

1 **NUCLEOPORIN1 mediates proteasome-based degradation of ABI5 to regulate *Arabidopsis***
2 **seed germination**

3 Raj K Thapa^{1,2}, Gang Tian^{1,2,3}, Qing Shi Mimmie Lu¹, Yaoguang Yu⁴, Jie Shu^{1,5} Chen Chen^{1,5},
4 Jingpu Song^{1,2}, Xin Xie^{1,2}, Binghui Shan^{1,2}, Vi Nguyen¹, Chenlong Li^{1,4}, Shaomin Bian^{1,6}, Jun
5 Liu⁷, Susanne E Kohalmi², and Yuhai Cui^{1,2,*}

6 ¹Agriculture and Agri-Food Canada, London Research and Development Centre, London,
7 Ontario, Canada

8 ²Department of Biology, University of Western Ontario, London, Ontario, Canada

9 ³Performance Plants, Kingston, Ontario, Canada

10 ⁴State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources,
11 School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China

12 ⁵South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China

13 ⁶College of Plant Science, Jilin University, Changchun, Jilin, China

14 ⁷Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China

15 Short title: NUP1 modulates proteasome-based ABI5 degradation.

16 One sentence summary: NUP1 facilitates proteasome-based degradation of ABI5 in the vicinity
17 of nuclear basket region of Nuclear Pore Complex to regulate *Arabidopsis* seed germination.

18 *Corresponding Author: Yuhai Cui (yuhai.cui@canada.ca)

19

20

21

22

23

24 **Abstract**

25 NUCLEOPORIN1 (NUP1), a member of the Nuclear Pore Complex (NPC), is located on the
26 inner side of the nuclear membrane. It is highly expressed in seeds; however, its role in seeds
27 including germination has not been explored yet. Here, we identified an abscisic acid (ABA)
28 hypersensitive phenotype of *nup1* during germination. ABA treatment drastically changes the
29 expression pattern of thousands of genes in *nup1*, including the major transcription factors (TFs)
30 involved in germination, *ABI3*, *ABI4*, and *ABI5*. Double mutant analysis of *NUP1* and these
31 ABA-related genes showed that mutations in *ABI5* can rescue the phenotype of *nup1*, suggesting
32 that *NUP1* acts upstream of *ABI5* to regulate seed germination. *ABI5*, a key negative regulator of
33 germination, is abundant in dry seeds and rapidly degrades during germination. However, its
34 spatiotemporal regulation and interaction with other molecular players during degradation
35 remained to be fully elucidated. We found that NUP1 is physically associated with *ABI5* and the
36 26S proteasome. Mutation in *NUP1* delayed *ABI5* degradation through its post-translational
37 retention in nucleolus under abiotic stress. Taken together, our findings suggest that NUP1
38 anchors the proteasome to NPC and modulates seed germination through proteasome-mediated
39 degradation of *ABI5* in the vicinity of NPC in the nucleoplasm.

40

41

42

43

44

45

46

47

48

49 **Introduction**

50 Seed germination is a critical phase of the plant life cycle initiated by breaking dormancy under
51 favorable conditions. In *Arabidopsis thaliana* (*Arabidopsis*), dry seeds uptake water followed by
52 testa rupture, endosperm rupture, and radicle emergence (Müller et al., 2006; Piskurewicz et al.,
53 2008). Post-germination growth is characterized by cotyledon greening and further root
54 development. All these events are tightly regulated by several internal and external factors such
55 as hormones, light, temperature, and moisture (Finkelstein et al., 2008; Nonogaki., 2017).
56 Optimal germination efficiency under all environmental conditions is a highly desirable trait in
57 agriculture. Therefore, it is important to understand the molecular mechanisms governing seed
58 germination.

59 Among the factors influencing seed germination, a complex interplay between the
60 phytohormones ABA and gibberellin (GA) has a major impact on the germination process (Liu
61 and Hou, 2018; D. Yang et al., 2022; Zhao et al., 2022). The level of ABA is very high in dry
62 seeds but continuously decreases after imbibition, which is opposite to that of GA. A high level
63 of ABA maintains dormancy while a low level ensures germination (Vishal and Kumar, 2018).
64 In the absence of ABA, PROTEIN PHOSPHATASES TYPE 2C (PP2Cs) inactivate the kinase
65 SNF1-RELATED PROTEIN KINASES (SnRK2s), and downstream genes cannot be activated.
66 When ABA is present, it is detected by the receptor PYRABACTIN RESISTANCE (PYR)/
67 PYR-LIKE (PYL)/ REGULATORY COMPONENTS OF ABA RECEPTORS (RCAR), then
68 SnRK2s activate several TFs such as ABA Insensitive (ABIs), ABI3, ABI4, and ABI5, for ABA
69 signaling (Park et al., 2009; Cutler et al., 2010; Hauser et al., 2011). ABI5, a member of the basic
70 leucine zipper domain (bZIP) family, is a major TF regulating seed germination (Finkelstein and
71 Lynch, 2000; Kong et al., 2013).

72 ABI5 is a well-known positive regulator in ABA signaling and plays an important role in seed
73 maturation, germination, and post-germination development (Lopez-Molina et al., 2001). For
74 instance, ABI5 binds to the promoter of genes encoding EMs (Late Embryogenesis Abundant
75 proteins) and affects their expression during the desiccation phase of seed maturation (Carles et
76 al., 2002). ABI5 is a negative regulator of germination; it delays germination when present in
77 excess amount (Skubacz et al., 2016). ABI5 also regulates the expression of
78 *POLYGALACTURONASE INHIBITING PROTEINS (PGIPs)* which inhibit the seed coat rupture

79 during germination (Kanai et al., 2010). ABI5 is highly expressed under various abiotic stresses
80 such as osmotic, salt, and drought stresses (Lopez-Molina et al., 2002; Skubacz et al., 2016).
81 Although ABI5 has been extensively studied in recent years (Jiang et al., 2022; Wang et al.,
82 2021; C. Yang et al., 2023), regulation of its temporal and spatial dynamics during the
83 degradation process is poorly understood.

84 The NPC is one of the largest multi-protein complexes in the cell with a molecular weight of
85 60-125 MDa (Hampelz et al., 2019). It has an eightfold symmetrical structure with more than a
86 thousand protein sub-units. It is the only known gateway for the transport of mRNAs and
87 proteins between the nucleus and cytoplasm (Hampelz et al., 2019; Lin and Hoelz, 2019).
88 *Arabidopsis* NPC contains multiple copies of 30 different types of nucleoporins (Tamura et al.,
89 2010). They are involved in a wide range of molecular and cellular processes, such as *NUP85*
90 and *NUP96* in immune signaling (Gu et al., 2016), and *NUP62* and *SEH1* in auxin response
91 (Boeglin et al., 2016). *Arabidopsis NUP1*, a member of NPC and a putative orthologue of yeast
92 NUP1 was first identified as an interacting protein of the Transcription and Export-2 (TREX-2)
93 complex (Lu et al., 2010). It was later identified as a component of the NPC complex through an
94 interactive mass proteomics approach (Tamura et al., 2010). NUP1 was initially proposed to be a
95 homolog of the animal nucleoporin NUP153; however, there are some differences at the protein
96 domain level (Tamura et al., 2010). In contrast to the NUP153 in vertebrates, *Arabidopsis* NUP1
97 does not have a DNA-binding domain. NUP153 in mouse embryonic cells regulates stem cell
98 pluripotency through the silencing of developmental genes (Jacinto et al., 2015). *Drosophila*
99 NUP153 regulates gene expression by binding to transcriptionally active regions of the genome
100 (Vaquerizas et al., 2010). However, there is no strong evidence of NUP1 directly regulating gene
101 expression in *Arabidopsis*. We have previously reported the role of NUP1 in mRNA export (Lu
102 et al., 2010) and cell division and expansion (Thapa et al., 2022). Others have reported that
103 *NUP1* is required for maintaining nuclear shape and size (Tamura et al., 2011).

104 Here, we report that T-DNA insertion lines *nup1-1* and *nup1-3* (Supplemental Fig. S1), are
105 sensitive to abiotic stresses during germination. Transcriptomic analysis of *nup1* germinating
106 seeds/young seedlings and genetic analysis showed that *NUP1* is involved in ABA signaling and
107 acts upstream of *ABI5* to regulate seed germination. Further, molecular and cell biology analyses
108 showed that *ABI5* is degraded by the 26S proteasome near the vicinity of NPC in the nucleus.

109 Such degradation is delayed in *nup1* plants, leading to the accumulation of ABI5 in the nucleolus
110 and, consequently, delayed seed germination.

111

112 **Results**

113 ***NUP1* is required for germination and post-germination establishment**

114 According to public microarray data, *NUP1* is highly expressed in seeds (Supplemental Fig.
115 S2A), and its expression decreases during germination (Supplemental Fig. S2B). This led us to
116 investigate the potential role of *NUP1* in germination. First, the germination efficiency (radicle
117 and cotyledon emergence) of *nup1-1* and *nup1-3* seeds was tested on ½ MS medium agar plates
118 in comparison to the Col-0 wild type. There was no difference in radicle and cotyledon
119 emergence between Col-0 and *nup1-1* or *nup1-3* (Fig. 1A-B). However, upon the addition of 1
120 µM ABA, the cotyledon emergence of *nup1-1* and *nup1-3* was delayed by 2-3 days (Fig. 1A, B,
121 D,), but radicle emergence was similar (Fig. 1C). Hereafter, cotyledon emergence was used as a
122 germination indicator in this study. To assess if the mutation in *NUP1* is the real cause behind
123 the ABA-sensitive germination phenotype, we used a previously characterized transgenic line in
124 which the strong *nup1-2* allele was complemented by a *NUP1-YFP* fusion driven by its native
125 promoter (*nup1-2 pNUP1::NUP1-YFP*) (Lu et al., 2010). The delayed germination phenotype of
126 *nup1* was rescued and it's growth was similar to Col-0 (Fig. 1A-B). This evidence suggests that
127 the ABA sensitive phenotype was indeed due to the mutation in *NUP1*. A *NUP1* overexpression
128 line (*nup1-2 35S::NUP1-YFP*; characterized in Supplemental Fig. S3) was also tested; however,
129 it showed a similar delayed germination phenotype to *nup1-1* and *nup1-3* (Fig. 1A-B). The *nup1-*
130 *1* seed has stronger germination phenotype compared to *nup1-3*, thus we used *nup1-1* for all
131 other downstream experiments. Germination of *nup1-1* seeds was further tested under low
132 exogenous osmotic (sorbitol: 100 and 200 mM) or salt (NaCl: 50 and 100 mM) stresses
133 (Supplemental Fig. S4A-B). While both sorbitol (200 mM) and NaCl (50 and 100 mM) caused a
134 significant reduction in the germination of *nup1-1* seeds, salt stress seemed to have a more
135 detrimental effect (arrested growth) (Supplemental Fig. S4A-D). These data indicate that *NUP1*
136 is required for germination under various abiotic stresses.

137 In addition, we measured the stomatal opening in *nup1-1* to understand the effect of *NUP1*
138 mutation on stomatal conductance, a key mechanism mediating plants' response to various

139 abiotic stresses (Fig. 1E). The stomatal opening of Col-0 and *nup1-1* plants was similar without
140 ABA treatment. In the Col-0 wild-type plants, there was no difference in the stomatal opening
141 with or without ABA treatment; however, in *nup1-1* the stomata were significantly less open
142 after ABA treatment. This result indicates that *nup1-1* seedlings have sensitive stomatal closing.
143 Next, to measure the drought-tolerant capacity, the plants were grown on ½ MS medium plates
144 for 7 days and exposed to airflow in a laminar hood for 6 hrs. Then plants were returned to
145 standard growth conditions for a week, and the percentage of surviving plants was then
146 calculated (Fig. 1F). The mutant plants did not show a drought-tolerant phenotype. Although
147 *nup1-1* seedlings are hypersensitive to stomatal closing, it is not sufficient to make them
148 drought-tolerant. Overall, these data suggest *NUP1* is required for germination and post-
149 germination establishment.

150 **Differential expression of ABA-related genes in *nup1-1* seeds and seedlings**

151 To investigate the role of *NUP1* in the ABA signaling pathway, the expression level of
152 ABA-related genes in Col-0 wild type and *nup1-1* seeds and seedlings was measured by
153 qRT-PCR. Eight genes from different categories of the ABA core-signaling were selected for the
154 analysis. Seven of them (*ABI3*, *ABI5*, *NCED3*, *NCED5*, *SnRk2.1*, *SnRk2.3*, and *SnRk2.6*) were
155 significantly downregulated in *nup1-1* dry seeds compared to Col-0, while *ABI4* expression
156 remained unchanged (Fig. 2A). Similarly, the expression of four genes (*ABI3*, *NCED3*, *NCED5*,
157 and *SnRk2.3*) was significantly decreased in 5-day-old *nup1-1* seedlings (Fig. 2B). There was no
158 difference in expression of the other three genes (*ABI5*, *SnRk2.1*, and *SnRk2.6*) in Col-0 and
159 *nup1-1* 5-day-old seedlings. *ABI4* expression level increased in *nup1-1* 5-day seedlings
160 compared to Col-0. The differences in several ABA-related gene expressions (Col-0 vs *nup1-1*)
161 were higher in seeds compared to seedlings. These results indicate the involvement of *NUP1* in
162 the ABA signaling pathway in both seeds and seedlings.

