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Abstract—Assessing convergence of Markov chain Monte
Carlo (MCMC) based analyses is crucial but challenging, es-
pecially so in high dimensional and complex spaces such as the
space of phylogenetic trees (treespace). In practice, it is assumed
that the target distribution is the unique stationary distribution of
the MCMC and convergence is achieved when samples appear to
be stationary. Here we leverage recent advances in computational
geometry of the treespace and introduce a method that combines
classical statistical techniques and algorithms with geometric
properties of the treespace to automatically evaluate and assess
practical convergence of phylogenetic MCMC analyses. Our
method monitors convergence across multiple MCMC chains
and achieves high accuracy in detecting both practical conver-
gence and convergence issues within treespace. Furthermore, our
approach is developed to allow for real-time evaluation during
the MCMC algorithm run, eliminating any of the chain post-
processing steps that are currently required. OQur tool therefore
improves reliability and efficiency of MCMC based phylogenetic
inference methods and makes analyses easier to reproduce and
compare. We demonstrate the efficacy of our diagnostic via a
well-calibrated simulation study and provide examples of its
performance on real data sets. Although our method performs
well in practice, a significant part of the underlying treespace
probability theory is still missing, which creates an excellent
opportunity for future mathematical research in this area.

The open source package for the phylogenetic inference frame-
work BEAST?2, called ASM, that implements these methods,
making them accessible through a user-friendly GUI, is avail-
able from https://github.com/rbouckaert/asm/. The open source
Python package, called tetres, that provides an interface for
these methods enabling their applications beyond BEAST2 can
be accessed at https://github.com/bioDS/tetres/.

I. INTRODUCTION

Bayesian inference via the Markov chain Monte Carlo
(MCMC) algorithm is widely used [1]-[4] to reconstruct the
evolutionary relationships among a set of biological sequences.
This inference paradigm utilizes probability distributions to
characterize the uncertainty associated with all unknown pa-
rameters, including the evolutionary tree. Prior to observing
the data, a probability distribution is assigned based on existing
knowledge, known as the prior distribution. By applying
Bayes’ theorem, one can calculate the probability of observing
the sequence data given a specific tree topology and model
parameters, resulting in the posterior distribution. MCMC
algorithms are typically employed to approximate the posterior
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probability distribution, with various diagnostic techniques
applied to assess the quality of this approximation.

The accuracy and precision of results from an analysis
are dependent on the convergence of the MCMC samples
to the target distribution, making it critical to ensure that
this has been achieved [21]. We do not refer to theoretical
convergence here, which is only guaranteed asymptotically as
the number of samples approaches infinity. For the assump-
tions made in this manuscript, please refer to the end of the
introduction. Convergence assessment remains a challenging
and complex issue, not only in phylogenetics [5]-[13] but
also the classical Euclidean statistics [14]-[20]. In the context
of phylogenetic MCMC, the state space is the space of all
possible different evolutionary histories, a treespace, along
with tree-associated Euclidean parameters, i.e. real-valued
parameters that can be analysed using standard Euclidean
statistical methods. Treespaces, being high-dimensional non-
Euclidean spaces, pose the main and unique challenge in
analysing phylogenetic data. The complexity of probability
distributions over this already complex space further adds to
the intricacy of this problem [22]-[27]. Therefore, there is a
need for practically effective methods to evaluate convergence
of MCMC chains within the treespace to ensure the reliability
of the resulting estimates and evolutionary conclusions.

Currently the most popular tool for phylogenetic MCMC
convergence assessment is Tracer [8], which reads a log
file containing a sample of trees and other parameters and
produces effective sample size (ESS) estimates and trace plots
for all Euclidean parameters associated with the analysis.
However, convergence in this low dimensional Euclidean
parameter space does not imply convergence in the high
dimensional treespace or vice versa [17]. It is therefore crucial
to have an assessment of convergence in both the treespace
and the Euclidean parameter space associated with trees.
Generally, classical methods to assess convergence assume a
Euclidean parameter space and can therefore not be applied
to phylogenetic trees directly.

To address these issues, multiple different approaches to
represent and analyse samples of trees as a Euclidean param-
eter trace have been developed as an aid to assess the tree
parameter convergence. The approach developed by Nylander,
Wilgenbusch, Warren, et al. [5] uses split frequencies and
branch lengths to adapt classical convergence assessment tools
on samples of trees. The average standard deviation of split
frequencies (ASDSF) [28] is another popular convergence
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assessment tool based on splits, i.e. the partition of taxa into
two subsets. Furthermore, Lanfear, Hua, and Warren [6] and
Warren, Geneva, and Lanfear [7] proposed a different approach
to estimate the ESS of a sample of trees by utilising a vector
of tree distances as a continuous parameter trace, referred to
as the pseudo ESS. Yet another recently developed approach
by Guimardes Fabreti and Hohna [11] converts trees into
sequences based on the absence and presence of splits.

Despite these efforts, the problem of assessing convergence
of the sample of trees directly remains largely unsolved and of-
ten overlooked in practice. A promising approach to solve this
issue was discussed by Whidden and Matsen [26] in the form
of a topological Gelman-Rubin diagnostic. The Gelman-Rubin
diagnostic [16], [29], commonly known as the potential scale
reduction factor (PSRF), is a widely used convergence assess-
ment tool in MCMC analyses [18]. The diagnostic calculates
a factor of the variances within and between multiple MCMC
chains. This factor quantifies the potential improvement in
our estimates with further sampling and indicates the degree
of similarity among the independent samples. The MrBayes
software [1] uses this diagnostic for continuous parameters,
while the topological version developed in [26] cannot be
used in practice due to prohibitive computational costs (NP-
hardness) of the underlying distance measure between trees.

In this paper, we advance the idea of a tree Gelman-Rubin
diagnostic (GRr), utilising the recently developed ranked near-
est neighbour interchange (RNNI) treespace [30]-[34]. Our
approach is structured in two parts: firstly, we develop the GRp
diagnostic for samples of trees. In the context of MCMC, sam-
ples of trees should exhibit near-indistinguishability between
independent chains if drawn from the same distribution over
the treespace. Our presented tree PSRF value quantifies this
property of similarity. Building upon this foundation, we inte-
grate our GRr diagnostic into a comprehensive convergence
assessment tool that incorporates continuous parameter trace
estimates as well. This combination of components results in
a powerful and robust convergence assessment diagnostic for
phylogenetic MCMC analysis that advances the state of the
art in the following ways.

Our approach is founded on a metric treespace that relies
on tree rearrangement operations with efficiently computable
distances [33], a unique feature not found in previous such
treespaces. One advantage of these treespaces lies in the
interpretability of the rearrangements they represent. In prior
studies [32], [34], we demonstrated the potential of this
particular treespace for statistical analysis of phylogenetic
trees. Building upon this foundation, we utilize the concept of
Fréchet variance, which allows a quantitative comparison of
multiple distributions within the treespace. By utilizing a com-
putationally efficient treespace for distance calculations we
address previous limitations, namely the approach presented
by Whidden and Matsen [26]. This paper introduces novel
formulas for quantitatively assessing convergence and mixing
within the treespace. Through rigorous evaluation in both
simulations and real datasets, we demonstrate the necessity
for such a tool to assess the convergence of tree samples. In
addition, we automate the utilization of existing tools, ensuring
fewer errors occur during the manual evaluation of these

diagnostics in practice. Therefore, our approach quantifies the
evaluation entirely, removing the necessity for visual or man-
ual inspection and streamlining the process, thereby reducing
the manual effort usually required for configuring multiple
analyses. Additionally, we offer an easily accessible tool for
practitioners in BEAST?2, along with a Python implementation.

We structure our paper as follows: first, we introduce our
definition of a PSRF value for trees and demonstrate how it
serves as the foundation for our GRy diagnostic. In the Valida-
tion section, we provide evidence of the efficacy of our GRp
diagnostic by showing its performance on samples of trees
from a well-calibrated simulation study. We then incorporate
continuous parameter traces in our convergence assessment
tool. In the Results section, we present the performance of
our tree-based GRy diagnostic on the widely used benchmark
data sets DS1-DS11. Subsequently, we demonstrate the perfor-
mance of the more sophisticated version on the same data sets,
followed by an application to three real datasets. In conclusion,
we highlight the promising implications of the RNNI treespace
and the diagnostic for advancing statistical tools in the analysis
of samples of phylogenetic time trees.

