the short-time effect of the stimulation) leads to a smaller increase in entropy which could then
260 conceivably decay back to pre-stimulation levels after the observed time period. The other alterations to the model to
261 emulate the stimulation event have markedly higher entropy values (akin to those observed experimentally). Notably, there
262 is no significant difference in the entropy of the fully altered and small spine models. We conclude that any model that aims
263 to reproduce the population dynamics of spine sizes can focus on the smallest spines to simplify the simulation process while
264 still achieving good results, at least over the time scales considered in this study.

267 Discussion

268 In the present study, we considered experimentally recorded population dynamics of both stimulated and unstimulated spines
269 sharing the same dendrite. Inspired by previous work (Yasumatsu et al., 2008; Loewenstein et al., 2011; Hazan and Ziv,
270 2020) we have introduced a novel model framework incorporating the dynamics for spontaneous and plasticity-driven spine
271 changes we measured in our data. Specifically, we observed a stable right-skewed distribution of spine sizes in which the
272 dynamics of small and large spines seemingly follow different computational rules.

273 We built a model operating at the level of synaptic populations that can be represented by a single stochastic differential
274 equation and refrained from modeling detailed molecular principles, such as those reported in Shomar et al. (2017) or Bonilla-
275 Quintana et al. (2020) following the historic footsteps of previous abstract models Yasumatsu et al. (2008); Loewenstein
276 et al. (2011); Statman et al. (2014). Taking this high-level view, we gained insights into activity-independent plasticity and
277 incorporated different time scales. Previous studies (e.g. Yasumatsu et al., 2008; Loewenstein et al., 2011; Shomar et al., 2017;
278 Hazan and Ziv, 2020) have offered a rich set of stochastic modeling options to describe specific individual effects present in
279 the spine dynamics. In accordance with previous literature, we followed the ergodic hypothesis for our modeling. However,
280 due to the 55 minute recording window in our data set, we could not test ergodicity directly or show that each spine explores
281 the full phase space (see Fig. S3c,d).

282 Our model incorporates a fast and a slow mechanism that both have implications for the synaptic stability of a neuron. The
283 fast spine changes that are anti-correlated with previous size changes may prevent a winner-take-all system by differentiating
284 between small and large spines. Enforcing that large spines shrink on average guarantees that spine size remains bounded
285 and is in line with the long tail of the spine size distribution. Additionally, in our experiments we observed that small spines
286 preferentially showed a positive size change (Fig. 3f), and therefore they could act as points of information acquisition during
287 plasticity induction. In contrast, large spines did not change their dynamics significantly after the stimulation, such that the
288 large spines could help maintain the stability of previous state. In the absence of direct plasticity cues, we observed that
289 large spines were more variable and, on average, prone to shrinkage. Large spines, with their intricate structural complexity,
290 require a larger number of proteins, membrane traffic, and actin filaments to support their maintenance, leading to a higher
291 energy cost. This would justify favoring size reduction for large spines in line with an energy-efficient (homeostatic) system
292 that degrades preferentially large spines (older memories that became obsolete) to optimize storage and energy in the brain.
293 We note that our results do not explain how a small subset of spines (e.g., large spines representing selected memories) can
294 be preserved over timescales of days or months (for a brief discussion on how longer timescales could be incorporated in the
295 model, see the numerical methods section).

296 Our model builds on and extends several modeling studies addressing the differences in the dynamics of small and large
297 spines. An early study by Yasumatsu et al. (2008) split small and large spines into different categories based on manual
298 group assignment to model activity-independent plasticity. Our work proposes a plausible mechanism for activity-independent
299 plasticity that avoids such rigid categories. Another study (Loewenstein et al., 2011) found that the temporal changes in
300 spine size could be approximated by a model incorporating two timescales by using multiplicative dynamics and Ornstein-
301 Uhlenbeck processes, consistent with the fast and slow components of our model. A different model by Statman et al. (2014);
302 Hazan and Ziv (2020) used the Kesten process to describe synaptic remodeling dynamics. Shomar et al. (2017) introduced a
303 molecular model that explained how size fluctuations and distributional shapes can emerge from stochastic assimilation and
304 removal of synaptic molecules at synaptic sites. Finally, Bonilla-Quintana et al. (2020, 2021) used actin dynamics to model
305 rapid, spontaneous shape fluctuations of dendritic spines, predicting that these polymerization dynamics self-organize into a
306 critical state that generates negative correlations in spine dynamics on short time scales.

307 Additionally, a vital aspect of our study is the consideration of both stimulation and activity-independent plasticity in
308 a single experimental paradigm and single mathematical model. Previous imaging studies have either limited glutamate-
309 uncaging to single spines (Matsuzaki et al., 2004; Murakoshi et al., 2011), or small clusters of spines (Govindarajan et al.,
310 2011; Oh et al., 2015) and did not monitor population-level changes in synaptic sizes. Others monitored multiple spines
311 while applying global chemicals to induce plasticity (e.g. Kopec et al., 2006). Here, we could confirm one of the results of
312 Matsuzaki et al. (2004) that small spines are the prime targets for growth and, therefore, may be the substrates for the
313 acquisition of new memories and, consequently, that large spines are likely to be the reservoirs for long-term memories
314 Grutzendler et al. (2002); Holtmaat et al. (2005); O'Donnell et al. (2011). Model justifications for distinct dynamics in small
315 and large spines as been discussed in Shouval (2005) that proposed a mechanism based on clusters of interacting receptors
316 in the synaptic membrane or Bell et al. (2022) who considered a reaction-diffusion model of calcium dynamics and Jozsa
317 et al. (2022) that showed that discrete, stochastic reactions and macroscopic reactions could be exploited for size-dependent
318 regulation. Interestingly, we observed that the distribution of spine sizes was different post compared to pre-stimulation. In
319 contrast, we saw that the changes in spine size (δV), when viewed as a population across all time points (longer than 2 mins

320 away from plasticity induction), were indistinguishable from activity-independent, spontaneous changes.

321 Thus, our model provides a common stochastic framework that helps understand spine plasticity operating spontaneously
322 after stimulation. Finally, we considered the entropy and information content of the synaptic populations. Entropy is a
323 measure of disorder in a system and can be measured by observing the diversity of synaptic sizes in a neural network. Higher
324 entropy implies a more disordered system that allows for more diverse information encoding capabilities. Following LTP
325 stimulation, we observed an increase in the range of synaptic sizes and, thus, a larger set of possible states consistent with
326 higher entropy. This higher entropy could facilitate learning by enabling the network to differentially encode a wider range
327 of inputs. Secondly, entropy can also reflect the stability and robustness of synaptic connections. A higher entropy, reflected
328 by a more diverse distribution of synaptic strengths, could make a network less sensitive to changes in individual synapses.
329 This increased ability to buffer against noise or disruptions, such as the loss or weakening of specific synapses, helps promote
330 the overall robustness of the network.

331 Our study provides not only a common framework for understanding spontaneous versus evoked dynamics across spines
332 but also helps establish a unified view of various features related to spontaneous spine dynamics that align with prior
333 reports obtained in different experimental preparations. Since spontaneous spine dynamics is often studied across both in
334 vivo and in vitro preparations, slices, hippocampal or organotypic cultures, and across different brain regions confirming
335 or differentiating these reports within a common model framework is an ongoing challenge. While our experiments are
336 conducted in slices, (e.g. [Hazan and Ziv, 2020](#)) has taken advantage of primary culture models to image spines over hours
337 to days while monitoring fluorescently-tagged PSD components. Similarly, [Yasumatsu et al. \(2008\)](#) worked in hippocampal
338 slices and employed different blockers to silence neuronal activity while observing several spine dynamics features compatible
339 with our model and data. Other studies, such as [Loewenstein et al. \(2011\)](#), imaged dendritic spines *in vivo* in the auditory
340 cortex, measuring populations of spines over days to weeks. During imaging sessions, the mice were lightly anesthetized,
341 but activity at these synapses evolved spontaneously between sessions, leading to synaptic strength changes. Interestingly,
342 despite these differences in experimental preparations, many reported features align with our experimental data, including
343 the right-skewed spine distributions and size-dependent statistics consistent with our model.

