

1 **Distribution and extent of suitable habitat for geladas (*Theropithecus gelada*)**
2 **in the Anthropocene**

3
4 Ahmed Seid Ahmed^{1,2*}, Desalegn Chala^{3*}, Chala Adugna Kufa^{2,4}, Anagaw Atickem², Afework
5 Bekele², Jens-Christian Svenning^{5,6}, Dietmar Zinner^{7,8,9}

6
7 ¹Department of Biology, Hawassa University, P. O. Box 05, Hawassa, Ethiopia. Orcid ID: 0000-0001-
8 9024-4532

9 ²Department of Zoological Sciences, Addis Ababa University, P.O. Box. 1176, Addis Ababa, Ethiopia.
10 Orcid ID: 0000-0002-2397-6108

11 ³Natural History Museum, University of Oslo, P. O. Box 1172 Blindern, NO-0318 Oslo, Norway.
12 Orcid ID: 0000-0002-8045-6950

13 ⁴Department of Biology, Woldia University, P. O. Box 400, Woldia, Ethiopia. Orcid ID: 0000-0001-
14 7744-023X

15 ⁵Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus
16 University, Ny Munkegade 114, DK-8000 Aarhus C, Denmark. Orcid ID: 0000-0002-3415-0862

17 ⁶Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology,
18 Aarhus University, Ny Munkegade 114, DK-8000 Aarhus C, Denmark.

19 ⁷Cognitive Ecology Laboratory, German Primate Center, Leibniz Institute for Primate Research; 37077
20 Göttingen, Germany. Orcid ID: 0000-0003-3967-8014

21 ⁸Department of Primate Cognition, Georg-August-Universität Göttingen; 37077 Göttingen, Germany.

22 ⁹Leibniz Science Campus Primate Cognition; 37077 Göttingen, Germany.

23
24 * Shared first authorship
25 Correspondence

26 Ahmed Seid Ahmed, E-mail: ahmedse4378@gmail.com

27
28

29 **Distribution and extent of suitable habitat for geladas (*Theropithecus gelada*)**
30 **in the Anthropocene**

31

32 **Abstract**

33 **Background:** Climate change coupled with other anthropogenic pressures may affect species
34 distributions, often causing extinctions at different scales. This is particularly true for species
35 occupying marginal habitats such as gelada, *Theropithecus gelada*. Our study aimed to model
36 the impact of climate change on the distribution of suitable habitats for geladas and draw
37 conservation implications. Our modelling was based on 285 presence locations of geladas,
38 covering their complete current distribution. We used different techniques to generate
39 pseudoabsence datasets, MaxEnt model complexities, and cut-off thresholds to map the
40 potential distribution of gelada under current and future climates (2050 and 2070). We
41 assembled maps from these techniques to produce a final composite map. We also evaluated
42 the change in the topographic features of gelada over the past 200 years by comparing the
43 topography in current and historical settings.

44 **Results:** All model runs had high performances, AUC = 0.87 – 0.96. Under the current climate,
45 the suitable habitat predicted with high certainty was 90,891 km², but it decreased remarkably
46 under future climates, -36% by 2050 and -52% by 2070. Whereas no remarkable range shift
47 was predicted under future climates, currently geladas are confined to higher altitudes and
48 complex landscapes compared to historical sightings, probably qualifying geladas as refugee
49 species.

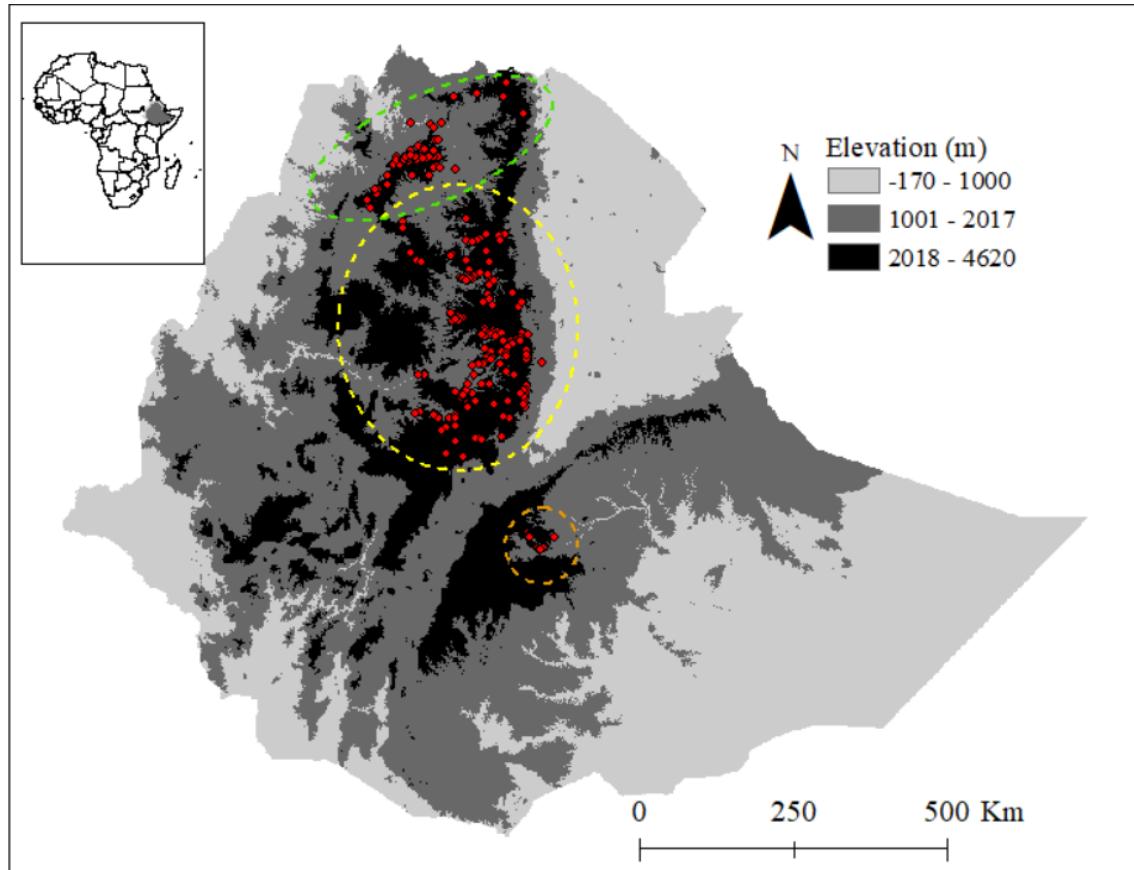
50 **Conclusions:** Our findings indicated that climate change most likely results in a loss of suitable
51 habitat for geladas, particularly south of the Rift Valley. The difference in topography between
52 current and historical sightings is potentially associated with anthropogenic pressures that
53 drove niche truncation to higher altitudes, undermining the climatic and topographic niche our
54 models predicted. We recommend protecting the current habitats of geladas even when they
55 are forecasted to become climatically unsuitable in the future, in particular for the population
56 south of the Rift Valley.

57 **KEYWORDS:** Climate change, Ethiopia, habitat suitability modelling, highland species,
58 MaxEnt, primate

59 **1 INTRODUCTION**

60 Climate change is triggering alterations and shifts in ecosystems worldwide, causing changes
61 in the distribution and availability of suitable habitats for many species, including primates [1-
62 6]. For most taxa distribution models predict substantial habitat loss by 2100 due to climate
63 change [7]. In particular, the expected upslope shift of habitats in mountain areas is expected
64 to lead to a reduction of suitable habitats and the extinction of range-restricted high-altitude
65 species [8-10].

66 Among primates, a few species belong to such range-restricted high-altitude species, e.g.,
67 snub-nosed monkeys (*Rhinopithecus* spp.) in China and Myanmar [11, 12] and geladas
68 (*Theropithecus gelada*) in Ethiopia [13]. Geladas are endemic to Afro-alpine grasslands of
69 Ethiopia at elevations from 1800 m to 4400 m asl [14-17]. Three populations, whose taxonomic
70 status is unclear, are recognized: *T. g. gelada* in northern Ethiopia, mainly in the Simien
71 Mountains, *T. g. obscurus*, in the central highlands of Ethiopia, and a small population south
72 of the Rift Valley in the Arsi Mountains (*T. g. ssp. nov.*) [17-19; Fig. 1]. Interestingly, Chiou
73 et al. [19] found a chromosomal polymorphism in geladas that could potentially contribute to
74 reproductive barriers between populations, which suggests specific status for the three
75 populations (subspecies).


76 Even without taking the effects of climate change into account, the population size of
77 geladas is generally decreasing due to the conversion of their habitat into farmland, grazing
78 grounds for livestock, and settlements [17]. *T. g. obscurus* is listed as of Least Concern by
79 IUCN [20], whereas *T. g. gelada* is listed as Vulnerable [21]. The conservation status of the
80 southern population is not yet officially assessed, but it seems that this population is under
81 particular pressure due to its already small population size and extreme anthropogenic habitat
82 conversion [22, 23].

83 In general, the effects of climate change on Ethiopia's biodiversity have not been well
84 studied [24], but recently the effects of climate change on habitat suitability of two other
85 endemic high-altitude species of the Ethiopian highlands have been modelled, the Walia ibex
86 (*Capra walie*) and the giant lobelia (*Lobelia rhynchopetalum*). In both studies, significant
87 reductions in the size of the species ranges have been projected [9, 25]. In a pioneering study
88 on geladas, Dunbar [26] already estimated that for every 2°C rise in the mean temperature, the
89 lowest altitude geladas may inhabit will rise by 500 m.

90 For adequate conservation strategies under climate change, it is essential to include
91 information on future potential distributions of suitable habitats [24, 27]. Species distribution
92 models (SDMs) based on current presence-absence data or presence data alone in combination

93 with climate change models can be applied to predict the spatiotemporal changes in suitable
94 habitats [28-31]. In our study, we applied species distribution modelling to project the
95 distribution and extent of suitable habitats for geladas in the Ethiopian highlands under 2050
96 and 2070 climate change scenarios.

97

98
99 **Fig. 1** Topographic map of Ethiopia indicating the relief and geographic positions of
100 occurrence locations of geladas (*Theropithecus gelada*, red dots) after 2000. The broken lines
101 encircle the assumed distribution ranges of the northern (*T. g. gelada*, green), the central (*T. g.*
102 *obscurus*, yellow), and the southern (*T. g. ssp. nov.*, orange) populations [18, 32].

103

104

105 **Fig. 2** Gelada herd (*Theropithecus gelada obscurus*) in the Afro-apline grassland in the
106 highlands of cental Ethiopia (Guassa Community Conservation Area). Photos credit - Jeffrey
107 T. Kerby

108

109 **2 MATERIALS AND METHODS**

110 **2.1 Occurrence data**

111 We assembled occurrence points for the three subspecies of geladas from different sources
112 such as personal surveys (n= 396), literature [15, 32-35; see also Table S1) and from GBIF.org
113 [36]. These occurrence data were collected after 1999 to represent the current presence data of
114 geladas. To explore whether gelada occurrence already changed topographically (e.g., altitude
115 of occurrence), we compared historical occurrence data [14, 33] collected before 2000 with the
116 current data. For this comparison, we divided the historical data into data collected before 1900
117 and data collected between 1900 and 1999. We included only data collected after 1999 in our
118 modelling approach. We further filtered this data by removing duplicates, and, in cases where
119 we detected multiple occurrence points within 1 km × 1 km grid area, we included only one
120 point. Finally, we retained 285 occurrence points for our modelling (Fig. 1). Since the number
121 of occurrence points for each subspecies was not sufficient for proper modelling at subspecies
122 level, we restricted our analysis to the species (genus) level.

123

124

125 **2.2 Environmental variables**

126 We initially considered 23 environmental variables for the modelling including 19 bioclimatic
127 variables, land cover (<https://cds.climate.copernicus.eu/>) and vegetation type
128 (http://landscapeportal.org/layers/geonode:veg_ethiopia), and two topographic variables
129 (slope and slope SD). We obtained the bioclimatic variables from the WorldClim v2.1 at a
130 spatial resolution of 30 arc seconds ($\sim 1 \text{ km}^2$) [37]. Geladas frequently use more or less flat
131 areas on plateaus for foraging and steep cliffs as a refuge from predators and as sleeping sites
132 [16; Fig. 2]. Therefore, we added slope data. We derived the slope angle map from a digital
133 elevation model downloaded from the Shuttle Radar Topography Mission Digital Elevation
134 Model [SRTM DEM; 38]. In the previous study, it was shown that manually collected
135 occurrence points for animals adapted to complex topographic landscapes tend to be confined
136 to their foraging sites and not to places where the animals are in their inactive phases (sleeping
137 sites) and taking refuge from predators [25]. This relationship most likely caused that slope
138 was not found to be an important predictor variable for the Walia ibex (*Capra walie*), although
139 this species is a steep-slope specialist [25]. Hence, topographic complexity may better predict
140 the topographic requirements of geladas. Thus, to represent topographic complexity, we
141 additionally computed the slope standard deviation as a proxy from pixels within a radius of
142 three 1-km^2 grid cells around one central grid cell for the whole landscape of the study area and
143 used it as an additional predictor.

