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s Abstract

16 1. A standing challenge in the study of animal movement ecology is the capacity to predict where and when
17 an individual animal might occur on the landscape, the so-called, Utilization Distribution (UD). Under
18 certain assumptions, the steady-state UD can be predicted from a fitted exponential habitat selection
19 function. However, these assumptions are rarely met. Furthermore, there are many applications
2 that require the estimation of transient dynamics rather than steady-state UDs (e.g. when modeling
2 migration or dispersal). Thus, there is a clear need for computational tools capable of predicting UDs
2 based on observed animal movement data.

2 2. Integrated Step-Selection Analyses (iISSAs) are widely used to study habitat selection and movement of

2 wild animals, and result in a fully parametrized individual-based model of animal movement, which we
2 refer to as an integrated Step Selection Function (iSSF). An iSSF can be used to generate stochastic
2 animal paths based on random draws from a series of Markovian redistribution kernels, each consisting
27 of a selection-free, but possibly habitat-influenced, movement kernel and a movement-free selection
2 function. The UD can be approximated by a sufficiently large set of such stochastic paths.

20 3. Here, we present a set of functions in R to facilitate the simulation of animal space use from fitted
30 iSSFs. Our goal is to provide a general purpose simulator that is easy to use and is part of an existing
3 workflow for iISSAs (within the amt R package).

» 4. We demonstrate through a series of applications how the simulator can be used to address a variety
3 of questions in applied movement ecology. By providing functions in amt and coded examples, we
3 hope to encourage ecologists using iSSFs to explore their predictions and model goodness-of-fit using
3 simulations, and to further explore mechanistic approaches to modeling landscape connectivity.
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» Introduction

s Integrated step selection analysis (iSSA; Avgar et al. 2016; Fieberg et al. 2021) has emerged as a powerful and
3 unifying methodological framework for quantifying different aspects of animal space use, including habitat
w0  selection patterns, movement behavior, and transient and steady-state utilization distributions (UDs). An
w0 1SSA results in a fully parametrized individual-based movement model that can be broadly classified as a
s locally-biased correlated random walk (Duchesne, Fortin, and Rivest 2015) which we refer to as an integrated
2 step selection function (iSSF). In an iSSF, movement emerges from the product of a movement-free habitat
s selection function (MF-HSF; i.e., how would the animal select habitat if it were not constrained by movement)
« and a selection-free movement kernel (SF-MK; i.e., how would the animal move if it were not constrained by
s habitat selection). Note that the latter may include various habitat or environmental effects on movement,
s just not selection per se. Conceptually, the iSSF can be thought of as estimating a two-dimensional probability
« density function for the animal’s position after the next step (a redistribution kernel), given the environmental
s conditions and the animal’s current position and recent path. It provides a mechanistic model that can
s« be fitted to data and used to simulate emerging patterns, the most basic of which is the UD (e.g., Signer,

so  Fieberg, and Avgar 2017; Hofmann et al. 2023; Potts and Borger 2023).

st Simulations from iSSFs have been used to investigate emergent patterns of space use from fitted iSSFs
2 (Signer, Fieberg, and Avgar 2017; Potts and Schligel 2020), to model connectivity between different animal
53 populations or habitat patches (Hofmann et al. 2023; Whittington et al. 2022), and to evaluate and validate
s« fitted models (Sells et al. 2023; Potts et al. 2022). Although analytical approximations of various estimation
s targets exist for some situations (Potts and Schlagel 2020; Potts and Borger 2023), simulations are more
s intuitive, flexible, and applicable to a wider range of problems. Despite the already widespread use and
v interest in simulations in movement ecology (Zurell et al. 2010; Whittington et al. 2022; Aiello et al. 2023),
ss  a general simulation routine is missing from available software, requiring analysts to write custom code. We
s address this gap by providing a user-friendly tool that can be used to address the various use cases described

0 above.

&1 We implemented two main functions, redistribution_kernel() and simulate_path(), in the amt package
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(Signer, Fieberg, and Avgar 2019) for the programming language R (R Core Team 2023). The first function
computes a dynamic redistribution kernel from a fitted iSSF given a set of initial conditions (i.e., previous
and current positions in geographic and environmental space). The second function is used to simulate
movement paths by iteratively sampling a new position from a redistribution kernel and then updating this
kernel to reflect the individual’s new position. We illustrate how simulations can be used to visualize different
redistribution kernels, to generate data for various testing purposes, and to validate models and compute
derived quantities (e.g., space use maps) in a case study using tracking data from an African buffalo. Finally,

we discuss other applications that may be of interest to a wide range of ecologists.