Convergence

In theory, an ergodic MCMC is guaranteed to reach its
unique stationary distribution when the number of sam-
ples/iterations reaches infinity. In practice this asymptotic
property is never reached and we instead consider practical
convergence. Loosely speaking we consider an MCMC anal-
ysis to be converged (as in practical convergence) if two (or
multiple) independent MCMC analysis return indistinguish-
able collections of samples. More specifically, we assume that
there exists a unique stationary distribution for our MCMC
which is also the target distribution. Further, we also assume
that if multiple independent MCMCs reach the same (or sim-
ilar enough) distribution(s), i.e. essentially indistinguishable
collections of trees, that they have (practically) converged to
this stationary distribution.

Given our assumptions, we do acknowledge the possible
challenge of pseudo-convergence and we revisit it in Sec-
tion V. Discussion. However, detecting such a problem reliably
in practice is generally impossible (unless the true distribution
is known) so we do not explore this important topic in this
paper. In this manuscript we will use the term convergence as
an equivalent to practical convergence as described above.

II. METHODS

We present a tool that quantifies the similarity of multiple
collection of trees, which in the context of MCMC samples
can be used to assess whether independent MCMC runs are
sampling the same tree distribution. We apply this novel tool to
MCMC convergence assessment and present additional tools,
based on existing practises in the field of phylogenetic MCMC,
that aid in this endeavour. All quantities that we are estimating
and comparing are sample quantities, including Vary(t).

Pseudo-code for the individual algorithms presented is avail-
able in the Supplement Section S2 and implementations are
available as a BEAST2 (Java) package [35] or as part of a
Python package [36].
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A. Gelman-Rubin like diagnostic

For the remainder of the paper we will assume that the
length of two (or multiple) chains is the same to simplify
notations. Additionally, we presume that the variance for
trees, a crucial component of our PSRF value, is finite. As
demonstrated by Vehtari, Gelman, Simpson, et al. [20], the
traditional R diagnostic fails when used in scenarios with
infinite variance. It is imperative to note that in the realm of
phylogenetic treespaces, our understanding of these quantities
remains largely elusive.

The Gelman-Rubin diagnostic, sometimes also referred to
as the PSRF or R [29], is one of the most popular tools for
diagnosing and monitoring convergence in MCMC algorithms
[18]. The diagnostic is calculated as the ratio of the between-
chain variance to the average within-chain variance. For the
monitoring of convergence this ratio describes the factor by
which we would expect the inferred samples to improve if
the sampling process would be continued in the limit, i.e.
the number of samples — oo. With an increasing number
of samples the PSRF value declines to 1.0 and a value much
larger indicates that one or both of the following statements
is true:

1) Further sampling will substantially reduce the within
chain variances, making the overall inference of the
target distribution for each MCMC more precise

2) Further sampling will substantially increase the between
chain variances, indicating that the individual MCMCs
have not completely sampled the target distribution

In either case we can conclude that our samples are far from
convergence to the stationary distribution and we have to
continue the sampling process. Hence, the PSRF can be seen as
an indication of when the between-chain variance matches the
average within-chain variance, implying sufficient similarity
between the independently sampled distributions.

In this paper we introduce a diagnostic tool that we refer
to as the GRr diagnostic for evaluating convergence and
termination of phylogenetic MCMC tree inference. This tool
is inspired by the original diagnostic [29] as well as the
topological version developed by Whidden and Matsen [26].
Due to the lack of a sample mean for phylogenetic trees we
instead compute the within and between chain Fréchet variance
using the RNNI tree metric [32], [33]. Specifically, we define
the normalized Fréchet variance (a sample variance) of a tree
t and a collection of trees T" via the RNNI metric d(-,-) as

Eti GTd(ti7 t)2
Var(t) 1 7]

Since we assume all samples of trees to have the same size
the normalization by the size of the set 7" is only relevant in
practice when samples of trees have different sizes.

Using this variance we define our diagnostics PSRF value
for a tree t given two sets of trees 7; and 7T, as the square
root of the ratio of variances for the tree ¢ in the two sets.
Var(t) 7, HeT
Var(t) 7,

This definition differs from the method proposed in [26] by
not using a V value that combines the between and in chain

PSRE(t; 71, T3) =

variances to a single value. Instead, our definition directly
compares the tree’s Fréchet variance within its chain to its
Fréchet variance in another chain, where the latter can be
interpreted as the between chain variances akin to the original
definition.

The overall PSRF value can be interpreted similarly to
the originally proposed diagnostic with values close to 1.0
indicating indistinguishable tree sets and values much larger
than 1.0 as different tree sets. In addition, our proposed PSRF
value can also be less than 1.0 which is the case if the variance
for a tree is lower in the set it does not originate from. This can
be thought of as one tree set being “fully contained” within
the perimeter of another tree set. Therefore, a convergence
criterion in this case requires specifying a tolerance around
the 1.0 value, which we will discuss below.

a) Generalisation for N independent chains: The diag-
nostic presented by Gelman and Rubin [29] was generalised
by Brooks and Gelman [16] to incorporate more than 2
independent chains. We chose to initially present the construct
using two chains for its simplicity of notation. Besides, using
our slightly different definitions we can adapt these to the case
of N independent chains as follows

N ZtieTj d(t;,t)?

— 1

Var(t = —
( )7—17---1TN Nj:1 |T]|

With this new notation of the between chain variance the

PSRF value would be computed as

VaI(t)ﬂ7~--77ji—177—11+1 s TN
Var(t) T,

PSRF(t; T1,...,TN) = teT;
Note that increasing the number of independent chains will
significantly increase computational cost as the pairwise dis-
tances between all combinations of chains and trees need
to be calculated (and stored), i.e. for /N independent chains
of length M the number of necessary pairwise tree distance
computations will be N%_l) + (];)M2 = (NzM).

b) Convergence assessment: Here we demonstrate the
integration of tree PSRF values into our GRp diagnostic.
Unlike the original approach, we compute an average of PSRF
values termed the GR value, considering the entire sample of
trees from both chains. This is because we found that simply
assessing the PSRF value is not sufficient (see Supplement
Subsection S3-B) and it is important to put each iteration into
the context of the full sample of trees from both (all) chains.

Given two MCMC chains and their respective samples of
trees 71 and 7Tz up to the i-th sample, i.e. |T1| = |T2| = ¢, we
define the GR value of tree t} € 77 as

1 %
OR(4: T3 Te) = 5 2 PSRF(si 70, o)

and analogously for tree t? € 7. When calculating the GR
value for sample ¢ we have to newly calculate the PSRF value
for each sample 1,...,7¢ with the tree set containing all of
the ¢+ samples and cannot reuse previously calculated PSRF
values. However, this does not imply a significant increase in
complexity because the required distances can be stored.
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In the original diagnostic, it suffices for the PSRF value
to fall below a threshold close to 1.0, typically set to 0.1
or lower, as suggested by Gelman, Carlin, Stern, et al. [37].
However, recent research by Vats and Knudson [19] challenges
this threshold, indicating that 1.1 may be inadequate while also
proposing new methods to enhance the robustness of the origi-
nal diagnostic and determine an appropriate tolerance. Within
this decision for chain termination lies the major difference
of how we use the PSRF value. Through experimentation
and practical application, we have found that a tolerance of
0.05 or less is suitable for our tree PSRF (see Supplement
Subsection S3-A).

However, the main difference is not this stricter threshold
but the requirement of the chain to consistently sample trees
within this tolerance around 1.0 until a predetermined ESS
estimate for the samples is reached. We utilize the RNNI dis-
tance and the median pseudo ESS variant for this estimation,
which considers all trees in a sample as reference trees (see
[10]). By requiring the chain to sample within the tolerance
we ensure that the samples of trees from both (or all) chains
are indistinguishably. If a GR value of a tree in either chain is
not within the specified tolerance around 1.0 the samples up
to this iteration get added to the tree burn-in and subsequently
discarded from the set of trees that our assessment returns.
Therefore, the diagnostic will return a subset of trees that has
a sufficient pseudo ESS estimate and each tree in either chain
has GR value within the specified tolerance around 1.0.

