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Abstract

Summary:  MetaCerberus is an exclusive HMM/HMMER-based tool that is massively

parallel,  on low memory, and provides rapid scalable annotation for functional  gene

inference  across  genomes  to  metacommunities.   It  provides  robust  enumeration  of

functional genes and pathways across many current public databases including KEGG

(KO), COGs, CAZy, FOAM, and viral specific databases (i.e., VOGs and PHROGs). In a

direct comparison, MetaCerberus was twice as fast as EggNOG-Mapper, and produced

better annotation of viruses, phages, and archaeal viruses than DRAM, PROKKA, or

InterProScan. MetaCerberus annotates more KOs across domains when compared to

DRAM, with a 186x smaller database and a third less memory. MetaCerberus is fully

integrated  with  differential  statistical  tools  (i.e.,  DESeq2  and  edgeR),  pathway

enrichment  (GAGE  R),  and  Pathview  R  for  quantitative  elucidation  of  metabolic

pathways. MetaCerberus implements the key to unlocking the biosphere across the tree

of life at scale. 

Availability and implementation: MetaCerberus is written in Python and distributed under

a BSD-3 license. The source code of MetaCerberus is freely available at 

https://github.com/raw-lab/metacerberus. Written in python 3 for both Linux and Mac OS

X. MetaCerberus can also be easily installed using mamba create -n metacerberus -c 

bioconda -c conda-forge metacerberus 

Contact: Richard Allen White III, UNC Charlotte, rwhit101@charlotte.edu 

Supplementary information: Supplementary data are available online.
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Introduction 

Annotation is a fundamental step in functional gene inference, which is required

by many disciplines in biology. Massively parallel sequencing (MPS) has reached the

terabyte scale with Illumina NovaSeq X producing 16 Tb per run and Oxford nanopore

promethION 7 Tb per run (1-2). Due to this increase in MPS, the number of reference

microbial genomes and metagenomes has increased by orders of magnitude. Genome

Taxonomy  Database  (GTDB)  now  includes  402,709  (08-RS214,  April  28 th,  2023)

genomes,  and  the  Short  Read  Archive  (SRA)  has  >4.5  million  listed  biosample

metagenomes (3-4). Cellular metagenome-assembled genomes (MAGs) and their viral

counterpart vMAGs (viral MAGs) have also rapidly populated public databases through

reconstruction  from  shotgun  metagenomics  (5-7).  Functional  gene  annotation  is

required for metabolic reconstruction, functional and structural gene differential analysis,

inference of pathway regulation, presence/absence of toxin genes (e.g., botulinum toxin

A), novel gene cluster discovery (e.g., antibiotic discovery), and viral detection. Due to

this Terabyte scale, the annotation step will be the most prolonged, requiring more CPU

time, memory,  and resources to  finish before obtaining biological  insight.  Reference

databases have also been nearing the Terabyte scale, taking days to download and

format, requiring massive allocations of disk space.  Thus scalable, highly parallel, low

memory, and rapid annotation tools are critical to the future of 'omics analysis. 

Functional annotation requires two main steps: 1) gene calling followed by 2)

gene assignment  via  external  reference databases.  Multiple  approaches have been

applied for gene calling and gene assignment, including homology and ontology-based

methods.  Gene calling finds protein-coding open reading frames (pORFs) alongside
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ribosomal RNAs, transfer RNAs, and other RNAs. Various tools exist for pORF calling,

including Prodigal, FragGeneScanRs, GetOrf, and GeneMark (8-11). Gene assignment

of pORFs to external databases often uses homology-based tools such as BLAST (12),

MMseq2  (13),  and/or  DIAMOND  (14)  against  databases  such  as  RefSeq  (NCBI

Reference Sequence Database)  (15),  UniProt  (Universal  Protein  Resource)  (16),  or

KEGG  (Kyoto  Encyclopedia  of  Genes  and  Genomes)  (17).  Common  tools  include

PROKKA,  DRAM  (Distilled  and  Refined  Annotation  of  Metabolism),  InterProScan

(INTEgrative PROtein signature database), EggNOG-Mapper (evolutionary genealogy

of  genes:  Non-supervised  Orthologous  Groups),  and  MicrobeAnnotator  (18-22).

Ontology-based approaches are generally superior to homology-based methods (21).