163

164 **Transcriptomic analysis of *nup1-1* seedlings reveals changes in the expression of hundreds
165 of genes**

166 Although 5-day-old Col-0 and *nup1-1* seedlings look similar, ABA treatment makes it different
167 (Fig. 1A). At 5 days after sowing seeds on ½ MS medium with ABA, most of the Col-0 seeds
168 were already germinated, and most of the *nup1-1* seeds were arrested at the radicle emergence
169 stage (Fig. 1A). Hence, an RNA-Seq analysis at this stage was expected to capture the difference

170 in the transcriptome, which might explain the ABA-sensitive phenotype of the mutant.
171 Therefore, to understand the changes in the global gene expression pattern in *nup1-1* with and
172 without ABA treatment, an RNA-Seq experiment was conducted for four groups of seedlings: 1).
173 Col-0 wild type; 2). *nup1-1*; 3). Col-0 (ABA) (treated with 1 μ M ABA); and 4). *nup1-1* (ABA)
174 (treated with 1 μ M ABA). Our results show that, in *nup1-1*, 341 genes were transcriptionally up-
175 regulated and 360 genes were down-regulated compared to Col-0 (Fig. 3A; Supplemental Table
176 S1). In the ABA-treated 5-day-old Col-0, 1018 genes were upregulated while 786 were
177 downregulated compared to mock-treated Col-0 (Fig. 3B; Supplemental Table S2). However, in
178 *nup1-1* (ABA) compared to *nup1-1*, about 4,500 genes in total were differentially expressed
179 (1,692 upregulated and 2,794 downregulated) (Fig. 3C; Supplemental Table S3). There were 599
180 upregulated and 2,182 downregulated genes in *nup1-1* (ABA) compared to Col-0 (ABA) (Fig.
181 3D; Supplemental Table S4). Overall, only 701 differentially expressed genes (DEGs) were
182 found between Col-0 and *nup1-1* without ABA treatment. However, the number of DEGs
183 increased after the ABA treatment was much higher for *nup1-1* compared to Col-0. The DEGs
184 were more than two and half times in *nup1-1* (ABA) (4,486 DEGs in Fig. 3C) compared to Col-0
185 (ABA) (1,804 DEGs in Fig. 3B). The numbers of overlapping and unique DEGs in all four
186 conditions were compared pairwise, and each comparison revealed many shared genes (Fig. 3E).
187 To understand the overall gene expression level, Fragments Per Kilobase of transcript per
188 Million mapped reads (FPKM) was calculated. The average gene expression level (FPKM) for
189 Col-0 and *nup1-1* was similar without ABA treatment, but the expression level significantly
190 increased for both after the ABA treatment (Fig. 3F). Altogether, the transcriptomic profile of
191 *nup1-1* differs from Col-0 and this difference widens more after ABA treatment.

192
193 **Gene ontology and differential gene expression analysis uncover key stress-responsive**
194 **transcription factors upregulated in *nup1-1* seedlings**

195 Gene ontology enrichment analysis (GO-term) of upregulated and downregulated genes between
196 all Col-0 and *nup1-1* was conducted, which highlighted various biological functions (Fig. 4A).
197 Genes involved in multiple pathways related to biotic and abiotic stimulus were upregulated in
198 *nup1-1* compared to Col-0, while only a few pathways were downregulated. Many pathways
199 related to seed development and response to various stimuli were upregulated in Col-0 (ABA)
200 compared to Col-0 while only a few genes and pathways were downregulated. Noticeably, such
201 upregulated pathways were not seen in *nup1-1* (ABA)/*nup1-1*. Overall, *nup1-1* (ABA) has only a

202 few pathways upregulated and most of the pathways downregulated when compared to Col-0
203 (ABA). This downregulation of a large number of genes and pathways might help explain the
204 delayed growth of *nup1-1* (ABA) germinating seedlings.

205 To investigate the overall changes in the ABA signaling pathway in mutant seedlings, a
206 comprehensive list of 96 ABA-related genes, divided into nine categories, was compiled from
207 the literature (Supplemental Table S5). One of the important groups is TFs which are normally
208 located and function inside the nucleus, where NUP1 is also located. Therefore, some of them
209 may have a chance of physical interaction with NUP1. Based on the RNA-Seq, expression
210 analysis of 24 TFs shows that most (17/24) of the TFs expression was increased and less than a
211 third (7/24) were decreased in *nup1-1* compared to Col-0 (Fig. 4B). Nevertheless, no single TF
212 expression was particularly highly increased. In Col-0 (ABA) compared with Col-0, the
213 expression of 22 TFs was increased and two were decreased. Of note, the expression levels of
214 three TFs, *ABI3*, *ABI4*, and *ABI5*, were strongly upregulated. In *nup1-1* (ABA) compared with
215 *nup1-1*, expression of 20 TFs was increased and four were decreased. Similar to Col-0 (ABA),
216 the same three TFs were also highly upregulated in this case. Further downstream analysis was,
217 therefore, focused on these three TFs.

218 To further understand how these three TFs affect the expression of their downstream targets, a list
219 of effector genes (15) co-regulated by *ABI3*, *ABI4*, and *ABI5* were compiled from past studies
220 (Fig. 4C; Supplemental Table S5). In *nup1-1* compared to Col-0, ten genes were upregulated and
221 5 were downregulated. In ABA-treated Col-0, compared to Col-0, 14 and 1 genes were
222 upregulated and downregulated, respectively. Notably, five genes were highly upregulated
223 (*EM6*, *Rd29B*, *LEA4.5*, *EM1*, and *LEA4.2*; > 15-fold in FPKM and > 1.5 in -Log₁₀ values).
224 Similarly, the same five genes were highly upregulated in *nup1-1* (ABA) compared to *nup1-1* (>
225 30-fold in FPKM and > 2 in Log₁₀ values).

226 Gene expression analysis of all other ABA-related genes (57) was also analyzed in ABA-treated
227 and mock-treated *nup1-1* and Col-0 (Fig. 4D). There was no drastic change in expression in
228 *nup1-1* compared to Col-0. Compared to non-treated, in ABA-treated Col-0 and *nup1-1*, 5 and 7
229 genes were highly upregulated (> 5-fold FPKM). However, those genes did not fall into any
230 specific functional category or gene family. The changes in expression of all 96 ABA-related
231 genes were analyzed for *nup1-1* (ABA) compared to Col-0 (ABA) (Fig 4E). and it showed that

232 26 genes were upregulated and 70 were downregulated. Taken together, these analyses indicate
233 that three major TFs (*ABI3*, *ABI4*, and *ABI5*) and their co-target genes were highly expressed in
234 *nup1-1* after ABA treatment.

235 **Double mutant analysis indicates that *NUP1* acts upstream of *ABI5* in regulating seed
236 germination**

237 From our RNA-Seq data of germinating seedlings, three TFs, i.e., *ABI3*, *ABI4*, and *ABI5*, are
238 highly upregulated in *nup1-1* compared to Col-0 after ABA treatment (Fig. 4B). We decided to
239 perform a double mutant analysis to delineate the genetic relationship between these genes and
240 *NUP1* in regulating seed germination. To broaden the scope of genetic analysis, two other genes
241 (*ABI1* and *ABI2*) that act upstream of the above-selected genes were also included in the genetic
242 analysis. Four double mutants (*nup1-1 abi1-2*, *nup1-1 abi2-2*, *nup1-1 abi3-7*, and *nup1-1 abi5-8*)
243 were generated by crossing the corresponding single mutant plants and subsequent genotyping
244 for T-DNA insertion. Double homozygous *nup1-1 abi4-2* could not be obtained, therefore not
245 included in this study.

246 Seeds of Col-0, *nup1-1*, the four *abi* single mutants, and the four double mutants were grown on
247 ½ MS medium with or without 1 µM ABA (Fig. 5; Supplemental Fig. S5). Seeds of all
248 genotypes show similar germination and growth on ½ MS (control) (Fig. 5A; Supplemental Fig.
249 S5A, C, E). Also, all the seeds have a similar rate of radical emergence. However, there were
250 clear differences in cotyledon emergence (germination marker in this study) between different
251 genotypes of seeds treated with ABA (Fig. 5B, C; Supplemental Fig. S5B, D, F, G, I, K).

252 Under ABA treatment, *abi1-2* and *abi2-2* seedlings showed delayed germination compared to
253 Col-0 (Supplemental Fig. S5B, D, H, K). However, *abi3-7* and *abi5-8* have a germination rate
254 similar to that of Col-0 even after ABA treatment (Fig. 5B and 5D; Supplemental Fig. S5F, L).
255 Out of the four double mutants, only *nup1-1 abi5-8* could rescue the delayed germination
256 (cotyledon emergence) phenotype of *nup1-1* (Fig. 5B and 5D). All other three double mutants
257 showed ABA sensitive phenotype during germination, which is similar to *nup1-1*. These genetic
258 results suggest that *NUP1* acts upstream of *ABI5* during seed germination in the ABA signaling
259 pathway.

260 To further support the notion of *NUP1* acting upstream of *ABI5*, *NUP1* expression in *abi5-8*
261 seedlings and *ABI5* expression in *nup1-1* were measured (Fig. 5E-F). Under normal conditions,

262 the *ABI5* expression was initially significantly lower in *nup1-1* compared to Col-0; however,
263 after 1 μ M ABA treatment (a stress condition), *ABI5* expression became significantly higher
264 (Fig. 5E). In contrast, the expression level of *NUP1* was relatively constant with or without 1 μ M
265 ABA treatment in *abi5-8* seedlings compared to Col-0 (Fig. 5F). These gene expression data also
266 strengthen the claim of *NUP1* being genetically upstream of *ABI5*. This raised the possibility of
267 *NUP1* binding to the promoter of *ABI5* to regulate its expression. However, a recent study
268 showed that *NUP1* does not bind to the promoter of *ABI5* or any other genes for their regulation
269 (Bi et al., 2017). Therefore, we focused our attention on the potential physical interaction
270 between *NUP1* and *ABI5*.

271 **NUP1 interacts with ABI5 and the proteasome in the nuclear basket region to maintain
272 ABI5 homeostasis post-translationally**

273 To study the interaction between *NUP1* and *ABI5*, two assays (co-localization and BiFC) were
274 conducted. First, for co-localization study, a plasmid expressing an *ABI5-CFP* fusion under the
275 35S promoter (35S::*ABI5-CFP*) was constructed and transiently expressed in leaves of 5-day-old
276 *nup1-2* *pNUP1::NUP1-YFP* seedlings. As expected, *NUP1* was expressed around the nuclear
277 envelope, while *ABI5* was expressed inside the nucleus (Fig. 6A and B, respectively).
278 Importantly, as shown in Figure 6C (highlighted by the red box), there is a co-localization
279 (orange color) of these two proteins in the nuclear envelope. Second, the protein interaction was
280 tested through the BiFC assay. The interaction between *NUP1* and *ABI5* was detected by
281 confocal microscopy (Fig. 6D).

282 To understand the role of *ABI5* in seed germination of *nup1-1*, the abundance of *ABI5* in *nup1-1*
283 seeds and seedlings was analyzed by Western blot. The *ABI5* level was higher in Col-0
284 compared to *nup1-1* in dry seeds (Fig. 6E), which is in agreement with the transcript level from
285 qRT-PCR (Fig. 2 A). *ABI5* was not detected in 5-day-old Col-0 and *nup1-1* seedling (Fig. 6F,
286 lane 1, 3), which was expected, as *ABI5* level decreases rapidly during the seed to seedling
287 transition (Finkelstein and Lynch, 2000). However, *ABI5* was detected after ABA treatment in
288 both Col-0 and *nup1-1* seedlings (Fig. 6F, lane 2, 4). The level of *ABI5* was higher in *nup1-1*
289 seedlings compared to Col-0. This increased level of *ABI5* in mutant seedlings may be due to an
290 increase in transcription of *ABI5* and/or delay in the degradation of *ABI5*. The possibility of
291 *NUP1* directly regulating the *ABI5* gene expression could be ruled out according to a recent
292 genome-wide occupancy study (Bi et al., 2017). Therefore, the prospect of delayed degradation

293 of ABI5 in *nup1-1* seedling was further explored here by a translational inhibitor
294 (Cycloheximide, CHX) treatment assay. The Col-0 and *nup1-1* seedlings grown under ABA
295 stress were transferred to CHX-supplemented agar plates and treated for 2 to 8 hrs. After CHX
296 treatment, the ABI5 protein level decreased rapidly in Col-0 seedlings but remained stable in
297 *nup1-1* (Fig. 6G). The translational inhibitor treatment experiment suggests a post-translational
298 regulatory mechanism by which NUP1 controls ABI5 abundance.

299 Since NUP1 has some role in maintaining ABI5 homeostasis, we looked further into the factors
300 linking these two proteins during degradation. Our earlier studies suggest that NUP1 tethers the
301 26S proteasome to NPC through the TREX-2 complex (Lu et al., 2010; Tian et al., 2012); and
302 other studies have shown that ABI5 is degraded through the 26S proteasome (Lopez-Molina et
303 al., 2001; Liu and Stone, 2010). Thus, we hypothesized that NUP1 facilitates the 26S
304 proteasome-based degradation of ABI5 in the nuclear basket region. In a recent study, an
305 immunoprecipitation mass spectrometry experiment revealed the physical interaction between
306 NUP1 and 19 members of the 26S proteasome complex (Zhang et al., 2020), confirming our
307 earlier work. To further confirm these results, we performed a BiFC assay between NUP1 and
308 five proteins from the proteasomal complex (RPN12a, RPN12b, RPN3a, RPN10, and RPT2B).
309 All five proteins interacted with NUP1 in nuclear envelope regions (Fig. 6H). Together, these
310 findings support a scenario that NUP1 interacts with ABI5 and the 19S RP of the proteasome in
311 the nuclear basket region to maintain the ABI5 level.

312 **ABI5 is predominantly localized in nucleoplasm but mutation in *NUP1* leads to its
313 nucleolar retention under abiotic stress**

314 Our protein-protein interaction data suggest the NPC basket region as a potential ABI5
315 degradation site. Although ABI5 is known to localize inside the nucleus (Liu and Stone, 2013),
316 its subnuclear distribution has not been well-studied. Here, we revisited the issue by using
317 several chemical and biological markers. First, we used the nuclear marker propidium iodide (PI)
318 to determine the region of the nucleus stained by it (Fig. 7A). PI stained nucleolus Fig. (7Aa)
319 and/or cell wall (Fig. 7Ab). To confirm these results, we also used another nuclear marker DAPI
320 (Fig. 7Ac). Together, these visualization studies strongly show that PI stains nucleolus and /or
321 cell walls. We thus decided to use PI as a nuclear marker in the following experiments because it
322 stains both nucleolus and cell wall, which is desirable for the visualization of subcellular

323 compartments. Also, PI is less toxic to cells compared to DAPI which may dampen the ABI5-
324 GFP fluorescence signal in a longer experimental setup.