144 To avoid multi-collinearity, we stacked all 23 environmental variables and extracted their
145 values at each of the occurrence points and additionally at 10,000 randomly generated points.
146 Based on these points, we computed Pearson's pairwise correlations among all variables. From
147 variables with a pairwise correlation coefficient of $r > |0.8|$, we retained only those variables
148 that had the lowest variable inflation factor values, computed in the 'USDM' R package [39;
149 Fig. S1]. With this procedure, we reduced the number of environmental variables from 23 to
150 13 for the final model run (Table 1).

151 For the temporal projections, we used the HadGEM3-GC global circulation model
152 (GCMs) with three shared socioeconomic pathways (SSPs): (1) the straightest emission
153 pathway scenario (SSP 2.6), (2) the intermediate (SSP 4.5), (3) the worst (SSP 8.5) and applied
154 them for two periods (2041–2060 [2050] and 2061–2080 [2070]) [40].

155

156 **2.3. Model fitting**

157 We used the maximum entropy algorithm MaxEnt v3.4.4 [41] to model suitable habitats for
158 geladas under the current climate and for the projection to future climate scenarios. MaxEnt is

159 a commonly used algorithm to predict species distributions and is robust even with small
160 sample sizes [29, 42, 43]. One factor that affects the model performance of MaxEnt is the
161 spatial extent from which pseudo-absence points are taken [44-46]. Generating pseudo-absence
162 points over larger areas that are already known to be unsuitable to the model species may
163 exaggerate model performance. Thus, restricting the spatial extent of pseudo-absence points is
164 important [9, 25, 47-49]. We generated 10,000 pseudoabsence points as implemented in default
165 MaxEnt [41]. However, we restricted these points to areas where we expect suitable habitats
166 for geladas by two approaches. First, we used a bias file [48]. The bias file works by minimizing
167 omission (false negatives) and commission errors (false positives), which may improve the
168 prediction performance of the model [50]. We created a bias file in ArcGIS version 10.7 by
169 mapping species records on a 1-km² grid and producing a minimum convex polygon. Second,
170 we restricted the area to the elevation range where geladas currently are known to occur. We
171 extracted the altitude of each gelada occurrence point and generated pseudoabsence points
172 within 90% of the total elevation range, omitting 2.5% of lower and upper ranges.

173 We combined the gelada occurrence points with both datasets for pseudoabsence and
174 used them and the values of the selected environmental variables as input into MaxEnt. We
175 split both combined datasets into ten equal parts using a cross-validation technique and run ten
176 replicates of two versions of the MaxEnt model [51], one simple and one complex. The
177 complex model was run by setting the regularization multiplier value to 1 which is the default
178 MaxEnt setting [52], and to 8 for the simple model [25]. Eventually, we run four MaxEnt
179 models: two complex models, one using the pseudo-absence points generated using bias file
180 and one using the pseudo-absence points generated within the elevation limits of geladas
181 occurrence points, and two simple models using the same two datasets. For all model runs, we
182 used 90% of the combined occurrence and pseudo absence points for model training and (10%)
183 of the data for validation. The robustness of the models was evaluated with 5000 iterations [41,
184 53]. All four MaxEnt models were projected into the three emission scenarios by 2050 and
185 2070 (see above). We classified the output maps from all models and model projections into
186 binary suitable/unsuitable classes using three probability threshold criteria: (1) 10 percentile
187 logistic training threshold, which is the predicted probability at a 10% omission rate of the
188 training data; (2) using maximum test sensitivity plus specificity, which is the probability
189 threshold at which the sum of fractions of correctly predicted presence and pseudo-absence
190 points is the highest; and (3) using equal test sensitivity and specificity, which is the probability
191 thresholds at which the difference between fractions of correctly predicted presence and
192 pseudo-absence points are the lowest. In sum, we produced 12 binary maps for the current

193 climate (four versions of the MaxEnt model with three threshold criteria for each version; Fig.
194 S2) and 36 binary maps for future climate (four versions of the MaxEnt model times three
195 threshold criteria times three emission scenarios).

196 We ensemble the binary maps from both, current and future climate scenarios, and
197 produced three habitat suitability classes based on agreements among the maps in predicting
198 habitat suitability [9]: (1) highly suitable, when pixels from more than 60% of the binary maps
199 predict habitat as suitable (≥ 8 maps for the current climate and ≥ 22 maps for future climates);
200 (2) uncertain, when 30 – 60% of the maps predict habitat suitability (4 - 7 maps for current
201 climate and 12 – 21 maps for future climate conditions); and (3) unsuitable, when < 30% of the
202 maps (up to three maps under current climate and 10 maps under future climates conditions)
203 predicted habitat suitability. We further grouped the habitat suitability maps into two classes
204 by assigning “1” to the pixels that were classified as suitable with high certainty and “0” to the
205 rest to represent suitable and unsuitable habitats, respectively. We overlaid these maps to detect
206 spatiotemporal changes in habitat suitability and quantify the impact of climate change.

207

208 **2.4 Model evaluation**

209 We evaluated the accuracy of each model run by using the receiver operating characteristic
210 curve (ROC), a threshold-independent measure of a model’s ability to discriminate between
211 the pseudo-absence and the presence data [54]. This is a standard method to evaluate the
212 accuracy of predictive distribution models [55] AUC values vary from 0 (random
213 discrimination) to 1 (perfect discrimination) [56]. An AUC value of 0.5 or smaller indicates
214 that the model has no predictive power, whereas perfect discrimination between suitable and
215 unsuitable cells will give an AUC value approaching 1.0 [41].

216

217 **2.5 Historical changes in gelada elevation range**

218 To assess whether the elevation range of geladas already changed in historical times, we
219 compared elevations of historical gelada sightings from the periods before 1900 and before
220 2000 with the elevations of current sightings (after 2000). We extracted the corresponding
221 elevation range as the difference between maximum and minimum elevation within a radius of
222 four 90-m grid cells around the recorded localities (49 neighbour cells), elevation, and slope
223 standard deviations which are the standard deviation of elevations and slope among these
224 neighbouring grid cells, respectively (ArcGIS version 10.7). We additionally computed slope
225 maximum – the maximum slope among these neighbouring cells and slope range – the
226 difference between maximum and minimum slope values. We further extracted the value of

227 elevation from current and future (2050 and 2070) modelled suitable habitats and compared
228 the change in elevation with the historical data (Fig. S3).

229

230 **3 RESULTS**

231 **3.1 Variables that predict the distribution of suitable gelada habitat under climate change**

232 Under all settings, mean temperature of the wettest quarter (Bio8), vegetation, slope standard
233 deviation, and precipitation of the wettest month (Bio13) explained most in predicting gelada
234 occurrence (Table 1).

235

236

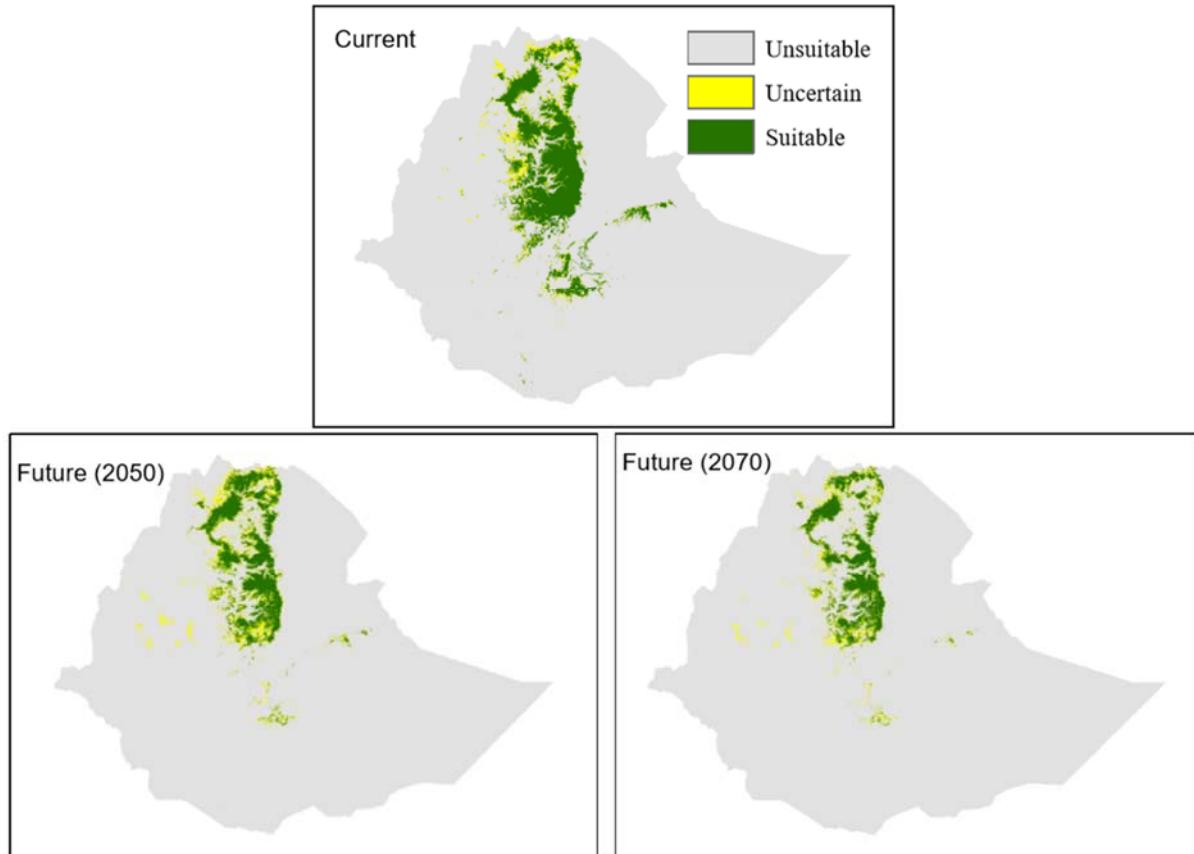
237 **Table 1** Contributions of the predictor variables to the four MaxEnt models. Reg_1: complex
238 MaxEnt model run with pseudo-absence points generated within the elevation range of geladas;
239 Reg_8: simple MaxEnt model run with pseudo-absence points generated within the elevation
240 range of geladas; Reg_1_WB: complex MaxEnt model run with pseudo-absence points
241 generated using bias file; Reg_8_WB: simple MaxEnt model run with pseudo-absence points
242 generated using bias file.

Variables	Variable contribution (%)				Average contribution (%)
	Reg_1	Reg_8	Reg_1_WB	Reg_8_WB	
Mean temperature of wettest quarter	31.3	36.5	39.9	37	36.2
Vegetation	27.3	26.6	13.6	13.4	20.2
Slope standard deviation	10.6	10.2	20.2	19.6	15.2
Precipitation of wettest month	11.0	7.3	5.1	8.8	8.1
Annual precipitation	10.1	7.0	6.5	4.3	7.0
Precipitation of coldest quarter	3.7	2.9	4.2	3.9	3.7
Isothermality	1.6	3.5	1.8	7.7	3.7
Mean diurnal range	0.7	3.8	1.4	3.5	2.4
Temperature seasonality	1.0	1.1	1.6	0.9	1.2
Precipitation of driest month	0.8	0.8	2.3	0.7	1.2
land use land cover	0.9	0.0	1.7	0.0	0.7
Precipitation of warmest quarter	0.4	0.2	0.8	0.2	0.4
Slope	0.6	0.0	0.8	0.1	0.4

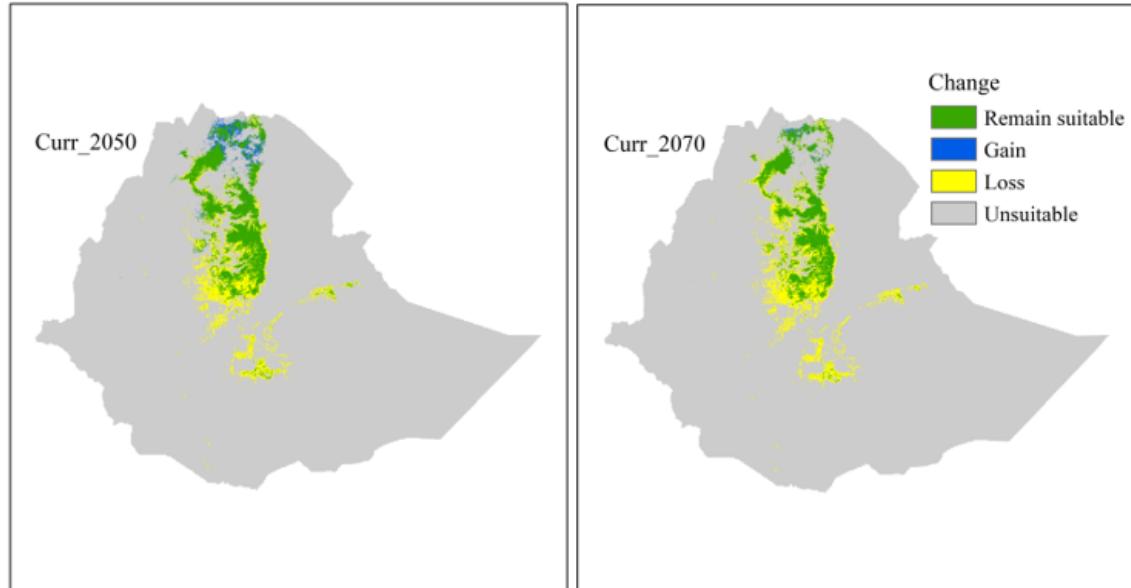
243
244 **3.2 Habitat suitability modeling**
245 All model versions had high predictive performance on both training and test data, with AUC
246 values ≥ 0.87 (Table 2). Models in which a bias file was used for generating pseudo-absence
247 points had relatively lower AUC values (0.88 for the simple model and 0.87 for the complex
248 model), whereas generating pseudo-absence points within the elevation range of gelada,
249 resulted in relatively higher AUC values (0.95 for complex and 0.95 for simple model). No
250 remarkable differences were observed between the AUC values computed on training and test
251 data in the predicted models. The AUC standard deviations of our results demonstrate that there
252 was nearly zero variability or consistency (Std between 0.01 and 0.03), indicating that our data

253 set was accurate enough to make predictions about the suitability of geladas (Table 2). Overall,
254 our prediction was consistent across the model complexity levels, runs, and datasets.

