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Abstract15

1. A standing challenge in the study of animal movement ecology is the capacity to predict where and when16

an individual animal might occur on the landscape, the so-called, Utilization Distribution (UD). Under17

certain assumptions, the steady-state UD can be predicted from a fitted exponential habitat selection18

function. However, these assumptions are rarely met. Furthermore, there are many applications19

that require the estimation of transient dynamics rather than steady-state UDs (e.g. when modeling20

migration or dispersal). Thus, there is a clear need for computational tools capable of predicting UDs21

based on observed animal movement data.22

2. Integrated Step-Selection Analyses (iSSAs) are widely used to study habitat selection and movement of23

wild animals, and result in a fully parametrized individual-based model of animal movement, which we24

refer to as an integrated Step Selection Function (iSSF). An iSSF can be used to generate stochastic25

animal paths based on random draws from a series of Markovian redistribution kernels, each consisting26

of a selection-free, but possibly habitat-influenced, movement kernel and a movement-free selection27

function. The UD can be approximated by a sufficiently large set of such stochastic paths.28

3. Here, we present a set of functions in R to facilitate the simulation of animal space use from fitted29

iSSFs. Our goal is to provide a general purpose simulator that is easy to use and is part of an existing30

workflow for iSSAs (within the amt R package).31

4. We demonstrate through a series of applications how the simulator can be used to address a variety32

of questions in applied movement ecology. By providing functions in amt and coded examples, we33

hope to encourage ecologists using iSSFs to explore their predictions and model goodness-of-fit using34

simulations, and to further explore mechanistic approaches to modeling landscape connectivity.35
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Introduction36

Integrated step selection analysis (iSSA; Avgar et al. 2016; Fieberg et al. 2021) has emerged as a powerful and37

unifying methodological framework for quantifying different aspects of animal space use, including habitat38

selection patterns, movement behavior, and transient and steady-state utilization distributions (UDs). An39

iSSA results in a fully parametrized individual-based movement model that can be broadly classified as a40

locally-biased correlated random walk (Duchesne, Fortin, and Rivest 2015) which we refer to as an integrated41

step selection function (iSSF). In an iSSF, movement emerges from the product of a movement-free habitat42

selection function (MF-HSF; i.e., how would the animal select habitat if it were not constrained by movement)43

and a selection-free movement kernel (SF-MK; i.e., how would the animal move if it were not constrained by44

habitat selection). Note that the latter may include various habitat or environmental effects on movement,45

just not selection per se. Conceptually, the iSSF can be thought of as estimating a two-dimensional probability46

density function for the animal’s position after the next step (a redistribution kernel), given the environmental47

conditions and the animal’s current position and recent path. It provides a mechanistic model that can48

be fitted to data and used to simulate emerging patterns, the most basic of which is the UD (e.g., Signer,49

Fieberg, and Avgar 2017; Hofmann et al. 2023; Potts and Börger 2023).50

Simulations from iSSFs have been used to investigate emergent patterns of space use from fitted iSSFs51

(Signer, Fieberg, and Avgar 2017; Potts and Schlägel 2020), to model connectivity between different animal52

populations or habitat patches (Hofmann et al. 2023; Whittington et al. 2022), and to evaluate and validate53

fitted models (Sells et al. 2023; Potts et al. 2022). Although analytical approximations of various estimation54

targets exist for some situations (Potts and Schlägel 2020; Potts and Börger 2023), simulations are more55

intuitive, flexible, and applicable to a wider range of problems. Despite the already widespread use and56

interest in simulations in movement ecology (Zurell et al. 2010; Whittington et al. 2022; Aiello et al. 2023),57

a general simulation routine is missing from available software, requiring analysts to write custom code. We58

address this gap by providing a user-friendly tool that can be used to address the various use cases described59

above.60

We implemented two main functions, redistribution_kernel() and simulate_path(), in the amt package61
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(Signer, Fieberg, and Avgar 2019) for the programming language R (R Core Team 2023). The first function62

computes a dynamic redistribution kernel from a fitted iSSF given a set of initial conditions (i.e., previous63

and current positions in geographic and environmental space). The second function is used to simulate64

movement paths by iteratively sampling a new position from a redistribution kernel and then updating this65

kernel to reflect the individual’s new position. We illustrate how simulations can be used to visualize different66

redistribution kernels, to generate data for various testing purposes, and to validate models and compute67

derived quantities (e.g., space use maps) in a case study using tracking data from an African buffalo. Finally,68

we discuss other applications that may be of interest to a wide range of ecologists.69