For a precise definition of the pseudo ESS, please refer to
the Supplement Subsection S2-A and to [6], [10].

B. The ASM package diagnostic

In addition to our described tree-based diagnostic, we intro-
duce other diagnostics in our BEAST2 implementation [35].
These are aimed at enhancing the robustness of our diagnostic
approach, particularly by incorporating continuous parameter
traces. The first addition is an automated burn-in detection
method, loosely inspired by Geweke [14], but to the best of
our knowledge no such approach is used anywhere in practice.
The second strategy that we incorporate is the concatenation
of continuous parameter traces from the individual chains.
We conclude the section with a high level description of the
resulting comprehensive diagnostic.

a) Burn-in detection: As previously highlighted, our
approach draws inspiration from the Geweke diagnostic [14],
namely comparing samples from the start of a chain to the
ones at the end of the chain to assess burn-in. However, to
the best of our knowledge, our method is distinct from any
existing practice. Given a continuous parameter trace we take
its final quarter to calculate a mean p and standard deviation
o and define a confidence interval as [ — o, + o]. The
algorithm iterates over the whole trace with a sliding window
of width M = 10 until the window’s mean falls within this
confidence interval. It then discards everything before this
point as burn-in. In practice this diagnostic can be run for a
set of specified parameters, which by default we set to be the
posterior, likelihood, and prior. The overall burn-in is decided
by the maximum value among all of these traces. The value M

for averaging is aiding in making this detection more robust
to random outliers as well as temporarily stuck chains.

b) Concatenation of traces: The second strategy we
incorporate to automate our diagnostic involves using ESS
thresholds for continuous parameter traces. Instead of applying
these thresholds to the individual chains, we concatenate the
traces before estimating the ESS. This concatenation offers
several advantages. Firstly, it consolidates the MCMC output
into a single collection of samples, thereby enhancing overall
efficiency by doubling the total number of samples (in the
case of two independent chains). Moreover, the concatenation
process can potentially identify cases where individual chains
sample parameters from different distributions. This is because
concatenated traces from different distributions typically yield
low ESS estimates. Indeed, it is important to note that while
ESS was not designed for this purpose, this capability emerges
as a by-product of the concatenation process. Similarly to
the burn-in detection, we enforce this threshold only for the
specified subset of priority parameters (posterior, likelihood,
and prior by default).

So at the high level our algorithm can be described as seen
in Algorithm 1.

Algorithm 1 High level pseudo code description of our
diagnostic

tree burn-in < 0
traces <— {posterior, likelihood, prior}
Start sampling the MCMC chains
while samples arrive from the chains do
Calculate burn-in of all traces
Discard burn-in temporarily (for this iteration of the
while loop)
Calculate the GR value of the new tree samples
if GR of both tree samples is within tolerance around
1.0 then
Discard tree burn-in from both chains
Concatenate the samples of the two chains
if ESS threshold of important traces and trees is
reached then
Stop sampling and return concatenated sample
as output
— Convergence diagnosed

else
Update tree burn-in to be set to the current iteration

C. Implementation

As previously mentioned, we have divided the content of
this paper and our implementation into two distinct parts.
The first part encompasses the purely tree based diagnostic,
using the RNNI distance and is implemented into the time
tree statistics python package tetres [36]. The main focus of
this package is the implementation of statistical tools that are
developed primarily over the RNNI treespace. In contrast, the
second part is implemented within the BEAST2 framework as
the ASM package [35] in the Java language.


https://doi.org/10.1101/2023.08.10.552869
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.10.552869; this version posted August 30, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

IEEE/ACM TRANSACTIONS ON COMPUTATIONAY AR I8 AP IRES GloR¥ONGAIR ¢ Abtenaliong! IRsesE x 5

III. VALIDATION

To validate our diagnostic, we conduct a well-calibrated
simulation study. This section is again divided into two
parts: firstly, we evaluate the treespace-based approach, and
secondly, we repeat the evaluation for our comprehensive
diagnostic implemented for BEAST2. For both diagnostics,
we assess their performance on the well-calibrated simulation
study, utilising regular ESS assessments, and conducting a
coverage analysis.

A. Well-calibrated simulation study

We performed a well-calibrated simulation study [38] sam-
pling 50 tip dates randomly from the interval 0 to 1. We
use a coalescent tree prior with constant population size log-
normal(p = —0.79,0 = 1.0) distributed giving a mean of
0.75, an HKY model with kappa log-normal(x = 1,0 =
1.25) distributed, and gamma rate heterogeneity with four
categories with shape parameter exponentially distributed with
mean = 1 and frequencies Dirichlet(4,4,4,4) distributed.
Further, gamma is lower bounded by 0.1 [39]. We use a
strict clock with uniform(0, 1) prior. Sampling 100 instances
from this distribution using MCMC in BEAST2 [4], we get
a range of tree heights from 1.03 to 14.74 with mean = 2.81
(note that due to the tips being sampled from O to 1, the tree
height is lower bounded by 1) and we get a range for the
clock rate of 0.01 to 0.99 in our study. With these trees, we
sample sequences of 1000 sites using the sequence generator
in BEAST2.

B. Treespace based GRt diagnostic

For the following results we used the implementation pro-
vided in [36] and MCMC analyses simulated as described in
the previous section. This implies that we run our diagnostic
on the full set of trees from an MCMC chain with sufficient
burn-in discarded initially. For determining convergence, i.e.
sufficiently many samples of trees with GR value close enough
to 1.0, we used the pseudo ESS as described in the Supplement
Subsection S2-A. The evidence provided in the first part of the
section establishes the viability of our approach, serving as a
proof of concept for our method.

a) Convergence: We compare different settings of our
convergence diagnostic on the calibrated simulation study.
One of the selected parameters that we compare are different
pseudo ESS thresholds for the subset of trees, in this case
200 and 500. We choose these two values because 200 is a
general rule of thumb in phylogenetic MCMC analyses [6]
and 500 is because of recent findings by Magee, Karcher,
Matsen 1V, et al. [10] and Guimaraes Fabreti and Hohna [11]
which both advocate for a more stringent value higher than
200. In addition, we compare 3 different sizes of an acceptable
interval (tolerance) for the GR value: 0.01, 0.02, and 0.05.

As we described in paragraph II-AOb we consider a pair
of two independent chains converged (orange in Table I) if
we find a large enough subset of trees in both chains that all
have GR values within the respective tolerance around 1.0 and
the pseudo ESS value of each subset of trees is at least the

selected ESS threshold. If we reach the end of a chain without
both of these conditions being met the two independent chains
are considered not converged (0 and blue in Table I).

We find that for the set of 1000 trees that arise from our
simulation setup with a tolerance of 0.05 determines conver-
gence in every case, whereas the more strict tolerances of 0.02
and 0.01 do not always detect convergence. The fundamental
concept that underlies well-calibrated simulation studies is that
an inference method employing the same model as the data’s
generation should have the capability to accurately retrieve the
true parameters. Therefore, these studies if setup appropriately
are considered to return converged samples and are generally
used to evaluate new methods and models [38]. Despite this
notion, the fact that our diagnostic with strict tolerances does
not detect convergence might imply that sampling only 1000
trees is sometimes insufficient even for such “nice” data.
Therefore, in practice it might be useful to use a more strict
tolerance to counter act premature convergence detection,
particularly for more complex data sets.

Furthermore, it is important to highlight that the existing
methods for assessing MCMC convergence [18] heavily rely
on manual inspection guided by ‘“expert” knowledge, which
applies broadly to MCMC analyses in various fields, including
phylogenetics. It is currently not possible to simulate scenarios
that would demonstrate non-convergence without employing
two chains on completely independent datasets. Therefore, we
are constraint to use these well-calibrated simulation studies
as our baseline to state that our diagnostic works as expected
on datasets that would generally be considered converged
analyses. This leaves a negative control as a non trivial open
question for future research.