255


256 **Table 2** Average training and testing AUC values for the four MaxEnt model versions and
257 their average cut-off of threshold values. Reg_1: complex MaxEnt model run with pseudo-
258 absence points generated within the elevation range of geladas; Reg_8: simple MaxEnt model
259 run with pseudo-absence points generated within the elevation range of geladas; Reg_1_WB:
260 complex MaxEnt model run with pseudo-absence points generated using bias file; Reg_8_WB:
261 simple MaxEnt model run with pseudo-absence points generated using bias file. Diff: the
262 differences between the training and test AUC values.

Models	AUC			Cut-off thresholds		
	Training	Test	Diff	ETSS	MTSS	10%
Reg_1	0.96	0.95	0.01	0.23	0.24	0.14
Reg_8	0.95	0.95	0.00	0.29	0.31	0.17
Reg_1_WB	0.90	0.88	0.02	0.18	0.13	0.19
Reg_8_WB	0.87	0.87	0.00	0.22	0.17	0.20


263

264 Under the current climate, the models predicted an area of 90,891 km² to be suitable for geladas
265 (Fig. 3; Table 3). As expected, the suitable habitat mainly concentrates in the northern and
266 central highlands of Ethiopia, where the density of occurrence points is also the highest (Fig.
267 1). Under future climates conditions, the area predicted to be suitable with high certainty
268 declined to 55,829 km² by 2050 and to 43,576 km² by 2070 (Fig. 3, Table 3, Fig. S4 and S5),
269 a reduction of 39% and 58% by 2050 and 2070, respectively.

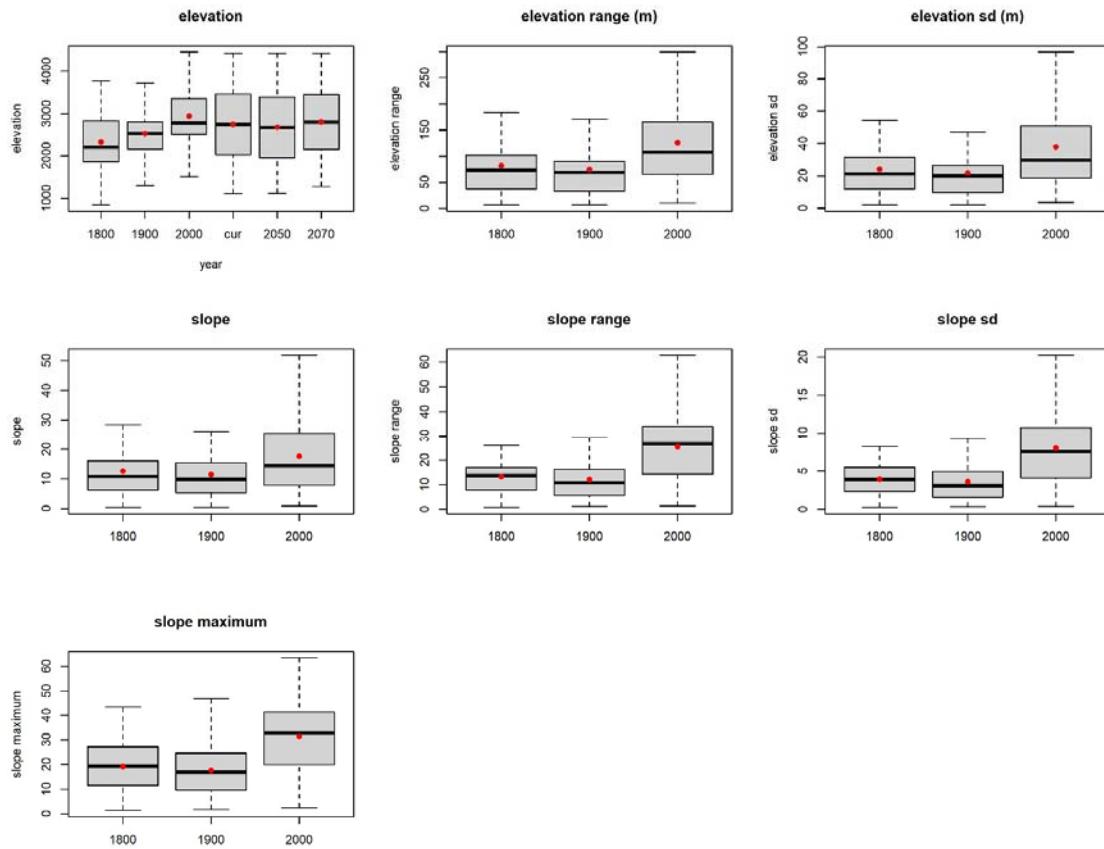
270

271
272 **Fig. 3** Distribution and extent of suitable gelada habitat produced from 12 binary maps for
273 current climate (current; 2 techniques to generate pseudo-absence points x 2 model complexity
274 levels x 3 threshold values; see also Fig. S2), and from 36 binary maps for future scenarios
275 (future 2050 and 2070); two techniques to generate pseudo-absence points x 2 model
276 complexity levels x 3 threshold values x 3 emission scenarios). When grid cells in 30% or less
277 of the binary maps (3 maps for current and 10 maps for future climates) predict suitability, we
278 considered them unsuitable. When grid cells of >30% - 60% maps (4 – 7 maps for the current
279 climate and 11 – 21 maps for the future climate conditions) predicted suitability, we considered
280 them uncertain in terms of suitability. When grid cells from >60% binary maps (> 7 maps for
281 the current and > 21 maps for the future) predict suitability, we considered them as suitable.

282
283 **Fig. 4** Predicted change in habitat suitabilities of geladas by 2050 (Curr_2050) and by 2070
284 (curr_2070). Green, pixels that are predicted to be suitable under both current and future
285 climates; blue, pixels that are not currently predicted to be suitable but forecasted to be suitable
286 in the future; yellow; currently suitable but not in the future; and grey, unsuitable both under
287 current and future climates.

288
289 **Table 3** Loss and gain of suitable habitat for geladas under future climate conditions (2050
290 and 2070).

scenarios	current extent km ²	remain suitable km ²	loss km ²	loss %	gain km ²	gain %	future extent km ²	change %
2050	90,891	50,362	40,529	44.6	5467	6.0	55,829	-38.6
2070	90,891	42,696	48,195	53.0	881	0.9	43,576	-52.1


291
292 Under both, current and future climate conditions, the majority of the highly suitable habitat is
293 predicted for the central and northern Ethiopian Highlands (Fig. 3 and 4). The model
294 projections also show some suitable habitat in northern Tigray. In the southern and eastern
295 Ethiopian Highlands, only a few areas with suitable habitat are predicted. In particular, for the
296 Bale, Arsi, and Ahmar Mountains south of the Rift Valley, and for some areas in the central
297 highlands, the models show a loss of habitat. In addition, in these areas, the models indicate
298 not only loss of habitat, but also fragmentation. However, the models also predict a gain in
299 suitable habitat for 2050 and 2070 in northern Ethiopia, specifically in eastern Tigray (Fig. 4
300 and S5).

301 Elevation and slope of the occurrence points increased over time (1800s to 2000s) (Fig.
302 5), but elevation did not increase in our projections for 2050 and 2070, compared to the current

303 scenario. The predicted suitable habitat had an average elevation of 2749 m, 2685 m, and 2809
304 m for the current and future climates, respectively. Similarly, slopes became steeper and the
305 topography more complex over time (Fig. 5).

306 The number of pixels per 1 km x 1 km grid cell of suitable habitat varied with elevation
307 (Fig. S3) and the highest number, for all scenarios, was found between 2000 and 3000 m asl.
308 However, the absolute number of pixels under the current (2000) condition was greater than
309 under future scenarios (Fig. S3).

310

311

312 **Fig. 5** Changes in topographic features (elevation and slope) of gelada occurrence localities
313 during the last 200 years. Box plots depict medians (horizontal lines), quartiles (box), ranges
314 (whiskers), and means (red dots). The temporal variation in elevation of gelada occurrence
315 locations is based on reported sighting from the 1800s, 1900s, and 2000s. For elevation change,
316 we also added elevation of suitable habitat under the current climate (cur), and future climate
317 conditions (2050 and 2070).

318

319

320 **4 DISCUSSION**

321 We modelled the distribution of the currently suitable habitat of a high-altitude primate, the
322 gelada, and projected the distribution to future climate scenarios. Our MaxEnt modelling
323 showed high predictive performance for the current distribution and suggests a significant
324 reduction of suitable habitats for geladas under future climates (by 2050 and 2070).

325

326 **Modelling**

327 In response to the need for species conservation and management planning in times of climate
328 change, many species distribution modelling approaches have been developed [28, 57]. Though
329 ensemble or model averaging has greater predictive capacity than individual modelling
330 approaches, MaxEnt is commonly used to infer species distributions and environmental
331 tolerances from occurrence data, particularly when optimized well. In this study, we applied
332 different complexity levels, datasets, and cut-off threshold values to tune the predictive
333 performance of the MaxEnt predictions to use the averaged result of our prediction for
334 designing conservation plans for gelada in the Ethiopian highlands.

335 Although all models had a high performance (AUC > 0.87), the model in which bias files
336 were used to generate pseudo-absence points had a relatively lower AUC, (test AUC = 0.87 for
337 the simple model and 0.88 for the complex model) than the model produced by using pseudo-
338 absence points generated within the elevation range of gelada (0.95 test AUC for both simple
339 and complex models). This may be due to the restriction of randomly generated points in
340 proximity to the presence points when bias file is used. The predicted suitable areas were also
341 lower when bias files were used [48]. Nevertheless, the differences among the modelling
342 approaches were not remarkable. In general, we found consistent results across different model
343 complexities and runs, little difference between test and training AUCs, and similar patterns of
344 prediction among different cut-off thresholds, which indicates the reliability of our approach
345 and the robustness of the models we used. The consistent results across different model
346 complexities and runs indicate acceptable data quality for predictions and the ability of the
347 MaxEnt models to identify the Ethiopian highlands as providing suitable habitat for geladas.

348 Our modelling shows that the mean temperature of the wettest quarter (Bio 8) was the
349 most influential predictor variable for the distribution of suitable habitat. In a previous study
350 on the consequences of climate change on gelada distribution, Dunbar [26] predicted that
351 geladas will be forced to live only on a few isolated mountain summits if the temperature would
352 increase by 7°C. However, the Intergovernmental Panel on Climate Change [58] estimates that
353 anthropogenically driven climate warming in the 21st century is likely to exceed 1.5°C relative

354 to the 1850–1900 period in all scenarios and exceeds 2.0°C in many scenarios. Though a 7°C
355 temperature increase may not happen within the next 100 years, the result is concerning.

356 We also found that the distribution of geladas is influenced by annual precipitation and
357 the precipitation of the wettest month. Annual precipitation is associated with food availability
358 and habitat quality [26], and it can affect space use and distribution directly or indirectly by its
359 impact on population dynamics. Results of a recent study on the demography of geladas in the
360 Simien Mountains from 2008 to 2019 suggest that these primates are less resilient to climate
361 variability than previously thought [59].

