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ABSTRACT

Clear cell renal cell carcinoma (ccRCC) is the most prevalent form of renal cancer,
accounting for over 75% of cases. The asymptomatic nature of the disease contributes to late-
stage diagnoses and poor survival. Highly vascularized and immune infiltrated
microenvironment are prominent features of ccRCC, yet the interplay between vasculature
and immune cells, disease progression and response to therapy remains poorly understood.
Using droplet-based single-cell RNA sequencing we profiled 50,236 transcriptomes from
paired tumor and healthy adjacent kidney tissues. Our analysis revealed significant
heterogeneity and inter-patient variability of the tumor microenvironment. Notably, we
discovered a previously uncharacterized vasculature subpopulation associated with epithelial-
mesenchymal transition. The cell-cell communication analysis revealed multiple modes of
immunosuppressive interactions within the tumor microenvironment, including clinically
relevant interactions between tumor vasculature and stromal cells with immune cells. The
upregulation of the genes involved in these interactions was associated with worse survival in
the TCGA KIRC cohort. Our findings demonstrate the role of tumor vasculature and stromal
cell populations in shaping the ccRCC microenvironment and uncover a subpopulation of cells

within the tumor vasculature that is associated with an invasive phenotype.


https://doi.org/10.1101/2023.08.09.552568
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.09.552568; this version posted August 13, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

made available under aCC-BY-NC-ND 4.0 International license.

INTRODUCTION

The asymptomatic nature of clear cell renal cell carcinoma (ccRCC), the most common
renal cancer, often leads to diagnosis in late Il or IV stage with survival probability of 59% and
20%, respectively. Approximately 30% of cases metastasizel. Previous efforts aimed at
characterizing ccRCC tumors have provided valuable insights into the genomic?,
transcriptomic and epigenetic®* landscape of both the tumor and the tumor microenvironment
(TME). Itis now well-established that the most abundant genomic alterations in ccRCC involve
the loss of regions in 3p chromosome (occurring in >90% of cases) and von Hippel-Lindau
(VHL) gene mutations (>50% of cases). These alterations lead to impaired degradation and
abnormal accumulation of hypoxia-inducible factors (HIFs)?2, resulting in a highly vascularized
tumor appearance. Moreover, ccRCC tumors exhibit a high degree of immune infiltration>®,
Consequently, the most common first-line treatment options for the localized disease involve
surgical removal of the tumor, while advanced disease may be treated with VEGF pathway
inhibitors, standalone or in combination with immune checkpoint blockade therapies?®’?2,
However, owing to a high degree of intra- and inter-tumor heterogeneity, these treatments
benefit only a fraction of patients, and often result in acquired resistance and further disease
progression?°.

Recent advancements in microfluidics and molecular barcoding have enabled high-
throughput transcriptional, epigenomic and even multi-omic tissue profiling at the single cell
resolution, yielding important biological insights. For instance, using single-cell RNA
sequencing (scRNA-Seq) a plethora of single-cell resolution healthy and cancerous tissue
atlases have been constructed, revealing the phenotypic complexity and plasticity of the tumor
microenvironment!®*3, In the context of ccRCC, single-cell techniques have shed light on the
cell of origin of ccRCC*®, malignancy-related transcriptional programs of the tumor?® and the
heterogeneous tumor-associated immune cell infiltrate'”2°, Furthermore, the phenotypical
changes of immune cell populations along advancing disease stage?' and immunotherapy
treatment'®22 have been characterized in detail.

Upon the widespread adoption of the single cell profiling techniques there was a
noticeable paradigm shift in the field of cancer research — a systemic view of the tumor as a
highly orchestrated ecosystem took over the tumor cell-centric point of view. This shift has
highlighted the crucial role of other players in the TME, including various subpopulations of
stromal and endothelial cells that have been discovered to have an impact on disease
progression, response to therapy and patient survival?®24. While considerable efforts have
been made to characterize the ccRCC tumor microenvironment at the single cell level, most
of the previous studies focused on tumor or immune cells, leaving the role of other cells types

within the ccRCC TME poorly understood. In this study, we aimed to address this gap by
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profiling fresh ccRCC tumor and matched healthy adjacent tissue samples using droplet-
based scRNA-Seq, omitting cell sorting and enrichment steps in order to capture the diverse
phenotypes present in the TME, including the stromal cell populations. As a result, we
captured all major specialized epithelial and endothelial cell populations in healthy adjacent
kidney tissue, including a progenitor-like epithelial cell phenotype resembling the cell of origin
for ccRCC. Furthermore, we described five tumor endothelium subpopulations and discovered
a previously uncharacterized tip-like cell phenotype. Within the TME, we identifed well-
described immunosuppressive tumor associated macrophage (TAM) populations and
exhausted infiltrating T cells?*. Through cell-cell communication analysis, we inferred the
interactions between various cell types within the TME, revealing tumor vasculature and
stromal cell involvement in maintaining an immunosuppressive niche. Expression of genes
involved in these interactions was associated with worse overall survival in the TCGA KIRC
cohort. Overall, our results complement ongoing ccRCC TME characterization efforts by
introducing a novel endothelial phenotype and highlighting the importance as well as potential

therapeutic relevance of stromal and endothelial cells in the TME.
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93 RESULTS

94

95  Single cell profiling of healthy and tumor tissues reveals inter-patient variability and epithelial

96 ccRCC progenitor-like population in healthy tissue

97

98 To dissect the transcriptional landscape of the human ccRCC tumor microenvironment

99 (TME), we profiled fresh tumor (n=8) and healthy adjacent (n=9) kidney tissue samples using
100 a droplet-based scRNA-seq platform (Figure 1a). To capture the diverse range of cell types
101  constituting the TME, our experimental strategy involved rapid isolation of dissociated cells in
102  microfluidic droplets, without any enrichment or sorting steps (see Methods). Following quality
103  control, batch correction and doublet removal (see Methods), we obtained a total of 50,236
104  single cell transcriptomes that were then clustered using a graph-based spectral clustering.
105 The cell types belonging to each cluster were identified manually based on differentially
106  expressed top 25 marker genes (adjusted p-value <0.05; cluster vs the rest of cells, Mann-
107  Whitney U test with Benjamini-Hochberg correction), validated by extensive literature review
108  (Figure 1b, f and Supplementary file Table 1).
109
110 Healthy-adjacent samples displayed all major epithelial and endothelial cell
111  populations characteristic of a healthy kidney (Figure 1b)?5-?’. By omitting the cell enrichment
112 step, we could successfully capture diverse cell types that are known to be highly sensitive to
113  handling and extended workflow procedures?®. For example, we captured both, ascending
114 (DNASE1L3) and descending (AQP1, SLC14A1) parts of the vasa recta, as well as glomerular
115 endothelium marked by IGFBP5 and SOST expression. The epithelial compartment
116  encompassed cells from various specialized nephron segments, including rare populations
117 such as intercalating cells of type A and B (expressing marker genes ATP6V1G3 and
118 SLC26A4, respectively), as well as podocytes (NPHS2, PODXL). Interestingly, in contrast to
119 tumor, all healthy tissue samples comprised a population of epithelial progenitor-like cells,
120 similar to that described by Young et al.}* (Figure 1e). This population expressed genes
121  associated with de-differentiated injured kidney epithelium, such as PROM1 and ITGB8 %, as
122 well as CD24 and SOX4, which have been implicated in kidney development and mark
123 proximal tubule and distal nephron response to acute kidney injury®°. Therefore, the epithelial
124  progenitor-like cell population in our dataset likely represents a de-differentiated phenotype,
125 and a potential cell of origin for ccRCC disease.
126
127 The tumor samples encompassed localized and locally advanced pTla and pT3a
128 pathologic stages of ccRCC (Figure 1c, Supplementary table S1). These samples exhibited