344 In summary, our study established a link between activity-independent spontaneous spine dynamics and directed synaptic
345 plasticity. Within a new modeling framework, we were able to unite new and previously reported synaptic features such as
346 stable distribution of spine sizes, ([Statman et al., 2014](#); [Loewenstein et al., 2011](#); [Yasumatsu et al., 2008](#)), higher variability
347 of larger spines vs. small spines ([Minerbi et al., 2009](#); [Yasumatsu et al., 2008](#); [Loewenstein et al., 2011](#); [Hazan and Ziv,
348 2020](#)), the oscillatory behavior of the spines ([Yasumatsu et al., 2008](#); [Bonilla-Quintana et al., 2020](#)) and incorporate into the
349 same model plasticity-induced dynamics. This framework can open avenues for interpreting specific experimentally reported
350 synaptic changes relative to spontaneous activity and help constrain plasticity models operating at the circuit level.

351 Methods section

352 Experimental methods

353 Preparation of organotypic hippocampal slice culture

354 Organotypic hippocampal slices were prepared as previously reported ([Stoppini et al., 1991](#)). Briefly, the brains of postnatal
355 day 6-7 Wistar rat pups (Nihon SLC) were removed, the hippocampi dissected out, and 350 μ m thick transverse slices were
356 cut using a McIlwain tissue chopper (Mickle Laboratory Engineering Co. sLTD. and Cavey Laboratory Engineering Co.
357 sLTD.). These slices were then placed on cell culture inserts (0.4 mm pore size, Merck Millipore) in a 6-well plate filled
358 with culture media containing 50% Minimum Essential Medium (MEM, Thermo Fisher Scientific), 23% EBSS, 25% horse
359 serum (from Thermo Fisher Scientific), and 36 mM glucose. The slices were maintained at 35°C and 5% CO₂ and used for
360 experiments between DIV16-18.

361 The slices were perfused with 1-2 ml/min of artificial cerebrospinal fluid (aCSF) containing (in mM) 125 NaCl, 2.5 KCl,
362 26 NaHCO₃, 1.25 NaH₂PO₄, 20 glucose, 2 CaCl₂, and 4 mM MNI-glutamate (Tocris). The aCSF was continually bubbled
363 with 95%O₂, and 5%CO₂ and experiments were carried out at room temperature. All animal experiments were approved
364 by the RIKEN Animal Experiments Committee and performed in accordance with the RIKEN rules and guidelines. Animal
365 Experiment Plan Approval no. W2021-2-015(3).

366

367 **Transfection and imaging of CA1 pyramidal neurons**

368 Organotypic slices were transfected with a Helios gene gun, and used for experiments 48 to 96 hours later. For structural
369 plasticity experiments, gold particles coated with a plasmid encoding EGFP were used. 50 μg of EGFP plasmid was coated
370 onto 20-30 mg of 1.6 μm gold particles. The neurons were imaged at 910 nm on a Zeiss 780 microscope, and all data was
371 analyzed offline.

372 **Dendritic spine imaging and glutamate photolysis**

373 Neurons were selected for imaging if their gross morphology appeared healthy. Single dendrites were selected visually for
374 imaging and stimulation. Dendrites were imaged for a brief period of time by collecting a series of Z stacks of the dendritic
375 arbor at a resolution of 512 \times 512 and 4 \times digital zoom, with 4x averaging, resulting in a final image size of 33.7 μm . The Z
376 step between each image in the stack was 0.5 μm . For the induction of plasticity, spines on the dendrites were stimulated by
377 applying a train of 60 pulses of laser light (4 msec each) using custom-written software, and uncaging glutamate at a distance
378 of 0.5 μm from the spine head. Medium-sized spines with a clear spine head within the field of view were preferentially
379 targeted for stimulation. A 2-photon laser source (720 nm) was used for photolysis of MNI-glutamate, and the stimulation
380 was repeated at a rate of 1 Hz. For groups of homosynaptic spines, laser pulses were delivered in a quasi-simultaneous
381 fashion, in which the first spine receives a pulse of glutamate (4 msec) which is followed by a short delay (<3msec) as the
382 system moves the laser to the next spine. This is repeated for all spines in the stimulated cluster and repeated at 1 Hz. For
383 sham-stimulation experiments, MNI-glutamate was omitted from the aCSF.

384 **Numerical methods**

385 **Image Analysis**

386 To obtain the areas of the individual spines, which can be seen as a proxy for the strength of that synapse (Chen et al.,
387 2013; Bartol Jr et al., 2015), were generated by using the area of an octagonally shaped ROI surrounding the spine head.
388 The algorithm for the generation of this octagon is part of an in-house python code. Briefly, the spine ROI was generated by
389 using a semi-automatic in-house python package that took advantage of the inherent structures of the spines. The manual
390 interaction involves a simple clicking on the interior of the spines while the ROI and subsequent measurement are performed
391 automatically. Temporal shifting was corrected by using a phase cross-correlation algorithm implemented in SciPy (Guizar-
392 Sicairos et al., 2008). Synapses that were partially obscured by the dendrite or overlapped with other spines were omitted
393 from the analysis. All images shown and used for analysis are maximum-intensity projections of the 3D stacks.

394 **Statistical definitions**

Throughout this manuscript, we used the absolute change in spine areas, which is defined as follows:

$$\Delta V_i = V_i - V_{i-1} \quad (6)$$

395 Error bars represent standard error of the mean, and significance was set at $p = 0.05$ (two-sided studentized bootstrap).
396 To compare distributions against each other, the populations were taken (in the case where these samples were very large,
397 randomly subsampled), and a Kolmogorov-Smirnov test was performed. Single asterisks indicate $p < 0.05$. Fits of probability
398 distribution functions were performed using SciPy. Correlations report the Pearson product-moment correlation coefficients.

399 **Building a Gaussian model**

400 We start by considering the Gaussian distribution of the experimentally observed spine changes in Fig. 1d and e. Thus, a
401 purely Gaussian model for the spine changes appears as a natural first choice. This model has the form:

$$V_{i+1} = V_i + \eta_i \quad (7)$$

402 where $\eta_i \sim \mathcal{N}(\mu, \sigma)$ and V_i is the size of a spine at time point i . While this model is simple and captures the experimentally
403 observed statistics of spine changes, it exhibits an inherent incompatibility with other experimental results. Since a Gaussian
404 distribution is naturally unbounded, this model permits infinitely large (negative and positive) spine size values.

405 Historically, the lack of bounds in a Gaussian distribution has been addressed via the introduction of bounding walls
406 W_l, W_r (e.g. Yasumatsu et al., 2008): at each time step, the value V_{i+1} is reset to be within the range $[W_l, W_r]$, where

407 $W_l < W_r$. This can be achieved, for example, by using either a bounce-back mechanism (i.e. a change in the opposite
408 direction) or imposing no change, i.e., $V_{i+1} = V_i$. To investigate whether the introduction of walls can allow us to move
409 forward with the Gaussian model, we implemented two walls (W_l and W_r) which we set to equal the fifth percentile and
410 the largest experimentally observed spine size, respectively. The resulting model simulations (using equation (7)) are seen in
411 Fig. S4a, where the dashed lines represent the walls. Despite a good agreement with the collective spine distribution, three
412 conceptual issues rule out this model:

413 1. The left wall enforces a build-up of smaller sizes that leads to the desired asymmetry but also leads to a complete
414 drop-off in spines smaller than this size (Fig. S4a).
415 2. Spines are free to grow until they reach the right wall value, causing an overall increase in the population mean and a
416 biologically implausible growth at the right tail of the size distribution (Fig. S4a and b).
417 3. The negative correlation between subsequent size changes is lost due to the memory-less additive Gaussian noise
418 (Fig. S4c).