Methods70

Background71

The iSSF can be used to calculate a redistribution kernel that gives the probability of moving to position s at72

time t + τ (τ being a constant time step), given the animal is at position s′ at time t and was at position s′′
73

at time t − τ . More formally, the value of the redistribution kernel u(·) for a tentative position s at time t + τ74

is given by75

u(s, t + τ) = w(h(s, t + τ); β)ϕ(s, s′, s′′; γ)∫
s∈G

w(h(s, t + τ); β)ϕ(s, s′, s′′; γ)ds

where w(·) is the MF-HSF and ϕ(·) is the SF-MK. The denominator normalizes the redistribution kernel over76

all possible positions s within the spatial domain G. The selection parameters, β, weigh different habitat77

attributes (sometimes referred to as ‘resources’), h, at position s and time t+τ , and the movement parameters,78

γ, are used to model the distribution of step lengths and turn angles.79

When step lengths and turn angles are modeled using distributions from the exponential family, and an80

exponential MF-HSF is used, the numerator can be rewritten in log-linear form as81

u(s, t + τ) ∝ exp

 k∑
i=1

βihi(s, t + τ) +
q∑

j=1
γjθj(s, s′, s′′, h(s′))


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where hi(s, t + τ) is the value of the i-th (out of k) habitat attribute, hi, at position s and time t + τ , and θj82

the j-th (out of q) geometrical attribute of the step (e.g., the cosine of the turn angle, the step lengths, or83

the log of the step length, which are movement characteristics that depend on the assumed step-length and84

turn-angle distributions). The θj can also consist of, e.g., the product of the step length and the value of a85

certain habitat attribute at s′ to model environmental effects on movement. The parameters of the model86

can be estimated using different approaches. The most common method is a two-step procedure, estimating87

first tentative parameters for the SF-MK and using these to estimate the βi while simultaneously updating88

parameters of the SF-MK (see Avgar et al. 2016; Fieberg et al. 2021, in particular Appendix C).89

Implementation90

The amt-function redistribution_kernel() creates a redistribution kernel from the object returned by91

fit_issf(), using the two-step procedure. In situations where the parameters have been estimated in some92

other way (e.g., using Poisson regression Muff, Signer, and Fieberg 2020; or a full likelihood approach Schlägel93

and Lewis 2016), or when simulating from scratch based on user-defined parameter values, the necessary94

object can be created with the make_issf_model() function. The redistribution_kernel() function95

requires additional arguments, especially: map, fun, and landscape (Table 1). The argument map must be a96

SpatRast from the terra package (Hijmans 2023) and must contain all environmental covariates included in97

the model; its extent determines the extent of the simulation landscape. The argument fun is a function98

that is executed at each time step of the simulation to extract (and possibly manipulate) the values from99

map. Often, the default function – extract_covariates() – is sufficient. Finally, the argument landscape100

controls whether the redistribution kernel is implemented in continuous space and approximated using Monte101

Carlo sampling (landscape = "continuous") or in discrete space (landscape = "discrete"). Generally,102

a stochastic redistribution kernel in continuous space is preferable; a discrete-space approximation can lead103

to a biased step length distribution, since the smallest step length is then given by the resolution of the104

environmental covariate raster. Continuous redistribution kernel can use the tentative step length and turning105

angle distributions as proposal distributions for stochastic simulations from the selection-free movement kernel.106

For visualization purposes, however, we may be interested in a discrete approximation of the redistribution107
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kernel. In this case, we need to: 1) update the tentative step length and turning angle distributions to the108

SF-MK using coefficients associated with movement characteristics; and 2) account for the transformation109

from polar to Euclidean coordinates (see Supplement 1), the function redistribution_kernel() takes care110

of this.111

Once multiple paths are simulated (each a stochastic realization of the same iSSF), they can be used to112

approximate either a transient utilization distribution or a steady-state utilization distribution (Signer,113

Fieberg, and Avgar 2017). A transient UD is a probability surface of animal occurrence at the end of all114

possible paths starting from a given point in space and time, and lasting a given duration. A transient115

UD is thus spatially and temporally specific – it takes different forms depending on the starting conditions116

and the sampling duration. For a given starting position (in space and time) and duration (= number of117

steps), the transient UD is approximated as the intensity of the point pattern formed by the endpoints of118

many simulated paths (the more simulated paths, the better the approximation). A steady-state UD is the119

probability surface of animal occurrence at the limit of an infinitely long path – it is independent of the120

initial conditions. A steady-state UD is thus approximated by simulating paths so long that the resulting121

point pattern of step endpoints is no longer sensitive to the starting point. Note that, since a steady-state122