EggNOG-Mapper and InterProScan utilize homology-based (i.e., Diamond and BLAST)

and Hidden Markov Models (HMMs) based ontology approaches via HMMER (23) using

either KEGG (17), eggNOG (24), InterPro  (25), or Pfam (protein family) databases (26).

HMMs provide greater sensitivity to elucidate and discover relationships between query

and database based on ontology and are protein domain-centric (21, 27). 

Viruses and the candidate phyla radiation (CPR) have remained challenging to

functionally annotate due to the divergent nature of their proteins (28-29). DRAM has a

specific  version  (i.e.,  DRAM-v)  to  annotate  viruses,  including  the  detection  of  viral

auxiliary metabolic genes (vAMGs) (19). MicrobeAnnotator and DRAM have attempted

to close the gap in CPR functional annotation. While no specific annotation tool or gene

database exists for CPR, they are found amongst GTDB and other public repositories

(30).  Various  databases  such  as  VOGs  (Virus  Orthologous  Groups),  pVOGs

(Prokaryotic Virus Orthologous Groups), IMG/VR (Integrated Microbial Genome/Virus),
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INPHARED  (INfrastructure  for  a  PHAge  REference  Database),  and  PHROGs

(Prokaryotic  Virus  Remote  Homologous Groups database) have been introduced to

improve annotation viruses from isolates and vMAGs (31-35). Still, CPR and viruses

remain a significant challenge for functional annotation. 

Many  tools  are  avaliable  for  functional  annotation  from  genomes  to

metagenomes; however,  gaps remain between: 1) resource utilization (e.g.,  memory

use), 2) large database size, and 3) parallel processing, and simultaneously providing

robust  rapid  annotation  at  scale.  Further  development  of  tools  for  CPR  and  viral

functional  annotation are a general  community  need. We present MetaCerberus,  an

ontology-based HMM tool that provides scalable, highly parallel,  low memory usage,

and rapid annotation for genomes to metacommunities across the tree of life. 

Implementation
Framework and coding base

MetaCerberus is written entirely in Python (version 3) as a wrapper for various 

other tools described below. Similar to our other software MerCat2 for massively parallel

processing (MPP), it utilizes a byte chunking algorithm 1 ('Chunker') to split files for 

MPP for further utilization in RAY, a massive open-source parallel computing framework

to scale Python applications and workflows (36). Using RAY’s scalable parallelization 

within MetaCerberus allows utilization across multiple nodes with ease. To avoid large 

RAM consumption, we implemented the greedy algorithm for tab-separated merging 

and incremental PCA plot limiter from MerCat2 (36). MetaCerberus utilizes 

HMM/HMMER exclusively without homology-based tools (e.g., BLAST)
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Databases for MetaCerberus

MetaCerberus enables functional gene assignment across multiple databases, 

including: 1) KOfams (KEGG protein families) to obtain KEGG KOs (KEGG Ontology) 

(version 11-Jul-2023, https://www.genome.jp/ftp/db/kofam/), 2) FOAM (Functional Ontology

Assignments for Metagenomes), 3) COG (Clusters of Orthologous Genes) (version 

2020, https://ftp.ncbi.nih.gov/pub/COG/COG2020/data/), and  4) dbCAN (DataBase for 

automated Carbohydrate-active enzyme ANnotation) for CAZy (Carbohydrate-Active 

enZYmes Database)  (version 11, https://bcb.unl.edu/dbCAN2/download/) (37-41). For viral

annotation, MetaCerberus enlists VOG (version 219, https://vogdb.org/download), pVOG 

(version Sep2016, https://ftp.ncbi.nlm.nih.gov/pub/kristensen/pVOGs/downloads.html#), and 

PHROG (version 4, https://phrogs.lmge.uca.fr/) databases. FOAM ontology is obtained 

from KOfam KOs, and then computed via a reference table to avoid redundancy. 

Similarly, the dbCAN database is used to obtain CAZy ontology via a reference table. 

COGs and PHROGs are currently not formatted as HMMs within their public 

repositories. We converted them into protein family-specific HMMs (e.g., COG1 -> 

COG1.hmm) using MAFFT (version 7.273-woe) via local alignments with maximum 

iterations of 1000 (42). We compared databases of six other tools to MetaCerberus, 

including DRAM, PROKKA, InterProScan, MicrobeAnnotator, and EggNOG-Mapper 

(Table 1). Currently, only MetaCerberus provides functional annotation and support to  

FOAM, pVOG, and PHROG databases (Table 1). EggNOG-Mapper and MetaCerberus 

are the only tools we compared that supports the COG database (Table 1). All tools 

compared in this study obtain the enzyme commission numbers (EC) numbers (Table 

1). 

