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Abstract 13 

Transcriptome studies aim at gaining insight into the molecular pathways underlying biological 14 

processes. Analyses of gene-expression dynamics in research on circadian rhythms and sleep 15 

homeostasis describe these two processes independently, using separate models such as sinusoidal 16 

oscillations and exponential saturating functions. Rhythmically expressed genes are, however, 17 

influenced by both processes. We therefore implemented a driven, damped harmonic oscillator model 18 

which can accommodate both types of dynamics by varying the degree of damping. This makes it 19 

possible to estimate the contribution of circadian and sleep-wake driven influences on the expression 20 

of a gene within the framework of a single model. We applied the model to cortex, liver, and blood 21 

data obtained in mice and humans. The model reliably captured a wide range of rhythmic dynamics 22 

under various experimental conditions, including the long-term amplitude reduction of cortical clock-23 

gene rhythms observed after sleep deprivation. Cortical gene expression was generally influenced 24 

more by sleep-wake driven than circadian factors, while the opposite was observed in liver and blood. 25 

Importantly, the model suggested that sleep-wake state can alter gene expression with a delayed, 26 

long-lasting response not previously considered. Our model further predicted that, perhaps 27 

paradoxically, the gain in sleep time after sleep deprivation, delayed re-establishing baseline 28 

expression rhythms of intrinsically oscillatory transcripts indicating that similar to insufficient sleep, 29 

also excess sleep can impact rhythmic gene expression. Because of the tissue- and gene-specific 30 

responses, sleep deprivation led to a profound intra- and inter-tissue desynchronization which in the 31 

cortex lasted well beyond phenotypic sleep-wake recovery. The results demonstrate that analyzing 32 

rhythmic gene expression must take the complex interactions between circadian and sleep-wake 33 

influences into account. The model is a versatile tool with a low number of free parameters to fit and 34 

predict gene expression under a variety of conditions relevant to society.  35 
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Introduction 37 

Throughout the brain and body many transcripts exhibit 24h rhythms in gene expression levels [1-3]. 38 

These transcriptome rhythms are thought to emerge from cell-autonomous oscillations generated by 39 

clock genes engaged in negative transcriptional/translational feedback loops (TTFLs) [4]. The circadian 40 

TTFL results in rhythmic expression not only of the clock genes themselves but also that of the 41 

numerous other genes they target, many of which are transcription factors thereby setting off daily 42 

recurring cascades of transcriptional events comprising the rhythmic transcriptome. Within and among 43 

tissue(s) phase coherence is maintained by systemic cues produced by the central circadian clock 44 

located in the suprachiasmatic nuclei (SCN) of the hypothalamus, which act as an internal zeitgeber 45 

entraining brain and body TTFLs [5, 6]. Transcriptome data have contributed to our current detailed 46 

understanding of the molecular architecture of the circadian clock and its tissue-specific functions [7, 47 

8]. 48 

Transcriptome studies have also been used in sleep research, in particular to uncover genes and gene 49 

pathways implicated in the processes underlying or driven by changes in sleep pressure, which 50 

increases while awake and decreases when asleep. These studies have primarily focused on the brain 51 

of model species, mainly rats and mice, and used sleep deprivation to experimentally increase sleep 52 

pressure. The results showed that sleep-wake states have profound effects on the brain transcriptome 53 

[9-12]. By selecting for transcripts that were similarly affected by spontaneous and experimentally 54 

induced wakefulness, corrected for the increase in corticosterone levels associated with depriving mice 55 

of sleep, we arrived at a short-list of 78 brain transcripts that reliably follow the time course of sleep-56 

wake prevalence both during undisturbed baseline conditions and during sleep deprivation [13]. This 57 

short-list features many activity-induced immediately early genes (IEGs) and we observed that their 58 

sleep-wake driven dynamics follow exponential saturating functions with time constants similar to 59 

those describing the dynamics of delta power [14], a widely used EEG-derived measure gauging sleep 60 

pressure. Examples of such transcripts are Arc and Homer1a, which both play a role in homeostatic 61 

down-scaling of synapses, a process considered as one of sleep’s major functions [15-18]. Interestingly, 62 

the genes that change their transcription with sleep deprivation include a number of clock-genes [12, 63 

19, 20] which, combined with other observations, suggest a considerable molecular crosstalk between 64 

circadian and sleep-wake driven processes in the brain [21]. More recently we found that the brain 65 

expression of the core clock-genes Npas2 and Clock followed dynamics similar to that of the sleep-66 

wake driven IEGs and that rhythm amplitudes of all but one of the remaining clock genes showed a 67 

long-term reduction following a single, short sleep deprivation [14]. 68 
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Since under undisturbed conditions the sleep-wake distribution is circadian and because sleep-wake 69 

behavior drives the expression of numerous transcripts, many of the genes found rhythmic in circadian 70 

transcriptome studies, might oscillate as a consequence of the daily changes in the prevalence of sleep-71 

wake states, and not as a direct consequence of the circadian TTFL within a given tissue. This idea was 72 

tested by controlling the time-spent-awake prior to the sampling of cortical tissues at different times 73 

of the day. We and others found that under these conditions the majority of rhythmically expressed 74 

genes (73-81%) no longer oscillate [15, 22]. Similarly, scheduling sleep in anti-phase with the time it 75 

normally occurs in a forced desynchrony protocol, flattened the rhythm of the blood transcriptome in 76 

humans, including that of several clock genes [23]. 77 

From the above it is clear that sleep-wake driven factors contribute substantially to the circadian 78 

transcriptome phenotype in brain and body tissues peripheral to the SCN. Determining which genes 79 

and gene pathways are rhythmic as a result of changes in sleep-wake behavior or due to circadian 80 

systemic cues, is therefore of interest and of importance when, e.g., assessing the factors underlying 81 

the long-term health consequences of circadian misalignment that have been attributed mainly to 82 

circadian factors [24, 25]. In a first effort to achieve this, we previously categorized cortical transcripts 83 

as either sleep-wake driven or circadian driven using the concepts of the two-process model of sleep 84 

regulation [14], a model which stipulates that sleep is regulated by a circadian process (Process C) of 85 

sinusoidal shape that interacts with a sleep-wake driven process (Process S) modelled after the 86 

dynamics of EEG delta power [26]. In that study [14], we analyzed cortical samples taken over the 87 

course of 3 days, i.e., under baseline conditions and during and after a 6h sleep deprivation. The results 88 

confirmed that most (63%) of the cortical transcripts rhythmic under undisturbed baseline conditions 89 

were categorized as sleep-wake driven when considering the entire 3-day time course. It is, however, 90 

unlikely that the rhythmic expression of a given gene is influenced only by either one of the two 91 

processes and categorizing genes as such is thus likely to be an oversimplification. Moreover, this 92 

approach required model selection among a set of models with different number of free parameters, 93 

which is not without issues, and only one type of sleep-wake driven dynamic (i.e., ‘Process S’ type) was 94 

considered. Finally, the marked long-term consequences of sleep deprivation on expression dynamics 95 

we discovered in that study, especially that of most clock genes, could not be captured by any of the 96 

models unless circadian amplitude after the sleep deprivation was altered in the model. 97 

Here we implement a driven, damped harmonic oscillator model to estimate the separate 98 

contributions of sleep-wake and circadian processes to the rhythmic transcriptome. In this model 99 

circadian systemic cues and sleep-wake driven influences are considered simultaneously as driving 100 

factors that effectively accelerate or decelerate peripheral oscillations in gene expression. Importantly, 101 
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by changing the damping ratio, the model can capture both the dynamics of intrinsically oscillating 102 

transcripts (i.e., underdamped in the model) and of overdamped transcripts for which the sleep-wake 103 

response approximate exponential saturating functions of Process-S. We applied the model to 104 

transcriptome data obtained in mouse cortex and liver tissue, and in human blood and successfully 105 

captured the wide range of transcription dynamics observed under conditions of sleep deprivation, 106 

forced desynchrony, and a constant routine following 7 days of sleep restriction [14, 23, 27]. The 107 

mouse data were used to simulate the effects of sleep deprivation and of recovery sleep on gene 108 

expression levels, in particular the time it took for RNA levels to return to baseline, and to estimate 109 

within and between tissue desynchronization in gene expression after sleep deprivation. The human 110 

data were used to predict transcriptome dynamics during an entire forced desynchrony protocol and 111 

during sleep restriction conditions and subsequent constant routine. The results give new insights into 112 

the complex interaction between circadian and sleep-wake driven influences on gene expression that 113 

might also be relevant for other levels of organization of the rhythmic organism. 114 

 115 

Results & Discussion 116 

Data sets used to disentangle circadian and sleep-wake dependent influences 117 

Under undisturbed, entrained conditions sleep-wake dependent and circadian contributions to 118 

rhythmic gene expression are difficult to disentangle as both factors fluctuate in synchrony with stable 119 

phase relationships. To quantify their respective contributions, the timing of sleep (and wakefulness) 120 

relative to circadian phase needs therefore to be altered experimentally. In the first dataset used for 121 

the current analyses, gene expression in cortex and liver were quantified at 18 time points in mice 122 

before (‘baseline’ or ’BSL’), during, and after (‘recovery’ or ‘REC’) a 6h sleep deprivation (SD; Fig. 1A). 123 

Sleep-wake behavior was recorded continuously in a separate cohort of mice undergoing the same 124 

experimental protocol. The SD kept mice awake at a time-of-day animals are normally mostly asleep, 125 

i.e., the first half of the light period (ZT0-6; Fig. 1A). The sleep-wake data and cortical transcriptomes 126 

were taken from our published and publicly available data [12, 14, 28], while we newly acquired liver 127 

RNA-seq data taken from the same mice to assess tissue-specificity of gene-expression dynamics. A 128 

second dataset, also publicly available, consists of 2 published experiments quantifying the blood 129 

transcriptome in humans using micro-arrays [23, 27]. In the first experiment, participants completed a 130 

forced-desynchrony (FD) protocol in which a 28h sleep-wake cycle (and associated dim-light dark cycle) 131 

was imposed causing the circadian rhythm to ‘free-run’ at its intrinsic, close-to-24h period. Blood was 132 

sampled at 4h intervals during a 28h day when sleep was scheduled at the circadian phase it normally 133 
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occurs during entrained conditions (‘in-phase’) and during a 28h day when sleep occurred in anti-phase 134 

with the circadian cycle (‘anti-phase’; Fig. 1B). In the second experiment, participants were given sleep 135 

opportunities of either 10h (‘control sleep’) or 6h (‘restricted sleep’) during which they obtained 8.5 136 

and 5.7h of sleep, respectively, for 7 consecutive days preceding a constant routine (CR) during which 137 

participants were kept awake for ~40h with blood samples taken every 3h (Fig. 1C). During the CR, 138 

light conditions, activity, and food intake were strictly controlled. Before the FD and CR experiments, 139 

sleep was recorded at habitual bedtime (‘baseline’; 7.5h of sleep), which we used as the sleep-wake 140 

distribution under ‘steady-state’ conditions. While the FD and CR experiments affected timing and 141 

duration of sleep-wake behavior, circadian phase, assessed by blood melatonin and cortisol rhythms, 142 

remained remarkably unperturbed [23, 29]. This is consistent with analyses of clock-gene rhythms in 143 

the mouse SCN which indicated that the central circadian pacemaker is not much affected by changes 144 

in the sleep-wake distribution [30-33], although SD has been shown to reduce neuronal activity within 145 

the SCN [34]. Furthermore, SD does not alter the phase of circadian activity patterns in mice [35] (but 146 

see [36]). 147 

Rhythmic gene expression can follow a dynamic that could be regarded as strictly sleep-wake driven 148 

or as strictly circadian driven, illustrated by Homer1 expression in cortex and Bmal1 (aka Arntl) 149 

expression in liver, respectively. Homer1 expression decreases during the light phase when mice are 150 

mostly asleep, increases during the dark when mice are mostly awake, further increases during SD, 151 

and quickly (within 18h) re-assumes baseline dynamics during recovery (Fig. 1D), with little circadian 152 

influence [15]. In contrast, liver Bmal1 expression oscillates in a regular rhythmic pattern throughout 153 

the experiment largely unperturbed by SD (Fig. 1D), consistent with Bmal1 being a core circadian clock 154 

gene [37]. Rhythmically expressed genes can, however, show dynamics that do not follow such simple 155 

rules [14]. For example, while we find that during baseline the time course of cortical and liver 156 

expression of Bmal1 are similar, SD leads to a substantial and long-lasting reduction in rhythm 157 

amplitude during recovery in cortex but not in liver (Fig. 1D), demonstrating that, in addition to 158 

circadian factors, sleep-wake state affects Bmal1’s expression in the former tissue. Furthermore, this 159 

amplitude reduction outlasts the effects of SD on recovery sleep [14], indicating that cortical Bmal1 160 

expression does not seem to simply follow the sleep-wake distribution. Another example is Acot11, a 161 

gene encoding an enzyme involved in the homeostatic regulation of free fatty-acids [38] and of NREM 162 

sleep duration [12]. Acot11 expression in the cortex increases with SD and also its baseline time course 163 

seems consistent with that of a sleep-wake driven gene as it decreases during the light and increases 164 

during the dark when animals are predominantly asleep and awake, respectively. Yet, subsequent to 165 