362 Although slope had the least average contribution to our models, interestingly slope
363 standard deviation was one of the three most important predictor variables (Table 2). Geladas
364 use the Afro-alpine grasslands on flat plateaus for foraging and steep cliffs as sleeping sites
365 and as refuges in case of predation [16, 60-65]. Slope standard deviation is a good proxy to
366 landscape complexity and thus can capture these topographic niche requirements of gelada as
367 well as other animals with similar adaptations. Thus we recommend the use of slope standard
368 deviation as input especially when distribution models are used to map habitat suitabilities of
369 high-altitude animals.

370

371 **Future projection of habitat distribution for *T. gelada***

372 Our averaged model prediction for *T. gelada* shows that the current predicted suitable area
373 covers 90,891 km², while an additional 25,621 km² of potential habitat is considered suitable
374 with uncertainty. Geographically, highly suitable areas were more concentrated in the central
375 highlands, in northern Showa, Wollo, and South Gondar, and the Debre-Libanos area.

376 Compared to the size of the current suitable habitat, our projections suggested a massive
377 loss of suitable habitats under future climates. Also, small new areas were forecasted to become
378 suitable under climate change in the northern and central parts of Ethiopia, overall the suitable
379 habitat is predicted to decrease by 36% (2050) and 52% (2070), respectively. The most
380 dramatic decline of suitable habitat, however, was projected for the population south of the Rift
381 Valley. Here the size of suitable habitat is already small due to extreme anthropogenic pressure
382 caused by expansions of agriculture, overgrazing, and human-wildlife conflicts as a
383 consequence [22, 23, 66].

384

385 **Anthropogenic pressure**

386 Given the strong anthropogenic pressures on gelada habitat overall in Ethiopia, the elevation
387 shift of occurrence points in historical times can most likely be more attributed to agricultural

388 expansion than to the impact of climate change. These pressures at the lower elevation most
389 likely have pushed geladas already to a higher elevation where their climatic resilience might
390 be close to its limit [59]. If geladas are currently living in marginal habitats they might represent
391 a refugee species, which undermines the topographic and climatic tolerances our models
392 predicted. Thus we recommend protecting the current habitats of geladas even when they are
393 forecasted to become climatically unsuitable in the future, in particular for the population south
394 of the Rift Valley. We also recommend conservation efforts even in areas where our models
395 predicted suitable habitats with uncertainty.

396

397 **Conclusion**

398 Our species distribution modelling demonstrates that the current suitable habitat of geladas is
399 vulnerable to climate change. Geladas will lose large parts of their current suitable habitat in
400 the Ethiopian highlands. Even though species range shift was not evident in our models,
401 significant elevational changes appeared between current and historical occurrence points,
402 which potentially are associated with anthropogenic pressures at lower elevations. The findings
403 of our study can be used to revisit or align the boundaries of existing protected areas with the
404 future predicted habitats that encompass climate refugia for this high-altitude species. In
405 particular, the population south of the Rift Valley will be severely affected. This is all the more
406 dramatic because no protected areas exist for this (sub)species, thus there is an urgent need to
407 create a protected area for this population.

408

409 **Acknowledgments**

410 Addis Ababa University provided facilities to carryout this research. Jens-Christian Svenning
411 was supported by the VILLUM Investigator project "Biodiversity Dynamics in a Changing
412 World", funded by VILLUM FONDEN (grant 16549), the Centre for Ecological Dynamics in
413 a Novel Biosphere (ECONOVO), funded by the Danish National Research Foundation (grant
414 DNRF173), and the Independent Research Fund Denmark | Natural Sciences project
415 MegaComplexity (grant 0135-00225B).

416

417 **Author contributions**

418 ASA and DCG.: data collection and organization, formal analysis, writing (the original draft).
419 CAK: data collection and methodology, organizing, formal analysis, and writing. AA:
420 reviewing, and editing the manuscript. JCS contributes to the comments, editorial and writes a
421 manuscript. AB. edited and reviewed the manuscript, proofread it for the final submission, and

422 is the senior author. DZ. is co-initiator of the study, developed the research question, made
423 significant contributions to, data collection, analysis, and write-up. All authors contributed to
424 the writing of the manuscript. This is original research that has not previously been published
425 and is not under consideration for publication elsewhere. This paper has been approved by all
426 authors.

427

428 **Data availability statement**

429 The attached supplementary file contains all of the data.

430

431 **Funding**

432 There are no any funding resources for this study.

433

434 **Declarations**

435 **Ethics approval and consent to participate**

436 Not applicable

437 **Consent for publication**

438 Not applicable

439 **Ethical Guidelines**

440 Not applicable

441 **Conflict of interest**

442 The authors declare that there is no conflict of interest.

443

444 **References**

- 445 1. Root, T. L., Price, J. T., Hall, K. R., Schneider, S. H., Rosenzweig, C., & Pounds, J. A.
446 (2003). Fingerprints of global warming on wild animals and plants. *Nature*, 421(6918),
447 57-60. <https://doi.org/10.1038/nature01333>
- 448 2. Walther, G. R., Berger, S., & Sykes, M. T. (2005). An ecological “footprint” of climate
449 change. *Proceedings of the Royal Society B: Biological Sciences*, 272(1571), 1427–
450 1432. <https://doi.org/10.1098/rspb.2005.3119>
- 451 3. Korstjens, A. H., & Hillyer, A. P. (2016). Primates and climate change: a review of
452 current knowledge. In S. A. Wich, & A. J. Marshall (Eds.), *An Introduction to Primate
453 Conservation* (pp. 175–192). Oxford, UK: Oxford University Press.
- 454 4. Carvalho, J. S., Graham, B., Rebelo, H., Bocksberger, G., Meyer, C. F. J., Wich, S., &
455 Kühl, H. S. (2019). A global risk assessment of primates under climate and land
456 use/cover scenarios. *Global Change Biology*, 25(9), 3163-3178.
457 <https://doi.org/10.1111/gcb.14671>
- 458 5. Sales, L., Ribeiro, B. R., Chapman, C. A., & Loyola, R. (2020). Multiple dimensions
459 of climate change on the distribution of Amazon primates. *Perspectives in Ecology and
460 Conservation*, 18(2), 83-90. <https://doi.org/10.1016/j.pecon.2020.03.001>
- 461 6. Pinto, M. P., Beltrão-Mendes, R., Talebi, M., & de Lima, A. A. (2023). Primates facing
462 climate crisis in a tropical forest hotspot will lose climatic suitable geographical range.
463 *Scientific Reports*, 13(1), 641. <https://doi.org/10.1038/s41598-022-26756-0>
- 464 7. Winder, I. C., Mace, B., & Korstjens, A. (2023). Climate change impacts on non-human
465 primates: What have we modelled and what do we do now? In: McKinney, T., Waters,
466 S., & Rodrigues M. A. (Eds.), *Primates in Anthropogenic Landscapes: Exploring
467 Primate Behavioural Flexibility Across Human Contexts* (pp. 83-100). Cham: Springer
468 International Publishing.
- 469 8. Dirnböck, T., Essl, F., & Rabitsch, W. (2011). Disproportional risk for habitat loss of
470 high-altitude endemic species under climate change. *Global Change Biology*, 17(2),
471 990–996. <https://doi.org/10.1111/j.1365-2486.2010.02266.x>
- 472 9. Chala, D. Brochmann, C., Psomas, A., Ehrlich, D., Gizaw, A., Masao, C. A., Bakkestuen,
473 V., & Zimmermann, N. E. (2016). Good-bye to tropical alpine plant giants under
474 warmer climates? Loss of range and genetic diversity in *Lobelia rhynchopetalum*.
475 *Ecology and Evolution*, 6(24), 8931–8941. <https://doi.org/10.1002/ece3.2603>
- 476 10. Freeman, B. G., Scholer, M. N., Ruiz-Gutierrez, V., & Fitzpatrick, J. W. (2018).
477 Climate change causes upslope shifts and mountaintop extirpations in a tropical bird
478 community. *Proceedings of the National Academy of Sciences of the United States of
479 America*, 115(47), 11982–11987. <https://doi.org/10.1073/pnas.1804224115>
- 480 11. Zhang, P., Hu, K., Yang, B., & Yang, D. (2016). Snub-nosed monkeys (*Rhinopithecus*
481 spp.): conservation challenges in the face of environmental uncertainty. *Science
482 Bulletin*, 61, 345-348. [10.1107/s11434-016-1008-z](https://doi.org/10.1107/s11434-016-1008-z)
- 483 12. Nüchel, J., Bøcher, P. K., Xiao, W., Zhu, A. X., & Svenning, J. C. (2018). Snub-nosed
484 monkeys (*Rhinopithecus*): potential distribution and its implication for
485 conservation. *Biodiversity and Conservation*, 27, 1517-1538.
486 <https://doi.org/10.1007/s10531-018-1507-0>
- 487 13. Zinner, D., Fickenscher, G., & Roos, C. (2013). Family Cercopithecidae (Old World
488 Monkeys). In R. A. Mittermeier, A. B. Rylands, & D. E. Wilson (Eds.), *Handbook of
489 the Mammals of the World. Vol. 3. Primates* (pp. 550-627). Barcelona: Lynx Edicions.
- 490 14. Yalden, D. W., Largen, M. J., & Kock, D. (1977). Catalogue of the mammals of
491 Ethiopia. *Monitore Zoologico Italiano, Supplemento*, 9(1), 1-52.
492 <https://doi.org/10.1080/03749444.1977.10736841>
- 493 15. Gippoliti, S. (2010). Theropithecus gelada distribution and variations related to

494 taxonomy: History, challenges and implications for conservation. *Primates*, 51(4),
495 291–297. <https://doi.org/10.1007/s10329-010-0202-x>

496 16. Bergman, T. J., & Beehner, J. C. (2013). *Theropithecus gelada gelada* (gelada baboon).
497 In T. M. Butynski, J. Kingdon, & J. Kalina (Eds.), *Mammals of Africa, Volume II, Primates* (pp. 240-244). London: Bloomsbury.

498 17. Gippoliti, S., Mekonnen, A., Burke, R., Nguyen, N. & Fashing, P. J. (2022).
499 *Theropithecus gelada* (amended version of 2019 assessment). The IUCN Red List of
500 Threatened Species 2022: e.T21744A217754712.
501 <https://dx.doi.org/10.2305/IUCN.UK.2022-1.RLTS.T21744A217754712.en>. Accessed
502 on 05 April 2023.

503 18. Trede, F., Lemkul, A., Atickem, A., Beehner, J. C., Bergman, T. J., Burke, R., Fashing,
504 P. J., Knauf, S., Mekonnen, A., Moges, A., Nguyen, N., Roos, C., & Zinner, D. (2020).
505 Geographic distribution of microsatellite alleles in geladas (Primates, Cercopithecidae):
506 Evidence for three evolutionary units. *Zoologica Scripta*, 46(6), 659-667.
507 <https://doi.org/10.1111/zsc.12451>

508 19. Chiou, K. L., Janiak, M. C., Schneider-Crease, I. A., Sen, S., Ayele, F., Chuma, I. S.,
509 & Snyder-Mackler, N. (2022). Genomic signatures of high-altitude adaptation and
510 chromosomal polymorphism in geladas. *Nature Ecology & Evolution*, 6(5), 630-643.
511 <https://doi.org/10.1038/s41559-022-01703-4>

512 20. Fashing, P. J., Nguyen, N., Burke, R., Mekonnen, A. & Gippoliti, S. (2022a).
513 *Theropithecus gelada* ssp. *obscurus* (amended version of 2019 assessment). The IUCN
514 Red List of Threatened Species 2022: e.T40010A217756116.
515 <https://dx.doi.org/10.2305/IUCN.UK.2022-1.RLTS.T40010A217756116.en>. Accessed
516 on 27 January 2023.

517 21. Fashing, P. J., Nguyen, N., Burke, R., Mekonnen, A. & Gippoliti, S. (2019).
518 *Theropithecus gelada* ssp. *gelada*. The IUCN Red List of Threatened Species 2019:
519 e.T136849A17982784. <https://dx.doi.org/10.2305/IUCN.UK.2019-3.RLTS.T136849A17982784.en>. Accessed on 27 January 2023.

520 22. Abu, K. (2011). Population census and ecology of a rare gelada population
521 (*Theropithecus gelada* unnamed subsp) in Indato, eastern Arsi, Ethiopia. MSc thesis,
522 Addis Ababa University.

523 23. Moges, A. (2019). Population Status, Diets, Activity Budget and Range Use by Arsi
524 Gelada (*Theropithecus gelada arsi*) in Eastern Arsi, Ethiopia. (PhD), Addis Ababa
525 University, Addis Ababa, Ethiopia.

526 24. Fashing, P. J., Nguyen, N., Demissew, S., Gizaw, A., Atickem, A., Mekonnen, A., &
527 Stenseth, N. C. (2022b). Ecology, evolution, and conservation of Ethiopia's
528 biodiversity. *Proceedings of the National Academy of Sciences*, 119(50), e2206635119.