419 Therefore, we will modify our model further to include a negative temporal correlation and achieve a biologically plausible
420 spine size distribution. To this end, we will replace the purely diffusive process with an Ornstein-Uhlenbeck process. This
421 approach was previously also used in [Loewenstein et al. \(2011\)](#) to model activity-independent plasticity in a framework with
422 multiplicative noise. Here we will be applying it in an additive manner:

$$V_{i+1} = V_i + \theta(\bar{\mu} - V_i) + \eta_i \quad (8)$$

423 where $\theta, \bar{\mu}$ are the drift terms and η_i is as above. We observe that this process, characterized by the deterministic drift
424 towards the long-term average $\bar{\mu}$, can reproduce the experimental mean-reverting behavior shown in Fig. S4f if θ is large
425 enough. However, if we choose θ to be too large, all the spine sizes will eventually stabilize in a narrow neighborhood around
426 $\bar{\mu}$, which is inconsistent with the experimental observation that even after hours and days, there was a stable and diverse set
427 of different spine sizes ([Yasumatsu et al., 2008](#); [Ziv and Fisher-Lavie, 2014](#)). Adopting a set of different values of constant $\bar{\mu}$
428 for the different spines while keeping a high value of θ allows the recovery of this phenomenon but inevitably locks the spines
429 each into their stable size and prevents them from changing from one size to the other. Therefore, to avoid these pitfalls, we
430 introduce a drift $\bar{\mu}$ that is *i*) unique to each spine and *ii*) time-dependent. Thus we avoid both the global stable size as well
431 as the local stable size. The simplest implementation of this principle is the introduction of a “negative-momentum” term,
432 obtained by setting $\bar{\mu} = V_{i-1}$

$$V_{i+1} = V_i + \theta(V_{i-1} - V_i) + \eta_i \quad (9)$$

433 This non-Markovian process contains a bounce-back mechanism that induces the spines that have grown in the previous step
434 to have a higher probability of shrinking in the next one. Importantly, this effect vanishes at longer timescales. We implement
435 this model by setting θ to achieve the experimentally observed correlation. The results of the simulations can overcome two
436 of the three issues illustrated above: the population mean remains stable over time (Fig. S4d, inset), and the oscillatory
437 behavior reappears in agreement with the experimental observations (Fig. S4e). However, the additive Gaussian term is still
438 responsible for an improper tail-fattening and, ultimately, for an improper symmetrization of the spine size distribution. This
439 fact and the observation that the different spine sizes exhibit different noise profiles (see Fig. 1h) show that more complicated
440 noise-generating models are required to model activity-independent plasticity.

441 The lognormal model

In probability theory and statistics, the log-normal distribution is a continuous probability distribution of a random variable whose logarithm is normally distributed. That is, if the random variable X is log-normally distributed, then $Y = \ln(X)$ is normally distributed. The log-normal distribution is parameterized by the mean, μ , and standard deviation, σ , of the underlying normal distribution. The probability density function of the log-normal distribution is given by

$$p(x) = \frac{1}{x\sigma\sqrt{2\pi}} e^{\left(-\frac{(\ln(x)-\mu)^2}{2\sigma^2}\right)} \quad (10)$$

where x is the value of the log-normally distributed variable. As we will be modeling data that can take negative values (the spines can shrink) and the standard log-normal is only defined for positive values, $x > 0$, we also need one additional

parameter to characterize our distribution: the shift parameter. This parameter shifts the distribution so that $x > \delta$ where δ can be positive (shifted to the right) or negative (shifted to the left). The probability distribution is then

$$p(x) = \frac{1}{(x - \delta)\sigma\sqrt{2\pi}} \exp\left(-\frac{(\ln(x - \delta) - \mu)^2}{2\sigma^2}\right) \quad (11)$$

Given access to the entire population of spine size changes, the parameters that define the log-normal can be found by transforming the sample means and standard deviations (μ_s and σ_s) of the spine size changes as follows:

$$\mu_{\log} = \log\left(\frac{(\mu_s + \hat{\delta})^2}{\sqrt{\sigma_s^2 + (\mu_s + \hat{\delta})^2}}\right) \quad (12)$$

$$\sigma_{\log} = \sqrt{\log\left(\left(\frac{\sigma_s}{(\mu_s + \hat{\delta})}\right)^2 + 1\right)} \quad (13)$$

where we have introduced the positive term $\hat{\delta}$, which shifts the sample mean towards positive values. The choice of $\hat{\delta}$ is relatively trivial as long as all the values of the dataset are positive after the shift. This ensures that μ_{\log} is also positive, thus avoiding the log-normal transformation accumulating values around $x = 0$. Once the parameters of the lognormal have been estimated, the model uses the log-normal distribution to generate the subsequent time points. This model then takes the form

$$V_{i+1} = V_i + \text{Lognormal}(\mu_{\log}, \sigma_{\log}, -\hat{\delta}) \quad (14)$$

442 which mirrors the form of the original Gaussian model. Here, we include the $-\hat{\delta}$ to map our log-normal back to the original
443 range of values that we observe in the data. We emphasize here that the change $V_i - V_{i-1}$ for each individual spine is log-
444 normal but that the population change, i.e., the collection of all changes should still be normally distributed (c.f. Fig. 1e).
445 By the central limit theorem and the assumption that the activity-independent plasticity of the spines is independent of each
446 other, we will obtain this Gaussian nature as long as we have sufficiently many spines.

447 Incorporating longer timescales in our model

448 We briefly comment on the concept of “stability” used in this study. We recognize that our experimental timescale of tens
449 of minutes is insufficient to definitely state that we are observing the population “steady-state”. Indeed, the effects that lead
450 to population changes could occur on timescales that far exceed our experimental timeline. Therefore, when we use the term
451 “stable”, we refer to the short-term effects rather than the possible longer relaxation times of the population dynamics.

452 Our experimental paradigm was limited to ~ 1 hour. Therefore, the temporal components of our model are on this scale.
453 Nevertheless, we can augment our model to study longer timescales and answer questions such as: is the shift to a “stable”
454 distribution after stimulation truly stable over a long time horizon, or is there a possible decay that we cannot observe due
455 to our shorter time paradigm?

456 We observed that altering only the long-term stochastic component of the lognormal OU model led to the shift to the
457 new distribution and then decay back to the baseline (see Fig. 4e). We saw the stable post-stimulation size distribution only
458 when the drift term was also increased. If we define the pre-stimulation drift term as $\tilde{\mu}_{\text{pre}}$ and the post-stimulation drift as
459 $\tilde{\mu}_{\text{post}}$, then we enacted the drift change as

$$\tilde{\mu}_{\text{post}} = \tilde{\mu}_{\text{pre}} + \Delta\mu \quad (15)$$

460 where $\Delta\mu$ is the increase in the mean of the distribution due to the stimulation. Here $\tilde{\mu}_{\text{post}}$ is a constant quantity; thus,
461 the distribution will not change after settling on the stable distribution due to the stimulation. This would be a reasonable
462 assumption for the timescales observed in the 15 spine stimulation (Fig. 3). However, longer timescales or a different number
463 of stimulation events may not exhibit this stable behavior. Instead, we see a decay back to the baseline for the seven-spine
464 experiment (see Fig. S6). In the model, we can account for this decay back to the original distribution by introducing a
465 time-dependent $\tilde{\mu}_{\text{post}}$ as follows

$$\tilde{\mu}_{\text{post}}(t) = \tilde{\mu}_{\text{pre}} + \Delta\mu e^{-\frac{t}{\tau}} \quad (16)$$

456 where τ can be considered to be the relaxation time back to the pre-stimulation baseline after a stimulation event. We
457 hypothesize that τ is related to the number of stimulations and is much larger than the timescales we considered in this
458 experiment.

459 **Size of the data set**

Experiment	# of animals	# of slices	Total # of spines	# of homosynaptic spines
Activity-independent (no-stimulation)	21	47	830	N/A
Activity-dependent (7 spine stim.)	5	10	204	65
Activity-dependent (15 spine stim.)	6	15	338	187

Table 1: Details of the activity-dependent and activity-independent experiments. The table shows the number of animals, slices, and spines analyzed in each experimental condition, as well as the total number of spines and the number of homosynaptic spines (i.e., stimulated spines) in response to the 7 or 15 spine stimulations experiments.