SD this relationship appears to invert, as sleep during initial recovery (ZT6-12) is now associated with 166 
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a strong increase in Acot11 expression leading to sustained high levels during the subsequent dark 167 

phase (Fig. 1D). A last example is the dynamics of NCOR1 expression, which encodes a protein affecting 168 

the clock-gene circuitry by acting as co-repressor to the clock-gene REVERBα (NR1D1) and by activating 169 

HDAC3 [39-41]. During the FD, blood NCOR1 expression appears rhythmic only when sleep occurs in 170 

anti-phase with the circadian rhythm (Fig. 1D), which might suggest that under normal, in-phase 171 

conditions, the sleep-dependent decrease in NCOR1 expression is opposed by a circadian-dependent 172 

increase. However, such a scenario cannot easily explain the important downregulation of NCOR1 173 

expression with extended wakefulness observed during the two CRs in the second experiment (Fig. 174 

1D). 175 

These examples illustrate that rhythmic gene expression results from an often complex interaction 176 

between the responses to circadian and sleep-wake dependent drives that seem to greatly differ 177 

among genes and tissues. It also illustrates the difficulty to reconcile a gene’s dynamics under different 178 

experimental protocols. Quantifying and comparing the relative importance of these factors in driving 179 

the rhythmic transcriptome requires a novel modeling approach integrating sleep-wake and circadian 180 

dependent influences on gene expression. 181 

 182 

Rhythmic gene expression as a driven, damped harmonic oscillator  183 

Transcriptome rhythms measured in peripheral organs are thought to arise from transcriptional-184 

translations feedback loops (TTFL) made up of the core circadian clock genes [4]. According to this 185 

scenario, local tissue rhythms are kept in phase with each other and with the light-dark cycle by signals 186 

generated by the SCN which take the role of an internal zeitgeber. At the same time, the SCN drive 187 

rhythms in overt behaviors such as sleep and wakefulness [Fig. 2A – left [42, 43]]. Although 188 

perturbations of sleep are known to impact gene expression, including that of clock genes, only a hand-189 

full of studies have considered the influence of the sleep-wake distribution on the rhythmic 190 

transcriptome [9, 14, 23, 27]. Most studies only examine the immediate effect of SD or assess the 191 

interaction of sleep-wake and circadian driven processes using experimental protocols such as 192 

‘around-the-clock’ SDs [15, 22]. In such protocols it remains, however, unclear whether residual 193 

rhythmicity is caused by circadian factors, including time-of-day differences in the response to SD, or 194 

by differences in sleep-wake history prior to the SDs. Similarly, modeling sleep-wake driven dynamics 195 

using exponential saturating functions following the example of the dynamics of EEG delta power [14, 196 

44] does not include a circadian component, and interactions between circadian and sleep-wake 197 

related factors, beyond simple additive effects, have not been not considered (Fig 2A - middle). The 198 
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model we propose allows for such interaction and provides a framework to quantify the relative 199 

contribution of circadian and sleep-wake dependent factors on rhythmically expressed genes. These 200 

genes can be modeled as intrinsically rhythmic, i.e., because they are closely associated with the 201 

circadian TTFL, or they can appear rhythmic because they follow circadian and/or sleep-wake 202 

dependent drives but, in the absence of such recurring drives, do not oscillate (Fig. 2A - right). We have 203 

used earlier implementations of this modeling approach to simulate the effects of sleep-wake state on 204 

Per2 mRNA and protein levels [45, 46]. 205 

The measured level of the expression of a gene at a given time point reflects the net result of mRNA 206 

synthesis and degradation. With our data we cannot assess whether changes in gene expression 207 

resulted from changes in production, degradation, or both. In the following we nevertheless use the 208 

terms synthesis and degradation when referring to net increase and decrease in mRNA levels, 209 

respectively. We propose a simple framework in which we suppose that the level of mRNA of a gene 210 

is X(t) where t is time. We suppose that the rate of synthesis of X(t) will depend on intra-tissue factors 211 

such as the levels and activity of transcription factors, temperature, and metabolites affecting mRNA 212 

regulation, which we group together in a single ‘tissue environment’ variable Y(t). We suppose the rate 213 

of degradation depends on the level of X(t). In a simplest (linear) approximation, the rate of change of 214 

mRNA may be written as  215 

 216 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= α 𝑌𝑌 −γ𝑋𝑋 Eq. 1 

 217 

where α describes the effect of the tissue environment on the synthesis rate of X(t) and γ is the 218 

degradation rate per unit X(t). We assume that the tissue environment variable is affected by external 219 

factors 𝐹𝐹(𝑡𝑡) such as the circadian and sleep-wake drives and that there is feedback between the gene 220 

of interest and the tissue environment so that  221 

 222 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −β 𝑋𝑋 + 𝐹𝐹(𝑡𝑡) Eq. 2 

 223 
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where β describes the strength of the feedback between the gene of interest and the tissue 224 

environment. 225 

We let 𝑋𝑋(𝑡𝑡) = 𝑋𝑋𝑏𝑏 + 𝑥𝑥(𝑡𝑡), Y(𝑡𝑡) = 𝑌𝑌𝑏𝑏 + 𝑦𝑦(𝑡𝑡) and, F(𝑡𝑡) = 𝐹𝐹𝑏𝑏 + 𝑓𝑓(𝑡𝑡) where 𝑋𝑋𝑏𝑏, 𝑌𝑌𝑏𝑏 , and 𝐹𝐹𝑏𝑏 are fixed 226 

baseline values that satisfy equations (Eq. 1) and (Eq. 2) when 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0. Then substituting for X(t) 227 

and Y(t) in equations (Eq. 1) and (Eq. 2), differentiating (Eq. 1) with respect to time and substituting in 228 

for 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 from equation (Eq. 2) leads to the equation for a damped harmonic oscillator (Eq. 3) (see the 229 

Supplementary Material for further details). 230 

 231 

 𝑑𝑑2𝑥𝑥
𝑑𝑑𝑡𝑡2

+ γ
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝜔𝜔0
2𝑥𝑥 = f(𝑡𝑡) Eq. 3 

 232 

where 𝜔𝜔0
2 = αβ and f(𝑡𝑡) =  α 𝑓𝑓(𝑡𝑡). In this equation, 𝑥𝑥(𝑡𝑡), represents the level of mRNA of a gene 233 

quantified as normalized counts from RNA-sequencing (in log2 counts per million or CPM) for the 234 

mouse tissues or from Affymetrix microarrays (in log2 probe intensities) for human blood samples. The 235 

term 𝜔𝜔0
2𝑥𝑥 arises from the feedback between the gene and its environment and could be viewed as, 236 

e.g., an auto-inhibition through negative feedback [47], as is the case for the expression of clock genes 237 

that comprise the circadian TTFL. A large value of 𝜔𝜔0
2  translates into a strong negative feedback 238 

controlling gene expression. In contrast, a weak negative feedback will result in gene expression 239 

rhythms being driven mostly by changes in external factors. Another intrinsic factor determining gene 240 

expression dynamics is the degradation constant, γ, which opposes changes in gene expression and 241 

introduces a time delay in response to external driving factors.  242 

The model can capture both intrinsically oscillatory and non-oscillatory genes. Using the standard 243 

terminology of simple harmonic oscillators in the absence of time dependent external driving factors 244 

(f(𝑡𝑡) = 0), when the damping ratio, 𝜁𝜁 =  γ/2𝜔𝜔0 < 1;, the oscillator is said to be underdamped. When 245 

released from a position away from equilibrium, the expression of the hypothetical gene, Gene A, will 246 

oscillate around equilibrium with an amplitude that decreases on a timescale determined by damping 247 

constant γ (Fig. 2B - top two rows). However, when 𝜁𝜁 > 1 (i.e., overdamped), gene expression will not 248 

oscillate and reverts to the equilibrium directly (hypothetical Gene B; Fig. 2B - bottom two rows). For 249 

underdamped genes, the time required for the expression to return to equilibrium (𝜏𝜏) is determined 250 

by γ, while for overdamped genes it depends on γ and 𝜔𝜔0 (Eq. 4; Fig. 2B - red line). 251 
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 252 

 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 [𝜏𝜏] 𝑡𝑡𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ≈

⎩
⎨

⎧−
1

−γ
2 +  �(γ2 )2- ω0

2 
,  𝜁𝜁 > 1

2/γ                  ,  𝜁𝜁 < 1

 
Eq. 4 

 253 

Recurring external driving factors (f(𝑡𝑡) in Eq. 3) are needed to assure phase coherence of the daily 254 

transcriptome changes among and within tissues and, if γ > 0, to maintain rhythmicity. Such external 255 

factors can either follow continuous oscillations (Fig. 2B - 2nd column) originating, for example, from 256 

the SCN or result from discrete physiological or behavioral events such as being (kept) awake or asleep 257 

(Fig. 2B – 3rd column), which in this schematic includes a SD (pink bars). We refer to these two types 258 

of driving factors as ‘circadian driven factor’ (𝑓𝑓𝐶𝐶(𝑡𝑡)) and ‘sleep-wake driven factor’ (𝑓𝑓𝑆𝑆𝑆𝑆(𝑡𝑡)), 259 

respectively. In the model we base 𝑓𝑓𝑆𝑆𝑆𝑆 on the fraction of sleep (𝑆𝑆(𝑡𝑡); i.e., NREM + REM sleep) and 260 

wakefulness (𝑊𝑊(𝑡𝑡)), measured within a given time interval, t, multiplied by their respective 261 

coefficients, 𝛽𝛽𝑠𝑠  and 𝛽𝛽𝑤𝑤  (Eq. 5, see Methods). The circadian drive, 𝑓𝑓𝐶𝐶(𝑡𝑡), is modeled as a sinewave with 262 

a 24h period and a free phase and amplitude (𝜑𝜑 and 𝐴𝐴; Eq. 5). 263 

 
𝑓𝑓𝑆𝑆𝑆𝑆(𝑡𝑡) =  𝛽𝛽𝑤𝑤𝑊𝑊(𝑡𝑡) +  𝛽𝛽𝑠𝑠 𝑆𝑆(𝑡𝑡) 

𝑓𝑓𝑐𝑐(𝑡𝑡) =  𝐴𝐴 sin(2𝜋𝜋
24 𝑡𝑡 + 𝜑𝜑)

 Eq. 5 

 264 

Together these two factors affect the rhythmic expression of a gene by increasing or decreasing its 265 

acceleration i.e. the rate of change of its synthesis rate.  266 

The combined effect of the two driving factors on the oscillator can be mathematically decomposed 267 

into the responses to either factor (see the Supplementary material). Summing the separate 268 

contributions again reconstructs the gene-expression dynamics fitted by the model (Fig. 2B - right 269 

column). In the Figure 2B schematic the relative contributions of the two driving factors (and their 270 

respective responses) to the expression dynamics of Genes A and B are similar in magnitude prior to 271 

SD, yet because of their different intrinsic properties, the response to the same sleep-wake 272 

perturbation can considerably differ. Besides ζ, the response also depends on the phase-lag between 273 

the oscillator and the drive which is determined by the frequency ratio (𝑟𝑟 =  𝜔𝜔/𝜔𝜔0) between the 274 

frequency of the drive (𝜔𝜔 = 2𝜋𝜋
24

) and the natural frequency (𝜔𝜔0) (Eq. 3). If 𝑟𝑟 = 1, the phase-lag is 𝜋𝜋
2

, and 275 

the oscillator is said to be in resonance. If 𝑟𝑟 ≫ 1, the phase-lag increases and an inertia in the response 276 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 14, 2023. ; https://doi.org/10.1101/2023.08.10.552614doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.10.552614
http://creativecommons.org/licenses/by/4.0/


