

1 N-glycosylation as a eukaryotic protective mechanism against 2 protein aggregation

3

4 Ramon Duran-Romaña^{1,2}, Bert Houben^{1,2}, Matthias De Vleeschouwer^{1,2}, Nikolaos Louros^{1,2},
5 Matthew P Wilson³, Gert Matthijs³, Joost Schymkowitz^{1,2,*}, Frederic Rousseau^{1,2,*}

6

7 ¹ Switch Laboratory, VIB Center for Brain and Disease Research, 3000 Leuven, Belgium.

8 ² Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium.

9 ³ Laboratory for Molecular Diagnosis, Center for Human Genetics, KU Leuven, 3000 Leuven, Belgium.

10 * Corresponding authors

11

12 ABSTRACT

13 The tendency for proteins to form aggregates is an inherent part of every proteome and arises
14 from the self-assembly of short protein segments called aggregation-prone regions (APRs). While
15 post-translational modifications (PTMs) have been implicated in modulating protein aggregation,
16 their direct role in APRs remains poorly understood. In this study, we used a combination of
17 proteome-wide computational analyses and biochemical techniques to investigate the potential
18 involvement of PTMs in aggregation regulation. Our findings reveal that while most PTM types are
19 disfavored near APRs, N-glycosylation is enriched and evolutionarily selected, especially in
20 proteins prone to misfolding. Experimentally, we show that N-glycosylation inhibits the aggregation
21 of peptides *in vitro* through steric hindrance. Moreover, mining existing proteomics data, we find
22 that the loss of N-glycans at the flanks of APRs leads to specific protein aggregation in Neuro2a
23 cells. Our results point towards a novel intrinsic role for N-glycosylation, directly preventing protein
24 aggregation in eukaryotes.

25

26 ABBREVIATIONS

27 **APR**: Aggregation-prone region – **PTM**: Post-translational modification – **GR**: Gatekeeping region
28 – **DR**: Distal region – **SP**: Secretory pathway – **EP**: Enriched position – **OST**:
29 Oligosaccharyltransferase – **ER**: Endoplasmic reticulum – **CDG**: Congenital disorders of
30 glycosylation

31

32 INTRODUCTION

33 The conversion of soluble functional proteins into β -structured aggregates is triggered by
34 short, generally hydrophobic, amino acid stretches known as aggregation-prone regions (APRs)
35 [1]. Most proteins contain one and usually several APRs. In fact, around 20% of all residues in
36 globular proteins are predicted to reside within these regions [2]. APRs are mostly buried inside
37 the hydrophobic core of globular proteins, preventing them from initiating aggregation [3].
38 However, under physiological stress or during translation and translocation, APRs are exposed to
39 the solvent and are prone to aggregate, requiring rigorous regulation by the cellular proteostasis
40 machinery [4, 5]. Insoluble aggregates lead to the loss of function of the affected proteins and are
41 often toxic to cells. This toxicity is strongly associated with a wide range of human diseases and
42 ageing, including Alzheimer's and Parkinson's disease [6, 7].

43 The evolutionary persistence of APRs is a result of their necessity for protein stability, as
44 the forces that drive aggregation, i.e., hydrophobicity and β -sheet propensity, are also crucial for
45 the folding of globular proteins [8]. Nevertheless, throughout evolution, the potency of APRs has
46 been minimised by the presence of adjacent residues that suppress aggregation propensity,
47 known as aggregation gatekeepers [9]. Specifically, charged amino acids (Arg, Lys, Asp, and Glu)
48 and proline (Pro) are significantly enriched in the regions immediately flanking APRs, as they
49 kinetically and thermodynamically disfavour aggregation [2, 10-13]. The introduction of charges
50 generates repulsion forces that strongly reduce aggregation propensity, while Pro is incompatible
51 with the β -strand conformations associated with protein aggregation. Due to their anti-aggregation
52 properties, gatekeepers are essential to maintain the overall fitness of cells, as they affect protein
53 synthesis and degradation rates and can even act as molecular signals to recruit chaperones to
54 non-native states [14, 15]. In fact, aggregation gatekeepers are evolutionarily conserved despite
55 destabilising the native structure, showing that these residues constitute a functional class
56 specifically devoted to proteostasis [16]. Accordingly, mutations that remove gatekeeper residues
57 are more often associated with human diseases than neutral polymorphisms [17].

58 Many proteins are modified during or shortly after translation to assist protein folding and
59 increase the stability of the native structure. Given this intimate connection with protein folding, it
60 is perhaps unsurprising that protein post-translational modifications (PTMs) are gradually
61 becoming associated with protein aggregation events. An increasing number of studies have
62 shown that PTMs can directly – or indirectly – affect the aggregation potency of proteins associated
63 with common aggregation diseases [18-20]. For example, phosphorylation interferes directly with
64 A β fibrillary structure maturation [21], whereas in tau molecules, it reduces microtubule binding
65 affinity, thus increasing the concentration of soluble tau and resulting in later-stage aggregation
66 [22]. In recent years, the reversible O-GlcNAc modification has been shown to directly inhibit
67 protein aggregation in many neurodegenerative diseases and indirectly promote cytoprotection

68 against a wide range of cellular stresses [23, 24]. Nevertheless, it is unclear whether other PTM
69 types constitute a general mechanism of aggregation prevention across proteomes.

70 The most abundant category of PTMs involves the enzymatic addition of functional groups
71 to amino acid side chains, increasing their size and chemical complexity. Intriguingly, many PTM
72 types have chemical properties reminiscent of gatekeeper residues as they often add bulk chains
73 - likely incompatible with β -aggregation – and charges – potentially causing charge repulsion. In
74 fact, negatively charged residues (Asp and Glu) have historically been used to mimic the
75 phosphorylated state of proteins, as phosphorylation adds a negative charge to the amino acid
76 side chain [25]. Furthermore, positively charged residues (Arg and Lys) are susceptible to many
77 types of PTMs, such as acetylation or methylation. For these reasons, we hypothesise that PTMs
78 could have been selected throughout evolution to intrinsically protect against aggregation, thus
79 expanding the current repertoire of aggregation gatekeepers. In this work, we scanned the entire
80 human proteome with a widely used protein aggregation prediction algorithm, TANGO, to analyse
81 the frequency of the most abundant PTM types in APRs and their surrounding residues. Our
82 findings show that N-glycosylation is significantly enriched, conserved, and commonly replaces
83 unmodified gatekeeper residues at these positions. Using biophysical assays on N-glycosylated
84 and unmodified aggregation-prone peptides, we show that this modification mitigates aggregation
85 *in vitro* through steric hindrance. Analysis of the structural properties of proteins with APRs flanked
86 by N-glycosylation indicates a preferential association with topologically complex domains that
87 have a high aggregation propensity. Finally, re-analysis of proteomics data that measures changes
88 in protein solubility after treatment of mouse Neuro2a cells with an N-glycosylation inhibitor shows
89 the aggregation of specific newly synthesised proteins.

90

91 **RESULTS**

92 **While most PTM types are disfavoured around APRs, N-glycosylation is enriched**

93 Unmodified aggregation gatekeepers (Arg, Lys, Asp, Glu, and Pro) are significantly
94 enriched in the positions immediately surrounding APRs. In fact, at least one of these amino acids
95 is found within the three neighbouring residues – on either side – in more than 90% of all APRs
96 identified by TANGO [1, 2], a widely used protein aggregation predictor. Therefore, to investigate
97 the potential role of the most common types of PTMs as aggregation gatekeepers, we calculated
98 their relative frequencies in and around human APRs. First, human proteins were scanned with
99 TANGO, which identified 84,537 APRs (TANGO score >10 and length 5-15 residues). The three
100 residues preceding and succeeding APRs were labelled as gatekeeping regions (GRs), and all
101 other residues as distal regions (DRs) (**Figure 1A**). Next, experimentally annotated human PTM
102 sites were collected from dbPTM [26] and the O-GlcNAcAtlas [27] and were mapped to the dataset.

103 Only PTM types with sufficient data to perform accurate statistics were kept (at least 1,200 sites),
104 which resulted in 17 PTM types across 571,759 unique sites (**Supplementary Table 1**).

105 Our findings show that PTMs, in general, are significantly underrepresented in APRs and
106 GRs (**Figures 1B and 1C**), which means that most PTM types occur more frequently in residues
107 that are located far away from APRs. This is not surprising as APRs are normally partially or
108 completely buried in the folded structure, while PTM sites must be solvent accessible to be
109 recognised by their modifying enzyme [28, 29] (**Supplementary Figure 1**). Nevertheless,
110 restricting the analysis only to residues that are solvent accessible, and hence more readily
111 modified, did not change these observations (**Supplementary Figure 2**). Another protein property
112 that has been strongly associated with the occurrence of PTMs is structure disorder [29]. However,
113 APRs and their GRs are predominantly found in structured domains, which could explain why PTM
114 types that are more often observed in intrinsically disordered regions, such as phosphorylation or
115 O-glycosylation, are disfavoured (**Supplementary Figures 3A and 3B**). This is also the case for
116 O-GlcNAcylation, despite many reports showing that this modification dramatically slows down the
117 aggregation of specific proteins involved in neurodegeneration, which are often highly disordered
118 and polar [23]. Since disordered regions are depleted of a stable globular structure, their
119 aggregation is driven more by β -sheet propensity rather than hydrophobicity [9].

120 In contrast to all other PTM types analysed, N-glycosylation is significantly enriched in
121 APRs and GRs, especially at the N-terminal side (**Figure 1C**). Moreover, restraining the analysis
122 only to exposed residues further increased this enrichment (**Supplementary Figure 2**).

123 **N-glycosites flanking APRs are evolutionarily conserved**

124 N-glycosylation is one of the most common protein modifications in eukaryotic cells. It
125 occurs in nearly all proteins that enter the secretory pathway (SP) and has essential roles in protein
126 folding and quality control [30, 31]. The attachment of an N-glycan to an asparagine residue
127 requires the recognition of a consensus sequence or sequon (Asn-X-Thr/Ser, where X \neq Pro). This
128 reaction is catalysed by an oligosaccharyltransferase (OST) on the luminal side of the endoplasmic
129 reticulum (ER).

130 Since TANGO is a sequence-based predictor, we assessed whether the enrichment
131 detected above was an artefact stemming from the Asn-X-Thr/Ser sequon being polar – and hence
132 likely to be recognised as a gatekeeper when it flanks an APR – instead of a biological signal from
133 the N-glycan. To check this, we compared the relative frequencies of sequons in proteins that have
134 been experimentally determined to undergo N-glycosylation (SP glycosylated) to sequons that are
135 either not glycosylated (SP non-glycosylated) or cannot be glycosylated due to their subcellular
136 location (non-SP). An enrichment was only observed in APRs and GRs for glycosylated sequons
137 (**Figure 2A**). This is highlighted in transmembrane proteins, as only those sequons in domains

138 predicted to be in the extracellular or the luminal side, which can therefore get glycosylated,
139 showed an enrichment in these regions (**Supplementary Figures 4A and 4B**). Moreover, the
140 enrichment was lost in sequons of artificial protein sequences that were randomly generated using
141 the specific amino acid distributions of SP proteins (SP randomised), further indicating that it does
142 not arise from sequence bias (**Figure 2A**). Finally, we observed a similar enrichment pattern when
143 using a different aggregation predictor (CamSol [32]; **Supplementary Figure 4C**). Together, these
144 results indicate that the enrichment of glycosylated sequons observed in APRs and GRs neither
145 arises from a bias due to the sequon composition nor the choice of the aggregation predictor and,
146 instead, is a direct result of N-glycosylation. Calculating the ratio between the relative frequencies
147 of glycosylated sequons against the relative frequency of non-glycosylated sequons showed that
148 there are three regions under positive selective pressure to be glycosylated, which we named
149 enriched positions (EPs): GR2 N-ter, GR1 N-ter, and APR (**Figure 2B**). There are 1,155 N-
150 glycosylated sites in EPs distributed in 858 unique proteins (15% of all SP proteins; **Figure 2C**).
151 Analysis of the gene ontology terms of these proteins showed no overrepresentation of a particular
152 biological function, suggesting that N-glycosylation in APRs and GRs is a general mechanism
153 employed by a wide range of protein families (data not shown).