129  high immune cell infiltration, including several populations of tumor-associated macrophages
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130 and T cells (Figure 1b). The stromal cells separated into myofibroblast (type I, IV and VI
131  collagens, FN1, TIMP2, ACTA2), vascular smooth muscle cell (TAGLN, ACTA2, SNCG) and
132  mesangial/vSMC (BGN, PDGFRB, TAGLN) clusters. Tumor endothelium completely
133 separated from healthy-adjacent endothelial populations (Figure 1b) and included ascending
134 vasa recta-like cells (ACKR1, DNASE1L3) as well as heterogeneous vasculature
135  subpopulations expressing tumor-associated endothelial markers PLVAP, VWF, SPARC,
136 INSR, ANGPT2, and others (Supplementary tables S2, S3). Tumor vasculature exhibited
137  distinct expression patterns as compared to healthy endothelium (Figure 1f, 3b). While four
138  out of five vasculature subpopulations identified in our data have been described previously#
139 16 one tumor vasculature subpopulation (Tumor vasculature 3 comprising 151 cells) appeared
140 to be novel in the context of ccRCC and featured upregulation of LY6H, PGF, LOX, CHST1
141  and type IV collagen (Figure 1f, 3c), consistent with a tip-cell phenotype3!.

142

143 The tumor cells in all samples expressed canonical markers CA9, NDUFA4L2, VEGFA
144  and segregated into three subpopulations, out of which one (Tumor cells 1) was patient-
145  specific (126 cells in population, Supplementary figure Sla, b). Notably, these cells exhibited
146  elevated expression of progenitor-like phenotype marker SLC17A3, which was not highly
147  expressed in the healthy-adjacent epithelial progenitor cells (Figure 1e, Supplementary figure
148  S1b). Furthermore, Tumor cells 1 population was the most distinct from other tumor cells
149  based on unsupervised hierarchical clustering (Figure 1f, Supplementary figure S1b). These
150 cells over-expressed genes such as vitamin D binding protein GC and HLA-G, the latter being
151 involved in immunosuppressive interactions (Figure 2c), as well as FABP7, crucial for lipid
152 uptake and storage in hypoxic conditions when de novo lipid synthesis is repressed®.
153  Additionally, these cells were marked by high expression of pan-cancer marker MDK?33, along
154  with IFI27 and SOD2 (Supplementary figure S1b), both of which play a role in interferon
155  response??, Consistently, Tumor cells 1 was the only tumor cell population not enriched for
156  hypoxia, but instead enriched for oxidative phosphorylation and adipogenesis (Figure 4a).
157  Considering the elevated expression of VCAM1 and SLC17A3, it is possible to envision that
158 this small patient-specific population could represent an intermediate progenitor-tumor cell
159 phenotype.

160

161 The cellular composition of tumor tissues, as expected, displayed noticeable variability
162  across the patients as compared to their matched pair of healthy-adjacent tissues (Figure 1d,
163  Supplementary Table S4). A common theme to all tumor samples was a high number of
164 immune cellsinfiltrating the TME, accompanied by almost complete loss of specialized kidney-
165 specific epithelial and endothelial cell populations (Figure 1c, d and Supplementary figure

166 Sla). Except for Tumor cells 1, no other cell phenotype was patient-specific; cell population
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167 composition analysis by patient ID confirmed adequate representation of cells of different
168  origin (Supplementary figure Sla). To quantitively assess tumor sample heterogeneity, we
169 calculated Shannon entropy for each broad cell category!!. Low entropy values for a cell
170 phenotype indicate that it is rarely shared between samples, meaning that the level of
171  heterogeneity within samples is high. In tumor samples, the heterogeneity was highest for
172  stromal, endothelial and tumor cells, whereas healthy adjacent tissue samples exhibited
173  comparatively lower heterogeneity (Supplementary figure Slc, d). Such diverse TME
174  snapshots among different patients in our and other ccRCC studies®3* suggest that patient
175 stratification may rely on the abundance of specific cellular phenotypes within the TME, rather
176  than patient-specific phenotypes. This underscores the importance of revisiting strategies for
177  biomarker selection to aid personalized treatment options in ccRCC.

178

179  Tumor associated macrophages exhibit phenotypic heterogeneity and immunosuppressive
180 tumor-immune interaction signature is associated with poor survival

181

182 cCcRCC is recognized as highly immune infiltrated tumor with a dynamic
183  microenvironment. The compositional changes that occur along tumor stage progression?!
184  and in response to immunotherapy treatment?* have a profound impact on patient survival.
185  Therefore, the phenotypic states of immune populations represent potentially druggable
186  targets for advanced and metastatic ccCRCC treatments.

187

188 Within the immune compartment, we identified all major lymphoid and myeloid cell
189  populations including plasma cells (IGKC, IGHG1), B cells (CD79A, MS4A1), mast cells
190 (TPSB2), NK cells (GZMB, NKG7), classical (CD14) and non-classical (FCGR3A) monocytes
191 and two major groups of T cells and macrophages (Figure 1b), in concordance with previous
192  ccRCC studies®®!°?1 As expected, the tumor samples were enriched in tumor-associated
193 macrophages (TAMs) that clustered into four transcriptionally distinct subpopulations
194  (Figure 2a). The TAM 1 and TAM 2 cells expressed genes hinting towards M1 and M2
195 polarization, respectively (Figure 2a), thus encompassing a traditional view of TAM dichotomy.
196 However, TAM 3 and TAM 4 subpopulations did not follow a clear activation pattern, despite
197 their marker genes seemed to reflect an alternatively activated macrophage phenotype
198 (Figure 1f, Supplementary file 1). For example, while the expression of certain
199 immunosuppressive genes, such as MARCO, were clearly diminished in TAM 3/4 cells, other
200 immune-response modulating genes such as VSIG42® or VSIR were highly expressed in TAM
201 4 population. In addition, among all TAM populations, TAM 4 demonstrated the highest
202  expression of complement system C1Q genes (Figure 2a), products of which are known to