11 

 

of the oscillator is observed such that the rate of gene expression will only slowly change after a change 277 

in the external drive. In contrast, when 𝑟𝑟 ≪  1, the phase-lag decreases, causing the rate of gene 278 

expression to change already before the external driving factors can exert their influence, because of 279 

the feedback generated by the system.  280 

 281 

 𝜑𝜑 − 𝑙𝑙𝑙𝑙𝑙𝑙 = �
arctan �

2𝜁𝜁𝑟𝑟
1− 𝑟𝑟2

� +  𝜋𝜋, 𝑟𝑟 <  1 

arctan �
2𝜁𝜁𝑟𝑟

1− 𝑟𝑟2
� ,                 𝑟𝑟 ≥  1 

 
Eq. 6 

 282 

With different contributions from the two external driving factors and different intrinsic parameters, 283 

the model can capture a large variety of dynamics (Fig. 2B - right column).  284 

The parameters γ, 𝜔𝜔0, 𝛽𝛽𝑤𝑤 ,𝛽𝛽𝑠𝑠,𝐴𝐴, and 𝜑𝜑 of the model were estimated by fitting gene expression in 285 

mouse cortex, liver and human blood (see Methods). The parameters were estimated independently 286 

for each gene and tissue (see Supplementary Table 1). While the model fitted gene expression at the 287 

time points the tissues were sampled, with the optimized parameters the model was then used to 288 

predict the entire time-course when sleep was recorded, including for example the habitual bedtime 289 

(BSL) recording prior to the FD protocol as well as all days during that protocol. 290 

Figure 2C illustrates the responses to the two driving factors the model estimated for the expression 291 

dynamics of Clock with strikingly different results in the two tissues. As for Bmal1 (Fig. 1D), Clock 292 

expression in the liver displays a sinewave oscillation unperturbed by SD. In contrast, cortical Clock 293 

expression decreased when animals were asleep, increased when awake spontaneously and during SD 294 

(Fig. 2C). Although the model fitted the Clock expression dynamics equally well in the two tissues 295 

(Kendall’s τ = 0.56 and 0.73 in cortex and liver, respectively) the damping ratio greatly differed (ζ = 296 

0.79 and 0.06, respectively). Of note, we used Kendall’s τ as an estimate of goodness of fit for time 297 

series [48] because R2 is inadequate for nonlinear regression [49]. In liver, 𝑓𝑓𝐶𝐶 and its response was 298 

much stronger than that of 𝑓𝑓𝑆𝑆𝑆𝑆 while the opposite was observed in the cortex where Clock dynamics 299 

resembled that of a sleep-wake driven gene such as Homer1 (Fig. 1B) [14]. We quantified the relative 300 

contribution of the two drives by calculating a SW-response contribution (SWrc) metric as follows: the 301 

peak-to-trough amplitude of the response to 𝑓𝑓𝑆𝑆𝑆𝑆 (𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆) in baseline was expressed as a fraction of the 302 

peak-to-trough amplitude of the summed response to the 2 forces (𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 +  𝐴𝐴𝐶𝐶𝐶𝐶; Eq. 7). SWrc can vary 303 
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between 0 and 1 with 0 indicating that the summed response is entirely due to 𝑓𝑓𝐶𝐶 , 1 to 𝑓𝑓𝑆𝑆𝑆𝑆, and 0.5 304 

indicating equal contributions. 305 

 306 

 
SW response contribution [SWrc] = 𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆

𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆+ 𝐴𝐴𝐶𝐶𝐶𝐶 
 Eq. 7 

 307 

We determined this fraction under undisturbed baseline conditions because SWrc depends on the 308 

sleep-wake distribution and thus will be larger during, e.g., SD. For the expression of Clock, SWrc in 309 

liver was 0.20 and in cortex 0.84 (Fig. 2C), reflecting well the circadian and sleep-wake driven nature 310 

of the dynamics in the two respective tissues, comparable to SWrc values obtained for Bmal1 311 

expression in liver (0.10) and Homer1 in cortex (0.83; Fig. 3). 312 

It is important to note that i) with the terms circadian and sleep-wake driven we here refer only to the 313 

type of drive the expression of a particular gene responds to and not whether the gene can intrinsically 314 

display rhythms or not (i.e., is over- or underdamped), ii) the oscillator’s response does not only 315 

depend on the sign and magnitude of the exerted drives and the gene’s intrinsic properties (i.e., 𝜔𝜔0 316 

and γ), but also on the state of the oscillator, such as the expression level and the rate at which it 317 

changes at the time the drive is applied, and iii) although the model can easily differentiate genes as 318 

being over- or underdamped when their expression responds to the sleep-wake distribution, purely 319 

circadian driven genes that are under- or overdamped will display indistinguishable dynamics (Fig 2B - 320 

2nd column panels in orange). Assessing this would require experimentally changing the magnitude of 321 

the circadian drive. 322 

Our model not only reliably captured straightforward gene expression dynamics but also less 323 

predictable scenarios. In the simplest scenario, the rhythmic expression of a ‘pure’ sleep-wake driven 324 

gene will tightly follow the sleep-wake distribution, independent of circadian phase (or time-of-day), 325 

and the gene will be intrinsically overdamped (non-oscillatory, ζ > 1), together resulting in dynamics 326 

approximating those following exponential functions such as observed for many immediate-early 327 

genes [IEGs [14]], including Homer1 (Fig. 3), and for EEG delta power (Fig. S1, see also Supplement 328 

text). On the other hand, the expression of a ‘pure’ circadian-driven gene will continue oscillating 329 

because it is intrinsically underdamped (oscillatory; but see comment in previous paragraph) and 330 

responds only to circadian drives (i.e., with a low SWrc) such that amplitude and phase are unaffected 331 

by changes in sleep-wake state as was observed for Bmal1 and Clock in liver (Fig. 3, Fig. 2C). The model 332 
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established that for the 3 remaining genes highlighted in Figure 1 the sleep-wake and circadian drives 333 

contributed approximately equally to their expression dynamics (SWrc: 0.49-0.69). Yet, because of 334 

their different intrinsic properties (Table 1), expression dynamics responded very differently to the 335 

drives applied. Wakefulness was found to apply a positive drive accelerating cortical Bmal1 expression. 336 

Nevertheless, its expression did not increase during SD because the natural frequency is close to the 337 

baseline sleep-wake frequency (𝜔𝜔0 = 0.21 and 0.26, respectively) and thus the sleep-wake response 338 

is close to Bmal1‘s maximum amplitude, and because the circadian response decreases during the SD. 339 

The model found that the prolonged amplitude reduction of Bmal1’s oscillation in the cortex after SD 340 

resulted from a combination of a low damping constant (γ), which increased the time to return to 341 

equilibrium (𝜏𝜏 = 20ℎ, Eq. 4), and the reduction in time-spent-awake during the recovery dark period, 342 

which reduced the normal increase in gene expression rate at this time-of-day. Wakefulness also 343 

accelerated the rate of cortical Acot11 expression (Fig. 3). The model found that the peculiar, 344 

prolonged increase in Acot11 expression during recovery sleep was due to a weak negative feedback 345 

(𝜔𝜔0
2) and thus a long phase-lag between drive and response. This inertia to the wake drive during SD 346 

was strong as it would have required 2h of continuous sleep to counter it and for sleep-wake response 347 

(blue line) to start decreasing. In addition to this inertia, the interaction between the circadian and 348 

sleep-wake responses maintained a high expression for 9h after SD, further delaying a reduction of 349 

Acot11 expression. In contrast to the two previous examples, wakefulness decelerated the rate of 350 

NCOR1 expressing in human blood. The model suggested a weak negative feedback to underly the 351 

continued decrease in NCOR1 expression for the entire duration of both CRs. This result highlights that 352 

the contribution of the sleep-wake response and the circadian response depend on the experimental 353 

condition: in baseline the two contributions were similar (SWrc = 0.59) but in anti-phase thereby 354 

flattening gene expression while during the CRs, when subjects are kept awake for 40h, the sleep-wake 355 

contribution becomes larger relative to the circadian contribution (SWrc = 0.90 during CR). These 356 

examples also underscore that a gene’s expression can appear rhythmic for a variety of reasons which 357 

can greatly differ according to tissue. Moreover, the circadian and sleep-wake driven influences on the 358 

expression of some genes can be revealed only during longer-term sleep disruptions and would have 359 

gone unnoticed under undisturbed conditions. Our strategy importantly differs (and captures other 360 

genes) from simply assessing differential expression immediately after the SD, which has been used to 361 

categorize a gene as sleep-wake driven (Fig. S2). Finally, with these examples the model revealed that 362 

sleep-wake driven responses can importantly deviate from the dynamics following exponential 363 

saturating functions that are typically associated with sleep-wake driven responses. 364 

 365 
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  Homer1 Bmal1 Acot11 NCOR1 Clock 

  Cortex Liver Cortex Cortex Blood Liver Cortex 

O
pt

im
iz

ed
 p

ar
am

et
er

s 

γ 1.68 0.12 0.10 0.18 0.10 0.03 0.42 

𝝎𝝎𝟎𝟎 0.52 0.19 0.21 0.14 0.07 0.22 0.27 

𝜷𝜷𝒘𝒘 0.450 0.020 0.015 0.013 -0.003 0.008 0.024 

𝜷𝜷𝒔𝒔 -0.510 -0.030 -0.017 -0.015 0.006 -0.006 -0.031 

𝑨𝑨 0.050 0.100 0.006 -0.007 0.002 0.010 0.002 

𝝋𝝋 3.42 4.59 3.78 2.50 3.18 4.85 2.51 

De
riv

ed
 p

ar
am

et
er

s 𝜻𝜻 1.61 0.31 0.24 0.65 0.62 0.06 0.79 

𝝉𝝉 5.47 16.73 19.26 10.82 20.80 78.82 4.68 

𝝋𝝋− 𝒍𝒍𝒍𝒍𝒍𝒍 1.13 2.37 2.27 2.35 2.76 2.80 1.52 

SWrc 0.83 0.10 0.56 0.49 0.69 0.20 0.84 

Table 1: Parameters estimated for the expression of the genes in Figs. 2C and 3A, with x as gene 366 

expression (log2 of CPM or probe intensity), γ[h-1] the daemping coefficient, and 𝝎𝝎𝟎𝟎 [radian * h-1] the 367 

natural frequency of the oscillator. 𝜷𝜷𝒘𝒘 [x * h-2 * W-1] and 𝜷𝜷𝑺𝑺  [x * h-2 * S-1] are the wake and sleep 368 

coefficients for 𝑓𝑓𝑆𝑆𝑆𝑆 with W and S as the wake and sleep fraction. A [x * h-2] is the amplitude and φ 369 

[radian] the phase of 𝑓𝑓𝐶𝐶. Derived parameters of the model are: Damping ratio of the oscillator [ζ], time-370 

constant [τ; Eq. 4] to return to equilibrium, [phase-lag; Eq. 6] between driving forces and oscillator 371 

phase, Sleep-wake response contribution [SWrc; Eq. 7]. 372 

 373 

Assessing the model’s performance against alternative models. 374 

Before characterizing the dynamic properties of the full transcriptome, we evaluated the performance 375 

of the model and possible overfitting by comparing it to both simpler and more complex models 376 

considering all datasets. The evaluation was performed on the subset of genes and probe-sets that 377 

showed rhythmic expression during baseline for mice and when sleep occurred in phase with 378 

melatonin production for humans. The selection of this rhythmic subset was necessary as our model 379 

aims at capturing the dynamics of rhythmic genes and fitting arrhythmic or very noisy genes would 380 

automatically favor less complex models. As mentioned earlier, ‘pure’ sleep-wake driven and ‘pure’ 381 
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circadian-driven genes can display undistinguishable rhythmic patterns in baseline. Both categories of 382 

genes can thus be captured in an unbiased fashion with a simple sinewave fit and independently of 383 

their response to sleep perturbation. The time courses of the top 1000 most significant ‘sinusoidal’ 384 

genes per tissue (cortex, liver, and blood) were used to assess the model’s performance, i.e., a total of 385 

