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Developmental stability and segregation of Theory
of Mind and Pain networks carry distinct temporal

signatures during naturalistic viewing
Km Bhavna, Niniva Ghosh, Romi Banerjee, Dipanjan Roy

Abstract—Temporally stable large-scale functional brain con-
nectivity among distributed brain regions is crucial during brain
development. Recently, many studies highlighted an association
between temporal dynamics during development and their alter-
ations across various time scales. However, systematic charac-
terization of temporal stability patterns of brain networks that
represent the bodies and minds of others in children remains un-
explored. To address this, we apply an unsupervised approach to
reduce high-dimensional dynamic functional connectivity (dFC)
features via low-dimensional patterns and characterize temporal
stability using quantitative metrics across neurodevelopment.
This study characterizes the development of temporal stability
of the Theory of Mind (ToM) and Pain networks to address the
functional maturation of these networks. The dataset used for
this investigation comprised 155 subjects (children (n=122, 3–12
years) and adults (n=33)) watching engaging movie clips while
undergoing fMRI data acquisition. The movie clips highlighted
cartoon characters and their bodily sensations (often pain) and
mental states (beliefs, desires, emotions) of others, activating ToM
and Pain network regions of young children. Our findings demon-
strate that ToM and pain networks display distinct temporal
stability patterns by age 3 years. Finally, the temporal stability
and specialization of the two functional networks increase with
age and predict ToM behavior.

Index Terms—Theory of Mind, Pain Networks, Angular dis-
tance, Dynamic functional connectivity, Inter Subject Correla-
tions

I. INTRODUCTION

THEORY-OF-MIND (TOM) is an ability to understand
other’s mental states and was highlighted in 1970 by

Premack and Woodruff [1]. This ability allow one to com-
prehend other people’s aims, belief, ambitions, emotions, and
mentalization of concepts that differs from one’s own [2].
Recent studies focus on the early development of Theory-of-
mind in children trying to understand the development of ToM
ability beyond the preschool age group, and its association
with middle childhood and early adolescence and individual
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differences [3]. According to the extant literature, children
develop the ability to understand faith and desire and predict
another person’s actions as seen in false belief task paradigms
by age 5 [3], [4], [5], [6]. Previous studies have suggested
that children’s ability to anticipate or justify another person’s
actions based on false beliefs depends on the development of
understanding concepts during ToM development that happens
around the age of four years [4]. Hence, children’s perfor-
mance in explicit false-belief tasks could index an important
milestone in understanding concepts during ToM develop-
ment. During maturation, there is a dramatic alteration in
the representation of others’ internal states, providing critical
insight into children’s social cognition ability development.
Therefore, investigating the early age group allows us to
examine mentalization and re-examine the literature about the
child’s ToM based on predictions based on social brain regions
of children 3-12 years during naturalistic movie-watching
tasks. The human brain is a collection of massive functional
modules that become more distinct during development from
childhood to adolescence, i.e., connectivity within modules
increases as we grow from childhood to adolescence, and
connectivity between modules decreases [7], [8], [9], [10],
[11]. According to this view, this could also reflect concurrent
development in other domain-general brain regions such as the
Default mode Network a cluster of brain regions implicated
in self-related processing [12]. Therefore, previous studies
have focused on functional connectivity measures within and
between ToM and DMN to address children’s early devel-
opmental differences and functional specialization in 3-12
years and relate that to performance in explicit false-belief
reasoning tasks. Moreover, previous studies have reported a
clear difference between brain areas responding preferentially
to internal states of others’ bodies (like hunger, pain) versus
internal states (like beliefs, emotions, and desires) of others’
minds suggesting a division of labor and early segregation
into functionally specialized brain regions [12], [4]. Previous
studies investigated the differences in temporal stability of
functional architecture in the resting states of patients with
neurological disorders and healthy controls and examined the
effects of various activities [11], [13], [14], [15], [16]. The
studies also demonstrated neurological disorders (e.g., ADHD,
schizophrenia, and autism spectrum disorder) specific variable
alterations in the functional architecture of the default mode
network (DMN), visual areas of the brain, and subcortical
regions of the brain [17], [11], [13], [14], [15]. Nonetheless,
quantitative characterization of the temporal stability of these
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functionally specialized brain regions across neurodevelop-
ment remains completely unexplored. Therefore, there is a
genuine knowledge gap in neuroimaging studies concerning
the early stages of development in ToM ability.

Existing neuroimaging studies further suggest during ToM-
related tasks, neural activation has been found predominantly
in the Bilateral Temporoparietal Junction (Left TPJ and Right
TPJ), Medial Prefrontal Cortex, and Posterior Cingulate Cortex
using fMRI data; however, this leaves a genuine gap in
understanding what precisely the age range in neurodevel-
opment when temporal stability of these regions is being
attended [12]. Moreover, there are no existing studies that
quantify whether the temporal stability of social brain re-
gions of ToM and Pain (sensory) networks carry distinct or
overlapping signatures during naturalistic stimulus processing
in children during development and whether the pattern of
temporal stability indicates the successful development of ToM
reasoning ability thus far. Secondly, whether the temporal
stability patterns of social brain regions of ToM in 3-12
years could predict the successful performers in False Belief
reasoning tasks, Finally, whether the behavioral performances
can also be predicted based on inter-subject correlations (ISCs)
and their association with temporal stability of ToM and
Pain networks [18], [4] remains least understood. To ad-
dress the above questions, first, we analyze high-dimensional
dynamic functional connectivity (dFC) via low-dimensional
representations. Thereafter, estimating temporal stability using
quantitative metrics in 122 children and a reference group of
33 adults. Temporal stability was estimated from fMRI data
while participants were viewing a short, animated movie that
included events evoking the mental states and physical bodily
sensations of the clip characters. A recent study has validated
this movie which activates ToM and the pain brain regions in
adults [4].

Subsequently, we use Angular and Mahalanobis distance to
identify the ToM and Pain network temporal stability when
movie stimuli/clips contain internal activation of mental and
physical states activating brain networks at specific epochs
of time points. We tested our hypothesis that spontaneous
processing of others’ mental states within ToM brain net-
works might exhibit similar hyper-connectivity patterns (high
inter-subject correlations) in children who pass and a and
hypo connectivity (lower inter-subject correlations) patterns
in domain-specific regions for participants who fail explicit
false-belief tasks. Third, successful performers and their tem-
poral stability associated with development could shed new
insight into the ongoing conceptual development of ToM,
which begins early in development—and continues till early
adolescence displaying high temporal instability at an early
age and reaching stabilization as ToM conceptual network
continues to develop further. We have conducted the following
analysis to address core questions regarding the temporal
stability of functional brain networks (ToM and Pain) involved
in representing internal mental and physical states.

The brain regions associated with ToM and pain networks
have been selected based on a previous study that reported 12
brain regions (Refer to Table 1) [19], [20]. ToM brain regions
include bilateral temporoparietal junction, precuneus, and

Fig. 1. Illustrative overview of proposed architecture for identifying age at
which ToM and pain networks are getting reasonable temporal stability and
how it predicts behavioral scores of false-belief task. The paper’s contribution
is as follows: 1) Data collection and extraction of time-series from ToM and
pain networks, 2) Calculation of Angular distance and Mahalanobis distance
using dominant dFC matrices, leading to temporal stability computations, 3)
Prediction of behavioral scores using ISC.

dorso-, middle-, and ventromedial prefrontal cortex. The pain
network comprises brain regions recruited when perceiving the
physical pain and bodily sensations of others: bilateral medial
frontal gyrus, insular cortex, secondary sensory cortex, and
dorsal anterior middle cingulate cortex. As in previous studies,
we collapse these brain regions across specific functions and
use ToM and pain networks as regions generally recruited for
reasoning about others’ internal mental and physical states.
The contribution of the current study is as follows: A) We
used the dynamic functional connectivity (dFC) to quantify
temporal stability using our previous approach [15] of func-
tional brain networks in 3-12 years children. Subsequently, we
estimated dominant dFC subspaces of ToM and Pain networks
to quantify their segregation and differences at early age.
B) To further capture ToM network temporal stability, we
quantified differences between the dominant dFC subspaces
using (i) Angular Distance and (ii) Mahalanobis Distance. Our
results indicate that ToM and Pain networks are achieving
considerable temporal stability by the age of 5 yrs. C) Finally,
we have tested whether the temporal stability of functional
networks could predict whether a participant could pass, fail
or give an inconsistent response in a false-belief reasoning
task carried out by the 3-12 years old participants outside
the scanner. Finally, we have empirically measured Inter-
Subject Connectivity (ISCs) within ToM and Pain networks of
participants ( [21], [22], [23]) to test our hypothesis that both
temporal stability and ISC of functional brain networks were
related and could track reliably developmental differences in
ToM and Pain networks of participants. Our finding grounded
on derived temporal stability differences in functional brain
networks during developmental age may aid in developing
avenues to address questions related to distinct neural response
to others’ minds and bodies that is present at a very early age
and throws fundamental insights into the functional maturation
of ToM brain networks.
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Fig. 2. Movie demonstration: A represents the average time-series activation
for the movie for all participants. B depicts the movie scenes where higher
activation occurred. T1, T2, T3, T4, and T5 represent the ToM scenes with
higher activation, whereas P1, P2, P3, P4, and P5 show the pain scenes with
higher activation.