529 25. Gebremedhin, B., Chala, D., Flagstad, Ø., Bekele, A., Bakkestuen, V., van Moorter, B.,
530 Ficetola, G. F., Zimmermann, N. E., Brochmann, C., & Stenseth, N. C. (2021). Quest
531 for new space for restricted range mammals: the case of the Endangered Walia ibex.
532 *Frontiers in Ecology and Evolution*, 9, 1–12. <https://doi.org/10.3389/fevo.2021.611632>

533 26. Dunbar, R. I. M. (1998). Impact of global warming on the distribution and survival of
534 the gelada baboon: A modelling approach. *Global Change Biology*, 4(3), 293–304.
535 <https://doi.org/10.1046/j.1365-2486.1998.00156.x>

536 27. Chala, D., Roos, C., Svenning, J., & Zinner, D. (2019). Species-specific effects of
537 climate change on the distribution of suitable baboon habitats: Ecological niche
538 modeling of current and Last Glacial Maximum conditions. *Journal of Human
539 Evolution*, 132, 215–226. <https://doi.org/10.1016/j.jhevol.2019.05.003>

540 28. Elith, J., Graham, C. H., Anderson, R. P., Dudík, M., Ferrier, S., Guisan, A., Hijmans,
541 R. J., Huettmann, F., Leathwick, J. R., Lehmann, A., Li, J., Lohmann, L. G., Loiselle,
542

544 B. A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton McCM., J.,
545 Peterson, A. T., Phillips, S. J., Richardson, K., Scachetti-Pereira, R., Schapire, R. E.,
546 Soberón, J., Williams, S., Wisz, M. S., & Zimmermann, E. N. (2006). Novel methods
547 improve prediction of species' distributions from occurrence data. *Ecography*, 29(2),
548 129-151. <https://doi.org/10.1111/j.2006.0906-7590.04596.x>

549 29. Elith, J., & Leathwick, J. R. (2009). Species distribution models: ecological explanation
550 and prediction across space and time. *Annual Review of Ecology, Evolution and*
551 *Systematics*, 40(1), 677-697. <https://doi.org/10.1146/annurev.ecolsys.110308.120159>

552 30. Bean, W. T., Stafford, R., & Brashares, J. S. (2012). The effects of small sample size
553 and sample bias on threshold selection and accuracy assessment of species distribution
554 models. *Ecography*, 35(3), 250-258. <https://doi.org/10.1111/j.1600-0587.2011.06545.x>

555 31. Urbani, F., D'Alessandro, P., & Biondi, M. (2017). Using Maximum Entropy Modeling
556 (MaxEnt) to predict future trends in the distribution of high altitude endemic insects in
557 response to climate change. *Bulletin of Insectology*, 70(2), 189-200.

558 32. Zinner, D., Atickem, A., Beehner, J. C., Bekele, A., Bergman, T. J., Burke, R.,
559 Dolotovskaya, S., Fashing, P. J., Gippoliti, S., Knauf, S., Knauf, Y., Mekonnen, A.,
560 Moges, A., Nguyen, N., Chr. Stenseth, N., & Roos, C. (2018). Phylogeography,
561 mitochondrial DNA diversity, and demographic history of geladas (*Theropithecus*
562 *gelada*). *PLoS ONE*, 13(8), 1-18. <https://doi.org/10.1371/journal.pone.0202303>

563 33. Shotake, T., Saijuntha, W., Agatsuma, T., & Kawamoto, Y. (2016). Genetic diversity
564 within and among gelada (*Theropithecus gelada*) populations based on mitochondrial
565 DNA analysis. *Anthropological Science*, 124(3), 157-167.
566 <https://doi.org/10.1537/ase.160717>

567 34. Girmay, T., & Tesfay, H. (2021). New geographical range of geladas (*Theropithecus*
568 *gelada*) in Tigray Region, Northern Ethiopia. *African Journal of Ecology*, 59(1), 277-
569 280. <https://doi.org/10.1111/aje.12818>

570 35. Ahmed, A. S., Goudar, K. S., & Seid, H. I. (2022). Gelada (*Theropithecus gelada*) in
571 Yegof National Forest Priority Area, Northern Ethiopia: Population structure, activity
572 budget and local community's perception towards its conservation. *Global Ecology and*
573 *Conservation*, 34, e02041. <https://doi.org/10.1016/j.gecco.2022.e02041>

574 36. GBIF.org. (2022). GBIF Occurrence Download <https://doi.org/10.15468/dl.wjsu3h>.

575 37. Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate
576 surfaces for global land areas. *International Journal of Climatology*, 37(12), 4302-
577 4315. <https://doi.org/10.1002/joc.5086>

578 38. Jarvis, A., Reuter, H. I., Nelson, A., & Guevara, E. (2008). Hole-filled SRTM for the
579 globe Version 4. <https://cigarcsi.community/data/srtm-90m-digital-elevation-database-v4-1/>

580 39. Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K., & Toxopeus, A. G. (2014).
581 Where is positional uncertainty a problem for species distribution modelling?
582 *Ecography*, 37(2), 191-203. <https://doi.org/10.1111/j.1600-0587.2013.00205.x>

583 40. Andrews, M. B., Ridley, J. K., Wood, R. A., Andrews, T., Blockley, E. W., Booth, B.,
584 Burke, E., Dittus, A. J., Florek, P., Gray, L. J., Haddad, S., Hardiman, S. C., Hermanson,
585 L., Hodson, D., Hogan, E., Jones, G. S., Knight, J. R., Kuhlbrodt, T., Misios, S., Sutton,
586 R. T. (2020). Historical Simulations With HadGEM3-GC3.1 for CMIP6. *Journal of*
587 *Advances in Modeling Earth Systems*, 12(6), 1-34.
588 <https://doi.org/10.1029/2019MS001995>

589 41. Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling
590 of species geographic distributions. *Ecological Modelling*, 190(3-4), 231-259.
591 <https://doi.org/10.1016/j.ecolmodel.2005.03.026>

592

593

594 42. Morales, N. S., Fernández, I. C., & Baca-González, V. (2017). MaxEnt's parameter
595 configuration and small samples: Are we paying attention to recommendations? A
596 systematic review. *PeerJ*, 5, e3093. <https://doi.org/10.7717/peerj.3093>

597 43. Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., & Blair, M. E. (2017).
598 Opening the black box: an open-source release of Maxent. *Ecography*, 40(7), 887–893.
599 <https://doi.org/10.1111/ecog.03049>

600 44. VanDerWal, J., Shoo, L. P., Graham, C., & Williams, S. E. (2009). Selecting pseudo-
601 absence data for presence-only distribution modeling: how far should you stray from
602 what you know? *Ecological Modelling*, 220(4), 589–594.
603 <https://doi.org/10.1016/j.ecolmodel.2008.11.010>

604 45. Barbet-Massin, M., Jiguet, F., Albert, C. H., & Thuiller, W. (2012). Selecting pseudo-
605 absences for species distribution models: How, where and how many? *Methods in
606 Ecology and Evolution*, 3(2), 327–338. [https://doi.org/10.1111/j.2041-
607 210X.2011.00172.x](https://doi.org/10.1111/j.2041-210X.2011.00172.x)

608 46. Senay, S. D., Worner, S. P., & Ikeda, T. (2013). Novel three-step pseudo-absence
609 selection technique for improved species distribution modelling. *PLoS ONE*, 8(8),
610 e71218. <https://doi.org/10.1371/journal.pone.0071218>

611 47. Mackenzie, D. I. (2005). What are the issues with presence-absence data for wildlife
612 managers? *Journal of Wildlife Management*, 69(3), 849–860.
613 [https://doi.org/10.2193/0022-541X\(2005\)069\[0849:WATIWP\]2.0.CO;2](https://doi.org/10.2193/0022-541X(2005)069[0849:WATIWP]2.0.CO;2)

614 48. Phillips, S. J., Dudík, M., Elith, J., Graham, C. H., Lehmann, A., Leathwick, J., &
615 Ferrier, S. (2009). Sample selection bias and presence-only distribution models:
616 implications for background and pseudo-absence data. *Ecological Applications*, 19(1),
617 181–197. <https://doi.org/10.1890/07-2153.1>

618 49. Descombes, P., Chauvier, Y., Brun, P., Righetti, D., Wüest, R. O., Karger, D. N., &
619 Zimmermann, N. E. (2022). Strategies for sampling pseudo-absences for species
620 distribution models in complex mountainous terrain. *bioRxiv*, 2022.03.24.485693.
621 <https://doi.org/10.1101/2022.03.24.485693>

622 50. Kramer-Schadt, S., Niedballa, J., Pilgrim, J. D., Schröder, B., Lindenborn, J.,
623 Reinfelder, V., Heckmann, I., Scharf, A. K., Augeri, D. M., Cheyne, S. M., Hearn, A.
624 J., Ross, J., Macdonald, D. W., Mathai, J., Eaton, J., Marshall, A. J., Semiadi, G.,
625 Rustam, R., Bernard, H., Alfred, R., Samejima, H., Duckworth, J. W., Breitenmoser-
626 Wuersten, C., Belant, J. L., Hofer, H., & Wilting, A. (2013). The importance of
627 correcting for sampling bias in MaxEnt species distribution models. *Diversity and
628 Distributions*, 19(11), 1366–1379. <https://doi.org/10.1111/ddi.12096>

629 51. Phillips, S. J., & Dudík, M. (2008). Modeling of species distributions with Maxent:
630 New extensions and a comprehensive evaluation. *Ecography*, 31(2), 161–175.
631 <https://doi.org/10.1111/j.0906-7590.2008.5203.x>

632 52. Halvorsen, R. (2013). A strict maximum likelihood explanation of MaxEnt, and some
633 implications for distribution modelling. *Sommerfeltia*, 36(1), 1–132.
634 <https://doi.org/10.2478/v10208-011-0016-2>

635 53. Young, N., Carter, L., & Evangelista, P. (2011). A MaxEnt model v3. 3.3 e tutorial
636 (ArcGIS v10). *Natural Resource Ecology Laboratory, Colorado State University and
637 the National Institute of Invasive Species Science*.

638 54. Fielding, A. H., & Bell, J. F. (1997). A review of methods for the assessment of
639 prediction errors in conservation presence/absence models. *Environmental
640 Conservation*, 24(1), 38–49. <https://doi.org/10.1017/S0376892997000088>

641 55. Radosavljevic, A., & Anderson, R. P. (2014). Making better Maxent models of species
642 distributions: complexity, overfitting and evaluation. *Journal of biogeography*, 41(4),
643 629–643. <https://doi.org/10.1111/jbi.12227>

644 56. Hosni, E. M., Nasser, M. G., Al-ashaal, S. A., Rady, M. H., & Kenawy, M. A. (2020).
645 Modeling current and future global distribution of *Chrysomya bezziana* under changing
646 climate. *Scientific Reports*, 1–10. <https://doi.org/10.1038/s41598-020-61962-8>

647 57. Valavi, R., Guillera-Arroita, G., Lahoz-Monfort, J. J., & Elith, J. (2022). Predictive
648 performance of presence-only species distribution models: a benchmark study with
649 reproducible code. *Ecological Monographs*, 92(1), 1–27.
650 <https://doi.org/10.1002/ecm.1486>

651 58. IPCC, 2021: Summary for Policymakers. In: Climate Change 2021: The Physical
652 Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the
653 Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani,
654 S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M.
655 Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O.
656 Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United
657 Kingdom and New York, NY, USA, pp. 3–32, doi:[10.1017/9781009157896.001](https://doi.org/10.1017/9781009157896.001).

658 59. Sloan, E. T., Beehner, J. C., Bergman, T. J., Lu, A., Snyder-Mackler, N., & Jacquemyn,
659 H. (2022). Effects of climate variability on the demography of wild geladas. *Ecology*
660 and *Evolution*, 12(3), 1–13. <https://doi.org/10.1002/ece3.8759>

661 60. Stark, D., & Frick, H. (1958). Beobachtungen an äthiopischen Primaten. *Zoologische*
662 *Jahrbücher. Abteilung für Systematik, Ökologie und Geographie der Tiere*, 86, 41–70.

663 61. Dunbar, R. I. M. (1977). Feeding ecology of gelada baboons: A preliminary report. In
664 T. H. Clutton-Brock (Ed.), *Primate Ecology: Studies of Feeding and Ranging*
665 *Behaviour in Lemurs, Monkeys and Apes* (pp. 252–273). London: Academic Press.

666 62. Iwamoto, T. (1993). The ecology of *Theropithecus gelada*. In N. Jablonski (Ed.),
667 *Theropithecus: The Rise and Fall of a Primate Genus* (pp. 441–452). Cambridge:
668 Cambridge University Press.