203  promote tumor progression in ccRCC by interacting with tumor-produced complement system
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204  molecules®. Interestingly, some complement components were not only specific to the tumor
205 cells but also present in the stromal compartment, suggesting potential stromal cell
206 involvement in tumor progression (Supplementary figure S2a). These findings support the
207 notion that ccRCC TME is enriched in suppressive macrophages that adapt to the
208  microenvironment-derived signals influencing disease progression®19:21,

209

210 The lymphoid compartment predominantly consisted of CD8 T cells (CD8B, DUSP4),
211  CDA4regulatory T cells (FOXP3, TNFRSF4), resting/memory T cells (IL7R, CD52), cytotoxic T
212 cells (XCL1, KLRB1) and natural killer cells (GZMB, NKG7). These subpopulations expressed
213  multiple exhaustion markers (Figure 2b), with classic immune-checkpoint molecule PDCD1
214  expressed abundantly in CD8 T cell cluster and CTLA4 enriched in regulatory T cells. The
215  cytotoxic T cell population shared the exhaustion pattern with NK cells characterized by high
216  expression of CD160, EOMES, CD38 and CD69. As expected, resting/memory T cells
217 displayed the least exhausted phenotype compared to other lymphoid cell populations
218 (Figure 2b). Given the established exhaustion profile of Ilymphoid cells and
219 immunosuppressive phenotype of myeloid cells'®2138 we evaluated the crosstalk of these
220  immune cell populations and tumor cells.

221

222 Receptor-ligand analysis (see Methods) revealed multiple interactions involved in
223  chemokine processing, immune suppression and sustained survival of tumor cells (Figure 2c,
224  Supplementary tables S5, S6). For example, tumor cells were predicted to communicate with
225 monocytes and TAMs through the immune checkpoint HLA-G — LILRB1/2 axis, which is
226  involved in promoting the immunosuppressive M2 phenotype and immune escape of the
227  tumor®. Interestingly, both pro-inflammatory (M1) and anti-inflammatory (M2) TAMs received
228  signals from tumor cells via SPP1 — PTGER4 interaction, known to promote macrophage
229  polarization towards tumor supporting phenotype in hepatocellular carcinoma®. Another
230 important interaction observed in the TME involved T-cell co-stimulatory CD27 — CD70 axis,
231 targeted at CD8 T cells and CD4 regulatory T cells. Recent studies have shown that this cell-
232 cell interaction is associated with a pro-tumoral effect, primarily driven by chronic stimulation
233 of T cells leading to exhaustion, enhanced survival of regulatory T cells, and recruitment of
234  TAMs*. Furthermore, the expression of interaction signature (gene set of both receptors and
235 ligands, Supplementary table S7) was associated with significantly lower overall survival
236  (Figure 2d, Supplementary table S8) and steadily increased along the progression of the
237 disease in the TCGA KIRC dataset (Figure 2e). Therefore, our analysis of the ccRCC TME
238 reveals the extensive network of immune and cancer cell interactions that are involved in
239  establishing an immune-suppressive TME for sustained tumor survival and growth.

240
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241  Tumor endothelial cells are diverse and play a role in re-shaping the tumor microenvironment,
242  associated with worse overall survival

243

244 The highly vascularized appearance of ccRCC tumors is often attributed to the
245  abnormal accumulation of hypoxia-inducible factors?® that create pseudohypoxic conditions
246  and subsequently increase production of angiogenic factors. To this day, the heterogeneity
247  and possible regulatory role of the tumor vasculature in ccRCC remains poorly described.
248  Focusing on ccRCC endothelium in our scRNA-Seq dataset we identified five tumor
249  vasculature (TV) subpopulations (Figure 3a, ¢) that were markedly distinct from healthy kidney
250 endothelium (Figure 3b) and featured upregulation of genes important in vascularization,
251 angiogenesis and disease progression. For instance, among the multiple overexpressed
252  genes (Supplementary table S9), the TV cells displayed elevated levels of the fenestration
253  marker PLVAP, which is recognized as a therapeutic target in hepatocellular carcinoma®?;
254  ANGPT2, which stimulates angiogenesis in autocrine manner and is involved in recruitment
255  of immunosuppressive TAMS“3; IGFBP7, which is clinically used acute kidney injury urinary
256  biomarker**. Moreover, endothelial migration stimulating insulin receptor (INSR) was
257  overexpressed in tumor endothelium and is known to be associated with poor overall survival
258  in bladder cancer, which, similarly to ccRCC, is frequently resistant to VEGF pathway targeted
259 therapy®. These findings highlight the abnormal, fenestrated nature of tumor endothelial cells
260 and might provide future guidance for tumor-specific vasculature identification in ccRCC.

261

262 Within the tumor vasculature we found an ascending vasa recta-like population that
263  was transcriptionally closer to the healthy endothelium cells than to other tumor vasculature
264  cells (Figure 3c), as noted in previous work®. Intriguingly, our ccRCC atlas also unveiled a
265  novel, uncharacterized population of tumor vasculature (referred to as TV 3) that appeared as
266  the most distinct from the rest of TV cells (Figure 3c). This population was marked by high
267  expression of tip cell markers LOX, PXDN, LY6H and PGF314® (Supplementary figure S3,
268  Supplementary table S10), indicative of an invasive phenotype. Furthermore, TV 3, along with
269 TV 1 and TV 4, displayed elevated expression of extracellular matrix constituents, including
270  pro-angiogenic and potentially pro-metastatic collagen type IV and perlecan (HSPG2)
271  (Figure 3c)*"*°. Meanwhile, TV 2 overexpressed multiple genes implicated in tumor
272  progression, such as VEGF receptor FLT1, ESM1, ANGPT2, KCNE3, coagulation factor VIII
273  (F8) (Figure 3c), which are involved in tumor-associated angiogenesis***°. In addition, TV 2
274 was marked by high expression of autotaxin (ENPP2), a potent stimulator of tumor
275 development and invasion, which has been associated with acquiring resistance to the
276  antiangiogenic drug sunitinib in ccRCC>! (Figure 3c). Interestingly, a fraction of cells from all

277  tumor vasculature sub-populations expressed INHBB and SCGB3A1 (Supplementary figure
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278  S3), which, in concert with perivascular TNC (in our dataset expressed by myofibroblasts,
279  Figure 5b), have recently been demonstrated to orchestrate the pro-metastatic niche in lung
280 metastasis models in mice®2. Thus, the tumor vasculature in ccRCC appears to be highly
281  heterogeneous and expresses a variety of angiogenesis-related and tumor-promoting factors.
282

283 Subsequently, we investigated the potential interactions between tumor vasculature
284  and other cell types within the TME. Cell-cell communication analysis using CellPhoneDB®3
285 revealed crosstalk between vascular and immune cells involved in angiogenesis, immune
286  suppression and adhesion (Figure 3d, Supplementary figure S2b). Unexpectedly, our analysis
287  revealed that tumor vasculature delivers immunosuppressive signals previously thought to be
288 confined to the tumor cells, such as the interactions between TIGIT and NECTIN2
289  (Supplementary figure S2b) or HLA-F and LILRB1/2 (Figure 3d). Also, we observed several
290 known interactions mediated by myeloid cell produced TNF-a with tumor endothelium i.e TNF
291 - NOTCH1 (Supplementary figure S2b), which induces JAG1 expression and enhances
292  migration and proliferation of endothelial cells upon subsequent VEGF exposure®.
293 Importantly, a higher degree of cell-cell communication between tumor vasculature and
294  immune cells, as evaluated by higher expression of receptor and ligand pairs, was found to
295  result in a significantly lower overall survival in TCGA KIRC cohort (Figure 3e).