II. METHODS AND MATERIALS

A. fMRI Movie watching Data set and MRI Preprocessing

In the current study, we analyzed the early childhood
dataset, which contained 122 childhood samples (ranging
from 3-12 yrs) and 33 adult samples (Total = 155) [5].
The data is available on the OpenfMRI database under the
accession number ds000228. All the participants were from
the local community and had submitted written consent from
parent/guardian. The data were collected with approval from
the Committee on the Use of Humans as Experimental Sub-
jects (COUHES) at the Massachusetts Institute of Technology.
Participants watched a sound-less short animated movie called
“Partly Cloudy” for a total duration of 5.6 minutes, and the
stimuli were validated to activate ToM and pain regions [24],
[25], [5] (Refer Figure 2). 3-Tesla Siemens Tim Trio scanner
was used to capture structural and functional images [26]. The
dataset was preprocessed using SPM 8 and other toolboxes
available for Matlab [27], which registered all functional
images to the first run image and then registered that image to
each participant’s structural images [5]. All structural images
were normalized to Montreal Neurological Institute (MNI)
template [28], [29]. The smoothening for all images was
performed using a Gaussian filter and identified Artifactual
timepoints using ART toolbox [30], [5].

B. Explicit ToM task and false-belief composite score and
fMRI analysis

In the previous study, six-explicit ToM-related questions
were administered for the false-belief task to identify the
correlation between brain development and behavioral scores
in ToM reasoning across a wide age range of children [4].
Each child’s performance on the ToM battery was assessed
based on the proportion of correct answers from 24 matched
items (14 prediction items and 10 explanation items). Based
on the outcome of these explicit false-belief task scores, the
participants were categorized into three classes: Pass (5-6
correct answers), inconsistent (3-4 correct answers), and fail
(0-2 correct answers). In the current study, participant’s data

ToM Regions Pain Regions
Sr.
No.

ROIs MNI-
Coor-
dinates
(X,Y,Z)

Sr.
No.

ROIs MNI-
Coor-
dinates
(X,Y,Z)

1 Posterior Cin-
gulate Cortex
(PCC)

0, -52,
18

1 Right Middle
Frontal Gyrus
(RMFC)

36, 38,
40

2 Left Tem-
poroparietal
Junction
(LTPJ)

-46, -68,
32

2 Left Middle
Frontal Gyrus
(LMFC)

-36, 38,
40

3 Right Tem-
poroparietal
Junction
(RTPJ)

46, -68,
32

3 Left Interior
Insula (LII)

-40, 22,
0

4 Ventromedial
Prefrontal
Cortex
(vmPFC)

4, 48, -4 4 Right Interior
Insula (RII)

39, 23, -
4

5 Precuneus 0, -49,
40

5 Left
Secondary
Sensory
Cortex
(LSSC)

-39, -15,
18

6 Dorsomedial
Prefrontal
Cortex
(dmPFC)

-10, 58,
24

6 Right
Secondary
Sensory
Cortex
(RSSC)

39, -15,
18

TABLE I
TABLE SHOWS SELECTED TOM AND PAIN BRAIN REGIONS AND

CORRESPONDING MNI-COORDINATED FOR EXTRACTING TIME-SERIES
SIGNAL.

were classified in two different ways: (a) into six groups of
3 years, 4 years, 5 years, 7 years, 8-12 years, and adults
age groups (reference), and (b) into three false-belief tasks
outcome-based groups, i.e., pass, inconsistent, and fail. The
classification was undertaken to understand the differential
developmental changes in the neural activation patterns [31].
Due to the unavailability of data on any 6-year-olds, that age
group could not be added to the above categorization. Further,
the BOLD time series for individual subjects from these
groups were extracted for regions of interest (ROIs) anchored
in two brain networks - Theory-of-Mind and Pain networks
(Refer to Table 1). The regions selected for ToM were -
bilateral Temporoparietal Junction (LTPJ and RTPJ), Posterior
Cingulate Cortex (PCC), Ventro- and Dorso-medial Prefrontal
Cortex (vmPFC and dmPFC), and Precuneus, whereas the Pain
network regions consist of - bilateral Middle Frontal Gyrus
(LMFG and RMFG), bilateral Interior Insula, and bilateral
Secondary Sensory Cortex (LSSC and RSSC) [32]. These
brain regions and their MNI coordinates were selected from
published literature (Refer to Table 1) [33], [34]. We used
the Schaefer atlas for brain parcellation, and by using MNI
coordinates, we created a spherical binary mask with a 10
mm radius for all selected ROIs. Finally, Time series were
extracted for each participant for the six regions of ToM, the
six regions of Pain, and twelve brain regions of interest to
test our hypothesis. Further analyses were carried out on the
extracted time series signals.
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ToM Clips Description Pain Clips Description
Sr.
No.

Description Sr.
No.

Description

T1 Peck flies away to happy
cloud

P1 Gus pulls porcupine
spines from Peck’s head

T2 Peck caught gazing at
happy clouds

P2 Alligator biting Peck

T3 Baby crying, then happy P3 Peck tossing porcupine
T4 Peck dons gear to show

why he left
P4 Cloud makes animals

(lightning)
T5 Pan from happy clouds

to lonely cloud (Gus)
P5 Gus makes alligator

(lightning)
TABLE II

TABLE SHOWING THE SELECTED TIME-COURSE WHERE HIGHER
ACTIVATION OCCURRED FOR TOM AND PAIN NETWORKS.

C. BOLD phase coherence and estimation of Dynamic Func-
tional Connectivity

Functional connectivity (FC) is a widely used measure
of brain connectivity that infers statistically significant co-
activation patterns for a pair of brain regions. FC is estimated
from Blood Oxygen Level-Dependent (BOLD) fMRI signals
among pair of brain regions [35], [36], [37], [38]. However,
these correlation and covariance measures assume that the time
series signal for specific brain regions remains static over time,
which significantly limits our understanding of whole brain
dynamics associated with neurodevelopment. Further tempo-
ral changes could carry distinct and meaningful connectivity
patterns over the scan and developmental time scales across
brain regions [39], [40].

Resting-state data and complex naturalistic stimuli have
been shown to encode significant variation among functional
brain networks over the entire stimulus duration. Hence,
dynamic functional connectivity (dFC) patterns across the
whole data set can provide a more penetrating view into
the activation patterns over the more commonly used static
functional connectivity measure [41]. We have chosen an in-
stantaneous measure for the computation of dFC to circumvent
the temporal resolution issues that arise in the case of the more
popularly employed sliding window correlation method, which
is limited by the heuristic selection of the window size. Shorter
windows include spurious correlations with high variability
and low reliability and have a lower statistical significance due
to a lesser number of data points, whereas longer windows are
capable of eliminating noise-related correlation while failing
to capture significant transient changes in the time series
signals [42], [43], [41], [44]

Here, we employ BOLD signal Phase Coherence and quan-
tify the strength of this synchronization while discarding its
amplitude. The phase component of the signal sufficiently
captures the temporally transient changes, which follows from
the observation that two weakly-coupled nonlinear oscillators
can synchronize even without any correlation of their ampli-
tudes. Further, phase coherence does not assume stationarity
of signals compared to other transformation and coherence-
based methods, making this an ideal unsupervised method for
characterizing dFC.