669 63. Iwamoto, T., Mori, A., Kawai, M., & Bekele, A. (1996). Anti-predator behavior of
670 gelada baboons. *Primates*, 37(4), 389–397. <https://doi.org/10.1007/BF02381374>

671 64. Anandam, M. V., Bennett, E. L., Davenport, T. R. B., Davies, N. J., Detwiler, K. M.,
672 Engelhardt, A., Eudey, A. A., Gadsby, E. L., Groves, C. P., Healy, A., Karanth, K. P.,
673 Molur, S., Nadler, T., Richardson, M. C., Riley, E. P., Roos, C., Rylands, A. B.,
674 Sheeran, L. K., Ting, N., Wallis, J., Waters, S. S., Whittaker, D. J., Zinner, D. (2013).
675 Species accounts of Cercopithecidae. In R. A. Mittermeier, A. B. Rylands, & D. E.
676 Wilson (Eds.), *Handbook of the Mammals of the World. Vol. 3. Primates* (pp. 628–753).
677 Barcelona: Lynx Edicions.

678 65. Lin, B., Foxfoot, I. R., Miller, C. M., Venkatamaran, V. V., Kerby, J. T., Bechtold, E.
679 K., Kellogg, B. S., Nguyen, N., Fashing, P. J. (2020). Leopard predation on gelada
680 monkeys at Guassa, Ethiopia. *American Journal of Primatology*, 82(2), e23098.
681 <https://doi.org/10.1002/ajp.23098>

682 66. Abu, K., Mekonnen, A., Bekele, A., & Fashing, P. J. (2018). Diet and activity patterns
683 of Arsi geladas in low-elevation disturbed habitat south of the Rift Valley at Indetu,
684 Ethiopia. *Primates*, 59, 153–161. <https://doi.org/10.1007/s10329-017-0640-9>

685

Supplementary material

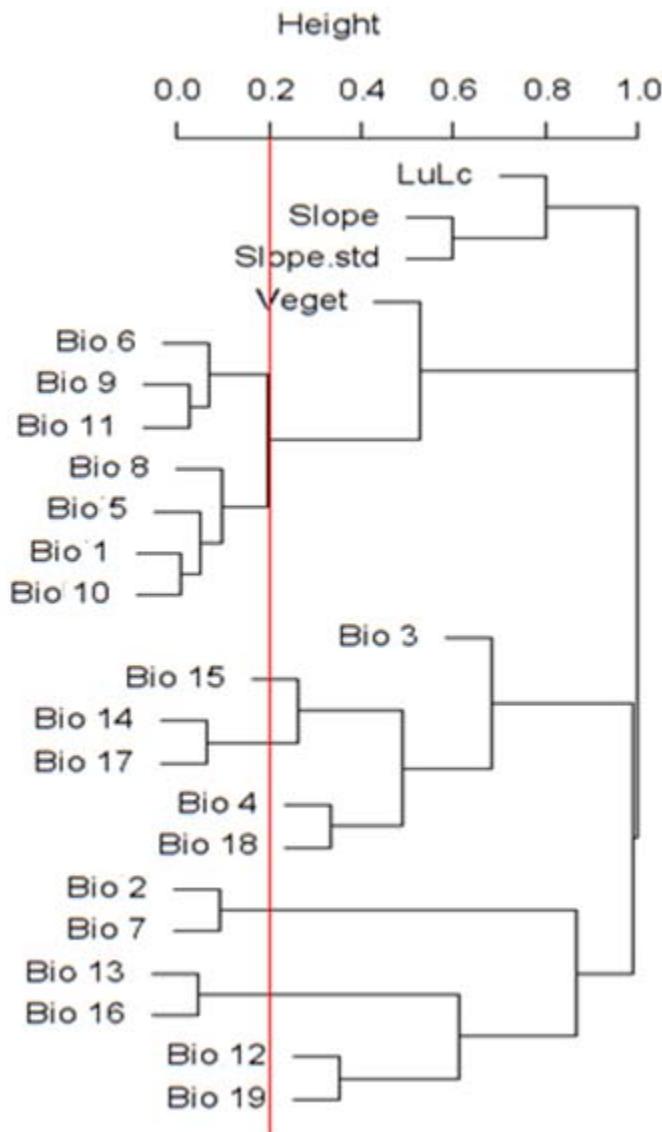
Distribution and extent of suitable habitat for geladas (*Theropithecus gelada*) in the Anthropocene

Ahmed Seid Ahmed, Desalegn Chala, Chala Adugna Kufa, Anagaw Atickem, , Afework Bekele, Jens- Christian Svenning, Dietmar Zinner

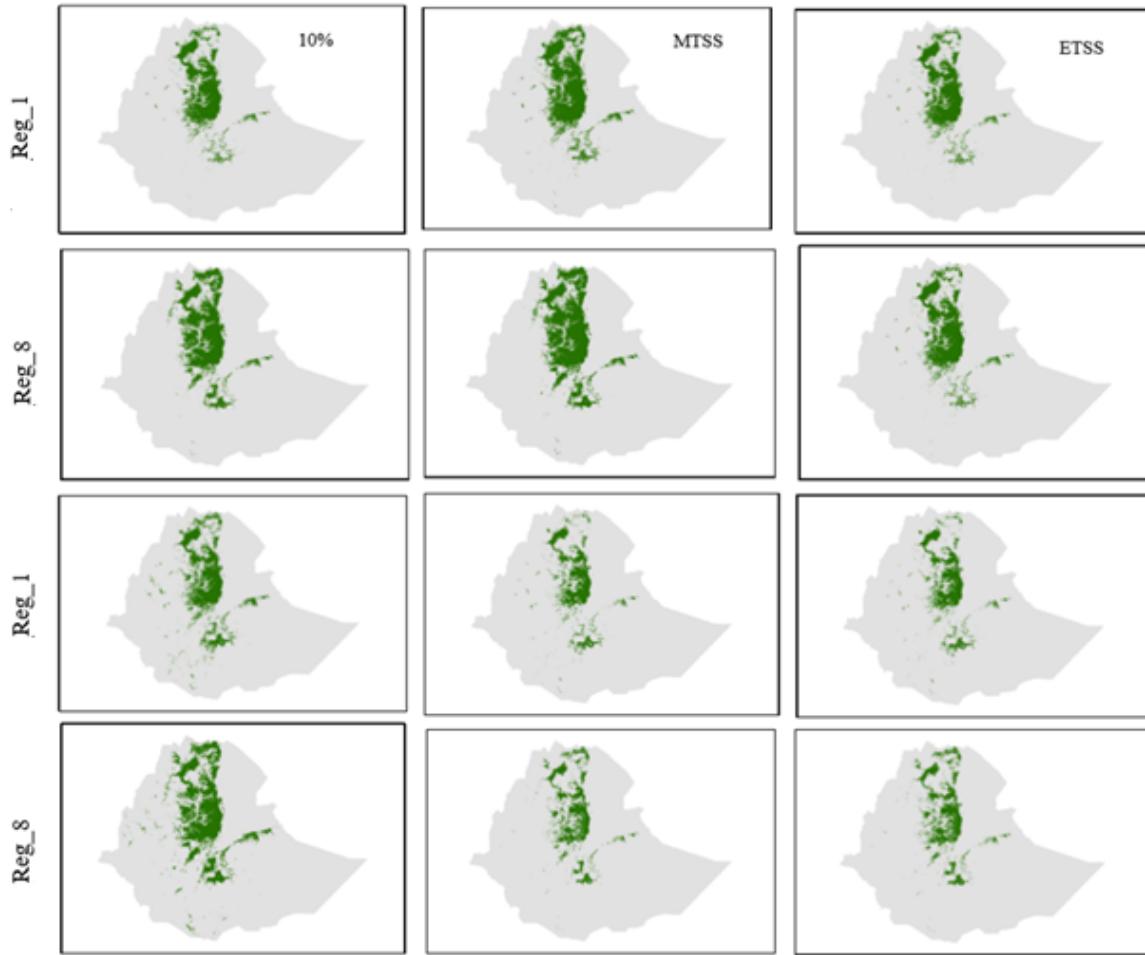
One Table, five Figures

Table S1 Occurrence locations of gelada (*Theropithecus gelada*)

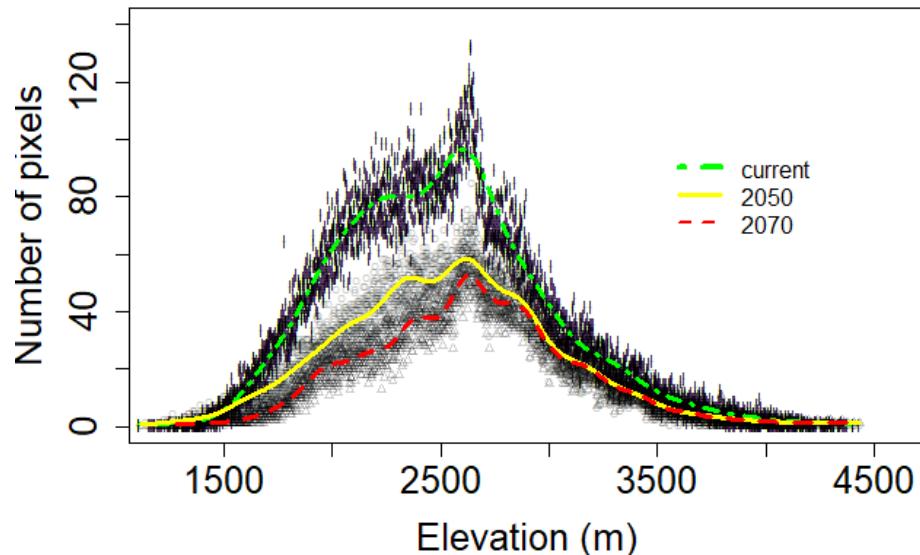
#	Region	Taxon	Latitude	Longitude
1	north	<i>T. g. gelada</i>	14.33333	39.48333
2	north	<i>T. g. gelada</i>	14.16667	39.05000
3	north	<i>T. g. gelada</i>	14.13333	38.71667
4	north	<i>T. g. gelada</i>	14.11667	39.43333
5	north	<i>T. g. gelada</i>	13.87000	39.74000
6	north	<i>T. g. gelada</i>	13.75000	38.53333
7	north	<i>T. g. gelada</i>	13.75000	38.08333
8	north	<i>T. g. gelada</i>	13.71667	38.38333
9	north	<i>T. g. gelada</i>	13.66667	38.41667
10	north	<i>T. g. gelada</i>	13.50000	38.50000
11	north	<i>T. g. gelada</i>	13.49278	38.44361
12	north	<i>T. g. gelada</i>	13.40000	38.20000
13	north	<i>T. g. gelada</i>	13.37359	38.29285
14	north	<i>T. g. gelada</i>	13.35755	38.28735
15	north	<i>T. g. gelada</i>	13.34038	38.09607
16	north	<i>T. g. gelada</i>	13.33282	38.42881
17	north	<i>T. g. gelada</i>	13.30645	38.26414
18	north	<i>T. g. gelada</i>	13.30402	38.42657
19	north	<i>T. g. gelada</i>	13.30163	38.29574
20	north	<i>T. g. gelada</i>	13.30000	39.41667
21	north	<i>T. g. gelada</i>	13.28391	38.12718
22	north	<i>T. g. gelada</i>	13.27725	38.08100
23	north	<i>T. g. gelada</i>	13.27675	38.34958
24	north	<i>T. g. gelada</i>	13.27604	38.09801
25	north	<i>T. g. gelada</i>	13.27122	38.03430
26	north	<i>T. g. gelada</i>	13.27090	38.10860
27	north	<i>T. g. gelada</i>	13.26603	38.14797
28	north	<i>T. g. gelada</i>	13.26601	38.07775
29	north	<i>T. g. gelada</i>	13.26223	38.19221
30	north	<i>T. g. gelada</i>	13.25511	38.20663
31	north	<i>T. g. gelada</i>	13.25195	38.34669
32	north	<i>T. g. gelada</i>	13.25140	38.37314
33	north	<i>T. g. gelada</i>	13.25000	38.25000
34	north	<i>T. g. gelada</i>	13.25000	38.23333
35	north	<i>T. g. gelada</i>	13.25000	38.18333
36	north	<i>T. g. gelada</i>	13.25000	38.15000
37	north	<i>T. g. gelada</i>	13.25000	38.08333
38	north	<i>T. g. gelada</i>	13.25000	38.03333
39	north	<i>T. g. gelada</i>	13.25000	38.00000
40	north	<i>T. g. gelada</i>	13.24639	37.89528

