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Abstract

Transcriptome studies aim at gaining insight into the molecular pathways underlying biological
processes. Analyses of gene-expression dynamics in research on circadian rhythms and sleep
homeostasis describe these two processes independently, using separate models such as sinusoidal
oscillations and exponential saturating functions. Rhythmically expressed genes are, however,
influenced by both processes. We therefore implemented a driven, damped harmonic oscillator model
which can accommodate both types of dynamics by varying the degree of damping. This makes it
possible to estimate the contribution of circadian and sleep-wake driven influences on the expression
of a gene within the framework of a single model. We applied the model to cortex, liver, and blood
data obtained in mice and humans. The model reliably captured a wide range of rhythmic dynamics
under various experimental conditions, including the long-term amplitude reduction of cortical clock-
gene rhythms observed after sleep deprivation. Cortical gene expression was generally influenced
more by sleep-wake driven than circadian factors, while the opposite was observed in liver and blood.
Importantly, the model suggested that sleep-wake state can alter gene expression with a delayed,
long-lasting response not previously considered. Our model further predicted that, perhaps
paradoxically, the gain in sleep time after sleep deprivation, delayed re-establishing baseline
expression rhythms of intrinsically oscillatory transcripts indicating that similar to insufficient sleep,
also excess sleep can impact rhythmic gene expression. Because of the tissue- and gene-specific
responses, sleep deprivation led to a profound intra- and inter-tissue desynchronization which in the
cortex lasted well beyond phenotypic sleep-wake recovery. The results demonstrate that analyzing
rhythmic gene expression must take the complex interactions between circadian and sleep-wake
influences into account. The model is a versatile tool with a low number of free parameters to fit and

predict gene expression under a variety of conditions relevant to society.
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Introduction

Throughout the brain and body many transcripts exhibit 24h rhythms in gene expression levels [1-3].
These transcriptome rhythms are thought to emerge from cell-autonomous oscillations generated by
clock genes engaged in negative transcriptional/translational feedback loops (TTFLs) [4]. The circadian
TTFL results in rhythmic expression not only of the clock genes themselves but also that of the
numerous other genes they target, many of which are transcription factors thereby setting off daily
recurring cascades of transcriptional events comprising the rhythmic transcriptome. Within and among
tissue(s) phase coherence is maintained by systemic cues produced by the central circadian clock
located in the suprachiasmatic nuclei (SCN) of the hypothalamus, which act as an internal zeitgeber
entraining brain and body TTFLs [5, 6]. Transcriptome data have contributed to our current detailed
understanding of the molecular architecture of the circadian clock and its tissue-specific functions [7,

8].

Transcriptome studies have also been used in sleep research, in particular to uncover genes and gene
pathways implicated in the processes underlying or driven by changes in sleep pressure, which
increases while awake and decreases when asleep. These studies have primarily focused on the brain
of model species, mainly rats and mice, and used sleep deprivation to experimentally increase sleep
pressure. The results showed that sleep-wake states have profound effects on the brain transcriptome
[9-12]. By selecting for transcripts that were similarly affected by spontaneous and experimentally
induced wakefulness, corrected for the increase in corticosterone levels associated with depriving mice
of sleep, we arrived at a short-list of 78 brain transcripts that reliably follow the time course of sleep-
wake prevalence both during undisturbed baseline conditions and during sleep deprivation [13]. This
short-list features many activity-induced immediately early genes (IEGs) and we observed that their
sleep-wake driven dynamics follow exponential saturating functions with time constants similar to
those describing the dynamics of delta power [14], a widely used EEG-derived measure gauging sleep
pressure. Examples of such transcripts are Arc and Homerla, which both play a role in homeostatic
down-scaling of synapses, a process considered as one of sleep’s major functions [15-18]. Interestingly,
the genes that change their transcription with sleep deprivation include a number of clock-genes [12,
19, 20] which, combined with other observations, suggest a considerable molecular crosstalk between
circadian and sleep-wake driven processes in the brain [21]. More recently we found that the brain
expression of the core clock-genes Npas2 and Clock followed dynamics similar to that of the sleep-
wake driven IEGs and that rhythm amplitudes of all but one of the remaining clock genes showed a

long-term reduction following a single, short sleep deprivation [14].
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69  Since under undisturbed conditions the sleep-wake distribution is circadian and because sleep-wake
70  behavior drives the expression of numerous transcripts, many of the genes found rhythmic in circadian
71  transcriptome studies, might oscillate as a consequence of the daily changes in the prevalence of sleep-
72 wake states, and not as a direct consequence of the circadian TTFL within a given tissue. This idea was
73  tested by controlling the time-spent-awake prior to the sampling of cortical tissues at different times
74  of the day. We and others found that under these conditions the majority of rhythmically expressed
75 genes (73-81%) no longer oscillate [15, 22]. Similarly, scheduling sleep in anti-phase with the time it
76 normally occurs in a forced desynchrony protocol, flattened the rhythm of the blood transcriptome in

77 humans, including that of several clock genes [23].

78 From the above it is clear that sleep-wake driven factors contribute substantially to the circadian
79  transcriptome phenotype in brain and body tissues peripheral to the SCN. Determining which genes
80 and gene pathways are rhythmic as a result of changes in sleep-wake behavior or due to circadian
81 systemic cues, is therefore of interest and of importance when, e.g., assessing the factors underlying
82 the long-term health consequences of circadian misalignment that have been attributed mainly to
83  circadian factors [24, 25]. In a first effort to achieve this, we previously categorized cortical transcripts
84 as either sleep-wake driven or circadian driven using the concepts of the two-process model of sleep
85 regulation [14], a model which stipulates that sleep is regulated by a circadian process (Process C) of
86  sinusoidal shape that interacts with a sleep-wake driven process (Process S) modelled after the
87  dynamics of EEG delta power [26]. In that study [14], we analyzed cortical samples taken over the
88  course of 3 days, i.e., under baseline conditions and during and after a 6h sleep deprivation. The results
89  confirmed that most (63%) of the cortical transcripts rhythmic under undisturbed baseline conditions
90  were categorized as sleep-wake driven when considering the entire 3-day time course. It is, however,
91 unlikely that the rhythmic expression of a given gene is influenced only by either one of the two
92 processes and categorizing genes as such is thus likely to be an oversimplification. Moreover, this
93  approach required model selection among a set of models with different number of free parameters,
94  which is not without issues, and only one type of sleep-wake driven dynamic (i.e., ‘Process S’ type) was
95 considered. Finally, the marked long-term consequences of sleep deprivation on expression dynamics
96  we discovered in that study, especially that of most clock genes, could not be captured by any of the

97 models unless circadian amplitude after the sleep deprivation was altered in the model.

98 Here we implement a driven, damped harmonic oscillator model to estimate the separate
99 contributions of sleep-wake and circadian processes to the rhythmic transcriptome. In this model
100 circadian systemic cues and sleep-wake driven influences are considered simultaneously as driving

101  factorsthat effectively accelerate or decelerate peripheral oscillations in gene expression. Importantly,
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102 by changing the damping ratio, the model can capture both the dynamics of intrinsically oscillating
103  transcripts (i.e., underdamped in the model) and of overdamped transcripts for which the sleep-wake
104  response approximate exponential saturating functions of Process-S. We applied the model to
105  transcriptome data obtained in mouse cortex and liver tissue, and in human blood and successfully
106  captured the wide range of transcription dynamics observed under conditions of sleep deprivation,
107  forced desynchrony, and a constant routine following 7 days of sleep restriction [14, 23, 27]. The
108 mouse data were used to simulate the effects of sleep deprivation and of recovery sleep on gene
109 expression levels, in particular the time it took for RNA levels to return to baseline, and to estimate
110  within and between tissue desynchronization in gene expression after sleep deprivation. The human
111 data were used to predict transcriptome dynamics during an entire forced desynchrony protocol and
112 during sleep restriction conditions and subsequent constant routine. The results give new insights into
113 the complex interaction between circadian and sleep-wake driven influences on gene expression that

114 might also be relevant for other levels of organization of the rhythmic organism.

115
116 Results & Discussion

117  Data sets used to disentangle circadian and sleep-wake dependent influences

118 Under undisturbed, entrained conditions sleep-wake dependent and circadian contributions to
119 rhythmic gene expression are difficult to disentangle as both factors fluctuate in synchrony with stable
120 phase relationships. To quantify their respective contributions, the timing of sleep (and wakefulness)
121 relative to circadian phase needs therefore to be altered experimentally. In the first dataset used for
122 the current analyses, gene expression in cortex and liver were quantified at 18 time points in mice
123 before (‘baseline’ or ‘BSL’), during, and after (‘recovery’ or ‘REC’) a 6h sleep deprivation (SD; Fig. 1A).
124  Sleep-wake behavior was recorded continuously in a separate cohort of mice undergoing the same
125  experimental protocol. The SD kept mice awake at a time-of-day animals are normally mostly asleep,
126  i.e., the first half of the light period (ZT0-6; Fig. 1A). The sleep-wake data and cortical transcriptomes
127  were taken from our published and publicly available data [12, 14, 28], while we newly acquired liver
128 RNA-seq data taken from the same mice to assess tissue-specificity of gene-expression dynamics. A
129  second dataset, also publicly available, consists of 2 published experiments quantifying the blood
130  transcriptome in humans using micro-arrays [23, 27]. In the first experiment, participants completed a
131  forced-desynchrony (FD) protocol in which a 28h sleep-wake cycle (and associated dim-light dark cycle)
132 was imposed causing the circadian rhythm to ‘free-run’ at its intrinsic, close-to-24h period. Blood was

133 sampled at 4h intervals during a 28h day when sleep was scheduled at the circadian phase it normally
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134  occursduring entrained conditions (‘in-phase’) and during a 28h day when sleep occurred in anti-phase
135  with the circadian cycle (‘anti-phase’; Fig. 1B). In the second experiment, participants were given sleep
136  opportunities of either 10h (‘control sleep’) or 6h (‘restricted sleep’) during which they obtained 8.5
137  and 5.7h of sleep, respectively, for 7 consecutive days preceding a constant routine (CR) during which
138  participants were kept awake for ~40h with blood samples taken every 3h (Fig. 1C). During the CR,
139 light conditions, activity, and food intake were strictly controlled. Before the FD and CR experiments,
140 sleep was recorded at habitual bedtime (‘baseline’; 7.5h of sleep), which we used as the sleep-wake
141 distribution under ‘steady-state’ conditions. While the FD and CR experiments affected timing and
142 duration of sleep-wake behavior, circadian phase, assessed by blood melatonin and cortisol rhythms,
143 remained remarkably unperturbed [23, 29]. This is consistent with analyses of clock-gene rhythms in
144  the mouse SCN which indicated that the central circadian pacemaker is not much affected by changes
145 in the sleep-wake distribution [30-33], although SD has been shown to reduce neuronal activity within
146  the SCN [34]. Furthermore, SD does not alter the phase of circadian activity patterns in mice [35] (but
147 see [36]).