154 N-glycosylation efficiency is highly influenced by the primary sequence context of
155 glycosylation acceptor sites [33, 34]. Therefore, the specific sequence composition of APRs, GR2
156 N-ter and GR1 N-ter, could favour glycosylation efficiency. In other words, the strong selection
157 observed at EPs might arise from the OST binding more efficiently to them instead of pointing to
158 a shared functional role. To assess this, we predicted the glycosylation efficiency of human
159 glycosylated sites using a model developed by Huang *et al.* [35]. In short, the authors used site-
160 directed saturation mutagenesis to determine which residues improved or suppressed N-
161 glycosylation efficiency. Based on their model, glycosylated sites in EPs have a lower efficiency
162 compared to other glycosylated sites (**Figure 2D**), suggesting that the sequence composition of
163 these regions is not driving their selection, and thus, hinting at an actual functional role. To
164 corroborate this, we looked at the conservation of human sequons in a dataset of 100 mammalian
165 species from the UCSC genome browser [36], as high conservation is commonly associated with
166 an essential biological function. Indeed, N-glycosites in EPs have higher conservation compared
167 to all other glycosylated sites, as well as to non-glycosylated sequons (**Figure 2E**).

168 The N-glycosylation pathway in the ER is very conserved across all eukaryotes [37, 38].
169 Therefore, we next investigated whether a similar enrichment pattern was present in other
170 eukaryote model organisms. Given that the number of experimentally verified N-glycosites in other
171 species besides human is very low, we assumed all sequons in SP proteins to be glycosylated.
172 Strikingly, a similar enrichment pattern was found for sequons in SP proteins of other animals (*Mus*
173 *musculus*, *Drosophila melanogaster*, and *Caenorhabditis elegans*) and plants (*Arabidopsis*

174 *thaliana*), clustering together with the human SP enrichment profile (**Figure 2F**). Similarly, in these
175 species, sequons of proteins that cannot get glycosylated (non-SP) were not enriched at EPs. For
176 yeast (*Saccharomyces cerevisiae*), although its SP enrichment profile clustered together with the
177 rest of the SP profiles, no enrichment was observed at these positions.

178 All of the above underlines a high selective pressure for N-glycosites in EPs to be
179 preserved in evolution, pointing to a similar functional role for N-glycosylation in these sites. Since
180 protein aggregation is generally detrimental for cells, we hypothesised that N-glycosylation is
181 selected in these positions to protect against aggregation. In other words, this modification could
182 be a novel class of aggregation gatekeeper.

183 **N-glycosites flanking APRs behave as and replace aggregation gatekeeper residues**

184 The presence and number of unmodified gatekeeping residues (Arg, Lys, Asp, Glu, and
185 Pro) flanking an APR correlate strongly with its aggregation propensity [39]. To investigate whether
186 N-glycosites flanking APRs act as aggregation gatekeepers, we analysed the aggregation
187 propensity (TANGO score) of APRs containing glycosylated and non-glycosylated sequons at EPs.
188 We see that APRs flanked by N-terminally glycosylated sequons at GR1 N-ter and GR2 N-ter have
189 significantly higher aggregation propensities than those flanked by non-glycosylated sequons in
190 the same positions (**Figure 3A**). However, despite having a higher aggregation propensity on
191 average, these APRs are flanked by fewer unmodified gatekeeping residues (**Figure 3B**). In fact,
192 while in non-glycosylated sequons the number of unmodified gatekeepers increases with APR
193 strength, in glycosylated sequons, the number remains low and constant across different APR
194 strength bins (Supplementary **Figure 5A**). Since unmodified gatekeeping residues are crucial to
195 avoid aggregation, especially for very strong APRs, this data suggests that N-glycans are replacing
196 them in these positions, thus potentially taking their function as aggregation breakers. In contrast,
197 none of the other GRs showed a significant difference in aggregation propensity or in the number
198 of flanking unmodified gatekeeping residues (**Supplementary Figures 5B and 5C**). Glycosylated
199 sequons in APRs did not show a difference in any of these analyses either (**Figures 3A and 3B**),
200 despite being under positive selective pressure. A possible explanation is that APRs comprise a
201 much larger region (5-15 aa), which adds noise to the analysis.

202 To gain more insight into the role of N-glycosites as gatekeepers of aggregation, we looked
203 at the conservation of human glycosylated and non-glycosylated sequons throughout mammalian
204 evolution. Particularly, we focused on sequons at GR1 N-ter since this is the position that showed
205 the highest enrichment and strongest selective pressure when it is glycosylated (**Figures 2A and**
206 **2B**). Each sequon at GR1 N-ter was mapped to the multiz100way dataset [36], a dataset
207 containing multiple sequence alignments of 100 mammalian species to the human genome. We
208 then calculated separately the average number of unmodified gatekeepers in protein orthologs for

209 which the sequon is present and orthologs for which it is absent. In agreement with our previous
210 analysis, we found that when glycosylated sequons acting as gatekeepers are present in a species,
211 these are usually flanked by only a small number of unmodified gatekeepers, even when placed
212 next to very strong APRs (**Figure 3C**). However, a significantly higher number of unmodified
213 gatekeepers are found flanking APRs when glycosylated sequons are not present in a species. An
214 example of this can be seen in the basal cell adhesion molecule protein (BCAM; **Figure 3D**). Non-
215 glycosylated sequons are already flanked by a higher number of unmodified gatekeepers,
216 particularly in the case of strong APRs and, therefore, their absence in a species does not lead to
217 an increase of unmodified gatekeepers (**Figure 3C**).

218 A similar observation was obtained when analysing protein paralogs, particularly the serpin
219 superfamily of protease inhibitors. In humans, most serpins are classified into two clades: the
220 extracellular ‘clade A’ and the intracellular ‘clade B’ [40, 41]. Interestingly, we found that many
221 extracellular serpins have a glycosylated sequon flanking a very strong APR that is conserved in
222 both clades (**Figures 3E and 3F**). However, in intracellular serpins, this APR is flanked instead by
223 one or more unmodified gatekeeping residues, evidencing again an analogous function for N-
224 glycans and unmodified gatekeepers (**Figure 3F**).

225 **N-glycosylation efficiently inhibits peptide aggregation *in vitro* by steric hindrance**

226 The bioinformatics analysis presented above hints at a protective role of N-glycosylation
227 against the aggregation of its cognate APRs. To experimentally assess this, we measured the
228 aggregation kinetics and solubility of peptides with and without an N-glycan (**Figure 4A**). Short
229 aggregating peptides were used instead of full proteins to mimic exposed APRs and to ensure the
230 interpretability of our findings.

231 After an N-glycan precursor ($\text{Glc}_3\text{Man}_9\text{GlcNAc}_2$) is transferred to a protein, it is processed
232 in the ER by removal of the glucose residues as part of the quality-control process [30]. Then, the
233 protein moves to the Golgi apparatus, where the carbohydrate is further processed into an
234 extensive array of mature and complex N-glycoforms [42]. This raises the question whether there
235 is a particular glycoform that confers protection against aggregation or, instead, if it is an intrinsic
236 effect of all glycoforms. The genomes of higher eukaryotes encode two STT3 proteins (STT3A and
237 STT3B), which are the catalytic subunits of two distinct OST complexes [37]. The STT3A complex
238 is associated with the protein translocation channel and glycosylates the majority of sites as they
239 emerge into the ER lumen while specific glycosites that are skipped by the STT3A complex are
240 modified post-translationally by the STT3B complex. In other words, the addition of most N-glycans
241 takes place while a protein is being translated and, therefore, before it folds [43]. During this time,
242 an APR is exposed and at risk of engaging in non-native interactions, such as aggregation.
243 Therefore, we reasoned that this is the most vulnerable time point in a protein lifespan – when it is

244 most in need of anti-aggregation mechanisms – and decided to use the $\text{Man}_9\text{GlcNAc}_2$ (Man_9)
245 glycoform since it is the minimal carbohydrate structure that is attached to the nascent polypeptide
246 before its folding.

247 We analysed ten human APRs with a flanking N-glycosite (**Supplementary Table 2**). In
248 order to investigate if any structural constraints explain why the enrichment in our previous analysis
249 was only observed in the N-terminal flank, we chose five APRs that were modified in the N-terminal
250 site and five in the C-terminal site. Man_9 variants for each APR were compared to their unmodified
251 versions. In addition, GlcNAc versions of each peptide were made to determine if shorter N-glycan
252 forms can inhibit aggregation. All peptides in a set were dissolved to a concentration in which the
253 unmodified variant displayed dye-binding aggregation kinetics with Thioflavin-T (ThT). The results
254 for the peptide set derived from SLNYLLYVSN are shown in **Figures 4B-4H**. ThT- and PFTAA-
255 binding experiments revealed that aggregates were formed by the non-glycosylated and GlcNAc
256 peptides, while for Man_9 , no fluorescent signal was observed (**Figure 4B and 4C**). Incubating the
257 Man_9 peptide with Endo H, an enzyme that catalyses the conversion of Man_9 into GlcNAc, resulted
258 in a strong ThT fluorescent signal (**Figure 4D**), suggesting that the Man_9 glycoform was inhibiting
259 aggregation. However, since Man_9 is a huge molecule, its size could hinder the binding of the
260 fluorescent dyes to a potential aggregated structure. In order to dismiss this possibility, we used
261 an orthogonal assay that measures the concentration of soluble peptide left once the aggregation
262 reaction has reached an equilibrium. In short, peptides were incubated for a week and then
263 subjected to ultracentrifugation. Endpoint solubility measurements of this peptide set showed that
264 Man_9 substantially improved APR solubility compared to non-glycosylated and GlcNAc peptides
265 (**Figure 4E**). We reached similar conclusions by TEM imaging where no aggregated species were
266 observed for the Man_9 peptide, while both non-glycosylated and GlcNAc peptides formed amyloid
267 fibrillar structures (**Figure 4F**). Together, these results indicate that Man_9 strongly inhibits the
268 formation of aggregates. The combined results of the ten APRs analysed confirmed the generality
269 of these findings (**Figure 4G and Supplementary Figures 6-14**). Next, we made peptides in which
270 the modified Asn residue was replaced by each of the four charged residues (D, E, R, and K) since
271 these are known to strongly oppose aggregation. For the SLNYLLYVSN peptide set, Man_9 was
272 more soluble than all peptide versions with charged residues, apart from Glu (**Figure 4H**).
273 Furthermore, in each APR set, Man_9 was as good or better at improving the solubility of peptides
274 compared to their charged counterparts (**Supplementary Figures 6-14**). This enhanced solubility
275 could partially explain why N-glycosylation is selected over unmodified gatekeeping residues in
276 some proteins. Surprisingly, while the computational analysis showed selection only for N-
277 glycosites at the N-terminal flanks of APRs, the *in vitro* experiments revealed that N-glycosylation
278 can inhibit aggregation in both flanks. This indicates that the preference for N-terminal flanks

279 observed computationally does not arise from any APR-intrinsic structural constraints and,
280 therefore, other biological factors may be responsible (see **Discussion**).

281 While Man_9 showed complete or strong inhibition of aggregation in all peptide sets,
282 GlcNAc's capability of inhibiting aggregation was significantly lower. Moreover, in some peptide
283 sets, GlcNAc actually enhanced aggregation (**Figure 4 and Supplementary Figure 13**). Previous
284 studies have proposed that the large size and hydrophilicity of glycans prevent the aggregation of
285 protein pharmaceutical products through steric hindrance [44, 45]. Therefore, we hypothesised
286 that the difference in size between the two glycoforms might be responsible for the degree of
287 inhibition observed. To assess this, we measured, in two of the peptide sets, the solubility of four
288 additional glycoforms: GlcNAc₂, ManGlcNAc₂ (Man), $\text{Man}_3\text{GlcNAc}_2$ (Man_3), and $\text{Man}_6\text{GlcNAc}_2$
289 (Man_6) (**Figure 4I**). Interestingly, GlcNAc, GlcNAc₂ and Man caused a minor and similar increase
290 in solubility for the NISCLWVFK peptide compared to its unmodified version (**Figure 4J**), and were
291 actually found to be more insoluble for the SLNYLLYVSN peptide (**Figure 4K**). A possible
292 explanation could be the presence glycoform-specific interactions, leading to stacking between the
293 hydrophobic faces of sugars or between aromatic residues and sugars of different peptides [46].
294 Conversely, Man_6 and Man_9 caused a substantial and size-dependent increase in solubility in both
295 peptide sets (**Figure 4J and Figure 4K**), supporting that steric hindrance may be the mechanism
296 behind aggregation inhibition. These results provide direct evidence that different glycoforms
297 confer distinct levels of protection against aggregation. Moreover, the more potent inhibitory effect
298 of Man_9 on aggregation supports the idea that N-glycan-mediated protection against aggregation
299 occurs before protein folding in the ER.