Methods

Background

The iSSF can be used to calculate a redistribution kernel that gives the probability of moving to position s at
time t + 7 (7 being a constant time step), given the animal is at position s’ at time ¢ and was at position s”
at time ¢ — 7. More formally, the value of the redistribution kernel u(-) for a tentative position s at time ¢+ 7

is given by

u(s, t+71) =

w(h(s,t+1); B)d(s, ', s";7)
fseG U)(h(s, t + T); )¢(S, S/, 8//§ ’Y)dS

where w(-) is the MF-HSF and ¢(-) is the SF-MK. The denominator normalizes the redistribution kernel over
all possible positions s within the spatial domain G. The selection parameters, 3, weigh different habitat
attributes (sometimes referred to as ‘resources’), h, at position s and time ¢+ 7, and the movement parameters,
v, are used to model the distribution of step lengths and turn angles.

When step lengths and turn angles are modeled using distributions from the exponential family, and an

exponential MF-HSF is used, the numerator can be rewritten in log-linear form as

k q
u(s,t+ T) o exp Z Bihi(s,t + ) + Z’yjﬂj (s,8", 8", h(s"))

i=1 j=1
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22 where h;(s,t+ 7) is the value of the i-th (out of k) habitat attribute, h;, at position s and time ¢ + 7, and 6;
e the j-th (out of q) geometrical attribute of the step (e.g., the cosine of the turn angle, the step lengths, or
s the log of the step length, which are movement characteristics that depend on the assumed step-length and
s turn-angle distributions). The 6; can also consist of, e.g., the product of the step length and the value of a
s certain habitat attribute at s’ to model environmental effects on movement. The parameters of the model
ez can be estimated using different approaches. The most common method is a two-step procedure, estimating
s first tentative parameters for the SF-MK and using these to estimate the g; while simultaneously updating

s parameters of the SF-MK (see Avgar et al. 2016; Fieberg et al. 2021, in particular Appendix C).

o Implementation

o The amt-function redistribution_kernel () creates a redistribution kernel from the object returned by
oo fit_issf(), using the two-step procedure. In situations where the parameters have been estimated in some
s other way (e.g., using Poisson regression Muff, Signer, and Fieberg 2020; or a full likelihood approach Schligel
w and Lewis 2016), or when simulating from scratch based on user-defined parameter values, the necessary
os object can be created with the make_issf_model() function. The redistribution_kernel() function
s requires additional arguments, especially: map, fun, and landscape (Table 1). The argument map must be a
o SpatRast from the terra package (Hijmans 2023) and must contain all environmental covariates included in
s the model; its extent determines the extent of the simulation landscape. The argument fun is a function
o that is executed at each time step of the simulation to extract (and possibly manipulate) the values from
wo  map. Often, the default function — extract_covariates() — is sufficient. Finally, the argument landscape
1w controls whether the redistribution kernel is implemented in continuous space and approximated using Monte
102 Carlo sampling (landscape = "continuous") or in discrete space (landscape = "discrete"). Generally,
103 a stochastic redistribution kernel in continuous space is preferable; a discrete-space approximation can lead
s to a biased step length distribution, since the smallest step length is then given by the resolution of the
105 environmental covariate raster. Continuous redistribution kernel can use the tentative step length and turning
s angle distributions as proposal distributions for stochastic simulations from the selection-free movement kernel.

w7 For visualization purposes, however, we may be interested in a discrete approximation of the redistribution
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s kernel. In this case, we need to: 1) update the tentative step length and turning angle distributions to the
100 SF-MK using coefficients associated with movement characteristics; and 2) account for the transformation
uo from polar to Euclidean coordinates (see Supplement 1), the function redistribution_kernel() takes care

ur of this.

12 Once multiple paths are simulated (each a stochastic realization of the same iSSF), they can be used to
us  approximate either a transient utilization distribution or a steady-state utilization distribution (Signer,
e Fieberg, and Avgar 2017). A transient UD is a probability surface of animal occurrence at the end of all
us  possible paths starting from a given point in space and time, and lasting a given duration. A transient
us  UD is thus spatially and temporally specific — it takes different forms depending on the starting conditions
w7 and the sampling duration. For a given starting position (in space and time) and duration (= number of
us steps), the transient UD is approximated as the intensity of the point pattern formed by the endpoints of
1o many simulated paths (the more simulated paths, the better the approximation). A steady-state UD is the
10 probability surface of animal occurrence at the limit of an infinitely long path — it is independent of the
1 initial conditions. A steady-state UD is thus approximated by simulating paths so long that the resulting
122 point pattern of step endpoints is no longer sensitive to the starting point. Note that, since a steady-state
123 UD is independent of duration, all simulated step endpoints are included in the summary (rather than just
1+ the last endpoint of each simulated path as in the transient UD). In cases where a single path cannot be
s expected to effectively visit all locations within the spatial domain in a computationally feasible time frame,
s multiple (long) paths should be simulated, each starting from a different starting point across the domain.
127 Both types of UDs could be further smoothed using a kernel density estimator applied to the resulting point

s pattern (Potts and Borger 2023).