148 Rhythmic gene expression can follow a dynamic that could be regarded as strictly sleep-wake driven
149 or as strictly circadian driven, illustrated by Homerl expression in cortex and Bmall (aka Arntl)
150 expression in liver, respectively. Homerl expression decreases during the light phase when mice are
151 mostly asleep, increases during the dark when mice are mostly awake, further increases during SD,
152  and quickly (within 18h) re-assumes baseline dynamics during recovery (Fig. 1D), with little circadian
153 influence [15]. In contrast, liver Bmall expression oscillates in a regular rhythmic pattern throughout
154  the experiment largely unperturbed by SD (Fig. 1D), consistent with Bmall being a core circadian clock
155  gene [37]. Rhythmically expressed genes can, however, show dynamics that do not follow such simple
156  rules [14]. For example, while we find that during baseline the time course of cortical and liver
157  expression of Bmall are similar, SD leads to a substantial and long-lasting reduction in rhythm
158 amplitude during recovery in cortex but not in liver (Fig. 1D), demonstrating that, in addition to
159 circadian factors, sleep-wake state affects Bmal1’s expression in the former tissue. Furthermore, this
160  amplitude reduction outlasts the effects of SD on recovery sleep [14], indicating that cortical Bmall
161 expression does not seem to simply follow the sleep-wake distribution. Another example is Acot11, a
162  gene encoding an enzyme involved in the homeostatic regulation of free fatty-acids [38] and of NREM
163 sleep duration [12]. Acot11 expression in the cortex increases with SD and also its baseline time course
164  seems consistent with that of a sleep-wake driven gene as it decreases during the light and increases
165  during the dark when animals are predominantly asleep and awake, respectively. Yet, subsequent to

166  SD this relationship appears to invert, as sleep during initial recovery (ZT6-12) is now associated with
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167  a strong increase in Acotll expression leading to sustained high levels during the subsequent dark
168  phase (Fig. 1D). A last example is the dynamics of NCOR1 expression, which encodes a protein affecting
169  the clock-gene circuitry by acting as co-repressor to the clock-gene REVERBa (NR1D1) and by activating
170 HDAC3 [39-41]. During the FD, blood NCOR1 expression appears rhythmic only when sleep occurs in
171 anti-phase with the circadian rhythm (Fig. 1D), which might suggest that under normal, in-phase
172 conditions, the sleep-dependent decrease in NCOR1 expression is opposed by a circadian-dependent
173 increase. However, such a scenario cannot easily explain the important downregulation of NCOR1
174  expression with extended wakefulness observed during the two CRs in the second experiment (Fig.

175  1D).

176  These examples illustrate that rhythmic gene expression results from an often complex interaction
177 between the responses to circadian and sleep-wake dependent drives that seem to greatly differ
178 among genes and tissues. It also illustrates the difficulty to reconcile a gene’s dynamics under different
179  experimental protocols. Quantifying and comparing the relative importance of these factors in driving
180  the rhythmic transcriptome requires a novel modeling approach integrating sleep-wake and circadian

181  dependent influences on gene expression.

182

183  Rhythmic gene expression as a driven, damped harmonic oscillator

184  Transcriptome rhythms measured in peripheral organs are thought to arise from transcriptional-
185 translations feedback loops (TTFL) made up of the core circadian clock genes [4]. According to this
186 scenario, local tissue rhythms are kept in phase with each other and with the light-dark cycle by signals
187  generated by the SCN which take the role of an internal zeitgeber. At the same time, the SCN drive
188 rhythms in overt behaviors such as sleep and wakefulness [Fig. 2A — left [42, 43]]. Although
189 perturbations of sleep are known to impact gene expression, including that of clock genes, only a hand-
190  full of studies have considered the influence of the sleep-wake distribution on the rhythmic
191 transcriptome [9, 14, 23, 27]. Most studies only examine the immediate effect of SD or assess the
192 interaction of sleep-wake and circadian driven processes using experimental protocols such as
193 ‘around-the-clock’ SDs [15, 22]. In such protocols it remains, however, unclear whether residual
194  rhythmicity is caused by circadian factors, including time-of-day differences in the response to SD, or
195 by differences in sleep-wake history prior to the SDs. Similarly, modeling sleep-wake driven dynamics
196  using exponential saturating functions following the example of the dynamics of EEG delta power [14,
197 44] does not include a circadian component, and interactions between circadian and sleep-wake

198 related factors, beyond simple additive effects, have not been not considered (Fig 2A - middle). The
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199 model we propose allows for such interaction and provides a framework to quantify the relative
200  contribution of circadian and sleep-wake dependent factors on rhythmically expressed genes. These
201  genes can be modeled as intrinsically rhythmic, i.e., because they are closely associated with the
202  circadian TTFL, or they can appear rhythmic because they follow circadian and/or sleep-wake
203  dependentdrives but, in the absence of such recurring drives, do not oscillate (Fig. 2A - right). We have
204  used earlier implementations of this modeling approach to simulate the effects of sleep-wake state on

205 Per2 mRNA and protein levels [45, 46].

206  The measured level of the expression of a gene at a given time point reflects the net result of mRNA
207  synthesis and degradation. With our data we cannot assess whether changes in gene expression
208  resulted from changes in production, degradation, or both. In the following we nevertheless use the
209 terms synthesis and degradation when referring to net increase and decrease in mRNA levels,
210 respectively. We propose a simple framework in which we suppose that the level of mRNA of a gene
211 is X(t) where t is time. We suppose that the rate of synthesis of X(t) will depend on intra-tissue factors
212 such as the levels and activity of transcription factors, temperature, and metabolites affecting mRNA
213 regulation, which we group together in a single ‘tissue environment’ variable Y(t). We suppose the rate
214  of degradation depends on the level of X(t). In a simplest (linear) approximation, the rate of change of

215 mRNA may be written as

216

ax
—=aY—-vX Eqg. 1
a Y

217

218 where a describes the effect of the tissue environment on the synthesis rate of X(t) and vy is the
219  degradation rate per unit X(t). We assume that the tissue environment variable is affected by external
220  factors F(t) such as the circadian and sleep-wake drives and that there is feedback between the gene

221 of interest and the tissue environment so that

222

dYy
= Eq. 2
a BX+F(t)

223
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224 where P describes the strength of the feedback between the gene of interest and the tissue

225 environment.

226 We let X(t) = X, + x(t), {t) =Y, + y(t) and, At) = F, + f(t) where X}, Y}, and F, are fixed

227 baseline values that satisfy equations (Eg. 1) and (Eq. 2) when % = % = 0. Then substituting for X(t)

228  and Y(t) in equations (Eq. 1) and (Eq. 2), differentiating (Eqg. 1) with respect to time and substituting in
229  for %from equation (Eqg. 2) leads to the equation for a damped harmonic oscillator (Eq. 3) (see the

230  Supplementary Material for further details).

231

d?x dx
+

232

233 where wZ = aff and f(t) = a f(t). In this equation, x(t), represents the level of mRNA of a gene
234  quantified as normalized counts from RNA-sequencing (in logz counts per million or CPM) for the
235 mouse tissues or from Affymetrix microarrays (in log; probe intensities) for human blood samples. The
236  term w?3x arises from the feedback between the gene and its environment and could be viewed as,
237 e.g., an auto-inhibition through negative feedback [47], as is the case for the expression of clock genes
238  that comprise the circadian TTFL. A large value of a)(z) translates into a strong negative feedback
239  controlling gene expression. In contrast, a weak negative feedback will result in gene expression
240  rhythms being driven mostly by changes in external factors. Another intrinsic factor determining gene

241  expression dynamics is the degradation constant, v, which opposes changes in gene expression and

242 introduces a time delay in response to external driving factors.

243  The model can capture both intrinsically oscillatory and non-oscillatory genes. Using the standard
244  terminology of simple harmonic oscillators in the absence of time dependent external driving factors
245  (f(t) = 0), when the damping ratio, { = y/2w, < 1;, the oscillator is said to be underdamped. When
246  released from a position away from equilibrium, the expression of the hypothetical gene, Gene A, will
247  oscillate around equilibrium with an amplitude that decreases on a timescale determined by damping
248  constant y (Fig. 2B - top two rows). However, when { > 1 (i.e., overdamped), gene expression will not
249 oscillate and reverts to the equilibrium directly (hypothetical Gene B; Fig. 2B - bottom two rows). For
250 underdamped genes, the time required for the expression to return to equilibrium (7) is determined

251 by v, while for overdamped genes it depends on vy and wy (Eq. 4; Fig. 2B - red line).
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252
1
- , ¢ >1
. iy . ~ ’y ’y
Time constant [T] to equilibrium =~ ——+ (7)2_ w3 cq. 4
2/y , (<1
253

254 Recurring external driving factors (f(t) in Eq. 3) are needed to assure phase coherence of the daily
255 transcriptome changes among and within tissues and, if y > 0, to maintain rhythmicity. Such external
256  factors can either follow continuous oscillations (Fig. 2B - 2" column) originating, for example, from
257  the SCN or result from discrete physiological or behavioral events such as being (kept) awake or asleep
258  (Fig. 2B — 3" column), which in this schematic includes a SD (pink bars). We refer to these two types
259  of driving factors as ‘circadian driven factor’ (f-(t)) and ‘sleep-wake driven factor’ (fsu (1)),
260  respectively. In the model we base fg,, on the fraction of sleep (S(t); i.e., NREM + REM sleep) and
261  wakefulness (W (t)), measured within a given time interval, ¢ multiplied by their respective
262 coefficients, 5 and 8, (Eq. 5, see Methods). The circadian drive, f(t), is modeled as a sinewave with

263 a 24h period and a free phase and amplitude (¢ and 4; Eq. 5).

fsw(@®) = BuW () + Bs S(0)

. 2T Eq.5
fe(t) = Asin(Gz t + @) g

264

265  Together these two factors affect the rhythmic expression of a gene by increasing or decreasing its

266  acceleration i.e. the rate of change of its synthesis rate.

267  The combined effect of the two driving factors on the oscillator can be mathematically decomposed
268 into the responses to either factor (see the Supplementary material). Summing the separate
269  contributions again reconstructs the gene-expression dynamics fitted by the model (Fig. 2B - right
270  column). In the Figure 2B schematic the relative contributions of the two driving factors (and their
271 respective responses) to the expression dynamics of Genes A and B are similar in magnitude prior to
272  SD, yet because of their different intrinsic properties, the response to the same sleep-wake
273 perturbation can considerably differ. Besides {, the response also depends on the phase-lag between

274  the oscillator and the drive which is determined by the frequency ratio (r = w/w,) between the
275  frequency of the drive (w = E—Z) and the natural frequency (wg) (Eq. 3). If r = 1, the phase-lag is g, and

276  the oscillatoris said to be in resonance. If r >> 1, the phase-lag increases and an inertia in the response
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277  ofthe oscillator is observed such that the rate of gene expression will only slowly change after a change
278  in the external drive. In contrast, when r < 1, the phase-lag decreases, causing the rate of gene
279  expression to change already before the external driving factors can exert their influence, because of

280  the feedback generated by the system.

281
2(r
arctan (1 2) + m, r<il1
@ —lag = 2_(77:
arctan( ), r>1 Eq. 6
1—12
282

283  With different contributions from the two external driving factors and different intrinsic parameters,

284  the model can capture a large variety of dynamics (Fig. 2B - right column).