3000 genes. 386 

Our model has 6 free parameters (k=6 [γ, ω0, 𝛽𝛽𝑠𝑠,𝛽𝛽𝑤𝑤  ,𝜑𝜑,   𝐴𝐴]; see Eq. 3 and Eq. 5), with the equilibrium 387 

position (intercept) fixed to the mean gene expression in baseline in mouse and in-phase data in 388 

human. The model integrated the two human transcriptome experiments as one and model 389 

parameters were simultaneously optimized such that, e.g., 1 minute of wakefulness in the FD protocol 390 

has the same accelerating effect as 1 minute of wakefulness during the CRs following the control- and 391 

restricted-sleep conditions. We did, however, allow different intercepts between the FD and the CRs 392 

after the control- and restricted-sleep conditions (k=7). 393 

To evaluate the fit and complexity of our model (Hypothesis 1 or H1) we contrasted it to the following 394 

4 alternative models (HA): i) a linear regression model based on independent fixed effects for each 395 

time-point (k=18 and 35 in mouse and human, respectively) known to over-fit the data [14], ii) the 396 

oscillator model with a sleep-wake drive only or, iii) with a circadian drive only (k=4 and 5), and iv) a 397 

simple additive model in which a fixed circadian effect (sinewave) is added to a sleep-wake effect 398 

without intrinsic dynamics integrating these effects (k=5 and 6; see Methods). We compared the 399 

Bayesian Information Criterion (BIC) statistic of each of the 4 HA models to that of H1. The BIC considers 400 

the model’s goodness of fit while penalizing for complexity. A ΔBIC was calculated for each of the 4 401 

comparisons with positive values indicating support for H1 and negative values indicating support for 402 

HA. In general, the ΔBIC indicated more genes with a better fit for H1 over both simpler and more 403 

complex models (ΔBIC>0: 97, 61, 88, and 68% of all 3000 genes, for HA i-iv, respectively), even when 404 

using a more stringent ΔBIC (>2: 97, 55, 85, and 63%, respectively; Fig. 4A - top). In some cases, ΔBIC 405 

favored HA, although a strong support was found only for a minority of genes or probes (ΔBIC<-2: 2, 406 

30, 7, and 24%, respectively). It shows that despite having far fewer parameters than the linear model 407 

with independent time-effect, goodness of fit for H1 is still high (~0.1 ΔKendall’s τ) and is improved 408 

compared to simpler models (Fig. 4A - bottom). 409 

This analysis supports H1 as it importantly improved the overall fit, while model complexity did not 410 

increase too much over simpler models. Although expression dynamics of individual genes might be fit 411 

better with simpler models, the use of a single model for all genes and letting the parameter 412 

optimization decide which of the drive is dominant has important advantages as it avoids having to 413 
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determine the optimal model for each gene. Moreover, using multiple models renders parameter 414 

comparison among genes (or for the same genes in different tissues) hard, if not impossible. 415 

 416 

The cortical transcriptome is mainly sleep-wake driven, that of liver and blood mainly circadian 417 

We then applied the H1 model to the entire transcriptome to detect, in an unbiased manner, any gene 418 

that would be sleep-wake driven and/or circadian driven by contrasting the results to a flat model with 419 

a single intercept as null hypothesis (H0) where expression variance represents noise. With a ΔBIC>2 420 

as rejection threshold, the model classified a surprisingly large number of genes as rhythmically 421 

expressed: 7’246 (42% of 17’185) and 5’785 (43% of 13’373) genes in cortex and liver, respectively, 422 

and 18’954 probes (46% of 41’162) in blood (Fig. 4B). The high number of rhythmic genes compared 423 

to that reported in other studies [1, 2, 50] is likely because the model combines circadian and sleep-424 

wake contributions giving rise to more complex dynamics than can be fitted with simpler sinewave 425 

function or time courses with small amplitudes under undisturbed conditions due to opposing 426 

contribution of the two forces, such as illustrated with NCOR1 (Fig. 3). Mean goodness of fit as Kendall’s 427 

τ for rhythmic genes is high in cortex and liver (~0.5, Fig. 4B - right). Model fit was lower for the human 428 

blood dataset compared to that obtained for the mouse datasets both for overall probes as well as for 429 

the 1000 rhythmic probes (Δ mean Kendall’s tau: 0.17 and 0.12, respectively) but nevertheless still 430 

close to that of the more complex model (Fig. 4A). 431 

To assess and visualize the main source of variance for these rhythmically expressed genes, we 432 

performed a principal component analysis (PCA; Fig. 5, Fig. S3) and projected the model fits in PCA 433 

space together with the corresponding circadian and sleep-wake driven responses plotted alongside 434 

the PC axes to show their respective contributions for the time segments depicted in the PC plots (Fig. 435 

5A-D). In addition, the complete simulated time-course of the responses to 𝑓𝑓𝑆𝑆𝑆𝑆 and 𝑓𝑓𝐶𝐶 for the first two 436 

principal components, PC1 and -2, is illustrated underneath each panel for each of the experiments. 437 

Distinct types of dynamics could be observed in the mouse transcriptomes. In cortex, PC1 displayed a 438 

predominant sleep-wake driven response (projected SWrc = 0.80) composed of overdamped genes as 439 

top contributors, with a large immediate effect of SD and a subsequent quick recovery (Fig. 5A), a 440 

pattern consistent with that of sleep-wake driven IEGs and the strong chromatin remodeling effect of 441 

SD in this tissue [14]. GO analyses identified that these genes are involved in protein folding, RNA 442 

regulation, and chromatin organization (Fig. S3 - Cortex). PC2, on the other hand, was determined by 443 

underdamped genes with large phase-lags (> 𝜋𝜋
2

 rad) responding to both circadian and sleep-wake drives 444 

(SWrc = 0.60). The latter drive increased gene expression during SD which continued during the first 445 
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6h of recovery (i.e., until ZT12 of the first recovery day; ZT12REC in Fig. 5A) although mice were mostly 446 

asleep during this period. The model found that this inertia in the response to the SD was a 447 

consequence of a weak negative feedback and a large phase-lag. Evidence of such inertia can already 448 

be observed in baseline when increases followed the sleep-wake distribution with a similar long delay 449 

(start of increase at ZT15, i.e., ca. 3h after spontaneous wake onset at lights-off, until ZT3, Fig. 5A - 450 

lower panel, dashed blue line for PC2, Fig. S3 - Cortex). These genes are involved in neurotransmitter 451 

transport/signaling, feeding behavior, phosphatidylinositol dephosphorylation, and fatty acid 452 

metabolism. 453 

In liver, the fitted trajectories for the expression of genes contributing to PC1 and -2 followed circular 454 

patterns and both PCs showed a large contribution of the circadian response relative to the sleep-wake 455 

response (SWrc = 0.18 and 0.29, respectively) albeit with different phases (Fig. 5B, Fig. S3 - Liver). SD 456 

decreased the amplitude of PC2 (ZT6SD) and was followed by an amplitude reduction 12h later 457 

(ZT18REC). PC2 shows an enrichment for genes involved in androgen receptor signaling and, similar to 458 

PC1 genes in cortex, in protein folding. PC1 genes in liver were left largely unperturbed by SD and were 459 

enriched for genes implicated in GTPase activity. The response dynamics for transcripts contributing 460 

to PC2 in liver and cortex highlight a novel and slower type of sleep-wake driven response requiring 461 

more time to change mRNA levels compared to the fast IEG (and delta-power) -like response observed 462 

for PC1 in cortex. 463 

For the human blood transcriptome, PCAs of the FD ‘in-phase’ and ‘anti-phase’ conditions (Fig. 5C) and 464 

the CRs after the 10- and 6h sleep-opportunity conditions (Fig. 5D) were plotted separately for better 465 

visualization. The predicted expression dynamics during habitual bedtime (24h sleep-wake cycle with 466 

7.5h sleep) was used as a ‘baseline’ reference (dashed lines in Fig. 5C-D). The expression dynamics 467 

fitted to the FD ‘in-phase’ condition were at first indistinguishable from the predicted baseline 468 

dynamics (Fig 5C - left) and deviations appeared only after ZT8 (i.e., 8h after the onset of the scheduled 469 

sleep episode) when under baseline subjects woke up, while under the FD condition sleep was 470 

scheduled to last an additional 1.3h. As PC2 was mostly sleep-wake driven (SWrc = 0.80), due to the 471 

longer sleep periods and the longer wake periods of the 28h day compared to the 24h day, the 472 

amplitudes of the rhythmic probes contributing to PC2 gradually increased over the initial 4 days of 473 

the FD to a new steady-state (bottom time-course in Fig. 5C). Thus, by the time the ‘anti-phase’ 474 

condition was reached, PC2 showed a strong amplitude increase (Fig. 5C - right). Top contributors to 475 

PC2 were mostly underdamped probes with weak negative feedback such as NCOR1. The 476 

corresponding genes were found to be involved in B-cell activation and phosphatidylinositol 477 

dephosphorylation, the latter confirming the PC2 pathway found in the mouse cortex (Fig. S3 - FD). 478 
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PC1 was more circadian than sleep-wake driven (SWrc = 0.36). Probes contributing to PC1 were 479 

enriched for genes involved in translation and mitochondrial regulation (Fig. S3 - FD). PC1’s overall 480 

amplitude reduced during the ‘anti-phase’ condition when sleep-wake and circadian responses 481 

opposed each other (Fig. 5C - bottom panel). The model predicted an even more prominent amplitude 482 

reduction during the 28h day following ‘anti-phase’. As we had access to sleep-wake data throughout 483 

the 10-day FD protocol (Fig. 1B), we could simulate expression dynamics when subjects returned to 484 

being ‘in-phase’ again 3 days later (i.e., the last day of the FD) and found that the amplitudes of both 485 

PC1 and -2 were larger compared to the ‘in-phase’ condition at the beginning of the FD (Fig. 5C - 486 

bottom panel). To conclude, the model predicts that over the course of the FD protocol expression 487 

dynamics change and that the two ‘in-phase’ conditions will importantly differ transcriptionally. 488 

PCA for the second human transcriptome experiment showed the large effect of the 40h wakefulness 489 

during the two CRs importantly amplifying the sleep-wake response contributing to PC2 (SWrc = 0.56), 490 

as already illustrated for NCOR1 (Fig. 3). The preceding 7 days of restricted sleep changed the initial 491 

condition of the CR compared to that of the control condition (6 vs. 10h sleep opportunity) again 492 

affecting mostly PC2, the trajectory of which was downshifted during the CR (Fig. 5D - left vs. right 493 

panel). This could also be observed at the level of the data where ellipses, denoting the 95% CI of mean 494 

gene expression, were all slightly lower after the restricted sleep condition. The model predicted that 495 

the lowering of PC2 already occurred on the 2nd day of the sleep restriction protocol (Fig. 5D - bottom-496 

right panel). In contrast, for the 10h-sleep-opportunity condition the model found an increase in PC2 497 

over the first days of the protocol compared to baseline before slowly decreasing again reaching 498 

baseline level prior to the start of the CR. This increase and subsequent decrease can be attributed to 499 

the initial increase in mean total sleep time in the first days of the protocol (9.4h on the first day) that 500 

then reverted to baseline levels (7.7h on the last day; Fig. 1C - bottom-left panel). Like FD, PC1 is 501 

enriched for translational regulation, and PC2 for cell division and protein lipidation (Fig. S3 - CR). 502 

Comparing the PCA across species and tissues showed some surprising similarities considering they 503 

were computed independently. Although the relative contribution of the sleep-wake response and the 504 

circadian response varied among tissues, PC1 showed a mostly in-phase relationship between the two 505 

responses during baseline for all datasets (Fig. S3; 𝜑𝜑(𝐶𝐶𝐶𝐶 − 𝑆𝑆𝑆𝑆𝑆𝑆) black line represents the in-phase 506 

relationship), while for PC2 their phases importantly differed. Accordingly, the mean amplitudes of 507 

genes in PC1 are larger than that of PC2 genes in all tissues (Cortex: 0.25 vs. 0.11, Liver: 0.66 vs. 0.48, 508 