325 To investigate the ABI5 localization at a subnuclear level and the role of NUP1 in the ABI5
326 degradation pathway, two transgenic lines were generated: one for expressing an ABI5-GFP
327 fusion driven by its native promoter in the *abi5-8* background (*abi5-8 pABI5::ABI5-GFP*), as a
328 control; and the other experimental line expressing the same transgene, but in the *nup1-1 abi5-8*
329 double mutant (*nup1-1 abi5-8 pABI5::ABI5-GFP*). In a preliminary experiment, we determined
330 the time frame of the expression and degradation of ABI5-GFP for visualization using confocal
331 microscopy. It took about 4 hrs of ABA treatment (20 μ M) to express enough ABI5 for detection
332 and another 6 hrs for near complete degradation of ABI5 (Supplemental Fig. S6). Based on these
333 results, the control plants were first treated with 20 μ M ABA for 4 hrs, and half of them were
334 immediately observed under a confocal microscope (Fig. 7B a-e). The remaining control plants
335 were transferred to a standard medium for another 6 hrs before being observed (Fig. 7B f-j). The
336 immediately observed control plants showed mostly nucleoplasmic localization of ABI5 (Fig. 7B
337 a-e), while those observed 6 hrs later showed no ABI5 expression (Fig. 7B f-j). For the
338 experimental transgenic line in the double mutant background, the same procedures were
339 followed to investigate the role of NUP1 in ABI5 localization. The immediately observed
340 experimental plants showed mostly nucleoplasmic localization (Fig 7B k-o), and those observed
341 6 hrs later showed nucleolar localization (Fig. 7B p-t). Overall, these results strongly suggest that
342 ABI5 is predominantly localized in the nucleoplasm under abiotic stress and becomes degraded
343 there gradually after the removal of stress. Interestingly, in *nup1-1* plants, ABI5 is retained in the
344 nucleolus instead of being degraded in the nucleoplasmic region.

345 **Discussion**

346 We investigated the function of *NUP1* during seed germination under various abiotic stresses.
347 The findings that *nup1-1* and *NUP1*-overexpressed seeds show delayed germination suggest the
348 need for a wild-type level of NUP1 for proper germination. The *nup1-1* seedlings were not
349 drought tolerant, the reason for which might be that NUP1 also plays a major role in many other
350 basic cellular activities such as mRNA export, nuclear size regulation, and other transport
351 activities (for review, see Tamura, 2020).

352 Our data about the proteasome being present in the nucleus and tethered to NPC are consistent
353 with studies in other organisms. Fluorescence correlation spectroscopy analysis revealed that the
354 yeast nucleus has about five times more proteasome than the cytoplasm (Pack et al., 2014). A
355 recent study in *Chlamydomonas reinhardtii* using cryo-electron tomography imaging reported
356 that proteasomes are densely accumulated at two distinct sites in the nucleus, the NPC basket,
357 and the nuclear membrane surrounding NPC (Albert et al., 2017). In *Schizosaccharomyces*
358 *pombe*, nucleoporin TPR of the nuclear basket is required for localization of proteasomes to the
359 nuclear membrane (Salas-Pino et al., 2017). These studies provide convincing evidence of
360 proteasomes being present around NPC in several organisms. In *Arabidopsis*, a recent study
361 demonstrated the strong interaction between NUP1 and the 26S proteasome (Zhang et al., 2020).
362 Nineteen members of the 19S Regulatory Particle (RP) were detected to be co-
363 immunoprecipitated with NUP1. Interestingly, no proteins of the 20S Core Particle (CP) were
364 identified in the process (Zhang et al., 2020). This suggests that NUP1 may be the linkage
365 connecting proteasome to NPC through the 19S RP (lid and base) of the proteasome. In our
366 study, the physical interaction of NUP1 and ABI5 was detected only by BiFC but not by Co-IP.
367 This might be a consequence of the weak and transient nature of the interaction or the large size
368 of the associated protein complexes including TREX-2 and other adapter proteins, which could
369 lower the efficiency of Co-IP. Interestingly, a recent study using a more sensitive technique
370 demonstrated that NUP1 was pulled down by ABI5-TurboID-GFP in an IP-MS experiment
371 ($\text{Log}_2 (\text{FC (ABI5-TurboID-GFP vs TurboID-GFP)}) = 2.59$ and $p\text{-value} < 0.05$) (Yang et al.,
372 2023). This finding is consistent with our BiFC result (Fig. 6D), and together they strongly
373 support a physical association between NUP1-ABI5, which is likely indirect and transient in
374 nature. Of note, the plant materials used by Yang et al were also young seedlings treated with
375 ABA; and NUP1 is the only member of NPC among the 67 proteins pulled down by ABI5 (Yang
376 et al., 2023), reiterating the specificity of ABI5 physical association with NUP1.

377 The protein level of ABI5 is known to be regulated by various post-translational modifications
378 (Skubacz et al., 2016). Under abiotic stress, ABA activates ABI5 by phosphorylation
379 (Nakashima et al., 2009; Wang et al., 2013). Under optimal conditions, ABI5 is ubiquitinated,
380 which prepares it for degradation through the 26S proteasome pathway (Lopez-Molina et al.,
381 2001; Stone et al., 2006; Liu and Stone, 2010). Our data suggest that ABI5 is degraded in
382 nucleoplasm near NPC; however, two earlier studies proposed nuclear bodies (NB) to be the site

383 of degradation. Lopez-Molina et al. (2003) suggested that ABI FIVE binding protein targets
384 ABI5 for ubiquitin-mediated degradation in nuclear bodies. Similarly, Zhao et al. (2016) also
385 proposed the same degradation site based on the CROWDED NUCLEI 3 colocalization with
386 ABI5 in nuclear bodies. There are two possible reasons for this discrepancy. First, Lopez-Molina
387 et al. (2003) used a 35S promoter and Zhao et al. (2016) used a β -estradiol promoter to drive the
388 expression of ABI5, which might not reflect the true expression and localization of the protein.
389 We also tried using the 35S-driven expression of *ABI5* for localization study and found it was
390 distributed in all compartments of the nucleus (Supplementary Fig. S7), similar to that observed
391 by Liu and Stone (2013). This ABI5 distribution pattern altered when we used the native
392 promoter of *ABI5* for its expression (Fig. 7). Second, both studies did not track the timing of
393 ABI5 expression and degradation. In this work, we optimized the timing of ABI5 expression and
394 degradation with ABA treatment (Supplemental Fig. S6). Under our experimental conditions,
395 ABI5 was induced after 4 hrs of ABA treatment (20 μ M) and ABI5 could no longer be detected
396 after another 6 hrs after removal of ABA, which indicates its degradation timeframe. Thus,
397 observation of ABI5 at a different time may lead to different localization of ABI5. In a few
398 cases, we also found some punctuate patterns of ABI5 indicating its localization in nuclear
399 bodies (Supplemental Fig. S8), as reported by Lopez-Molina et al. (2003) and Zhao et al. (2016).
400 However, we speculate that some kind of post-translational modification of ABI5 may result in
401 its temporary retention in nuclear bodies/nucleolus. This is supported by Miura et al. (2009),
402 which reported that ABI5 is sumoylated by SAP AND MIZ1 DOMAIN- CONTAINING
403 LIGASE1 (SIZ1) and the sumoylated ABI5 is protected from ubiquitin-mediated degradation by
404 promoting its localization in nuclear bodies. The punctuate pattern of ABI5 may be the
405 condensate formed through phase separation. To evaluate the possibility of phase separation of
406 ABI5, we used IUPred2 to determine the presence of any intrinsic disorder region (IDR), which
407 is required for liquid-liquid phase separation. ABI5 is predicted to have an IDR between amino
408 acids 355-405 (Supplemental Fig. S9), which may be vital for phase separation. Future work is
409 needed to investigate whether phase separation indeed plays a role in the ABI5 accumulation in
410 nucleolus/nuclear bodies.

411 Based on our data and the literature related to ABI5 degradation, we propose an ABI5
412 degradation model in *Arabidopsis* (Fig. 8). Under standard growth conditions, both wild type and
413 *nup1-1* seeds show timely germination albeit the reduced efficiency of the proteasome-based

414 nuclear degradation of ABI5 in *nup1-1*. This might be because of the less basal level of ABI5 in
415 *nup1-1* compared to wild type (based on Fig 2A and 6E). However, during germination under
416 stress conditions, *nup1-1* seeds have more ABI5 than Col-0 (based on Fig. 6F). Proteasomes in
417 wild-type plants can efficiently degrade the increased level of ABI5 for timely germination. But,
418 since NUP1-mediated proteasome activity is lowered in *nup1-1*, the rate of ABI5 degradation is
419 slower. This leads to the accumulation of ABI5 and delayed germination. Increased ABI5 level
420 can also self-activate its transcription through a positive feedback loop, which may help to
421 explain the increased *ABI5* transcript level in *nup1-1* compared to Col-0 (Fig 4B). This self-
422 regulation of ABI5 was previously reported (Xu et al., 2014). Thus, we propose, NUP1 indirectly
423 reduces ABI5 transcription through directly promoting ABI5 protein degradation. The slow rate
424 of ABI5 degradation in *nup1-1* under stress may lead to its retention in the nucleolus. This might
425 be through post-translational modifications like sumoylation which was shown previously to
426 promote its localization to nuclear bodies (Miura et al., 2009). To our knowledge, this is the first
427 evidence in plants showing that NPC can maintain protein homeostasis through anchoring
428 proteasome. Our work helps establish NPC as a site of protein degradation and surveillance.
429 NPC is ideally positioned in the cell between the nucleus and cytoplasm to regulate protein level,
430 mRNA export, and transcription. It would be interesting in the future to explore other proteins
431 that are regulated by NPC tethered proteasome. In summary, our data strongly implicates NUP1
432 as a key modulator of seed germination through the ABA/ABI5 degradation pathway. Our results
433 along with many others in this research area could be helpful in the future for breeding crops that
434 can better germinate and grow under abiotic stress conditions, which is important, more than
435 ever, for agriculture with the climate changes.

436 Materials and Methods

437 Plant materials and growth conditions

438 *Arabidopsis* wild type (Col-0) and the T-DNA mutants *nup1-1* (SALK_104728), *nup1-2*
439 (SALK_020221), *nup1-3* (SAIL796H02), *abi1-2* (SALK_072009), *abi2-2* (SALK_015166C),
440 *abi3-7* (SALK_038579), and *abi5-8* (SALK_013163) were all obtained from ABRC. The
441 genotyping and qRT-PCR primers for characterization of these mutant lines are listed in
442 Supplemental Table S7. Seeds were surface sterilized and placed in a dark room at 4°C for 2 d.
443 Plants were grown in a walk-in growth room at 23°C, 150 $\mu\text{mol}/\text{m}^2/\text{s}$ light intensity, and 50 %
444 humidity at 16 hrs light/8 hrs dark conditions. Double mutants were created by crossing single

445 mutants and subsequent selection of double mutants by PCR-based genotyping. Leaves of three
446 weeks-old tobacco (*Nicotiana benthamiana*) plants were used for transient expression assay.

447 **Germination test**

448 For the germination assay, seeds were sterilized with 70 % ethanol for 10 min and washed with
449 sterile water. Then seeds were sown on ½ Murashige and Skoog (MS) medium plates (1.5 %
450 sucrose, 0.8 % agar, pH 5.75) with or without various concentrations of supplements; ABA (for
451 abiotic stress), NaCl (for salt stress), and sorbitol (for osmotic stress). The seeds were vernalized
452 in a dark room at 4°C for two days and then transferred to the growth room. The ratio of radicle
453 emergence and cotyledon emergence was calculated every day. Cotyledon emergence is
454 considered successful germination in this study. At least 50 seeds per biological replicate and
455 three independent replicates were conducted. Radicle emergence or cotyledon emergence was
456 calculated on the 5th day of imbibition to determine any statistical differences.

457 **Drought assay**

458 For the drought assay, 10-day-old Col-0 and *nup1-1* seedlings grown on ½ MS medium plates
459 were left open for drying in a laminar flow hood for six hrs. Then seedlings were put back in the
460 regular growth room for the next 5 days. Then, the percentage of survived plants was calculated.

461 **Plasmid construction and transgenic plants**

462 The transgenic line expressing *NUP1* fused with *YFP* driven by its native promoter in the *nup1-2*
463 background (*nup1-2 pNUP1::NUP1-YFP*) was previously described (Lu et al., 2010). *ABI5*
464 genomic DNA with or without its native promoter (~ 2 kb) was amplified from a bacterial
465 artificial chromosome (BAC) clone (BAC F2H17). The amplified DNA fragments were cloned
466 into the D-TOPO vector (Cat no #K240020, ThermoFisher Scientific) and then inserted into the
467 PMDC107 and PMDC84 vectors through LR cloning (Gateway technology). The created
468 plasmid DNAs were later sequenced for accuracy. After sequencing, the plasmid constructs were
469 introduced to *Agrobacterium tumefaciens* (GV3101) through electroporation. *Agrobacterium*-
470 mediated transformation of *Arabidopsis* in the *abi5-8* and *nup1-1 abi5-8* backgrounds was
471 performed using the floral dip method (Clough and Bent, 1998). Transgenic lines expressing
472 *ABI5* with the native promoter in different genetic backgrounds, (*abi5-8 pABI5::ABI5-GFP*) and
473 (*nup1-1 abi5-8 pABI5::ABI5-GFP*), were used for ABA related studies. The plasmid expressing

474 35S::*ABI5*-CFP was used for the co-localization assay. The *NUP1* overexpression *Arabidopsis*
475 line (*nup1-2* 35S::*NUP1*-YFP) is characterized in Supplemental Fig. S3.

476 **Protein extraction and Western blot**

477 Protein extraction and Western blot were performed as described with slight modifications (Shu
478 et al., 2021). Seeds and seedlings (0.5- 2 gm) were ground in liquid nitrogen and proteins were
479 extracted with lysis buffer containing 50 mM Tris-HCl, 10 mM ethylenediaminetetraacetic acid
480 (EDTA), 1× completeTM Protease Inhibitor Cocktail (Roche), 0.1 mM phenylmethylsulfonyl
481 fluoride (PMSF), and 1 % sodium dodecyl sulfate (SDS) (w/v). The protein solution was
482 centrifuged at 4°C for 15 min to remove cellular debris. Then, the protein preparation was
483 dissolved in a 3x SDS loading buffer and 20-30 µl of the protein preparation was loaded onto an
484 SDS polyacrylamide gel (10%). The protein size was separated in the gel for 2 hrs at 120 V and
485 transferred to a polyvinylidene fluoride (PVDF) membrane. Then, 5 % (w/v) non-fat
486 milk/Tris-buffered saline (TBS) was used to block the membrane for 1hr by gentle shaking at
487 room temperature. After that, the primary antibody (anti GFP: Abcam, ab290, 1:20,000 dilution;
488 anti-*ABI5* antibody: Abcam (Ab98831) at 1:1000 dilution) was added and incubated overnight at
489 4°C. The next day, the membrane was washed with TBS and a Horse Radish Peroxidase
490 conjugated secondary antibody (A0545, Sigma) was added and incubated for an hour at room
491 temperature. The excess secondary antibody was removed by washing three times with TBS
492 buffer. The protein bands were visualized by using the Western Blotting Reagents (RPN2106,
493 GE Healthcare) and chemiluminescence was captured using MicroChemi (DNR Bio-Imaging
494 System).