296

297 These findings suggest notable tumor vasculature participation in tumor progression
298 and tumor microenvironment shaping through the expression of angiogenesis-related genes,
299  tumor-promoting extracellular matrix molecules, and active Iimmunosuppressive
300 communication with immune cells.

301

302 A novel subpopulation of tumor endothelium expresses genes involved in epithelial-
303 mesenchymal transition associated with worse patient survival

304

305 The novel tip cell-like tumor vasculature population (TV 3 in Figure 3a) expressed LOX,
306 PXDN, LY6H and PGF, which are not only denoted as tip cell markers, but have also been
307 implicated in tumor growth promotion within the TME. For example, placental growth factor
308 (PGF), a member of VEGF family, can directly interact with VEGF receptors and increase
309 vascular permeability while promoting M2 macrophage polarization®®. In PGF-deficient mice,
310 tumor-associated M1 macrophage polarization is largely restored while tumor vasculature
311  appears normalized®®. Lysil oxidase LOX and peroxidase PXDN are involved in cross-linking
312  of the collagen type IV rich extracellular matrix and basement membrane, which is essential
313  for growth factor induced endothelial cell proliferation and survival®’. Inhibition of ECM cross-

314 linking through lysil oxidase knockdown has been shown to impair vessel sprouting®.

10
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315 Therefore, the tumor vasculature 3 population represents the leading tip cell phenotype in
316 angiogenic sprouting and is potentially involved in promoting tumor progression.

317

318 Molecular Signatures Database Hallmark gene set over-representation analysis in
319 tumor, tumor vasculature and stromal cell populations (top 100 marker genes) revealed, as
320 expected, hypoxia and glycolysis terms in tumor cells (Figure 4a, Supplementary table S11).
321 However, this analysis also uncovered an enrichment of epithelial-mesenchymal transition
322 (EMT) associated genes in all tumor vasculature and stromal cell subpopulations.
323 Interestingly, the overexpression of EMT pathway overlapping genes for AVR-like tumor
324  vasculature (Figure 4b) and TV 3 population (Figure 4c) was associated with a significantly
325 worse overall survival in the TCGA KIRC cohort. In this context, it is important to note that the
326 specific genes overlapping with the EMT differed between these subpopulations
327  (Supplementary table S12). Also, even though other cell populations, such as stromal cells
328 and the rest of tumor vasculature had a significant overlap with the EMT pathway
329 (Supplementary figure S4a), no effect on patient survival in the TCGA KIRC cohort was
330 observed (Supplementary figures S4b-g). Overall, our findings highlight the presence of a tip
331 cell-like tumor endothelium subpopulation associated with an aggressive phenotype,
332  potentially influencing ccRCC disease progression and survival.

333

334  Stromal cells remodel the ECM and potentially contribute to immunosuppression of TAM
335 populations

336

337 Finally, we investigated the putative roles of stromal cells in the ccRCC tumor
338  microenvironment. While stromal cells have been recognized as important components of the
339 TME®* their specific contribution in ccRCC have received much less attention compared to
340 immune or tumor cells. Graph-based clustering of our dataset revealed three cell populations
341 within the stromal cells: vascular smooth muscle cells (vSMCs), myofibroblasts and
342 mesangial/lvSMCs (Figure 5a, b, Supplementary table S13). The vSMCs expressed markers
343 TAGLN, ACTA2 and MYH11, while myofibroblasts were enriched for ECM constituents
344  (Collagen types I, Ill, IV, VI and fibronectin) including markers TIMP1 and ACTA2 (Figure 5b).
345 The precise annotation of the third stromal cell population was challenging due to
346  simultaneous upregulation of mesangial marker PDGFRB and vSMC genes (Supplementary
347 file Table 1). Interestingly, this population featured substantial transcriptional differences
348 between tumor and healthy tissue (Supplementary figure S5, Supplementary table S14). In
349  tumor samples, the mesangial/vSMC population overexpressed tumor marker NDUFA4L?2 as
350 well as some stress-related genes, such as CD36, which is upregulated in chronic kidney

351 disease and associated with poor prognosis in ccRCC®%° and renin (REN), which is

11
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352  expressed by mesangial cells under disturbed homeostasis®® (Supplementary figure S5).
353 Thus, it appears that the mesangial/lVSMC population is reactive to the disruptive
354  microenvironmental changes exerted by the tumor.

355

356 Cell-cell interaction analysis between stromal and immune cells revealed putative
357 interactions related to stromal cell proliferation and survival, as well as immune cell
358 suppression and adhesion. Majority of immunosuppressive signals originating from the
359  stromal cells were directed at TAM 1 and TAM 2 subpopulations (Figure 5c¢). For instance, we
360 identified ANXAl1 — FPR1 interaction, which is involved in anti-inflammatory macrophage
361 polarization and tumor progression in various cancers®-®?. Furthermore, we found an
362 indication of myofibroblast and mesangial/VSMC communication with cytotoxic T cells via
363 HLA-E — KLRC1, which has recently been proposed as a new targetable path of T cell
364 exhaustion in bladder cancer®®. Treatment of HLA-E positive tumors with anti-KLRC1
365 antibodies has shown a strong effect in restoring the anti-tumor immunity®*. Interestingly, our
366 analysis shows that this communication signature is associated with worse overall survival in
367 the TCGA KIRC dataset (Figure 5d), and the expression of genes involved in the stromal-
368 immune cell communication increased with advancing stage of the disease (Figure 5e).
369  Collectively, our results suggest that stromal cells are actively involved in modulating the tumor

370  microenvironment in ccRCC through therapeutically relevant paths.
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371 DISCUSSION

372

373 The single-cell transcriptomic studies have provided valuable insights about the origin
374  of ccRCC15, malignancy programs of the tumor®®, immune cell population phenotypical
375 changes during tumorigenesis?® and immunotherapy treatment!®?2 among other.
376  Complementing these ongoing efforts to better characterize ccRCC tumor microenvironment
377  we profiled single-cell transcriptomes of human ccRCC tumor samples along with healthy
378 adjacenttissues. In contrast to previous studies that used cell enrichment prior to SCRNA-Seq,
379  our strategy relied on a rapid isolation of cells from ccRCC specimens, without involving any
380 type of sorting or cell enrichment. As a result, we could capture a rich diversity of cells
381 constituting heterogeneous TME that were either significantly depleted or absent in previous
382 studies. Given that immune compartment in our dataset largely recapitulated previous
383 findings!’-??, we mainly focused on the phenotypic heterogeneity and cellular interactions of
384 the often overlooked and underappreciated endothelial and stromal cell populations.