» Case Study

1 Simulating movement from scratch

1 First, we show how our simulator can be used to visualize different redistribution kernels and simulate from

122 them. For our model of step lengths, we used a gamma distribution with parameter values for shape = scale
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133 = 2. To model turning angles, we used a von Mises distributions with two different concentration parameters,
1 0 (no directional persistence) or 4 (strong positive directional persistence). Lastly, we allowed the individual
15 to select for or against a spatially varying habitat attribute (gray square in Fig. 1). The overall redistribution

s kernel u(s,t+ 7) for any steps starting at s’ and ending at s can be described as

u(s,t+7) o< exp(bih(s) +bals, s'| +b3log(|s, s'|) + bs cos(a(s, s') —a(s’,s")) + bs cos(a(s, s') —a(s’, s"))h(s"))

1w where by is a selection coefficient of the MF-HSF; bo, b3, by and bs are parameters in the SF-MK, |s, s’| is the
s Euclidian distance from s’ to s (step length), a(s, s’) is the angular heading from s to s', (a(s,s’) — a(s',s"))
130 is thus the turning angle relative to the previous step, and h(s) is the habitat value at a given position s.
o First, we generated six different redistribution kernels on a discrete landscape by varying the values of b4 and

w1 bs to illustrate different SF-MKs (Fig. 1a, b, e, f) and b; to illustrate different MF-HSFs (Fig. 1c, d).

12 Second, we simulated 50 paths for 30 time steps each by repeatedly sampling from successive redistribution
us  kernels (Fig. 2a). We assumed that the animal had little directional persistence and selected for habitat
e within the gray dashed rectangle (Fig. 2b). We then applied a kernel density estimator to the endpoints of

us  these 50 paths (Fig. 2¢) to obtain a smooth estimate of the transient UD (Potts and Borger 2023).

us  African buffalo

17 We used tracking data from Cilla, an African buffalo, previously used to introduce the local-convex-hull home
us range estimator and freely available from Movebank (Getz et al. 2007; Cross et al. 2016). We fitted three
19 1SSF models of increasing complexity. In the first, we modeled habitat selection as a function of distance to
10 the nearest river at a spatial resolution of 90 m. Next, to model home ranging behavior, we added the x and
151y coordinates of the endpoint of each step (observed and control) and the sum of their squares (see Appendix
12 S3 of Alston et al. 2023). Finally, we included the river as a potential barrier to movement. For each step
1535 (observed and control) we compared whether or not the start and end of a step were on the same side of the

1« river. Data and reproducible code for all three models are provided in Supplement 2.

155 The African buffalo case study illustrates how simulations can be used to visually check model fit (Fig. 3). In
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Figure 1: Different redistribution kernels resulting from different parametrizations of the selection-free
movement kernel (SF-MK) and the movement-free habitat selection function (MF-HSF). In the simplest
case, there is no habitat selection and movement is only constrained by the SF-MK, which excludes (panel
a) or includes (panel b) directional persistence. An environmental covariate (gray rectangle within which h
= 1, as opposed to out of the rectangle where h = 0) can lead to preference (panel ¢) or avoidance (panel
d). Furthermore, the SF-MK can also depend on the habitat the animal is in at the start of the movement
step. We show redistribution kernels for a case where the animal exhibits different directional persistence

depending on whether it is located outside (panel e) or inside (panel f) the gray rectangle.
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Figure 2: Figure 2: Simulated movement paths of 50 animals for 30 time steps (panel a). We then used the

end positions (panel b) to generate a smoothed map representing the transient Utilization Distribution at

t = 30 (panel c). The start point is marked with a red dot.

16 model 1, movement is unconstrained and the animal frequently leaves the landscape (Fig. 3; left panel). In
157 model 2, the inclusion of home ranging behavior constrains the animal to never leave the landscape, but it
158 does not prevent the animal from crossing the river even though river crossings were never observed in the
150 data (Fig. 3; middle panel). In model 3, the parameterized iSSF produces a much more realistic movement
1o path (Fig. 3; right panel). Note that there are still unexplained patterns in the observed path (e.g., elevation
1 could also be important), but we conclude that model 3 is already a significant improvement over model 1.
12 Many realizations of this simulation could be used to formally measure the predictive power of each model

163 (POttS et al. 2022).

w Discussion

s We have developed functions in R that enable users to simulate animal space use directly from fitted iSSFs
166 using redistribution kernels that are dynamic in space in time. Our approach builds on an established

17 workflow for data analysis.

s We see several different applications for such a simulator, including model evaluation, prediction, and
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Figure 3: Figure 3 : Observed (light gray) and simulated (red) movement paths of an African buffalo. All
models included distance to water as a covariate. Model 2 and Model 3 also included the coordinates at the
end of each step to account for home ranging behavior. Model 3 also included whether the start and end

points of each step were on the same side of the river (shown in white).