460 **Data and code availability**

461 Experimental data sets included in the manuscript and the code to generate the figures can be found in the following public
462 github repository github.com/meggl23/SpontaneousSpines with DOI: 10.5281/zenodo.7885342. A part of the original data in
463 this paper has previously been analyzed in a separate preprint to derive a model for multi-spine stimulation (Chater et al.,
464 2022).

465 **Acknowledgements**

466 This research was supported by University of Bonn Medical Center, University of Mainz Medical Center, ReALity program at
467 the Mainz Medical Center, the German Research Foundation via CRC1080 (JP, TT), RIKEN Center for Brain Science, JSPS
468 Core-to-Core Program (JPJSCCA20220007 to YG). This project has received funding from the European Research Council
469 (ERC) under the European Union's Horizon 2020 research and innovation programme ('MolDynForSyn', grant agreement
470 No. 945700). This research was also supported by an add-on fellowship of the Joachim Herz Stiftung (ME). TT and YG
471 thank all our group members for fruitful discussions, and Pietro Verzelli and Carlos Wert Carvajal for feedback on an earlier
472 version of the manuscript (TT).

473 **References**

474 Thomas M Bartol Jr, Cailey Bromer, Justin Kinney, Michael A Chirillo, Jennifer N Bourne, Kristen M Harris, and Terrence J
475 Sejnowski. Nanoconnectomic upper bound on the variability of synaptic plasticity. *Elife*, 4:e10778, 2015.

476 Miriam K Bell, Maven V Holst, Christopher T Lee, and Padmini Rangamani. Dendritic spine morphology regulates calcium-
477 dependent synaptic weight change. *Journal of General Physiology*, 154(8):e202112980, 2022.

478 Tim VP Bliss and Terje Lømo. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized
479 rabbit following stimulation of the perforant path. *The Journal of physiology*, 232(2):331–356, 1973.

480 Mayte Bonilla-Quintana, Florentin Wörgötter, Christian Tetzlaff, and Michael Fauth. Modeling the shape of synaptic spines
481 by their actin dynamics. *Frontiers in synaptic neuroscience*, 12:9, 2020.

482 Mayte Bonilla-Quintana, Florentin Wörgötter, Elisa D'Este, Christian Tetzlaff, and Michael Fauth. Reproducing asymmet-
483 rical spine shape fluctuations in a model of actin dynamics predicts self-organized criticality. *Scientific reports*, 11(1):1–17,
484 2021.

485 Jennifer N Bourne and Kristen M Harris. Balancing structure and function at hippocampal dendritic spines. *Annu. Rev.*
486 *Neurosci.*, 31:47–67, 2008.

487 György Buzsáki and Kenji Mizuseki. The log-dynamic brain: how skewed distributions affect network operations. *Nature*
488 *Reviews Neuroscience*, 15(4):264–278, 2014.

489 Michele Cane, Bohumil Maco, Graham Knott, and Anthony Holtmaat. The relationship between psd-95 clustering and spine
490 stability in vivo. *Journal of Neuroscience*, 34(6):2075–2086, 2014.

491 Thomas Chater, Maximilian Eggli, Yukiko Goda, and Tatjana Tchumatchenko. A quantitative rule to explain multi-spine
492 plasticity. *bioRxiv*, 2022.

493 Jen-Yung Chen, Peter Lonjers, Christopher Lee, Marina Chistiakova, Maxim Volgshev, and Maxim Bazhenov. Heterosy-
494 naptic plasticity prevents runaway synaptic dynamics. *Journal of Neuroscience*, 33(40):15915–15929, 2013.

495 Daniel Choquet and Antoine Triller. The dynamic synapse. *Neuron*, 80(3):691–703, 2013.

496 Florian Engert and Tobias Bonhoeffer. Dendritic spine changes associated with hippocampal long-term synaptic plasticity.
497 *Nature*, 399(6731):66–70, 1999.

498 Arava Fisher-Lavie, Adel Zeidan, Michal Stern, Craig C Garner, and Noam E Ziv. Use dependence of presynaptic tenacity.
499 *Journal of Neuroscience*, 31(46):16770–16780, 2011.

500 Arvind Govindarajan, Inbal Israely, Shu-Ying Huang, and Susumu Tonegawa. The dendritic branch is the preferred integrative
501 unit for protein synthesis-dependent ltp. *Neuron*, 69(1):132–146, 2011.

502 Einat Granot-Atedgi, Gašper Tkačik, Ronen Segev, and Elad Schneidman. Stimulus-dependent maximum entropy models of
503 neural population codes. *PLoS computational biology*, 9(3):e1002922, 2013.

504 Jaime Grutzendler, Narayanan Kasthuri, and Wen-Biao Gan. Long-term dendritic spine stability in the adult cortex. *Nature*,
505 420(6917):812–816, 2002.

506 Manuel Guizar-Sicairos, Samuel T Thurman, and James R Fienup. Efficient subpixel image registration algorithms. *Optics*
507 *letters*, 33(2):156–158, 2008.

508 Kimberly J Harms, Kenneth R Tovar, and Ann Marie Craig. Synapse-specific regulation of ampa receptor subunit composition
509 by activity. *Journal of Neuroscience*, 25(27):6379–6388, 2005.

510 Kristen M Harris and John K Stevens. Dendritic spines of ca 1 pyramidal cells in the rat hippocampus: serial electron
511 microscopy with reference to their biophysical characteristics. *Journal of Neuroscience*, 9(8):2982–2997, 1989.

512 Akiko Hayashi-Takagi, Sho Yagishita, Mayumi Nakamura, Fukutoshi Shirai, Yi I Wu, Amanda L Loshbaugh, Brian Kuhlman,
513 Klaus M Hahn, and Haruo Kasai. Labelling and optical erasure of synaptic memory traces in the motor cortex. *Nature*,
514 525(7569):333–338, 2015.

515 Liran Hazan and Noam E Ziv. Activity dependent and independent determinants of synaptic size diversity. *Journal of*
516 *Neuroscience*, 40(14):2828–2848, 2020.

517 William R. Holmes, Anders E. Carlsson, and Leah Edelstein-Keshet. Regimes of wave type patterning driven by refractory
518 actin feedback: transition from static polarization to dynamic wave behaviour. *Physical Biology*, 9, 2012.

519 Anthony JGD Holtmaat, Joshua T Trachtenberg, Linda Wilbrecht, Gordon M Shepherd, Xiaoqun Zhang, Graham W Knott,
520 and Karel Svoboda. Transient and persistent dendritic spines in the neocortex in vivo. *Neuron*, 45(2):279–291, 2005.

521 James Humble, Kazuhiro Hiratsuka, Haruo Kasai, and Taro Toyoizumi. Intrinsic spine dynamics are critical for recurrent
522 network learning in models with and without autism spectrum disorder. *Frontiers in computational neuroscience*, 13:38,
523 2019.

524 Kazuhiko Ishii, Akira Nagaoka, Yutaro Kishida, Hitoshi Okazaki, Sho Yagishita, Hasan Ucar, Noriko Takahashi, Nobuhito
525 Saito, and Haruo Kasai. In vivo volume dynamics of dendritic spines in the neocortex of wild-type and fmr1 ko mice.
526 *ENeuro*, 5(5), 2018.

527 Monika Jozsa, Tihol Ivanov Donchev, Rodolphe Sepulchre, and Timothy O’Leary. Autoregulation of switching behavior by
528 cellular compartment size. *Proceedings of the National Academy of Sciences*, 119(14):e2116054119, 2022.

529 Haruo Kasai, Masahiro Fukuda, Satoshi Watanabe, Akiko Hayashi-Takagi, and Jun Noguchi. Structural dynamics of dendritic
530 spines in memory and cognition. *Trends in neurosciences*, 33(3):121–129, 2010.

531 Charles D Kopec, Bo Li, Wei Wei, Jannic Boehm, and Roberto Malinow. Glutamate receptor exocytosis and spine enlargement
532 during chemically induced long-term potentiation. *Journal of Neuroscience*, 26(7):2000–2009, 2006.