TABLE I: Our convergence diagnostic as implemented in
tetres executed on 100 well-calibrated simulation studies with
1000 trees each.

| Tolerance | ESS threshold | Converged | Not converged |

200 100 0
0.05 500 100 0

200 99 1
0.02 500 92 8

200 80 20
0.01 500 53 47

b) ESS assessment: As mentioned before, we did not use
any continuous parameter trace ESS estimates to determine
convergence but only used the pseudo ESS of the sample
of trees using the RNNI distance. Here we check how the
ESS estimates for all parameters behave when using our GRp
diagnostic. We find that in this well-calibrated setting the ESS
estimates are in a similar range as the chosen ESS threshold
value. These findings are displayed in Figure 1, where we
compare the full MCMC chain versus the subset of tree
samples determined by our GRr diagnostic using a threshold
of 200 or 500 respectively.

Moreover, we observe that in the case of our well-calibrated
simulations the pseudo-ESS values, using RNNI or RF dis-
tances, align well with all other parameter ESS values after
appropriately tuning the operator weights, see Figure 1. It
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remains open, whether the pseudo-ESS estimates can be used
as a proxy for other ESS estimates or for calibrating MCMC
operators in practice. Operators are used to propose new states
for a corresponding parameter and the weight of an operator
refers to its probability of being selected in each step of the
MCMC. When a parameter x has low ESS at the end of an
analysis it can be helpful to adjust the weights of operators
to improve the sampling for this specific parameter. However,
we emphasise that in a real scenario this strategy may not
universally succeed due to mixing issues, the complexity
of posteriors, or other reasons. This highlights one of the
rationales behind our BEAST2 implementation’s utilisation
of ESS estimates for the relevant continuous parameter, as
elaborated in Subsection II-A.

c) Coverage analysis tetres: A coverage analysis for
Bayesian MCMC refers to an evaluation of the accuracy
and reliability of the posterior inference obtained trough the
MCMC sampling methods. By comparing the true parameter
values of a simulation with the parameters from the full
posteriors (full MCMC chain) and the partial posteriors (subset
of the full posterior) produced by our GR7 diagnostic, we are
able to assess the accuracy and uncertainty of our method ver-
sus a manually set up MCMC run. The coverage is considered
appropriate if it implies that the true parameter falls within
the 95% confidence interval 95% of the time. This analysis
helps to reveal any potential biases, under- or overestimation of
uncertainties, allowing us to assess reliability of our diagnostic
in comparison to a manually set up MCMC chain. For this
coverage analysis we compare the full tree sets as sampled
by the manually configured MCMC chain versus the subset of
trees our diagnostic deems to be a convergent sample. The term
“manually configured” denotes the best Bayesian phylogenetic
practice of selecting the chain length, sampling intervals, and
possibly burn-in before starting the MCMC analysis.

The results of this analysis are displayed in Table II. For a
set of 100 independent simulations the 95% highest posterior
density (HPD) of the binomial distribution ranges from 91
to 99 inclusive. As indicated by the red values (outside the
aforementioned interval) our automatically determined sets of
trees perform almost identical to the full simulation setups. It
can be observed that using the ESS threshold value of 200
introduces low coverage in 3 additional parameters. However,
we want to emphasise that low coverages are also affiliated
with low ESS estimates, as visualised in Figure 1, implying
insufficient sampling of the respective parameter. We touch
upon this issue again in the next section with two ways to solve
it in our BEAST2 implementation. Overall, this outcome gives
us confidence that our GR7 diagnostic produces samples that
are reliable estimates of the posterior and fully comparable to
a manually set up MCMC analysis. As before the results are
achieved with a GR tolerance of 0.05. More coverage analyses
for different settings, including the use of the median instead
of the mean for smoothing of the GR value, can be found in
the Supplement, see Subsection S4-A.

C. BEAST2 ASM package validation

In the previous section we used a manually set up simulation
that had fully run all the predetermined iterations. For the

TABLE II: Coverage of the true value by 95% HPD estimates
from 100 independent simulations. Columns correspond to the
pseudo ESS threshold of 200, 500, and the full sample of
trees. The red coloured values indicate coverage outside the
expected range between 91 and 99, the two values separated
by ’/’ represent the two independent chains.

Expected range (91-99)
Parameter 200 | 500 | Full
Tree.height 93/93 | 96/96 | 96/96
Tree.treeLength 94/92 | 96/95 | 97/94
clockRate 91/91 | 90/92 | 91/93
gammaShape 87/90 | 93/93 | 92/92
popSize 90/93 | 97/96 | 96/97
CoalescentConstant | 91/92 | 93/92 | 92/92
kappa 93/94 | 93/93 | 94/94
freqParameter. 1 95/92 | 92/92 | 92/92
freqParameter.2 90/93 | 94/94 | 94/95
freqParameter.3 86/87 | 89/87 | 87/90
freqParameter.4 94/94 | 94/93 | 95/95

validation of our automated stopping implementation we reran
these analyses using our automated convergence diagnostic
package ASM and performed a coverage analysis for the
resulting samples of trees.

a) Coverage analysis ASM: As displayed in Table III the
coverage analysis is very similar to the previous one (Table II),
slight difference are expected as MCMC is a random process.
This result again confirms that our diagnostic produces reliable
estimates of the posterior distribution.

TABLE III: Coverage of parameters when executing 100 well-
calibrated simulations using the ASM package.

| coverage | mean ESS | min ESS

Tree.height 95 224.70 57.56
Tree.treeLength 94 219.30 95.49
clockRate 91 222.71 66.45
gammaShape 89 124.27 16.35
popSize 91 222.54 95.05
kappa 92 178.38 86.39
freqParameter.1 91 181.88 51.34
freqParameter.2 94 178.08 52.26
freqParameter.3 88 176.19 44.24
freqParameter.4 96 182.90 41.98

A minor difference is the coverage of the frequency param-
eters, which do not quite reach the required 91-99 expected
range. Additionally, the table also displays the minimum ESS
estimate of these parameters across the 100 simulations, see
column min ESS in Table III. For parameters with very
low minimum ESS, such as the frequency parameters, a
low coverage is expected because of insufficient number of
samples. We want to emphasise that failing the coverage test is
not a major concern as there are two ways to circumvent such
a problem for any parameter in general using our tool. The
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Fig. 1: Comparing ESS estimates of the full chain versus the automatically determined portions using our diagnostic with RNNI
pseudo ESS threshold values of 200 and 500 respectively. The figure additionally includes the RNNI and Robinson-Foulds

(RF) pseudo-ESS estimates.

first approach is that we can add any parameter in question
to the list of important parameters in our diagnostic, which
in turn would enforce a sufficiently high ESS estimate and
increase the coverage. The second approach is to tune the
operator weights in the analysis setup, which will also result
in increased ESS estimates.

Furthermore, the inferred parameters of the sample are all
highly correlated to the true values, this is visualised for
the failed frequency parameter in Figure 2. This visualisation
further indicates that there is no major concern about the low
coverage parameters.

freqParameter.3

0.6 1

N
S

estimates

0.24

0.0

T T
0.4 0.6

truth

T
0.0 0.2

Fig. 2: Visualising the coverage test for frequency parameter
3, the z axis displays the true parameter value and the y axis
the inferred parameter. Blue boxes indicate that the true value
is within the 95%HPD interval.

IV. RESULTS

We apply our convergence diagnostic technique to the
datasets DS1-DS11, which are popular for benchmarking in
computational phylogenetics [24]-[26], [28]. Previous findings
on these suggest multi-modality in the treespace which implies

that MCMC exploration and convergence within the treespace
is challenging [24], [26]. We start by presenting the results of
our tree based diagnostic first and find that they are coherent
with these previously identified problems. Then, we present
the results of applying our BEAST2 ASM package to the
same datasets and find that the combination of continuous trace
ESS estimates and our GR diagnostic performs well on these
datasets. Additionally, we demonstrate the effectiveness of our
package on three real datasets, revealing no major difficulties
in identifying converged MCMC runs.