300 **N-glycosylation protects against aggregation in hard to fold proteins**

301 Out of all APRs in proteins that follow the SP, only around 7% are flanked by N-glycans at
302 EPs (**Figure 5A**). Why do some APRs, or the proteins bearing those APRs, require the extra level
303 of protection granted by N-glycosylation? To answer this, we built a random forest classifier that
304 predicts which APRs are protected by N-glycans using different features related to structural
305 topology and aggregation, both at the APR and protein domain levels (see **Methods**). We decided
306 to use features of individual protein domains instead of features from full proteins, as domains are
307 independent evolutionary units that often fold independently from each other [47]. Domains were
308 extracted using CATH-Gene3D [48, 49]. Since the number of protected and unprotected APRs is
309 quite different and random forests are known to be sensitive to class imbalance, we trained two
310 different models with opposite resampling techniques. Interestingly, the relative contact order of a
311 domain was the most important feature in both models (**Figure 5B** and Supplementary Figure
312 15A). This is a widely used metric to describe the complexity of a polypeptide fold, which correlates
313 with folding times [50]. Indeed, when comparing domains with at least one APR, those with an N-
314 glycosite at EPs have a significantly higher relative contact order (**Supplementary Figure 15B**).

315 Moreover, while high contact order domains without protected APRs generally have lower
316 aggregation propensities, the ones with N-glycosites at EPs usually contain much stronger APRs
317 (**Figure 5C**). Thus, N-glycosylation is placed in APRs of complex domains with overall high
318 aggregation propensities. As expected, other parameters determined to be important by both
319 models were the solvent accessibility of APRs and the number of unmodified gatekeeping residues
320 flanking them (**Figure 5B and Supplementary Figures 15C and 15D**). N-glycosylation constrains
321 part of the APR to be solvent accessible to avoid steric clashes, while from our previous analyses,
322 we know that N-glycosylation replaces unmodified gatekeeping residues at EPs. The oxidising
323 environment of the ER allows for the formation of disulphide bridges, which help stabilise the native
324 fold of SP proteins. Nevertheless, the number of disulphide bridges in a domain had low
325 importance in the prediction (**Figure 5B**).

326 The high relative contact order observed in domains bearing protected APRs could be
327 indicative of an enrichment for a specific fold topology, as most folds have lower contact orders
328 than these particular domains (**Figure 5D**). To investigate this, we looked at the relative
329 frequencies of protected APRs in different CATH architectures. As background, we used all SP
330 protein domains with at least one APR. Interestingly, there was an underrepresentation of
331 protected APRs in architectures of the class ‘Mainly alpha’, while architectures with more β -sheet
332 content were more abundant (**Figure 5E**). In particular, the ‘CATH 2.60’ architecture (β -sandwich)
333 was highly enriched and included the majority of N-glycosites at EP, which are distributed
334 throughout the entire fold (**Figure 5E and 5F**). The β -sandwich architecture is characterised by
335 two opposing antiparallel β -sheets and span a large number of fold superfamilies, including the
336 immunoglobulin-like fold, and it has been linked to many neurodegenerative diseases associated
337 with the formation of protein aggregates [51, 52]. Moreover, β -sandwich domains are frequently
338 organised in linear arrays within multidomain proteins, which have a higher risk of forming domain-
339 swapped misfolded species [53]. A deeper analysis of β -sandwich domains showed that those with
340 N-glycosites at EPs have a stronger and higher number of APRs than the rest of β -sandwich
341 domains, including other domains that are also N-glycosylated (**Figures 5G and 5H**). Furthermore,
342 β -sandwich domains containing APRs protected by N-glycans are found in larger multidomain
343 proteins, with, on average, 5 β -sandwich domains per protein (**Supplementary Figures 15E and**
344 **15F**).

345 N-glycosylation plays a crucial role in glycoprotein quality control (**Figure 5I**), as it acts as
346 the attachment site for the ER soluble and membrane-bound lectin chaperones calreticulin and
347 calnexin [30]. These chaperones have been shown to direct protein folding, reduce aggregation,
348 retain misfolded or immature proteins within the ER and target aberrant proteins for degradation
349 [54]. Upon release from the lectin chaperones, correctly folded proteins are transported to the Golgi
350 apparatus. However, nascent chains that are not properly folded can be recognised by the protein

351 folding sensor UDP-glucose:glycoprotein glucosyltransferase (UGGT) and then directed for
352 rebinding to the lectin chaperones [55]. In other words, UGGT substrates are prone to misfold and
353 require multiple rounds of chaperone binding. Recently, Adams *et al* [56] identified 71 *bona fide*
354 human UGGT substrates using quantitative proteomics in HEK293 cells. Interestingly, proteins
355 containing N-glycosites in EPs are significantly enriched in UGGT substrates when compared to
356 other glycoproteins (**Figure 5J**).

357 Our findings show that the protection of APRs through N-glycans is linked to biophysical
358 properties that challenge protein folding, such as structural complexity, a higher number of APRs
359 and higher aggregation propensities. Moreover, this protection is enriched in UGGT substrates,
360 which require multiple rounds of chaperone association to reach their native conformations.
361 Therefore, it appears that these sites are strongly correlated with folding challenges, consistent
362 with the idea that N-glycans mitigate aggregation prior to folding. In addition, the fact that the
363 majority of domains that require this anti-aggregation mechanism have the same topology
364 suggests that their folding landscapes, populated by similar folding intermediates [57], might have
365 co-evolved together with N-glycosylation to avoid aggregation.

366 **Absence of N-glycosylation *in vivo* specifically increases protein aggregation**

367 If N-glycosylation is indeed a general evolutionary measure against protein aggregation,
368 its inhibition should affect protein solubility across proteomes. Indeed, in animal and plant cells,
369 inhibition of N-glycosylation with tunicamycin leads to misfolding and aggregation inside the ER
370 [58-60], triggering the unfolded protein response. To investigate which particular glycoproteins
371 aggregate in the absence of N-glycosylation, we reanalysed a proteomics dataset from Sui *et al*
372 [61]. In short, in this study they measured the changes in proteome solubility in the mouse Neuro2a
373 cell line after treatment with six different stresses, including tunicamycin. Our analysis found that
374 after treatment with tunicamycin, around 20% of the proteins identified with an N-glycosite at an
375 EP are more insoluble (**Figure 6A and Supplementary Table 3**). Interestingly, in the majority of
376 these aggregated proteins, the N-glycosite is located within a β -sandwich domain (**Supplementary**
377 **Table 3**). In contrast, just 10% of proteins identified with N-glycosites that are not in EPs are more
378 insoluble, suggesting that the absence of N-glycosylation alone has a smaller effect. However, due
379 to the small number of proteins identified by the MS/MS, this difference was not statistically
380 significant. Expectedly, an even smaller percentage of non-glycosylated proteins are found to be
381 more insoluble after tunicamycin treatment. The same analysis was performed by looking at the
382 solubility changes under the other five stresses. However, none of these affected the solubility of
383 proteins identified with an N-glycosite in an EP (**Figure 6A**). The same was true when analysing
384 proteins that are more soluble after each treatment (**Figure 6B**). Together, these results suggest
385 that inhibiting N-glycosylation leads to a decrease in protein solubility, especially in proteins where
386 N-glycosites are acting as aggregation gatekeepers (**Figure 6C**).

387 **DISCUSSION**

388 Our work demonstrates that N-glycans are enriched, highly conserved and commonly
389 replace unmodified gatekeeper residues in sequence segments with an intrinsic capacity to
390 aggregate, here referred to as APRs, in nearly a thousand human proteins. In addition, we show
391 that N-glycans suppress the aggregation of APRs *in vitro*, and that their inhibition in mouse
392 Neuro2a cells leads to a specific aggregation of newly made proteins. Together, these findings
393 suggest that, among its many molecular functions, N-glycosylation constitutes a functional
394 mechanism directly dedicated to the control of protein aggregation in higher eukaryotes.

395 Many studies have shown that N-glycosylation prevents the aggregation of glycoproteins
396 in cells through diverse indirect molecular mechanisms. For example, N-glycans can affect the
397 folding process by restricting the conformational entropy of the unfolded protein and stabilising
398 specific secondary structural elements, preventing the formation of folding intermediates prone to
399 aggregate [54, 62]. Moreover, the association of glycoproteins with ER lectin chaperones
400 increases folding efficiency while decreasing aggregation propensity [54]. Direct inhibition of
401 aggregation by N-glycans has also been described, particularly in recombinant therapeutic
402 proteins [63]. Indeed, for the production of therapeutic antibodies, such as bevacizumab, N-
403 glycosylation sites have been engineered near APRs to mitigate aggregation [64]. However, the
404 conditions in which biotherapeutics are produced are far from those found in cells, as often these
405 proteins are manufactured and stored at very high concentrations for extended periods of time.
406 Instead, our work points to a widely conserved cellular strategy in which N-glycans directly hinder
407 the formation of aggregates during folding under physiological conditions.

408 A surprising result from our computational analysis is that only N-glycans located in the N-
409 terminal flanks of APRs are under selection and share similar features to unmodified gatekeeper
410 residues (**Figures 2 and 3**). However, placing N-glycans on either side of APRs *in vitro* strongly
411 suppresses their aggregation (**Figure 4**). Since most N-glycans are co-translationally attached to
412 proteins by STT3A, it appears possible that the preferential addition of this modification to the N-
413 terminal flanks is coupled with translation. It has been proposed that the initiation of aggregation
414 may occur within polysomes, where identical unfolded nascent chains reach high local
415 concentrations [9, 65]. Under this framework, N-glycosylating the N-terminal side of an APR will
416 immediately shield it from potential co-translational non-native interactions, including aggregation,
417 as this side is translated before the rest of the APR sequence. Consistent with this hypothesis, the
418 analysis of previously identified human STT3B-dependent sites [66] – specifically only attached
419 post-translationally – showed a significant underrepresentation in EPs (**Supplementary Figure**
420 **16**). Moreover, overexpression of STT3B only partially rescues STT3A-deficient cells, despite
421 STT3B acting downstream of STT3A, which enables it to glycosylate sites missed by STT3A [67].
422 Eukaryotic species lacking the STT3A ortholog, such as *Saccharomyces cerevisiae*, can only

423 perform N-glycosylation post-translationally [68]. Indeed, unlike the other eukaryotic species
424 analysed, the relative frequencies of glycosylated sites in EPs of yeast proteins were found to be
425 underrepresented (**Figure 2F**). Despite all this circumstantial evidence, future studies are required
426 to determine if N-glycosylation is specifically suppressing aggregation during translation.

427 One question remains: why is N-glycosylation the only modification found to broadly act as
428 an aggregation gatekeeper? Although we do not rule out that other PTM types not investigated
429 here may act as gatekeepers, the answer probably again lies in the co-translational nature of this
430 modification. Firstly, post-translational modifications require acceptor sites to be accessible to the
431 modifying enzyme, precluding regions that are buried or structurally too rigid when the protein is
432 folded, such as APRs and their GRs. Indeed, the placement of N-glycosylation in bacteria, which
433 takes place post-translationally, is restricted only to flexible segments [69]. Therefore, coupling N-
434 glycosylation with folding increases the number of sites that can be modified. Secondly, during
435 folding, APRs are exposed and at risk of aggregation. Consequently, protein folding exerts a dual
436 selection pressure on the glycosylation process [37]. On the one hand, sites that destabilise the
437 native structure are under negative selection [70], while sites that optimise folding, in this case, by
438 reducing aggregation, are under positive selection and are likely to become essential (**Figure 2E**).
439 An additional consequence of this shift in the temporal sequence of maturation events has been
440 the co-evolution of N-glycans with the ER chaperone machinery, leading to a very specific QC
441 system for secretory and membrane glycoproteins [37]. Recently, a similar co-adaptation process
442 was described between chaperone specificity and protein composition to explain the preference
443 of Hsp70 for positively charged residues in bacteria [15].