UD is independent of duration, all simulated step endpoints are included in the summary (rather than just123

the last endpoint of each simulated path as in the transient UD). In cases where a single path cannot be124

expected to effectively visit all locations within the spatial domain in a computationally feasible time frame,125

multiple (long) paths should be simulated, each starting from a different starting point across the domain.126

Both types of UDs could be further smoothed using a kernel density estimator applied to the resulting point127

pattern (Potts and Börger 2023).128

Case Study129

Simulating movement from scratch130

First, we show how our simulator can be used to visualize different redistribution kernels and simulate from131

them. For our model of step lengths, we used a gamma distribution with parameter values for shape = scale132
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= 2. To model turning angles, we used a von Mises distributions with two different concentration parameters,133

0 (no directional persistence) or 4 (strong positive directional persistence). Lastly, we allowed the individual134

to select for or against a spatially varying habitat attribute (gray square in Fig. 1). The overall redistribution135

kernel u(s, t + τ) for any steps starting at s′ and ending at s can be described as136

u(s, t+τ) ∝ exp(b1h(s)+ b2|s, s′|+ b3 log(|s, s′|)+ b4 cos(α(s, s′)−α(s′, s′′))+ b5 cos(α(s, s′)−α(s′, s′′))h(s′))

where b1 is a selection coefficient of the MF-HSF; b2, b3, b4 and b5 are parameters in the SF-MK, |s, s′| is the137

Euclidian distance from s′ to s (step length), α(s, s′) is the angular heading from s to s′, (α(s, s′) − α(s′, s′′))138

is thus the turning angle relative to the previous step, and h(s) is the habitat value at a given position s.139

First, we generated six different redistribution kernels on a discrete landscape by varying the values of b4 and140

b5 to illustrate different SF-MKs (Fig. 1a, b, e, f) and b1 to illustrate different MF-HSFs (Fig. 1c, d).141

Second, we simulated 50 paths for 30 time steps each by repeatedly sampling from successive redistribution142

kernels (Fig. 2a). We assumed that the animal had little directional persistence and selected for habitat143

within the gray dashed rectangle (Fig. 2b). We then applied a kernel density estimator to the endpoints of144

these 50 paths (Fig. 2c) to obtain a smooth estimate of the transient UD (Potts and Börger 2023).145

African buffalo146

We used tracking data from Cilla, an African buffalo, previously used to introduce the local-convex-hull home147

range estimator and freely available from Movebank (Getz et al. 2007; Cross et al. 2016). We fitted three148

iSSF models of increasing complexity. In the first, we modeled habitat selection as a function of distance to149

the nearest river at a spatial resolution of 90 m. Next, to model home ranging behavior, we added the x and150

y coordinates of the endpoint of each step (observed and control) and the sum of their squares (see Appendix151

S3 of Alston et al. 2023). Finally, we included the river as a potential barrier to movement. For each step152

(observed and control) we compared whether or not the start and end of a step were on the same side of the153

river. Data and reproducible code for all three models are provided in Supplement 2.154

The African buffalo case study illustrates how simulations can be used to visually check model fit (Fig. 3). In155
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Figure 1: Different redistribution kernels resulting from different parametrizations of the selection-free

movement kernel (SF-MK) and the movement-free habitat selection function (MF-HSF). In the simplest

case, there is no habitat selection and movement is only constrained by the SF-MK, which excludes (panel

a) or includes (panel b) directional persistence. An environmental covariate (gray rectangle within which h

= 1, as opposed to out of the rectangle where h = 0) can lead to preference (panel c) or avoidance (panel

d). Furthermore, the SF-MK can also depend on the habitat the animal is in at the start of the movement

step. We show redistribution kernels for a case where the animal exhibits different directional persistence

depending on whether it is located outside (panel e) or inside (panel f) the gray rectangle.
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Figure 2: Figure 2: Simulated movement paths of 50 animals for 30 time steps (panel a). We then used the

end positions (panel b) to generate a smoothed map representing the transient Utilization Distribution at

t = 30 (panel c). The start point is marked with a red dot.

model 1, movement is unconstrained and the animal frequently leaves the landscape (Fig. 3; left panel). In156

model 2, the inclusion of home ranging behavior constrains the animal to never leave the landscape, but it157

does not prevent the animal from crossing the river even though river crossings were never observed in the158

data (Fig. 3; middle panel). In model 3, the parameterized iSSF produces a much more realistic movement159

path (Fig. 3; right panel). Note that there are still unexplained patterns in the observed path (e.g., elevation160

could also be important), but we conclude that model 3 is already a significant improvement over model 1.161

Many realizations of this simulation could be used to formally measure the predictive power of each model162