285  The parameters v, wg, Bw, Bs, 4, and ¢ of the model were estimated by fitting gene expression in
286 mouse cortex, liver and human blood (see Methods). The parameters were estimated independently
287  for each gene and tissue (see Supplementary Table 1). While the model fitted gene expression at the
288  time points the tissues were sampled, with the optimized parameters the model was then used to
289 predict the entire time-course when sleep was recorded, including for example the habitual bedtime

290  (BSL) recording prior to the FD protocol as well as all days during that protocol.

291 Figure 2C illustrates the responses to the two driving factors the model estimated for the expression
292  dynamics of Clock with strikingly different results in the two tissues. As for Bmall (Fig. 1D), Clock
293  expression in the liver displays a sinewave oscillation unperturbed by SD. In contrast, cortical Clock
294  expression decreased when animals were asleep, increased when awake spontaneously and during SD
295 (Fig. 2C). Although the model fitted the Clock expression dynamics equally well in the two tissues
296  (Kendall’s T = 0.56 and 0.73 in cortex and liver, respectively) the damping ratio greatly differed ({ =
297  0.79 and 0.06, respectively). Of note, we used Kendall’s Tt as an estimate of goodness of fit for time
298 series [48] because R? is inadequate for nonlinear regression [49]. In liver, f; and its response was
299 much stronger than that of f,, while the opposite was observed in the cortex where Clock dynamics
300 resembled that of a sleep-wake driven gene such as Homer1 (Fig. 1B) [14]. We quantified the relative
301 contribution of the two drives by calculating a SW-response contribution (SWrc) metric as follows: the
302  peak-to-trough amplitude of the response to fsy, (Asy/») in baseline was expressed as a fraction of the

303 peak-to-trough amplitude of the summed response to the 2 forces (Asy- + Acr; EQ. 7). SWrc can vary
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304  between 0 and 1 with 0 indicating that the summed response is entirely due to f;, 1 to fsy,, and 0.5

305 indicating equal contributions.

306

SW response contribution [SWrc] = AA% Eq. 7
SWr Cr

307

308 We determined this fraction under undisturbed baseline conditions because SWrc depends on the
309  sleep-wake distribution and thus will be larger during, e.g., SD. For the expression of Clock, SWrc in
310 liver was 0.20 and in cortex 0.84 (Fig. 2C), reflecting well the circadian and sleep-wake driven nature
311 of the dynamics in the two respective tissues, comparable to SWrc values obtained for Bmall

312  expression in liver (0.10) and Homer1 in cortex (0.83; Fig. 3).

313 It is important to note that i) with the terms circadian and sleep-wake driven we here refer only to the
314  type of drive the expression of a particular gene responds to and not whether the gene can intrinsically
315 display rhythms or not (i.e., is over- or underdamped), ii) the oscillator’s response does not only
316 depend on the sign and magnitude of the exerted drives and the gene’s intrinsic properties (i.e., wq
317 and vy ), but also on the state of the oscillator, such as the expression level and the rate at which it
318 changes at the time the drive is applied, and iii) although the model can easily differentiate genes as
319 being over- or underdamped when their expression responds to the sleep-wake distribution, purely
320 circadian driven genes that are under- or overdamped will display indistinguishable dynamics (Fig 2B -
321 2™ column panels in orange). Assessing this would require experimentally changing the magnitude of

322 the circadian drive.

323 Our model not only reliably captured straightforward gene expression dynamics but also less
324 predictable scenarios. In the simplest scenario, the rhythmic expression of a ‘pure’ sleep-wake driven
325 gene will tightly follow the sleep-wake distribution, independent of circadian phase (or time-of-day),
326  and the gene will be intrinsically overdamped (non-oscillatory, { > 1), together resulting in dynamics
327  approximating those following exponential functions such as observed for many immediate-early
328  genes [IEGs [14]], including Homer1 (Fig. 3), and for EEG delta power (Fig. S1, see also Supplement
329  text). On the other hand, the expression of a ‘pure’ circadian-driven gene will continue oscillating
330 because it is intrinsically underdamped (oscillatory; but see comment in previous paragraph) and
331 responds only to circadian drives (i.e., with a low SWrc) such that amplitude and phase are unaffected

332 by changes in sleep-wake state as was observed for Bmall and Clock in liver (Fig. 3, Fig. 2C). The model
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333  established that for the 3 remaining genes highlighted in Figure 1 the sleep-wake and circadian drives
334  contributed approximately equally to their expression dynamics (SWrc: 0.49-0.69). Yet, because of
335  their different intrinsic properties (Table 1), expression dynamics responded very differently to the
336  drives applied. Wakefulness was found to apply a positive drive accelerating cortical Bmall expression.
337 Nevertheless, its expression did not increase during SD because the natural frequency is close to the
338  baseline sleep-wake frequency (wy = 0.21 and 0.26, respectively) and thus the sleep-wake response
339 is close to Bmall‘s maximum amplitude, and because the circadian response decreases during the SD.
340 The model found that the prolonged amplitude reduction of Bmall’s oscillation in the cortex after SD
341 resulted from a combination of a low damping constant ( y ), which increased the time to return to
342 equilibrium (t = 20h, Eq. 4), and the reduction in time-spent-awake during the recovery dark period,
343 which reduced the normal increase in gene expression rate at this time-of-day. Wakefulness also
344  accelerated the rate of cortical Acotll expression (Fig. 3). The model found that the peculiar,
345 prolonged increase in Acot11 expression during recovery sleep was due to a weak negative feedback
346  (w3) and thus a long phase-lag between drive and response. This inertia to the wake drive during SD
347  was strong as it would have required 2h of continuous sleep to counter it and for sleep-wake response
348 (blue line) to start decreasing. In addition to this inertia, the interaction between the circadian and
349 sleep-wake responses maintained a high expression for 9h after SD, further delaying a reduction of
350 Acotll expression. In contrast to the two previous examples, wakefulness decelerated the rate of
351 NCOR1 expressing in human blood. The model suggested a weak negative feedback to underly the
352 continued decrease in NCOR1 expression for the entire duration of both CRs. This result highlights that
353 the contribution of the sleep-wake response and the circadian response depend on the experimental
354 condition: in baseline the two contributions were similar (SWrc = 0.59) but in anti-phase thereby
355 flattening gene expression while during the CRs, when subjects are kept awake for 40h, the sleep-wake
356  contribution becomes larger relative to the circadian contribution (SWrc = 0.90 during CR). These
357  examples also underscore that a gene’s expression can appear rhythmic for a variety of reasons which
358  can greatly differ according to tissue. Moreover, the circadian and sleep-wake driven influences on the
359  expression of some genes can be revealed only during longer-term sleep disruptions and would have
360 gone unnoticed under undisturbed conditions. Our strategy importantly differs (and captures other
361  genes) from simply assessing differential expression immediately after the SD, which has been used to
362 categorize a gene as sleep-wake driven (Fig. S2). Finally, with these examples the model revealed that
363 sleep-wake driven responses can importantly deviate from the dynamics following exponential

364 saturating functions that are typically associated with sleep-wake driven responses.

365
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Homer1 Bmall Acotl1 NCOR1 Clock
Cortex Liver Cortex Cortex Blood Liver Cortex
v 1.68 0.12 0.10 0.18 0.10 0.03 0.42
£ wg 0.52 0.19 0.21 0.14 0.07 0.22 0.27
g
g Bw 0.450 0.020 0.015 0.013 -0.003 0.008 0.024
o
©
_g Bs -0.510 -0.030 -0.017 -0.015 0.006 -0.006 -0.031
€
g— A 0.050 0.100 0.006 -0.007 0.002 0.010 0.002
(0] 3.42 4.59 3.78 2.50 3.18 4.85 2.51
v 4 1.61 0.31 0.24 0.65 0.62 0.06 0.79
%
g T 5.47 16.73 19.26 10.82 20.80 78.82 4.68
©
o
§ @ —lag 1.13 2.37 2.27 2.35 2.76 2.80 1.52
a SWrc 0.83 0.10 0.56 0.49 0.69 0.20 0.84

366  Table 1: Parameters estimated for the expression of the genes in Figs. 2C and 3A, with x as gene
367  expression (log, of CPM or probe intensity), v [h™!] the daemping coefficient, and wg [radian * h™*] the
368  natural frequency of the oscillator. B,, [x * h2 * W] and Bs [x * h? * $] are the wake and sleep
369  coefficients for fg, with W and S as the wake and sleep fraction. A [x * h?] is the amplitude and ¢
370 [radian] the phase of f,. Derived parameters of the model are: Damping ratio of the oscillator [T], time-
371  constant [t; Eq. 4] to return to equilibrium, [phase-lag; Eq. 6] between driving forces and oscillator

372 phase, Sleep-wake response contribution [SWrc; Eq. 7].

373

374  Assessing the model’s performance against alternative models.

375 Before characterizing the dynamic properties of the full transcriptome, we evaluated the performance
376  of the model and possible overfitting by comparing it to both simpler and more complex models
377  considering all datasets. The evaluation was performed on the subset of genes and probe-sets that
378  showed rhythmic expression during baseline for mice and when sleep occurred in phase with
379  melatonin production for humans. The selection of this rhythmic subset was necessary as our model
380 aims at capturing the dynamics of rhythmic genes and fitting arrhythmic or very noisy genes would

381  automatically favor less complex models. As mentioned earlier, ‘pure’ sleep-wake driven and ‘pure’
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382  circadian-driven genes can display undistinguishable rhythmic patterns in baseline. Both categories of
383  genes can thus be captured in an unbiased fashion with a simple sinewave fit and independently of
384  their response to sleep perturbation. The time courses of the top 1000 most significant ‘sinusoidal’
385 genes per tissue (cortex, liver, and blood) were used to assess the model’s performance, i.e., a total of

386 3000 genes.

387  Our model has 6 free parameters (k=6 [y, wg, Ss,fw @, Al; see Eq. 3 and Eq. 5), with the equilibrium
388 position (intercept) fixed to the mean gene expression in baseline in mouse and in-phase data in
389 human. The model integrated the two human transcriptome experiments as one and model
390 parameters were simultaneously optimized such that, e.g., 1 minute of wakefulness in the FD protocol
391 has the same accelerating effect as 1 minute of wakefulness during the CRs following the control- and
392 restricted-sleep conditions. We did, however, allow different intercepts between the FD and the CRs

393 after the control- and restricted-sleep conditions (k=7).

394  To evaluate the fit and complexity of our model (Hypothesis 1 or H;) we contrasted it to the following
395 4 alternative models (Ha): i) a linear regression model based on independent fixed effects for each
396 time-point (k=18 and 35 in mouse and human, respectively) known to over-fit the data [14], ii) the
397 oscillator model with a sleep-wake drive only or, iii) with a circadian drive only (k=4 and 5), and iv) a
398 simple additive model in which a fixed circadian effect (sinewave) is added to a sleep-wake effect
399  without intrinsic dynamics integrating these effects (k=5 and 6; see Methods). We compared the
400 Bayesian Information Criterion (BIC) statistic of each of the 4 Hx models to that of H;. The BIC considers
401 the model’s goodness of fit while penalizing for complexity. A ABIC was calculated for each of the 4
402  comparisons with positive values indicating support for H: and negative values indicating support for
403 Ha. In general, the ABIC indicated more genes with a better fit for H; over both simpler and more
404 complex models (ABIC>0: 97, 61, 88, and 68% of all 3000 genes, for Ha i-iv, respectively), even when
405 using a more stringent ABIC (>2: 97, 55, 85, and 63%, respectively; Fig. 4A - top). In some cases, ABIC
406  favored Ha, although a strong support was found only for a minority of genes or probes (ABIC<-2: 2,
407 30, 7, and 24%, respectively). It shows that despite having far fewer parameters than the linear model
408  with independent time-effect, goodness of fit for H; is still high (~0.1 AKendall’s 1) and is improved

409  compared to simpler models (Fig. 4A - bottom).