495 **RNA isolation**

496 RNAs were isolated from seeds and seedlings. Seeds (50 mg) were ground in liquid nitrogen and
497 extraction buffer (0.4 M LiCl, 0.2 M Tris pH 8, 25 mM EDTA, and 1 % SDS), and chloroform
498 was added. The solution was centrifuged for 3 min at 4°C at 10,000 RPM and the supernatant
499 was transferred to a new Eppendorf tube and 500 µl of water-saturated acidic phenol was added
500 and vortexed thoroughly. The solution was then centrifuged for 3 min at 4°C. The supernatant
501 was transferred to a new tube and 1/3 volume of 8 M LiCl was added. The supernatant was then
502 precipitated at -20°C for 3 hr and spun for 30 min at 4°C to form a pellet. 470 µl of water was
503 added to dissolve the pellet. RNA was again precipitated with 3M sodium acetate, and absolute
504 ethanol and centrifuged for 10 min to remove carbohydrates. The supernatant was again

505 precipitated in ethanol, dissolved in water, and treated with DNase. RNA from young seedlings
506 was isolated using the protocol from Shu et al. (2019) using the RNAeasy Plant Mini Kit
507 (Qiagen) following the manufacturer's protocol.

508 **RNA-Seq and data analysis**

509 RNA sequencing and analysis were done as described in Chen et al. (2019). Briefly, total RNA
510 was isolated, purified, and sent for deep sequencing at Novogene, China. Each sample had three
511 biological replicates. The obtained reads were cleaned by removing low-quality sequences by
512 using the Trimmomatic program. Those reads were mapped to the TAIR10 *Arabidopsis* genome
513 using TopHat v2.0.4 with default setting except that a minimum intron length of 20 bp and a
514 maximum intron length of 4,000 bp were used. DEGs were calculated using the Cufflinks
515 package (Trapnell et al., 2012). In short, the alignment files after running TopHat were used as
516 input to Cufflink to generate a transcriptome assembly for each sample. All these assemblies
517 were merged using the Cuffmerge. The reads and merged assembly were used as input in
518 Cuffdiff for the calculations of DEGs. Genes with at least a 2-fold change in expression (FDR \leq
519 5 %, p-value < 0.05) were considered to be differentially expressed. The gene ontology (GO)
520 enrichment analysis was performed by online tools Agri-go (<http://bioinfo.cau.edu.cn/agriGO/>).
521 Heat maps and volcano plots were generated using the R software.

522 **Gene Expression Analysis**

523 Total RNA was extracted from *Arabidopsis* seeds and seedlings of Col-0 and mutant plants as
524 described above. For estimating gene expression, 500 ng of total RNA was used for reverse
525 transcription using the SuperScript III Reverse Transcriptase kit (Invitrogen). Real-time PCR
526 was performed using the iQ SYBR Green supermix (Bio-Rad) on a CFX96 real-time PCR
527 machine (Bio-Rad). Gene expression was normalized to *ACTIN 2* (*ACT2*). All primers used are
528 listed in Supplemental Table S7.

529 **BiFC Assay**

530 Full-length *NUP1* and *ABI5* coding sequences of *Arabidopsis* were amplified and recombined
531 into the pDONR221 vector by BP reaction (Gateway technology). Those vectors with insert were
532 sequenced to ensure no errors were introduced during PCR amplification. The entry vector
533 pDONR221 with insert was then transferred into the modified pEarleyGate 201-N-YFP or
534 pEarleyGate 202-C-YFP vector by LR reaction (Gateway technology) (Lu et al., 2010). The final

535 constructs were introduced into *Agrobacterium tumefaciens* strain GV3101 and the resulting
536 bacteria were used to infiltrate the abaxial side of tobacco (*Nicotiana benthamiana*) leaves. After
537 2-3 days, the fluorescence signals were detected for positive protein interactions, and no signals
538 were detected when two proteins did not interact. pEarleyGate 201-N-*NUP1-YFP* and
539 pEarleyGate 202-C-CENTRIN2 were used as negative controls. The imaging of the fluorescence
540 was done using a confocal microscope (Olympus FV1000). Sequences of the primers used are
541 listed in supplemental Table S7.

542 **Nuclear staining and Confocal microscopy**

543 For fluorescence analysis, *Arabidopsis* seedlings were stained with 10 µg/ml propidium iodide
544 (PI) and/or 5 µg/ml 4', 6-diamidino-2-phenylindole (DAPI) (Sigma #D9542) for the indicated
545 times in dark at room temperature. The seedlings were washed with distilled water (ddH₂O) for
546 15 min to remove excess chemicals. The treated seedlings were immediately imaged with a
547 confocal microscope (Olympus FV 1000). The following conditions were used for the detection
548 of various signals: for GFP detection, excitation 488 nm, emission 510 nm; for YFP detection,
549 excitation 515 nm, emission 520-550 nm; for DAPI, excitation 405 nm, emission 470-500 nm;
550 for CFP detection, excitation 405 nm; emission 485 nm; for PI detection, excitation 535 nm;
551 emission 615 nm.

552 **Co-localization assay**

553 To detect the co-localization of ABI5 and NUP1, *Agrobacterium* expressing 35S::*ABI5-GFP*
554 was transiently expressed in the stable *Arabidopsis* transgenic line *nup1-2 pNUP1::NUP1-YFP*.
555 After two days, the transiently transformed leaves were analyzed by confocal microscopy. Cells
556 expressing both GFP and YFP proteins were examined for the co-localization pattern of two
557 proteins.

558 **Statistical Analysis**

559 Means, standard deviations (SD), and standard error of the mean (SEM) were calculated using
560 Excel 2016 (Microsoft Corp., Redmond, Washington). All experiments were performed using at
561 least three biological replicates and additional three technical replicates were included in gene
562 expression analysis by qRT-PCR. SD was used for the analysis of experiments with biological
563 replicates and SEM was used for the analysis of experiments with biological and technical
564 replicates. Statistical analysis was performed by Student's test or ANOVA. A p-value of 0.05 or

565 less was considered as a statistically significant difference indicated by * and a p-value of 0.01 or
566 less was denoted by **.

567 **Accession Numbers**

568 The TAIR accession numbers for the sequences of genes mentioned in this study are as follows:
569 *NUP1* (At3g10650), *ABI1* (AT4G26080), *ABI2* (AT5G57050), *ABI3* (AT3G24650), *ABI4*
570 (AT2G40220), and *ABI5* (AT2G36270).

571 **ACKNOWLEDGMENTS**

572 We thank the *Arabidopsis* Biological Resource Centre (ABRC) for providing the mutant seeds
573 used in this study. This work was supported by grants from the Natural Science and Engineering
574 Research Council of Canada (RGPIN/04625-2017, to Y.C.); and Agriculture and Agri-Food
575 Canada (to Y.C.).

576 **Author Contributions**

577 YC conceived the project. YC, RKT, GT, and SEK designed the experiments. GT contributed to
578 BiFC assay. RKT, JShu, CC, and CL analyzed the RNA-Seq data. XX, JSong, YY and SB did the
579 crossing and genotyping. VN performed all the Sanger DNA sequencing. JL performed a
580 qRT-PCR experiment. RKT and ML conducted germination assay. RKT performed all the rest of
581 the experiments. RKT and YC wrote the manuscript. All authors read and approved the final
582 article.

583 **CONFLICT OF INTEREST**

584 The authors have no conflict of interest to declare.

585

586

587 **DATA AVAILABILITY STATEMENT**

588 RNA-Seq data have been deposited in the National Center for Biotechnology Information GEO
589 database under accession number GSE189513. Materials are available from the corresponding
590 author upon request.

591

592 **References**

593 **Albert S, Schaffer M, Beck F, Mosalaganti S, Asano S, Thomas HF, Plitzko JM, Beck M,**
594 **Baumeister W, Engel BD.** 2017. Proteasomes tether to two distinct sites at the nuclear pore
595 complex. *Proceedings of the National Academy of Sciences of the United States of America*
596 **114**,13726–13731.

597 **Bi X, Cheng YJ, Hu B, Ma X, Wu R, Wang JW, Liu C.** 2017. Non-random domain
598 organization of the *Arabidopsis* genome at the nuclear periphery. *Genome Research* **27**, 1162-
599 1173.

600 **Boeglin M, Fuglsang AT, Luu DT, Sentenac H, Gaillard I, Cherel I.** 2016. Reduced
601 expression of *AtNUP62* nucleoporin gene affects auxin response in *Arabidopsis*. *BMC Plant*
602 *Biology* **16**:2.

603 **Carles C, Bies-Etheve N, Aspart L, Léon-Kloosterziel KM, Koornneef M, Echeverria M,**
604 **Delseny M.** 2002. Regulation of *Arabidopsis thaliana Em* genes: role of ABI5. *The Plant*
605 *Journal* **30**, 373-383.

606 **Chen C, Shu J, Li C, Thapa RK, Nguyen V, Yu K, Yuan ZC, Kohalmi SE, Liu J, Marsolais**
607 **F, Huang S and Cui Y.** (2019) RNA polymerase II independent recruitment of SPT6L at
608 transcription start sites in *Arabidopsis*. *Nucleic Acids Research*, **47**, 6714-6725.

609 **Clough SJ, Bent AF.** 1998. Floral dip: a simplified method for *Agrobacterium*-mediated
610 transformation of *Arabidopsis thaliana*. *The Plant Journal* **16**, 735-743.

611 **Cutler SR, Rodriguez PL, Finkelstein RR, and Abrams SR.** 2010. Abscisic acid: emergence
612 of a core signaling network. *Annual Review of Plant Biology* **61**, 651-679

613 **Finkelstein R, Reeves W, Ariizumi T, Steber C.** 2008. Molecular aspects of seed dormancy.
614 *Annual Review of Plant Biology* **59**, 387-415.

615 **Finkelstein RR, Lynch TJ.** 2000. The *Arabidopsis* abscisic acid response gene *ABI5* encodes a
616 basic leucine zipper transcription factor. *Plant Cell* **12**, 599-609.

617 **Gu Y, Zebell SG, Liang Z, Wang S, Kang BH, Dong X.** 2016. Nuclear Pore Permeabilization
618 Is a Convergent Signaling Event in Effector-Triggered Immunity. *Cell* **166**, 1526-1538 e1511.

619 **Hampelz B, Andres-Pons A, Kastritis P, Beck M.** 2019. Structure and assembly of the
620 nuclear pore complex. *Annual Review of Biophysics* **48**, 515-536.

621 **Hauser F, Waadt R, Schroeder JI.** 2011. Evolution of abscisic acid synthesis and signaling
622 mechanisms. *Current Biology* **21**, R346-355.

623 **Jacinto FV, Benner C, Hetzer MW.** 2015. The nucleoporin Nup153 regulates embryonic stem
624 cell pluripotency through gene silencing. *Genes & Development* **29**, 1224- 1238.

625 **Jiang Z, Xu G, Jing Y, Tang W, Lin R.** 2016. Phytochrome B and REVEILLE1/2-mediated
626 signaling controls seed dormancy and germination in *Arabidopsis*. *Nature Communications* **7**,
627 12377.

628 Jiang, Y., Wu, X., Shi, M., Yu, J., & Guo, C. (2022). The miR159-MYB33-ABI5 module
629 regulates seed germination in *Arabidopsis*. *Physiologia Plantarum*, **174**(2).

630 **Kanai M, Nishimura M, Hayashi M.** 2010. A peroxisomal ABC transporter promotes seed
631 germination by inducing pectin degradation under the control of *ABI5*. *The Plant Journal* **62**,
632 936-947.

633 **Kong Y, Chen S, Yang Y, An C.** 2013. ABA-insensitive (ABI) 4 and ABI5 synergistically
634 regulate DGAT1 expression in *Arabidopsis* seedlings under stress. *FEBS Letters* **587**, 3076-
635 3082.

636 **Lin DH, Hoelz A.** 2019. The structure of the nuclear pore complex (An Update). *Annual Review*
637 of *Biochemistry* **88**, 725-783.

638 **Liu H, Stone SL.** 2010. Abscisic acid increases *Arabidopsis* ABI5 transcription factor levels by
639 promoting KEG E3 ligase self-ubiquitination and proteasomal degradation. *The Plant Cell*
640 **22**:2630–2641

641 **Liu H, Stone SL.** 2013. Cytoplasmic degradation of the *Arabidopsis* transcription factor
642 *ABSCISIC ACID INSENSITIVE 5* is mediated by the RING-type E3 ligase KEEP ON GOING.
643 *Journal of Biological Chemistry* **288**, 20267-20279.

644 **Liu X, Hou X.** 2018. Antagonistic regulation of ABA and GA in metabolism and signaling
645 pathways. *Frontiers in Plant Science* **9**, 1-7.

646 **Lopez-Molina L, Mongrand S, Chua N-H.** 2001. A post-germination developmental arrest
647 checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in
648 *Arabidopsis*. *Proceedings of the National Academy of Sciences, USA* **98**, 4782-4787.

649 **Lopez-Molina L, Mongrand S, McLachlin DT, Chait BT, Chua N-H.** 2002. ABI5 acts
650 downstream of ABI3 to execute an ABA-dependent growth arrest during germination. *The Plant
651 Journal* **32**, 317-328.

652 **Lopez-Molina L, Mongrand S, Kinoshita N, Chua NH.** 2003. AFP is a novel negative
653 regulator of ABA signaling that promotes ABI5 protein degradation. *Genes & Development*
654 **17**:410-418.

655 **Lu Q, Tang X, Tian G, Wang F, Liu K, Nguyen V, Kohalmi SE, Keller WA, Tsang EW,
656 Harada JJ, Rothstein SJ, Cui Y.** 2010. *Arabidopsis* homolog of the yeast TREX-2 mRNA
657 export complex: components and anchoring nucleoporin. *The Plant Journal* **61**, 259-270.

658 **Miura K, Lee J, Jin JB, Yoo CY, Miura T, Hasegawa PM.** 2009. Sumoylation of ABI5 by the
659 *Arabidopsis* SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling. *Proceedings of
660 the National Academy of Sciences, USA* **106**, 5418-5423.

661 **Müller K, Tintelnot S, Leubner-Metzger G.** 2006. Endosperm-limited Brassicaceae seed
662 germination: abscisic acid inhibits embryo-induced endosperm weakening of *Lepidium sativum*
663 (cress) and endosperm rupture of cress and *Arabidopsis thaliana*. *Plant and Cell Physiology* **47**,
664 864-877.