A. Convergence diagnostic on DS1-DS11

For each of these 11 dataset, we set up 6 different BEAST2
analyses to generate samples of fully resolved time trees.
Subsequently, our convergence diagnostic as implemented in
tetres was applied to these 66 sets of trees. Additionally, we
present results based on our BEAST?2 package ASM, yielding
comparable results, which among other things serves as a
validation of the two implementations correctness. Based on
these findings, we investigated the number of tree samples
required to meet the specified pseudo ESS threshold (in this
case 200). This investigation provides further insights into the
mixing quality of the tree samples, as measured by pseudo
ESS.

a) Configurations: We used the following 6 analysis
configurations to generate two independent chains for each
of the DS1-DS11 datasets.

In Table V we visualise the results of our diagnostic on
these data sets. Indicated in cyan are runs that, according to
our diagnostic, have not reached convergence yet, and could
therefore indicate convergence problems within treespace. The
table also contains the results of three different settings for
the tolerance of our diagnostic. The diagnostic performs as
expected with lower tolerances being less likely to reach
convergence as it is stricter.

Whidden and Matsen [26] found that DS1, DS4, DSS5, DS6,
DS7, and DS10 are peaky, meaning they contain multiple
regions in treespace with high posterior probability which are
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TABLE IV: Different MCMC configurations used for DS1-
DS11

| Config | Samples | thinning | pre-burn-in |
1 2.5 x 10% | 2.5 x 103 0
2 2.5 x10% | 2.5 x 103 1 x 10°
3 5 x 10° 5 x 103 1 x 10°
4 5 x 10° 5 x 103 2 x 10°
5 1 x 107 1 x 10% 0
6 1 x 107 5 x 103 0

separated by regions of low posterior probability and therefore
harder to sample. In Table V it can be seen that our diagnostic
agrees with these findings indicating that DS1, DS4, DSS5,
DS6, DS7 and DS10 are often unable to reach convergence
in our setup. This indicates that these data sets have tricky to
sample posterior distribution over treespace.

Our findings also show that DS2, DS3, DS8, DS9, and
DSI11 are reaching convergence in most of the setup runs. This
indicates that the posterior distribution over treespace is easier
to sample and hence reaches convergence with fewer samples.
Again, this results is consistent with findings of Whidden and
Matsen [26], who indicate that the distributions of DS2, DS3,
and DS8 do not contain any peaks.

b) BEAST2 ASM package on DSI-DS11: We tested the
BEAST?2 implementation on the DS1-DS11 datasets ten times,
utilising a strict clock with a fixed rate of 1, HKY substitution
model, and Yule tree prior. The stopping criteria employed
consist of GRr statistic with a tolerance of 0.05, requiring
pseudo ESS to exceed 200, and the ESS estimate of posterior,
likelihood, and prior must also exceed 200. Table VI presents
the average chain length, with the log frequency set to 10
thousand. As a result, the average trace and tree log for DSI,
for example, contains 246.1 samples.

We conducted visual inspection of the traces in Tracer [8]
for all datasets, confirming convergence to the same posterior
distribution. In all cases, there was a maximum difference of 2
between the lowest and highest log posterior, as well as prior
and likelihood estimates across the ten runs, indicating that
each run effectively converged to the same distribution. The
inclusion of an ESS requirement of at least 200 for traces and
trees leads to a minimum chain length of 200 samples (1.99
million steps), which, with a log frequency of 10 thousand,
results in a minimum chain length of 2 million. The majority of
chain lengths in the experiment were only slightly longer than
2 million, except for DS4, which exhibited two outliers just
under 10 million (see Supplement Section SS5). This variation
can be attributed to the inherent stochastic nature of MCMC,
causing differences in convergence times.

The presence of chains with “only” 200 samples suggest
that the trace ESS criterion limits the stopping process, while
the other criteria suggest that the MCMC could be terminated
earlier. On the other hand, longer stopping times for some
chains were accompanied by much higher ESS estimates for
posterior, prior and likelihood, with the GRr criterion being
the primary factor in prolonging the sampling process. These

findings indicate that neither criterion can be eliminated, as
both are essential in determining the stopping point under
different circumstances or conversely form a bottleneck in
certain situations.

c) Further investigating mixing of trees: Due to the
nature of MCMC analyses the resulting samples are not
independent, hence the idea of an ESS measures to estimate
the number of independent samples. Here we are further inves-
tigating this non-independence in treespace using our different
configurations on the 11 data sets via the median pseudo ESS
measure [6], [10]. Specifically, we are investigating how many
samples are needed of a converged part of a chain to reach a
desired pseudo ESS threshold,

ESS threshold
|tree-sample|

This value is closer to 1 if the MCMC thinning is appropriate,
meaning that the samples are basically independent. However,
smaller values indicate that the thinning interval is too small
and therefore a larger number of samples is needed to reach the
desired number of independent samples, i.e. the ESS threshold.

We visualised these findings in Figure 3 and it can be
observed that the data sets DS1, DS4, and DS10 have more
non-independent samples than others. In contrast, almost all
samples in data sets DS2, DS3, and DS8 are independent
(fraction close to 1). We also visualised these values for the
samples resulting from our BEAST2 implementation in the
ASM labelled column, which has very similar values among
all datasets except DS3, DS4, and DS7.

ESST / GR-sample-size

DS1
DS2
DS3
DS4
DS5 4
DS6 -
DS7 -
DS8
DS9 -
DS10 -+
DS11 -+

I 1.0

-0.8

-0.6

-0.4
I 0.2

0.0
Fig. 3: Fraction of ESS threshold over GRr determined sample
size. The grey cells indicate runs that are not considered
converged. Dark green indicates that the sample size is the
same as the ESS threshold (200 in this case). See Table IV for

the different MCMC configurations on the x-axis. Accessible
version available in the Supplement Figure S1.

Config

We conclude from this investigation that the previously
identified “peaky” datasets DS1, DS4, and DS10 display tree
mixing that is coherent with these findings. However, we do
not find stark differences among any of the datasets using our
ASM package. Moreover, we do not find any scenarios that
would suggest independent chains would be stuck in different


https://doi.org/10.1101/2023.08.10.552869
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.10.552869; this version posted August 30, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

IEEE/ACM TRANSACTIONS ON COMPUTATIONAY AR I8 AP IR GloR¥NGAIR ¢ A4rtenaliong! IRsess x 9

TABLE V: Assessing our diagnostic on DS1-DS11 with different MCMC setups. A cell labelled 1 (orange) indicates a run
diagnosed as converged, a 0 (cyan) indicates that no convergence is diagnosed within the range of the sample. See Table IV

for the different MCMC configurations Cl1,. . .,C6.

Cl | C2|C3|cC4|C5]cC6|

mean - 0.01
Cl|C2|C3|C4]|C5]C6

mean - 0.02

mean - 0.05
ESS-threshold || C1 | €2 | €3 | C4 | C5 | C6
DS1 2l
DS2 il
DS3 =l
DS4 al
DS5 2l
DS6 2l
DS7 2l
DS8 2l
DS9 e
DSI10 =l
DSI1 il

TABLE VI: Average, shortest, and longest chain lengths in
millions of samples and fraction of longest divided by shortest
chain length over 10 runs for data sets DS1-DS11. Lengths
of the 10 individual runs are available in the Supplement
Section S5.

| Data set | Average | Shortest | Longest | Longest/shortest |

DS1 2.461 1.99 3.73 1.87
DS2 2.378 1.99 3.28 1.65
DS3 3.435 2.32 4.36 1.88
DS4 4.235 2.00 9.83 4.92
DS5 2.454 2.00 3.41 1.71
DS6 2.902 2.00 351 1.76
DS7 3.797 2.34 4.67 2.00
DS8 2.601 1.99 3.53 1.77
DS9 2.697 1.99 4.35 2.19
DS10 2.551 2.21 3.34 1.51
DS11 2.579 2.00 3.57 1.79

modes. Rather, the datasets that are not diagnosed as converged
have insufficient chain setups that sample too few iterations
and trees. If this is indeed the case, it results in a simple fix
of running the chain longer rather than having to investigate
and deal with multimodal tree distributions.