6

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

6

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 12, 2023. ; https://doi.org/10.1101/2023.08.10.552700doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.10.552700
http://creativecommons.org/licenses/by/4.0/


Modes for running MetaCerberus

MetaCerberus has three basic modes: 1) quality control (QC) for raw reads, 2) 

formatting/gene prediction, and 3) annotation (Fig 1). MetaCerberus can use three 

different input files: 1) raw read data from any sequencing platform (Illumina, PacBio, or 

Oxford Nanopore), 2) assembled contigs, as MAGs, vMAGs, isolate genomes, or a 

collection of contigs, 3) amino acid fasta (.faa), previously called pORFs (Fig 1). We 

offer customization, including running databases all together, individually or specifying 

select databases. For example, if a user wants to run a prokaryotic or eukaryotic-

specific KOfam, or an individual database alone such as dbCAN, both are easily 

customized within MetaCerberus.  In future versions, we will provide viral and phage-

specific KO modules to run individually. In QC mode, raw reads are quality controlled  

via fastqc (version v0.12.1) prior and post trim (43). Raw reads are then trimmed via 

data type; if the data is Illumina or PacBio, fastp (version 0.23.4) is called, otherwise it 

assumes the data is Oxford nanopore then Porechop (version v0.2.4) is utilized (43-45, 

Fig 1). Post quality-control trimmed reads are converted to fasta without quality (Fig 1). 

If Illumina reads are utilized, an optional bbmap (version 39.01) step to remove the 

phiX174 genome is available. Phage phiX174 is a common contaminant within the 

Illumina platform as it is their library spike-in control (46-47). We highly recommend this 

removal if viral analysis is conducted, as it would provide false positives to ssDNA 

microviruses within the sample. 

In the formatting and gene prediction mode, contigs and genomes are checked 

for N repeats. These N repeats are removed by default. We impute contig/genome 

statistics (e.g., N50, N90, max contig) via our custom module Metaome Stats. Contigs 
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are converted to pORFs via Prodigal or FragGeneScanRs as specified by user 

preference (48, Fig 1). Scaffold annotation is not recommended due to N's providing 

ambiguous annotation. Both callers can be used via our --super option, and we 

recommend using FragGeneScanRs for samples rich in eukaryotes as it performed 

better in our hands than Prodigal (unpublished data). HMMER searches against the 

above databases via user specified bitscore and e-values or our minimum defaults (i.e., 

bitscore = 25, e-value =  1 x 10-9). 

There are six general rules followed by MetaCerberus for functional annotation. 

Rule 1 is the score pre-filtering module for pORFs thresholds: each pORF match to an 

HMM is recorded by default or user-selected e-value/bit scores per database 

independently, across all databases, or per user specification of the selected database. 

Rule 2 is imputed for non-overlapping dual domain module pORF threshold: if two HMM

hits are non-overlapping from the same database, both are counted as long as they are 

the within the default or user selected e-value/bit scores. Rule 3 is computed as the 

winner take all module for overlapping pORFs: if two HMM hits are overlapping (>10 

amino acids) from the same database the lowest resulting e-value and highest bit score 

wins. Rule 4 is similar match independent accession module for a single pORF: if both 

hits within the same database have equal values for both e-value and bit score but are 

different accessions from the same database (e.g., KO1 and KO3) then both are 

reported. Rule 5 is the whole count incomplete exclusion module filter only allows  

whole discrete integer counting. Rule 6 the dual independent overlapping domain 

module for convergent binary domain pORFs. If two domains within a pORF are 

overlapping <10 amino acids (e.g, COG1 and COG4) then both domains are counts and
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reported due to the dual domain issue within a single pORF. If a function hits multiple 

pathways within an accession, both are counted, in pathway roll-up, as many proteins 

function in multiple pathways. 

Statistics and visualization 

MetaCerberus, as previously mentioned, provides genome and contig statistics 

via MetaOme stats; it also offers seamless integration into automatic differential 

statistics, visualizations, pathway enrichment, and pathway integration viewing. DESeq2

and edgeR negative binomial distribution differential statistic tools are available to users

by selection (default is DESeq2) (49-50). The outputs from DESeq2, edgeR, or both are

automatically enriched for pathway analysis in GAGE (Generally Applicable Gene-set 

Enrichment for Pathway Analysis) R (51). GAGE outputs are loaded into Pathview R to 

visualize differential pathways across user-specified experiments (52). These outputs 

include differential KEGG heatmaps from Pathview, volcano plots, and gene level 

heatmaps (Fig S1). 