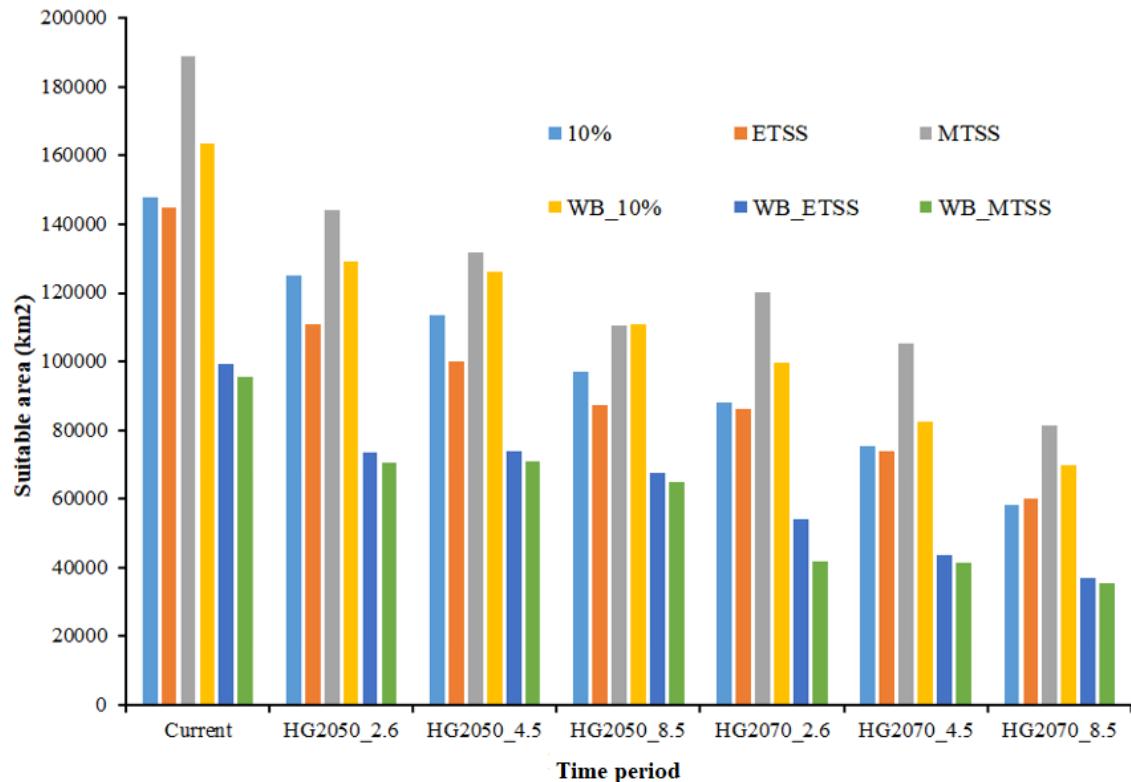

41	north	<i>T. g. gelada</i>	13.24545	38.16689
42	north	<i>T. g. gelada</i>	13.24078	38.36204
43	north	<i>T. g. gelada</i>	13.23533	38.02050
44	north	<i>T. g. gelada</i>	13.23333	38.48333
45	north	<i>T. g. gelada</i>	13.23333	38.41667
46	north	<i>T. g. gelada</i>	13.23145	38.03955
47	north	<i>T. g. gelada</i>	13.23086	37.99430
48	north	<i>T. g. gelada</i>	13.23063	38.06791
49	north	<i>T. g. gelada</i>	13.23021	38.08360
50	north	<i>T. g. gelada</i>	13.22658	38.26053
51	north	<i>T. g. gelada</i>	13.22439	38.02448
52	north	<i>T. g. gelada</i>	13.21667	38.15000
53	north	<i>T. g. gelada</i>	13.21287	38.30383
54	north	<i>T. g. gelada</i>	13.20899	37.99584
55	north	<i>T. g. gelada</i>	13.20833	38.11667
56	north	<i>T. g. gelada</i>	13.20569	37.98582
57	north	<i>T. g. gelada</i>	13.20300	37.88800
58	north	<i>T. g. gelada</i>	13.20050	38.08333
59	north	<i>T. g. gelada</i>	13.19434	38.18943
60	north	<i>T. g. gelada</i>	13.16667	38.00000
61	north	<i>T. g. gelada</i>	13.16550	38.07260
62	north	<i>T. g. gelada</i>	13.15323	37.84451
63	north	<i>T. g. gelada</i>	13.14319	37.84423
64	north	<i>T. g. gelada</i>	13.13190	37.93228
65	north	<i>T. g. gelada</i>	13.12900	37.94341
66	north	<i>T. g. gelada</i>	13.12636	37.83481
67	north	<i>T. g. gelada</i>	13.12138	37.93323
68	north	<i>T. g. gelada</i>	13.11696	38.46255
69	north	<i>T. g. gelada</i>	13.08200	38.43640
70	north	<i>T. g. gelada</i>	13.08191	38.50800
71	north	<i>T. g. gelada</i>	13.06667	38.75000
72	north	<i>T. g. gelada</i>	13.02274	38.10593
73	north	<i>T. g. gelada</i>	13.00349	38.10598
74	north	<i>T. g. gelada</i>	12.98333	37.75000
75	north	<i>T. g. gelada</i>	12.97711	38.35778
76	north	<i>T. g. gelada</i>	12.97380	38.10574
77	north	<i>T. g. gelada</i>	12.83333	37.75000
78	north	<i>T. g. gelada</i>	12.77207	37.55751
79	north	<i>T. g. gelada</i>	12.76903	37.60704
80	north	<i>T. g. gelada</i>	12.70277	37.59908
81	north	<i>T. g. gelada</i>	12.61667	37.45000
82	north	<i>T. g. gelada</i>	12.50000	37.50000
83	central	<i>T. g. obscurus</i>	12.32977	38.89366
84	central	<i>T. g. obscurus</i>	12.20000	37.98333
85	central	<i>T. g. obscurus</i>	12.15469	39.17117
86	central	<i>T. g. obscurus</i>	12.15434	39.17168
87	central	<i>T. g. obscurus</i>	12.14825	39.18215
88	central	<i>T. g. obscurus</i>	12.14565	39.18215
89	central	<i>T. g. obscurus</i>	12.14531	39.18227
90	central	<i>T. g. obscurus</i>	12.13892	39.18552
91	central	<i>T. g. obscurus</i>	12.13159	39.20464
92	central	<i>T. g. obscurus</i>	12.11759	39.18675
93	central	<i>T. g. obscurus</i>	12.11667	39.46667
94	central	<i>T. g. obscurus</i>	12.09639	39.37812
95	central	<i>T. g. obscurus</i>	12.04750	39.09624
96	central	<i>T. g. obscurus</i>	12.03132	38.89378
97	central	<i>T. g. obscurus</i>	12.02394	39.39683
98	central	<i>T. g. obscurus</i>	12.01667	39.05000

99	central	<i>T. g. obscurus</i>	12.00000	39.00000
100	central	<i>T. g. obscurus</i>	11.86372	39.19617
101	central	<i>T. g. obscurus</i>	11.83333	38.08333
102	central	<i>T. g. obscurus</i>	11.81667	38.65786
103	central	<i>T. g. obscurus</i>	11.81257	38.67056
104	central	<i>T. g. obscurus</i>	11.81100	38.69572
105	central	<i>T. g. obscurus</i>	11.80884	38.68606
106	central	<i>T. g. obscurus</i>	11.73286	38.89390
107	central	<i>T. g. obscurus</i>	11.73186	38.18903
108	central	<i>T. g. obscurus</i>	11.70341	38.23743
109	central	<i>T. g. obscurus</i>	11.69748	39.25106
110	central	<i>T. g. obscurus</i>	11.60368	38.92768
111	central	<i>T. g. obscurus</i>	11.59543	38.94091
112	central	<i>T. g. obscurus</i>	11.55421	39.22692
113	central	<i>T. g. obscurus</i>	11.55181	39.10517
114	central	<i>T. g. obscurus</i>	11.53333	39.21667
115	central	<i>T. g. obscurus</i>	11.51261	39.01186
116	central	<i>T. g. obscurus</i>	11.49615	38.93973
117	central	<i>T. g. obscurus</i>	11.48385	38.79960
118	central	<i>T. g. obscurus</i>	11.47721	38.97112
119	central	<i>T. g. obscurus</i>	11.46081	38.82572
120	central	<i>T. g. obscurus</i>	11.45757	38.84944
121	central	<i>T. g. obscurus</i>	11.45091	39.24459
122	central	<i>T. g. obscurus</i>	11.44982	38.99535
123	central	<i>T. g. obscurus</i>	11.44982	38.94951
124	central	<i>T. g. obscurus</i>	11.43439	38.89401
125	central	<i>T. g. obscurus</i>	11.43333	39.31667
126	central	<i>T. g. obscurus</i>	11.38629	39.24910
127	central	<i>T. g. obscurus</i>	11.36742	39.24329
128	central	<i>T. g. obscurus</i>	11.25000	39.58333
129	central	<i>T. g. obscurus</i>	11.23220	39.21514
130	central	<i>T. g. obscurus</i>	11.16983	39.24077
131	central	<i>T. g. obscurus</i>	11.11667	39.71667
132	central	<i>T. g. obscurus</i>	11.11210	39.14120
133	central	<i>T. g. obscurus</i>	11.07247	39.27562
134	central	<i>T. g. obscurus</i>	11.06100	39.66312
135	central	<i>T. g. obscurus</i>	11.06007	39.66022
136	central	<i>T. g. obscurus</i>	11.05917	39.66114
137	central	<i>T. g. obscurus</i>	11.05809	39.66176
138	central	<i>T. g. obscurus</i>	10.95747	38.68090
139	central	<i>T. g. obscurus</i>	10.95197	38.66504
140	central	<i>T. g. obscurus</i>	10.91760	38.79465
141	central	<i>T. g. obscurus</i>	10.89623	38.85149
142	central	<i>T. g. obscurus</i>	10.89421	38.80419
143	central	<i>T. g. obscurus</i>	10.89290	38.82110
144	central	<i>T. g. obscurus</i>	10.88725	37.51831
145	central	<i>T. g. obscurus</i>	10.86667	38.75000
146	central	<i>T. g. obscurus</i>	10.85150	38.79275
147	central	<i>T. g. obscurus</i>	10.85028	38.68679
148	central	<i>T. g. obscurus</i>	10.74129	39.18177
149	central	<i>T. g. obscurus</i>	10.73444	38.78564
150	central	<i>T. g. obscurus</i>	10.73353	38.88564
151	central	<i>T. g. obscurus</i>	10.72312	39.29682
152	central	<i>T. g. obscurus</i>	10.69457	39.32644
153	central	<i>T. g. obscurus</i>	10.69262	39.36281
154	central	<i>T. g. obscurus</i>	10.68437	39.18207
155	central	<i>T. g. obscurus</i>	10.67874	39.71903
156	central	<i>T. g. obscurus</i>	10.67739	39.23229


157	central	<i>T. g. obscurus</i>	10.67483	39.31803
158	central	<i>T. g. obscurus</i>	10.66667	37.95000
159	central	<i>T. g. obscurus</i>	10.65850	39.41592
160	central	<i>T. g. obscurus</i>	10.65739	39.25292
161	central	<i>T. g. obscurus</i>	10.65000	37.75000
162	central	<i>T. g. obscurus</i>	10.63899	39.80591
163	central	<i>T. g. obscurus</i>	10.63879	39.13340
164	central	<i>T. g. obscurus</i>	10.63422	39.17714
165	central	<i>T. g. obscurus</i>	10.61601	39.33640
166	central	<i>T. g. obscurus</i>	10.61250	39.68081
167	central	<i>T. g. obscurus</i>	10.58771	39.63434
168	central	<i>T. g. obscurus</i>	10.58753	39.44739
169	central	<i>T. g. obscurus</i>	10.56086	39.59470
170	central	<i>T. g. obscurus</i>	10.55490	39.44455
171	central	<i>T. g. obscurus</i>	10.55338	39.68351
172	central	<i>T. g. obscurus</i>	10.54603	39.56152
173	central	<i>T. g. obscurus</i>	10.50315	39.54473
174	central	<i>T. g. obscurus</i>	10.50307	39.57781
175	central	<i>T. g. obscurus</i>	10.47395	39.51856
176	central	<i>T. g. obscurus</i>	10.45169	39.17690
177	central	<i>T. g. obscurus</i>	10.42464	39.80154
178	central	<i>T. g. obscurus</i>	10.41404	39.74936
179	central	<i>T. g. obscurus</i>	10.41124	39.77116
180	central	<i>T. g. obscurus</i>	10.40927	39.26444
181	central	<i>T. g. obscurus</i>	10.39131	39.38805
182	central	<i>T. g. obscurus</i>	10.39125	39.41584
183	central	<i>T. g. obscurus</i>	10.36555	39.48019
184	central	<i>T. g. obscurus</i>	10.35000	39.78333
185	central	<i>T. g. obscurus</i>	10.33700	39.47710
186	central	<i>T. g. obscurus</i>	10.32744	39.80490
187	central	<i>T. g. obscurus</i>	10.32593	39.20831
188	central	<i>T. g. obscurus</i>	10.31758	39.80493
189	central	<i>T. g. obscurus</i>	10.31383	39.81494
190	central	<i>T. g. obscurus</i>	10.30559	39.29125
191	central	<i>T. g. obscurus</i>	10.30094	39.81064
192	central	<i>T. g. obscurus</i>	10.30018	39.19937
193	central	<i>T. g. obscurus</i>	10.29453	39.25761
194	central	<i>T. g. obscurus</i>	10.29119	39.78599
195	central	<i>T. g. obscurus</i>	10.26238	39.08645
196	central	<i>T. g. obscurus</i>	10.25106	39.07492
197	central	<i>T. g. obscurus</i>	10.25000	40.00000
198	central	<i>T. g. obscurus</i>	10.23347	39.11314
199	central	<i>T. g. obscurus</i>	10.23256	39.17198
200	central	<i>T. g. obscurus</i>	10.22663	39.09321
201	central	<i>T. g. obscurus</i>	10.22656	39.15349
202	central	<i>T. g. obscurus</i>	10.22345	39.39972
203	central	<i>T. g. obscurus</i>	10.21279	39.09042
204	central	<i>T. g. obscurus</i>	10.19060	39.00205
205	central	<i>T. g. obscurus</i>	10.09447	39.49560
206	central	<i>T. g. obscurus</i>	10.08333	38.28333
207	central	<i>T. g. obscurus</i>	10.06673	38.21131
208	central	<i>T. g. obscurus</i>	10.06667	38.28333
209	central	<i>T. g. obscurus</i>	10.06617	39.02085
210	central	<i>T. g. obscurus</i>	10.06308	39.60314
211	central	<i>T. g. obscurus</i>	9.93466	39.23103
212	central	<i>T. g. obscurus</i>	9.92401	39.12938
213	central	<i>T. g. obscurus</i>	9.92128	38.92689
214	central	<i>T. g. obscurus</i>	9.91667	39.78333