385

386 Endothelial cells are very important in ccRCC tumorigenesis and to this day remain
387 the main targets of therapeutics in advanced and metastatic disease?. The tumor endothelial
388 cells identified in our study include a novel, previously uncharacterized tip cell phenotype,
389 enriched for epithelial-mesenchymal transition pathway genes that are associated with poor
390 overall survival. Indeed, the previous single-cell studies in ccRCC have also captured
391 endothelial cells, however, these were most often represented by two major phenotypic
392  subpopulations that are also found in our ccRCC atlas. For instance, Zhang et al., reported
393 ACKR1+ and EDNRB+ endothelium, while Long et al. reported VCAM1+ and VCAM1-
394 vasculature populations. Consistently, in our dataset we find a population co-expressing
395 ascending vasa recta marker ACKR1 and VCAML1 (tumor AVR-like vasculature), however,
396 EDNRB is expressed by tumor vasculature 1, 2, and 4 populations, but not by tumor
397 vasculature 3 (Supplementary figure S3), further supporting that this endothelial (PECAM1+)
398 phenotype has not been characterized in ccRCC.

399

400 The tip cell population (TV 3) in our dataset shares similarities with a tip cell population
401 observed in lung cancer (LOX, PXDN, PGF, LXN, collagen type IV enriched) where it was
402 shown to correlate with worse patient survival®l. The authors have found this phenotype the
403 most congruent across several species and tumor types, including kidney cancer (as
404  determined by bulk proteomics), which raises a question about why previous single-cell
405  studies of ccRCC did not capture this rare population. Furthermore, the authors demonstrated
406 that tip cell marker LOX knock-down impaired vessel sprouting, suggesting that the reported

407  population in ccRCC might be of interest for future research as a potential therapeutic target.
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408

409 In line with our findings, Long et al., showed that VCAM1+ population (labeled as AVR-
410 like tumor vasculature in our dataset) is enriched for EMT signature!®, yet our pathway over-
411  representation analysis indicates similar association with EMT for all tumor vasculature and
412  stromal cell populations, not just the AVR-like population (Figure 4a). On another hand, the
413  worse overall survival in association with EMT was pronounced only for AVR-like and the
414  tumor vasculature 3 populations, further emphasizing the diversity of tumor endothelial cells
415 and potential importance of the reported tip cell phenotype. Alchahin et al., also reported
416  association with EMT for endothelial and stromal cells, but did not discriminate healthy kidney
417  and tumor endothelial cells. On the contrary to our findings, they report lower endothelial cell
418 abundance in tumor samples as compared to healthy tissues?°. Such discrepancies between
419  different studies can be related to technical aspects, for instance, processing of the samples,
420 and further underline the importance for accurate phenotypic characterization of the tumor
421  vasculature cells in ccRCC.

422

423 Our findings suggest two major modes of action of the tumor vasculature cells in the
424  TME. First, remodeling of the ECM by active deposition of various ECM constituents and
425  expression of their modifying agents related to EMT (i.e. LOX, PXDN in tumor vasculature 3)
426  and second, active engagement in cellular communication in the tumor microenvironment,
427  mostly involved in immune suppression and angiogenesis maintenance. Interestingly, spatial
428  transcriptomic profiling of ccRCC by Li et al., showed that collagen producing endothelial cells
429 localize at the tumor-normal interface enriched in EMT-high tumor cells and IL1B+
430 macrophages'’. These findings are also corroborated by our results suggesting that tumor
431  endothelial cells might indeed contribute to EMT in ccRCC and interact with TAMs. The cell-
432  cell communication analysis uncovered diverse interactions of clinical relevance enriched in
433  the tumor vasculature and stromal cell communication with immune cells (Figure 3d, 5c¢). For
434  instance, in 2021, a phase I-ll clinical trial (ID NCT04913337) began for LILRB1 and LILRB2
435  inhibitor as a monotherapy or in combination with Pembrolizumab (anti PD-1) for advanced or
436  metastatic solid tumors, including ccRCC. Inhibition of LILRB2 reprograms myeloid cells to a
437  stimulatory (pro-inflammatory) state, while inhibition of LILRB1 stimulates the reprogramming
438  of both myeloid and lymphoid cells. Our analysis suggests that LILRB1/2+ immune cells
439 interact not only with tumor cells, but also with endothelial cells. Similarly, endothelial cell-
440 expressed NECTIN2 associated with TIGIT expressed by regulatory T cells, an interaction
441 that has gained increased attention over the last few years and is currently exploited in a
442  multitude of clinical trials®®. Another intriguing interaction observed between TV 2 and TAM 2
443  populations was SCGB3A1 — MARCO. As demonstrated recently, SCGB3A1, a secreted

444  secretoglobin family member produced by endothelial cells, is a crucial component of a pro-

14


https://doi.org/10.1101/2023.08.09.552568
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.09.552568; this version posted August 13, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

445  metastatic niche and induces stem cell properties in cancer cells, while macrophages are also
446 required for the niche maintenance®?. However, SCGB3A1 — MARCO interaction in ccRCC,
447  to our knowledge, has not been described.

448

449 It is worth emphasizing that stromal cells in our dataset were involved in
450 communication with immune cells in a suppressive manner, suggesting their participation in
451 maintaining a pro-tumorigenic niche, especially considering the difference of
452  mesangial/vSMCs population expression in tumor vs healthy adjacent tissue. Moreover, the
453  communication signature expression associated with worse overall survival and increased
454  along the progression of the disease in the TCGA KIRC dataset. On a side note, increase of
455  stromal cells has recently been shown in recurrent RCC as compared to primary disease,
456  furthermore, stromal cell-produced Galectin-1 (LGALS1) inhibitor significantly reduced tumor
457 mass and improved anti-PD-1 immunotherapy efficacy in murine models®®. Another report
458  showed that co-targeting stromal cells expressing PDGFRs and endothelial cells expressing
459  VEGFRs delays tumor vascularization and has clinical efficacy in pancreatic neuroendocrine
460 tumors®. Therefore, there is a need for in-depth characterization of ccRCC stromal cells and
461  further validation of their pro-tumorigenic properties. Understanding the role of stromal cells in
462  the TME could provide valuable insights for the development of targeted therapies.