Finally, BOLD phase coherence was employed to estimate
time-resolved dFC for each subject, resulting in a high dimen-
sional N x N x T matrix (where N = 12 denotes the number

of brain regions and T = 168 represents the total number of
time points). The Hilbert transform was applied to the BOLD
time series to compute the BOLD Phase Coherence to reduce
dimensionality to enumerate the instantaneous phases θ(n, t)
(Refer to Figure 2). The modulated BOLD signal s(t) was then
represented analytically using the following equations [15]:

z(t) = zr(t) + jzi(t) = s(t) + jHT [s(t)] (1)

where HT [∗] stands for Hilbert Transformation. Using the
following formulae, the instantaneous phase θ(t) was calcu-
lated [15].

θ(t) = ∠z(t) = arctan
zi(t)

zrt
= arctan

HT [s(t)]

s(t)
(2)

dFC (n,p,t) was then calculated for the predetermined brain
areas n and p, as follows [15]:

dFC(n, p, t) = cos(θ(n, t)− θ(p, t)) (3)

D. Computation of Dominant Dynamic Functional Connectiv-
ity Subspaces

One major drawback is the inclusion of high-frequency
noise, which can be resolved by narrow-band filtering or
using an unsupervised dimensionality reduction method that
excludes the noise and retains meaningful signals, such as the
decomposition of the signal phase data using Principal Com-
ponents Analysis (PCA). Applying PCA leading eigenvectors
were estimated and arranged according to their percentage
contribution to the total variance estimated from data [45].

A participant-specific dFC (n, p, t) matrix of dimension N
X N X T reflecting the FC between the nth and pth brain
region at each time point was subjected to principal component
analysis (PCA). As a result, dFC(n, p, t) or simply dFCt may
be written as:

dFCt = V TSV (4)

S stands for the diagonal matrix, and V stands for the leading
eigenvector of the NXN matrix. The primary components of
the dFC are represented by the number k=2. The dominating
dFC D(n,k,t) was calculated as follows:

D = Ṽ T S̃Ṽ (5)

where Ṽ T denotes the reduced matrix. Here, we choose k=2
or two leading eigenvectors that contain 80% information.

E. Computation of Network Temporal Stability using Domi-
nant dFC Subspaces

We characterize temporal stability dominating subspaces
by estimating their similarity between different time points.
Additionally, quantifying the temporal stability of a network
throughout data acquisition can also vouch for the reliability
of the connectivity observed and the robustness of the network
activity in the face of external disturbances. We used two
techniques to achieve that goal: Mahalanobis distance and
Angular distance (Refer to Figure 2). We used the following
equation to determine the distance between dFC sub-spaces
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from different time points in the principal angular distance
method [15]:

φ(tx, ty) = ∠(Dtx , Dty ) (6)

where each entry of the temporal stability matrix is
φ(tx, ty), the range of angular distance is from 0 to

π

2
, where

π

2
denotes high angular distance, and 0 denotes low angular

distance. We calculated the angular separation between each
individual’s tx and ty dominant dFC subspaces by calculating
their angular separation, yielding a T X T matrix per subject.

Finally, we estimated Euclidean distance using the Maha-
lanobis distance method, which used the following equation to
measure the distance between distinct points from one space
to another. It was done for each participant’s dFC dominating
subspaces:

M2 = (Dtx −Dty )TC−1(Dtx −Dty ) (7)

Where M2 stood for the distance between each point,
According to this method, the Euclidean distance in a 2D
space is calculated between each ROI and the average of the
rest of the ROIs between the dominant dFC subspaces at two
different time points. [46]. We calculated a temporal stability
matrix for each participant, where the Mahalanobis distance
ranged from 0.5 to 2.5. Lower values indicate that subspaces
were comparable, while larger values indicate that subspaces
were distinct.

F. Validation of Results

1) Entropy: To validate the results of temporal stability
matrices, we calculated entropy that defined measurement of
detectable temporal order that we may interpret as the overall
stability of the temporal stability matrices [15]. The lower
the entropy value, the higher the instability in the temporal
patterns and vice versa. For each subject, we compute the
entropy of temporal stability matrices, where each element
is the estimated Mahalanobis or Angular distance between the
dominant subspaces Dtx and Dty . The Entropy was calculated
using the following formula [15]:

E = −Σplog(p) (8)

Where p holds the normalized histogram counts.
2) Frobenius norm: The matrix’s Frobenius or Euclidean

norm was utilized to quantify the variations between the
temporal stability matrices generated for different age groups.
We calculated Frobenius norm using the following formula
[15]:

‖ xF ‖=
√

ΣTi=1ΣTj=1|aij − bij |2 (9)

Where entries of temporal matrices are indicated by aij and
bij .

G. Stochastic characterization of dFC

The degree of temporal changes in functional networks
captured within the observed temporal fluctuations can be

identified using the principal angle and the Mahalanobis dis-
tance between the dominant dFC subspaces [15]. We use auto-
regressive (AR) models to uncover the underlying stochastic
properties of these measurements (Refer to Figure 1). AR(ρ)
concept was implemented using following equation [15]:

Xt = c+ Σρi=1ϕiXt−i + εt (10)

Where ϕ1.....ϕρ =parameters of model, c= constant, εt =
white noise, ρ = model order [15]. The Akaike information
criterion may be used to calculate the ideal model of an AR
process (AIC) using following equation [15]:

AIC(ρ) = −2L+ 2ρ (11)

Where L is the likelihood function, we estimated several values
for the model order parameter AR(ρ), ranging from 0 to 100,
and then chose the AR model with the first minimum AIC
score [47], [15], [48]. If it is determined that the model order
is larger than 1, the underlying process is regarded as being
non-Markovian.

H. Quantifying Functional Network Specialization

To predict the behavioral score of participants for the false-
belief task, we implemented Inter Subject Correlation (ISC),
which measured responses activated during stimulus to natu-
ralistic stimuli by taking into account solely the brain activity
shared across all the subjects for the same stimulus [49]. The
reason for using ISC was that when the participants were
watching the movie, some brain areas were synchronized due
to the same stimulus, and some subject-specific measurements
contained idiosyncratic and non-stimulus-specific signals and
noise [21], [22]. For example, the presence of substantial ISC
in a particular region didn’t prove the stimulus activates that
region; instead, it indicated that the region encodes informa-
tion about the consistent stimulus across all individuals [22].
Significant ISC suggested that a region encodes information
about a consistent stimulus across tasks or groups. If there is a
strong inter-subject correlation (ISC), the reaction time course
in one subject’s brain may predict that in another subject’s
brain [22]. In this work, we computed leave-one-out ISC that
calculated shared stimulus-related measures.

III. EXPERIMENTAL RESULTS

A. Distinct Temporal Stability of ToM and Pain Network in
3-12 years age

1) Computation of Temporal Stability using Angular Dis-
tance: To check the distinct temporal stability of ToM and
Pain networks in 3-12 years of age, we first calculated angular
distance matrices among dominant dFC subspaces identified
over all the time points. Subsequently, a time∗ time temporal
stability matrix was derived, which was then averaged over
all individuals. Each entry in the matrix represented the angle
between the dominating dFC subspaces at tx and ty . As
described earlier, we calculated Angular distance into two
parts: one for six age categories and one for the three false-
belief-task performance groups (Figure 3). Figures 3 and 4
represent the subject-average temporal matrices for all 12 ROIs
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and 6 ROIs in each ToM and Pain network. The higher the
value of angular distance, the bigger the leap between two
dominant dFC subspaces at time points tx and ty . In Figure
3, we see higher high-distance data points in the matrices 3
yrs and 4 yrs, which subsequently reduces and stabilizes for
adults (reference group). The 8-12 years matrix shows high
distance values due to the inclusion of both ToM and Pain
network ROIs and a wide range of ages, a limitation peculiar
to the acquired dataset. In Figure 4, the pattern of high distance
values indicates lower overall distance values as we progress
through the ages. The only anomalies in this trend seen in the
three figures are the slight increase in switching activity from
5 yrs to 7 yrs and an increase in distance values from 3 yrs to 4
yrs. The second parameter for qualitative interpretation is the
stability of the temporal distances, i.e., how long a certain
distance value persists during the observation period. The
persistence of distance value patterns alludes to the stability of
a system. In particular, 3yrs and 4yrs children’s data exhibits
frequent temporal switching activity with very low temporal
stability. The temporal matrices per age group show higher
distance values for All ROIs than the corresponding matrices
for ToM or Pain ROIs, and this difference persists through
age. We also found more stability in ToM scene activation for
3 yrs, 4 yrs, 5 yrs, and 7 yrs age groups. For stability in pain
scene activation, 3 yrs, 5 yrs, 7 yrs, and 8-12 yrs age groups
showed higher temporal stability( see Figs 2, 4).