(Potts et al. 2022).163

Discussion164

We have developed functions in R that enable users to simulate animal space use directly from fitted iSSFs165

using redistribution kernels that are dynamic in space in time. Our approach builds on an established166

workflow for data analysis.167

We see several different applications for such a simulator, including model evaluation, prediction, and168

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 14, 2023. ; https://doi.org/10.1101/2023.08.10.552754doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.10.552754
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3: Figure 3 : Observed (light gray) and simulated (red) movement paths of an African buffalo. All

models included distance to water as a covariate. Model 2 and Model 3 also included the coordinates at the

end of each step to account for home ranging behavior. Model 3 also included whether the start and end

points of each step were on the same side of the river (shown in white).

estimation of space use metrics (such as landscape connectivity) to inform conservation. First, simulated and169

observed paths can be visually compared (Fig. 3). If the model has been specified in a way that describes the170

data-generating process reasonably well, the observed path should not stand out among the simulated path.171

Similar to our case study, one can evaluate whether the observed and simulated paths exhibit similar behavior172

near roads, rivers, or other prominent environmental features. Second, our simulator can be used as a way to173

develop a null distribution to test for evidence of site fidelity and/or memory (Picardi et al. 2023). Third,174

predicting the steady-state or transient UD of an animal is often of interest. When the redistribution kernel175

is static (i.e., does not change spatially), other approaches are available to generate steady-state UDs (Signer,176

Fieberg, and Avgar 2017; Potts and Börger 2023). However, if the goal is to predict short-term, transient177

utilization distributions or if there is no steady-state UD (e.g., if the redistribution kernel is periodic in time),178

the simulator presented here offers a natural way forward. Finally, animal movement is of interest for many179

conservation applications and questions that require quantification of landscape connectivity. Unlike many180

current approaches, our simulator provides a way to explore connectivity via a mechanistic model of animal181

movement.182
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We have described the simulator in the context of simulating from a fitted iSSF, but it is also possible to183

simulate paths from scratch (as we did in the first case study). This requires the analyst to define step length184

and turning angle distributions for the movement model and selection coefficients for the selection functions.185

This feature makes our approach useful for exploring research questions via simulation or for evaluating186

different sampling designs.187

We expect the recent interest in simulations from integrated step selection functions to continue. Recent188

extensions to iSSAs that include memory (Rheault et al. 2021), behavioral states (Klappstein, Thomas,189

and Michelot 2022; Pohle et al. 2023) or irregular sampling rates (Munden et al. 2021) could eventually be190

incorporated into the simulator for even greater realism.191
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Table200

Overview of the main functionality of the amt-simulator. Function names are in bold. The most important201

arguments are listed below with their default values in italics.202

Argument Description
redistribution_kernel() Function to create a redistribution kernel.
x = make_issf_model() A fitted iSSF or the result of make_issf_model().
start = make_start() The first step. make_step() helps to create a first step.
map A ‘SpatRast‘ with all environmental covariates.
funa A function executed at each time step. The function expectes two arguments:

xy (all points of the redistribution kernel at a given time) and the map provided
before.

max.dist = get_max_dist(x) The truncation distance of the redistribution kernel.
n.control = 1e6 The number of steps, if landscape = "continuous".
n.sample = 1 The number of points that will be sampled from the redistribution kernel.
landscape = "continuous" Indicates if the redistribution kernel uses continuous or "discrete" space.
normalize = TRUE Should the redistribution kernel be normalized to 1?
as.rast = TRUE Whether or not the results should be returned as a ‘SpatRast.
tolerance.outside = 0 The fraction of the redistribution kernel allowed outside the map.
simulate_path() Function to iteratively update the redistribution kernel and simulate

a path.
x A redistribution kernel.
n_steps = 500 The number of time steps that will be simulated.
start = x$start The start position of the simulation.
make_issf_model() Function to emulate a fitted iSSF.
coefs = c("sl_" = 0) The coefficients of the movement-free selection function and the correction

coefficients of the selection-free movement kernel.
sl = make_exp_distr() The statistical distribution for the step lengths. Defaults to an exponential

distribution but others are possible.
ta = make_unif_distr() The statistical distribution for the turn angles.
make_start.default() Function create a starting position.
x = c(0, 0) The x and y coordinate of the starting point.
ta_ = 0 The direction of the first step.
time = System.time() Timestamp for the first step.
dt = lubridate::hours(1) The duration of a step.
make_start.steps_xyt() Function to crate a starting position from an observed track.
x Object of class steps_xyt.
get_max_dist() Function to obtain the truncation distance.
x A fitted iSSF model.
p = 0.99 Quantile of the step-length distribution.
a The default function used here is: function(xy, map) extract_covariates(xy, map, where = "both")
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