463

464 Overall, our study introduces an invasive tumor-associated endothelial tip cell
465 phenotype and provides new insights into the characterization of the TME in ccRCC. We
466  propose that tumor endothelial cells favor tumor progression and potentially metastatic
467  dissemination through the expression of metastasis promoting factors, specific extracellular
468  matrix components and indirectly via targetable interactions with immune cells in the TME.
469  Undoubtedly, future functional studies are needed to elucidate the exact roles of the described

470  diverse tumor endothelial cells and explore their potential as therapeutic targets in ccRCC.
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471  MATERIALS AND METHODS

472

473  Sample acquisition

474

475  Fresh ccRCC tumor (n=8) and healthy-adjacent (n=9) paired kidney tissues were obtained
476  from the National Cancer Institute (Vilnius, Lithuania) with a bioethics committee approval
477  No0.2019/2-1074-586. No patient had received prior systemic therapy for their cancer. Samples
478  were collected during an open or laparoscopic, partial or radical nephrectomy surgery, placed
479  on ice and rapidly (<1 hour) transferred to the laboratory for dissociation. Sample T1 (tumor
480 from patient P1) was highly necrotic, thus excluded from analysis. Clinical characteristics of
481  all samples profiled are provided in Supplementary Table S1.

482

483  Sample processing

484  Sample preparation was performed according to the sScRNA-Seq protocol®’, yet without FACS-
485 based enrichment. Briefly, patient derived tumor tissues were dissociated using Tumor
486  Dissociation Kit (Miltenyi Biotec, cat.n0.130-095-929) in an automated instrument
487 gentleMACS Octo Dissociator with Heaters (Miltenyi Biotec) as per manufacturer’s
488 instructions. Healthy-adjacent tissues were dissociated using Tissue Dissociation Kit |
489  (Miltenyi Biotec, cat.no. 130-110-201). After dissociation, red blood cells were removed from
490 the samples using RBC lysis reagent (Miltenyi Biotec, cat.n0.130-094-183). After RBC lysis,
491  cells were washed 3 times in ice-cold 1X DPBS (Gibco, cat.no. 14080-048) at 5009 for 5 min.
492  Cell viability and count was assessed using Trypan Blue dye (Gibco, cat.no. 15250061) on a
493  hemocytometer. No further enrichment or selection of cells was performed. Cell suspension
494  was immediately loaded onto inDrops platform®® for cell barcoding experiment.

495

496  Single cell barcoding, library preparation and sequencing

497  Dissociated cells were isolated in 1 nanoliter droplets and their transcriptomes barcoded using
498 a modified version of inDrops protocol®. Specifically, instead of linear cDNA amplification by
499 in vitro transcription we used template switching and PCR amplification. For that purpose, we
500 isolated the cells at occupancy 0.1 alongside with barcoding beads (Atrandi Biosciences,
501 cat.no. DG-BHB-C) and reverse transcription/lysis mix, the latter supplemented with a
502 template switching oligonucleotide, TSO (see Table 2 for composition). We used cell
503 barcoding chip (Atrandi Biosciences, cat.no. MCN-05) to inject the cells, DNA barcoding
504 beads, and RT/lysis mix at flow rates of 250, 60, 250 ul/hr, respectively. The droplet
505 stabilization oil (Atrandi Biosciences, cat. no. MON-DSO2) was set at 700 pl/hr. The emulsion
506 was collected off-chip on ice rack and briefly exposed to UV light (5 min at 6.5 J/cm? of 350

507 nm, Atrandi Biosciences, cat.no. MHT-LAS2) to release the photo-cleavable RT primers from
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508 the barcoding hydrogel beads. The RT reaction was performed at 42 °C for 60 min followed
509 by 5 min at 85 °C. The post-RT emulsion was burst with 10% emulsion breaker (Atrandi
510 Biosciences, cat.no. MON-EB1) and pooled material was used for subsequent library
511  construction.

512

513 Library construction

514  The barcoded-cDNA was purified twice with 0.8X AMPure XP reagent (BeckMan Coulter,
515 cat.co. A63881) as per manufacturer’s instructions. Next, cDNA was PCR amplified with KAPA
516  HiFi Hot Start Ready Mix (Roche, cat.no. KK2601) using cDNA FWD primer and cDNA REV
517 primers (see Table 3). Amplified DNA was fragmented and ligated to adapter using instruction
518 and reagents provided by NEBNext® Ultra™ || FS DNA Library Prep (NEB, cat.no. E7805S).
519 Finally, the libraries were amplified by 12-rounds of indexing PCR (2X KAPA HiFi Hot Start
520 Ready Mix, Roche, cat.no. KK2601). Library quality was assessed using Bioanalyzer DNA
521 High Sensitivity chip (Agilent, cat.no. 50674626). The libraries were sequenced on lllumina
522  NextSeq 550 platform in multiple batches using either NextSeq 500/550 High Output Kit v2.5
523 (75 Cycles) (lllumina, cat.no. 20024906) or NextSeq 500/550 High Output Kit v2.5 (150
524  Cycles) (lllumina, cat.no. 20024907).

525

526 Raw sequencing data processing

527 The STARsolo pipeline (https://github.com/jsimonas/solo-in-drops) was used to process the

528 data and to obtain expression matrices. STAR (version 2.7.6a) was run with the following
529  parameters: --soloMultiMappers Uniform, -- soloType CB_UMI_Simple, -- soloUMlfiltering
530 MultiGeneUMI, and --soloCBmatchWLtype 1MM. Homo sapiens (human) genome assembly
531 GRCh38 (hg38) and Ensembl v93 annotations were used as the reference.

532

533  Data analysis: quality control, doublet and RBC removal

534  Starting with cell x gene matrices, analysis was performed in Python using scanpy toolkit
535 (Table 4). All notebooks are provided at https://github.com/zvirblyte/2023 ccRCC. Briefly, the
536  raw count matrices were uploaded into an AnnData object and filtered by total transcript count
537 and mitochondrial count fraction. The threshold for mitochondrial counts for all libraries was
538 20%. The total transcript count threshold was determined by evaluating the total count
539  distribution and was selected permissive at minimum 400 UMIs per cell (300 UMIs for libraries
540 T3.1, T9.1, N3.3, N4.3, N2.3). Doublets were removed using Scrublet’™ (v0.2.3) in the same
541  PCA space used for initial UMAP construction. Scrublet was applied on each emulsion
542  separately. Briefly, the procedure for doublet removal consisted of 1) Calculating doublet
543  scores for each cell in each emulsion using Scrublet; 2) high resolution graph-based clustering

544  using Scanpy’s Louvain algorithm implementation (resolution = 60); 3) evaluation of mean
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545  doublet score and fraction of predicted doublets per cluster; 4) manual inspection of doublet-
546  rich clusters in the interactive SPRING application™, 5) removal of clusters with high mean
547  doublet score and doublet fraction and no cluster-specific gene expression. This procedure,
548  starting from UMAP construction at step 2) was repeated a total of 2 times and 913 cells (<2%
549  of the total cell population) were removed. Transcriptomes with >1% of total raw counts
550 originating from hemoglobin genes (HBB, HBA1, HBA2, HBD) were considered as red blood
551 cells (RBCs) and 47 such transcriptomes were removed from further analysis.