B. Real data application of convergence assessment

We first analysed a dataset comprising of 63 hepatitis-C
virus (HCV) sequences sampled in Egypt in 1993, previously
analysed in [40] and [41]. To avoid committing to a specific
site model, we used model averaging with bModelTest [42],

a strict clock, and Yule skyline [43] tree prior providing a
flexible multi epoch pure birth model.

Furthermore, we analysed 36 mammalian species [44] again
with bModelTest site model, an optimised relaxed clock [45],
and a Yule tree prior together with a number of node calibra-
tions used in [44].

Lastly, we examined an alignment of 257 full COVID-19
genome sequences, a subset from [46], using four partitions
as in the original study with a HKY model each, estimated
frequencies and relative substitution rate for each partition.
Further, we used a strict clock and the BICEPS [42] tree
prior, which provides a flexible multi epoch coalescent model.
Unlike the previous datasets, this analysis incorporated dated
tips.

Each analysis was run ten times with stopping criterion
the same as in paragraph IV-AOb, and a log frequency of 10
thousand samples. For each data set, we verified convergence
to the same parameter distribution across all chains through
visual inspection using Tracer.

In the case of the HCV data, the shortest run took 4.65
millions steps and the longest extended just beyond 19.49
million steps, resulting in a ratio of 4.19 between the longest
and shortest run. Similarly, the primate data exhibited a
shortest chain length of 2.03 million steps and a longest of
11.81 million, yielding a ratio of 5.82. Chains on the COVID-
19 data spanned from 45.6 to 148 million steps, returning a
slightly smaller ratio of 3.25.

The notable disparity in convergence rates between fast and
slow chains in real data may suggest an approach of starting
multiple chains and selecting the fastest to reach convergence
in order to accelerate analyses. However, it remains uncertain
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whether slow converging instances inefficiently sample the
state space or merely become trapped in unexplored modes
avoided by faster converging chains. Further investigation is
required to establish whether this strategy will be suitable.

TABLE VII: Average, shortest, and longest MCMC chain
lengths over 10 runs before automatically stopping. Lengths
of all 10 runs can be found in the Supplement Table S7

| ||| HCV | Primates | COVID-19 |
average 1474500 4340000 77364000
shortest 4650000 2030000 45630000
longest 19490000 11810000 148170000
ratio 4.19 5.82 3.25

V. DISCUSSION

This paper presents a diagnostic tool for the automated
assessment of convergence in phylogenetic MCMC analy-
ses, utilising the RNNI treespace and its associated metric.
Through an extensive evaluation on well-calibrated simulation
studies, we demonstrate the efficacy of our diagnostic. We split
the evaluation of our method into two separate parts. First, we
demonstrate that our diagnostic tool is capable of producing
reliable estimates of the posterior when applied only to sam-
ples of trees, without using any continuous parameters. Then,
we extend this tool to incorporate continuous parameter traces.
This comprehensive approach enables automatic convergence
assessment of all parameters of interest in typical phylogenetic
applications. We demonstrate this by applying our method to
multiple real data sets.

This approach is a further advance in the area of devel-
oping statistical methods over geometrically complex spaces,
such as the treespace, which has direct practical implications
for phylogenetic MCMC analyses. By eliminating manual
visualisation-based steps in setting up MCMC chains, our tool
makes these analyses more accessible, reduces variability in
the setup process, and contributes improving reproducibility
of results obtained using phylogenetic MCMC analysis. In
addition, automatic convergence diagnostic is a major stepping
stone to enable online phylogenetic inference algorithms [47].
Yet to be explored applications of our tool include comparing
tree samples inferred using different evolutionary models and
advancing the “convergence” assessment and setup process
when using nested sampling approaches [48].

While evaluating and developing this diagnostic we made a
few peculiar observations that we believe are worth reporting.
First, as we demonstrate on our well-calibrated simulation
study, a sample of 1000 trees may not consistently guaran-
tee convergence, particularly when tolerance is low. Second,
as we analysed DS1-DS11 we found that the convergence
assessment was coherent with previous findings on these data
sets (specifically multimodality issues implying hard to sample
posteriors). However we did not find cases of independent
chains being stuck in different modes. Moreover, we have
reason to believe that the unconverged runs can be attributed
to chains being set up with inadequate lengths and sampling
intervals. As demonstrated by runs using the ASM package

on these DS1-DS11 datasets we do determine convergence
for all runs eventually. Therefore, we conjecture that in these
experiments a prolonging of the chain’s runtime would lead
to convergence being diagnosed by our diagnostic.

Another aspect important in practice is the use of ESS
estimates, specifically in cases when the log frequency is high
and every sample is independent of the previous one. Note
that when using phylogenetic MCMC, it is common practice
to have high thinning values, i.e. it is common to log “only”
1000 samples from a chain that ran for 10 million iterations.
However, in situations where the effective sample size and
actual sample size will be very close to each other the ESS
estimates are unstable. We observed cases where the ESS
would double by adding a single sample, hence ESS based
criteria work better when the number of independent samples
is smaller than the number of MCMC samples. Hence, we
infer that enhancing the robustness of the ESS estimators is
necessary, although this is beyond the scope of this paper.

We finish this paper by outlining possible future directions
as we see them and highlighting open problems that are
yet to be addressed in the context of phylogenetic MCMC
analyses and convergence assessment. Like we mentioned
before, the sample of trees is the most important output
of a phylogenetic MCMC analysis and should therefore be
considered as such, especially when assessing convergence.
However, it is an unsolved problem whether convergence in the
treespace also implies convergence in other low dimensional
parameter spaces. Our results in the well-calibrated simulation
setting hint to this conjecture being true, but it would require
major effort to show that this is indeed the case for any
real scenario. Therefore, in practice it is still important to
use more than one check for convergence which is why our
implementation incorporates the use of continuous parameter
traces in addition to the treespace based approach.

Another direction of ongoing research into probability dis-
tributions over treespaces is related to tree islands or terraces
[22]-[24], [27]. This can also be thought of as multi-modal
distributions, where high posterior probability regions in the
treespace are separated by valleys of low posterior probability.
It has previously been shown in [24], [26] that some of
the data sets DS1-DS11 suffer from this phenomenon of
multi modality, which can lead to false conclusions about an
analysis. Our diagnostic is able to detect such problems in
these case where independent chains are stuck in different
parts of the treespace (see Supplement Subsection S3-A for
more detail).

A problem that is related to multi-modality is pseudo-
convergence, which is the phenomenon where an MCMC
chain is apparently sampling from the stationary distribution
but in reality it is stuck somewhere that is not in fact the
stationary distribution. This can be the case when it takes
much longer than the length of the chain to transition between
this pseudo stationary part and the true stationary distribution.
For example, when this may happen when the stationary
distribution is multi-modal. However, multi-modality does
not imply pseudo-convergence as sometimes the chain is
able to transition between modes, or cross the valleys, and
sample from the true stationary multimodal distribution. In
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fact, in phylogenetics multi-modality is a poorly explored
phenomenon, due to geometric complexity of the treespace,
with even the notion of a mode being somewhat esoteric.
Altogether, the phenomena of multi-modality and pseudo-
convergence form a compounded challenge.

These problems can potentially cause our diagnostic tools
to converge to inaccurate conclusions. For example, if all
independent chains pseudo-converged to the same mode, it
is fundamentally impossible for a distance based method to
diagnose pseudo-convergence. This and the problem of identi-
fying multi-modal tree distributions remain open problems that
need to be carefully addressed to deepen our understanding of
distributions over the treespace. In this context, the approach
developed in this paper provides additional insight into this
largely unexplored area of phylogenetic MCMC.

DATA AND SOFTWARE AVAILABILITY

Data used in the experiments can be accessed through
https://github.com/rbouckaert/asm/releases/tag/v0.0.1. ASM is
a BEAST 2 package that provides a user friendly GUI to the
methods introduced here. It is open source and available at
https://github.com/rbouckaert/asm. The Python package tetres
provides an interface to the RNNI based methods introduced
here. It is open source and available at https://github.com/
bioDS/tetres.
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S1. ACCESSIBLE DATA VISUALISATION

An accessible version of tree mixing plot Figure 3.
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Fig. S1: Accessible version of Figure 3. Labels in each
rectangle display the value of the fraction.