410  This analysis supports Hi as it importantly improved the overall fit, while model complexity did not
411 increase too much over simpler models. Although expression dynamics of individual genes might be fit
412 better with simpler models, the use of a single model for all genes and letting the parameter

413  optimization decide which of the drive is dominant has important advantages as it avoids having to
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414  determine the optimal model for each gene. Moreover, using multiple models renders parameter

415  comparison among genes (or for the same genes in different tissues) hard, if not impossible.

416

417  The cortical transcriptome is mainly sleep-wake driven, that of liver and blood mainly circadian

418  We then applied the H; model to the entire transcriptome to detect, in an unbiased manner, any gene
419  that would be sleep-wake driven and/or circadian driven by contrasting the results to a flat model with
420 a single intercept as null hypothesis (Ho) where expression variance represents noise. With a ABIC>2
421 as rejection threshold, the model classified a surprisingly large number of genes as rhythmically
422  expressed: 7246 (42% of 17°185) and 5’785 (43% of 13’373) genes in cortex and liver, respectively,
423  and 18’954 probes (46% of 41°162) in blood (Fig. 4B). The high number of rhythmic genes compared
424 to that reported in other studies [1, 2, 50] is likely because the model combines circadian and sleep-
425 wake contributions giving rise to more complex dynamics than can be fitted with simpler sinewave
426  function or time courses with small amplitudes under undisturbed conditions due to opposing
427  contribution of the two forces, such as illustrated with NCOR1 (Fig. 3). Mean goodness of fit as Kendall’s
428  tforrhythmic genesis high in cortex and liver (~0.5, Fig. 4B - right). Model fit was lower for the human
429  blood dataset compared to that obtained for the mouse datasets both for overall probes as well as for
430 the 1000 rhythmic probes (A mean Kendall’s tau: 0.17 and 0.12, respectively) but nevertheless still

431  close to that of the more complex model (Fig. 4A).

432  To assess and visualize the main source of variance for these rhythmically expressed genes, we
433 performed a principal component analysis (PCA; Fig. 5, Fig. S3) and projected the model fits in PCA
434  space together with the corresponding circadian and sleep-wake driven responses plotted alongside
435 the PC axes to show their respective contributions for the time segments depicted in the PC plots (Fig.
436  5A-D). In addition, the complete simulated time-course of the responses to f5, and f. for the first two

437 principal components, PC1 and -2, is illustrated underneath each panel for each of the experiments.

438 Distinct types of dynamics could be observed in the mouse transcriptomes. In cortex, PC1 displayed a
439 predominant sleep-wake driven response (projected SWrc = 0.80) composed of overdamped genes as
440  top contributors, with a large immediate effect of SD and a subsequent quick recovery (Fig. 5A), a
441 pattern consistent with that of sleep-wake driven IEGs and the strong chromatin remodeling effect of
442 SD in this tissue [14]. GO analyses identified that these genes are involved in protein folding, RNA
443 regulation, and chromatin organization (Fig. S3 - Cortex). PC2, on the other hand, was determined by

444 underdamped genes with large phase-lags (>§ rad) responding to both circadian and sleep-wake drives

445 (SWrc = 0.60). The latter drive increased gene expression during SD which continued during the first
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446  6h of recovery (i.e., until ZT12 of the first recovery day; ZT12gec in Fig. 5A) although mice were mostly
447  asleep during this period. The model found that this inertia in the response to the SD was a
448  consequence of a weak negative feedback and a large phase-lag. Evidence of such inertia can already
449 be observed in baseline when increases followed the sleep-wake distribution with a similar long delay
450 (start of increase at ZT15, i.e., ca. 3h after spontaneous wake onset at lights-off, until ZT3, Fig. 5A -
451 lower panel, dashed blue line for PC2, Fig. S3 - Cortex). These genes are involved in neurotransmitter
452 transport/signaling, feeding behavior, phosphatidylinositol dephosphorylation, and fatty acid

453 metabolism.

454 In liver, the fitted trajectories for the expression of genes contributing to PC1 and -2 followed circular
455 patterns and both PCs showed a large contribution of the circadian response relative to the sleep-wake
456  response (SWrc =0.18 and 0.29, respectively) albeit with different phases (Fig. 5B, Fig. S3 - Liver). SD
457 decreased the amplitude of PC2 (ZT6sp) and was followed by an amplitude reduction 12h later
458 (ZT18gec). PC2 shows an enrichment for genes involved in androgen receptor signaling and, similar to
459 PC1 genes in cortex, in protein folding. PC1 genes in liver were left largely unperturbed by SD and were
460 enriched for genes implicated in GTPase activity. The response dynamics for transcripts contributing
461 to PC2 in liver and cortex highlight a novel and slower type of sleep-wake driven response requiring
462 more time to change mRNA levels compared to the fast IEG (and delta-power) -like response observed

463 for PC1 in cortex.

464 For the human blood transcriptome, PCAs of the FD ‘in-phase’ and ‘anti-phase’ conditions (Fig. 5C) and
465  the CRs after the 10- and 6h sleep-opportunity conditions (Fig. 5D) were plotted separately for better
466  visualization. The predicted expression dynamics during habitual bedtime (24h sleep-wake cycle with
467  7.5h sleep) was used as a ‘baseline’ reference (dashed lines in Fig. 5C-D). The expression dynamics
468  fitted to the FD ‘in-phase’ condition were at first indistinguishable from the predicted baseline
469  dynamics (Fig 5C - left) and deviations appeared only after ZT8 (i.e., 8h after the onset of the scheduled
470  sleep episode) when under baseline subjects woke up, while under the FD condition sleep was
471  scheduled to last an additional 1.3h. As PC2 was mostly sleep-wake driven (SWrc = 0.80), due to the
472 longer sleep periods and the longer wake periods of the 28h day compared to the 24h day, the
473  amplitudes of the rhythmic probes contributing to PC2 gradually increased over the initial 4 days of
474  the FD to a new steady-state (bottom time-course in Fig. 5C). Thus, by the time the ‘anti-phase’
475 condition was reached, PC2 showed a strong amplitude increase (Fig. 5C - right). Top contributors to
476 PC2 were mostly underdamped probes with weak negative feedback such as NCOR1. The
477 corresponding genes were found to be involved in B-cell activation and phosphatidylinositol

478  dephosphorylation, the latter confirming the PC2 pathway found in the mouse cortex (Fig. S3 - FD).
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479 PC1 was more circadian than sleep-wake driven (SWrc = 0.36). Probes contributing to PC1 were
480  enriched for genes involved in translation and mitochondrial regulation (Fig. S3 - FD). PC1’s overall
481  amplitude reduced during the ‘anti-phase’ condition when sleep-wake and circadian responses
482  opposed each other (Fig. 5C - bottom panel). The model predicted an even more prominent amplitude
483 reduction during the 28h day following ‘anti-phase’. As we had access to sleep-wake data throughout
484  the 10-day FD protocol (Fig. 1B), we could simulate expression dynamics when subjects returned to
485 being ‘in-phase’ again 3 days later (i.e., the last day of the FD) and found that the amplitudes of both
486 PC1 and -2 were larger compared to the ‘in-phase’ condition at the beginning of the FD (Fig. 5C -
487 bottom panel). To conclude, the model predicts that over the course of the FD protocol expression

488 dynamics change and that the two ‘in-phase’ conditions will importantly differ transcriptionally.

489 PCA for the second human transcriptome experiment showed the large effect of the 40h wakefulness
490 during the two CRs importantly amplifying the sleep-wake response contributing to PC2 (SWrc = 0.56),
491  as already illustrated for NCOR1 (Fig. 3). The preceding 7 days of restricted sleep changed the initial
492  condition of the CR compared to that of the control condition (6 vs. 10h sleep opportunity) again
493  affecting mostly PC2, the trajectory of which was downshifted during the CR (Fig. 5D - left vs. right
494 panel). This could also be observed at the level of the data where ellipses, denoting the 95% Cl of mean
495 gene expression, were all slightly lower after the restricted sleep condition. The model predicted that
496  the lowering of PC2 already occurred on the 2™ day of the sleep restriction protocol (Fig. 5D - bottom-
497  right panel). In contrast, for the 10h-sleep-opportunity condition the model found an increase in PC2
498  over the first days of the protocol compared to baseline before slowly decreasing again reaching
499  baseline level prior to the start of the CR. This increase and subsequent decrease can be attributed to
500 theinitial increase in mean total sleep time in the first days of the protocol (9.4h on the first day) that
501 then reverted to baseline levels (7.7h on the last day; Fig. 1C - bottom-left panel). Like FD, PC1 is

502  enriched for translational regulation, and PC2 for cell division and protein lipidation (Fig. S3 - CR).

503  Comparing the PCA across species and tissues showed some surprising similarities considering they
504  were computed independently. Although the relative contribution of the sleep-wake response and the
505 circadian response varied among tissues, PC1 showed a mostly in-phase relationship between the two
506  responses during baseline for all datasets (Fig. $3; @(Cr — SWr) black line represents the in-phase
507 relationship), while for PC2 their phases importantly differed. Accordingly, the mean amplitudes of
508 genesin PC1 are larger than that of PC2 genes in all tissues (Cortex: 0.25 vs. 0.11, Liver: 0.66 vs. 0.48,
509 Blood: 0.22 vs. 0.10, p-values < 1e-9). This did, however, not translate into common genes contributing
510 to each of two PCs across datasets. Only PC1 of the FD and CR experiments had a strong concordance

511 of contributing genes. This suggests that the biological processes that are sleep-wake and circadian
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512  driven differ across tissues, with most genes displaying an in-phase relationship, and a smaller
513 proportion of the transcriptome with an anti-phasic relationship. The expression of the latter class of
514  genes represented by PC2 appears more prone to long-term deviations from baseline upon

515 perturbation of sleep with a larger sleep-wake contribution (except cortex) and lower y (Fig. $3) which

516 increases the time needed to again reach baseline dynamics (7, Eq. 4).