A sample dashboard visualization is provided for all data input types (e.g., reads, 

contigs and/or genomes) with a number of pORF called, MetaOme stats (i.e., genome 

statistics, N50, N90, etc., for genomes/contigs only), PCA with sample sets of >3, and 

the number of annotated hits for all databases or user select specifications (Fig S1). 

Across tool comparisons 

Tools compared across MetaCerberus (version 1.1) include DRAM (version 

1.4.6), InterProScan (version 5.60-92.0), EggNog-Mapper (version 2.1.8), 
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MicrobeAnnotator (version 2.0.5), and PROKKA (version 1.1). All comparisons were 

completed on a Dual 8-Core Intel Xeon E5-2667 CPU @ 3.2GHz (16 cores) using 

128GB RAM. MPP testing of MetaCerberus was completed on five nodes of a Dual 18-

Core Intel Xeon Gold 6154 CPU @ 3.00GHz (36 cores/node). All genomes used in our 

study are available at https://osf.io/3uz2j/. For further testing of MetaCerberus, we used 

five distinct genospecies, Rhizobium leguminosarum, against five distinct 

Exiguobacterium spp. available at 

https://github.com/raw-lab/MetaCerberus/tree/main/data/rhizobium_test (Table S1). 

Viruses from permafrost that were used in the DRAM paper 

(https://www.ncbi.nlm.nih.gov/nuccore/QGNH00000000) were compared directly to 

MetaCerberus and DRAM (19). 

Data availability

Sequence files, genome files, and supplemental data are available at 

https://osf.io/3uz2j/. Databases are also freely available at https://osf.io/3uz2j/. All code is 

available at www.github.com/raw-lab/metacerberus. 

Contributing to MetaCerberus and Fungene

MetaCerberus is a community resource as is recently acquired FunGene 

(http://fungene.cme.msu.edu/). We welcome contributions of other experts expanding 

annotation of all domains of life (viruses, phages, bacteria, archaea, eukaryotes). 

Please send us an issue on our MetaCerberus GitHub. 

(www.github.com/raw-lab/metacerberus/issue); we will fully annotate your genome, add 
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suggested pathways/metabolisms of interest, make custom HMMs to be added to 

MetaCerberus and FunGene.

Results

Database size and download time

Formatting and downloading are required steps in functional annotation and both 

depend on database size. Substantial databases take up large amounts of costly disk 

space and require expensive computers with large amounts of costly RAM for analysis. 

MetaCerberus database size is 3.8 GB, with a download time of ~4 mins, and database 

format time is zero because they are pre-formatted already for the user (Table 2). 

DRAM database download requires 710 GB of disc space,  and requires ~3 days to 

download completely (Table 2). According to the DRAM readme, KEGG Genes and 

UniRef90 need ~500 GB of disc space and ~512 GB of RAM to process the complete 

database (19, https://github.com/WrightonLabCSU/DRAM). This database size difference is

due UniRef90 updates since their original release in 2020. DRAM can run with more 

processors within a single node but is not set up for multi-node like MetaCerberus. The 

InterProScan database is 14 GB, which took ~2.45 h to install (Table 2). PROKKA had 

the smallest database at 636 MB and had the fastest install of ~3 ½ minutes (Table 2). 

MicrobeAnnotator requires at least ~237 GB for its full version and ~0.65 GB for its light 

version (Table 2, 22). 
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Computational resource comparison 

We compared MetaCerberus to DRAM, InterProScan, and PROKKA for the time 

used per genome, RAM utilization, and disk space used across 100 randomly selected 

bacterial genomes within GTDB (Table S1, Fig 2). Generally, PROKKA had the highest 

processing speed per genome (~48 sec median, Fig 2). InterProScan had the slowest 

at ~21 min per genome median time (Fig 2). DRAM was ~5 mins faster per genome 

than MetaCerberus (i.e., 10 mins vs 15 mins) (Fig 2). MetaCerberus and PROKKA had 

the lowest RAM, followed by InterProScan (Fig 2). DRAM using default parameters had 