215	central	<i>T. g. obscurus</i>	9.90000	39.78333
216	central	<i>T. g. obscurus</i>	9.84291	38.90653
217	central	<i>T. g. obscurus</i>	9.83989	38.89557
218	central	<i>T. g. obscurus</i>	9.83854	39.74226
219	central	<i>T. g. obscurus</i>	9.83333	39.78333
220	central	<i>T. g. obscurus</i>	9.82280	38.88168
221	central	<i>T. g. obscurus</i>	9.82199	39.70896
222	central	<i>T. g. obscurus</i>	9.82071	39.73438
223	central	<i>T. g. obscurus</i>	9.81673	38.89802
224	central	<i>T. g. obscurus</i>	9.81168	38.73698
225	central	<i>T. g. obscurus</i>	9.80000	38.75000
226	central	<i>T. g. obscurus</i>	9.79116	39.68223
227	central	<i>T. g. obscurus</i>	9.78930	38.99210
228	central	<i>T. g. obscurus</i>	9.78436	38.95766
229	central	<i>T. g. obscurus</i>	9.77978	39.75060
230	central	<i>T. g. obscurus</i>	9.75675	38.85727
231	central	<i>T. g. obscurus</i>	9.75000	39.75000
232	central	<i>T. g. obscurus</i>	9.74411	38.86093
233	central	<i>T. g. obscurus</i>	9.73816	39.73623
234	central	<i>T. g. obscurus</i>	9.73742	38.81266
235	central	<i>T. g. obscurus</i>	9.73190	39.74961
236	central	<i>T. g. obscurus</i>	9.72799	38.82169
237	central	<i>T. g. obscurus</i>	9.71682	38.83738
238	central	<i>T. g. obscurus</i>	9.71667	38.86667
239	central	<i>T. g. obscurus</i>	9.71519	38.84727
240	central	<i>T. g. obscurus</i>	9.70330	38.88094
241	central	<i>T. g. obscurus</i>	9.70000	39.50000
242	central	<i>T. g. obscurus</i>	9.70000	38.81667
243	central	<i>T. g. obscurus</i>	9.67276	39.50965
244	central	<i>T. g. obscurus</i>	9.66667	39.53333
245	central	<i>T. g. obscurus</i>	9.66667	39.05000
246	central	<i>T. g. obscurus</i>	9.66667	39.03333
247	central	<i>T. g. obscurus</i>	9.65000	39.75000
248	central	<i>T. g. obscurus</i>	9.63333	39.31667
249	central	<i>T. g. obscurus</i>	9.62176	39.73863
250	central	<i>T. g. obscurus</i>	9.58333	39.75000
251	central	<i>T. g. obscurus</i>	9.57642	38.91767
252	central	<i>T. g. obscurus</i>	9.51667	38.21667
253	central	<i>T. g. obscurus</i>	9.50000	38.16667
254	central	<i>T. g. obscurus</i>	9.49340	38.43410
255	central	<i>T. g. obscurus</i>	9.48000	38.43000
256	central	<i>T. g. obscurus</i>	9.46667	38.75000
257	central	<i>T. g. obscurus</i>	9.45260	39.43200
258	central	<i>T. g. obscurus</i>	9.44060	38.48510
259	central	<i>T. g. obscurus</i>	9.43496	39.53940
260	central	<i>T. g. obscurus</i>	9.43473	38.65323
261	central	<i>T. g. obscurus</i>	9.43010	38.50060
262	central	<i>T. g. obscurus</i>	9.41667	38.75000
263	central	<i>T. g. obscurus</i>	9.30917	38.73402
264	central	<i>T. g. obscurus</i>	9.30000	38.61667
265	central	<i>T. g. obscurus</i>	9.25000	38.55000
266	central	<i>T. g. obscurus</i>	9.16667	39.41667
267	central	<i>T. g. obscurus</i>	9.13333	39.10000
268	central	<i>T. g. obscurus</i>	9.13333	39.03333
269	central	<i>T. g. obscurus</i>	9.11667	39.11667
270	central	<i>T. g. obscurus</i>	9.08333	38.75000
271	central	<i>T. g. obscurus</i>	8.91667	38.61667
272	central	<i>T. g. obscurus</i>	8.85412	38.84637


273	south	<i>T. g. ssp. nov</i>	7.90306	39.27167
274	south	<i>T. g. ssp. nov</i>	7.74965	39.81547
275	south	<i>T. g. ssp. nov</i>	7.73912	39.83617
276	south	<i>T. g. ssp. nov</i>	7.70422	39.81851
277	south	<i>T. g. ssp. nov</i>	7.69513	39.81240
278	south	<i>T. g. ssp. nov</i>	7.69358	39.82556
279	south	<i>T. g. ssp. nov</i>	7.68000	40.18300
280	south	<i>T. g. ssp. nov</i>	7.53947	39.94557
281	south	<i>T. g. ssp. nov</i>	7.52680	40.02117
282	south	<i>T. g. ssp. nov</i>	7.51617	39.96753
283	south	<i>T. g. ssp. nov</i>	7.50983	39.99065
284	south	<i>T. g. ssp. nov</i>	7.50330	39.51300
285	south	<i>T. g. ssp. nov</i>	7.50055	39.99195


FIGURE S1 Pairwise Pearson correlation of the predictor variables at locations of training and evaluation datasets. Redline shows a correlation coefficient $r = |0.8|$. Annual Mean Temperature (Bio1), Mean Diurnal Range (mean of monthly max temp - min temp; Bio2), Isothermality (Bio3), Temperature Seasonality (Bio4), Maximum Temperature of Warmest Month (Bio5), Minimum Temperature of Coldest Month (Bio6), Temperature Annual Range (Bio7), Mean Temperature of Wettest Quarter (Bio8), Annual Precipitation (Bio12), Precipitation of Wettest Month (Bio13), Precipitation of Driest Month (Bio14), Precipitation Seasonality (Coefficient of Variation) (Bio15), Precipitation of Wettest Quarter (Bio16), Precipitation of Driest Quarter (Bio17), Precipitation of Warmest Quarter (Bio18), Precipitation of Coldest Quarter (Bio19), Slope, Slope Standard Deviation (Slope. Std), Land use land cover change (LuLc) and Vegetation.

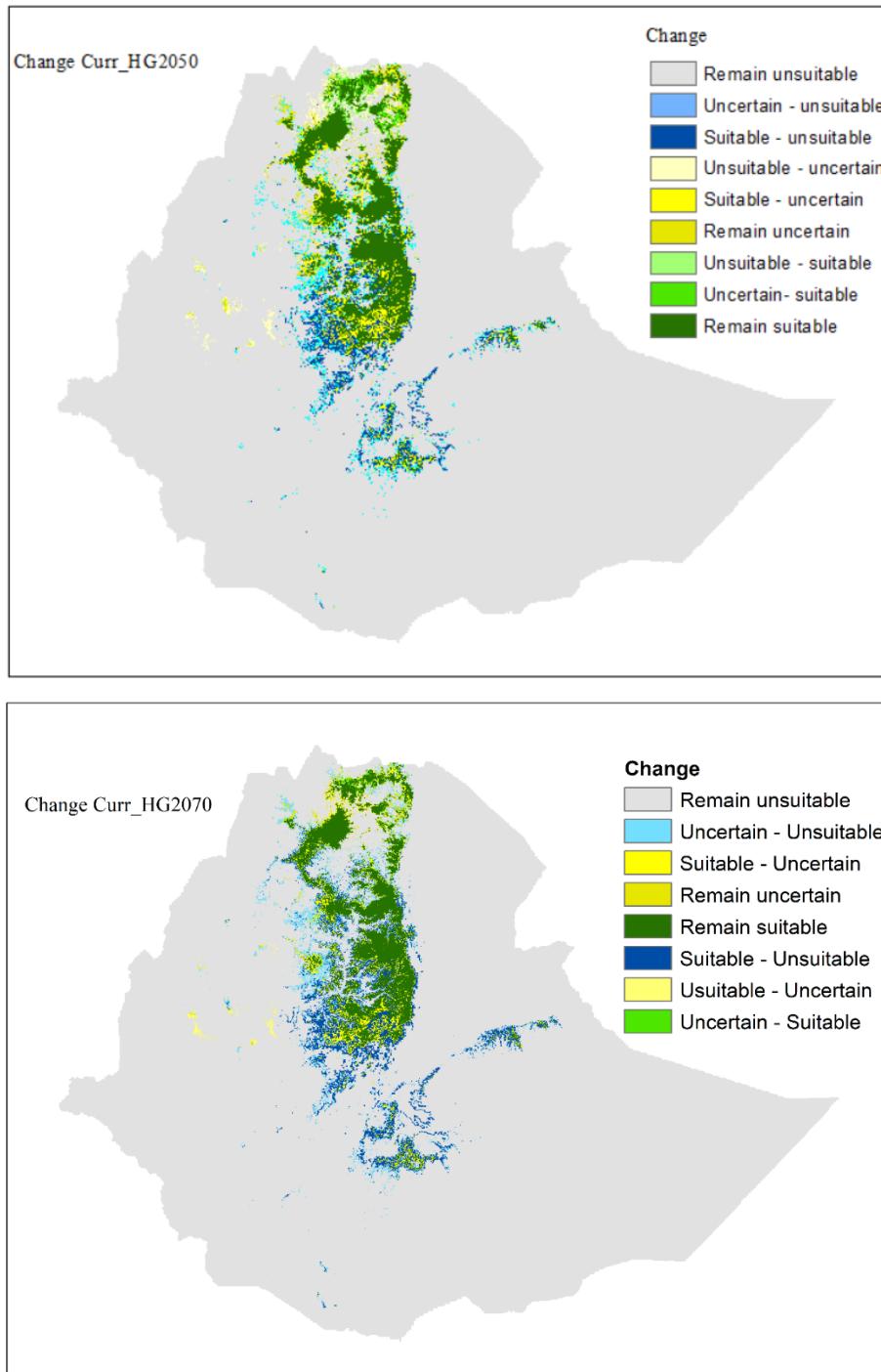

Figure S2 Distribution and extent of suitable habitat of *T. gelada* produced using two levels of model complexity (regularization multiplier value = 1 (Reg_1) and 8 (Reg_8)) and three cut-off threshold values: 10% (10 percent omission rate), MTSS (maximum test sensitivity and specificity), and ETSS (equal test sensitivity and specificity). The maps in the upper two rows were produced by generating pseudoabsence points within the elevation ranges of the occurrence points of *T. gelada* (2018–4219 m asl), while the lower two rows were produced by generating pseudoabsence points using a bias file.

FIGURE S3 Predicted size of suitable habitats of gelada across an elevation gradient under current and future climates (2050 and 2070). The x-axis represents altitude (m) and the y-axis represents 1 km × 1 km grid cell counts.

FIGURE S4 The area of suitable gelada habitats predicted under current and different future emission scenarios (2050 and 2070) produced using two levels of model complexity by setting a regularization multiplier values to 1 (Reg_1) and 8 (Reg_8) and by using three cut-off threshold values without and with bias file (WB): 10% (10 percentile omission rate), MTSS (maximum test sensitivity and specificity), and ETSS (equal test sensitivity and specificity). HG stands for Hadley Centre Global Environment Model version 2 (HadGEM2-ES). We used three emission scenarios (2.6, 4.5 and 8.5).

FIGURE S5 Changes in distribution and extent of suitable gelada habitat. The habitat suitability maps show predicted losses and gains by comparing current and future projections (curr_2050 and curr_2070).