533 Yonatan Loewenstein, Annerose Kuras, and Simon Rumpel. Multiplicative dynamics underlie the emergence of the log-normal
534 distribution of spine sizes in the neocortex *in vivo*. *Journal of Neuroscience*, 31(26):9481–9488, 2011.

535 Jeffrey C Magee and Christine Grienberger. Synaptic plasticity forms and functions. *Annual review of neuroscience*, 43:
536 95–117, 2020.

537 M Maletic-Savatic, R Malinow, and K Svoboda. Rapid dendritic morphogenesis in ca1 hippocampal dendrites induced by
538 synaptic activity. *Science*, 283(5409):1923–1927, 1999.

539 Masanori Matsuzaki, Naoki Honkura, Graham CR Ellis-Davies, and Haruo Kasai. Structural basis of long-term potentiation
540 in single dendritic spines. *Nature*, 429(6993):761–766, 2004.

541 Amir Minerbi, Roni Kahana, Larissa Goldfeld, Maya Kaufman, Shimon Marom, and Noam E Ziv. Long-term relationships
542 between synaptic tenacity, synaptic remodeling, and network activity. *PLoS biology*, 7(6):e1000136, 2009.

543 Hideji Murakoshi, Hong Wang, and Ryohei Yasuda. Local, persistent activation of rho gtpases during plasticity of single
544 dendritic spines. *Nature*, 472(7341):100–104, 2011.

545 Venkatesh N Murthy, Terrence J Sejnowski, and Charles F Stevens. Heterogeneous release properties of visualized individual
546 hippocampal synapses. *Neuron*, 18(4):599–612, 1997.

547 Cian O'Donnell, Matthew F Nolan, and Mark CW van Rossum. Dendritic spine dynamics regulate the long-term stability
548 of synaptic plasticity. *Journal of Neuroscience*, 31(45):16142–16156, 2011.

549 Won Chan Oh, Laxmi Kumar Parajuli, and Karen Zito. Heterosynaptic structural plasticity on local dendritic segments of
550 hippocampal ca1 neurons. *Cell reports*, 10(2):162–169, 2015.

551 Bernt Oksendal. *Stochastic differential equations: an introduction with applications*. Springer Science & Business Media,
552 2013.

553 Roger L Redondo, Hiroyuki Okuno, Patrick A Spooner, Bruno G Frenguelli, Haruhiko Bito, and Richard GM Morris.
554 Synaptic tagging and capture: differential role of distinct calcium/calmodulin kinases in protein synthesis-dependent long-
555 term potentiation. *Journal of Neuroscience*, 30(14):4981–4989, 2010.

556 Mohammad Samavat, Thomas M Bartol, Cailey Bromer, Jared B Bowden, Dusten D Hubbard, Dakota C Hanka, Masaaki
557 Kuwajima, John M Mendenhall, Patrick H Parker, Wickliffe C Abraham, et al. Regional and ltp-dependent variation of
558 synaptic information storage capacity in rat hippocampus. *bioRxiv*, pages 2022–08, 2022.

559 Gabriele Scheler. Logarithmic distributions prove that intrinsic learning is hebbian. *F1000Research*, 6, 2017.

560 Aseel Shomar, Lukas Geyrhofer, Noam E Ziv, and Naama Brenner. Cooperative stochastic binding and unbinding explain
561 synaptic size dynamics and statistics. *PLoS computational biology*, 13(7):e1005668, 2017.

562 Harel Z Shouval. Clusters of interacting receptors can stabilize synaptic efficacies. *Proceedings of the National Academy of
563 Sciences*, 102(40):14440–14445, 2005.

564 Adiel Statman, Maya Kaufman, Amir Minerbi, Noam E Ziv, and Naama Brenner. Synaptic size dynamics as an effectively
565 stochastic process. *PLoS computational biology*, 10(10):e1003846, 2014.

566 Charles F Stevens and Jane Sullivan. Synaptic plasticity. *Current Biology*, 8(5):R151–R153, 1998.

567 Luc Stoppini, P-A Buchs, and Dominique Muller. A simple method for organotypic cultures of nervous tissue. *Journal of
568 neuroscience methods*, 37(2):173–182, 1991.

569 Steven P Strong, Roland Koberle, Rob R De Ruyter Van Steveninck, and William Bialek. Entropy and information in neural
570 spike trains. *Physical review letters*, 80(1):197, 1998.

571 Joshua T Trachtenberg, Brian E Chen, Graham W Knott, Guoping Feng, Joshua R Sanes, Egbert Welker, and Karel Svoboda.
572 Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. *Nature*, 420(6917):788–794, 2002.

573 Mark CW Van Rossum, Guo Qiang Bi, and Gina G Turrigiano. Stable hebbian learning from spike timing-dependent
574 plasticity. *Journal of neuroscience*, 20(23):8812–8821, 2000.

575 Alexander Veksler and Nir S. Gov. Calcium-actin waves and oscillations of cellular membranes. *Biophysical journal*, 97 6:
576 1558–68, 2009.

577 Guang Yang, Feng Pan, and Wen-Biao Gan. Stably maintained dendritic spines are associated with lifelong memories.
578 *Nature*, 462(7275):920–924, 2009.

579 Nobuaki Yasumatsu, Masanori Matsuzaki, Takashi Miyazaki, Jun Noguchi, and Haruo Kasai. Principles of long-term dy-
580 namics of dendritic spines. *Journal of Neuroscience*, 28(50):13592–13608, 2008.

581 Rafael Yuste and Tobias Bonhoeffer. Morphological changes in dendritic spines associated with long-term synaptic plasticity.
582 *Annual review of neuroscience*, 24(1):1071–1089, 2001.

583 Adel Zeidan and Noam E. Ziv. Neuroligin-1 loss is associated with reduced tenacity of excitatory synapses. *PLoS ONE*, 7, 7
584 2012. ISSN 19326203. doi: 10.1371/journal.pone.0042314.

585 Noam E Ziv and Naama Brenner. Synaptic tenacity or lack thereof: spontaneous remodeling of synapses. *Trends in
586 neurosciences*, 41(2):89–99, 2018.

587 Noam E Ziv and Arava Fisher-Lavie. Presynaptic and postsynaptic scaffolds: dynamics fast and slow. *The Neuroscientist*,
588 20(5):439–452, 2014.

589 Robert S Zucker and Wade G Regehr. Short-term synaptic plasticity. *Annual review of physiology*, 64(1):355–405, 2002.

590 **Supplement**

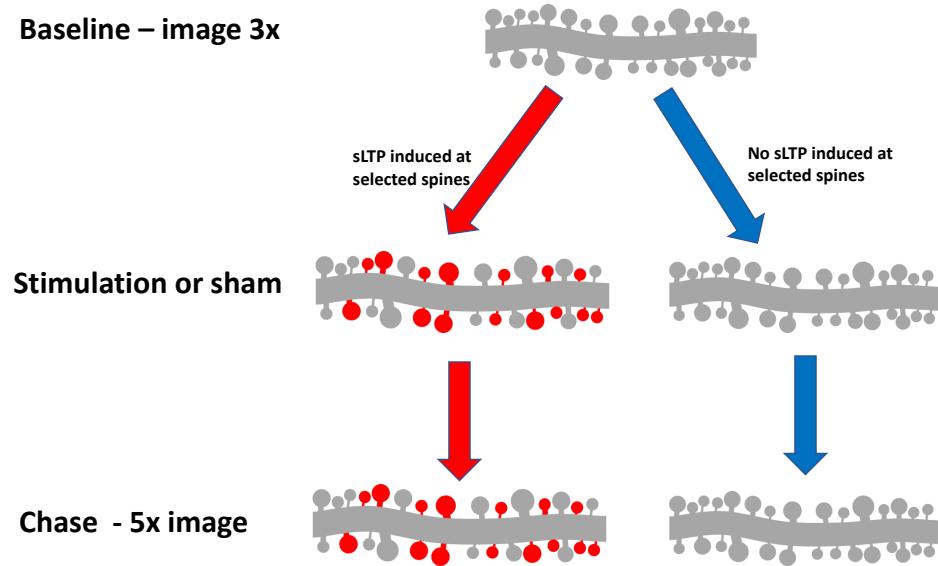


Figure S1: **Illustration of the stimulation and sham experiments to study the activity-dependent and activity-independent plasticity, respectively.** Under both paradigms, the initial three time points are used as a pre-stimulation baseline. For the stimulation scenario we select a set of spines for glutamate uncaging to induce LTP between the 3rd and 4th time point. In the sham paradigm, these spines are similarly selected and receive pulses of the uncaging laser, but in the absence of the caged glutamate. The next 5 time points are then used to study the evolution of the spines within the image.