the highest RAM observed (Fig 2). DRAM had the lowest disc space due to the deletion

of files post-finalization, with PROKKA having the most disc space (Fig 2). EggNOG-

mapper using HMMs was initially compared to MetaCerberus; however, further testing 

was not completed due to the high run time failure rate. On average, EggNOG-mapper 

failed to finish annotation 32% of the time using 148 randomly selected GTDB 

bacterial/archaeal genomes used by other tools (Table S3). Approximately 16% of the 

genomes failed after running for two days; another 16% could not annotate even when 

other tools, including MetaCerberus, had no issue (Table S3). The average annotation 

time with EggNOG-mapper v2 was ~53 min, with a median of ~30 min (Table S3). It 

was the slowest tool tested and thus removed from further comparisons. 

MicrobeAnnotator didn't functionally install the database correctly. We could not 

successfully use the code; thus, it was removed from further comparisons..  
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Automatic statistical and pathway analysis 

MetaCerberus provides automatic differential statistics, pathway gene 

enrichments, and KEGG map-based heatmaps in Pathview R for data exploration, data 

mining, and hypothesis generation. As a test, we compared five distinct genospecies, 

Rhizobium leguminosarum, against five distinct Exiguobacterium spp. using 

MetaCerberus using both DESeq2 and edgeR (Table S3). These genomes were 

selected as a comparison due to differential pathways within the comparison genomes. 

Rhizobium are symbiotic nitrogen fixers containing both nitrogenase for nitrogen fixation

and nodulation genes for symbiotic nodule formation within legume roots (53). The 

Exiguobacterium spp. Have a bright orange colony morphology color from 

biosynthetically made carotenoids; it is hypothesized that the carotenoid 

diaponeurosporene-4-oic acid from the  C30 carotenoid biosynthesis pathway is what 

provides the distinctive orange color (54). Chemical studies have suggested other 

carotenoids are present within Exiguobacterium spp. that contribute to the orange 

colony color (55). MetaCerberus found differential pathway assignments using DESeq2 

and Pathview for carotenoid biosynthesis, ABC transporters, and phosphotransferase 

system (including nitrogen regulation) (Fig S2-4). edgeR found an additional pathway in

benzoate degradation that wasn’t found in DESeq2 (Fig S5). 

Annotation comparisons

PROKKA, DRAM, and MetaCerberus all use Prodigal for pORF calling. 

MetaCerberus also provides an extra pORF caller FragGeneScanRs. InterProScan 

uses the EMBOSS getorf pORF caller, which in all cases had lower pORFs than 
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Prodigal regardless of the genome kingdom type (e.g., bacteria, archaea, CPR, phage, 

archaeal virus or eukaryotic virus) (Fig S6). Generally, PROKKA, DRAM, and 

MetaCerberus had similar pORF calling numbers; however, DRAM did call more pORF 

from eukaryotic viruses (Fig S6). 

Furthermore, we compared MetaCerberus to DRAM, InterProScan, and 

PROKKA for whether a pORF was annotated, listed as hypothetical, or unknown (no 

annotation). We randomly selected 100 unique bacterial genomes from GTDB, 100 

unique archaea genomes from GTDB, 100 unique phage genomes from INPHARED, 

100 unique eukaryotic viral genomes from RefSeq, 78 CPR genomes, and 82 archaeal 

viral genomes for these annotation tests (Table S1). MetaCerberus, DRAM, and 

InterProScan protein modes had similar annotation results of ~78-83% for bacteria, with

InterProScan being the highest at 83% (Fig 3). InterProScan using nucleotide mode 

had the lowest annotation amount across all kingdoms (Fig 3-4). PROKKA had ~50% of

the pORFs as annotated and hypothetical for bacteria and ~60% hypothetical for 

archaea (Fig 3). CPR annotation InterProScan had the highest at 70%, followed by 

DRAM at 66%, then MetaCerberus at 61% (Fig 3). MetaCerberus and PROKKA had 

fewer unknowns than DRAM for bacteria, archaea, and CPR genomes (Fig 3). 

PROKKA annotated very few CPR pORFs, with the majority >60% being hypothetical 

proteins (Fig 3). DRAM generally doesn’t find many hypothetical proteins or lists them 

as unknown across domains of the tree of life. 

MetaCerberus performs better for viruses, phages, and archaeal viruses (Fig 4). 