517  As the PCA reports only on those transcripts contributing most to the overall variance, we assessed
518  the SWrc values for the complete rhythmic transcriptome. As already indicated by its PC1, the model
519  found that cortical gene transcription was more sleep-wake driven than in liver and in blood, with
520 similar SWrc values obtained in the latter two tissues (mean SWrc: 0.62, 0.37, and 0.40 for cortex, liver,
521 and blood respectively; Fig. 6A). In cortex 67% of rhythmic genes were underdamped ({ < 1), while
522  85% and 89% of genes in liver and blood were underdamped. Although mostly underdamped, the
523  analysis of rhythmic genes in blood revealed a conspicuous cluster of overdamped transcripts ({ > 2)
524  that were mostly circadian driven (SWrc < 0.5). GO analysis of this overdamped cluster revealed an
525  enrichment for genes involved in acetylcholine receptor binding that were strongly circadian driven
526  (SWrc<0.25) and, for the remaining transcripts in this cluster (SWrc > 0.25), genes involved in signaling
527  adaptor activity and dopamine receptor binding. We compared our results in blood with the
528 classification made by Archer and colleagues based on the FD transcriptome results using an additive
529 model with the free-running circadian melatonin rhythm and the enforced 28h sleep-wake cycle as
530 factors [23] (Fig. S4). As expected, probes originally classified as changing in-phase with melatonin
531 have, in our model, a low SWrc (mean = 0.25) and probes classified as in-phase with the sleep-wake
532 cycle have a high SWrc (mean = 0.60). There were, however, some noticeable exceptions, such as
533  SERPINBY9 which was categorized as in-phase with melatonin, suggesting an important circadian
534 influence, whereas our model found its expression to be strongly sleep-wake driven (SWrc = 0.82; Fig.
535  S4). Because of its long time-constant (t = 42.0h), SERPINB9 expression was only slightly shifted at the
536  time sleep occurred in anti-phase with the melatonin rhythm and ca. 3 additional days of sleeping in
537 anti-phase (i.e., 2 * 1) would have been required to observe a more complete shift of SERPINB9
538 expression relative to the melatonin rhythm such that it again realigns with the sleep-wake
539  distribution. Consistent with the prediction of a sleep-wake driven oscillatory (underdamped)
540  dynamics with an amplitude reduction by extended wakefulness, blood SERPINB9 expression was

541  found to be down-regulated after SD [51] and rhythmic in an independent CR experiment [52].

542  Of all genes found to be rhythmic across the datasets (14’435), only 10% (1468) were rhythmic in all 3
543  tissues (Fig. 6B). This strong tissue specificity of gene rhythmicity has already been noted in other
544  species [53]. We then compared the SWrc of these 1468 shared rhythmic genes but did not find any
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545 correlations between tissues (cortex vs. liver pearson correlation: 0.08, cortex vs. blood: -0.001, liver
546  vs. blood: 0.003) indicating that the cause of rhythmicity (circadian vs. sleep-wake driven) was not
547  shared. Nevertheless, most of the few genes found to be sleep-wake driven in liver (SWrc > 0.5) were
548 also sleep-wake driven in cortex (311; 79% of 392), and the circadian-driven genes in cortex (SWrc <

549 0.5) were also circadian driven in liver (78%,; Fig. 6B).

550 Amongthe 1468 common rhythmic genes, only 109 had SWrc values above 0.5 in all 3 tissues (Fig. $6),
551  with Ndufs1 as the gene with the highest average SWrc (0.82). Ndufs1 is a mitochondrial gene involved
552 in reactive oxygen metabolism and was previously found as a biomarker for short-sleep duration [54].
553 Interestingly, the most circadian driven gene among the 1468, Sod2 (average SWrc = 0.10), is also a
554  mitochondrial gene involved in reactive oxygen metabolism. We found that the top-most enriched
555 biological process for the 1468 genes rhythmic in all tissues was protein folding (Fig. S5). Protein folding
556  was also found as the most enriched biological process for the 109 sleep-wake driven rhythmic genes
557 shared among the three tissues. Conversely, 215 genes had SWrc values below 0.5 in all 3 tissues.
558  These common circadian-driven genes were involved in Protein kinase B signaling. Phosphatidylinositol
559 3 kinase signaling appeared as the 3™ most significantly enriched GO term, which is interesting as genes
560 contributing to PC2 in mouse cortex and human blood (Fig. 5) were enriched for genes involved in the

561 dephosphorylation of phosphatidylinositols, which have been associated with sleep [55-57].

562 It should be noted that while we considered genes as sleep-wake driven or circadian driven using a
563  SWrc cut-off of 0.5, the drive that contributes less still affects gene expression dynamics. For only less
564  than 3% of each of the transcriptomes, genes could be labeled as either entirely sleep-wake driven or
565  entirely circadian driven (SWrc > 0.95 or < 0.05). Therefore, for most transcripts both drives need to

566 be considered when studying rhythmic gene expression.

567
568  Sleep deprivation desynchronizes the tissue transcriptome

569  Although central and tissue rhythms in gene expression are generally associated with clock genes
570 implicated in the TTFL, clock genes did not feature among the top circadian driven genes. We therefore
571 took a closer look at the expression dynamics of 15 core clock genes (Fig. 7A). Expression of 11 out of
572 the 12 clock genes that were rhythmically expressed in the cortex showed a mainly sleep-wake driven
573 response (SWrc > 0.5). In contrast, in liver and blood, most clock genes were found to be circadian
574 driven (0 and 1 out of 13, respectively; SWrc < 0.5). In cortex, Clock is the strongest sleep-wake driven
575  clock gene (SWrc = 0.84) and among the top 11% most sleep-wake driven genes in this tissue but is

576 mostly circadian driven in liver (SWrc: 0.19; Fig. 2C) and blood (SWrc = 0.26).
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577  While clock genes in the SCN are involved in timekeeping, their role may be more diverse in tissues
578  peripheral to the SCN [45, 58]. Because clock genes are sleep-wake driven in the cortex and circadian
579  driven in liver, sleep perturbation may alter inter-tissue synchrony and clock-gene related processes
580 like metabolism [59]. To assess tissue differences in cellular timing, we fitted clock-gene expression in
581  cortex and liver to a 24h clock corresponding to the tissue’s zeitgeber time (ZT) in baseline (Fig. 7B -
582  dashed line) using a multivariate regression model with elastic net regularization [60]. We observed
583 that during the SD and the subsequent 5h of recovery (corresponding to ZT0-11 in baseline) cortical
584 local time no longer followed ZT and that the expression dynamics of clock genes was halted at a state
585 corresponding to ZT0-2 during baseline (Fig. 7B - solid line). In contrast, in the liver, circadian time
586 progressed undisturbed resulting in an important desynchronization between the two tissues with a

587 maximum cortex-to-liver delay of 8h reached 5h after the end of the SD (Fig. 7B - bottom).

588  Asthe cortical transcriptome, including most clock genes, is mostly sleep-wake driven, zeitgeber time
589 (or circadian time defined by phase markers of the central circadian clock) has little significance in this
590 tissue. That zeitgeber time estimated by the expression of clock genes was maintained at ZT0-2 for 11
591  consecutive hours does therefore not indicate that the circadian clock stopped but simply results from
592  the SD keeping waking levels high for 6 additional hours following the baseline dark period when
593  animals were mostly awake spontaneously. The limited use of clock genes as biomarkers of circadian
594  time in tissues peripheral to the SCN under conditions of altered sleep-wake distributions has already

595 been suggested previously [61].

596  The SD causes the cortex and liver transcriptomes to desynchronize as tissue oscillators differ in their
597 overall response to sleep-wake state (Fig. 6A). Similarly, within each tissue, genes revealed a wide
598 range of responses (Fig. 6A) implying that SD also changes intra-tissue synchronicity. To examine this,
599 we performed a similar analysis as above, where the baseline timing of expression is estimated
600 independently for each gene based on its expression level and expression rate predicted by our model.
601  The baseline time points ZT0, 6, 12, and 18 were mapped to zeitgeber time and time points after the
602 start of the SD plotted according to baseline time considering expression level and expression rate (Fig.
603  7C). In this representation, the distance from the center reflects a relative amplitude change (100% =
604  baseline) and an angular change between corresponding ZT points before (baseline) and after SD (ZTsp
605  and ZTgec) can be viewed as a phase change. In the figure each dot represents one gene, and the ‘point
606  of gravity’ of all genes is represented with a black circle. As expression level and expression rate in
607  baseline could not be mapped perfectly to a 24h clock, we observed small scattering around the points
608  of gravity at the four time points (Fig. 7D - upper panels). Rhythmic genes which could not be readily

609  mapped to a 24h clock (because their baseline time course deviated too much from a sinewave like
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610 dynamic; R?< 0.6, see Methods), and thus scattered too much, were excluded from this analysis (9 and
611 4% of all rhythmic genes in cortex and liver, respectively). SD caused extensive scattering of gene
612  timing in both tissues which lasted for more than 24h (Fig. 7D - middle and lower panels), indicating
613  that the phase relationship among genes is largely altered by SD. Despite this increased scattering, the
614  point of gravity in liver still closely followed baseline timing. In contrast, in cortex overall timing was
615  greatly impacted with points of gravity deviating from those observed in baseline by ca. 8h at ZT6 and
616 -12. It thus appears that the SD-induced changes in the cortical timing of expression level and
617 expression change observed of clock genes (Fig. 7B) apply to the entire rhythmic transcriptome in this
618  tissue. On the second recovery day, scattering of timing remained larger than in baseline in both
619 tissues, suggesting that the expression of many genes was still perturbed although in cortex the
620 location of the points of gravity suggest that overall, the timing had reverted to that of baseline (Fig.
621 7D - lower panels).

622

623  Does recovery sleep accelerate transcriptome recovery?

624  We previously reported that the expression dynamics of a large number of genes affected by SD still
625 deviated from baseline long after the sleep-wake distribution and EEG activity had reverted to
626 baseline, i.e., beyond the first 18h after the SD ended [14] (see Fig. 7D). Using our model prediction,
627  we further investigated the ‘recovery’ dynamics for the rhythmic transcripts affected by SD, i.e., those
628  with a fold-change effect size > 1 [z-score] at any time-point during the 48h after SD. We first
629 determined how the fold-change in expression reached at the end of SD (ZT6sp) related to the time
630 required for expression to again reach equilibrium, i.e., the time constant, T (Eq. 4). Perhaps counter-
631 intuitively, we found that, in general, genes for which the expression was affected the most at the end
632 of the SD had the shortest time-constants (Fig. 8A). More genes displayed such a strong-and-fast
633 response in cortex than in liver where the initial responses tended to be smaller but longer lasting (Fig.

634  8A).