591 **Links to biological mechanisms**

592 The model presented in this work can also be viewed through a molecular lens, heavily inspired by [Shomar et al. \(2017\)](#),
593 although we will restrict ourselves from making definitive statements. First, let us consider the long-term stochastic component.
594 Consider a spine of a given size (quantified in this study by area, see Methods); the number of molecules in the spine's wall determines this size. Some of these molecules can leave the wall at each time step with some probability. Simultaneously, free-floating molecules can enter the spine and bind with some probability. The larger spines will naturally be more variable because more molecules in the wall can escape. We note that the average large spine tends to shrink in size, which implies that the number of molecules that detach from the spine wall is larger than the number of free molecules that bind to it. Therefore, we propose that the probability of the unbinding must be larger than the binding probability. However, we also note that small spines tend to grow, meaning that, in this case, more binding must occur. We note that the size of the spine (i.e., the number of molecules in the wall) may affect the binding/unbinding probabilities. However, to avoid such a complex relationship, we propose that there is a relatively fixed amount of molecules that can bind to a spine. This would then lead to, on average, more binding than unbinding for small spines, while we would have the opposite for large spines. This neuron-specific homeostatic mechanism then leads to increased energy efficiency (due to the degradation of expensive-to-maintain large spines), which may have implications when scaled up to the neuronal level.

606 Turning to the mean-reverting portion of the model, we have two key factors: the *drift* and the *negative momentum*.
607 Beginning with the drift, we note that this quantity requires a constant parameter $\bar{\mu}$, which is constant across all spine sizes.

608 Finally, the negative momentum term can be interpreted using the following mechanisms related to the actin dynamics
609 inside the spines. Several studies ([Veksler and Gov, 2009](#); [Holmes et al., 2012](#); [Bonilla-Quintana et al., 2020, 2021](#)) have
610 investigated the mechanical properties of actin networks and showed that these cytoskeletal structures can exhibit wave-like

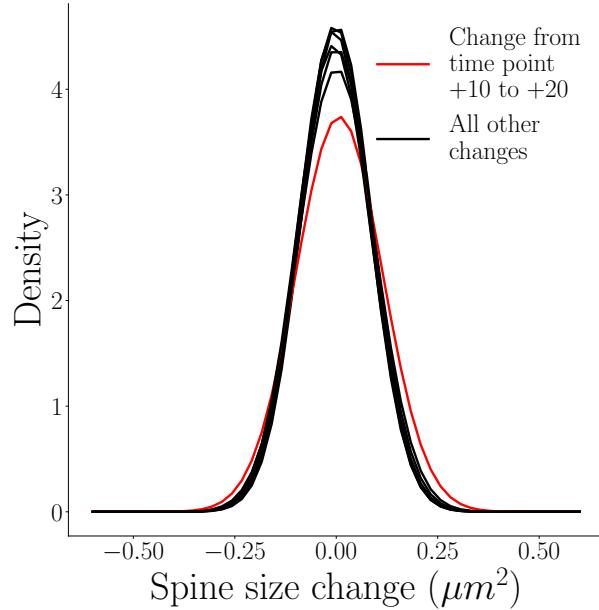


Figure S2: **Alternative depiction of the spine changes distributions (which display Gaussian features) from Fig. 1d.** The distribution of spine size changes of activity-independent plasticity do not differ from each other significantly (K.S. test), apart from the single change distribution from time point +10 to +20, which is marked with a red line.

611 oscillations in time with a period of 1 – 100 s. This behavior emerges from a complex interaction between the actin filament
 612 rigidity, the spine membrane surface tension, and the stochastic polymerization-depolymerization processes. We include the
 613 negative-momentum term in our model to incorporate the actin-mediated negative correlation in the spine changes we observe
 614 in the data. This term can be considered an abstract counterpart of the intricate actin interaction network.

615 These spontaneous spine oscillations potentially prevent a “winner-takes-all” effect which could lead to uncontrolled
 616 growth/shrinkage. A possible functional implication is that the trend to reverse previous changes serves to suppress progressive
 617 spine size changes that are locked in one direction. The stimulation induced forces that allow for a collective shift of the spines
 618 to larger sizes. Additionally, it is plausible that these oscillations provide the spines with a “set point” within biologically
 619 plausible bounds by pushing the spine sizes from both edges toward the middle. Therefore, given that natural random protein
 620 movement within the spines will lead to spine changes, these oscillations could provide a mechanism to help preserve a stable
 621 synaptic size average and thereby contribute to network stability.

622 Interestingly, the experimental conditions that give rise to these negative spine correlations are yet to be fully understood.
 623 For example, [Minerbi et al. \(2009\)](#) did not report a negative correlation when studying long-term random fluctuations in
 624 dissociated cortical cultures at 30-minute intervals. On the other hand, [Yasumatsu et al. \(2008\)](#) reported a slight negative
 625 correlation (-0.189) when considering the change in hippocampal slice cultures over a period of days. From these and our
 626 results, two avenues of study arise. On the one hand, understanding the exact temporal relation between the oscillations
 627 and the size of the experimentally considered time bins would provide insight into whether the negative momentum and its
 628 amplitude does indeed preserve not only average synaptic size but helps maintain stable network and information retention
 629 properties. On the other hand, understanding the pharmacological conditions and cell environment controlling or inhibiting
 630 these oscillations (e.g. [Ziv and Brenner, 2018](#); [Hazan and Ziv, 2020](#)) could provide insights into the mechanisms giving rise
 631 to or preventing negative correlations in synaptic size changes.

632 Interestingly, we observed that plasticity induction maintained the negative momentum term in the spine dynamics. On
 633 the one hand, the stimulation altered the probabilities of binding/unbinding of molecules in the spines, which affected the
 634 distribution of spine changes. On the other hand, the stimulation protocol lead to a new stable molecular configuration that
 635 established a new $\bar{\mu}$ in the drift component.

Finally, the presented log-normal model can be conceptually linked to the process known as geometric Brownian motion (GBM) (also known as exponential Brownian motion). By simulating the spine sizes as individual GBM particles, we could feasibly reproduce the results of the experimental dataset. For instance, similarly to how an ensemble of Brownian motion particles will generate a Gaussian distribution, an ensemble of GBM particles will generate a log-normal distribution

(Oksendal, 2013), as seen in our stable distribution of sizes. Furthermore, in this framework, future states (sizes) are defined by the stochastic differential equation for state S_t

$$dS_t = \mu S_t dt + \sigma S_t dW_t \quad (17)$$

where dW_t represents standard Brownian motion, μ , the relative drift and σ , the relative volatility. The dependence of the change on the current state, S_t , mirrors the effect that larger spines are more variable than smaller spines. Applying such a framework to the spine sizes will be a subject of future studies, as the research into this process is long-established with several important results. However, adequately estimating the parameters underlying GBM (μ and σ) is non-trivial and, due to our low resolution in time, not feasible in this study.