MetaCerberus annotates more per genome >63 % phages, >65 % viruses, and >41% 

archaeal viruses based on median values (Fig 4). MetaCerberus outperforms across all 
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viruses (e.g., phages, eukaryotic viruses, and archael viruses) providing more 

annotations, fewer hypotheticals, and fewer unknowns compared to DRAM, 

InterProScan, and PROKKA (Fig 4). MetaCerberus annotates more KOs from KOfams 

than DRAM across all domains (Fig 5). PROKKA and InterProScan don't provide KOs; 

therefore, we couldn't compare KOs found across domains to MetaCerberus. 

To better compare to DRAM-v, the only other tool exclusively for viruses and 

phages, we analyzed a virome containing 1,907 viral populations (VPs) obtained from 

Swedish permafrost. Based on time, MetaCerberus took 99 mins to complete the 

annotation compared to 141.75 mins for DRAM (Fig 6). When MetaCerberus is utilized 

at it’s full potential with RAY it only takes 12.5 mins for the same dataset (Fig 6). RAM 

was significant less with MetaCerberus vs. DRAM-v, both in MPP and non-MPP mode, 

with <500 Mb of RAM compared to 18.7 Gb with DRAM-v (Fig 6). MetaCerberus had 

more annotations than DRAM-v for the Swedish permafrost virome across shared 

databases (i.e., KO, CAZy, and VOG) (Fig S7). 

Discussion

MetaCerberus provides a low memory, robust, scalable, and rapid annotation 

across the tree of life, exclusively using HMMs/HMMER. HMMER is a powerful tool to 

find pORFs that may be missed by standard homology-based tools due to its protein 

domain centric and supervised machine-learning nature. It's rarely used alone due to 

the speed and time required to finish annotation. MetaCerberus has provided a solution 

to this scaling issue using RAY and algorithms needed from MerCat2. EggNOG-Mapper

v2 is the only other tool that exclusively provides HMMs/HMMER-based annotation 
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alone. MetaCerberus runs twice as fast on a single node than EggNOG-Mapper v2 

without RAY. MetaCerberus with RAY is three times as fast as EggNOG-Mapper v2 

(data not shown) on a database that is 1/3 smaller. 

Generally, MetaCerberus performs better for viral and phage annotation when 

directly compared to DRAM-v. DRAM finds more pORFs than MetaCerberus (Fig S6) 

due to it using the -meta option in Prodigal for viruses; whereas, MetaCerberus uses a 

standard for complete genomes in this case but still can annotate viral genomes better 

than DRAM on a much smaller database. Viruses, archaeal viruses, and phages are a 

grand challenge to unlock the 'unknown' and 'hypothetical' functions within their 

genomes. 

As data scales, computational time, memory, and waiting for results will take 

longer. Scalable tools like MetaCerberus are needed as we approach Petabyte levels of

sequencing. MetaCerberus provides a further community resource to annotate the 

unknowns of our biosphere. Lastly, MetaCerberus provides a robust tool kit to annotate 

the entire tree of life at scale. 
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Figure and Table Legends

Table 1: Comparing tools based on databases provided. This includes versions of other
databases present within the various tools compared. 

Table 2: Database size, download, and formatting time across tools.

Figure 1: Flowgraph of the MetaCerberus pipeline. MetaCerberus has three input data 
formats which include raw reads, contigs, or previously called pORFs. Quality control 
step is mainly utilized for raw reads only. Contigs have a formatting mode were they are
quality controlled for N presence, followed by N removal, and also provides basic contig 
statistics using Metaome Stats (e.g., N50, N90 etc). Gene calling currently offers 
prodigal or FragGeneScanRs for pORF calling. Gene prediction is completed with 
HMMER/HMM against KEGG and FOAM KOs (all by default). Users can select 
additional databases such as CAZy, COG, PHROG, VOG, and pVOGs for viruses, or 
selective KOfams for prokaryotes or eukaryotes. With running four or more samples it 
provides a PCA for KEGG and FOAM KOs, a basic run metric dashboard, as well as 
differential statistics using DESeq2/edgeR, and pathway enrichment using GAGE R 
followed by plotting in Pathview R. 

    
Figure 2: Computational resource comparison. DRAM, InterProScan, PROKKA, and 
MetaCerberus are compared computationally for time to complete each genome 
annotation, RAM required to complete annotation per genome, and disc space needed 
for inputs/outputs. The 100 randomly selected bacterial genomes were from GTDB 
(Table S1). 