Blood: 0.22 vs. 0.10, p-values < 1e-9). This did, however, not translate into common genes contributing 509 

to each of two PCs across datasets. Only PC1 of the FD and CR experiments had a strong concordance 510 

of contributing genes. This suggests that the biological processes that are sleep-wake and circadian 511 
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driven differ across tissues, with most genes displaying an in-phase relationship, and a smaller 512 

proportion of the transcriptome with an anti-phasic relationship. The expression of the latter class of 513 

genes represented by PC2 appears more prone to long-term deviations from baseline upon 514 

perturbation of sleep with a larger sleep-wake contribution (except cortex) and lower γ (Fig. S3) which 515 

increases the time needed to again reach baseline dynamics (𝜏𝜏, Eq. 4).  516 

As the PCA reports only on those transcripts contributing most to the overall variance, we assessed 517 

the SWrc values for the complete rhythmic transcriptome. As already indicated by its PC1, the model 518 

found that cortical gene transcription was more sleep-wake driven than in liver and in blood, with 519 

similar SWrc values obtained in the latter two tissues (mean SWrc: 0.62, 0.37, and 0.40 for cortex, liver, 520 

and blood respectively; Fig. 6A). In cortex 67% of rhythmic genes were underdamped (𝜁𝜁 < 1), while 521 

85% and 89% of genes in liver and blood were underdamped. Although mostly underdamped, the 522 

analysis of rhythmic genes in blood revealed a conspicuous cluster of overdamped transcripts (𝜁𝜁 > 2) 523 

that were mostly circadian driven (SWrc < 0.5). GO analysis of this overdamped cluster revealed an 524 

enrichment for genes involved in acetylcholine receptor binding that were strongly circadian driven 525 

(SWrc < 0.25) and, for the remaining transcripts in this cluster (SWrc > 0.25), genes involved in signaling 526 

adaptor activity and dopamine receptor binding. We compared our results in blood with the 527 

classification made by Archer and colleagues based on the FD transcriptome results using an additive 528 

model with the free-running circadian melatonin rhythm and the enforced 28h sleep-wake cycle as 529 

factors [23] (Fig. S4). As expected, probes originally classified as changing in-phase with melatonin 530 

have, in our model, a low SWrc (mean = 0.25) and probes classified as in-phase with the sleep-wake 531 

cycle have a high SWrc (mean = 0.60). There were, however, some noticeable exceptions, such as 532 

SERPINB9 which was categorized as in-phase with melatonin, suggesting an important circadian 533 

influence, whereas our model found its expression to be strongly sleep-wake driven (SWrc = 0.82; Fig. 534 

S4). Because of its long time-constant (τ = 42.0h), SERPINB9 expression was only slightly shifted at the 535 

time sleep occurred in anti-phase with the melatonin rhythm and ca. 3 additional days of sleeping in 536 

anti-phase (i.e., 2 * τ) would have been required to observe a more complete shift of SERPINB9 537 

expression relative to the melatonin rhythm such that it again realigns with the sleep-wake 538 

distribution. Consistent with the prediction of a sleep-wake driven oscillatory (underdamped) 539 

dynamics with an amplitude reduction by extended wakefulness, blood SERPINB9 expression was 540 

found to be down-regulated after SD [51] and rhythmic in an independent CR experiment [52]. 541 

Of all genes found to be rhythmic across the datasets (14’435), only 10% (1468) were rhythmic in all 3 542 

tissues (Fig. 6B). This strong tissue specificity of gene rhythmicity has already been noted in other 543 

species [53]. We then compared the SWrc of these 1468 shared rhythmic genes but did not find any 544 
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correlations between tissues (cortex vs. liver pearson correlation: 0.08, cortex vs. blood: -0.001, liver 545 

vs. blood: 0.003) indicating that the cause of rhythmicity (circadian vs. sleep-wake driven) was not 546 

shared. Nevertheless, most of the few genes found to be sleep-wake driven in liver (SWrc > 0.5) were 547 

also sleep-wake driven in cortex (311; 79% of 392), and the circadian-driven genes in cortex (SWrc < 548 

0.5) were also circadian driven in liver (78%; Fig. 6B). 549 

Among the 1468 common rhythmic genes, only 109 had SWrc values above 0.5 in all 3 tissues (Fig. S6), 550 

with Ndufs1 as the gene with the highest average SWrc (0.82). Ndufs1 is a mitochondrial gene involved 551 

in reactive oxygen metabolism and was previously found as a biomarker for short-sleep duration [54]. 552 

Interestingly, the most circadian driven gene among the 1468, Sod2 (average SWrc = 0.10), is also a 553 

mitochondrial gene involved in reactive oxygen metabolism. We found that the top-most enriched 554 

biological process for the 1468 genes rhythmic in all tissues was protein folding (Fig. S5). Protein folding 555 

was also found as the most enriched biological process for the 109 sleep-wake driven rhythmic genes 556 

shared among the three tissues. Conversely, 215 genes had SWrc values below 0.5 in all 3 tissues. 557 

These common circadian-driven genes were involved in Protein kinase B signaling. Phosphatidylinositol 558 

3 kinase signaling appeared as the 3rd most significantly enriched GO term, which is interesting as genes 559 

contributing to PC2 in mouse cortex and human blood (Fig. 5) were enriched for genes involved in the 560 

dephosphorylation of phosphatidylinositols, which have been associated with sleep [55-57]. 561 

It should be noted that while we considered genes as sleep-wake driven or circadian driven using a 562 

SWrc cut-off of 0.5, the drive that contributes less still affects gene expression dynamics. For only less 563 

than 3% of each of the transcriptomes, genes could be labeled as either entirely sleep-wake driven or 564 

entirely circadian driven (SWrc > 0.95 or < 0.05). Therefore, for most transcripts both drives need to 565 

be considered when studying rhythmic gene expression. 566 

 567 

Sleep deprivation desynchronizes the tissue transcriptome 568 

Although central and tissue rhythms in gene expression are generally associated with clock genes 569 

implicated in the TTFL, clock genes did not feature among the top circadian driven genes. We therefore 570 

took a closer look at the expression dynamics of 15 core clock genes (Fig. 7A). Expression of 11 out of 571 

the 12 clock genes that were rhythmically expressed in the cortex showed a mainly sleep-wake driven 572 

response (SWrc > 0.5). In contrast, in liver and blood, most clock genes were found to be circadian 573 

driven (0 and 1 out of 13, respectively; SWrc < 0.5). In cortex, Clock is the strongest sleep-wake driven 574 

clock gene (SWrc = 0.84) and among the top 11% most sleep-wake driven genes in this tissue but is 575 

mostly circadian driven in liver (SWrc: 0.19; Fig. 2C) and blood (SWrc = 0.26). 576 
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While clock genes in the SCN are involved in timekeeping, their role may be more diverse in tissues 577 

peripheral to the SCN [45, 58]. Because clock genes are sleep-wake driven in the cortex and circadian 578 

driven in liver, sleep perturbation may alter inter-tissue synchrony and clock-gene related processes 579 

like metabolism [59]. To assess tissue differences in cellular timing, we fitted clock-gene expression in 580 

cortex and liver to a 24h clock corresponding to the tissue’s zeitgeber time (ZT) in baseline (Fig. 7B - 581 

dashed line) using a multivariate regression model with elastic net regularization [60]. We observed 582 

that during the SD and the subsequent 5h of recovery (corresponding to ZT0-11 in baseline) cortical 583 

local time no longer followed ZT and that the expression dynamics of clock genes was halted at a state 584 

corresponding to ZT0-2 during baseline (Fig. 7B - solid line). In contrast, in the liver, circadian time 585 

progressed undisturbed resulting in an important desynchronization between the two tissues with a 586 

maximum cortex-to-liver delay of 8h reached 5h after the end of the SD (Fig. 7B - bottom). 587 

As the cortical transcriptome, including most clock genes, is mostly sleep-wake driven, zeitgeber time 588 

(or circadian time defined by phase markers of the central circadian clock) has little significance in this 589 

tissue. That zeitgeber time estimated by the expression of clock genes was maintained at ZT0-2 for 11 590 

consecutive hours does therefore not indicate that the circadian clock stopped but simply results from 591 

the SD keeping waking levels high for 6 additional hours following the baseline dark period when 592 

animals were mostly awake spontaneously. The limited use of clock genes as biomarkers of circadian 593 

time in tissues peripheral to the SCN under conditions of altered sleep-wake distributions has already 594 

been suggested previously [61]. 595 

The SD causes the cortex and liver transcriptomes to desynchronize as tissue oscillators differ in their 596 

overall response to sleep-wake state (Fig. 6A). Similarly, within each tissue, genes revealed a wide 597 

range of responses (Fig. 6A) implying that SD also changes intra-tissue synchronicity. To examine this, 598 

we performed a similar analysis as above, where the baseline timing of expression is estimated 599 

independently for each gene based on its expression level and expression rate predicted by our model. 600 

The baseline time points ZT0, 6, 12, and 18 were mapped to zeitgeber time and time points after the 601 

start of the SD plotted according to baseline time considering expression level and expression rate (Fig. 602 

7C). In this representation, the distance from the center reflects a relative amplitude change (100% = 603 

baseline) and an angular change between corresponding ZT points before (baseline) and after SD (ZTSD 604 

and ZTREC) can be viewed as a phase change. In the figure each dot represents one gene, and the ‘point 605 

of gravity’ of all genes is represented with a black circle. As expression level and expression rate in 606 

baseline could not be mapped perfectly to a 24h clock, we observed small scattering around the points 607 

of gravity at the four time points (Fig. 7D - upper panels). Rhythmic genes which could not be readily 608 

mapped to a 24h clock (because their baseline time course deviated too much from a sinewave like 609 
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dynamic; R2 < 0.6, see Methods), and thus scattered too much, were excluded from this analysis (9 and 610 

4% of all rhythmic genes in cortex and liver, respectively). SD caused extensive scattering of gene 611 

timing in both tissues which lasted for more than 24h (Fig. 7D - middle and lower panels), indicating 612 

that the phase relationship among genes is largely altered by SD. Despite this increased scattering, the 613 

point of gravity in liver still closely followed baseline timing. In contrast, in cortex overall timing was 614 

greatly impacted with points of gravity deviating from those observed in baseline by ca. 8h at ZT6 and 615 

-12. It thus appears that the SD-induced changes in the cortical timing of expression level and 616 

expression change observed of clock genes (Fig. 7B) apply to the entire rhythmic transcriptome in this 617 

tissue. On the second recovery day, scattering of timing remained larger than in baseline in both 618 

tissues, suggesting that the expression of many genes was still perturbed although in cortex the 619 

location of the points of gravity suggest that overall, the timing had reverted to that of baseline (Fig. 620 

7D - lower panels). 621 

 622 

Does recovery sleep accelerate transcriptome recovery? 623 

We previously reported that the expression dynamics of a large number of genes affected by SD still 624 

deviated from baseline long after the sleep-wake distribution and EEG activity had reverted to 625 

baseline, i.e., beyond the first 18h after the SD ended [14] (see Fig. 7D). Using our model prediction, 626 

we further investigated the ‘recovery’ dynamics for the rhythmic transcripts affected by SD, i.e., those 627 

with a fold-change effect size > 1 [z-score] at any time-point during the 48h after SD. We first 628 

determined how the fold-change in expression reached at the end of SD (ZT6SD) related to the time 629 

required for expression to again reach equilibrium, i.e., the time constant, 𝜏𝜏 (Eq. 4). Perhaps counter-630 

intuitively, we found that, in general, genes for which the expression was affected the most at the end 631 

of the SD had the shortest time-constants (Fig. 8A). More genes displayed such a strong-and-fast 632 

response in cortex than in liver where the initial responses tended to be smaller but longer lasting (Fig. 633 