635 The immediate SD effect and T alone were, however, insufficient to account for the large variability
636 among genes and tissues in the time required for gene expression to recover. One factor that could
637  play arole is the extra sleep gained during recovery, which could be viewed as a second perturbation
638  shortening or lengthening the duration for a gene to return to its baseline rhythmicity. In fact, T
639  correctly estimates the time to return to baseline equilibrium only if mice do not alter their sleep-wake
640  behavior after SD, i.e., sleep as during baseline. To evaluate the effect of recovery sleep on
641  transcriptome recovery, we simulated gene expression in mice that do not (referred to as ‘Oh recovery

642  sleep’) or partially compensate for sleep loss by incrementally (hour-by-hour) replacing the subsequent
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643  sleep-wake distribution by their ZT-matched baseline sleep. We illustrate this analyses with the
644  simulated expression of Mfsd4a and Paqr8 with either 0-, 6-, 12-, or 18h of recovery sleep (Fig. 8B,C -
645 middle panels). We took these two genes because their cortical response to recovery sleep was
646  opposite while both tended to be sleep-wake driven (SWrc = 0.80 and 0.52) and showed a comparable
647  large effect size after SD (-7.0 and +6.5, respectively at ZT6sp; Fig. 8B,C - left panels). Moreover, Mfsd4a
648  and Pagr8 were under- and overdamped, respectively ({ = 0.76 and 3.17). From the time point in the
649 simulation when the actual recovery sleep was replaced with baseline sleep, the fold-change of
650 underdamped genes (such as Mfsd4a) can be viewed as an underdamped oscillator relaxing back to
651 equilibrium with its amplitude decaying exponentially with a time-constant T (red dashed lines in Fig.
652 8B -—middle panels; compare to Gene A in Fig. 2B — left panel). For overdamped genes (such as Pagr8),
653  the reduction in the fold-change follows a simple exponential decay (red dashed lines in Fig. 8C —
654  middle panels; see Gene Y in Fig. 2B — left panel). We then calculated the time required for the
655 exponential decay part describing the recovery of gene expression to reach an effect-size of < 1 and
656 considered gene expression to have recovered at this time-point. We estimated that 50% of all genes
657 affected by SD ‘recovered’ within 12 and 13h, and an additional 17 and 12% after 18h of recovery, for
658 cortex and liver, respectively (Fig. 8D). This implies that at the time sleep and EEG phenotypes no
659 longer differed from baseline, the expression of 32 to 37% of genes still had not recovered. Using the
660 baseline sleep-wake data instead of the actual sleep-wake recovery data accelerated the recovery of
661  Mfsd4a expression by approximately 10h, while it delayed Paqr8’s recovery by a similar duration (Fig.
662 8B,C - middle panels). Or, in other words, as more recovery sleep was included, time of recovery
663 increased for Mfsd4a from 62.h to 72.5h when 10h of recovery sleep was included, and decreased for
664  Paqr8 expression (from 77.4 to 67.9h) with 18h of recovery sleep (Fig. 8B,C - right panels). In general,
665  overdamped (logio > 0) genes, such as Paqgr8, seemed to benefit from sleeping more (Fig. 8E, green-
666  black sequence, with green indicating that including 1h of recovery sleep accelerated gene recovery),
667  whereas most genes with an oscillatory component (i.e., underdamped, like Mfsd4a) delayed their
668 recovery time as more of the actual recovery sleep was being used for the simulation (Fig 8E, red-black
669 sequence). We also observed more complex responses where recovery sleep initially decreases and
670 subsequently increases recovery time (Fig. 8E, green-red-black sequence). The opposite sequence
671 could also be observed (Fig. 8E, red-green-black sequence). Clustering the response of all genes
672 revealed the presence of 6 types of responses (Fig. 8E). In the cortex recovery sleep delays gene
673 recovery time for most of the clock genes. In contrast, several IEGs genes like Homerl1, Srf, and Egr2
674  and others like Acot11 take advantage of the extra sleep after sleep deprivation to recover faster.

675  Sleep-wake driven genes like Ndufs1, and top contributors to first two PCs (Fig 5A,B), such as Otub2
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676 (cortex PC1), Pmepal (cortex PC2), and Prkd3 (liver PC2), showed gene recovery times that mostly

677  delay when allowing recovery sleep for 6-18h.

678  The previous analysis emphasized that transcriptome recovery outlasts sleep-wake recovery, and, in
679 addition, that not only a lack of sleep (SD) but also extra time-spent-asleep (recovery sleep) can delay
680  attaining baseline gene-expression dynamics. Given these insights, we explored the transcriptome
681  dynamics during the FD protocol during which subjects recover from transitioning from sleeping in-
682 phase to anti-phase and back again by calculating the gene effect size of the predicted differential
683  expression to corresponding baseline ZT time points. For each gene, we calculated the time-point at
684  which the effect-size was highest. For example, for PORCN, a gene with a large effect size (top 2%) and
685  extreme long time constant of recovery (T = 160h), maximum effect size was reached at time 177h
686  (Fig. 8F). The model predicted that for most genes, the largest effect sizes occurred around that time
687  (144-192h), i.e., during the 28h day that followed the anti-phase condition (Fig. 8G; Day 7-8 of the
688  protocol, Fig. 2B). Such delayed response is reminiscent of the delayed gene-expression responses
689  observed in mice after SD. The model also predicted that genes can still deviate from their baseline
690  dynamics when sleep occurred again in-phase such as, e.g., PORCN (Fig. 8F) which might, however, be

691  difficult to demonstrate statistically because of the small, predicted effect size.

692

693 Conclusions

694  We have presented a mathematical framework that can describe and predict rhythmic gene expression
695 in brain and body tissues peripheral to the SCN. The model integrates and quantifies the contributions
696  of circadian and sleep-wake state related factors and their interaction acting on the daily changes in
697  mRNA levels. The respective contributions of these factors were represented as two drives that each
698  alter the acceleration of the ongoing changes in gene expression within the cells of the tissue. The
699  model was able to capture the often complex and sometimes counterintuitive relationships between
700 sleep-wake interventions, circadian time, and gene expression in cortex and liver in mice and in blood
701 in humans. One strength of the model is that it accommodates within one and the same mathematical
702  framework a variety of expression dynamics. This has the important advantage that parameter
703 optimization will decide with which type of dynamics each gene responds to the exerted drives and
704  which of the two drives is dominant. The model successfully captured changes in gene expression
705 under a number of experimental conditions that altered sleep-wake timing relative to circadian timing,
706  while keeping the number of free parameters low. Applying the model to mouse and human time-

707 course transcriptome data yielded several new insights that are summarized below. Our work shows
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708  that the daily or circadian changes in in vivo gene expression can only be understood when the
709  contribution of sleep-wake history are taken into account. We believe this framework can also be
710  useful to describe and predict the daily changes in other physiological variables and behaviors.

711

712  An alternative response dynamics to extended wakefulness

713  The effects of sleep loss on neurophysiology, performance, and behavior are often put into the context
714 of the two-process model of sleep regulation with a sleep-wake driven process increasing and
715 decreasing during wakefulness and sleep, respectively, according to exponential (saturating) functions.
716  This process was originally modelled on the dynamics of the sleep-wake driven changes in EEG delta
717 power [62] and, as we showed here (and elsewhere [14, 15, 45], this type of dynamics captured well
718  the changesin the cortical MRNA levels of activity-induced immediate-early genes (IEGs) characterized
719 as overdamped in the model. Accordingly, expression of this class of genes responded to sleep
720 deprivation with a large immediate increase, to then quickly decrease during sleep reaching baseline
721 levels within 7h, i.e., the median time of gene recovery for the 2037 overdamped sleep-wake driven
722  genes. This steep decline following sleep deprivation, which drove gene expression away from a lower
723  asymptote, is typical of an exponential decreasing function and of IEG expression dynamics. Therefore,
724  although it does require the animal to sleep, its fast recovery dynamics is largely independent of
725 rebound sleep, i.e., the increase in time-spent-asleep after sleep deprivation beyond that observed in
726  baseline.

727 Our current analyses showed, however, that most of the predominantly sleep-wake driven
728  transcripts did not behave like EEG delta power and followed a response dynamic characterized with
729 a small response at the end of sleep deprivation, a slow recovery (16.9h median gene recovery in cortex
730  for the 3469 sleep-wake driven and underdamped genes) and a larger variety of expression patterns.
731  Amongthese patterns, some genes showed a marked inertia in the response to altered timing of sleep-
732 wake state, with differences in gene expression becoming evident only after some delay. This explains
733 why these transcripts have gone unnoticed in experimental designs that aimed at finding the molecular
734  correlates of the process reflected by EEG delta power and therefore only focused on the immediate
735  effects of sleep loss. The genes following these slower sleep-wake state driven dynamics might be
736  implicated in the homeostatic regulation of time-spent-asleep, which differs from that of EEG delta
737 power in that it has slower dynamics and becomes evident only after EEG delta power has reverted to
738  baseline.

739

740

741
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742 Unexpected effects of recovery sleep on transcriptome ‘recovery’

743 Our analyses showed that deviations from the baseline sleep-wake state time-course altered gene
744  expression patterns. Perhaps counterintuitively, these deviations included rebound sleep subsequent
745  to sleep deprivation, which is generally considered to help restore homeostatic balance. Rebound
746  sleep especially affected the genes that responded with slower response dynamics and had an
747  oscillatory component (i.e., underdamped) by delaying their recovery. The combination of the inertia
748  torespond to enforced waking and their sensitivity to rebound sleep resulted in a flattening of rhythm
749 amplitude that lasted well beyond the sleep-wake distribution and EEG activity had reverted to
750 baseline. The cortical expression pattern of most of the core clock genes followed this pattern.

751 We have used the term gene expression ‘recovery’ as shorthand for describing the time it took
752 to again reach the baseline time course without knowing whether the transcripts indeed play a role in
753 the recovery processes associated with sleep. Among the pathways enriched for sleep-wake driven
754  genes, we found pathways related to chaperon-mediated protein folding in cortex, liver, and blood.
755  Chaperons were found to be associated with consolidated sleep [63] and reduced ER (endoplasmic
756  reticulum) stress. Many lipidic pathways were also enriched for sleep-wake driven genes in both cortex
757  and blood, like those involved in cholesterol/lipid regulation as well as their proportions and spatial
758  arrangement in the cellular membrane.

759

760  Circadian timing and the effects of sleep loss

761  Our analyses showed that sleep deprivation in the mouse caused a long-term change in the phase
762 relationship among genes within and between tissues. Consistent with more genes being sleep-wake
763 driven in cortex than in liver, sleep deprivation impacted overall timing in cortex to a much larger
764 extent, resulting in a large difference in circadian timing between the two tissues, which amounted to
765 an estimated 8-hour phase delay, 5 hours after the end of the sleep deprivation. The phase differences
766  were observed at the level of the whole transcriptome as well as among clock genes. In cortex, but not
767 in liver, all but one of the clock genes were affected by sleep-wake state with Clock and Npas2
768  expression, the two transcription factors forming the positive arm of the circadian TTFL, responding,
769 like IEGs, almost exclusively to the sleep-wake time course over the 4-day experiment. This tissue
770  difference in the behavior of clock genes might not surprise given the fact that sleep-wake state is
771  tightly coupled to metabolic activity in the cortex and less so in liver. The clock-gene circuitry in the
772 cortex might thus be used to track and predict time-spent-awake instead of setting circadian time.
773  Accordingly, clock genes in the cortex are of little significance as phase markers of the central circadian
774  clock, as was already suggested by others for other tissues peripheral to the SCN (Dijk and Duffy 2020).

775  To further investigate the relationship between the tissue’s activity and clock gene dynamics, one
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776  could, e.g., change (metabolic) activity of the liver specifically without affecting sleep-wake state. We
777  predict that the expression dynamics of clock genes in the liver would become less circadian and more
778  ‘cortex’ like.

779
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780 Methods

781  Mouse datasets

782 Mouse transcriptome dataset is available on GEO (TBD). Experimental details are available [12, 14].
783  The following methods are a summary.