444 We found a higher proportion of aggregated proteins with N-glycans acting as gatekeeper
445 residues compared to other glycoproteins after treatment of mouse Neuro2a cells with tunicamycin
446 (**Figure 6A**). Interestingly, tunicamycin treatment has been extensively used as a model to mimic
447 type-I congenital disorders of glycosylation (CDG-I) [71, 72]. These are a rare group of metabolic
448 diseases that affect specific sugar transferases and enzymes involved in the synthesis and transfer
449 of N-glycans, thus leading to the improper N-glycosylation of proteins, which causes various
450 symptoms potentially affecting multiple organs [73, 74]. It has been reported that several CDG-I
451 can lead to ER stress and activate the unfolded protein response due to misfolded
452 hypoglycosylated proteins unable to leave the ER [75]. Based on our findings, we hypothesize that
453 the formation of protein aggregates resulting from a loss of N-glycans may provide an additional
454 molecular cause of ER stress in CDGs and may contribute to the pathomechanism of these
455 disorders. Future efforts should be made to determine if there is a direct relationship between
456 these genetic disorders and protein aggregation.

457

458 **METHODS**

459 **Human proteome dataset**

460 The human proteome was obtained from UniProtKB/Swiss-Prot database (reference proteome
461 UP000005640; release 2022_02). The dataset contains 19,379 proteins, after excluding
462 sequences with nonstandard amino acids (e.g., selenocysteine), sequences with <25 amino acids
463 and those with >10,000 residues and after filtering at 90% sequence identity using the CD-hit
464 algorithm [76]. Signal peptides and transmembrane domains were identified using deepTMHMM
465 [77] and removed from the analyses to avoid biases. In addition, deepTMHMM provides
466 information on the overall topology of the protein. Experimentally annotated protein PTM sites were
467 obtained from dbPTM [26] and from the GlcNAcAtlas [27], and were mapped to the proteome. Only
468 those PTM types with more than 1,200 sites were retained.

469 Information on protein subcellular location was extracted from UniProt. Proteins known to reside
470 in the endoplasmic reticulum, Golgi apparatus, cell membrane or extracellular space were labelled
471 as part of the secretory pathway (SP). On the other hand, proteins known to reside in the
472 cytoplasm, nucleus or mitochondria were labelled as part of the non-secretory pathway (non-SP).
473 Proteins labelled both as SP and non-SP were excluded from further analyses.

474 Structural information was added to the dataset for each protein using the structures from the
475 AlphaFold database [78, 79]. Absolute solvent accessibility values were calculated with DSSP
476 based on these structures [80, 81]. Then, the relative solvent accessibility (RSA) values were
477 calculated by dividing the absolute solvent accessibility values by residue-specific maximal
478 accessibility values, as extracted from Tien *et al* [82]. Residues with RSA values < 0.2 were
479 labelled as buried. Intrinsically disordered regions (IDRs) were identified using the pLDDT score
480 provided in the AlphaFold models, as regions with low confidence scores have been shown to
481 overlap largely with IDRs [83]. Residues with pLDDT scores < 50 were labelled as disordered.

482 **Protein aggregation prediction**

483 Aggregation-prone regions (APRs) were predicted computationally using TANGO [1] at
484 physiological conditions (pH at 7.5, temperature at 298 K, protein concentration at 1 mM, and ionic
485 strength at 0.15 M). In this study, APRs are defined as segments between 5 and 15 amino acids
486 in length, each with an aggregation score of at least 10. Gatekeeping regions (GRs) are defined
487 as the three residues immediately downstream and upstream of APRs. All other residues are
488 defined as distal regions (DRs).

489 APRs were also identified with CamSol [32]. CamSol calculates an intrinsic solubility profile where
490 regions with a score higher than 1 are highly soluble, while scores smaller than -1 are poorly
491 soluble (aggregation-prone). CamSol APRs are defined as segments between 5 and 15 amino

492 acids in length, each with a solubility score smaller than -1. GRs and DRs are defined in the same
493 way as above.

494 **Identification of sequons**

495 All human proteins were scanned for N-glycosylation sequons (Asn-X-Thr/Ser, where X ≠ Pro).
496 Sequons known to be glycosylated based on dbPTM annotations were labelled as “SP
497 glycosylated”. Sequons in proteins from the secretory pathway without dbPTM annotations were
498 labelled as “SP non-glycosylated”. Sequons in proteins that do not follow the secretory pathway,
499 and thus cannot be glycosylated, were labelled as “non-SP”.

500 **Relative frequency calculation**

501 For all PTM types and sequons, the frequency in each region was calculated by taking all verified
502 PTMs in APRs, GRs and DRs versus all sites that could receive a PTM in each region:

$$503 \text{Frequency} = \frac{\text{Number of PTM sites in a region for a specific PTM type}}{\text{Number of residues that could be modified in that region}}$$

504 For example, for serine phosphorylation:

$$505 \text{Frequency} = \frac{\text{Number of phosphorylated serines in region}}{\text{Number of serines in that region}}$$

506 The relative frequency was obtained by dividing the frequency in each region by the overall
507 frequency of that particular PTM (background). To avoid biases, only proteins that contain PTM
508 sites are used as background.

509 **Eukaryotic proteome dataset**

510 The proteomes of five other eukaryotic species were analysed in the same way as the human
511 proteome and include representatives from the animal (*Mus musculus* (UP000000589), *Drosophila*
512 *melanogaster* (UP000000803) and *Caenorhabditis elegans* (UP000001940)), plant (*Arabidopsis*
513 *thaliana* (UP000006548)) and fungal (*Saccharomyces cerevisiae* (UP000002311)) kingdom.

514 As for the human dataset, the frequencies of glycosylated and non-glycosylated sequons were
515 determined for each eukaryotic species. However, since experimentally identified glycosylated
516 sites for these organisms are scarce, all sequons in SP proteins were considered glycosylated
517 (unless topological annotations by deepTMHMM [77] predicted the site to be facing the cytoplasm,
518 where glycosylation does not occur).

519 **Sequon conservation analysis**

520 The multiz100way [36] is a dataset containing multiple sequence alignments of 100 mammalian
521 species to the human genome (hg38). Human N-glycosites were mapped to this dataset to

522 calculate their conservation. A sequon is considered absent in a species (not conserved) if it
523 deviates from the consensus sequence (N-X-T/S, where X ≠ P).

524 **Peptide set design**

525 To construct a set of aggregating peptides with N-glycans at the flanks, APRs were selected from
526 the human proteome containing an N-glycosylation site at the N-terminal or C-terminal flank. To
527 facilitate accurate concentration determination of peptides through absorbance measurements at
528 280 nm, only APRs containing Trp and/or Tyr were considered. 20 APRs were synthesised and
529 screened for ThT-binding kinetics, from which a final set of ten APRs was selected based on their
530 kinetic profile. Five of these sequences had the N-glycosylation site in the N-terminal, while the
531 other five were in the C-terminal. Seven variants for each peptide sequence were produced: non-
532 modified (WT), GlcNAc, Man9 (Man₉GlcNAc₂), and each of the charged residues (D, E, K, and R).
533 For two specific peptide sets, four more variants were produced: GlcNAc₂, ManGlcNAc₂ (Man),
534 Man₃GlcNAc₂ (Man3), and Man₆GlcNAc₂ (Man6).

535 **Peptide aggregation kinetics**

536 All peptides, except the GlcNAc₂, Man, Man3 and Man9 variants, were synthesised in-house using
537 an Intavis Multipep RSi solid-phase peptide synthesis robot. The complex glycoform peptide
538 variants were ordered from Chemiotope Glycopeptide. Stocks were then diluted to the appropriate
539 peptide concentration in PBS with a final concentration of 5% DMSO. The concentration for each
540 peptide set was selected based on their ThT-binding kinetic profile to have a lag phase shorter
541 than 72 hours. TCEP (1 mM) was included in solutions of peptides containing cysteine or
542 methionine residues to disrupt disulphide bond formation. For ThT- and pFTAA-binding kinetics,
543 10 µM ThT or 1 µM pFTAA were added to the peptide samples. Dye binding was measured over
544 time through excitation at 440 nm and emission at 480 and 520 nm, for ThT and pFTAA,
545 respectively, in a Fluostar OMEGA.

546 For Endo H treatment, endoglycosidase H (500 units, 1 µl, New England Biolabs, catalog no.
547 P0702) was added to each of the SLNYLLYVSN peptide samples. Aggregation kinetics were
548 measured over time as above.

549 **Endpoint solubility**

550 For endpoint solubility concentrations, peptide preparations were left at room temperature for a
551 week at an initial concentration equal to the one used in for aggregation kinetics. Peptides were
552 subsequently subjected to ultracentrifugation at 100,000 g for 1h at 4°C. Supernatant
553 concentrations were measured using RP-HPLC. Concentrations were measured with RP-HPLC
554 instead of using absorbance measurements at 280 nm since it is more accurate for low
555 concentrations.

556 **TEM imaging**

557 Peptide solutions were incubated for a week at room temperature at the same concentrations of
558 previous experiments. Suspensions (5 μ L) of each peptide solution were added on 400-mesh
559 carbon-coated copper grids, which were negatively stained using uranyl acetate. Grids were
560 examined with a JEM-1400 120 kV transmission electron microscope.

561 **Machine learning**

562 To predict which APRs are protected by N-glycans, a random forest classifier (randomForest R
563 package, number of trees = 500, mtry = 3) was trained using several features of the APRs (relative
564 solvent accessibility, length, number of unmodified gatekeepers, relative position within the
565 domain, aggregation propensity, sequence disorder and number of cysteines) and of the protein
566 domains bearing such APRs (contact order, length, number of APRs per 100 amino acids and
567 number of disulphide bonds per 100 amino acids). Domain boundaries were extracted using
568 CATH-Gene3D [48, 49]. The contact order for each domain was calculated as defined by Plaxco
569 *et al.* [50]. The number of disulphide bonds was extracted from UniProt. Random undersampling
570 and random oversampling (ROSE R package) were used to avoid biases due to class imbalance.
571 Feature importance was evaluated with the Mean Decrease Accuracy plot, which indicates how
572 much accuracy the model loses when excluding each variable.

573 **Statistics**

574 GraphPad prism or R software were used to perform the different statistical tests. The tests used
575 in each analysis are specified in the corresponding figure. *P*-values are represented as: * *P*-value
576 ≤ 0.05 , ** *P*-value ≤ 0.01 , *** *P*-value ≤ 0.001 .

577 **Visualisations**

578 Visualisations were performed with GraphPad prism or custom R scripts using the packages
579 ggplot2 [84] and ComplexHeatmap [85]. ChimeraX was used to visualize protein structures [86].

580

581 **ACKNOWLEDGEMENTS**

582 The Switch Laboratory was supported by the Flanders Institute for Biotechnology (VIB, grant no.
583 C0401 to FR and JS); the Fund for Scientific Research Flanders (FWO, project grant G053420N
584 to JS; and Postdoctoral Fellowships 12P0919N and 12P0922N to NL, 12S3722N to BH and
585 1289023N to MPW); the Jaeken-Theunissen CDG Fund (to GM and MPW) and a CELSA fund
586 grant (CELSA/21/027 to GM and MPW). The authors gratefully acknowledge the Electron
587 Microscopy Platform of the VIB – KU Leuven Center for Brain & Disease Research for their support
588 & assistance in this work.