665 **Nonogaki H.** 2017. Seed biology updates - highlights and new discoveries in seed dormancy and
666 germination research. *Frontiers in Plant Science* **8**, 524.

667 **Pack CG, Yukii H, Toh-e A, Kudo T, Tsuchiya H, Kaiho A, Sakata E, Murata S, Yokosawa
668 H, Sako Y, Baumeister W, Tanaka K, Saeki Y.** 2014. Quantitative live-cell imaging reveals
669 spatio-temporal dynamics and cytoplasmic assembly of the 26S proteasome. *Nature
670 Communications* **5**, 3396.

671

672

673 **Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu JK, Schroeder JI, Volkman BF, Cutler SR.** 2009. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. *Science*. 324 (5930), 1068-1071.

678 **Piskurewicz U, Jikumaru Y, Kinoshita N, Nambara E, Kamiya Y, Lopez-Molina L.** 2008. The gibberellic acid signaling repressor RGL2 inhibits *Arabidopsis* seed germination by 679 stimulating abscisic acid synthesis and ABI5 activity. *Plant Cell* 20, 2729-2745.

681 **Silvia Salas-Pino, Paola Gallardo, Ramón R. Barrales, Sigurd Braun, Rafael RD.** 2017. The 682 fission yeast nucleoporin Alm1 is required for proteasomal degradation of kinetochore 683 components. *Journal of Cell Biology*, 216 (11), 3591–3608.

684 **Shu J, Chen C, Thapa RK, Bian S, Nguyen V, Yu K, Yuan ZC, Liu J, Kohalmi SE, Li C, Cui Y.** (2019) Genome-wide occupancy of histone H3K27 methyltransferases CURLY LEAF and SWINGER in *Arabidopsis* seedlings. *Plant Direct*, 3, e00100.

687 **Shu J, Chen C, Li C, Thapa RK, Song J, Xie X, Nguyen V, Bian S, Liu J, Kohalmi SE, Cui Y.** Genome-wide occupancy of *Arabidopsis* SWI/SNF chromatin remodeler SPLAYED provides 688 insights into its interplay with its close homolog BRAHMA and Polycomb proteins. *Plant 689 Journal*. 2021 106, 200-213.

691 **Skubacz A, Daszkowska-Golec A, Szarejko I.** 2016. The role and regulation of ABI5 (ABA- 692 Insensitive 5) in plant development, abiotic stress responses and phytohormone crosstalk. *Front 693 Plant Sci* 7, 1884.

694 **Stone SL, Williams LA, Farmer LM, Vierstra RD, Callis J.** 2006. KEEP ON GOING, a 695 RING E3 ligase essential for *Arabidopsis* growth and development, is involved in abscisic acid 696 signaling. *Plant Cell* 18, 3415-3428.

697 **Tamura K.** 2020. Nuclear pore complex-mediated gene expression in *Arabidopsis thaliana*.
698 Journal of Plant Research **133**, 449–455.

699 **Tamura K, Fukao Y, Iwamoto M, Haraguchi T, Hara-Nishimura I.** 2010. Identification and
700 characterization of nuclear pore complex components in *Arabidopsis thaliana*. Plant Cell **22**,
701 4084-4097.

702 **Tamura K, Hara-Nishimura I.** 2011. Involvement of the nuclear pore complex in morphology
703 of the plant nucleus. Nucleus **2**, 168-172.

704 Thapa, R. K., Tian, G., Xie, X., Kohalmi, S. E., & Cui, Y. (2022). Involvement of
705 NUCLEOPORIN1 in cell division and expansion in Arabidopsis. Plant Gene, 32.

706 **Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L.** 2012. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols **7**, 562-578.

709 **Tian G, Lu Q, Kohalmi SE, Rothstein SJ, Cui Y.** 2012 Evidence that the *Arabidopsis*
710 ubiquitin c-terminal hydrolases 1 and 2 associate with the 26S proteasome and the TREX-2
711 complex. Plant Signalling & Behaviour **7**, 1415–1419.

712

713 **Vaquerizas JM, Suyama R, Kind J, Miura K, Luscombe NM, Akhtar A.** 2010. Nuclear pore
714 proteins NUP153 and megator define transcriptionally active regions in the *Drosophila* genome.
715 PLoS Genetics **6**, e1000846.

716 **Vishal B, Kumar PP.** 2018. Regulation of seed germination and abiotic stresses by gibberellins
717 and abscisic acid. Frontiers in Plant Science **9**, 838.

718 Wang, T. J., Huang, S., Zhang, A., Guo, P., Liu, Y., Xu, C., Cong, W., Liu, B., & Xu, Z. Y.
719 (2021). JMJ17–WRKY40 and HY5–ABI5 modules regulate the expression of ABA-responsive
720 genes in Arabidopsis. New Phytologist, 230(2), 567–584.

721 **Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ.** 2007. An “Electronic
722 Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets.
723 PLoS One **2**, e718.

724 Yang, D., Zhao, F., Zhu, D., Chen, X., Kong, X., Wu, Y., Chen, M., Du, J., Qu, L. J., & Wu, Z.
725 (2022). Progressive chromatin silencing of ABA biosynthesis genes permits seed germination in
726 *Arabidopsis*. *Plant Cell*, 34(8), 2871–2891.

727 **Xu D, Li J, Gangappa SN, Hettiarachchi C, Lin F, Andersson MA, Jiang Y, Wang Deng X, Holm M.** (2014) Convergence of Light and ABA Signaling on the *ABI5* Promoter. *PLOS Genetics* **10**, e1004197.

730 Yang, C., Li, X., Chen, S., Liu, C., Yang, L., Li, K., Liao, J., Zheng, X., Li, H., Li, Y., Zeng, S.,
731 Zhuang, X., Rodriguez, P. L., Luo, M., Wang, Y., & Gao, C. (2023). ABI5-FLZ13 Module
732 Transcriptionally Represses Growth-related Genes to Delay Seed Germination in Response to
733 ABA. *Plant Communications*, 100636.

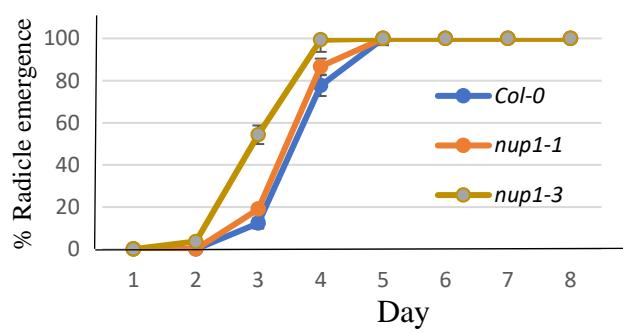
734 **Zhang B, You C, Zhang Y, Zeng L, Hu J, Zhao M, Chen X.** 2020. Linking key steps of
735 microRNA biogenesis by TREX-2 and the nuclear pore complex in *Arabidopsis*. *Nature Plants*.
736 **6**:957-969.

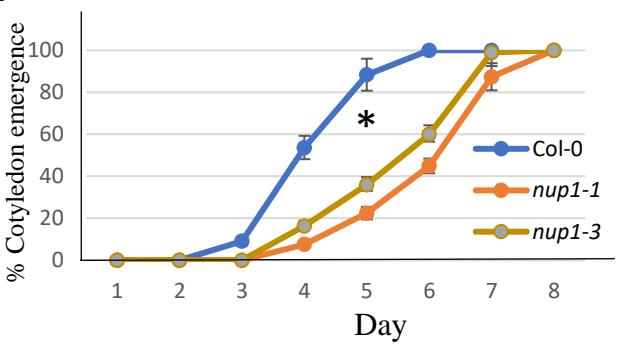

737 **Zhao W, Guan C, Feng J, Liang Y, Zhan N, Zuo J, Ren B.** 2016. The *Arabidopsis*
738 *CROWDED NUCLEI* genes regulate seed germination by modulating degradation of *ABI5*
739 protein. *Journal of Integrative Plant Biology* **58**, 669-678.

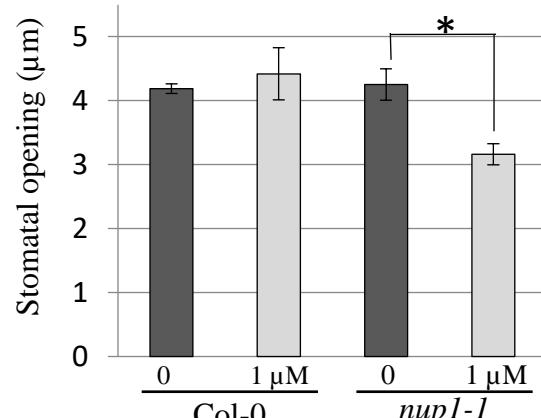
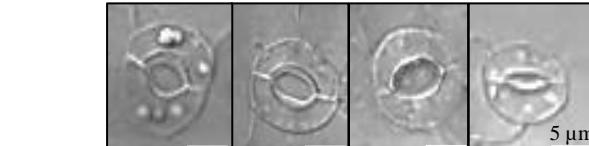
740 Zhao, H., Zhang, Y., & Zheng, Y. (2022). Integration of ABA, GA, and light signaling in seed
741 germination through the regulation of *ABI5*. In *Frontiers in Plant Science* (Vol. 13). Frontiers
742 Media S.A.

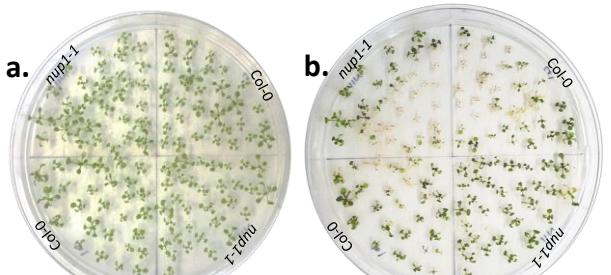
743

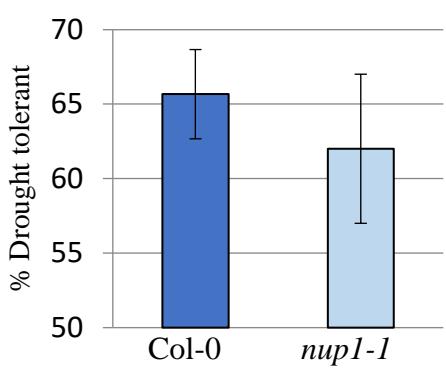
744


A.


B.



C.


D.


E.

F.

c.

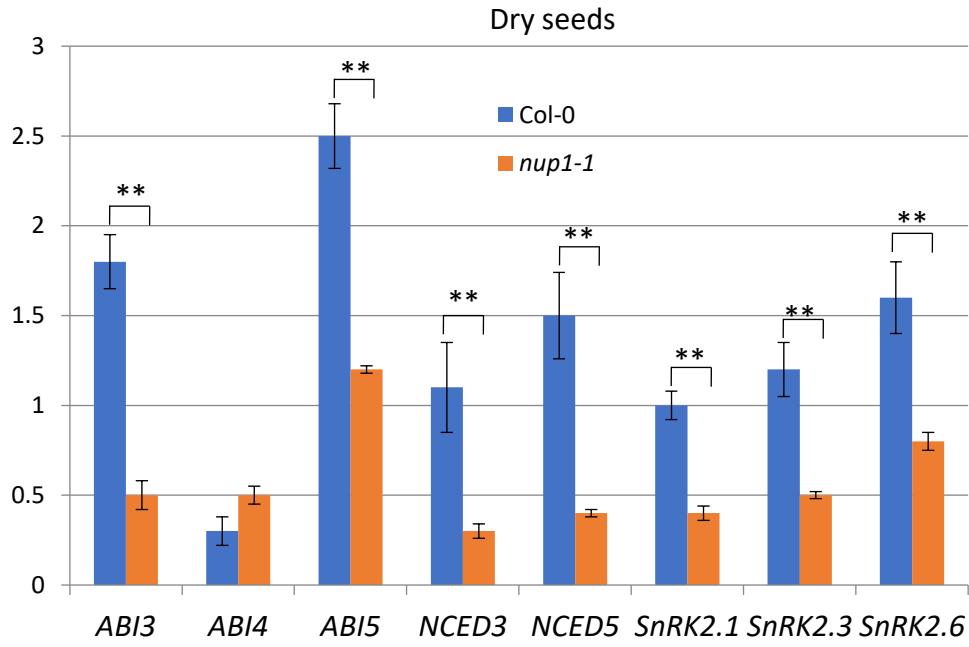
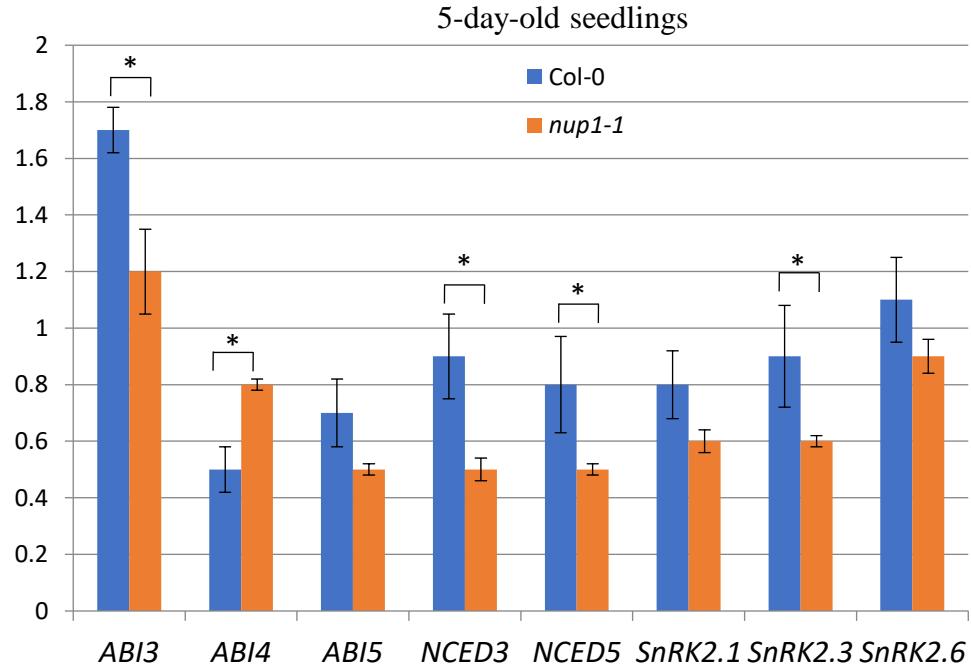
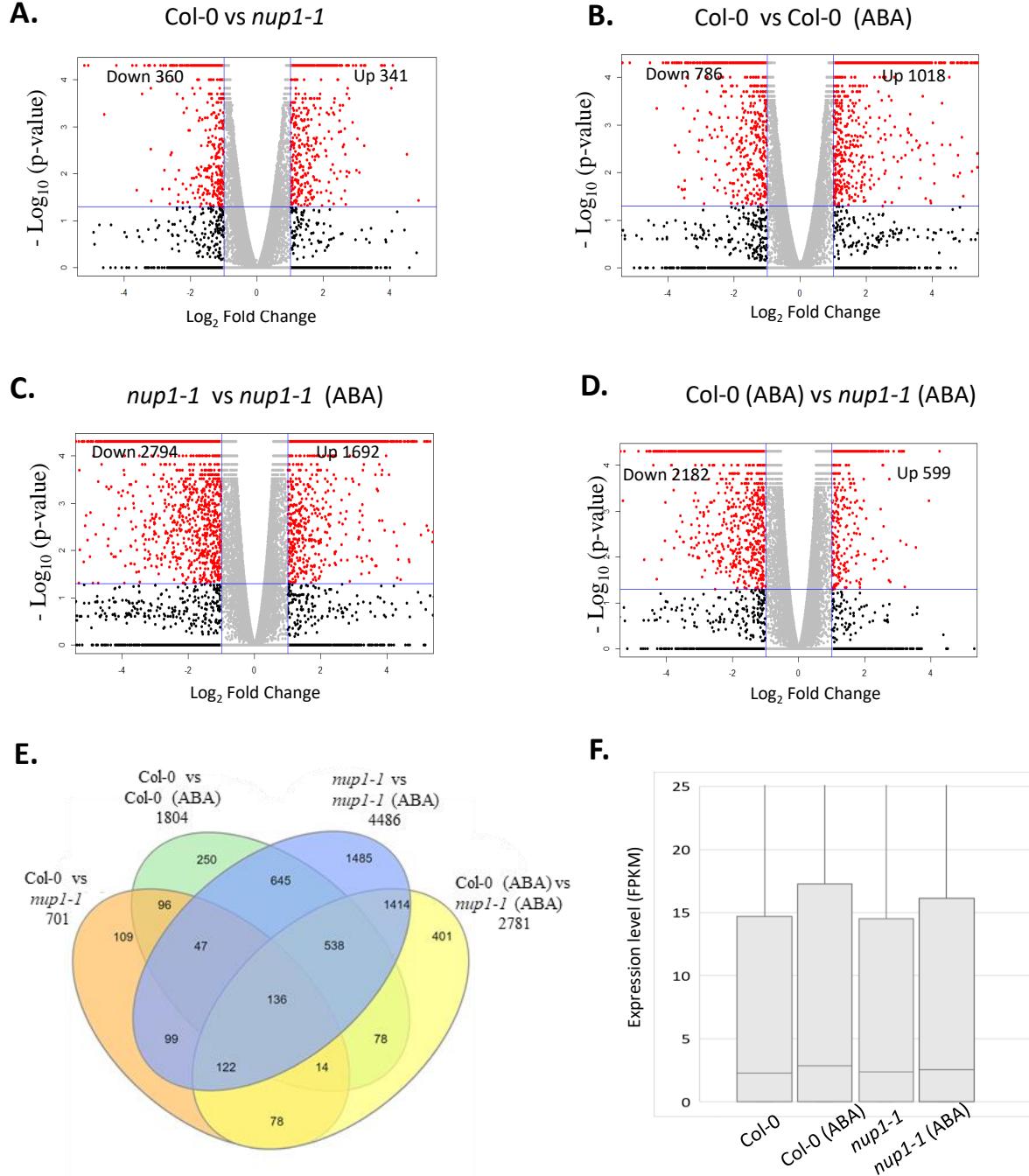