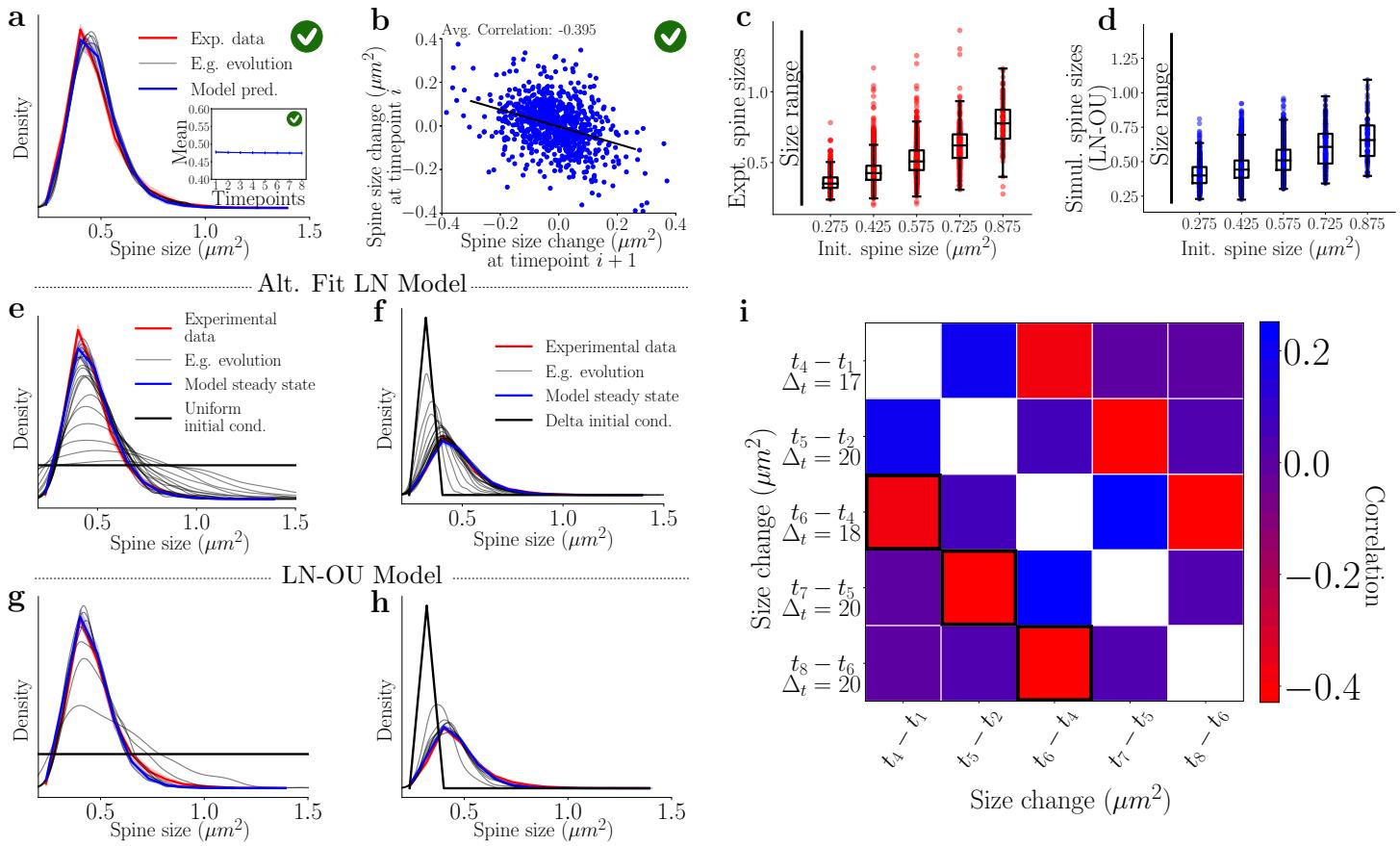


Figure S3: By adding the negative momentum term to the Alt. Fit LN model (see equation (9)) reproduces all aspects of the experimental data without a drift component. Additionally, throughout the experiment, a wide range of spine sizes are observed that can be reproduced by both log-normal models (Alt. Fit LN and LN-OU, equation (4)). **a**) The distribution obtained using the altered linear fits (Fig. 2e) in the Alt. Fit model with the negative momentum term (equation (9)). Significant stability is observed (the inset represents the mean of the simulations). *E.g. evolution* refers to one example simulation of spine sizes. **b**) The correlation of this model demonstrates significantly more negative correlation in comparison to the Alt. Fit model without the negative momentum (cf. Fig. 2g), in line with the desired model goals. **c**) By splitting the spines into categories based on their initial sizes, we can characterize all the subsequent sizes of that initial size. Significant intermixing is observed. The left line represents the total set of spine possible spine sizes. **d**) The previous categories can be simulated using the LN-OU model. We observe remarkable similarity in the size distributions as seen in c). **e-f)** To verify that the Alt. Fit LN Model satisfies our modeling goal 3 (generating the experimental stable distribution after starting at a different one), we initialized all spines sizes to be uniformly represented or all spine sizes with one value ($= 0.25 \mu\text{m}^2$) (black lines in e) and f), respectively. We then use this initial state and simulate the next distributions using the Alt. Fit Model. We note that the log-normal model requires a large amount of steps to reach the steady state. **g-h)** Similarly, we verify that the LN-OU Model satisfies modeling goal 3. In both cases (initial uniform distribution and initial delta distribution), the LN-OU requires fewer steps to achieve the desired steady state. **i**) In contrast to Fig. 1g, where consecutive size changes were compared, here we find all time point differences that are ≈ 20 minutes and compare these against each other. We see that points immediately following each other (highlighted by black squares) are negatively correlated even over this extended time period.

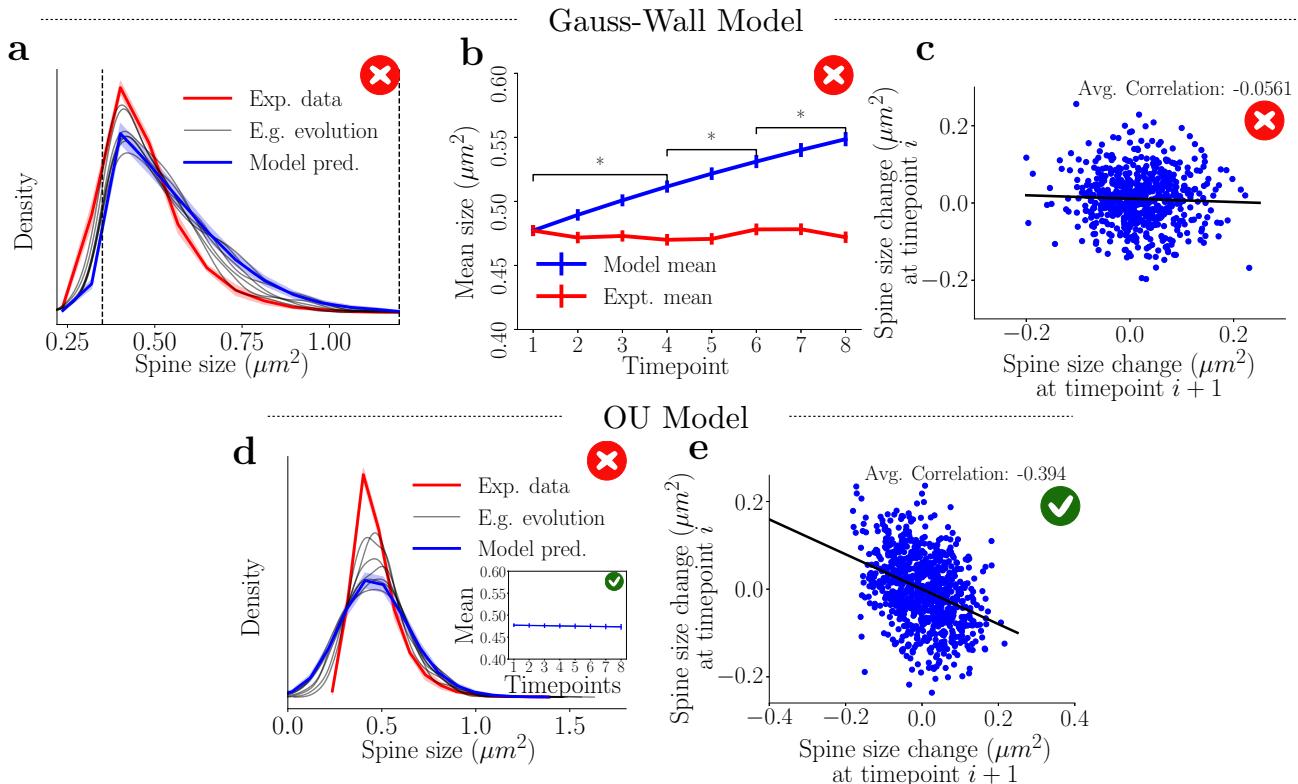


Figure S4: Evaluating model performance of models based on the Gaussian process. We will mark with a red cross model features that violate an experimental observation, while the green tick will denote a model-data match. **a**) Starting with a Gauss wall model (equation (7)) where μ and σ were obtained from experimental data (Fig. 1e) we find that the stability and shape of the experimentally recorded spine is not well captured by the model. *E.g. evolution* refers to one example simulation of spine sizes. **b**) The mean of the Gaussian wall model, exhibits a significant increase over time (blue) while the data shows a time-stable mean (red). **c**) The Gaussian wall model cannot capture the negative correlations observed in the data (see Fig. 1g). **d**) The spine size distribution in the OU model lacks temporal stability but exhibits a stable mean (inset). **e**) The OU model can capture the temporal correlations observed in the experimental data.