784  Animals

785 62 male mice C57Bl/6J were purchased at Charles River France for RNA-sequencing of cortical and liver
786  tissues. 12 male mice C57Bl/6) were purchased from the University of Tennessee Health Science
787 Center (Memphis, TN, United States of America) for EEG/EMG recording. Both sets of mice underwent
788 same housing condition: mice were acclimated to our facility for 2-4 weeks prior experimental
789 procedure. Mice were kept under 12h light -12h dark conditions. Both experimental procedures were
790 performed at the age of 10-12 weeks and approved by the veterinary authorities of the state of Vaud
791 (SCAV). No additional animal experiments were performed for this publication.

792  Sleep deprivation

793  Sleep deprivation was performed by gentle handling [64] for 6h at light onset (zeitgeber time ZT0-6).
794  EEG/EMG recordings

795  Surgery was performed 10 days prior baseline recording as described in [64]. 4 days of EEG/EMG signals
796  were annotated on 4s consecutive epochs based on EEG/EMG pattern. Manual annotation was
797  performed on the 3™ day of recording, days 1-2-4 were annotated using a semiautomated scoring
798 system [12, 28].

799  Tissue collection

800 Mice were anesthetized with isoflurane prior to decapitation. Cortex and liver were rapidly dissected,
801  and flash frozen in liquid nitrogen. Time schedule of tissue sampling was described [14].

802 RNA-sequencing

803 Frozen cortex samples were processed as described in [14]. Liver samples were stored at -140°C and
804 prepared as follows: total RNA was extracted using miRNeasy kit (Qiagen; Hilden, Germany). Libraries
805 were prepared using 10 ng/ul with Truseq Stranded RNA. Sequencing was performed on the Illumina
806 HiSeq 4000 SR sequencer with more the 24 million reads per samples.

807 Gene quantification from RNA-seq

808  Gene quantification was performed as follow for both cortex and liver samples: lllumina reads were
809 filtered using fastp [65] to keep high quality reads and remove adapter sequences. Reads were aligned
810 on the mouse reference genome mm10 (GRCm38) using STAR v2.7.0e [66] with default parameters.
811 Read counts was done by STAR using “--quantMode GeneCounts”, taking only reverse strand mapped

812 reads. Genes with low counts (mean counts overall samples < 10) were filtered and normalization was
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813 performed with edgeR [67]. Gene expression from the liver was put on Gene Expression Omnibus
814  (GEO) to complete our previous dataset from the cortex. Batch effects were removed using Combat
815 [68] prior fitting using our model.

816

817  Human datasets

818 Human transcriptome datasets are available on GEO: Forced Desynchrony (GSE48113) and Constant
819 Routine (GSE39445). Experimental details performed are available in the following publications [23,
820 27]. The following methods are a summary.

821 Participants to the Forced Desynchrony

822  Transcriptome data was obtained from 22 participants (mean + SD of age, 26.3 + 3.4 y; 11 males and
823 11 female). All participants were white, in good health, without reported sleep problems (Pittsburgh
824  Sleep Quality Index <5), and homozygous for the PER3 VNTR polymorphism (rs57875989), with equal
825  numbers of #* and ** carriers (11 each).

826 Forced Desynchrony (FD) protocol

827 Participants underwent a first 8h baseline sleep schedule at habitual bedtime followed by a 28h sleep-
828  wake cycle. Dark-dim light (<5 lux) cycle and meals also followed a 28h cycle. Plasma melatonin levels
829  were measured as described in [69] to assess circadian period in-vivo and schedule sleep to be in-
830 phase with melatonin levels [70].

831 Participants in the Constant Routine

832  Transcriptome data was obtained from 26 participants (mean + SD of age, 27.5 + 4.3 y; 14 males and
833 12 female). Participants were predominantly white (19/26), in good health, without reported sleep
834 disorder (Pittsburgh Sleep Quality Index <5) and homozygous for PER3 VNTR polymorphism
835  (rs57875989).

836 Constant Routine (CR) protocol

837 Participants had to stay awake for 39-41h on their bed, in their individual room in a semi-recumbent
838 position under a low light intensity <10 lux. Hourly nutritional drinks were provided instead of meals.
839 Blood samples were collected hourly to assess melatonin levels and every 3h for total RNA extraction.
840 Polysomnography

841  The EEG, EMG, and EOG (electro-oculogram) were recorded on Siesta 802 devices at a 256Hz sampling
842 rate. After signal filtering, sleep stages were assessed according to Rechtschaffen and Kales criteria.
843 Participants’ sleep was aligned using their melatonin phase and mean sleep amount was calculated

844  using NREM sleep (stages 1-4) + REM sleep and considered baseline sleep onset as “ZT0” in figures.
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845 RNA extraction, microarray hybridization and processing
846  Whole peripheral blood was collected using PAXgene Blood RNA tubes. cRNA was hybridized on a
847  4x44K custom oligonucleotide microarray with additional probes for 20 clock/sleep-related genes. QC
848  and processing were performed with R package limma [71]. Probes intensities were corrected for
849  background and Quantile normalized. Outliers detected with arrayQualityMetrics function and PCA
850  were removed (3/714 samples). For both protocols, blood samples time-point were aligned using
851 participant melatonin phase (i.e., defined as “time point” in FD dataset metadata, and “circadian
852 phase” in CR dataset metadata). Probes were corrected for repeated measure on the same participant
853 using a mixed-model with a random participant intercept and fixed effects of sleep condition (in-phase,
854 anti-phased, 6h sleep + CR, 10h sleep + CR) and time points.
855
856  Driven Damped oscillator model:
857  The temporal dynamic of gene and probes expression were modeled according to the following
858  equation describing a driven damped harmonic oscillator:

d’x dx

72 + Ygr + wix = f(¢),
859
860  Where tis time, y is the linear damping constant and w, is the natural frequency. Here, we take the

861  the drive f(t) as the sum of a drive due to sleep-wake states and a drive due to the master circadian

862  clockin the form of a sinewave. Specifically

f(t) = fow (@) + fc(®),

863
fsw(@®) = Bw W(t) + Bs S(D),
864
f. = A sin(wt + @).
865

866  The coefficients 8, and S describe the effect of the fraction of sleep and wake per 0.1h bin. A and ¢

867 are respectively the amplitude and the phase of the circadian drive. The angular velocity w of the

868 sinewave was set to E—Z , Which represents the synchronization of the SCN by the 12:12 light-dark cycle.
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869 Numerical solution

870 In order to find optimal parameters for the dynamics of each gene expression we (repeatedly)
871 numerically integrated the driven harmonic oscillator. We first transformed the second order ordinary

872 differential equation (ODE) into two first order ODEs,

873 X1 = Xy

874 x', =F —yx, — w3x;

875

876  Where x;=x and represents normalized mRNA counts and the prime (‘) indicates differentiation with
877 respect to time. We then implemented a 4™ order Runge-Kutta (RK4) numerical method to
878 approximate the solution using a fixed time step of 0.1 hour. With a fixed step size of 0.1 hour, RK4

879  requires values every 0.05 hours. Since values of fs,,(t) were only available every 0.1 hour, we

880 assumed that it took a piecewise constant form.

881

882 Model initial values and optimization procedure

883 Equilibrium position of the model was set as followed. For each gene or probe, we fitted a cosine to
884  the baseline gene expression (Time 24-48 in mice, FD: in-phase in human) and used the intercept of
885  the model as the default equilibrium position. Initial values of position x;(0) and speed x,(0) were
886  setatthe equilibrium position of the model and at 0, respectively. The baseline sleep-wake cycle (mean
887  baseline sleep in mice, habitual bedtime in human) was repeated for 20 days prior recordings to let
888  the model reach steady state. In humans, an extra free parameter was set for the oscillator equilibrium
889 position in the CR experiment to consider mean difference between FD and CR. This effect could not
890 be corrected in microarray processing directly as no RNA sampling point overlap between experiments,
891 but can be corrected with our model as habitual bedtime sleep are comparable between FD and CR.
892 Optimization was performed using the box-constrained PORT routines method (nIlminb) implemented
893 in the optimx/R package. Optimization was done by minimizing the Residual Sum of Square (RSS)
894 between the fit of the model and the expression value of the gene/probe analyzed. A penalization
895 procedure of the RSS was performed to avoid unstable fit in baseline. The maximal and minimal
896 position of the oscillator in the baseline were compared with the position of the oscillator in the 5 days
897  prior baseline (replicated baseline) at the corresponding time. The squared difference was added to
898  the RSS with a weight of 1000. We optimized our model for opposite coefficient sign between sleep
899  and wake and with a minimal 12h period of the natural frequency of our oscillator, to avoid fitting
900  oscillation frequencies too high with respect to gene expression sampling rate. We used multiple

901  starting values for the optimization procedure in an attempt not to reach local optima.
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902  Model solution

903  Once optimal parameters were found, we used the analytical solution to decompose the response into
904  the part of the response that was a result of the circadian drive and the part of the response that was
905  aresult of the sleep-wake drive, see the Supplementary Material for further details.

906  Model Statistics

907  Goodness of fit was estimated using Kendall’s tau ranked correlation between model fit and expression
908  values. Bayesian Information Criterion (BIC) of the model was calculated from the Negative log
909 likelihood (NLL), assuming that model residuals were independent and followed a Gaussian

910 distribution.

n
911 RSS = Z(Yi - )%
i=1
912 NLL = (E) * (log(Zrc) + log (@> + 1),
2 n
913 BIC = —2(—NLL) + klog(n).

914  Where n is the number of samples, y; the gene expression value at time-point i, and k the number of

915 free parameters of the model + 1 (the biased estimator of the error variance &z). For our model (H1):
916 k =7 for mouse dataset and k=8 for human dataset. For the flat model (Ho): k=2 for mouse dataset and
917 k=3 for human dataset.

918

919  PCA analysis

920 PCA analysis in mouse and human and projection of model fitted values were performed using R
921 package FactoMineR [72]. The ellipses were computed using 95% confidence interval of time-points
922 barycentre. In human, missing values were imputed using R package missMDA [73].

923

924  Cortex and liver time delay

925  To estimate local biological time from clock genes in mouse cortex and liver, we used the R package

926  TimeSignatR (https://github.com/braunr/TimeSignatR) from [60]. Baseline gene expression was used
927  totrain the elastic net, penalty parameter alpha and lambda were chosen using a leave-one-out cross
928  validation. Predicted values were obtained from gene expression after sleep deprivation and from
929 model fitted expression.