Figure 1. NUP1 is required for germination and early seedling establishment under abiotic stress.


Seed germination was recorded for the indicated genotypes grown on $\frac{1}{2}$ MS medium plates with or without 1 μ M ABA. Radicles were seen as white tissue, enlarged, and shown in a black box. Values are the mean \pm SD. Statistically significant differences were calculated based on Student's t-tests from day 5 data (* $p < 0.05$).

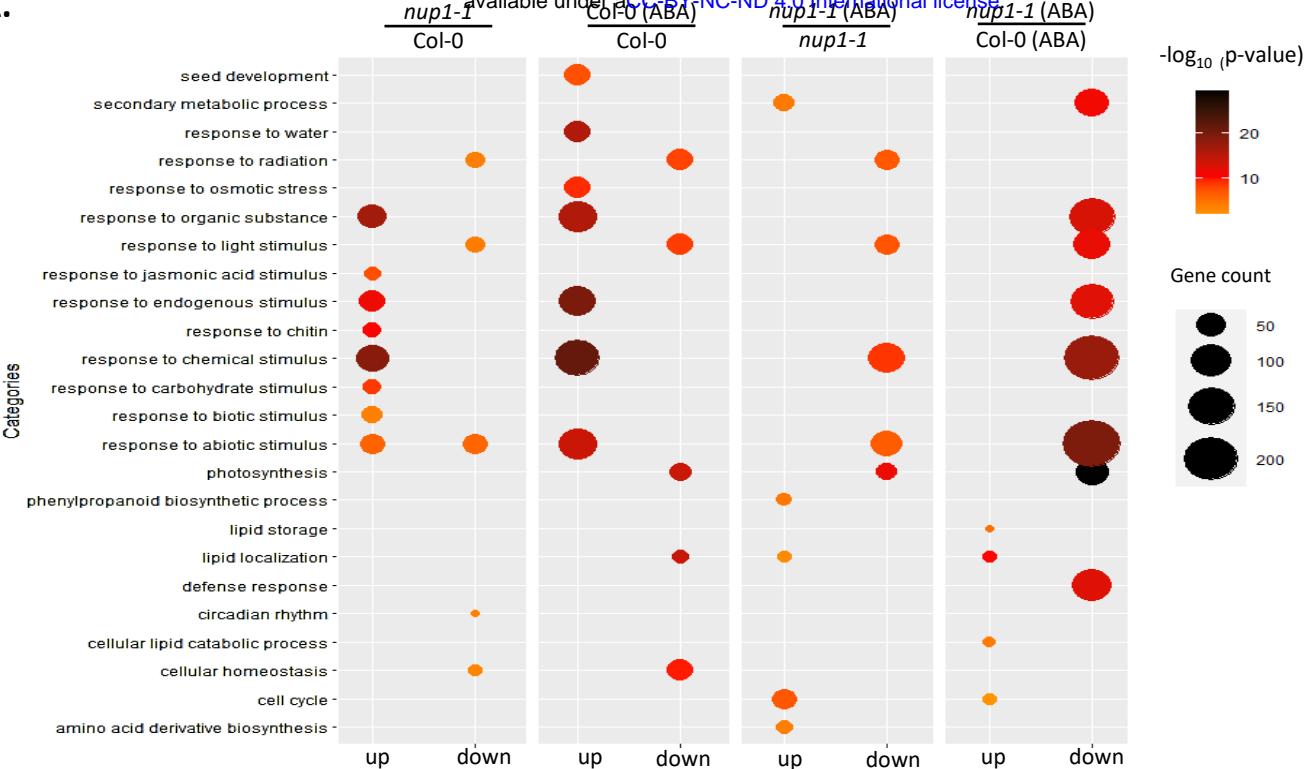
A. Germination of Col-0, *nup1-1*, *nup1-3*, overexpression line 35S NUP1-YFP (*nup1-2 35S::NUP1-YFP*), and complemented line NUP1-YFP (*nup1-2 pNUP1::NUP1-YFP*) grown on $\frac{1}{2}$ MS medium plates with or without 1 μ M ABA. **B.** Representative images of five-day-old seed/seedlings with or without 1 μ M ABA **C-D.** Radicle emergence (C) and cotyledon emergence (D) rates were measured from day 1 to 8 of germinating seeds in a growth chamber. **E.** Measurement of stomatal opening in *Arabidopsis* leaves. Leaves of 7-day-old Col-0 and *nup1-1* plants with or without ABA treatment (1 μ M) were used to measure the stomatal opening. The stomata opening was significantly reduced in ABA-treated *nup1-1* plants compared to mock-treated *nup1-1*. Corresponding representative stomata samples are shown above the bar graph. Values are mean \pm SD from at least 20 samples from three biological replicates. Statistical differences of the stomatal opening between Col-0 and *nup1-1* leaves were determined by Student's t-test (* $p < 0.05$). **F.** Drought test assay of *nup1-1* plants under lab conditions. a. Plate at day 7, before exposure to dry air for 6 hrs in the laminar hood. b. Plate after one week of transferring to the growth chamber following drying. c. Comparison of surviving Col-0 and *nup1-1* plants after dry air treatment. No significant difference between the survival rate of Col-0 and *nup1-1* plants. Values are the mean \pm SD from at least 30 samples from three biological replicates.

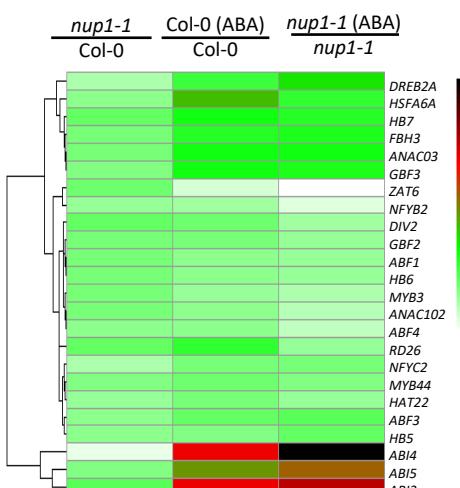
A.



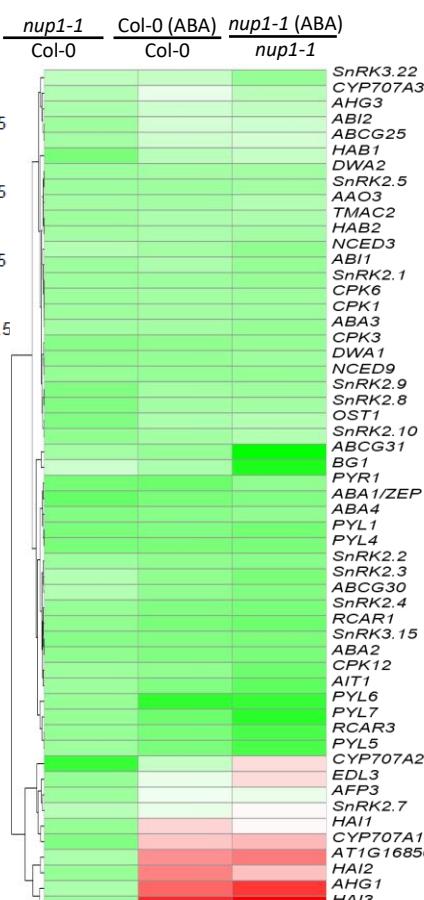
B.

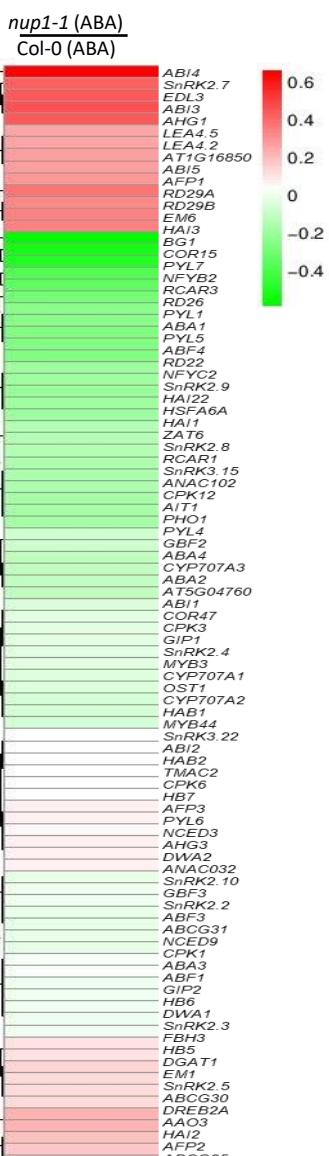
Figure 2. The expression level of ABA-related genes in *Arabidopsis* seeds and 5-day-old seedlings of Col-0 and *nup1-1*.

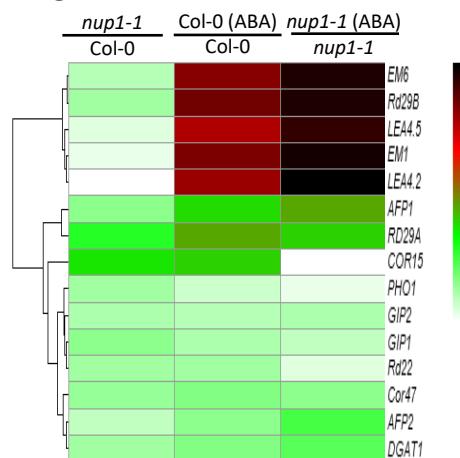

A. Expression of ABA-related genes in Col-0 and *nup1-1* dry seeds. **B.** Expression of ABA-related genes in Col-0 and *nup1-1* 5-day-old seedlings. Gene expression values were normalized with *ACTIN2*. Values are mean \pm SEM of three biological replicates and three technical replicates. A two-tailed Student's t-test was employed to test the statistical difference between Col-0 and *nup1-1*. The significant difference is denoted by * for $p < 0.05$, ** for $p < 0.01$.


Figure 3. Transcriptomic analysis of *nup1-1* seedlings reveals changes in the expression pattern of hundreds of genes.