552

553  UMAP construction, clustering and annotation

554  After filtering and QC steps we retained 50,236 single cells that were used to construct a graph
555 and UMAP representation (Figure 1B). The procedure consisted of 1) normalization to 10 000
556 total counts, log-transformation and scaling; 2) selection of highly variable genes; 3) PCA, 4)
557  batch correction using Harmony’?; 5) graph construction and 6) UMAP representation. After
558 normalization, genes with 15 CPTT (counts per ten thousand) in not less than 25 cells were
559 considered abundant and retained, furthermore, mitochondrial and ribosomal genes were
560 excluded and top 2000 abundant and highly variable genes, based on Fano factor (as in ),
561 were used for PCA. To remove batch effects due to different batches of barcoding beads the
562 dataset integration was performed using function scanpy.external.pp.harmony_integrate()
563 with the batch variable ‘beads’. Then, adjacency graph was constructed using
564  sc.pp.neighbors() with n_neighbors=30 and UMAP representation was built using sc.tl.umap()
565 with min_dist=0.4. The resulting representation was used for exploration in interactive
566  SPRING application. Graph-based spectral clustering with varying number of clusters (k) was
567 performed using sklearn.cluster.SpectralClustering() function, the clustering results were
568 explored in the interactive SPRING environment, and k=43 was selected for annotation.
569 Differential gene expression analysis (Mann Whitney U test with Bonferoni-Hochberg
570 correction) was performed and top 25 marker genes for each cluster (adjusted p-value <0.05)
571  were used for in-depth literature analysis and manual cell type annotation (Supplementary file
572  Table 1, Supplementary table S2).

573

574  Sample heterogeneity quantification

575  To quantify sample heterogeneity, Shannon entropy of samples was calculated for each broad
576  cell category as described in Chan et el.!! Briefly, entropy values were calculated for sample
577  frequency in each cell group (stromal, endothelial, tumor, lymphoid, myeloid, epithelial and
578 cycling). To account for differences in the number of cells per group, we subsampled 100 cells
579  from each group 100 times with replacement and calculated the Shannon entropy using
580 function scipy.stats.entropy(). Cells from cluster “Tumor cells 1” were excluded, as they were

581 sample specific.
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582

583 Receptor-ligand interaction analysis

584  Log-normalized expression values for all cell types, excluding healthy epithelial cell

585  populations and cycling cells were used to infer cell-cell interactions using CellphoneDB

586  Vv.2.0.0° with method “statistical_analysis” and default parameters. Significant (p-value

587  <0.05) cell-cell interactions were explored and selected interactions are shown in Figure 2C,
588 3D, 5C and Supplementary Figure 2B. Cell-cell interaction signatures for subsequent

589  survival analysis (as in Figure 2D) were constructed by taking both the receptor and ligand
590 genes in the set (provided in Supplementary table S7). Cell-cell interaction analysis results
591 are provided in Supplementary tables S5 and S6.

592

593  Gene set over-representation analysis

594  Gene set over-representation analysis was employed to evaluate the potential functional
595 significance of a given gene signature. The analysis utilized gene sets obtained from the
596 Hallmark Pathways of the MSigDB database v7.5.17. Gene signatures were then submitted
597 to a hypergeometric test implemented in the enrichGO() function of the clusterProfiler R
598 package’ using genes that were detected (nonzero UMI counts) in kidney tissue samples as
599 auniverse (background reference). The pathways having FDR (Benjamini-Hochberg) values
600 below 0.05 were considered as significantly over-represented.

601

602  Survival analysis

603 TCGA KIRC cohort bulk RNA-seq (upper quartile FPKM normalized) and clinical data were
604 downloaded from the NCI GDC Data Portal”® using the TCGAbiolinks R package. Cell type
605 signature scoring of the TCGA bulk RNA-seq samples was performed by calculating an
606 arithmetic mean of the z-score transformed expression values for all genes in a given
607 signature. The used gene-wise z-score transformation equalized differences in the gene
608 expression abundances, so that lowly and highly expressed genes would have the same scale
609 and, thus equal weight in the score. The association between signature score and overall
610 survival time was assessed by Kaplan-Meier and multivariate Cox regression analyses. Log-
611 rank tests and Wald tests, respectively, were used to evaluate statistical significance (at level
612  of 0.05) of the performed survival analyses. For the Kaplan-Meier analysis, stratified signature
613  (high - greater or equal than the median signature score; low — lower than the median signature
614  score) was used, while for the multivariate Cox regression analysis, the continuous signature
615 score values were used with patient age and sex as covariates. The survival analyses were
616  conducted using the survival and the survminer R packages.

617
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Table 1. Reagents and materials used in the study

Resource Source Identifier/
Cat No.
ccRCC and paired healthy adjacent kidney | National Cancer Institute, | N/A
samples Vilnius, Lithuania
Tumor Dissociation Kit Miltenyi Biotec 130-095-929
Tissue Dissociation Kit | Miltenyi Biotec 130-110-201
RBC lysis reagent Miltenyi Biotec 130-094-183
DPBS Gibco 14080-048
Trypan Blue solution Gibco 15250061
Maxima H- minus reverse transcriptase Thermo Scientific EPO751
dNTP (10 mM each) Thermo Scientific R0192
RiboLock RNase inhibitor Thermo Scientific EO0382
Igepal CA-630 Sigma Aldrich 18896-50mL
AMPure XP reagent BeckMan Coulter A63881
2X KAPA HiFi Hot Start Ready Mix Roche KK2601
NEBNext Ultra Il FS DNA Library Prep Kit NEB E7805S
Bioanalyzer DNA High Sensitivity assay Agilent 50674626
NextSeq 500/550 HO Kit v2.5 (75 Cycles) lllumina 20024906
NextSeq 500/550 HO Kit v2.5 (150 Cycles) | lllumina 20024907

Table 2. Lysis/RT reaction mix for single-cell nRNA barcoding

Reagent Amount, pl Concentration in droplet
Nuclease-free water 21
5X RT buffer 60 1X
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TSO primer (0.5 mM) 15 25 uM
dNTP (10 mM each) 15 0.5 mM
10% (v/v) NP-40 (lysis agent) 9 0.3%
RiboLock RNAse Inhibitor 15 1 Ul
Maxima H minus RT enzyme 15 10 Ulul
Total volume 150
621
622 Table 3. List of DNA oligonucleotides
Name Sequence
Template-switching primer
TSO 5’ -AAGCAGTGGTATCAACGCAGAGTACATrGrGrG
cDNA amplification primers
cDNA REV
5’ -AAGCAGTGGTATCAACGCAGAGT
primer
cDNA FWD
5’ ~CTACACGACGCTCTTCCGATCT
primer
Ligation adapter
Ligation FWD
5’ -GATCGGAAGAGCACACGTCTGAACTCCAGTCAC
primer
Ligation REV
5’ -GCTCTTCCGATCT
primer