Config

S2. PSEUDO CODE OF PRESENTED ALGORITHMS

We begin by introducing all the preliminary algorithms and
conclude with a comprehensive pseudo code of our diagnostic,
offering more algorithmic depth than the version presented in
the main paper.

A. An effective sample size measure for a set of trees

In this manuscript we use the following definition of pseudo
ESS [6], [10], which is the computation of an ESS measure
for a sample of trees given a tree metric. We first reduce the
set of trees to a pairwise tree distance matrix, with D; ; =
drnni(ti,t;) being the distance between the trees ¢; and t;
and D; denoting the i-th row of this matrix. In our experience,
considering a single focal tree leads to pseudo ESS estimates
that are rather temperamental, sometimes getting stuck at low
values depending on the choice of focal tree. Therefore, we
consider all trees in the set as focal tree. The pseudo ESS is
then defined as the median over the ESS estimate of every
TOW.

pESS(7") = median({ESS(D;|Vt; € T)}) ()

We can use this as a criterium for convergence by making
sure pESS(T) is at least as high as the target ESS. Algo-
rithm S1 provides more details.

Algorithm S1 Pseudo tree ESS calculation,

procedure PSEUDO-ESS(7)
> This function needs access to the distance matrices
ESS-list < 0
for all t € T do
distances < {drnny(t,s),Vs € T}
> ESS is a continuous parameter ESS estimator
ESS-list.add(Ess(distances))
if median(ESS-list) > target ESS then
return True
else
return False

> No convergence diagnosed

B. Checking ESS of parameter traces

A common convergence check is to make sure ESSs for
traces of interest, in particular posterior, prior and likelihood,
exceed a certain threshold value. Algorithm S2 shows how this
can be automated as a convergence criterion.

Algorithm S2 Trace ESS calculation

procedure TRACE-ESS(traces)
> This function needs access to the traces
for all ¢ € traces do
seq < remove burn-in from trace 1 & 2 and
concatenate
> ESS is a continuous parameter ESS estimator
ESS-list.add(ESS(seq))

if minimum(ESS-list) > target ESS then
return True
else
return False

> No convergence diagnosed

C. Tree PSRF calculation

The following Algorithm S3 presents the calculation of the
PSRF value for trees. Its input consists of two sets of trees
71,72 and an index t that is the index of a sample in 77. It
returns the PSRF value for the tree in 77 at the given index ¢.

Algorithm S3 PSRF calculation for a tree

procedure PSRF(7, 72, 1)
> This function needs access to the distance matrices
> assume k is the length of both treesets, t is index of
tree

return PSRF,

D. GRr diagnostic

This allows us to formulate a stopping criterion presented
in Algorithm S4 based on the comprehensive GRr diagnostic
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that we developed. While, for simplicity, we previously ex-
cluded the possibility of traces having varying lengths, it is
noteworthy that in practice, traces can indeed have different
lengths, and burn-in periods between chains can vary signif-
icantly. This practical consideration adds to the algorithms’
complexity, leading us to omit it from the pseudo code to
enhance readability.

Algorithm S4 Automated convergence assessment

procedure GR-DIAGNOSTIC(ESS threshold, tolerance)

> Assuming N is the length of the individual chains
pstf; < mean {PSRF(treesy, treess, x)Ve € {trees;}}
pstfy <— mean {PSRF(treesq, treesy, z)Ve € {treesa}}
if both psrf; 5, within tolerance around 1.0 then

return True > Convergence diagnosed
else

tree burn-in <— N
return False

> No convergence diagnosed

E. Burn-in detection

The following Algorithm S5 estimates the burn-in for a trace
of continuous parameters. Its input is a trace x1, 22, ..., 2, of
length n and it returns the number of samples that should be
discarded as burn-in from the beginning of this trace.

Algorithm S5 Burn-in detection

procedure DETECT-BURN(z1, X2, . . .
M + 10
4= mean(x|o.754n)s - - - » Tn)
V< Std($L0.75*nJ s ey J,‘n)
accept « [pu — v, u + v]
for i € [I'M, ceey $L0_75*n” do
if mean({x;_p, ..., x;}) € accept then
return ¢
return |[0.75 % n |

s Tn)
> Moving average

F. Updating matrices

This is an auxiliary algorithm for the GR7 diagnostic, and is
the main additional computational cost at every sampling step
of the MCMC. Adding a tree to a distance matrix implies that
the distance calculation with complexity n?, where n is the
number of taxa, has to be executed N times, with N being
the number of samples of the MCMC that have been stored so
far (excluding this newest sample). In addition to adding the
trees from each chain to its respective distance matrix we also
need to keep track of the in-between distances, which adds
additional N distance calculations for either tree. Therefore,
the added complexity of our diagnostic at every iteration is
O((4N + 1) xn?).

In practice it is feasible to impose an upper limit on the
size of the stored distance matrices. Upon reaching this user-
defined limit, every second row and column is removed from
the matrix, and not further considered in pseudo-ESS and
PSRF calculations (Algorithms S1 and S3). Moreover, future

updates exclusively apply to even-numbered trees, with odd
numbered trees disregarded. Upon reaching this size limitation
k times, only trees numbered ¢ are considered, where ¢ is
divisible by 2.

Algorithm S6 Updating distance matrices

procedure UPDATE.MATRICES(t!,t2, D', D% D1?)
D! add t' column
D? add t? column
D2 add ¢! row and ¢? column
if sizes of D', D?, D12 reach limitation then
delete every second row and column from
Dl, D2, D1,2

G. Automatically stopping MCMC

The complete automatically stopping MCMC runs two
independent MCMC chains, as well as a complete diagnostic
tool (Methods section) executed in parallel with the MCMC
analyses. The algorithm, detailed in Algorithm S7, is invoked
for each iteration of the sampling process to determine the
convergence status of the chains. This assessment considers the
number of samples, ESS estimates for continuous parameters
and trees, and the PSRF values.

Algorithm S7 Have the chains converged?

procedure CONVERGED(ESS threshold, tolerance)
D', D? D'? 1> Distance matrices for chains, including
in-between distances
traces = [posterior, likelihood, prior]
parameters
tree burn-in < 0
while (t!,¢?) arrive from sampling do
UPDATE.MATRICES(t', t2, D', D?, D1+2)
for i € {1,2} do
burn; <— MaXygces { DETECT-BURN (chain, (trace))}
Discard trace and tree burn-in temporarily for the
next calculations
> This affects distances matrices and continuous

> Important

traces
if GR-DIAGNOSTIC(ESS threshold, tolerance) ==
True
and PSEUDO-ESS(ESS threshold, tolerance) ==
True

and TRACE-ESS(ESS threshold, tolerance) ==
True then
Stop sampling
return Concatenated samples without burn-
in and tree burn-in

S3. GR VALUE RELATED DECISIONS

In this section we provide insight into why we choose the
tolerance of the GR value to be 0.05 or lower. In addition we
showcase why the “smoothing” or rather the use of an average
function for the GR value is essential.
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A. Choice of tolerance

The tolerance of 0.05 is chosen based on the following
result, which despite only showing one specific experiment
was done for multiple different analyses and datasets. The
following plots display the GR value for a fully run analysis,
i.e. two independent chains sampled the tree sets 73 =
{t1,...,ty} and T3 = {¢3,...,t%} then the values plotted
on the y axis are

N
GR(L: T, To) = %ZPSRF(Q;’E,E)

s=0

and

N
GRES T To) = 1 3 PSRE(1: 2. )
for each sample 7 (x axis).

Such an analysis is visualised in Figure S3 were it is visible
that the GR values for almost all samples fall into the interval
(0.98,1.02). The density, displayed in the right plot is very
high and showcases how narrow this interval is. In Figure S3,
on the other hand, we visualised the same values but using 2
samples of trees from different simulations. It can be observed
that these GR values are much higher, have very big variances,
and the two samples of trees have very distinct values. This
gives us confidence that, due to its sensitivity, our diagnostic
is accurately diagnosing convergence problems in treespace.
These convergence problems include slowly mixing chains,
chains that are stuck or sampling different regions of treespace,
or simply chains that are not sampling similar enough trees.