To quantify differences between temporal matrices, the dis-
tance values were converted into Z-scores, and Kolmogorov-
Smirnov tests for equality of distributions (all groups were
found to have unequal distributions with p varying from < 0.4
to < 4 × 10−313), followed by Kruskal Wallis tests were
conducted: All ROIs χ2(5) = 42.04, p < 6× 10−8; Pain ROIs
χ2(5) = 47.63, p < 5 × 10−9; ToM ROIs χ2(5) = 24.59,
p < 0.0003. Dunn-Sidak post-hoc test was performed for
pairwise comparisons: All ROIs: 3yrs-4yrs: diff=-1376.4, p =
0.0114, 4yrs-5yrs: diff=1716.9, p = 4.8131×10−4, 4yrs-8yrs:
diff=2212.4, p = 1.3683 × 10−6, 4yrs-Adult: diff=2004.2,
p = 1.9045 × 10−5, 7yrs-8-12yrs: diff=1551.7, p = 0.0025,
7yrs-Adult: diff= 1343.6, p = 0.0149; Pain ROIs: 3yrs-8-
12yrs: diff= 1365.7, p = 0.0125, 3yrs-Adult: diff=1196.6,
p = 0.0445, 4yrs-5yrs: diff=1735.3, p = 3.9715 × 10−4,
4yrs-8-12yrs: diff=2337.3, p = 2.6373 × 10−7, 4yrs-Adult:
diff=2168.2, p = 2.4350 × 10−6, 7yrs-8-12yrs: diff=1556.7,
p = 0.0023, 7yrs-Adult: diff=1387.6, p = 0.0104; ToM
ROIs: 3yrs-8-12yrs: diff=1286.6, p = 0.0232, 4yrs-8-12yrs:
diff=1836.4, p = 1.3342 × 10−4, 4yrs-Adult: diff=1319.2,
p = 0.0180, 7yrs-8-12yrs: diff=1302.9, p = 0.0205; rest NS.

To quantify the complexity of these temporal stability
patterns, entropy was calculated. Figure 5 shows the entropy
values calculated from angular distance values for the six age
groups as violin plots. In all three graphs (Fig 5 subgraphs -
A, E, F), a higher entropy value is noticed for 4 yrs compared
to the other age groups. A lower entropy value is noticed for 7
yrs group as compared to the 5 yrs group, and this corroborates
with the qualitative conclusions drawn from the temporal
matrices earlier. Kolmogorov-Smirnov test was performed to
check for equality of distributions (all groups were found
to have unequal distributions with p < 0.05), followed by

the Kruskal-Wallis tests with non-significant results at 5%
confidence level (All ROIs χ2(5) = 5.54, p < 0.4; Pain ROIs
χ2(5) = 10.97, p < 0.06; ToM ROIs χ2(5) = 4.13, p < 0.6).

In addition, we computed the Frobenius distance to examine
the difference among temporal matrices of ToM and Pain
regions (Figure 4). We find Frobenius distance values to
progressively reduce from 3 yrs to Adults, with an anomalous
dip for 5 yrs. No statistical significance was found using the
Kruskal-Wallis test (χ2(5) = 7.59, p < 0.2).

2) Computation of Temporal Stability using Mahalanobis
Distance: Next, we estimated the Mahalanobis distance to
assess the temporal stability of the dFC. Each matrix element
represents the Mahalanobis distance between the dominating
dFC subspaces (Refer to Supplementary Material Section 1).
A higher value of Mahalanobis Distance denotes a larger dis-
tance between the average of the Euclidean distance between
individual ROIs at tx and the collection of all ROIs (ToM or
Pain network ROIs) at ty of the dominant dFC subspaces. The
above can be interpreted similarly to the Angular Distance
measure. We observe a trend of decreasing high distance
values to lower overall distance values from children to adults.
Consistent with the previous measure, we also find a slight
increase in temporal switching dynamics from 5 yrs to 7 yrs
and an increase in distance values from 3 yrs to 4 yrs. A major
reason for the limited inference drawn from these graphs is the
presence of outlying data points with high distance values,
which obscures smaller distance values.

Z-scores were calculated to compare the temporal matrices
of these subgroups, Kolmogorov-Smirnov test was performed
(all groups were found to have unequal distributions with p
varying from < 2 × 10−8to < 1 × 10−255), followed by
Kruskal-Wallis( All ROIs χ2(5) = 18066.11, p = 0; Pain ROIs
χ2(5) = 3863.9, p = 0; ToM ROIs χ2(5) = 5254.75, p = 0)
and Dunn-Sidak tests (Refer to Table 4).

To validate the results, we calculated entropy (shown in
Figure 5), with similar entropy values seen across the age
groups, with an exception for ToM ROIs, which displays a
pattern similar to the observations from the angular distance
measure: a higher entropy (and hence more complexity) in
4 yrs as compared to 3 yrs, and in 7 yrs as compared
to 5yrs. Kolmogorov-Smirnov test was performed to check
for equality of distributions (all groups were found to have
unequal distributions with p < 0.05), followed by the Kruskal
Wallis tests (All ROIs χ2(5) = 72.57, p < 3 × 10−14; Pain
ROIs χ2(5) = 77.87, p < 2.5 × 10−15; ToM ROIs χ2(5) =
82.44, p < 3 × 10−16) and Dunn-Sidak for the significant
results of the six age subgroups (All ROIs: 3yrs-Adult: diff=-
82.5009, p = 3.1472× 10−8, 4yrs-Adult: diff=-72.7089, p =
5.6670×10−6, 5yrs-Adult: diff=-77.3391, p = 2.0698×10−8,
7yrs-Adult: diff=-76.595, p = 2.5474× 10−8, 8-12yrs-Adult:
diff=-64.2068, p = 9.1637 × 10−8; Pain ROIs: 3yrs-Adult:
diff=-77.9412, p = 1.0955× 10−7, 4yrs-Adult: diff=-76.0714,
p = 1.6206× 10−6, 5yrs-Adult: diff=-81.3824, p = 2.0677×
10−8, 7yrs-Adult: diff=-77.0435, p = 2.4449×10−8, 8-12yrs-
adult: diff=-74.2941, p = 2.0845 × 10−8; ToM ROIs: 3yrs-
Adult: diff=-77.1301, p = 1.4829 × 10−7, 4yrs-Adult: diff=-
75.5671, p = 1.9607× 10−6, 5yrs-Adult: diff=-83.0419, p =
2.0676×10−8, 7yrs-Adult: diff=-58.8590, p = 2.0455×10−5,
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Pairs All ROIs Pain ROIs ToM ROIs
Diff. p-value Difference p-value Difference p-value

3yrs-4yrs 53917 2.0676× 10−8 4719.4 2.0676× 10−8 23518 2.0676× 10−8

3yrs-5yrs 31162 2.0676× 10−8 −16415 2.0676× 10−8 −1104.3 0.0818
3yrs-7yrs 18966 2.0676× 10−8 −8762 2.0676× 10−8 8240.2 2.0676× 10−8

3yrs-8-12yrs 24470 2.0676× 10−8 −9564.9 2.0676× 10−8 −1192.5 0.0458
3yrs-Adult 29884 2.0676× 10−8 −13855 2.0676× 10−8 6363.1 2.0676× 10−8