930 Using the same strategy, individual gene local biological time was estimated using fitted expression
931 and fitted expression rate in baseline. Expression and Expression rate were fitted to the cartesian
932 coordinate angle of a 24h clock using a bivariate linear model [60]. Genes were filtered for a minimal

933 R? value of the model linear model of 0.6.

32


https://github.com/braunr/TimeSignatR
https://doi.org/10.1101/2023.08.10.552614
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.10.552614; this version posted August 14, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

934

935 Code Availability

936 https://github.com/mxjan/SWDMr
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945  Figure legends

946  Figure 1: Manipulations of sleep-wake rhythms in mice and humans. (A) Sleep deprivation (SD) in
947 mice. Mean fraction of time-spent-awake per hour of recording time (blue line/area, n=12 mice) during
948  baseline (BSL; Days 1 and 2), 6h SD (pink square starting at t=48 on Day 3) and recovery (Days 3-5 and
949 10). A 2" batch of mice, undergoing the same experimental protocol, was used for tissue sampling of
950 cortex (blue) and liver (brown points; n=78 mice). Grey background represents the dark periods of the
951 12h:12h light-dark cycle. Note that the last 2 samples were taken 7 days after the SD. (B) Forced
952 Desynchrony (FD) in humans. Mean wake fraction (blue area, n=32) in participants that underwent FD
953 using 28h sleep-wake cycles. Blood samples (red points) were taken during a 28h day when participants
954  sleptin-phase and during a 28h day sleep occurred in anti-phase with their circadian melatonin profile.
955 Grey boxes represent scheduled sleep opportunities. (C) Constant routine (CR) experiments in humans.
956 Mean wake fraction (blue area, n=36) in participants that underwent a CR after a 7-day control (top
957 panel: ‘10h sleep’, i.e., 8.5h sleep/24h) and a restricted (bottom panel: ‘6h sleep’, i.e., 5.7h sleep/24h)
958  sleep-opportunity schedule. Blood samples (red points) were taken during the CRs. (D) Examples of
959  gene expression dynamics in cortex (blue), liver (brown), and blood (red symbols) with mean gene
960  expression (95% confidence interval) per time-point. Solid black lines connect time points, dashed grey
961 lines replicate baseline in mice (before SD) or in-phase dynamics in human. Details as in Panels A-C.

962 Figure 2: Modeling gene expression using a damped driven harmonic oscillator. (A) Schematic of
963 circadian view of generation of rhythmic gene expression (left) in which the SCN directly or indirectly
964  drives or entrains oscillations of gene expression generated by local circadian clocks (TTFL) in
965 peripheral cells. Sleep view (middle) separates circadian and sleep-wake related genes, each regulated
966 by different dynamics. The integrated view (right panel) considers each gene to be regulated to a
967  varying degree by systemic circadian and/or sleep-wake dependent influences which act as drives on
968  gene expression in the periphery. (B) lllustration of the damped driven harmonic oscillator model.
969 According to a gene’s intrinsic properties, two types of expression dynamics can be observed when
970  expression is removed from equilibrium and no drive is applied: an underdamped system oscillating
971  with a decaying amplitude (upper panels, hypothetical Gene A, damping ratio ¢ < 1) and an
972 overdamped system (bottom panels, Gene B, { > 1) where expression returns to equilibrium position
973  without oscillation according to exponential decaying function (red-dashed lines) with a time constant
974 1 determining the time it takes to recover. T depends on { and the natural frequency, wo. For each
975  gene, examples of two wp values are given: 0.35 and 0.13 [rad/h], illustrated in the upper and lower
976 row panels, respectively. External recurring driving factors are required to maintain gene expression
977 entrained and rhythmic (circadian drive in yellow, sleep-wake drive in purple; middle two panels). The
978 difference between wo and the frequency of the external drive determines the phase-lag (p-lag)
979 between drivee and response. Combing the responses to each drive generates the observed rhythm
980 in gene expression (right panels). Pink areas represent sleep deprivation. (C) Model fit for expression
981  of Clock in liver (left) and cortex (right panels). Circadian (yellow) and sleep-wake (purple) drives
982  applied on the model (bottom), circadian and sleep-wake responses to the drives giving the best fit
983 (middle), fitted expression in black with mean gene expression (95% confidence interval, upper panel).
984 Dashed grey lines replicate baseline. SWrc is the relative contribution of the sleep-wake response (see
985 Results).
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986  Figure 3: Model fits for the gene-expression examples in Figure 1D. Fitted dynamics (black line) of
987 cortical Homer1 expression follows almost exclusively the sleep-wake response (purple line) while
988  Bmall inthe liver the circadian response (yellow line). Bmall and Acot11 in cortex and NCOR1 in blood
989  follow a combination of a sleep-wake and circadian response. SWrc: Sleep-wake relative contribution.
990 Details as in Fig. 1D.

991 Figure 4: Model performance against alternative hypotheses. (A) Our circadian and sleep-wake driven
992  oscillator model (H1) versus 4 alternative models (Ha): i) a linear model with independent time-point
993 effect, ii) a sleep-wake driven oscillator only, iii) a circadian driven oscillator only, iv) a circadian
994  function with an additive effect of sleep-wake (‘masking’; see Results). ABIC (upper panels) of H; vs. Ha
995  for 1000 rhythmic genes and probes during baseline for blood (red), cortex (blue), and liver (brown).
996 Positive values represent a better fit for Hi, negative values a better fit for Ha. Values between -2 and
997 +2 can be considered as low evidence for either model. AKendall’s tau (lower panels) of Hy vs. Ha shows
998  goodness of fit between models. Negative values support Hi. (B) Detection of rhythmic genes in the
999  entire transcriptome. ABIC of H; versus the null hypothesis Ho of no rhythmic expression (y; = S +
1000 ). Genes and probes with a ABIC > 2 are considered to be sleep-wake and/or circadian driven resulting
1001 in their rhythmic expression under unperturbed and/or perturbed conditions in liver (top, brown),
1002 cortex (middle, blue), and blood (bottom, red). Right panels: goodness of fit (Kendall’s tau) for rhythmic
1003 genes in the three tissues. Boxplots depict Kendall’s tau between fitted values and observed value for
1004 rhythmic genes in liver, cortex, and blood.

1005 Figure 5: Principal component analysis (PCA) of the rhythmic transcriptomes. (A) PCA in the mouse
1006  cortex and (B) liver during baseline (BSL), sleep deprivation (SD), and recovery (REC), (C) in human
1007  blood during the Forced Desynchrony (FD) when sleeping ‘in-phase’ (left) and ‘anti-phase’ (right
1008 panels), and (D) in human blood during the Constant Routine (CR) after the 10h sleep (left) and 6h
1009 sleep opportunity (right panels). Variance explained by each PCin brackets. Projected model fits in PCA
1010  space during BSL and habitual bedtime as dashed lines, fitted expression during SD + REC, FD, and CR
1011 conditions as solid lines. Arrowheads point into the direction of the progression in time. Ellipses delimit
1012 95% confidence intervals of data acquired at each time point. Corresponding circadian (yellow) and
1013  sleep-wake (purple line) driven responses are plotted alongside the PC axes. Note double labels at time
1014 axes corresponding to the respective times in the experiment for the two conditions (see time courses
1015 below). The complete simulated time-course of the circadian and sleep-wake driven responses for PC1
1016  and -2 isillustrated underneath each panel for each of the experiments. Pink and grey boxes indicate
1017  the SD and dark periods, respectively, in mice; grey boxes for human experiments the scheduled sleep
1018  episodes.

1019 Figure 6: Relative contribution of circadian and sleep-wake driven responses to gene expression. (A)
1020  Relative sleep-wake response contribution (SWrc, see Results) versus damping ratio () for all rhythmic
1021  genes in cortex (blue), liver (brown), and blood (red dots). Black lines represent 2D gene density. (B)
1022  Venn diagrams of all rhythmic genes (left) and the 1425 rhythmic genes common among the three
1023 tissues: Sleep-wake driven (SWrc > 0.5, middle) and circadian driven (SWrc < 0.5, right panel) genes in
1024  mouse cortex and liver and human blood.

1025 Figure 7: Sleep deprivation (SD) changes timing of gene expression within and between tissues. (A)
1026  Sleep-wake response contribution (SWrc) for clock-gene expression in mouse cortex (blue) and liver
1027  (brown) and blood (red) in humans. In blood, mean SWrc was estimated from the probes of the same
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1028  clock genes. (B) Fitted and predicted local biological time in cortex and liver based on clock-gene
1029 expression. The tissue’s local time [expressed as zeitgeber time (ZT) in baseline; ZT0/24, -3, -6, -12, and
1030  -18] was fitted using baseline clock-gene expression with an elastic net model (see Results). Local time
1031 is then predicted for gene expression during SD (T51zr3, T54716) and subsequent recovery (REC, i.e.,
1032  T60z12, ZT667718, and T72z10). Projected fits based on our oscillator model as dashed (baseline) and solid
1033 (response to SD) lines. Lower graph depicts the cortex-liver tissue differences in predicted ZT. (C)
1034 Estimated relative phase and amplitude of Bmall from expression level and expression rate of the
1035 model. Baseline points T24/T487t0, T30z1s, T3677112, and T42z115 are fitted to a 24h clock. Time on the
1036  horixontal-axes are given both in time-of-experiment and ZT (in parentheses). (D) Relative phase and
1037 amplitude individually fitted (upper row panel) and predicted (middle/lower panel) for the expression
1038  of all rhythmic genes in cortex (left, blue dots) and liver (right, brown dots). Larger black dots represent
1039 ‘point-of-gravity’ of level and rate of expression of all genes.

1040 Figure 8: Responses to recovery sleep. (A) Effect-size of differential gene expression at the end of
1041  sleep-deprivation (SD; ZT6sp vs. ZT6 in baseline) versus the model-derived recovery time-constant tin
1042 mouse liver (brown) and cortex (blue) for all rhythmic genes with a sleep-wake driven contribution
1043 (SWrc > 0.25). Relative distributions for T and effect size plotted along their respective axes. (B) Left
1044  panel: Mfsd4a expression (blue bars, 95% ci), its model fit (solid black line; dotted line replots baseline
1045  fit), and sleep-wake distribution (purple area; upper graph), with recovery vs. baseline effect-size
1046  (black line) after SD and hourly values of sleep gain during recovery (purple area; lower graph). Center
1047  panels: Effect-size (black lines) when 0-, 6-, 12-, or 18h of the actual recovery sleep recording (as
1048 opposed to baseline sleep) was used for predicting gene expression after SD. Purple area indicates
1049 sleep gain included in each of the 4 simulations. Dashed red lines are the exponential parts of the
1050  oscillator solution when using only baseline sleep after SD (Oh recovery sleep; also see Fig. 2B - left
1051 panels). Blue vertical line marks the time-point at which the exponential part reaches an effect size of
1052 +1.0 or -1.0, which in subsequent analyses is considered the time at which gene expression has
1053 recovered. Right panels: Time point of gene recovery when including 0- to 42h of recovery sleep. (C)
1054  as B but for Pagr8. (D) Histogram of gene recovery time-points for all rhythmic genes with a SWrc >
1055  0.25 in cortex (upper, blue) and liver (lower panel, brown) using the actual (42h) recovery sleep. (E)
1056  Gain in gene recovery time for all genes in D in cortex (left) and liver (right). Analyses as in right-hand
1057 panels of B and C but here the differences from one time-point to its preceding time-point are plotted.
1058  As more sleep recovery recording was included in the simulation, genes either advanced (green) or
1059  delayed (red) their recovery time. Data were filtered to show only genes with a minimum of 1h advance
1060  ordelay. (F) Effect size for differential PORCN expression (FD vs. baseline) for the expression simulated
1061  during the entire FD protocol and for 10 repetitions of baseline sleep-wake patterns under 24h days
1062  after the second in-phase condition. Vertical blue line indicates the time when maximum effect size
1063  was reached (Time = 177h). (G) Time of maximum effect size modeled in the FD protocol for all
1064  rhythmic genes.
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FIGURE 8
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