589 AUTHOR CONTRIBUTIONS

590 **FR, JS** and **NL** conceived and supervised this study. **RDR, FR, JS, NL, BH, MPW and GM** and
591 designed experiments and *in silico* analyses. **RDR** performed *in vitro* experimental work, as well
592 as all *in silico* analyses. **MDV** performed peptide synthesis. **RDR, FR and JS** and wrote the
593 manuscript. All authors proofread and corrected the manuscript.

594

595 DECLARATIONS OF INTERESTS

596 Joost Schymkowitz and Frederic Rousseau are the scientific founders of, and scientific consultants
597 to, Aelin Therapeutics NV. The Switch Laboratory is engaged in a collaboration research
598 agreement with Aelin Therapeutics.

599 REFERENCES

600 [1] Fernandez-Escamilla AM, Rousseau F, Schymkowitz J, Serrano L. Prediction of sequence-
601 dependent and mutational effects on the aggregation of peptides and proteins. *Nat Biotechnol.*
602 2004;22:1302-6.

603 [2] Rousseau F, Serrano L, Schymkowitz JW. How evolutionary pressure against protein
604 aggregation shaped chaperone specificity. *J Mol Biol.* 2006;355:1037-47.

605 [3] Prabakaran R, Goel D, Kumar S, Gromiha MM. Aggregation prone regions in human
606 proteome: Insights from large-scale data analyses. *Proteins: Structure, Function, and*
607 *Bioinformatics.* 2017;85:1099-118.

608 [4] Tyedmers J, Mogk A, Bukau B. Cellular strategies for controlling protein aggregation. *Nat Rev*
609 *Mol Cell Biol.* 2010;11:777-88.

610 [5] Saibil H. Chaperone machines for protein folding, unfolding and disaggregation. *Nature*
611 *reviews Molecular cell biology.* 2013;14:630-42.

612 [6] Chiti F, Dobson CM. Protein Misfolding, Amyloid Formation, and Human Disease: A Summary
613 of Progress Over the Last Decade. *Annu Rev Biochem.* 2017;86:27-68.

614 [7] Iadanza MG, Jackson MP, Hewitt EW, Ranson NA, Radford SE. A new era for understanding
615 amyloid structures and disease. *Nat Rev Mol Cell Biol.* 2018;19:755-73.

616 [8] Langenberg T, Gallardo R, van der Kant R, Louros N, Michiels E, Duran-Romana R, et al.
617 Thermodynamic and Evolutionary Coupling between the Native and Amyloid State of Globular
618 Proteins. *Cell reports.* 2020;31:107512.

619 [9] Houben B, Rousseau F, Schymkowitz J. Protein structure and aggregation: a marriage of
620 necessity ruled by aggregation gatekeepers. *Trends Biochem Sci.* 2022;47:194-205.

621 [10] Monsellier E, Ramazzotti M, Taddei N, Chiti F. Aggregation Propensity of the Human
622 Proteome. *Plos Computational Biology.* 2008;4.

623 [11] Buell AK, Tartaglia GG, Birkett NR, Waudby CA, Vendruscolo M, Salvatella X, et al.
624 Position-Dependent Electrostatic Protection against Protein Aggregation. *Chembiochem.*
625 2009;10:1309-12.

626 [12] Markiewicz BN, Oyola R, Du D, Gai F. Aggregation Gatekeeper and Controlled Assembly of
627 Trpzip β -Hairpins. *Biochemistry.* 2014;53:1146-54.

628 [13] Sant'Anna R, Braga C, Varejão N, Pimenta KM, Graña-Montes R, Alves A, et al. The
629 Importance of a Gatekeeper Residue on the Aggregation of Transthyretin: IMPLICATIONS FOR
630 TRANSTHYRETIN-RELATED AMYLOIDOSES. *Journal of Biological Chemistry.*
631 2014;289:28324-37.

632 [14] Beerten J, Jonckheere W, Rudyak S, Xu J, Wilkinson H, De Smet F, et al. Aggregation
633 gatekeepers modulate protein homeostasis of aggregating sequences and affect bacterial
634 fitness. *Protein engineering, design & selection : PEDS.* 2012;25:357-66.

635 [15] Houben B, Michiels E, Ramakers M, Konstantoulea K, Louros N, Verniers J, et al.
636 Autonomous aggregation suppression by acidic residues explains why chaperones favour basic
637 residues. *EMBO J.* 2020;39:e102864.

638 [16] De Baets G, Van Durme J, Rousseau F, Schymkowitz J. A genome-wide sequence-
639 structure analysis suggests aggregation gatekeepers constitute an evolutionary constrained
640 functional class. *J Mol Biol.* 2014;426:2405-12.

641 [17] De Baets G, Van Doorn L, Rousseau F, Schymkowitz J. Increased Aggregation Is More
642 Frequently Associated to Human Disease-Associated Mutations Than to Neutral Polymorphisms.
643 *PLoS Comput Biol.* 2015;11:e1004374.

644 [18] Schaffert LN, Carter WG. Do Post-Translational Modifications Influence Protein Aggregation
645 in Neurodegenerative Diseases: A Systematic Review. *Brain Sci.* 2020;10.

646 [19] Alquezar C, Arya S, Kao AW. Tau post-translational modifications: dynamic transformers of
647 tau function, degradation, and aggregation. *Frontiers in neurology.* 2021;11:595532.

648 [20] Barrett PJ, Timothy Greenamyre J. Post-translational modification of alpha-synuclein in
649 Parkinson's disease. *Brain research.* 2015;1628:247-53.

650 [21] Rezaei-Ghaleh N, Kumar S, Walter J, Zweckstetter M. Phosphorylation interferes with
651 maturation of amyloid- β fibrillar structure in the N terminus. *Journal of Biological Chemistry.*
652 2016;291:16059-67.

653 [22] Gong C-X, Liu F, Grundke-Iqbali I, Iqbal K. Post-translational modifications of tau protein in
654 Alzheimer's disease. *Journal of neural transmission.* 2005;112:813-38.

655 [23] Ryan P, Xu M, Davey AK, Danon JJ, Mellick GD, Kassiou M, et al. O-GlcNAc modification
656 protects against protein misfolding and aggregation in neurodegenerative disease. *ACS chemical*
657 *neuroscience.* 2019;10:2209-21.

658 [24] Martinez MR, Dias TB, Natov PS, Zachara NE. Stress-induced O-GlcNAcylation: an
659 adaptive process of injured cells. *Biochemical Society Transactions.* 2017;45:237-49.

660 [25] Pearlman SM, Serber Z, Ferrell JE. A mechanism for the evolution of phosphorylation sites.
661 *Cell.* 2011;147:934-46.

662 [26] Li Z, Li S, Luo M, Jhong J-H, Li W, Yao L, et al. dbPTM in 2022: an updated database for
663 exploring regulatory networks and functional associations of protein post-translational
664 modifications. *Nucleic acids research.* 2022;50:D471-D9.

665 [27] Ma J, Li Y, Hou C, Wu C. O-GlcNAcAtlas: A database of experimentally identified O-GlcNAc
666 sites and proteins. *Glycobiology.* 2021;31:719-23.

667 [28] Pang CNI, Hayen A, Wilkins MR. Surface Accessibility of Protein Post-Translational
668 Modifications. *Journal of Proteome Research.* 2007;6:1833-45.

669 [29] Bludau I, Willems S, Zeng W-F, Strauss MT, Hansen FM, Tanzer MC, et al. The structural
670 context of posttranslational modifications at a proteome-wide scale. *PLOS Biology.*
671 2022;20:e3001636.

672 [30] Helenius A, Aebi M. Roles of N-linked glycans in the endoplasmic reticulum. *Annual review*
673 *of biochemistry.* 2004;73:1019-49.

674 [31] Varki A. Biological roles of glycans. *Glycobiology.* 2017;27:3-49.

675 [32] Sormanni P, Aprile FA, Vendruscolo M. The CamSol method of rational design of protein
676 mutants with enhanced solubility. *Journal of molecular biology.* 2015;427:478-90.

677 [33] Malaby HL, Kobertz WR. The middle X residue influences cotranslational N-glycosylation
678 consensus site skipping. *Biochemistry.* 2014;53:4884-93.

679 [34] Igura M, Kohda D. Quantitative assessment of the preferences for the amino acid residues
680 flanking archaeal N-linked glycosylation sites. *Glycobiology.* 2011;21:575-83.

681 [35] Huang Y-W, Yang H-I, Wu Y-T, Hsu T-L, Lin T-W, Kelly JW, et al. Residues comprising the
682 enhanced aromatic sequon influence protein N-glycosylation efficiency. *Journal of the American*
683 *Chemical Society.* 2017;139:12947-55.

684 [36] Blanchette M, Kent WJ, Riemer C, Elnitski L, Smit AF, Roskin KM, et al. Aligning multiple
685 genomic sequences with the threaded blockset aligner. *Genome Res.* 2004;14:708-15.

686 [37] Aebi M. N-linked protein glycosylation in the ER. *Biochimica et Biophysica Acta (BBA)-*
687 *Molecular Cell Research.* 2013;1833:2430-7.

688 [38] Lombard J. The multiple evolutionary origins of the eukaryotic N-glycosylation pathway.
689 *Biology direct.* 2016;11:1-31.

690 [39] Reumers J, Maurer-Stroh S, Schymkowitz J, Rousseau Fd. Protein sequences encode
691 safeguards against aggregation. *Human Mutation*. 2009;30:431-7.

692 [40] Law RH, Zhang Q, McGowan S, Buckle AM, Silverman GA, Wong W, et al. An overview of
693 the serpin superfamily. *Genome Biol*. 2006;7:1-11.

694 [41] Spence MA, Mortimer MD, Buckle AM, Minh BQ, Jackson CJ. A comprehensive
695 phylogenetic analysis of the serpin superfamily. *Molecular Biology and Evolution*. 2021;38:2915-
696 29.

697 [42] Stanley P. Golgi glycosylation. *Cold Spring Harbor perspectives in biology*. 2011;3:a005199.

698 [43] Cherepanova NA, Venev SV, Leszyk JD, Shaffer SA, Gilmore R. Quantitative
699 glycoproteomics reveals new classes of STT3A-and STT3B-dependent N-glycosylation sites.
700 *Journal of Cell Biology*. 2019;218:2782-96.

701 [44] Nakamura H, Kiyoshi M, Anraku M, Hashii N, Oda-Ueda N, Ueda T, et al. Glycosylation
702 decreases aggregation and immunogenicity of adalimumab Fab secreted from *Pichia pastoris*.
703 *The Journal of Biochemistry*. 2021;169:435-43.

704 [45] Solá RJ, Griebenow K. Effects of glycosylation on the stability of protein pharmaceuticals.
705 *Journal of pharmaceutical sciences*. 2009;98:1223-45.

706 [46] Mason PE, Lerbret A, Saboungi ML, Neilson GW, Dempsey CE, Brady JW. Glucose
707 interactions with a model peptide. *Proteins: Structure, Function, and Bioinformatics*.
708 2011;79:2224-32.

709 [47] Han J-H, Batey S, Nickson AA, Teichmann SA, Clarke J. The folding and evolution of
710 multidomain proteins. *Nature Reviews Molecular Cell Biology*. 2007;8:319-30.

711 [48] Sillitoe I, Bordin N, Dawson N, Waman VP, Ashford P, Scholes HM, et al. CATH: increased
712 structural coverage of functional space. *Nucleic acids research*. 2021;49:D266-D73.

713 [49] Lewis TE, Sillitoe I, Dawson N, Lam SD, Clarke T, Lee D, et al. Gene3D: extensive
714 prediction of globular domains in proteins. *Nucleic acids research*. 2018;46:D435-D9.

715 [50] Plaxco KW, Simons KT, Baker D. Contact order, transition state placement and the refolding
716 rates of single domain proteins. *J Mol Biol*. 1998;277:985-94.

717 [51] Merlini G, Comenzo RL, Seldin DC, Wechalekar A, Gertz MA. Immunoglobulin light chain
718 amyloidosis. *Expert review of hematology*. 2014;7:143-56.

719 [52] Grad LI, Fernando SM, Cashman NR. From molecule to molecule and cell to cell: prion-like
720 mechanisms in amyotrophic lateral sclerosis. *Neurobiology of disease*. 2015;77:257-65.