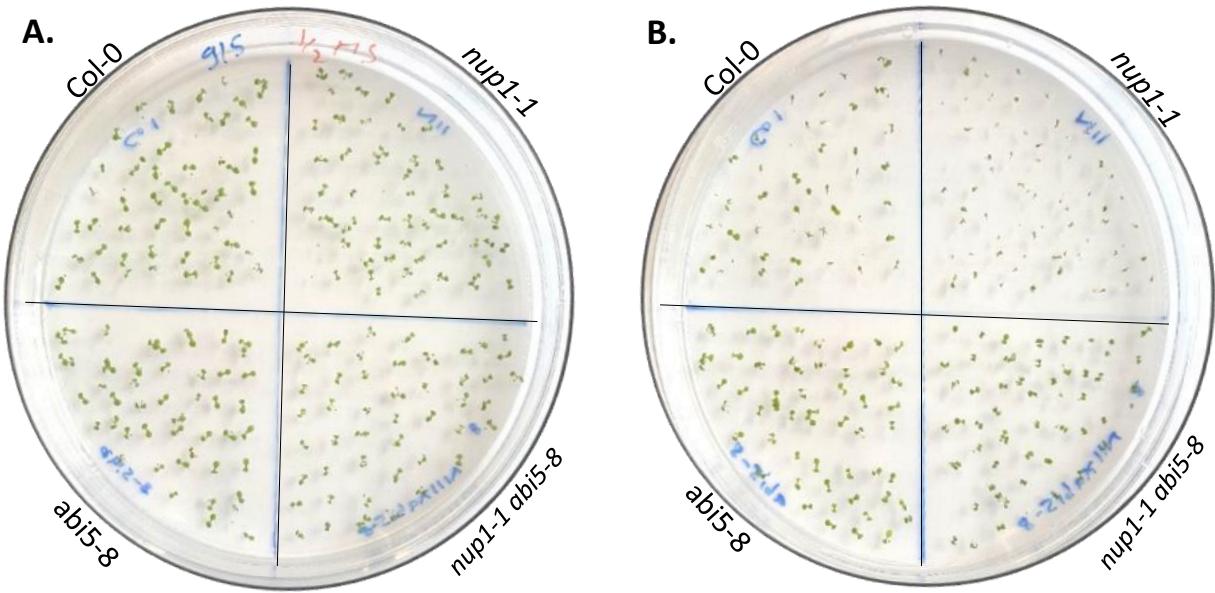
A-D. Volcano plots showing the number of upregulated and downregulated genes in ABA-treated (1 μ M) and mock-treated Col-0 and *nup1-1* (specified in each of the panels). X-axis: Log_2 fold change of Fragments Per Kilobase of transcript per Million mapped reads (FPKM); Y-axis: $-\text{Log}_{10}$ (p-value) for the significance of differential gene expression. Red dots represent transcripts that are differentially expressed ($p < 0.05$, fold change > 2). Black dots represent transcripts that are not differentially expressed ($p \geq 0.05$, fold change ≥ 2). Grey represents transcripts that are not differentially expressed (fold change ≤ 2). The horizontal blue line indicates $p = 0.05$ (upper: $p < 0.05$; bottom: $p > 0.05$). The vertical blue lines indicate fold change = 2 (fold change < 2 between two blue lines). **E.** Venn diagram showing the number of overlapped and unique DEGs between different genotypes and ABA treatments. The overlapped and unique number of DEGs (differentially expressed genes) between Col-0 and *nup1-1*, treated with or without 1 μ M ABA, were plotted in the Venn diagram. The total DEGs for each comparison are labeled outside the diagram. The total number of overlapped and unique genes is shown inside the diagram. **F.** Box plots showing the average gene expression level. Gene expression level was measured as FPKM for ABA-treated and mock-treated 5-day-old Col-0 and *nup1-1* seedlings. One-way ANOVA was used to determine the statistical difference between different groups. Lowercase letters indicate significant differences between genetic backgrounds. The line inside the box plot represents the median. The interquartile range shows the middle 50% of the data point that ranges between the 25th and 75th percentile. The upper quartile is Q3 and the lower quartile is Q1.


A.


B.


D.

E.



C.

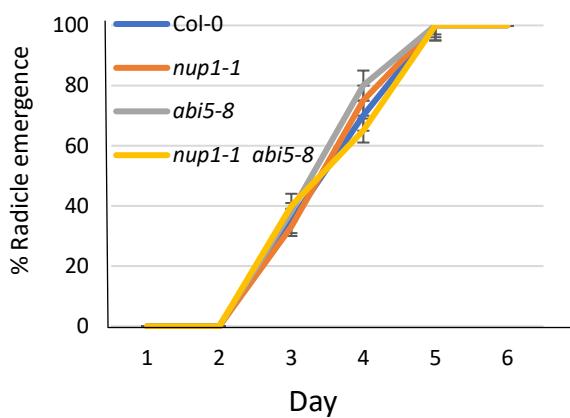
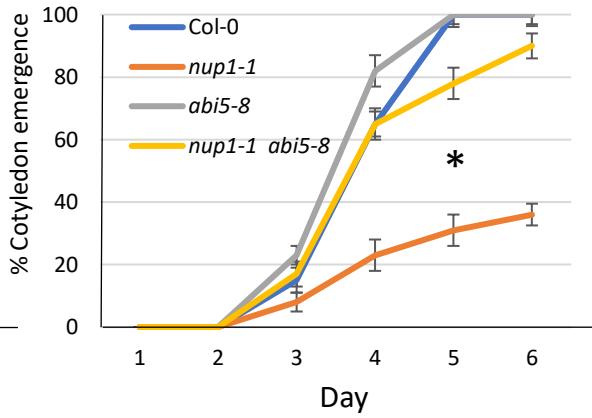
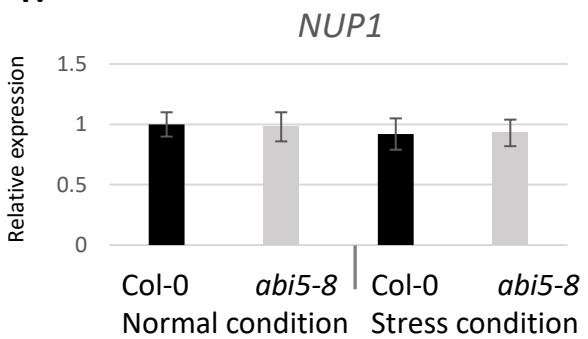


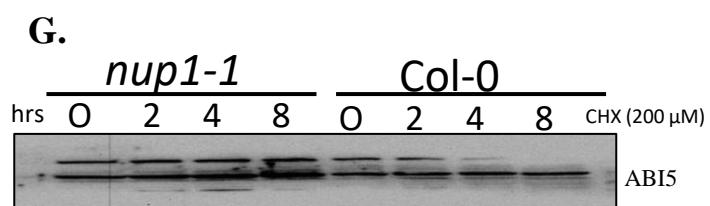
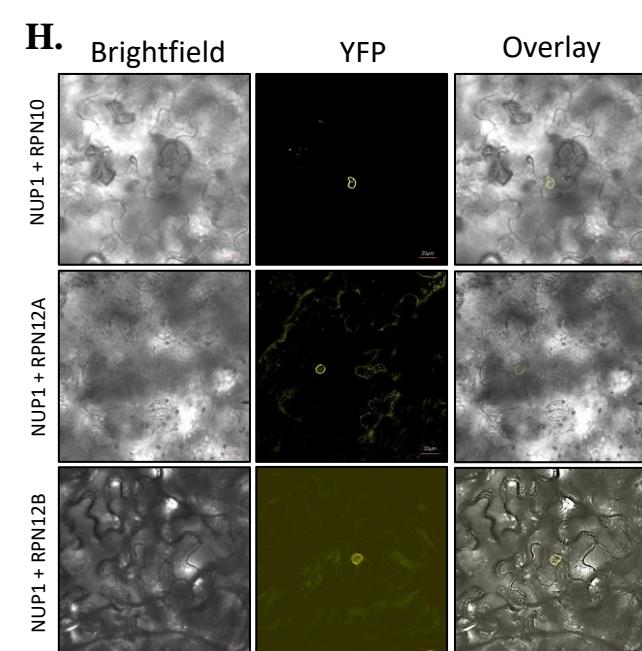
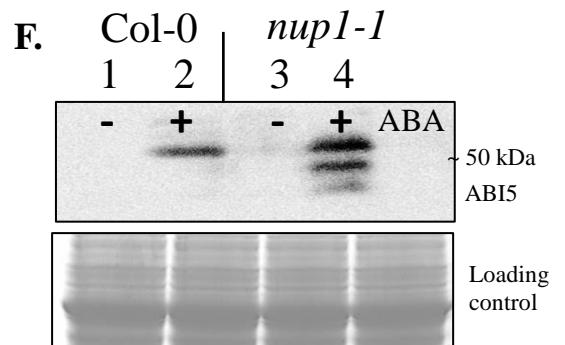
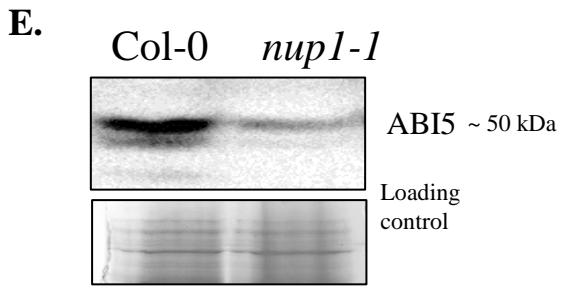
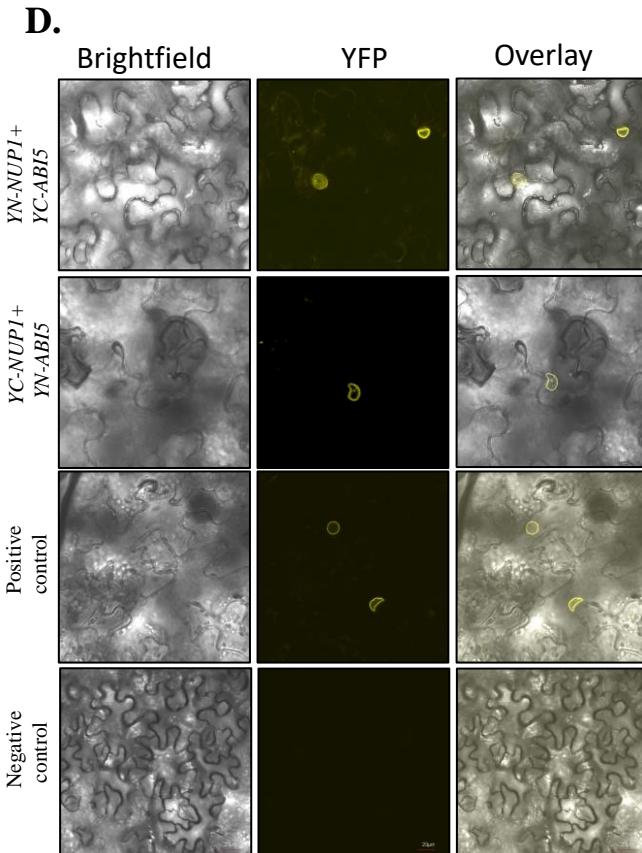
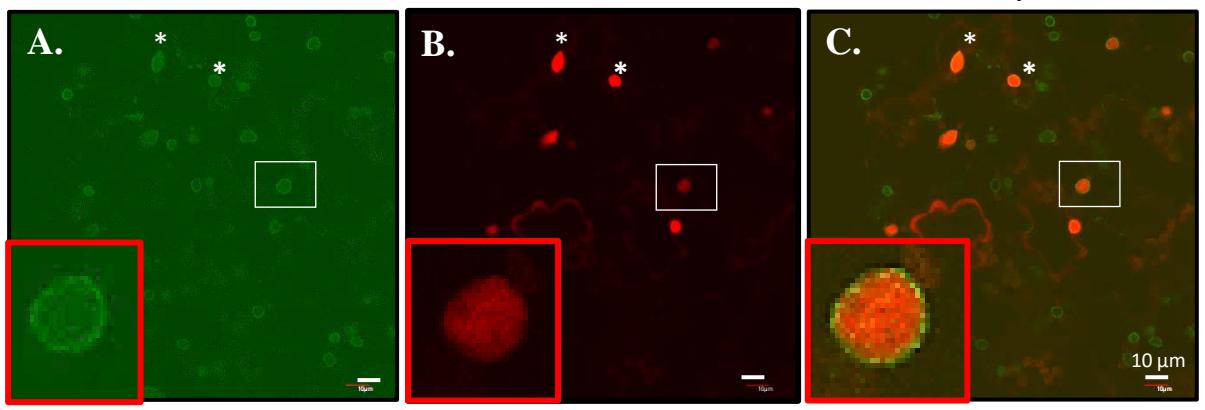
Figure 4. Gene ontology enrichment analysis and Heat maps showing the expression pattern of ABA-related genes in Col-0 and *nup1-1* with or without ABA treatment.


A. Gene ontology enrichment analysis illustrated as a bubble plot created in R using ggplot2 package. The number of upregulated (up) and downregulated (down) genes for comparison of different groups was plotted as a bubble. The size of the bubble is directly proportional to the number of genes and the color of the bubble represents the $-\log_{10}$ p-value as shown in the color key. The heat map was plotted as a $-\log_{10}$ (ratio of FPKM values). Positive and negative values indicate increased and decreased gene expression, respectively. The color key represents the degree of change in gene expression. **B.** Heat map illustrating the expression pattern of selected transcription factors (TFs) in ABA-treated and mock-treated Col-0 and *nup1-1*. Gene expression levels of 24 TFs were plotted for different groups (as labeled). **C.** Heat map illustrating the expression pattern of effector genes in ABA-treated and mock-treated Col-0 and *nup1-1*. Gene expression levels of 15 effector genes were plotted for different groups (as labeled). **D.** Heat map illustrating the expression pattern of ABA-related genes in ABA-treated and mock-treated Col-0 and *nup1-1*. **E.** Heat map illustrating the expression pattern of ABA-related genes in ABA treated *nup1-1* compared to ABA treated Col-0.

C.

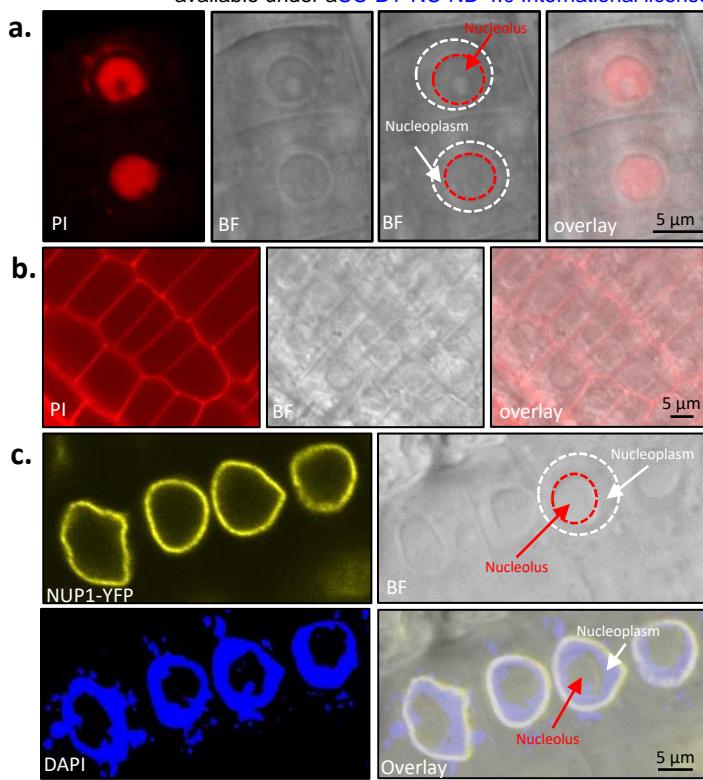

D.