4yrs-5yrs −22755 2.0676× 10−8 −21135 2.0676× 10−8 −24623 2.0676× 10−8

4yrs-7yrs −34951 2.0676× 10−8 −13481 2.0676× 10−8 −15278 2.0676× 10−8

4yrs-8-12yrs −29447 2.0676× 10−8 −14284 2.0676× 10−8 −24711 2.0676× 10−8

4yrs-Adult −24033 2.0676× 10−8 −18574 2.0676× 10−8 −17155 2.0676× 10−8

5yrs-7yrs −12197 2.0676× 10−8 7653.3 2.0676× 10−8 9344.4 2.0676× 10−8

5yrs-8-12yrs −6692 2.0676× 10−8 6850.4 2.0676× 10−8 −88.2839 0.9999
5yrs-Adult −1278 0.0247 2560.7 2.9612× 10−8 7467.4 2.0676× 10−8

7yrs-8-12yrs 5504.7 2.0676× 10−8 −802.8698 0.3779 −9432.7 2.0676× 10−8

7yrs-Adult 10919 2.0676× 10−8 −5092.6 2.0676× 10−8 −1877 8.4552× 10−5

8-12yrs-Adult 5414.1 2.0676× 10−8 −4289.7 2.0676× 10−8 7555.7 2.0676× 10−8

Pass-Inc 11114 9.5606× 10−10 7003.8 9.5606× 10−10 10777 9.5606× 10−10

Pass-Fail 2515.5 9.5606× 10−10 15410 9.5606× 10−10 13537 9.5606× 10−10

Inc-Fail −8598.4 9.5606× 10−10 8406.7 9.5606× 10−10 2759.2 9.5606× 10−10

TABLE III
TABLE WITH DIFFERENCE AND P-VALUES CALCULATED USING THE POSTHOC PAIR-WISE DUNN-SIDAK TEST FOR MAHALANOBIS DISTANCE-DERIVED

Z-SCORES FOR THE SIX AGE SUBGROUPS (3, 4, 5, 7, 8-12 YRS AND ADULT), AND FOR THE FALSE-BELIEF PERFORMANCE RESULTS

Fig. 3. Angular distance matrices depicting temporal patterns of all
ROIs of the ToM and Pain networks for six age groups (3, 4, 5, 7, 8-
12-year children and Adults). The figure shows less temporal stability
at 3 yrs and 4 yrs, and considerable temporal stability at 5 yrs, and
so on. The higher angular distance for the 8-12 yrs age group is due
to the inclusion of samples from discontinuous age groups

8-12yrs-Adult: diff=064.6889, p = 7.5010× 10−8; rest NS).
We also calculated the Frobenius distance between the ToM

and Pain network ROIs for the six age subgroups (see Fig
5). We observe a higher distance for 3 yrs and Adults and
a lower distance for all the other age groups. No statistical
significance was found using the Kruskal-Wallis test (χ2(5) =
7.78, p < 0.2).

B. Stochastic Characterization of Temporal Stability Measures

Next, we investigated the stochastic characteristics of dFC
development by using the principal angle φ(t) and Maha-
lanobis distance M(t) as time functions. The temporal changes
in φ(t) and M(t) are defined as autoregressive processes to

Fig. 4. Angular distance matrices depicting temporal patterns of ToM
and pain network ROIs for each of the six age groups (3, 4, 5, 7,
8-12 yrs and Adults age groups). We observed temporal stability in
ToM and pain networks at age 3 yrs for ToM and pain movie scene
activation.
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yield the function: AR(ρ). Further, the first minimum AIC
score for the generated AR models is considered the best-fit
model order. We found the optimum model order of ρ ≥ 2 for
Angular distance and ρ ≥ 4 for Mahalanobis distance (Refer
to supplementary material Table 9 and Fig 5).

C. Predicting False-belief Task-Based Pass, Fail, and Incon-
sistent Groups based on ISC and Temporal stability analysis

Next, we tested our hypothesis that the temporal stability
patterns of social brain regions of ToM in 3-12 years could
predict behavioral scores of the False-belief task. Temporal
instability was a dominant feature at 3 and 4 yrs, but at age 5,
we discovered higher temporal stability (Refer to Figs 3 and 4).
In the current dataset, out of 122 participants (age ranges 3-12
yrs), 15 participants failed the false-belief task. They belonged
to 3 yrs and 4 yrs age groups, whereas 23 participants were
inconsistent during tasks and belonged to mostly 3 yrs and
4 yrs and few participants from 5 yrs. 84 participants passed
the task; approximately all participants passed the task from 5
yrs age group onward. To validate our results to get more
nuanced insight, we also performed temporal stability and
Inter Subject Correlation (ISC) analysis for false-belief task-
performers. We compared the results of these two measures.
Our hypothesis accurately predicted participants who failed,
passed and gave inconsistent responses in the False-belief task.
For the participants who passed ToM task, their ISC scores
were high for ToM network with low angular distance. In
contrast, participants who failed the task’ ISC values were low
for ToM network with high angular distance (Refer to Figures
4 and 9) (Refer to supplementary material section 2).

1) Temporal Stability using Angular Distance: A qualita-
tive analysis of the angular distance matrices for the three
false-belief task performances (Figure 10) reveals a lower
switching in dFC states and higher temporal stability for
passers when all and only ToM and Pain ROIs are considered.
This pattern destabilizes with higher distance values are seen
for inconsistent performers, and the fail group has the highest
instability (Refer to Figures 7 and 8).

To quantify differences between temporal matrices, the dis-
tance values were converted into Z-scores, and Kolmogorov-
Smirnov tests for equality of distributions (all groups were
found to have unequal distributions with p varying from < 0.4
to < 4 × 10−313), followed by Kruskal Wallis tests were
conducted: All ROIs χ2(2) = 7.31, p < 0.03; Pain ROIs
χ2(2) = 15.63, p < 0.0005; ToM ROIs χ2(2) = 12.18,
p < 0.003. Dunn-Sidak posthoc test was performed for
pairwise comparisons: All ROIs: Pass-Fail: diff=-533.0409,
p = 0.0271; Pain ROIs: Pass-Inc: diff=-524.7799, p = 0.0302,
Pass-Fail: diff=-806.1150, p = 2.8977 × 10−4; ToM ROIs:
Pass-Fail: diff=-722.1818, p = 0.0014; rest NS.

To quantify the complexity of these temporal stability pat-
terns, entropy was calculated. Kolmogorov-Smirnov test was
performed to check for equality of distributions (all groups
were found to have unequal distributions with p < 0.05),
followed by the Kruskal Wallis tests with non-significant
results at 5% confidence level (All ROIs χ2(2) = 1.38, p < 0.6;
Pain ROIs χ2(2) = 2.11, p < 0.4; ToM ROIs χ2(2) = 2.11,
p < 0.8).

Fig. 5. Angular distance matrices depicting temporal patterns for false-belief
task-based pass, fail, and inconsistent groups. It showed false-belief task is
dependent on temporal stability. The figure shows higher temporal stability
in ToM network for the pass group, moderate stability for the inconsistent
group, and lowest temporal stability for the fail group.

Fig. 6. A, C, E depicts entropy plots for angular distance for the false-belief
task-based pass, fail, and inconsistent groups. B, D, F are depicting entropy
plots for Mahalanobis distance. In the case of entropy plots, Mahalanobis
distance is better at capturing the differences in temporal stability in different
groups.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 14, 2023. ; https://doi.org/10.1101/2023.08.09.552564doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.09.552564
http://creativecommons.org/licenses/by/4.0/


9

2) Temporal Stability using Mahalanobis Distance: Quali-
tative analysis of the Mahalanobis distance matrices reveals
no differences for the False-Belief performances (Refer to
Supplementary Materials Figure 8)

We calculated Z-scores for comparing the temporal matri-
ces of pass, fail, and inconsistent groups; the Kolmogorov-
Smirnov test was performed, followed by Kruskal-Wallis (All
ROIs χ2(2) = 3171.04, p = 0; Pain ROIs χ2(2) = 5558.54, p
= 0; ToM ROIs χ2(2) = 4777.35, p = 0) and Dunn-Sidak tests
(Refer to Table 3). We also calculated entropy and found an
increasing trend for the false-belief test performers, denoting
increasing instability from passers to inconsistent performers
and failers. To check equality of distribution, we performed
the Kolmogorov-Smirnov test and found all false-belief task
groups with unequal distribution with p < 0.05 (All ROIs
χ2(2) = 0.61, p < 0.75; Pain ROIs χ2(2) = 0.57, p < 0.8;
ToM ROIs χ2(2) = 0.71, p < 0.75).