8A). 634 

The immediate SD effect and 𝜏𝜏 alone were, however, insufficient to account for the large variability 635 

among genes and tissues in the time required for gene expression to recover. One factor that could 636 

play a role is the extra sleep gained during recovery, which could be viewed as a second perturbation 637 

shortening or lengthening the duration for a gene to return to its baseline rhythmicity. In fact, 𝜏𝜏 638 

correctly estimates the time to return to baseline equilibrium only if mice do not alter their sleep-wake 639 

behavior after SD, i.e., sleep as during baseline. To evaluate the effect of recovery sleep on 640 

transcriptome recovery, we simulated gene expression in mice that do not (referred to as ‘0h recovery 641 

sleep’) or partially compensate for sleep loss by incrementally (hour-by-hour) replacing the subsequent 642 
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sleep-wake distribution by their ZT-matched baseline sleep. We illustrate this analyses with the 643 

simulated expression of Mfsd4a and Paqr8 with either 0-, 6-, 12-, or 18h of recovery sleep (Fig. 8B,C - 644 

middle panels). We took these two genes because their cortical response to recovery sleep was 645 

opposite while both tended to be sleep-wake driven (SWrc = 0.80 and 0.52) and showed a comparable 646 

large effect size after SD (-7.0 and +6.5, respectively at ZT6SD; Fig. 8B,C - left panels). Moreover, Mfsd4a 647 

and Paqr8 were under- and overdamped, respectively (ζ = 0.76 and 3.17). From the time point in the 648 

simulation when the actual recovery sleep was replaced with baseline sleep, the fold-change of 649 

underdamped genes (such as Mfsd4a) can be viewed as an underdamped oscillator relaxing back to 650 

equilibrium with its amplitude decaying exponentially with a time-constant 𝜏𝜏 (red dashed lines in Fig. 651 

8B – middle panels; compare to Gene A in Fig. 2B – left panel). For overdamped genes (such as Paqr8), 652 

the reduction in the fold-change follows a simple exponential decay (red dashed lines in Fig. 8C – 653 

middle panels; see Gene Y in Fig. 2B – left panel). We then calculated the time required for the 654 

exponential decay part describing the recovery of gene expression to reach an effect-size of < 1 and 655 

considered gene expression to have recovered at this time-point. We estimated that 50% of all genes 656 

affected by SD ‘recovered’ within 12 and 13h, and an additional 17 and 12% after 18h of recovery, for 657 

cortex and liver, respectively (Fig. 8D). This implies that at the time sleep and EEG phenotypes no 658 

longer differed from baseline, the expression of 32 to 37% of genes still had not recovered. Using the 659 

baseline sleep-wake data instead of the actual sleep-wake recovery data accelerated the recovery of 660 

Mfsd4a expression by approximately 10h, while it delayed Paqr8‘s recovery by a similar duration (Fig. 661 

8B,C - middle panels). Or, in other words, as more recovery sleep was included, time of recovery 662 

increased for Mfsd4a from 62.h to 72.5h when 10h of recovery sleep was included, and decreased for 663 

Paqr8 expression (from 77.4 to 67.9h) with 18h of recovery sleep (Fig. 8B,C - right panels). In general, 664 

overdamped (log10 ζ > 0) genes, such as Paqr8, seemed to benefit from sleeping more (Fig. 8E, green-665 

black sequence, with green indicating that including 1h of recovery sleep accelerated gene recovery), 666 

whereas most genes with an oscillatory component (i.e., underdamped, like Mfsd4a) delayed their 667 

recovery time as more of the actual recovery sleep was being used for the simulation (Fig 8E, red-black 668 

sequence). We also observed more complex responses where recovery sleep initially decreases and 669 

subsequently increases recovery time (Fig. 8E, green-red-black sequence). The opposite sequence 670 

could also be observed (Fig. 8E, red-green-black sequence). Clustering the response of all genes 671 

revealed the presence of 6 types of responses (Fig. 8E). In the cortex recovery sleep delays gene 672 

recovery time for most of the clock genes. In contrast, several IEGs genes like Homer1, Srf, and Egr2 673 

and others like Acot11 take advantage of the extra sleep after sleep deprivation to recover faster. 674 

Sleep-wake driven genes like Ndufs1, and top contributors to first two PCs (Fig 5A,B), such as Otub2 675 
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(cortex PC1), Pmepa1 (cortex PC2), and Prkd3 (liver PC2), showed gene recovery times that mostly 676 

delay when allowing recovery sleep for 6-18h. 677 

The previous analysis emphasized that transcriptome recovery outlasts sleep-wake recovery, and, in 678 

addition, that not only a lack of sleep (SD) but also extra time-spent-asleep (recovery sleep) can delay 679 

attaining baseline gene-expression dynamics. Given these insights, we explored the transcriptome 680 

dynamics during the FD protocol during which subjects recover from transitioning from sleeping in-681 

phase to anti-phase and back again by calculating the gene effect size of the predicted differential 682 

expression to corresponding baseline ZT time points. For each gene, we calculated the time-point at 683 

which the effect-size was highest. For example, for PORCN, a gene with a large effect size (top 2%) and 684 

extreme long time constant of recovery (𝜏𝜏 = 160h), maximum effect size was reached at time 177h 685 

(Fig. 8F). The model predicted that for most genes, the largest effect sizes occurred around that time 686 

(144-192h), i.e., during the 28h day that followed the anti-phase condition (Fig. 8G; Day 7-8 of the 687 

protocol, Fig. 2B). Such delayed response is reminiscent of the delayed gene-expression responses 688 

observed in mice after SD. The model also predicted that genes can still deviate from their baseline 689 

dynamics when sleep occurred again in-phase such as, e.g., PORCN (Fig. 8F) which might, however, be 690 

difficult to demonstrate statistically because of the small, predicted effect size. 691 

 692 

Conclusions 693 

We have presented a mathematical framework that can describe and predict rhythmic gene expression 694 

in brain and body tissues peripheral to the SCN. The model integrates and quantifies the contributions 695 

of circadian and sleep-wake state related factors and their interaction acting on the daily changes in 696 

mRNA levels. The respective contributions of these factors were represented as two drives that each 697 

alter the acceleration of the ongoing changes in gene expression within the cells of the tissue. The 698 

model was able to capture the often complex and sometimes counterintuitive relationships between 699 

sleep-wake interventions, circadian time, and gene expression in cortex and liver in mice and in blood 700 

in humans. One strength of the model is that it accommodates within one and the same mathematical 701 

framework a variety of expression dynamics. This has the important advantage that parameter 702 

optimization will decide with which type of dynamics each gene responds to the exerted drives and 703 

which of the two drives is dominant. The model successfully captured changes in gene expression 704 

under a number of experimental conditions that altered sleep-wake timing relative to circadian timing, 705 

while keeping the number of free parameters low. Applying the model to mouse and human time-706 

course transcriptome data yielded several new insights that are summarized below. Our work shows 707 
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that the daily or circadian changes in in vivo gene expression can only be understood when the 708 

contribution of sleep-wake history are taken into account. We believe this framework can also be 709 

useful to describe and predict the daily changes in other physiological variables and behaviors. 710 

 711 

An alternative response dynamics to extended wakefulness 712 

The effects of sleep loss on neurophysiology, performance, and behavior are often put into the context 713 

of the two-process model of sleep regulation with a sleep-wake driven process increasing and 714 

decreasing during wakefulness and sleep, respectively, according to exponential (saturating) functions. 715 

This process was originally modelled on the dynamics of the sleep-wake driven changes in EEG delta 716 

power [62] and, as we showed here (and elsewhere [14, 15, 45], this type of dynamics captured well 717 

the changes in the cortical mRNA levels of activity-induced immediate-early genes (IEGs) characterized 718 

as overdamped in the model. Accordingly, expression of this class of genes responded to sleep 719 

deprivation with a large immediate increase, to then quickly decrease during sleep reaching baseline 720 

levels within 7h, i.e., the median time of gene recovery for the 2037 overdamped sleep-wake driven 721 

genes. This steep decline following sleep deprivation, which drove gene expression away from a lower 722 

asymptote, is typical of an exponential decreasing function and of IEG expression dynamics. Therefore, 723 

although it does require the animal to sleep, its fast recovery dynamics is largely independent of 724 

rebound sleep, i.e., the increase in time-spent-asleep after sleep deprivation beyond that observed in 725 

baseline. 726 

Our current analyses showed, however, that most of the predominantly sleep-wake driven 727 

transcripts did not behave like EEG delta power and followed a response dynamic characterized with 728 

a small response at the end of sleep deprivation, a slow recovery (16.9h median gene recovery in cortex 729 

for the 3469 sleep-wake driven and underdamped genes) and a larger variety of expression patterns. 730 

Among these patterns, some genes showed a marked inertia in the response to altered timing of sleep-731 

wake state, with differences in gene expression becoming evident only after some delay. This explains 732 

why these transcripts have gone unnoticed in experimental designs that aimed at finding the molecular 733 

correlates of the process reflected by EEG delta power and therefore only focused on the immediate 734 

effects of sleep loss. The genes following these slower sleep-wake state driven dynamics might be 735 

implicated in the homeostatic regulation of time-spent-asleep, which differs from that of EEG delta 736 

power in that it has slower dynamics and becomes evident only after EEG delta power has reverted to 737 

baseline.  738 

 739 

 740 

 741 
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Unexpected effects of recovery sleep on transcriptome ‘recovery’ 742 

Our analyses showed that deviations from the baseline sleep-wake state time-course altered gene 743 

expression patterns. Perhaps counterintuitively, these deviations included rebound sleep subsequent 744 

to sleep deprivation, which is generally considered to help restore homeostatic balance. Rebound 745 

sleep especially affected the genes that responded with slower response dynamics and had an 746 

oscillatory component (i.e., underdamped) by delaying their recovery. The combination of the inertia 747 

to respond to enforced waking and their sensitivity to rebound sleep resulted in a flattening of rhythm 748 

amplitude that lasted well beyond the sleep-wake distribution and EEG activity had reverted to 749 

baseline. The cortical expression pattern of most of the core clock genes followed this pattern. 750 

We have used the term gene expression ‘recovery’ as shorthand for describing the time it took 751 

to again reach the baseline time course without knowing whether the transcripts indeed play a role in 752 

the recovery processes associated with sleep. Among the pathways enriched for sleep-wake driven 753 

genes, we found pathways related to chaperon-mediated protein folding in cortex, liver, and blood. 754 

Chaperons were found to be associated with consolidated sleep [63] and reduced ER (endoplasmic 755 

reticulum) stress. Many lipidic pathways were also enriched for sleep-wake driven genes in both cortex 756 

and blood, like those involved in cholesterol/lipid regulation as well as their proportions and spatial 757 

arrangement in the cellular membrane. 758 

 759 

Circadian timing and the effects of sleep loss 760 

Our analyses showed that sleep deprivation in the mouse caused a long-term change in the phase 761 

relationship among genes within and between tissues. Consistent with more genes being sleep-wake 762 

driven in cortex than in liver, sleep deprivation impacted overall timing in cortex to a much larger 763 

extent, resulting in a large difference in circadian timing between the two tissues, which amounted to 764 

an estimated 8-hour phase delay, 5 hours after the end of the sleep deprivation. The phase differences 765 

were observed at the level of the whole transcriptome as well as among clock genes. In cortex, but not 766 

in liver, all but one of the clock genes were affected by sleep-wake state with Clock and Npas2 767 

expression, the two transcription factors forming the positive arm of the circadian TTFL, responding, 768 

like IEGs, almost exclusively to the sleep-wake time course over the 4-day experiment. This tissue 769 

difference in the behavior of clock genes might not surprise given the fact that sleep-wake state is 770 

tightly coupled to metabolic activity in the cortex and less so in liver. The clock-gene circuitry in the 771 

cortex might thus be used to track and predict time-spent-awake instead of setting circadian time. 772 

Accordingly, clock genes in the cortex are of little significance as phase markers of the central circadian 773 

clock, as was already suggested by others for other tissues peripheral to the SCN (Dijk and Duffy 2020). 774 

To further investigate the relationship between the tissue’s activity and clock gene dynamics, one 775 
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could, e.g., change (metabolic) activity of the liver specifically without affecting sleep-wake state. We 776 

predict that the expression dynamics of clock genes in the liver would become less circadian and more 777 

‘cortex’ like. 778 

  779 
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Methods 780 

Mouse datasets 781 

Mouse transcriptome dataset is available on GEO (TBD). Experimental details are available [12, 14]. 782 

The following methods are a summary. 783 

Animals  784 

62 male mice C57Bl/6J were purchased at Charles River France for RNA-sequencing of cortical and liver 785 

tissues. 12 male mice C57Bl/6J were purchased from the University of Tennessee Health Science 786 

Center (Memphis, TN, United States of America) for EEG/EMG recording. Both sets of mice underwent 787 

same housing condition: mice were acclimated to our facility for 2-4 weeks prior experimental 788 

procedure. Mice were kept under 12h light -12h dark conditions. Both experimental procedures were 789 

performed at the age of 10-12 weeks and approved by the veterinary authorities of the state of Vaud 790 