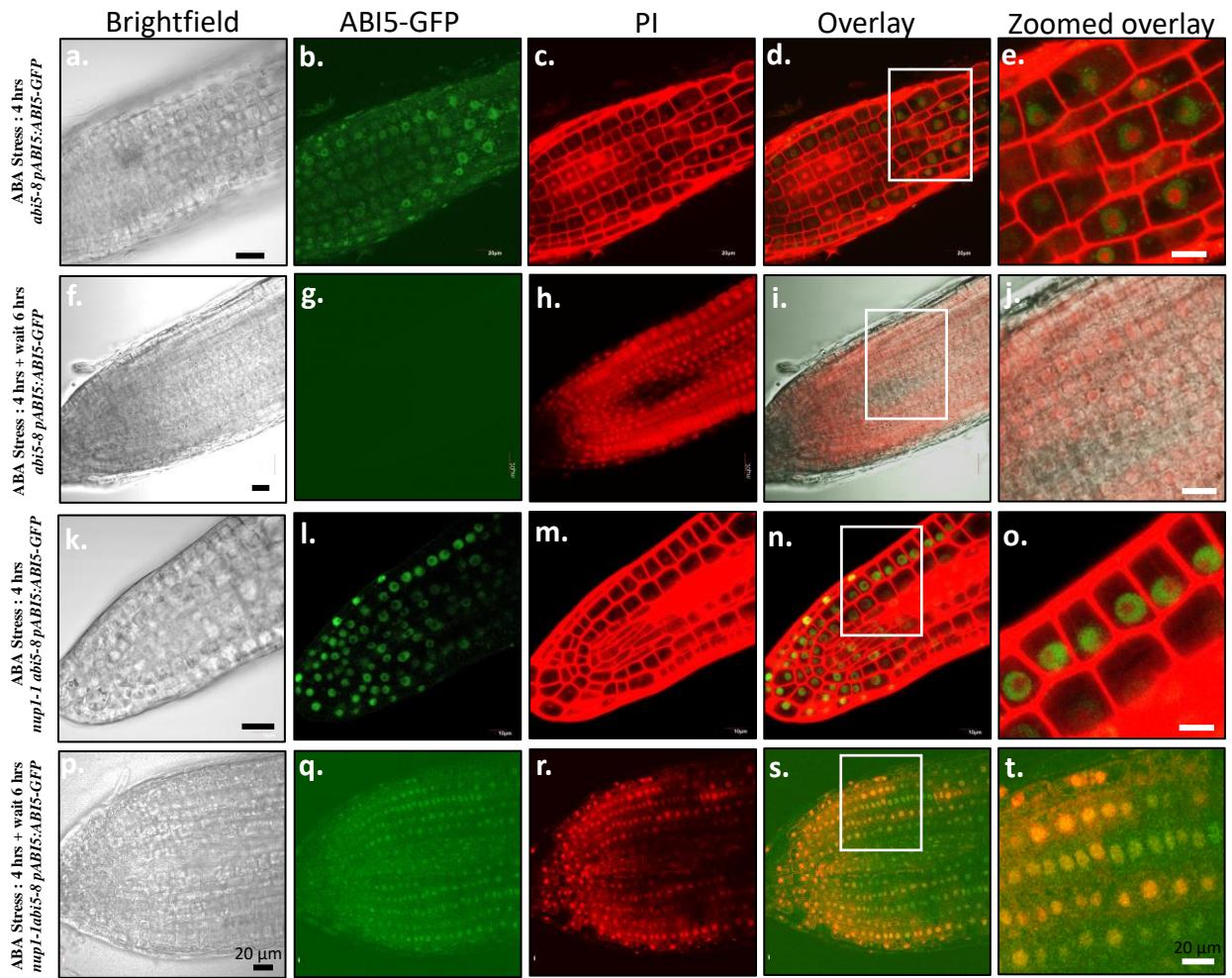
E.

F.

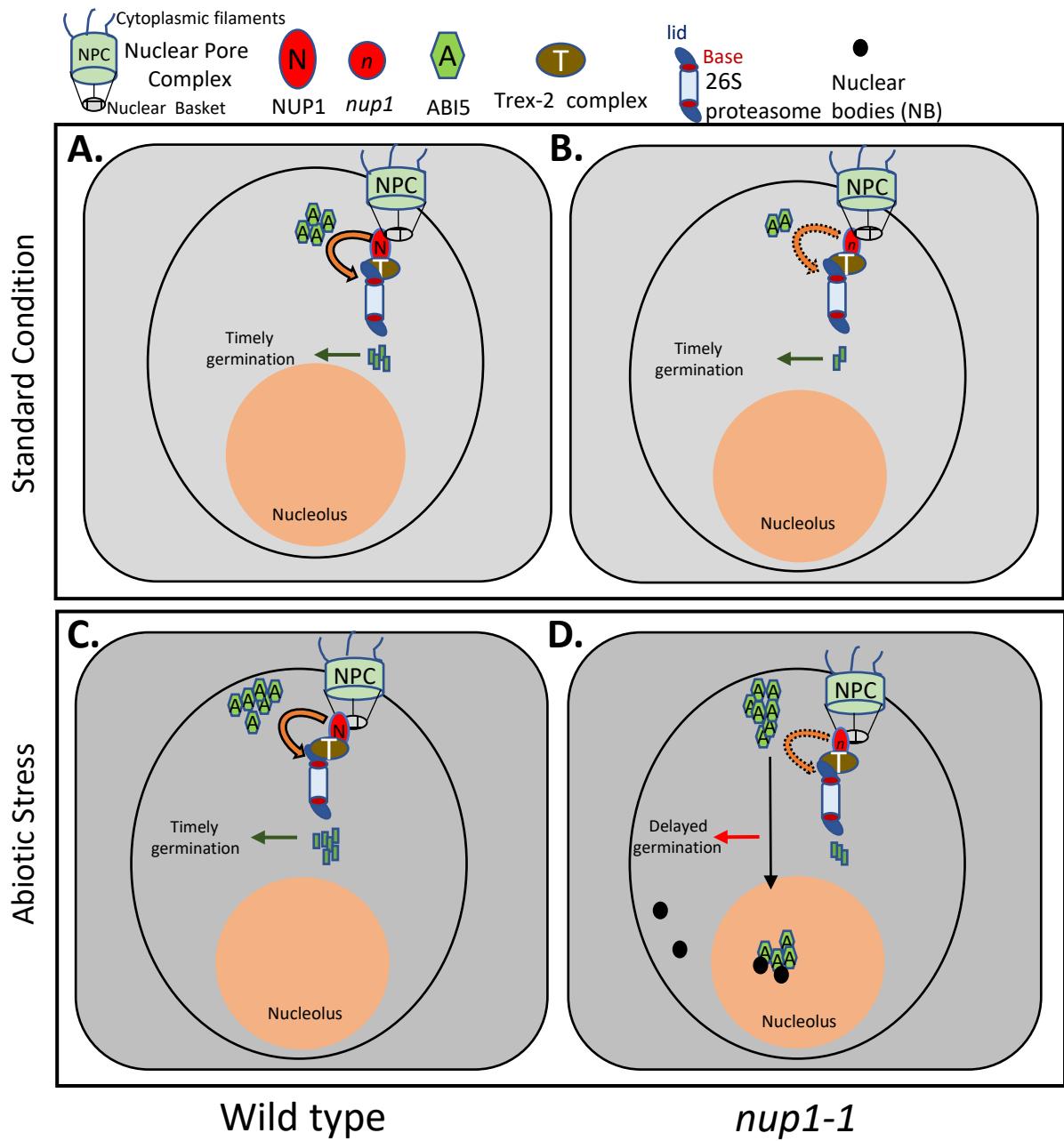
Figure 5. *NUP1* acts upstream of *ABI5* in regulating *Arabidopsis* seed germination.


A-B. Seed germination, recorded at day 5, of Col-0, *nup1-1*, *abi5-8*, and *nup1-1 abi5-8* sown and grown on $\frac{1}{2}$ MS medium plates as a control (A) and on $\frac{1}{2}$ MS medium plates with 1 μ M ABA as a treatment (B). **C-D.** Graph showing the percentage of radicle and cotyledon emergence (germination) of seeds from different genetic backgrounds grown for 5 days on $\frac{1}{2}$ MS medium plates with 1 μ M ABA. The *nup1-1* germination is significantly lower than Col-0, *abi5-8*, and *nup1-1 abi5-8* (Student's t-test, * $p < 0.05$). The germination of *nup1-1 abi5-8* is similar to Col-0. **E-F.** *ABI5* and *NUP1* expression levels in 5-day-old *nup1-1* and *abi5-8* plants, respectively, with or without stress condition (1 μ M ABA for 3 hrs). The gene expression levels were normalized to *ACTIN2*. Values are the mean \pm SD of three biological replicates. The statistical differences in germination were calculated from day 5 data using a two-tailed Student's t-test, * $p < 0.05$.


Figure 6. Physical interaction of NUP1 with ABI5 and the proteasome and the effect of NUP1 on the ABI5 level.

A-C. Co-localization assay of NUP1 and ABI5 in *Arabidopsis*. Four-day-old *Arabidopsis* transgenic seedlings (*nup1-2 pNUP1::NUP1-YFP*) were infiltrated for transiently expressing an ABI5-expressing plasmid (35S::*ABI5-CFP*). After 2 days, leaves were observed under a confocal microscope for co-localization signals. NUP1-YFP signal detected in A; ABI5-CFP signal detected in B, and C is an overlay of A and B. The small red boxes in A-C are enlarged signals of the indicated proteins (white boxes). Co-localization of NUP1-YFP and ABI5-CFP can be seen as orange color in nuclear envelope regions (red box of Figure C). **D.** BiFC assay testing the interaction between NUP1 and ABI5. YFP signal was detected by confocal microscopy in tobacco leaves. *Agrobacterium* containing BiFC vectors (YN-NUP1+YC-ABI5) and (YC-NUP1 + YN-ABI5) were used to transform 4-week-old tobacco leaves. After 2 days, the leaves were observed under a confocal microscope for potential protein interaction signals. Positive control: interaction between NUP1 and THP1 (Lu et al., 2010); negative control: YN-NUP1 and YC-CENTRIN2 (Zhang et al., 2020). **E-F.** Western blot showing the ABI5 levels in dry seeds and 5-day-old seedlings. Detection of ABI5 in protein extracts from Col-0 and *nup1-1* seeds (E) and seedlings (F) (treated with or without 1 μ M ABA (+/- ABA) for 5 days). Antibody used: anti-ABI5 (ab98831). ABI5 has three splicing isoforms which may result in up to three bands in Western blot. Scale bar: 10 μ m. Coomassie blue-stained gel image was used as a loading control. **G.** Western blot showing the level of ABI5 in CHX (200 μ M) treated Col-0 and *nup1-1* seedlings over the indicated time. Coomassie blue-stained gel image was used as a loading control. **H.** BiFC assay testing the interaction between NUP1 and five proteins from the 26S proteasome.

A.



B.

Figure 7. Tracking the subcellular localization of ABI5 expression and degradation in *Arabidopsis* roots.

A. Use of propidium iodide (PI) to label the nucleus in *Arabidopsis* root. a. PI labeling of *Arabidopsis* root showing stained nucleus. PI: propidium iodide; BF: Brightfield. Brightfield image is marked to show nucleolus and nucleus boundary. The big white circle represents the nuclear envelope and the red small circle represents the nucleolus boundary. b. PI labeling of *Arabidopsis* root showing labeled cell wall. c. Transgenic *Arabidopsis* expressing *pNUP1::NUP1-YFP*. The NUP1-YFP marker is combined with DAPI to confirm the boundary of nucleus and nucleolus in a plant root cells. B. Tracking subcellular localization of ABI5 expression and degradation by microscopy. a-e. Confocal images showing nuclear (nucleoplasmic) localization of ABI5-GFP signals in *abi5-8 pABI5::ABI5-GFP* plants, treated with 20 μ M ABA for 4 hrs and immediately observed. f-j. Confocal images showing absence of ABI5-GFP signals in *abi5-8 pABI5::ABI5-GFP* plants, treated with 20 μ M ABA for 4 hrs and observed after another 6 hr wait period. k-o. Confocal images showing nuclear (nucleoplasmic) localization of ABI5-GFP signals in the *nup1-1 abi5-8 pABI5::ABI5-GFP* plants, treated with 20 μ M ABA for 4 hrs, and immediately observed. p-t. Confocal images showing nuclear (nucleolus) localization of ABI5-GFP signals in *nup1-1 abi5-8 pABI5::ABI5-GFP* plants, treated with 20 μ M ABA for 4 hrs and observed 6 hrs later after removal of ABA. Brightfield: a, f, k, p. GFP channel for ABI5 localization: b, g, l, q. PI channel for nuclear marker: c, h, m, r. Overlay: d, i, n, s; and enlarged version of the sections marked by the white boxes displaying co-localization of GFP signals and PI signals (orange color): e, j, o, t. Scale bar: 20 μ m.

Figure 8. Proposed working model of proteasome-based ABI5 degradation near NPC during germination

A-B. Under standard growth condition (top panel). A. Col-0 wild-type seeds having a moderate amount of ABI5 degraded by the 26S proteasome-based degradation near NPC (indicated by curved arrow). B. *nup1-1* seeds have less amount of basal ABI5; and therefore, they also show timely germination despite the reduced activity of the proteasome (indicated by dotted curved arrow). C-D. Under abiotic stress such as ABA treatment (bottom panel). C. Col-0 seeds produce more ABI5, but it is degraded over time. D. *nup1-1* seeds accumulate more ABI5, but ABI5 degradation is slowed down due to reduced proteasomal activity, thus showing delayed germination (based on CHX assay Fig. 6G). Some ABI5 was seen as a bright spot in nucleolus indicating its localization in nuclear bodies (NB) (Supplementary Fig.8).