3) Functional Brain Network Specialization for False-Belief
Task-Based Groups: For false-belief task-based pass, fail, and
inconsistent groups, we found that in the participants who
passed the task, their ToM regions were highly activated
(i.e., PCC (0.6, p-value <0.02), LTPJ (0.6, p-value <0.01)),
RTPJ (0.5, p-value < 0.025)), Precuneus (0.4, p-value <0.04))
and pain regions were moderately connected (average pain
ISC= 0.17 (p-value < 0.045)). The participants who failed
false-belief tasks in their ToM regions were not activated
((average ToM ISC= 0.12 (p-value < 0.05), average pain ISC=
0.16 (p-value < 0.04)). In contrast, who were inconsistent
during false-belief tasks, their ToM regions were moderately
connected ((average ToM ISC= 0.28 (p-value < 0.02), average
pain ISC= 0.2 (p-value < 0.025)) (Refer to Figure 9).

IV. DISCUSSION

Children can understand others’ desires, thoughts, and emo-
tions during early brain development and distinguish bodily
pains and reflexes. For example, what broadly encompasses
social cognition, young infants acquire a remarkably sophisti-
cated understanding of others’ intentions, ideas, and emotions,
as opposed to their physiological effects, sensations, and
diseases; most of this development happens before children
begin conventional education at the age of six [50], [51],
[52], [4]. Although adult, adolescent, and older children’s
brain areas implicated in ToM have been widely investigated,
fMRI investigations provide significant challenges for early
childhood data. One of the key objectives of this study was
to use a naturalistic task that included significant ToM and
pain network activations during movie watching to track their
temporal brain dynamics during early development. Addition-
ally, to identify at what age reasonable temporal stability was
manifested and how the development of ToM ability could
be predicted over time. We estimate the temporal dynamics
of dFC matrix in ToM and Pain networks and the separation
between dFC subspaces based on angular distance and Maha-
lanobis distance measure to quantify the temporal stability of
these cortical networks. Next, we test the hypothesis that the
temporal stability and complexity estimated by Entropy are
key measures that methodologically track brain maturation in

Fig. 7. Mean ISC for a false-belief task-based pass, fail, inconsistent groups.
It showed Neurodevelopment was dependent on developmental psychology.
We found that in the group who passed the false-belief task, their ISC was
high in ToM regions, whereas we observed moderate ISC for ToM regions in
the inconsistent group and hypo ISC for the fail group.

children. In particular, the emergence of children’s mental rea-
soning and concept-understanding ability with increasing age.
Their ability to reason about cartoon character’s bodies (the
pain sensations) versus minds (the theory of mind network)
is strongly associated with the acquired temporal stability of
ToM and Pain functional brain networks. Hence, our critical
finding bridges the gap between temporal dynamics estimated
using frequently reported neuroimaging studies in older chil-
dren and several important behavioral studies capturing the
development of ToM reasoning ability.

We hypothesized an association between temporal stability
and behavioral scores, i.e., temporal stability could predict the
performance of false-belief task-based groups. We included
a dataset in which participants aged 3 to 12 and adults
watched a short animated movie (naturalistic stimuli) [4]. For
example, one of the movie clips consists of Pixar’s ‘Partly
Cloudy’ (see Figure 2), depicting multiple events capturing
two major aspects (bodily sensations (often physical pain) and
their mental states (beliefs, desires, and emotions) ) of the
main characters (a cloud named Gus and his stork friend Peck)
activating ToM and pain sensory networks [4]. The dataset
was first segmented into 3 yrs, 4 yrs, 5 yrs, 7 yrs, 8-12 yrs, and
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adults to cover continuous changes and then into three false-
belief task-based pass, fail, and inconsistent groups to check
the convergence of findings between predictions from brain
development and what is generally known from experimental
psychology.

In a previous study, the authors investigated the develop-
ment of ToM and pain network using the static functional
connectivity approach focusing on static correlation patterns
between regions[4]. However, as participants watched the
movie stimulus with engaging narratives, therefore, not only
did brain networks show particularly dramatic change with age
but also dynamic stability during stimulus-induced activation
patterns; hence, a dynamic perspective is much warranted
to get additional fundamental insights about the complex
developmental changes across ages[4], [53], [54], [15]. Our
main contribution to this article is applying dynamic tech-
niques to demonstrate that temporal stability shows dramatic
change with age in children and carries distinctive signatures
for ToM and Pain networks. ToM stability was captured by
decreasing angular distance and increasing stability from 3 yrs
old children to adults, with 4 yrs and 7 yrs showing higher
angular distance and instability and 5 yrs showing a pattern
similar to that of the 8-12 yrs age group. The higher stability of
higher-cognition and associative brain regions (included in the
ToM and Pain networks) are useful in conferring adaptability
and increased capacity to coordinate information processing
across the cortical networks [55], [13], [53], [56]. Hence,
our results suggest a higher stability, adaptability, and by
extension, a higher propensity for mentalization of concepts
by 5 yrs of age. This trend could not be observed as clearly in
the Mahalanobis Distance analysis due to the smaller distance
values caused by the high-value data outliers. The temporal
matrices per age group show higher distance values for All
ROIs than the corresponding matrices for ToM or Pain ROIs,
and this difference persists through age.

For example, developing temporal differences between ToM
and pain networks based on angular distance and Mahalanobis
Distance analysis may reflect intrinsic developmental changes
in brain networks and the emergence of functional selectivity
of the event-driven response in individual brain regions. These
findings may index distinctive features of stability of ToM and
Pain networks from as early as 3 yrs of age. For the false-belief
performance groups, a lower distance and higher repeatability
in patterns were observed for passers, with increasing distances
and instability observed for failers. From Frobenius Distance
analysis, we find the lowest distance between ToM and Pain
network activation patterns for 7 yrs, followed by slightly
higher values for 5 yrs, 8-12 yrs, and Adults, high value for
3 yrs, and the highest value for 4 yrs. The literature found
that ToM network is segregated from other networks at the
early childhood stage and gets more functionally specialized
throughout developmental time scales [4], [57], [56]. Future
studies could provide more critical insight into the temporal
stability of stimulus-induced versus task-driven networks to
provide critical insights about spontaneous temporal stability
patterns. However, collating such data on 3-year-old children
will always remain challenging.

The second key hypothesis was to check the alteration

between the temporal stability of ToM networks related to
children’s ToM reasoning abilities [58], [59]. In the current
dataset, the participants answered six questions about predict-
ing and explaining actions based on false beliefs. The partici-
pants who failed in this task belonged to 3yrs and 4 yrs groups;
interestingly, the same age groups exhibited low temporal
stability (Refer to Fig 3), suggesting the new development
of the concept around age four years. Moreover, participants
who passed the test were mostly belonging to 5 yrs age group,
where we observed reasonable temporal stability suggesting
the development of transition from failure to success on the
false-belief task is associated with the temporal stability of
ToM brain networks. To obtain more clarity, we performed
temporal stability analysis for pass, inconsistent, and fail
groups separately and observed higher temporal stability for
the pass group, moderate temporal stability for the inconsistent
group, and low temporal stability for the fail group, These
results were also validated by using multiple analysis including
results based on entropy and other measures (Refer to Figs 7
and 8). Existing literature demonstrates that during the natu-
ralistic movie-watching task, ISC measure predicts behavioral
performance accurately [21], [22], [54]. Hence, we performed
ISC analysis to predict false-belief task-based groups and their
performance in the ToM task. We observed hyper ISC in the
ToM network for the pass group, moderate ISC patterns for
the inconsistent group, and hypo ISC for the failed group. We
compared our findings from the temporal stability analysis.
We found qualitative overlap with ISC results suggesting
multiple analysis approaches could delineate a fundamental
aspect of developmental differentiation in the social brain areas
to depict others’ bodies versus minds. In summary, the current
study provides a novel approach to predicting developmental
stability and distinction in ToM versus Pain networks in
the brain and accurate predictions based on brain features
of behavioral performance in children. The distinct patterns
of temporal stability of the two social cognition networks
strongly predict the maturity of each network in response to the
movie. Specific peak events within the movie evoke temporal
dynamics, stability, and complexity that increases with age and
the evolving theory of mind reasoning ability.