(SCAV). No additional animal experiments were performed for this publication. 791 

Sleep deprivation 792 

Sleep deprivation was performed by gentle handling [64] for 6h at light onset (zeitgeber time ZT0-6).  793 

EEG/EMG recordings 794 

Surgery was performed 10 days prior baseline recording as described in [64]. 4 days of EEG/EMG signals 795 

were annotated on 4s consecutive epochs based on EEG/EMG pattern. Manual annotation was 796 

performed on the 3rd day of recording, days 1-2-4 were annotated using a semiautomated scoring 797 

system [12, 28]. 798 

Tissue collection 799 

Mice were anesthetized with isoflurane prior to decapitation. Cortex and liver were rapidly dissected, 800 

and flash frozen in liquid nitrogen. Time schedule of tissue sampling was described [14].   801 

RNA-sequencing 802 

Frozen cortex samples were processed as described in [14]. Liver samples were stored at -140°C and 803 

prepared as follows: total RNA was extracted using miRNeasy kit (Qiagen; Hilden, Germany). Libraries 804 

were prepared using 10 ng/μl with Truseq Stranded RNA. Sequencing was performed on the Illumina 805 

HiSeq 4000 SR sequencer with more the 24 million reads per samples.  806 

Gene quantification from RNA-seq 807 

Gene quantification was performed as follow for both cortex and liver samples: Illumina reads were 808 

filtered using fastp [65] to keep high quality reads and remove adapter sequences. Reads were aligned 809 

on the mouse reference genome mm10 (GRCm38) using STAR v2.7.0e [66] with default parameters. 810 

Read counts was done by STAR using “--quantMode GeneCounts”, taking only reverse strand mapped 811 

reads. Genes with low counts (mean counts overall samples < 10) were filtered and normalization was 812 
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performed with edgeR [67]. Gene expression from the liver was put on Gene Expression Omnibus 813 

(GEO) to complete our previous dataset from the cortex. Batch effects were removed using Combat 814 

[68] prior fitting using our model. 815 

 816 

Human datasets 817 

Human transcriptome datasets are available on GEO: Forced Desynchrony (GSE48113) and Constant 818 

Routine (GSE39445). Experimental details performed are available in the following publications [23, 819 

27]. The following methods are a summary. 820 

Participants to the Forced Desynchrony 821 

Transcriptome data was obtained from 22 participants (mean ± SD of age, 26.3 ± 3.4 y; 11 males and 822 

11 female). All participants were white, in good health, without reported sleep problems (Pittsburgh 823 

Sleep Quality Index ≤5), and homozygous for the PER3 VNTR polymorphism (rs57875989), with equal 824 

numbers of 4/4 and 5/5 carriers (11 each). 825 

Forced Desynchrony (FD) protocol 826 

Participants underwent a first 8h baseline sleep schedule at habitual bedtime followed by a 28h sleep-827 

wake cycle. Dark-dim light (<5 lux) cycle and meals also followed a 28h cycle. Plasma melatonin levels 828 

were measured as described in [69] to assess circadian period in-vivo and schedule sleep to be in-829 

phase with melatonin levels [70]. 830 

Participants in the Constant Routine 831 

Transcriptome data was obtained from 26 participants (mean ± SD of age, 27.5 ± 4.3 y; 14 males and 832 

12 female). Participants were predominantly white (19/26), in good health, without reported sleep 833 

disorder (Pittsburgh Sleep Quality Index ≤5) and homozygous for PER3 VNTR polymorphism 834 

(rs57875989).  835 

Constant Routine (CR) protocol 836 

Participants had to stay awake for 39-41h on their bed, in their individual room in a semi-recumbent 837 

position under a low light intensity <10 lux. Hourly nutritional drinks were provided instead of meals. 838 

Blood samples were collected hourly to assess melatonin levels and every 3h for total RNA extraction.  839 

Polysomnography 840 

The EEG, EMG, and EOG (electro-oculogram) were recorded on Siesta 802 devices at a 256Hz sampling 841 

rate. After signal filtering, sleep stages were assessed according to Rechtschaffen and Kales criteria. 842 

Participants’ sleep was aligned using their melatonin phase and mean sleep amount was calculated 843 

using NREM sleep (stages 1-4) + REM sleep and considered baseline sleep onset as “ZT0” in figures.  844 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 14, 2023. ; https://doi.org/10.1101/2023.08.10.552614doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.10.552614
http://creativecommons.org/licenses/by/4.0/


30 

 

RNA extraction, microarray hybridization and processing 845 

Whole peripheral blood was collected using PAXgene Blood RNA tubes. cRNA was hybridized on a 846 

4x44K custom oligonucleotide microarray with additional probes for 20 clock/sleep-related genes.  QC 847 

and processing were performed with R package limma [71]. Probes intensities were corrected for 848 

background and Quantile normalized. Outliers detected with arrayQualityMetrics function and PCA 849 

were removed (3/714 samples). For both protocols, blood samples time-point were aligned using 850 

participant melatonin phase (i.e., defined as “time point” in FD dataset metadata, and “circadian 851 

phase” in CR dataset metadata). Probes were corrected for repeated measure on the same participant 852 

using a mixed-model with a random participant intercept and fixed effects of sleep condition (in-phase, 853 

anti-phased, 6h sleep + CR, 10h sleep + CR) and time points. 854 

 855 

Driven Damped oscillator model:  856 

The temporal dynamic of gene and probes expression were modeled according to the following 857 

equation describing a driven damped harmonic oscillator: 858 

 𝑑𝑑2𝑥𝑥
𝑑𝑑𝑡𝑡2

+ γ
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝜔𝜔0
2𝑥𝑥 = f(𝑡𝑡),  

 859 

Where 𝑡𝑡 is time, γ is the linear damping constant and  𝜔𝜔0  is the natural frequency. Here, we take the 860 

the drive f(𝑡𝑡) as the sum of a drive due to sleep-wake states and a drive due to the master circadian 861 

clock in the form of a sinewave. Specifically 862 

 f(𝑡𝑡) = 𝑓𝑓𝑆𝑆𝑆𝑆(𝑡𝑡) + 𝑓𝑓𝐶𝐶(𝑡𝑡),   

 863 

 𝑓𝑓𝑆𝑆𝑆𝑆(𝑡𝑡) =  𝛽𝛽𝑤𝑤  𝑊𝑊(𝑡𝑡) +  𝛽𝛽𝑠𝑠 𝑆𝑆(𝑡𝑡),  

 864 

 𝑓𝑓𝐶𝐶 =  𝐴𝐴 sin(𝜔𝜔𝜔𝜔 + 𝜑𝜑).  

 865 

The coefficients 𝛽𝛽𝑤𝑤 and 𝛽𝛽𝑠𝑠 describe the effect of the fraction of sleep and wake per 0.1h bin. 𝐴𝐴 and 𝜑𝜑 866 

are respectively the amplitude and the phase of the circadian drive. The angular velocity 𝜔𝜔 of the 867 

sinewave was set to 2𝜋𝜋
24

 , which represents the synchronization of the SCN by the 12:12 light-dark cycle.  868 
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Numerical solution  869 

In order to find optimal parameters for the dynamics of each gene expression we (repeatedly) 870 

numerically integrated the driven harmonic oscillator. We first transformed the second order ordinary 871 

differential equation (ODE) into  two first order ODEs,  872 

𝑥𝑥′1 =  𝑥𝑥2 873 

𝑥𝑥′2 = 𝐹𝐹 − γ 𝑥𝑥2 −  𝜔𝜔0
2 𝑥𝑥1   874 

 875 

Where 𝑥𝑥1≡ 𝑥𝑥  and represents normalized mRNA counts and the prime (‘)  indicates differentiation with 876 

respect to time. We then implemented a 4th order Runge-Kutta (RK4) numerical method to 877 

approximate the solution using a fixed time step of 0.1 hour. With a fixed step size of 0.1 hour, RK4 878 

requires values every 0.05 hours. Since values of 𝑓𝑓𝑆𝑆𝑆𝑆(𝑡𝑡) were only available every 0.1 hour, we 879 

assumed that it took a piecewise constant form. 880 

 881 

Model initial values and optimization procedure 882 

Equilibrium position of the model was set as followed. For each gene or probe, we fitted a cosine to 883 

the baseline gene expression (Time 24-48 in mice, FD: in-phase in human) and used the intercept of 884 

the model as the default equilibrium position. Initial values of position 𝑥𝑥1(0) and speed 𝑥𝑥2(0) were 885 

set at the equilibrium position of the model and at 0, respectively. The baseline sleep-wake cycle (mean 886 

baseline sleep in mice, habitual bedtime in human) was repeated for 20 days prior recordings to let 887 

the model reach steady state. In humans, an extra free parameter was set for the oscillator equilibrium 888 

position in the CR experiment to consider mean difference between FD and CR. This effect could not 889 

be corrected in microarray processing directly as no RNA sampling point overlap between experiments, 890 

but can be corrected with our model as habitual bedtime sleep are comparable between FD and CR. 891 

Optimization was performed using the box-constrained PORT routines method (nlminb) implemented 892 

in the optimx/R package. Optimization was done by minimizing the Residual Sum of Square (RSS) 893 

between the fit of the model and the expression value of the gene/probe analyzed. A penalization 894 

procedure of the RSS was performed to avoid unstable fit in baseline. The maximal and minimal 895 

position of the oscillator in the baseline were compared with the position of the oscillator in the 5 days 896 

prior baseline (replicated baseline) at the corresponding time. The squared difference was added to 897 

the RSS with a weight of 1000. We optimized our model for opposite coefficient sign between sleep 898 

and wake and with a minimal 12h period of the natural frequency of our oscillator, to avoid fitting 899 

oscillation frequencies too high with respect to gene expression sampling rate. We used multiple 900 

starting values for the optimization procedure in an attempt not to reach local optima.   901 
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Model solution 902 

Once optimal parameters were found, we used the analytical solution to decompose the response into 903 

the part of the response that was a result of the circadian drive and the part of the response that was 904 

a result of the sleep-wake drive, see the Supplementary Material for further details. 905 

Model Statistics 906 

Goodness of fit was estimated using Kendall’s tau ranked correlation between model fit and expression 907 

values. Bayesian Information Criterion (BIC) of the model was calculated from the Negative log 908 

likelihood (NLL), assuming that model residuals were independent and followed a Gaussian 909 

distribution. 910 

𝑅𝑅𝑅𝑅𝑅𝑅 =  �(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�)2,
𝑛𝑛

𝑖𝑖=1

  911 

𝑁𝑁𝑁𝑁𝑁𝑁 = �
𝑛𝑛
2
� ∗ �log(2𝜋𝜋) + log �

𝑅𝑅𝑅𝑅𝑅𝑅
𝑛𝑛
� + 1�, 912 

𝐵𝐵𝐵𝐵𝐵𝐵 =  −2(−𝑁𝑁𝑁𝑁𝑁𝑁) + 𝑘𝑘 log(𝑛𝑛). 913 

Where n is the number of samples, 𝑦𝑦𝑖𝑖  the gene expression value at time-point i, and k the number of 914 

free parameters of the model + 1 (the biased estimator of the error variance 𝜎𝜎𝑒𝑒2�). For our model (H1): 915 

k = 7 for mouse dataset and k=8 for human dataset. For the flat model (H0): k=2 for mouse dataset and 916 

k=3 for human dataset. 917 

 918 

PCA analysis 919 

PCA analysis in mouse and human and projection of model fitted values were performed using R 920 

package FactoMineR [72]. The ellipses were computed using 95% confidence interval of time-points 921 

barycentre.  In human, missing values were imputed using R package missMDA [73]. 922 

  923 

Cortex and liver time delay 924 

To estimate local biological time from clock genes in mouse cortex and liver, we used the R package 925 

TimeSignatR (https://github.com/braunr/TimeSignatR) from [60]. Baseline gene expression was used 926 

to train the elastic net, penalty parameter alpha and lambda were chosen using a leave-one-out cross 927 

validation. Predicted values were obtained from gene expression after sleep deprivation and from 928 

model fitted expression.  929 

Using the same strategy, individual gene local biological time was estimated using fitted expression 930 

and fitted expression rate in baseline. Expression and Expression rate were fitted to the cartesian 931 

coordinate angle of a 24h clock using a bivariate linear model [60]. Genes were filtered for a minimal 932 