721 [53] Borgia A, Kemplien KR, Borgia MB, Soranno A, Shammas S, Wunderlich B, et al. Transient
722 misfolding dominates multidomain protein folding. *Nature communications*. 2015;6:8861.

723 [54] Hebert DN, Lamriben L, Powers ET, Kelly JW. The intrinsic and extrinsic effects of N-linked
724 glycans on glycoproteostasis. *Nature chemical biology*. 2014;10:902-10.

725 [55] Sousa M, Parodi AJ. The molecular basis for the recognition of misfolded glycoproteins by
726 the UDP-Glc: glycoprotein glucosyltransferase. *The EMBO journal*. 1995;14:4196-203.

727 [56] Adams BM, Canniff NP, Guay KP, Larsen ISB, Hebert DN. Quantitative glycoproteomics
728 reveals cellular substrate selectivity of the ER protein quality control sensors UGGT1 and
729 UGGT2. *Elife*. 2020;9:e63997.

730 [57] Neudecker P, Robustelli P, Cavalli A, Walsh P, Lundstrom P, Zarrine-Afsar A, et al.
731 Structure of an intermediate state in protein folding and aggregation. *Science*. 2012;336:362-6.

732 [58] Tkacz JS, Lampen JO. Tunicamycin inhibition of polyisoprenyl N-acetylglucosaminyl
733 pyrophosphate formation in calf-liver microsomes. *Biochem Biophys Res Commun*. 1975;65:248-
734 57.

735 [59] Marquardt T, Helenius A. Misfolding and aggregation of newly synthesized proteins in the
736 endoplasmic reticulum. *The Journal of cell biology*. 1992;117:505-13.

737 [60] Sparvoli F, Faoro F, Daminati MG, Ceriotti A, Bollini R. Misfolding and aggregation of
738 vacuolar glycoproteins in plant cells. *The Plant Journal*. 2000;24:825-36.

739 [61] Sui X, Pires DEV, Ormsby AR, Cox D, Nie S, Vecchi G, et al. Widespread remodeling of
740 proteome solubility in response to different protein homeostasis stresses. *Proc Natl Acad Sci U S
741 A*. 2020;117:2422-31.

742 [62] Caramelo JJ, Parodi AJ. A sweet code for glycoprotein folding. *FEBS letters*.
743 2015;589:3379-87.

744 [63] Zhou Q, Qiu H. The mechanistic impact of N-glycosylation on stability, pharmacokinetics,
745 and immunogenicity of therapeutic proteins. *Journal of pharmaceutical sciences*. 2019;108:1366-
746 77.

747 [64] Courtois F, Agrawal NJ, Lauer TM, Trout BL. Rational design of therapeutic mAbs against
748 aggregation through protein engineering and incorporation of glycosylation motifs applied to
749 bevacizumab. *MAbs*. 2016;8:99-112.

750 [65] Brandt F, Etchells SA, Ortiz JO, Elcock AH, Hartl FU, Baumeister W. The native 3D
751 organization of bacterial polysomes. *Cell*. 2009;136:261-71.

752 [66] Shrimai S, Trueman SF, Gilmore R. Extreme C-terminal sites are posttranslocationally
753 glycosylated by the STT3B isoform of the OST. *Journal of Cell Biology*. 2013;201:81-95.

754 [67] Shrimai S, Ng BG, Losfeld M-E, Gilmore R, Freeze HH. Mutations in STT3A and STT3B
755 cause two congenital disorders of glycosylation. *Human molecular genetics*. 2013;22:4638-45.

756 [68] Shrimai S, Cherepanova NA, Mandon EC, Venev SV, Gilmore R. Asparagine-linked
757 glycosylation is not directly coupled to protein translocation across the endoplasmic reticulum in
758 *Saccharomyces cerevisiae*. *Molecular biology of the cell*. 2019;30:2626-38.

759 [69] Lizak C, Gerber S, Numao S, Aebi M, Locher KP. X-ray structure of a bacterial
760 oligosaccharyltransferase. *Nature*. 2011;474:350-5.

761 [70] Medus ML, Gomez GE, Zacchi LF, Couto PM, Labriola CA, Labanda MS, et al. N-
762 glycosylation triggers a dual selection pressure in eukaryotic secretory proteins. *Sci Rep-Uk*.
763 2017;7:8788.

764 [71] Rita Lecca M, Wagner U, Patrignani A, Berger EG, Hennet T. Genome-wide analysis of the
765 unfolded protein response in fibroblasts from congenital disorders of glycosylation type-I patients.
766 *The FASEB journal*. 2005;19:1-21.

767 [72] de Haas P, de Jonge MI, Koenen HJ, Joosten B, Janssen MC, de Boer L, et al. Evaluation
768 of Cell Models to Study Monocyte Functions in PMM2 Congenital Disorders of Glycosylation.
769 *Frontiers in Immunology*. 2022;13.

770 [73] Wilson MP, Matthijs G. The evolving genetic landscape of congenital disorders of
771 glycosylation. *Biochimica et Biophysica Acta (BBA)-General Subjects*. 2021;1865:129976.

772 [74] Yuste-Checa P, Vega AI, Martín-Higuera C, Medrano C, Gámez A, Desviat LR, et al.
773 DPAGT1-CDG: Functional analysis of disease-causing pathogenic mutations and role of
774 endoplasmic reticulum stress. *PLoS One*. 2017;12:e0179456.

775 [75] Sun L, Zhao Y, Zhou K, Freeze HH, Zhang Y-w, Xu H. Insufficient ER-stress response
776 causes selective mouse cerebellar granule cell degeneration resembling that seen in congenital
777 disorders of glycosylation. *Molecular brain*. 2013;6:1-8.

778 [76] Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation
779 sequencing data. *Bioinformatics*. 2012;28:3150-2.

780 [77] Hallgren J, Tsirigos KD, Pedersen MD, Armenteros JJA, Marcatili P, Nielsen H, et al.
781 DeepTMHMM predicts alpha and beta transmembrane proteins using deep neural networks.
782 *bioRxiv*. 2022.

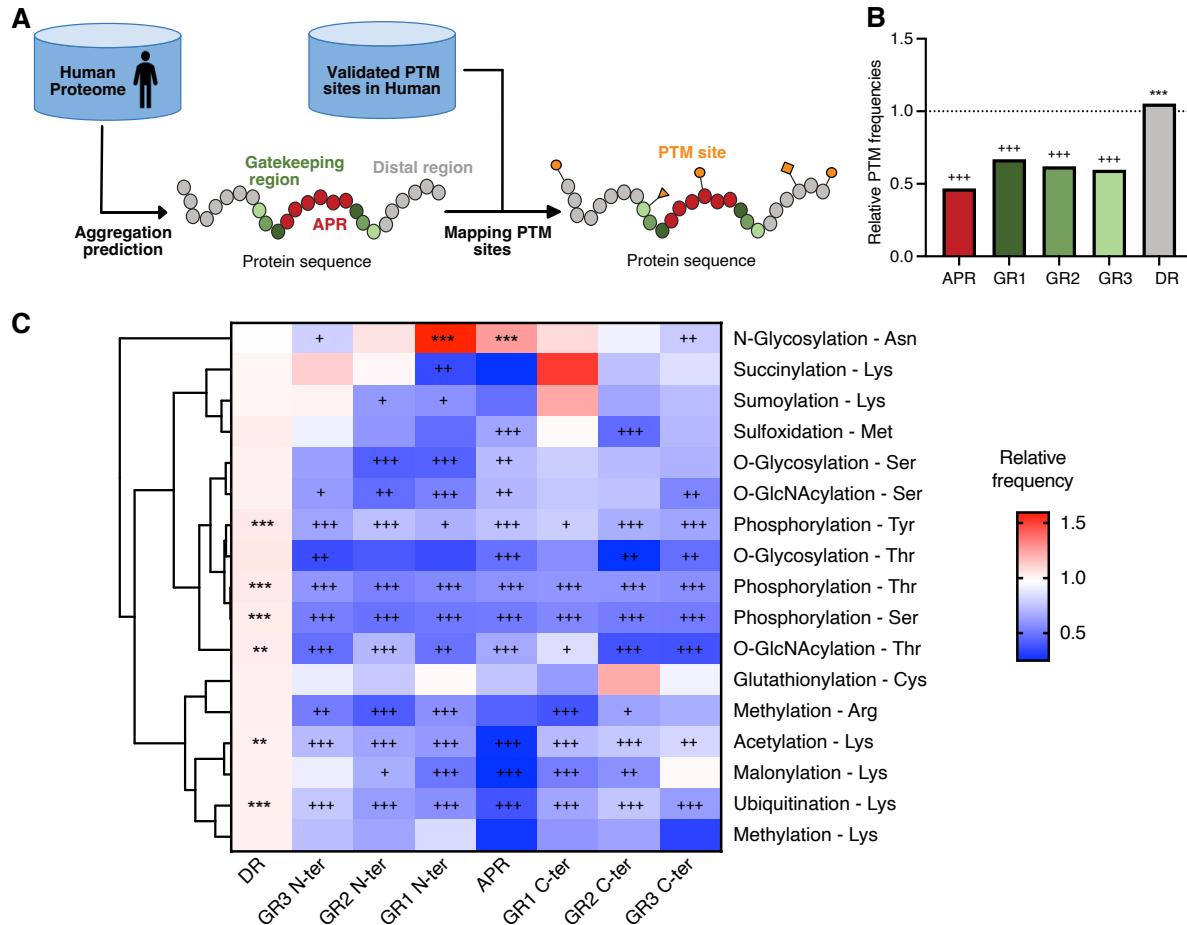
783 [78] Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate
784 protein structure prediction with AlphaFold. *Nature*. 2021;596:583-9.

785 [79] Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, et al. AlphaFold
786 Protein Structure Database: massively expanding the structural coverage of protein-sequence
787 space with high-accuracy models. *Nucleic Acids Res*. 2022;50:D439-D44.

788 [80] Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of
789 hydrogen-bonded and geometrical features. *Biopolymers*. 1983;22:2577-637.

790 [81] Joosten RP, te Beek TA, Krieger E, Hekkelman ML, Hooft RW, Schneider R, et al. A series
791 of PDB related databases for everyday needs. *Nucleic Acids Res*. 2011;39:D411-9.

792 [82] Tien MZ, Meyer AG, Sydykova DK, Spielman SJ, Wilke CO. Maximum allowed solvent
793 accessibilites of residues in proteins. *PloS one*. 2013;8:e80635.


794 [83] Ruff KM, Pappu RV. AlphaFold and implications for intrinsically disordered proteins. *Journal*
795 *of Molecular Biology*. 2021;433:167208.

796 [84] Wickham H. Data analysis. *ggplot2*: Springer; 2016. p. 189-201.

797 [85] Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in
798 multidimensional genomic data. *Bioinformatics*. 2016;32:2847-9.