B. Why smoothing is necessary?

Here we present why smoothing of the PSRF values, which
results in the GR value, is necessary for our diagnostic. The
smoothing takes place whenever the GR value is calculated
and we compared using the mean

1 7
GR(t}; i, T2) = 5 3 PSRE(t;; 71, T3)

s=1

or median
GR(t}; T1,T2) = median ({PSRF(t4; 71, T2)Vs € {1,...,i}})

In Figure S4 we display the PSRF values without smooth-
ing, i.e. at every iteration ¢ (x axis) the value PSRF(¢;; 71, T2)
is plotted (y axis). It can be seen that these values have a
very high variance and absolute value when compared to the
previously presented GR values in Figure S2.
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sample in the chain and the plot on the right visualises the density of these values for each chain. Notably, the density of these
values is very high and the variance around the value 1 is very low.

T
— TS1 —— TS2

254l b |1l | | \
>
~
//_’—_’—’—_/—,_J>
5
0
Q QQQ QQQ QQQ Ny QQQ QQQ QQQ QQQ S QQQ 0.0 0.1 0.2 ) 0.3 0.4
N N N N O N N N 9 Density
Q Q Q Q Q Q O Q Q Q
Q Q' QO QO Q QO Q ) Q N
y v ) ™ ) © A £ B Y
Sample

Fig. S3: GR value for two independent chains on different datasets. The left displays the GR values for both chains and the
right visualises the density for both chains. Unlike the previous plot there is a very wide gap between the two chains and the
absolute value is comparably very high, the variance is also very high.
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Fig. S4: Displaying only the PSRF value at each iteration on the x axis. These have very high absolute values and a large
variance (y axis).
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S4. VALIDATION

We compare the use of the median smoothing instead of the
mean. Moreover, we provide more results in situations with
different GR tolerances and present coverage tables for these
different setups of our diagnostic.

A. Comparing mean and median convergence

In Table S1 we highlight the difference when using the
median instead of mean to smooth out the PSRF values. There
are no significantly big differences among the two averages,
the median could be seen as a slightly more conservative

B. Median smoothing coverage for well-calibrated simulation
study

The following tables display the coverage analyses when
using the median smoothing option for the GR value. Because
of no notable difference to the version using the mean,
the coverage tables are also very similar. Note, that not all
of the 100 runs are considered converged under different
settings, therefore each column has individual number of total
simulations and corresponding confidence intervals.

TABLE S4: median-0.05

ESS threshold, total runs, confidence interval
measurement. 300 300 Full
Paramter
| Tolerance | ESS threshold | Converged | Not converged | 100, ©1-99) | 100, ©1-99) | 100, O1-99)
5 ] Tree.height 92/94 95/96 96/96
0.05 00 00 0 Tree.treeLength 94792 96/95 97194
500 100 0 clockRate 91/92 90/92 91/93
200 98 2 gammaShape 87/90 92/93 92/92
0.02 .
500 92 8 popSize 90/94 97/95 96/97
001 200 80 20 CoalescentConstant 91/91 93/91 92/92
: 500 33 47 kappa 92/94 93/93 94/94
freqParameter.1 94/91 92/92 92/92
TABLE S1: Our convergence diagnostic as implemented in freqParameter.2 93/92 94/94 94/95
tetres executed on 100 well-calibrated simulation studies with freqParameter.3 86/87 89/88 87/90
1000 trees each. Highlighted in red is the only difference (2 freqParameter.4 95/95 94/94 95/95
instead of 1) between using the median and mean to average
the PSRF values for the calculation of the GR value. TABLE S5: median-0.02
a) Coverage analyses: The following tables include cov- Esszggesmld’ tOtaslor(;' . Conﬁdencl:ullrllterval
erage analysis when using different tolerances. Note, that not Paramter 98, (89-97) | 92, (84-91) 100, (91-99)
all of the 100 runs are considered converged under different Tree height 91/90 33/38 96/96
settings, therefore each column has individual number of total Tree.treeLength 91/92 88/86 97/94
simulations and corresponding confidence intervals. clockRate 89/89 83/84 91/93
gammaShape 86/89 85/82 92/92
TABLE S2: mean-0.02 popSize 92/93 89/89 96/97
CoalescentConstant 90/88 85/84 92/92
| ESS threshold, total runs, confidence interval kappa 89/92 85/86 04/94
Paramter | 200, 99, (90-98) | 500, 92, (84-91) [ Full, 100, (91-99) freqParameter.1 90/90 35/35 93/92
geeﬁeigﬁt - 2§§2§ gggg gggi freqParameter.2 89/90 85/87 94/95
ree.treel.eng
TockRale 3091 3335 51793 freqParameter.3 85/83 81/77 87/90
gammaShape 88/89 85/84 92/92 freanrameter.4 93/92 85/84 95/95
popSize 93/91 89/89 96/97
CoalescentConstant 91/89 85/84 92/92
Kappa 90/95 85/86 94/94 . fon
freqParameter. 1 91/91 85/85 92/92 TABLE S6: median-0.01
freqParameter.2 89/91 85/87 94/95 .
freqParameter 3 2585 31776 57790 ESS2ggeshold, totasl Or(l)ms, conﬁdenc; ullrllterval
freqParameter.4 95/93 84/84 95/95 Paramter 80, (712-79) 53, (48-53) 100, (91-99)
Tree.height 75/76 51/50 96/96
TABLE S3: mean-0.01 Tree.treeLength 75175 49/50 97/94
clockRate 73/73 49/49 91/93
\ ESS threshold, total runs, confidence interval gammaShape 73/72 49/49 92/92
Paramter ‘ 200, 80, (72»79) ‘ 500, 53, (48—53) ‘ Full, 100, (91—99) popSize 77/77 51/50 96/97
Trecheight _ 73776 S50 2658 CoalescentConstant 272 48748 92/92
ree.tree engt
clockRate 73772 49749 91/93 kappa 1374 49/49 04/94
gammaShape 71 29749 9793 freqParameter. 1 73/75 49/49 92/92
popSize 76/75 51/50 06/97 freqParameter.2 73/75 48/49 94/95
CoalescentConstant 73173 48/48 92/92 freqParameter.3 69/70 45/45 87/90
kappa 73175 49/49 94/94 freqParameter.4 72/73 48/50 95/95
freqParameter.1 72/74 49/49 92/92
freqParameter.2 73/76 48/49 94/95
freqParameter.3 69/70 45/45 87/90
freqParameter.4 73/74 48/49 95/95
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S5. BEAST ASM PACKAGE ON DS1-DS11 AND OTHER
DATA SETS
The following Table S7 displays the individual run lengths
of 10 independent chains on HCV, primate and COVID-19
alignments using the ASM package, each chain has a sample
frequency of 10, 000.

TABLE S7: MCMC chain lengths (divided by 10%) over 10
runs before automatically stopping j

[ [[ HCV [ Primates [ COVID-19 |

shortest 465 203 4563
643 237 5213
1242 280 5341
1456 291 5394
1475 337 6374
1794 345 7374
1850 403 7983
1931 460 9921
1941 603 10384
longest 1949 1181 14817

The following tables display the individual run lengths of
10 independent chains on DS1-DS11 using the ASM package,
each chain has a sample frequency of 10, 000.
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TABLE S8: MCMC chain lengths (divided by 10%) over 10 replicates before automatically stopping

DST | DS2 | DS3 | DS4 | DS5 | DS6 | DS7 | DS8 | DS9 | DSIO | DSIT |

shortest 199 199 232 200 200 200 234 199 199 221 200
200 199 247 202 202 236 297 199 230 224 215
200 199 286 230 213 254 351 211 231 225 219
200 200 294 231 213 261 375 227 232 244 226
208 212 346 271 226 287 377 227 239 248 239
229 236 355 310 228 297 399 236 244 249 263
243 256 408 410 262 333 424 277 248 252 269
302 262 412 478 262 339 432 321 309 275 278
307 287 419 920 307 344 441 351 330 279 313
longest 373 328 436 983 341 351 467 353 435 334 357
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