160 estimation of space use metrics (such as landscape connectivity) to inform conservation. First, simulated and
wo observed paths can be visually compared (Fig. 3). If the model has been specified in a way that describes the
. data-generating process reasonably well, the observed path should not stand out among the simulated path.
12 Similar to our case study, one can evaluate whether the observed and simulated paths exhibit similar behavior
173 near roads, rivers, or other prominent environmental features. Second, our simulator can be used as a way to
e develop a null distribution to test for evidence of site fidelity and/or memory (Picardi et al. 2023). Third,
s predicting the steady-state or transient UD of an animal is often of interest. When the redistribution kernel
we is static (i.e., does not change spatially), other approaches are available to generate steady-state UDs (Signer,
v Fieberg, and Avgar 2017; Potts and Borger 2023). However, if the goal is to predict short-term, transient
ws  utilization distributions or if there is no steady-state UD (e.g., if the redistribution kernel is periodic in time),
w9 the simulator presented here offers a natural way forward. Finally, animal movement is of interest for many
10 conservation applications and questions that require quantification of landscape connectivity. Unlike many
11 current approaches, our simulator provides a way to explore connectivity via a mechanistic model of animal

182 movement.

10
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183 We have described the simulator in the context of simulating from a fitted iSSF, but it is also possible to
18 simulate paths from scratch (as we did in the first case study). This requires the analyst to define step length
15 and turning angle distributions for the movement model and selection coefficients for the selection functions.
185 This feature makes our approach useful for exploring research questions via simulation or for evaluating

17 different sampling designs.

188 We expect the recent interest in simulations from integrated step selection functions to continue. Recent
180 extensions to iSSAs that include memory (Rheault et al. 2021), behavioral states (Klappstein, Thomas,
1o and Michelot 2022; Pohle et al. 2023) or irregular sampling rates (Munden et al. 2021) could eventually be

w1 incorporated into the simulator for even greater realism.
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» Table

20 Overview of the main functionality of the amt-simulator. Function names are in bold. The most important

22 arguments are listed below with their default values in italics.

Argument

Description

redistribution_kernel ()
X = make_tssf_model ()
start = make_start()
map

fun®

max.dist = get_maz_dist (z)
n.control = 1e6
n.sample = 1

landscape = "continuous"
normalize = TRUE
as.rast = TRUE

tolerance.outside = 0

Function to create a redistribution kernel.

A fitted iSSF or the result of make_issf_model().

The first step. make_step() helps to create a first step.

A ‘SpatRast‘ with all environmental covariates.

A function executed at each time step. The function expectes two arguments:
xy (all points of the redistribution kernel at a given time) and the map provided
before.

The truncation distance of the redistribution kernel.

The number of steps, if landscape = "continuous".

The number of points that will be sampled from the redistribution kernel.
Indicates if the redistribution kernel uses continuous or "discrete" space.
Should the redistribution kernel be normalized to 17

Whether or not the results should be returned as a ‘SpatRast.

The fraction of the redistribution kernel allowed outside the map.

simulate_path()

X
n_steps = 500
start = z$start

Function to iteratively update the redistribution kernel and simulate
a path.

A redistribution kernel.

The number of time steps that will be simulated.

The start position of the simulation.

make_issf_model ()
coefs = c¢("sl_" = 0)

sl = make_exp_distr()

Function to emulate a fitted iSSF.

The coefficients of the movement-free selection function and the correction
coefficients of the selection-free movement kernel.

The statistical distribution for the step lengths. Defaults to an exponential
distribution but others are possible.

The statistical distribution for the turn angles.

ta = make_unif_distr()
make_start.default()

x = ¢c(0, 0)

ta_ =0

time = System.time()
dt = lubridate::hours(1)

Function create a starting position.
The x and y coordinate of the starting point.
The direction of the first step.

Timestamp for the first step.

The duration of a step.

make_start.steps_xyt()
X

Function to crate a starting position from an observed track.
Object of class steps_xyt.

get_max_dist ()

Function to obtain the truncation distance.

X A fitted iSSF model.
p = 0.99 Quantile of the step-length distribution.
@ The default function used here is: function(xy, map) extract_covariates(xy, map, where = "both")

12
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