R2 value of the model linear model of 0.6. 933 
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Code Availability 935 

https://github.com/mxjan/SWDMr 936 
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Figure legends 945 

Figure 1: Manipulations of sleep-wake rhythms in mice and humans. (A) Sleep deprivation (SD) in 946 
mice. Mean fraction of time-spent-awake per hour of recording time (blue line/area, n=12 mice) during 947 
baseline (BSL; Days 1 and 2), 6h SD (pink square starting at t=48 on Day 3) and recovery (Days 3-5 and 948 
10). A 2nd batch of mice, undergoing the same experimental protocol, was used for tissue sampling of 949 
cortex (blue) and liver (brown points; n=78 mice). Grey background represents the dark periods of the 950 
12h:12h light-dark cycle. Note that the last 2 samples were taken 7 days after the SD. (B) Forced 951 
Desynchrony (FD) in humans. Mean wake fraction (blue area, n=32) in participants that underwent FD 952 
using 28h sleep-wake cycles. Blood samples (red points) were taken during a 28h day when participants 953 
slept in-phase and during a 28h day sleep occurred in anti-phase with their circadian melatonin profile. 954 
Grey boxes represent scheduled sleep opportunities. (C) Constant routine (CR) experiments in humans. 955 
Mean wake fraction (blue area, n=36) in participants that underwent a CR after a 7-day control (top 956 
panel: ‘10h sleep’, i.e., 8.5h sleep/24h) and a restricted (bottom panel: ‘6h sleep’, i.e., 5.7h sleep/24h) 957 
sleep-opportunity schedule. Blood samples (red points) were taken during the CRs. (D) Examples of 958 
gene expression dynamics in cortex (blue), liver (brown), and blood (red symbols) with mean gene 959 
expression (95% confidence interval) per time-point. Solid black lines connect time points, dashed grey 960 
lines replicate baseline in mice (before SD) or in-phase dynamics in human. Details as in Panels A-C. 961 

Figure 2: Modeling gene expression using a damped driven harmonic oscillator. (A) Schematic of 962 
circadian view of generation of rhythmic gene expression (left) in which the SCN directly or indirectly 963 
drives or entrains oscillations of gene expression generated by local circadian clocks (TTFL) in 964 
peripheral cells. Sleep view (middle) separates circadian and sleep-wake related genes, each regulated 965 
by different dynamics. The integrated view (right panel) considers each gene to be regulated to a 966 
varying degree by systemic circadian and/or sleep-wake dependent influences which act as drives on 967 
gene expression in the periphery. (B) Illustration of the damped driven harmonic oscillator model. 968 
According to a gene’s intrinsic properties, two types of expression dynamics can be observed when 969 
expression is removed from equilibrium and no drive is applied: an underdamped system oscillating 970 
with a decaying amplitude (upper panels, hypothetical Gene A, damping ratio ζ < 1) and an 971 
overdamped system (bottom panels, Gene B, ζ > 1) where expression returns to equilibrium position 972 
without oscillation according to exponential decaying function (red-dashed lines) with a time constant 973 
τ determining the time it takes to recover. τ depends on ζ and the natural frequency, ω0. For each 974 
gene, examples of two ω0 values are given: 0.35 and 0.13 [rad/h], illustrated in the upper and lower 975 
row panels, respectively. External recurring driving factors are required to maintain gene expression 976 
entrained and rhythmic (circadian drive in yellow, sleep-wake drive in purple; middle two panels). The 977 
difference between ω0 and the frequency of the external drive determines the phase-lag (ϕ-lag) 978 
between drivee and response. Combing the responses to each drive generates the observed rhythm 979 
in gene expression (right panels). Pink areas represent sleep deprivation. (C) Model fit for expression 980 
of Clock in liver (left) and cortex (right panels). Circadian (yellow) and sleep-wake (purple) drives 981 
applied on the model (bottom), circadian and sleep-wake responses to the drives giving the best fit 982 
(middle), fitted expression in black with mean gene expression (95% confidence interval, upper panel). 983 
Dashed grey lines replicate baseline. SWrc is the relative contribution of the sleep-wake response (see 984 
Results). 985 
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Figure 3: Model fits for the gene-expression examples in Figure 1D. Fitted dynamics (black line) of 986 
cortical Homer1 expression follows almost exclusively the sleep-wake response (purple line) while 987 
Bmal1 in the liver the circadian response (yellow line). Bmal1 and Acot11 in cortex and NCOR1 in blood 988 
follow a combination of a sleep-wake and circadian response. SWrc: Sleep-wake relative contribution. 989 
Details as in Fig. 1D. 990 

Figure 4: Model performance against alternative hypotheses. (A) Our circadian and sleep-wake driven 991 
oscillator model (H1) versus 4 alternative models (HA): i) a linear model with independent time-point 992 
effect, ii) a sleep-wake driven oscillator only, iii) a circadian driven oscillator only, iv) a circadian 993 
function with an additive effect of sleep-wake (‘masking’; see Results). ∆BIC (upper panels) of H1 vs. HA 994 
for 1000 rhythmic genes and probes during baseline for blood (red), cortex (blue), and liver (brown). 995 
Positive values represent a better fit for H1, negative values a better fit for HA. Values between -2 and 996 
+2 can be considered as low evidence for either model. ∆Kendall’s tau (lower panels) of H1 vs. HA shows 997 
goodness of fit between models. Negative values support H1. (B) Detection of rhythmic genes in the 998 
entire transcriptome. ∆BIC of H1 versus the null hypothesis H0 of no rhythmic expression (𝑦𝑦𝑖𝑖 =  𝛽𝛽0 +999 
 𝜀𝜀). Genes and probes with a ∆BIC > 2 are considered to be sleep-wake and/or circadian driven resulting 1000 
in their rhythmic expression under unperturbed and/or perturbed conditions in liver (top, brown), 1001 
cortex (middle, blue), and blood (bottom, red). Right panels: goodness of fit (Kendall’s tau) for rhythmic 1002 
genes in the three tissues. Boxplots depict Kendall’s tau between fitted values and observed value for 1003 
rhythmic genes in liver, cortex, and blood. 1004 

Figure 5: Principal component analysis (PCA) of the rhythmic transcriptomes. (A) PCA in the mouse 1005 
cortex and (B) liver during baseline (BSL), sleep deprivation (SD), and recovery (REC), (C) in human 1006 
blood during the Forced Desynchrony (FD) when sleeping ‘in-phase’ (left) and ‘anti-phase’ (right 1007 
panels), and (D) in human blood during the Constant Routine (CR) after the 10h sleep (left) and 6h 1008 
sleep opportunity (right panels). Variance explained by each PC in brackets. Projected model fits in PCA 1009 
space during BSL and habitual bedtime as dashed lines, fitted expression during SD + REC, FD, and CR 1010 
conditions as solid lines. Arrowheads point into the direction of the progression in time. Ellipses delimit 1011 
95% confidence intervals of data acquired at each time point. Corresponding circadian (yellow) and 1012 
sleep-wake (purple line) driven responses are plotted alongside the PC axes. Note double labels at time 1013 
axes corresponding to the respective times in the experiment for the two conditions (see time courses 1014 
below). The complete simulated time-course of the circadian and sleep-wake driven responses for PC1 1015 
and -2 is illustrated underneath each panel for each of the experiments. Pink and grey boxes indicate 1016 
the SD and dark periods, respectively, in mice; grey boxes for human experiments the scheduled sleep 1017 
episodes. 1018 

Figure 6: Relative contribution of circadian and sleep-wake driven responses to gene expression. (A) 1019 
Relative sleep-wake response contribution (SWrc, see Results) versus damping ratio (ζ) for all rhythmic 1020 
genes in cortex (blue), liver (brown), and blood (red dots). Black lines represent 2D gene density. (B) 1021 
Venn diagrams of all rhythmic genes (left) and the 1425 rhythmic genes common among the three 1022 
tissues: Sleep-wake driven (SWrc > 0.5, middle) and circadian driven (SWrc < 0.5, right panel) genes in 1023 
mouse cortex and liver and human blood. 1024 

Figure 7: Sleep deprivation (SD) changes timing of gene expression within and between tissues. (A) 1025 
Sleep-wake response contribution (SWrc) for clock-gene expression in mouse cortex (blue) and liver 1026 
(brown) and blood (red) in humans. In blood, mean SWrc was estimated from the probes of the same 1027 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 14, 2023. ; https://doi.org/10.1101/2023.08.10.552614doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.10.552614
http://creativecommons.org/licenses/by/4.0/


36 

 

clock genes. (B) Fitted and predicted local biological time in cortex and liver based on clock-gene 1028 
expression. The tissue’s local time [expressed as zeitgeber time (ZT) in baseline; ZT0/24, -3, -6, -12, and 1029 
-18] was fitted using baseline clock-gene expression with an elastic net model (see Results). Local time 1030 
is then predicted for gene expression during SD (T51ZT3, T54ZT6) and subsequent recovery (REC, i.e., 1031 
T60ZT12, ZT66ZT18, and T72ZT0). Projected fits based on our oscillator model as dashed (baseline) and solid 1032 
(response to SD) lines. Lower graph depicts the cortex-liver tissue differences in predicted ZT. (C) 1033 
Estimated relative phase and amplitude of Bmal1 from expression level and expression rate of the 1034 
model. Baseline points T24/T48ZT0, T30ZT6, T36ZT12, and T42ZT18 are fitted to a 24h clock. Time on the 1035 
horixontal-axes are given both in time-of-experiment and ZT (in parentheses). (D) Relative phase and 1036 
amplitude individually fitted (upper row panel) and predicted (middle/lower panel) for the expression 1037 
of all rhythmic genes in cortex (left, blue dots) and liver (right, brown dots). Larger black dots represent 1038 
‘point-of-gravity’ of level and rate of expression of all genes. 1039 

Figure 8: Responses to recovery sleep. (A) Effect-size of differential gene expression at the end of 1040 
sleep-deprivation (SD; ZT6SD vs. ZT6 in baseline) versus the model-derived recovery time-constant τ in 1041 
mouse liver (brown) and cortex (blue) for all rhythmic genes with a sleep-wake driven contribution 1042 
(SWrc > 0.25). Relative distributions for τ and effect size plotted along their respective axes. (B) Left 1043 
panel: Mfsd4a expression (blue bars, 95% ci), its model fit (solid black line; dotted line replots baseline 1044 
fit), and sleep-wake distribution (purple area; upper graph), with recovery vs. baseline effect-size 1045 
(black line) after SD and hourly values of sleep gain during recovery (purple area; lower graph). Center 1046 
panels: Effect-size (black lines) when 0-, 6-, 12-, or 18h of the actual recovery sleep recording (as 1047 
opposed to baseline sleep) was used for predicting gene expression after SD. Purple area indicates 1048 
sleep gain included in each of the 4 simulations. Dashed red lines are the exponential parts of the 1049 
oscillator solution when using only baseline sleep after SD (0h recovery sleep; also see Fig. 2B - left 1050 
panels). Blue vertical line marks the time-point at which the exponential part reaches an effect size of 1051 
+1.0 or -1.0, which in subsequent analyses is considered the time at which gene expression has 1052 
recovered. Right panels: Time point of gene recovery when including 0- to 42h of recovery sleep. (C) 1053 
as B but for Paqr8. (D) Histogram of gene recovery time-points for all rhythmic genes with a SWrc > 1054 
0.25 in cortex (upper, blue) and liver (lower panel, brown) using the actual (42h) recovery sleep. (E) 1055 
Gain in gene recovery time for all genes in D in cortex (left) and liver (right). Analyses as in right-hand 1056 
panels of B and C but here the differences from one time-point to its preceding time-point are plotted. 1057 
As more sleep recovery recording was included in the simulation, genes either advanced (green) or 1058 
delayed (red) their recovery time. Data were filtered to show only genes with a minimum of 1h advance 1059 
or delay. (F) Effect size for differential PORCN expression (FD vs. baseline) for the expression simulated 1060 
during the entire FD protocol and for 10 repetitions of baseline sleep-wake patterns under 24h days 1061 
after the second in-phase condition. Vertical blue line indicates the time when maximum effect size 1062 
was reached (Time = 177h). (G) Time of maximum effect size modeled in the FD protocol for all 1063 
rhythmic genes.  1064 
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