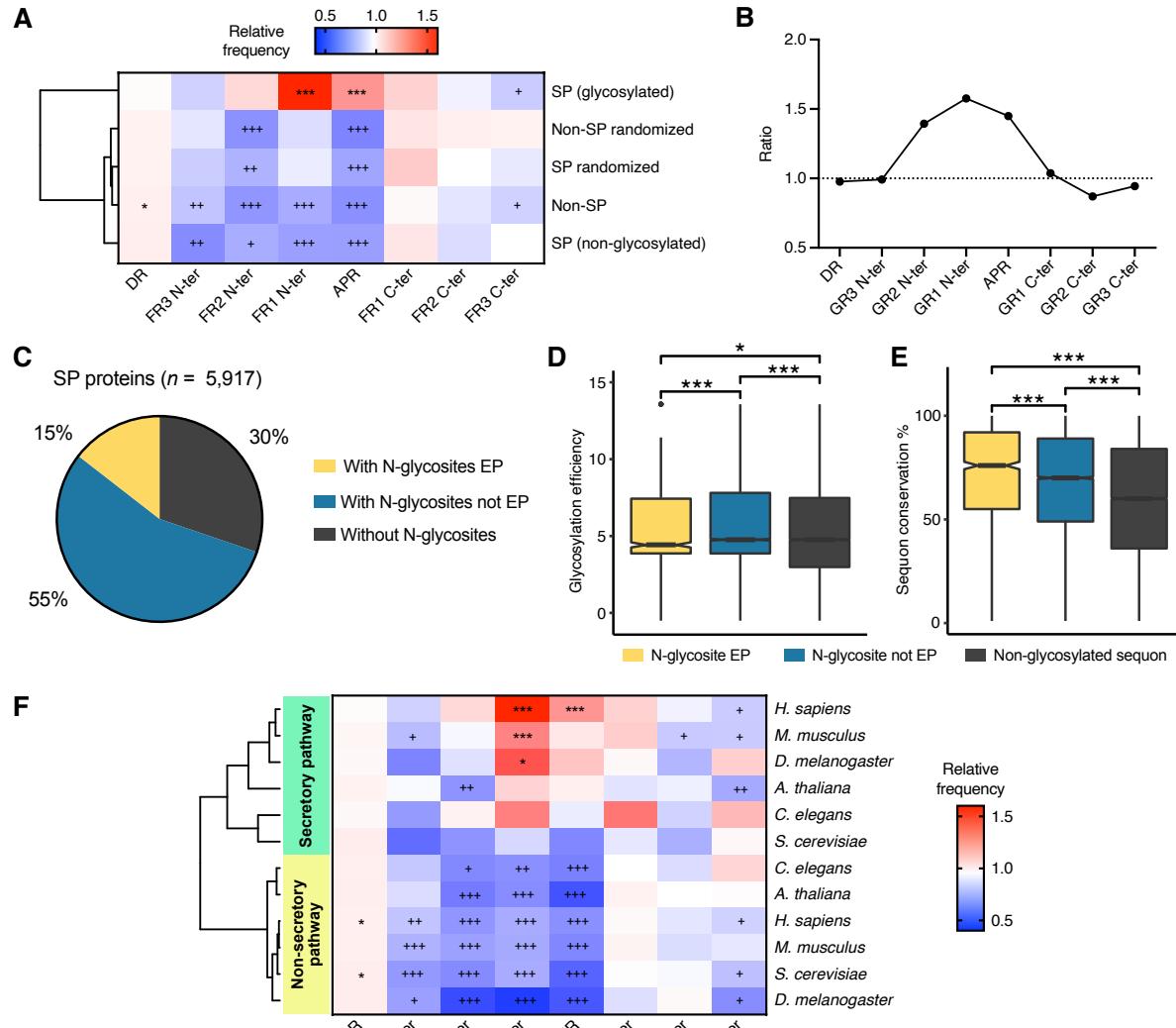
799 [86] Goddard TD, Huang CC, Meng EC, Pettersen EF, Couch GS, Morris JH, et al. UCSF
800 ChimeraX: Meeting modern challenges in visualization and analysis. Protein Science.
801 2018;27:14-25.
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834

835 **MAIN FIGURES**

836

837 **Figure 1. Relative enrichment of different PTM types in APRs and GRs**

838 **A)** Schematic representation of the dataset preparation. **B)** Barplot showing the frequency of all
839 PTM sites in APRs, GRs and DRs relative to background (all proteins containing the specific PTM).
840 Crosses (asterisks) at the top of the bar indicate that a region has a significantly lower (higher)
841 frequency compared to the background by Fisher exact test with FDR correction. **C)** Heatmap
842 showing the relative frequencies for each of the 15 types of PTMs. Columns indicate the different
843 protein regions, and rows show the PTM types. Statistics are calculated and illustrated as in B.
844 Rows are clustered based on Pearson correlation as a distance measure.


845

846

847

848

849

850

851 **Figure 2. Functional assessment of N-glycosylation in APRs and GRs**

852 **A)** Heatmap showing the relative frequencies of having a sequon in each region (columns) for
 853 different subsets of proteins (rows). Crosses (asterisks) at the top of the bar indicate that a region
 854 has a significantly lower (higher) frequency compared to the background by Fisher exact test with
 855 FDR correction. Rows are clustered based on Pearson correlation as a distance measure. **B)** Ratio
 856 between the relative frequencies of glycosylated sequons vs non-glycosylated sequons. **C)**
 857 Fraction of known secretory pathway proteins with at least one N-glycosylation site in enriched
 858 positions (yellow), with N-glycosylation sites that are not in enriched positions (blue) and without
 859 glycosylation sites (black). **D)** Boxplot showing the glycosylation efficiency of glycosylated sequons
 860 in enriched positions (yellow), rest of glycosylated sequons (blue) and non-glycosylated sequons
 861 (black) of human proteins. Unpaired Wilcoxon test was used to assess significance among groups
 862 with Bonferroni correction for multiple comparisons. **E)** Boxplot showing the conservation of human
 863 sequons in a set of 100 mammalian species for the same categories as D. Unpaired Wilcoxon test

864 was used to assess significance among groups with Bonferroni correction for multiple
865 comparisons. **F)** Heatmap showing the relative frequencies of having a sequon in each region for
866 five different eukaryotic species. For all species, the relative frequencies of sequons in SP proteins
867 are clustered together. The same is true for sequons in non-SP proteins. Statistics are calculated
868 and illustrated as in A. Clustering is based on Pearson correlation as a distance measure.

869

870

871

872

873

874

875

876

877

878

879

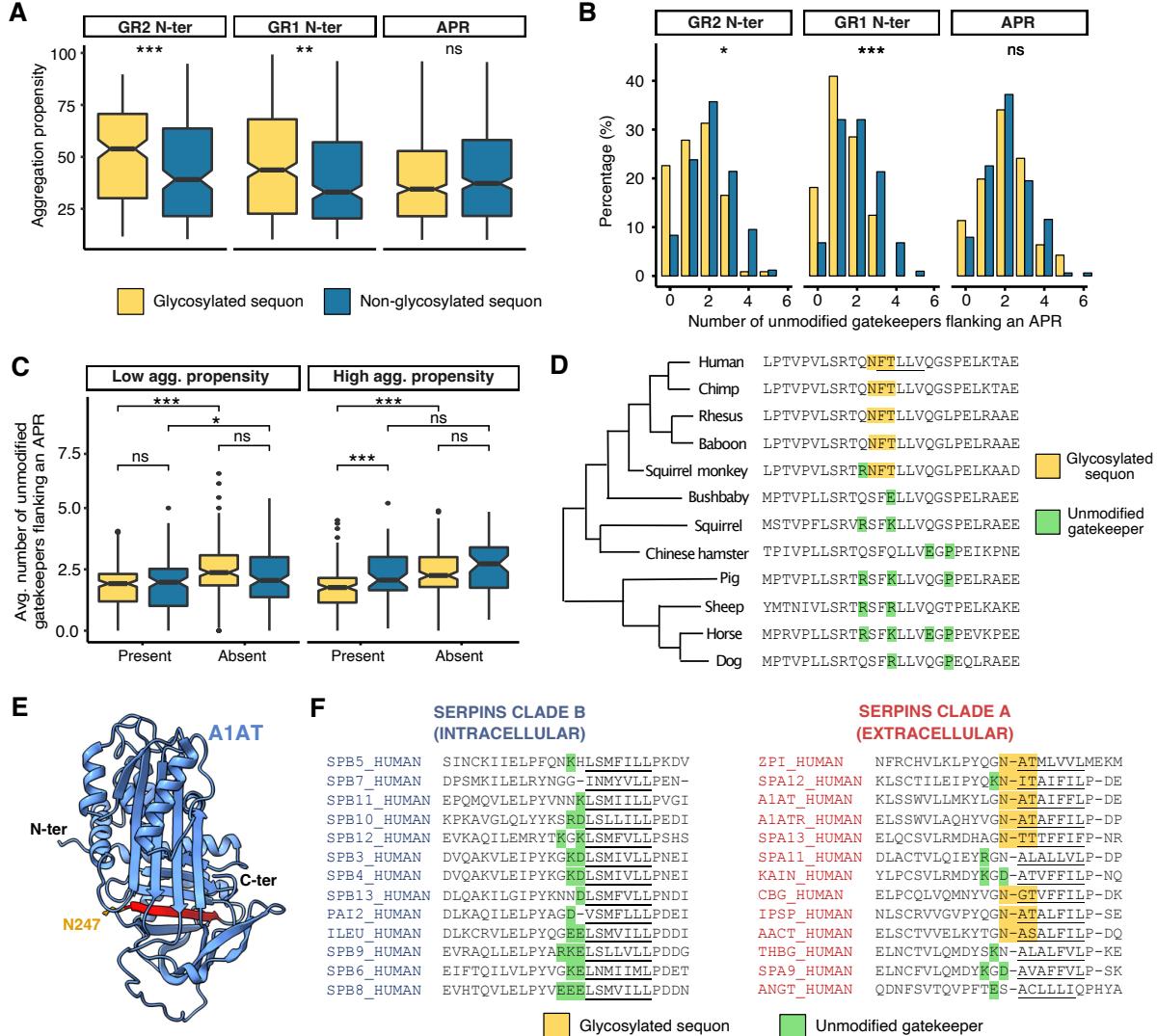
880

881

882

883

884


885

886

887

888

889

890

891 **Figure 3. N-glycosites at EPs behave as aggregation gatekeepers**

892 **A)** Boxplot showing the aggregation propensity (TANGO scores) of APRs that have glycosylated
 893 sequons or non-glycosylated sequons for each of the three EPs (GR2 N-ter, GR1 N-ter and APR).
 894 Unpaired Wilcoxon test was used to assess significance between the two groups (glycosylated vs
 895 non-glycosylated sequons). **B)** Barplot indicating the distribution of the number of charged residues
 896 in the three positions upstream and downstream of APRs with an aggregation propensity score \geq
 897 50. This threshold was used to ensure a strong evolutionary pressure to mitigate the aggregation
 898 of the APRs. Unpaired Wilcoxon test was used to assess significance between the two groups. **C)**
 899 Boxplot showing the average number of unmodified gatekeepers flanking glycosylated and non-
 900 glycosylated sequons in GR1 N-ter when these are present or absent throughout mammalian
 901 evolution. APRs are divided into two categories: weak if the TANGO score is < 50 or strong if the
 902 TANGO score is ≥ 50 . **D)** Small subset of the multiple sequence alignment for BCAM.
 903 Glycosylated sequons are highlighted in yellow and unmodified gatekeepers are highlighted in

904 green. The human APR is underscored. **E**) Example of a serpin structure (Alpha-1 antitrypsin;
905 A1AT) obtained from AlphaFold and with the conserved aggregation-prone region highlighted in
906 red. This particular serpin has an N-glycosylated site flanking the APR (orange). **F**) Multiple
907 sequence alignment showing the same region for intracellular (clade B) and extracellular (clade A)
908 serpins. The conserved APR is underscored in each protein. N-glycosylated sites or unmodified
909 gatekeepers three residues upstream of the APR are highlighted in yellow or green, respectively.