Indexing PCR primers

Forward PCR
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT

index primer

PE2-ind1 CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCAGACGTGT
PE2-ind2 CAAGCAGAAGACGGCATACGAGATACATCGGTGACTGGAGTTCAGACGTGT
PE2-ind3 CAAGCAGAAGACGGCATACGAGATGCCTAAGTGACTGGAGTTCAGACGTGT
PE2-ind4 CAAGCAGAAGACGGCATACGAGATTGGTCAGTGACTGGAGTTCAGACGTGT
PE2-ind5 CAAGCAGAAGACGGCATACGAGATCACTGTGTGACTGGAGTTCAGACGTGT
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PE2-ind6 CAAGCAGAAGACGGCATACGAGATATTGGCGTGACTGGAGTTCAGACGTGT

623
624  Table 4. Software and algorithms

Software Version Reference
solo-in-drops v1.0 https://github.com/jsimonas/solo-in-drops
STAR 2.7.6a https://github.com/alexdobin/STAR,

https://doi.org/10.1101/2021.05.05.442755

scanpy v1.8.0 T https://scanpy.readthedocs.io/en/stable
harmonypy v0.0.5 2 https://github.com/slowkow/harmonypy
scrublet v0.2.3 70 https://github.com/swolock/scrublet

SPRING N/A "1 https://github.com/AllonKleinLab/SPRING dev
viewer

scikit-learn v1.0.2 https://scikit-learn.org/stable

statsmodels v0.12.2 https://www.statsmodels.org/v0.12.2

scipy v1.6.2 8 https://scipy.org

anndata v0.7.6 https://doi.org/10.1101/2021.12.16.473007,

https://anndata.readthedocs.io/en/latest

numpy v1.20.1 https://numpy.org/doc/1.20/index.html

pandas v1.2.4 https://pandas.pydata.org

louvain v0.7.1 https://github.com/vtraag/louvain-igraph

umap v0.5.1 https://umap-learn.readthedocs.io/en/latest

matplotlib v3.2.2 https://matplotlib.org/stable/index.html

seaborn v0.11.0 https://seaborn.pydata.org

jupyterlab v2.2.6 https://jupyter.org

CellPhoneDB | v2.0 53 https://cellphonedb.readthedocs.io/en/latest/index.html
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R v4.2.1 https://www.r-project.org/

tidyverse v1.3.2 https://www.tidyverse.org/

biomaRt v2.52.0 https://bioconductor.org/packages/biomaRt/
clusterProfiler | v4.4.4 https://bioconductor.org/packages/clusterProfiler/

TCGADbiolinks |v2.24.3 https://bioconductor.org/packages/TCGAbiolinks/

survival v3.3-1 https://CRAN.R-project.org/package=survival
survminer v0.4.9 https://cran.r-project.org/package=survminer
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626 DATA AND CODE AVAILABILITY
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628 Upon publication raw data files will be deposited following editorial guidelines. All Jupyter
629 notebooks for scRNA-seq analysis are available at https://github.com/zvirblyte/2023 ccRCC.
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FIGURE CAPTIONS

Figure 1. Profiling the ccRCC microenvironment. a) Experimental design. b) Global single
cell transcriptional map of ccRCC. c) Clinical information of collected samples and
corresponding UMAPs of cells annotated by disease stage (adjacent healthy, pT1la and
pT3a) and patient ID (P1-P9). Healthy adjacent samples (blue) almost completely separate
from the tumor (light and dark red). d) Sample composition by major cell type. Notably,
healthy adjacent samples are enriched with specialized kidney epithelial and endothelial
cells, while tumor samples are enriched for immune cells. ) Expression of ccRCC cell of
origin markers in epithelial progenitor-like cell population. f) Global heatmap for population
specific markers. Only genes with Benjamini-Hochberg adjusted p-value <0.05 are shown.
Color of the gene name indicates major cell type. AVR — ascending vasa recta, DVR —
descending vasa recta, vSMCs — vascular smooth muscle cells, LOH — loop of Henle, tAL —
thin ascending limb, TAL — thick ascending limb, DCT/CNT — distal convoluted/connecting
tubule, ICs — intercalated cells, OM — outer medullary, TAM — tumor associated

macrophages.

Figure 2. Characterization of immune cell populations found in ccRCC. a) Myeloid cell
compartment consists of CD14+ and CD16+ monocytes and 4 populations of tumor
associated macrophages diverse in expression of polarization markers. b) Lymphoid cells in
ccRCC display heterogeneous exhaustion profile. ¢) Immunosuppressive interactions of
clinical importance revealed by cell-cell communication analysis between immune and tumor
cells using CellPhoneDB. d) Tumor-immune cell interaction signature expression in TCGA
KIRC cohort is associated with a worse overall survival. €) Tumor-immune cell interaction

signature increases along the progression of the ccRCC disease.

Figure 3. Assessing the heterogeneity of tumor vasculature of ccRCC. a) A close-up of
endothelial cell subpopulations. b) Tumor and healthy vasculature comparison shows
upregulation of angiogenesis related genes in tumor vasculature. c) Differential gene
expression between vasculature subpopulations. Only genes with Benjamini-Hochberg
adjusted p-value <0.05 are shown. d) Tumor endothelium and myeloid cells demonstrate
abundant cell-cell interactions. e) Collective tumor vasculature — immune cell communication
signature expression is associated with a worse overall survival in TCGA KIRC dataset. AVR

— ascending vasa recta, DVR — descending vasa recta, TV — tumor vasculature.

Figure 4. MSigDB Hallmark pathway overrepresentation analysis. a) Tumor vasculature and

stromal cell populations are enriched in epithelial-mesenchymal transition (EMT) signature.
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b) Tumor AVR-like vasculature and c) tip-like tumor vasculature 3 signature genes
overlapping with EMT pathway associate with worse overall survival in the TCGA KIRC

cohort.

Figure 5. Assessing the heterogeneity of stromal cells in the TME. a) Stromal cell
populations consisting of vSMCs, myofibroblasts and mesangial/vSMCs. b) Differential gene
expression between stromal cell subpopulations. Only genes with Benjamini-Hochberg
adjusted p-value <0.05 are shown. ¢) Stromal and immune cells exhibit immunosuppressive
interactions mediated by stromal cells. d) Expression of collective stromal-immune cell
interaction signature gene set associates with worse overall survival in the TCGA KIRC
cohort. e) Stromal-immune cell interaction signature expression increases along the

progression of the ccRCC disease. vSMCs — vascular smooth muscle cells.
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