Figure 3: Annotation comparison across cellular domains of life (bacteria, archaea, 
CPR). MetaCerberus was compared to DRAM, InterProScan, and PROKKA for 
annotation across various genomes. Supplemental materials include the genomes for 
bacteria, archaea, and CPR used in this comparison (Table S1). 

Figure 4: Annotation comparison across viruses infecting differential cellular domains 
(phage, archaeal viruses, eukaryotic viruses). MetaCerberus was compared to DRAM, 
InterProScan, and PROKKA for annotation across various genomes. The genomes are 
listed for phage, archaeal viruses, and eukaryotic viruses in supplemental materials 
(Table S1). 

Figure 5. DRAM vs. MetaCerberus KO annotation comparison across the domains of 
life. DRAM and MetaCerberus utilize KOfams for KEGG KO assignment if the user 
doesn't provide a KEGG KO database separately. The genomes for the comparison are 
listed in supplemental materials (Table S1). The e-values and bitscore can vary 
between DRAM and MetaCerberus. In this comparison, we choose the default dbCAN 
e-value option of <1e-15 and the default bitscore of 60 for DRAM. 

Figure 6. DRAM vs. MetaCerberus computational resource comparison. A virome from 
Swedish permafrost containing 1,907 VPs were compared computationally for time to 
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complete annotation, RAM required to complete annotation, and disc space needed for 
inputs/outputs. MPP testing for MetaCerberus utilized five nodes for comparisons. 

Supplemental Materials

Table S1: List of genomes used for computational comparisons. This includes  
randomly selected GTDB genomes for archaea and bacteria domains, phage genomes,
archaeal viral genomes, CPR genomes, and RefSeq viral genomes.

Figure S1: Standard output dashboard for MetaCerberus. Outputs include a complete 
html drawn in plotly. Also, for comparisons of >3 genomes, FOAM and KEGG-based KO
PCA are included. 

Figure S2: Comparisons Rhizobium vs. Exiguobacterium genomes using MetaCerberus
for carotenoid pathways in Pathview. KO counts from KEGG were normalized with 
DESeq2, enriched with GAGE, then plotted with Pathview R. Genomes are listed in 
supplemental materials (Table S1). 

Figure S3: Comparisons Rhizobium vs. Exiguobacterium genomes using MetaCerberus
for ABC transporters in Pathview. KO counts from KEGG were normalized with 
DESeq2, enriched with GAGE, then plotted with Pathview R. Genomes are listed in 
supplemental materials (Table S1). 

Figure S4: Comparisons Rhizobium vs. Exiguobacterium genomes using MetaCerberus
for phosphotransferase system in Pathview. KO counts from KEGG were normalized 
with DESeq2, enriched with GAGE, then plotted with Pathview R. Genomes are listed in
supplemental materials (Table S1). 

Figure S5: Comparisons Rhizobium vs. Exiguobacterium genomes using MetaCerberus
for Benzoate degradation in Pathview. KO counts from KEGG was normalized with 
edgeR, enriched with GAGE, then plotted with Pathview R. Genomes are listed in 
supplemental materials (Table S1). 

Figure S6: Comparisons of protein-coding open reading frame (pORF) calling across 
computational tools. All tools but InterProScan use Prodigal for pORFs. InterProScan 
uses the EMBOSS getorf tool. 

Figure S7: Comparing DRAM-v vs. MetaCerberus for annotation across shared 
databases (i.e., KO, VOG, CAZy). The Swedish virome was utilized for comparisons. 
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Figure 1. 
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Figure 2. 
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Figure 3.
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Figure 4.
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Figure 5. 
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Figure 6. 
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Table 1

Table 2

32

EC KEGG CAZy COG FOAM VOG pVOG PHROG pfam EggNOG InterPro

MetaCerberus X X X X X X X X
DRAM X X X X X
Prokka X X
InterProScan X X X
MicrobeAnnotator X X X
EggNOG-Mapper X X X X X X

Tool Time Disk Version
DRAM ~ 3 days ~710GB v1.4.6
InterProScan ~ 2:45:59.23 14GB v5.60-92.0
Metacerberus ~ 0:04:14.29 3.8GB v1.1
PROKKA ~ 0:03:28.68 607M v1.14.6
EggNOG-Mapper ~14:33:31.74 31GB V2.1.8
MicrobeAnnotator >3 days ~237GB v2.0.5
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