910

911

912

913

914

915

916

917

918

919

920

921

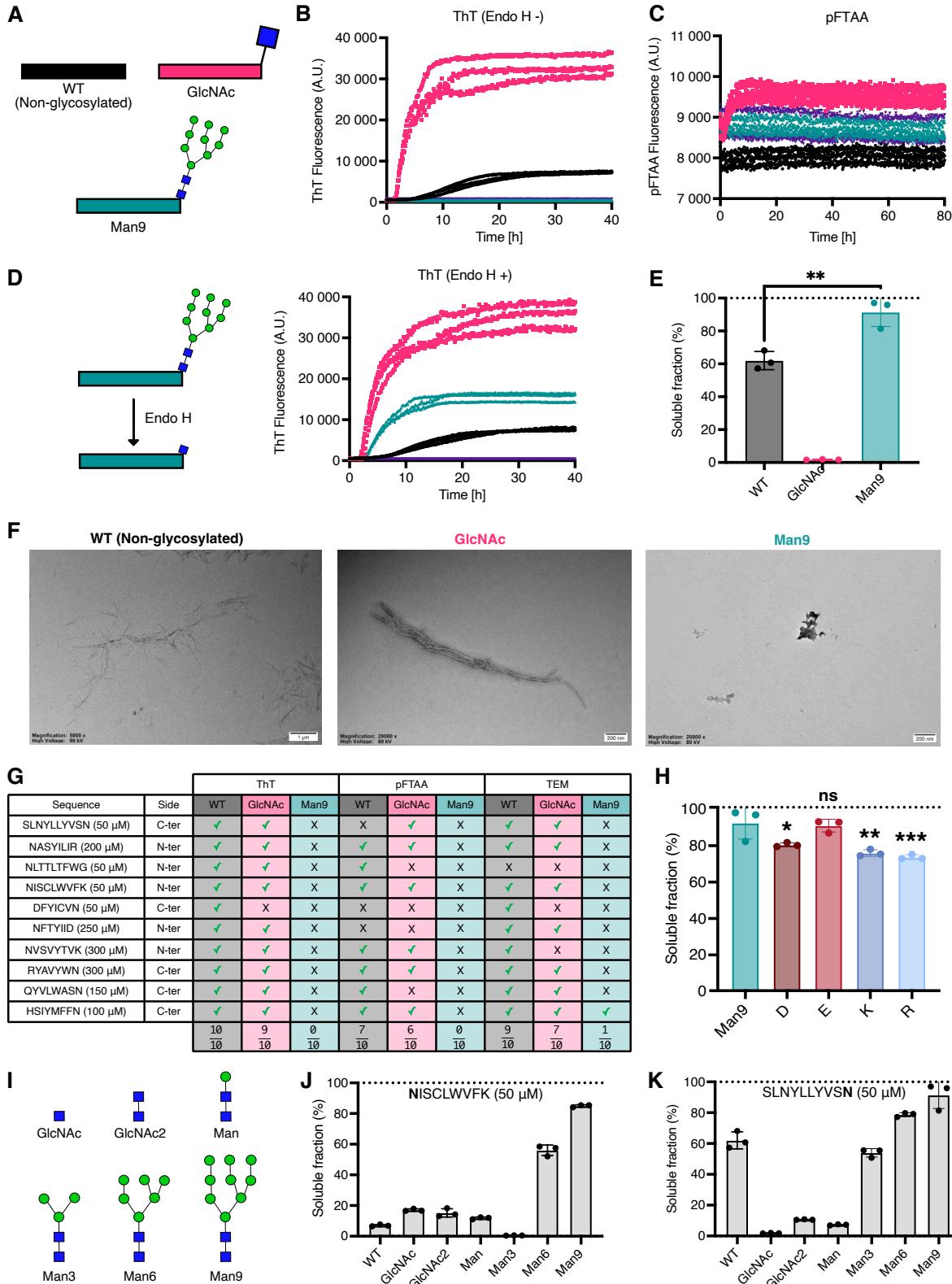
922

923

924

925

926


927

928

929

930

931

932

933 **Figure 4. In vitro analysis of N-glycosylated peptides**

934 **A**) Schematic representation of the peptide variants and experimental design. An aggregation core is
 935 flanked by either a non-glycosylated Asn (WT), GlcNAc or Man₉. **B,C)** ThT binding (B) and pFTAA
 936 binding (C) kinetics of the SLNYLLYVSN peptide set. Fluorescence over time is shown for three

937 independent repeats. Vehicle control fluorescence is shown in purple. **D)** ThT binding after incubation
938 with 1 μ L (500 units) of Endo H enzyme, which cleaves the bond between two N-acetylglucosamine
939 (GlcNAc) subunits directly proximal to the asparagine residue of the glycopeptide. Fluorescence over
940 time is shown for three independent repeats. Vehicle control fluorescence is shown in purple. **E)**
941 Percentage of the concentration of peptide in the soluble fraction after ultracentrifugation for the
942 SLNYLLYVSN peptide set (n=3). Unpaired t-test was used to assess significance. **F)** TEM images for
943 the SLNYLLYVSN peptide set after seven days of incubation. **G)** Combined results for all APRs.
944 Peptides were classified on whether they showed kinetics (ThT and pFTAA) and whether they formed
945 fibrillar aggregates detectable by TEM imaging. **H)** Percentage of soluble fraction for the charged
946 residue variants (D, E, K and R; n= 3). Man₉ values were re-used from E. Unpaired t-test was used to
947 assess significance against Man9. **I)** Schematic representation of the structures of the different
948 glycoforms analysed. **J,K)** Percentage of soluble fraction after ultracentrifugation for the non-
949 glycosylated and glycoforms versions of NISCLWVFK (J) and SLNYLLYVSN (K) peptide sets (n= 3).
950 Non-glycosylated and Man₉ peptides values were re-used from E and Supplementary Figure 13.

951

952

953

954

955

956

957

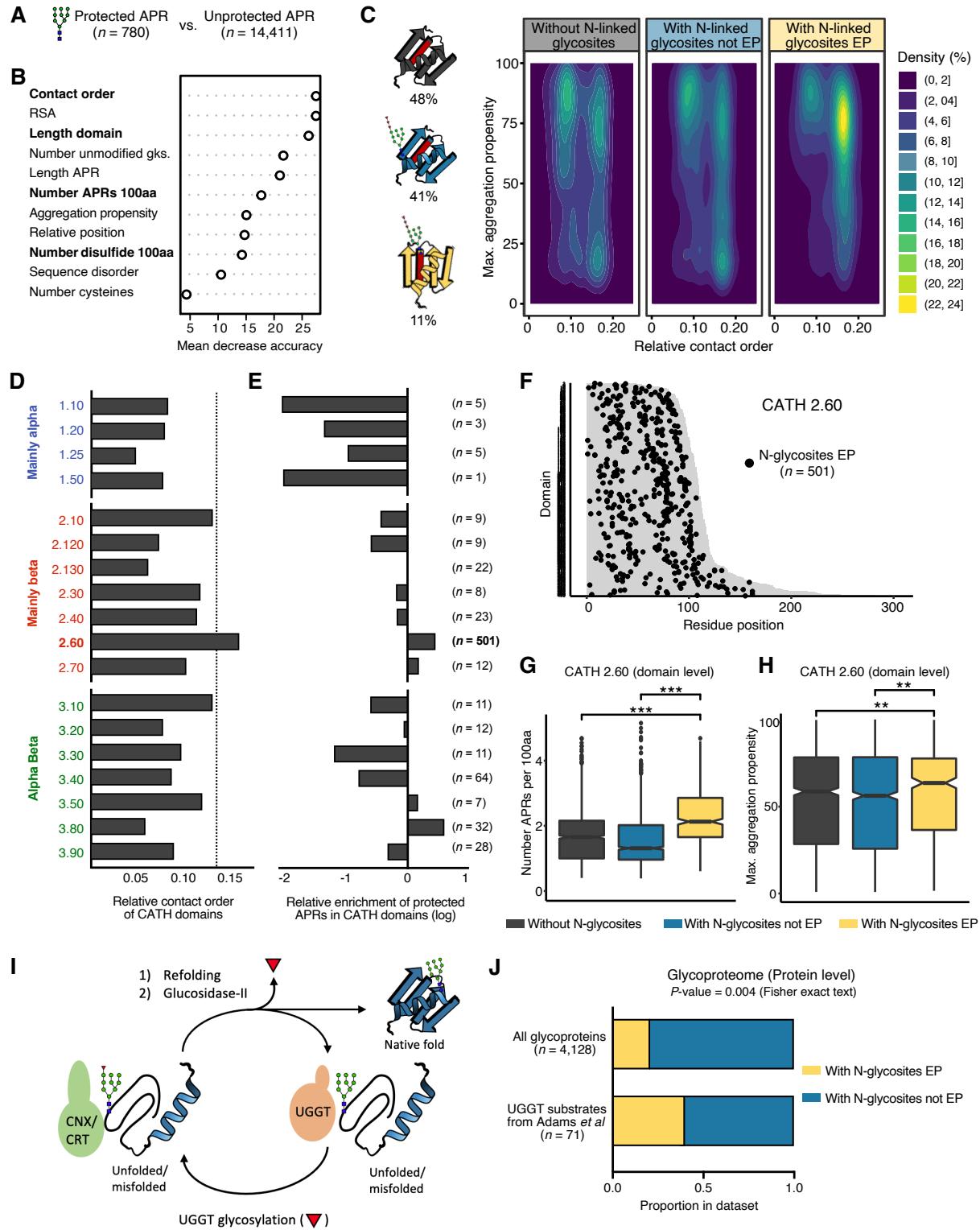
958

959

960

961

962


963

964

965

966

967

968

969 **Figure 5. N-glycosylation protects against aggregation in hard-to-fold proteins**

970 **A)** A random forest classifier was built to classify APRs present in CATH domains as protected
971 (with N-glycosylation sites in EPs) and unprotected (all others). **B)** Variable importance plot for the

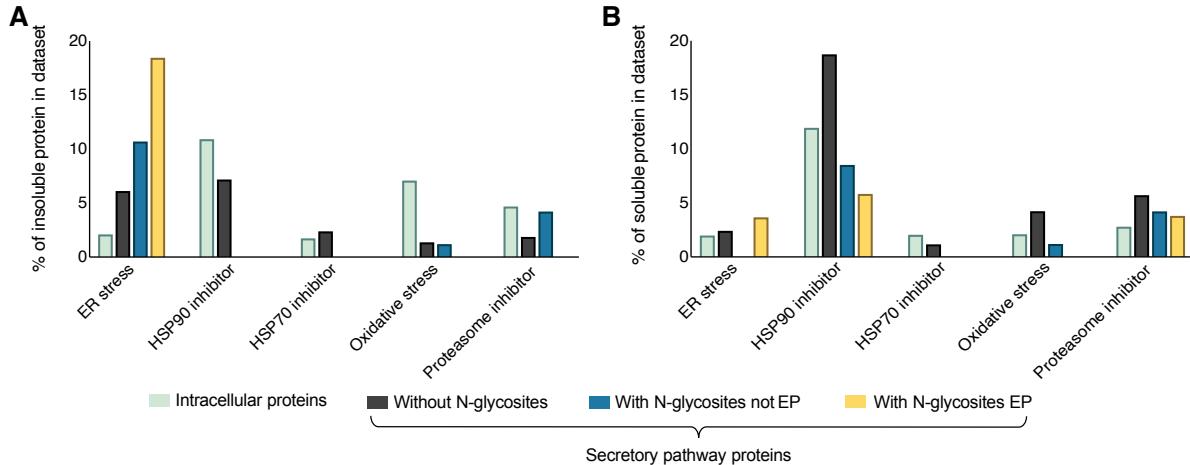
972 model built using random undersampling. Mean accuracy indicates the performance of the model
973 after removing a specific variable. Higher values indicate more importance of that variable in
974 predicting protected vs unprotected APRs. Domain-specific variables are highlighted in bold, while
975 APR-specific variables are unhighlighted. **C)** On the right, a two-dimensional density plot showing
976 the relative contact order and the maximum aggregation propensity for domains classified in three
977 categories: with N-glycosites in EPs (yellow), with N-glycosites not EPs (blue) and without N-
978 glycosylated sites (black). On the left, a schematic representation of each domain category
979 together with their percentage in the dataset. **D)** Average relative contact order of domains in each
980 CATH architecture. The dotted line indicates the average relative contact order of domains
981 containing an N-glycosite in an EP. **E)** Relative frequencies of finding a protected APR in each
982 CATH architecture. The number of protected APRs present in each CATH architecture is shown.
983 **F)** Map showing the position of N-glycosylation sites at EPs in all β -sandwich domains. Domains
984 are sorted by length and coloured in grey. **G)** Boxplot showing the number of APRs per 100 amino
985 acids in β -sandwich domains with N-glycosites in EPs (yellow), with N-glycosites not EPs (blue)
986 and without N-glycosylated sites (black). Unpaired Wilcoxon test was used to assess significance
987 among groups with Bonferroni correction for multiple comparisons. **H)** Boxplot showing the highest
988 APR strength (TANGO score) in β -sandwich domains for the same categories as G. Significance
989 was assessed as in G. **I)** Schematic model of the quality control system of glycoproteins. **J)**
990 Fraction of UGGT substrates that have an N-glycosite in an EP (yellow) or other N-glycosites
991 (blue), as compared to all glycoproteins.

992

993

994

995


996

997

998

999

1000