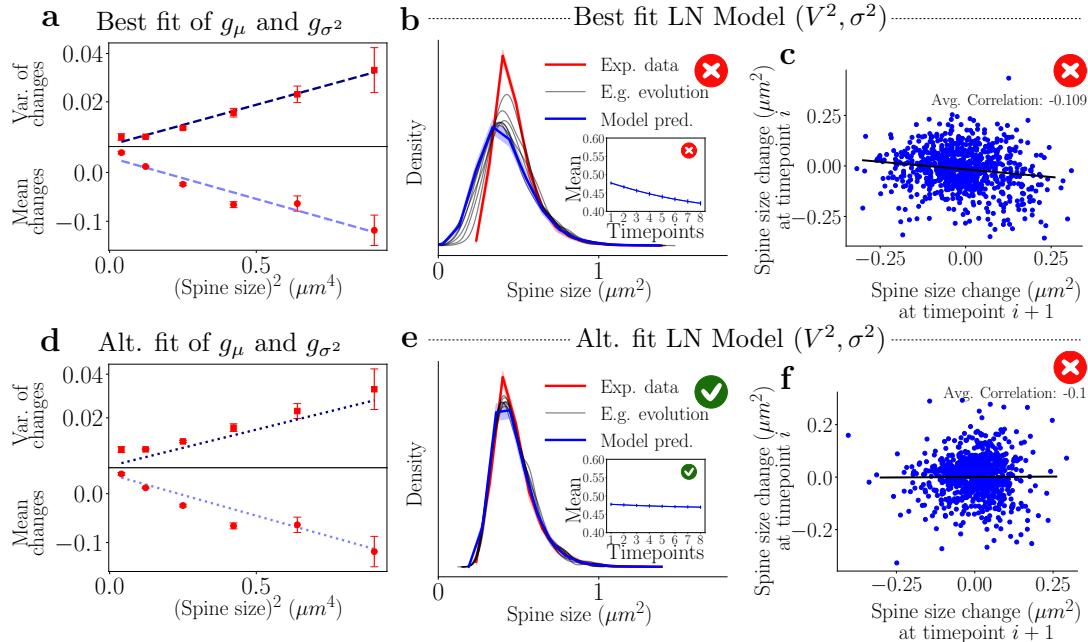


Figure S5: **Linear relations can be found between the variance (σ^2) and mean (μ) and the square of the spine sizes (V^2).** **a)** Linear relations between the square of the spine sizes and sample change means, g_μ , and variances, g_{σ^2} , of activity-independent plasticity show good agreement. **b)** Similar to the earlier fits in Fig. 2, simulations using the linear fits from **a)** do not result in a stable distribution. The inset represents the simulated mean, which decreases significantly. **c)** The correlation measured across one step of the best fit log-normal simulations. The slope is ≈ 0.1 , which is smaller than required for reproducing the experimental data. **d)** Altered linear fits for the mean and variance are used to achieve modeling goals. **e)** Distribution obtained from the simulation when the altered linear fits of the sample mean and standard deviation are used. The stability of the distribution is achieved as well as that of the mean (inset). **f)** The correlation obtained from one step of the Alt. Fit LN model simulations. The slope is ≈ 0.1 , which is smaller than required for reproducing the experimental data.

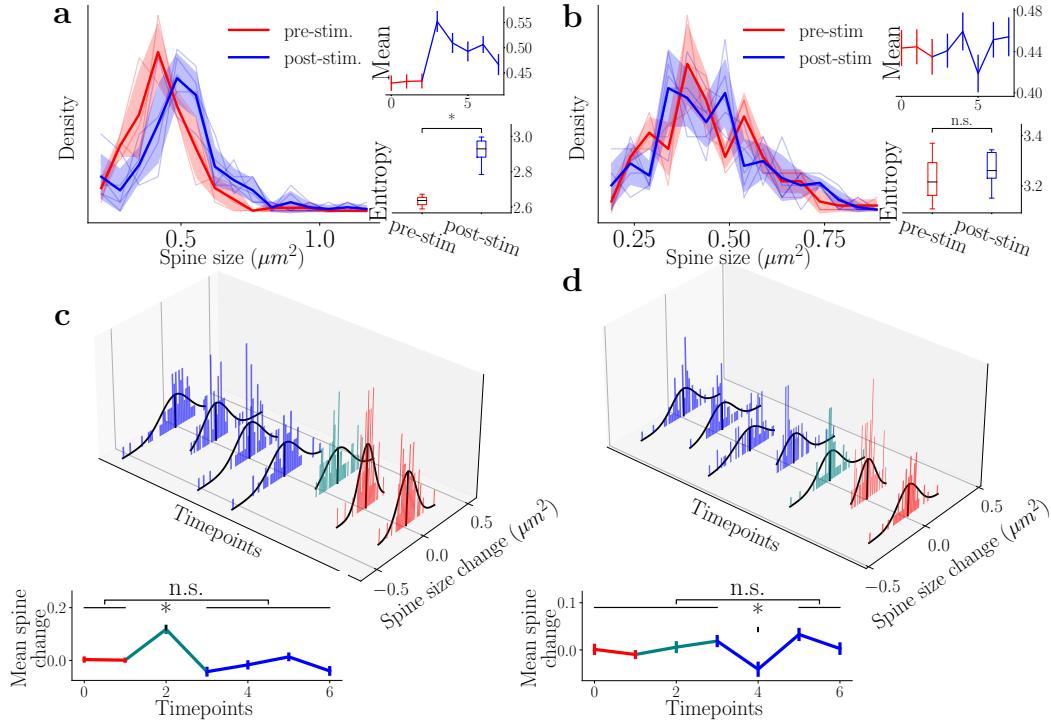


Figure S6: Similar to the simultaneous stimulation of 15 spines, 7 spines LTP induction leads to a distinctly shifted distribution. **a)** Left) Distribution of spine sizes for the homosynaptic spines for different time points, with red and blue referring to pre- and post-stimulation, respectively. Right) Sample mean and entropy. **b)** Left) Distribution of spine sizes for the heterosynaptic spines (within $4 \mu\text{m}$ of any stimulation site) for different time points, with red and blue referring to pre- and post-stimulation, respectively. Right) Sample mean and entropy. **c)** Top) Distributions of the homosynaptic spines changing from time point to time point follow a Gaussian distribution (even the stimulation time point) that is shifted towards positive values. Teal represents the change directly after the stimulation. Bottom) The mean of spine change from time point to time point of all of the homosynaptic spines. A one-way ANOVA test reveals that only the stimulation time point has a significantly different spine size change. All other time points cannot be significantly differentiated from activity-independent plasticity. **d)** Distributions of the heterosynaptic spines changing from time point to time point follow a Gaussian distribution (even the stimulation time point). Teal represents the change directly after the stimulation. Bottom) The mean of spine change from time point to time point of all of the heterosynaptic spines. A one-way ANOVA test reveals that all means (except for the 4th time point) are of the same distribution and so cannot be significantly differentiated from activity-independent plasticity.