V. CONCLUSION

In this research, we examined the developmental changes
in the temporal stability of ToM and pain networks using a
dynamic functional connectivity approach from childhood to
adolescence. The study’s outcomes suggested that the ToM
network acquires reasonable temporal stability in the early
years, and similar dynamic patterns are observed for pain
sensory networks. These dynamic stability patterns do not
necessarily correspond with a loss of continuity in the neural
basis at certain age independent of the major hallmark of ToM
behavioral development, passing explicit false-belief tasks.
Interestingly, particular time points during naturalistic movies
where both ToM and pain networks exhibited higher stability.
Functional brain networks are not well segregated from each
other at the early childhood stage, and eventually, it gets
more specialized with increasing age. This study has important

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 14, 2023. ; https://doi.org/10.1101/2023.08.09.552564doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.09.552564
http://creativecommons.org/licenses/by/4.0/


11

limitations: 1) We used a dataset containing 155 subjects (33
adults) with naturalistic task data without resting state data,
which should have been important for comparing spontaneous
versus movie task-evoked stability in children. 2) In the future,
we plan to continue investigating temporal dynamics with the
availability of open datasets under different task conditions to
test the generality of our findings. 3) Lastly, the association
between two independent measures, temporal stability and
ISC, needed to be sufficiently explored, as both were predictive
of children’s behavioral performance, and their mathematical
relationship remained an open question for future studies.
Despite the above limitations, our current findings could be
important for understanding atypical temporal stability in the
impaired ToM ability in neurodevelopmental disorders (e.g.,
ASD, ADHD, etc.), thus opening new avenues for cognitive
and developmental neuroscience.

VI. APPENDIX

A. Code Availability

Ex-AI model implementation will be made available on
GitHub: https://github.com/dynamicdip/ The pipeline for the
Analysis of Connectomes (C-PAC), including slice-time cor-
rection, motion correction, functional normalization, and
smoothing procedure on ABIDE dataset including raw T1 and
T2 images of fMRI resting state data are all available from
http://preprocessed-connectomes-project.org/abide/.
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Figure 1: Mahalanobis distance for 6-groups including all ROIs 
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Figure 2: Mahalanobis distance for 6-groups including ToM ROIs 
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Figure 3: Mahalanobis distance for 6-groups including Pain ROIs 
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  Figure 4: Entropy and Frobenius distances matrices for Angular and Mahalanobis Distances 
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Figure 5: AIC matrices for All ROIs in six-groups analysis, for Angular and 
Mahalanobis Distances 
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Figure 6: AIC matrices for Pain Network in six-group analysis, for Angular Distance 
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           Figure 7: AIC matrices for ToM Network in six-group analysis for Angular Distance 
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      Figure 8: AIC matrices for Pain Network in six-group analysis, for Mahalanobis Distance 
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    Figure 9: AIC matrices for ToM Network in six-group analysis, for Mahalanobis Distance 
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False-belief Groups Results:  

 

Figure 10: Mahalanobis Distance matrices for pass, fail, & inconsistent groups 
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Figure 11: Entropy for pass, fail, & inconsistent groups 
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Table 1: Table with p-values calculated for Kolmogorov-Smirnov test between three (3-5, 7-
12 year old, and Adult) age groups of subjects, for Angular and Mahalanobis Distance entropy 
values 

Angular Distance All ROIs Pain ROIs TOM ROIs 
3-5 vs 7-12 0.2251 0.5430 0.4079 

7-12 vs Adult 0.9614 0.2617 0.2463 
3-5 vs Adult 0.2794 0.0443 0.8361 

 

Mahalanobis 
Distance 

All ROIs Pain ROIs TOM ROIs 

3-5 vs 7-12 0.2711 0.7853 0.0458 
7-12 vs Adult 0.9311 0.4886 0.9080 
3-5 vs Adult 0.2043 0.8029 0.0691 

 

Table 2: Table with p-values calculated for Kolmogorov-Smirnov test between six (3, 4, 5, 7, 
8-12 years old, and Adult) age groups of subjects, for Angular and Mahalanobis Distance 
entropy values 

Angular Distance All ROIs Pain ROIs TOM ROIs 
3 vs 4 0.3775 0.4116 0.8429 
3 vs 5 0.4993 0.6701 0.9516 
3 vs 7 0.2994 0.3399 0.5761 

3 vs 8-12 0.4993 0.6701 0.4993 
3 vs Adult 0.5455 0.0686 0.8733 

    
4 vs 5 0.0494 0.2705 0.9023 
4 vs 7 0.0160 0.1853 0.7038 

4 vs 8-12 0.0822 0.1803 0.1915 
4 vs Adult 0.0306 0.0293 0.6789 

    
5 vs 7 0.6454 0.9351 0.6288 

5 vs 8-12 0.8253 0.9624 0.4223 
5 vs Adult 0.8919 0.2234 0.9850 

    
7 vs 8-12 0.9554 0.8755 0.3509 

7 vs Adult 0.7980 0.3164 0.5317 
    

8-12 vs Adult 0.9714 0.3296 0.0594 
 

Mahalanobis 
Distance 

All ROIs Pain ROIs TOM ROIs 

3 vs 4 0.5841 0.9752 0.9308 
3 vs 5 0.3507 0.1496 0.9516 
3 vs 7 0.1916 0.3092 0.2994 

3 vs 8-12 0.1496 0.9516 0.3507 
3 vs Adult 0.0686 0.6916 0.4205 
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4 vs 5 0.4916 0.6512 0.5357 
4 vs 7 0.8401 0.9892 0.2275 

4 vs 8-12 0.6979 0.9436 0.2419 
4 vs Adult 0.7839 0.8571 0.0995 

    
5 vs 7 0.8937 0.8561 0.0469 

5 vs 8-12 0.4223 0.2650 0.1553 
5 vs Adult 0.6495 0.5487 0.1841 

    
7 vs 8-12 0.1464 0.6454 0.9395 

7 vs Adult 0.2444 0.6236 0.7902 
    

8-12 vs Adult 0.7685 0.6368 0.9671 
 

Table 3: Table with p-values calculated for Kolmogorov-Smirnov test for three (3-5, 7-12-
year-old, and Adult) and six (3, 4, 5, 7, 8-12, and Adult) age group subjects, Frobenius 

Distance between TOM and Pain Angular and Mahalanobis Distances 

3 age groups Angular Distance Mahalanobis Distance 
3-5 vs 7-12 0.1675 0.2458 

7-12 vs Adult 0.0708 0.2288 
3-5 vs Adult 0.8620 0.4541 

 

6 age groups Angular Distance Mahalanobis Distance 
3 vs 4 0.3149 0.4848 
3 vs 5 0.0300 0.4993 
3 vs 7 0.0496 0.9834 

3 vs 8-12 0.0300 0.4993 
3 vs Adult 0.0116 0.3605 

   
4 vs 5 0.2559 0.8859 
4 vs 7 0.4963 0.7038 

4 vs 8-12 0.2419 0.3179 
4 vs Adult 0.3222 0.5832 

   
5 vs 7 0.5073 0.6371 

5 vs 8-12 0.4223 0.4223 
5 vs Adult 0.7192 0.4370 

   
7 vs 8-12 0.4541 0.7836 

7 vs Adult 0.6151 0.9226 
   

8-12 vs Adult 0.6813 0.2097 
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Table 4: Table with (the first) minimal AIC score and the corresponding Model Order 
number, obtained for the stochastic characterization of the Angular and Mahalanobis 

Distance temporal matrices for three age group (3-5, 7-12 year olds and Adult) subjects 

Angular Distance 
 

Mahalanobis Distance 
       

All ROIs  All ROIs 
 AIC MO   AIC MO 

3-5 yrs 39.8347 8  3-5 yrs -1512.8 4 
7-12 yrs 98.6944 6  7-12 yrs -1010.9 14 

Adult -502.0290 4  Adult -1400.6 4 
       

Pain ROIs  Pain ROIs 
 AIC MO   AIC MO 

3-5 yrs -647.5301 8  3-5 yrs -1489.2 4 
7-12 yrs -626.9163 4  7-12 yrs -1275.9 11 

Adult -632.9611 6  Adult -1815.1 4 
       

TOM ROIs  TOM ROIs 
 AIC MO   AIC MO 

3-5 yrs -678.4673 5  3-5 yrs -1432.6 4 
7-12 yrs -695.6764 8  7-12 yrs -1765.5 11 

Adult -480.7293 2  Adult -1322.6 8 
 

Table 5: Table with values calculated for Kruskal-Wallis test for three (3-5, 7-12 yrs and 
Adult), six (3, 4, 5, 7, 8-12 yrs and Adult) age groups and False-belief performance (Pass, 

Inconsistent, Fail) groups for Angular and Mahalanobis Distance-derived Entropy 

Angular Distance  Mahalanobis Distance 
   

3 age subgroups  3 age subgroups 
All ROIs Χ2(2) = 3.52 p = 0.172  All ROIs Χ2(2) = 2.66 p = 0.2639 

Pain 
ROIs 

Χ2(2) = 7.59 p = 0.0225  Pain 
ROIs 

Χ2(2) = 0.45 p = 0.7985 

TOM 
ROIs 

Χ2(2) = 3.08 p = 0.2142  TOM 
ROIs 

Χ2(2) = 7.93 p = 0.019 

   
6 age subgroups  6 age subgroups 

All ROIs Χ2(5) = 5.54 p = 0.3538  All ROIs Χ2(5) = 72.57 p = 2.99044 x 
10-14 

Pain 
ROIs 

Χ2(5) = 10.97 p = 0.052  Pain 
ROIs 

Χ2(5) = 77.87 p = 2.34123 x 
10-15  

TOM 
ROIs 

Χ2(5) = 4.13 p = 0.531  TOM 
ROIs 

Χ2(5) = 82.44 p = 2.58899 x 
10-16 

   
False-belief performance groups  False-belief performance groups 

All ROIs Χ2(2) = 1.38 p = 0.501  All ROIs Χ2(2) = 0.61 p = 0.7354 
Pain 
ROIs 

Χ2(2) = 2.11 p = 0.3489  Pain 
ROIs 

Χ2(2) = 0.57 p = 0.7502 
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TOM 
ROIs 

Χ2(2) = 0.46 p = 0.7943  TOM 
ROIs 

Χ2(2) = 0.71 p = 0.7001 

 

Table 6: Table with values calculated for Kruskal-Wallis test for three (3-5, 7-12 yrs and 
Adult) age groups for Angular Distance and Mahalanobis Distance-derived Frobenius 

Distance 

Angular Distance  Mahalanobis Distance 
   

Frobenius 
Distance 

Χ2(2) = 2.05 p = 0.3597  Frobenius 
Distance 

Χ2(2) = 5.15 p = 0.0763 

  

Table 7: Table with values calculated for Kruskal-Wallis test for three (3-5, 7-12 yrs and 
Adult) age groups for Angular Distance and Mahalanobis Distance-derived Z-scores 

Angular Distance  Mahalanobis Distance 
   

All ROIs Χ2(2) = 1.9 p = 0.3863  All ROIs Χ2(2) = 
2124.8 

p = 0 

Pain 
ROIs 

Χ2(2) = 0.44 p = 0.8024  Pain 
ROIs 

Χ2(2) = 
501.08 

p = 0.155285 
x 10-109 

TOM 
ROIs 

Χ2(2) = 2.24 p = 0.3268  TOM 
ROIs 

Χ2(2) = 
1250.62 

p = 2.69477 x 
10-272 

 

Table 8: Table with values calculated for Dunn-Sidak post-hoc test for significant values in 
three (3-5, 7-12 yrs and Adult) age groups 

Pain ROIs – Angular Distance-derived Entropy 
Pairs of Comparison Difference P-value 

3yrs-7-12yrs 10.5625 0.3970 
3yrs-Adult 26.3408 0.0166 

7-12yrs-Adult 15.7783 0.2427 
 

TOM ROIs – Mahalanobis Distance-derived Entropy 
Pairs of Comparison Difference P-value 

3yrs-7-12yrs -21.8505 0.0200 
3yrs-Adult -17.7548 0.1534 

7-12yrs-Adult 4.0957 0.9086 
 

All ROIs – Mahalanobis Distance-derived Z-score 
Pairs of Comparison Difference P-value 

3yrs-7-12yrs -2106.0 9.5606 x 10-10 

3yrs-Adult 7004.9 9.5606 x 10-10 
7-12yrs-Adult 9110.9 9.5606 x 10-10 

 
Pain ROIs – Mahalanobis Distance-derived Z-score 

Pairs of Comparison Difference P-value 
3yrs-7-12yrs -706.2033 0.0019 
3yrs-Adult 3612.6 9.5606 x 10-10 
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7-12yrs-Adult 4318.8 9.5606 x 10-10 
 

TOM ROIs – Mahalanobis Distance-derived Z-score 
Pairs of Comparison Difference P-value 

3yrs-7-12yrs 974.6236 7.4428 x 10-6 

3yrs-Adult 6770.0 9.5606 x 10-10 
7-12yrs-Adult 5795.4 9.5606 x 10-10 

 

Table 8: Table with values calculated for Dunn-Sidak post-hoc test for significant values in 
six (3, 4, 5, 7, 8-12 yrs and Adult) age groups 

All ROIs – Mahalanobis Distance-derived Entropy 
 

Pairs of Comparison Difference P-value 
3yrs-4yrs -9.7920 0.9908 
3yrs-5yrs -5.1618 0.9989 
3yrs-7yrs -5.9054 0.9985 

3yrs-8-12yrs -18.2941 0.7439 
3yrs-Adult -82.5009 3.1472 x 10-8 

 
4yrs-5yrs 4.6303 0.9995 
4yrs-7yrs 3.8866 0.9999 

4yrs-8-12yrs -8.5021 0.9913 
4yrs-Adult -72.7089 5.6670 x 10-6 

 
5yrs-7yrs -0.7436 1.000 

5yrs-8-12yrs -13.1324 0.8340 
5yrs-Adult -77.3391 2.0698 x 10-8 

 
7yrs-8-12yrs -12.3887 0.9107 
7yrs-Adult -76.5955 2.5474 x 10-8 

 
8-12yrs-Adult -64.2068 9.1637 x 10-8 

 
Pain ROIs – Mahalanobis Distance-derived Entropy 

 
Pairs of Comparison Difference P-value 

3yrs-4yrs -1.8697 1.0000 
3yrs-5yrs 3.4412 0.9998 
3yrs-7yrs -0.8977 1.0000 

3yrs-8-12yrs -3.6471 0.9998 
3yrs-Adult -77.9412 1.0955 x 10-7 

 
4yrs-5yrs 5.3109 0.9991 
4yrs-7yrs 0.9720 1.0000 

4yrs-8-12yrs -1.7773 1.0000 
4yrs-Adult -76.0714 1.6206 x 10-6 
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5yrs-7yrs -4.3389 0.9992 
5yrs-8-12yrs -7.0882 0.9870 
5yrs-Adult -81.3824 2.0677 x 10-8 

 
7yrs-8-12yrs -2.7494 0.9999 
7yrs-Adult -77.0435 2.4449 x 10-8 

 
8-12yrs-Adult -74.2941 2.0845 x 10-8 

 
TOM ROIs – Mahalanobis Distance-derived Entropy 

 
Pairs of Comparison Difference P-value 

3yrs-4yrs -1.5630 1.0000 
3yrs-5yrs 5.9118 0.9978 
3yrs-7yrs -18.2711 0.8001 

3yrs-8-12yrs -12.4412 0.9381 
3yrs-Adult -77.1301 1.4829 x 10-7 

 
4yrs-5yrs 7.4748 0.9952 
4yrs-7yrs -16.7081 0.8824 

4yrs-8-12yrs -10.8782 0.9736 
4yrs-Adult -75.5671 1.9607 x 10-6 

 
5yrs-7yrs -24.1829 0.3448 

5yrs-8-12yrs -18.3529 0.5412 
5yrs-Adult -83.0419 2.0676 x 10-8 

 
7yrs-8-12yrs 5.8299 0.9968 
7yrs-Adult -58.8590 2.0455 x 10-5 

 
8-12yrs-Adult -64.6889 7.5010 x 10-8 

 
All ROIs – Angular Distance-derived Z-score 

 
Pairs of Comparison Difference P-value 

3yrs-4yrs -1376.4 0.0114 
3yrs-5yrs 340.5541 0.9635 
3yrs-7yrs -715.6703 0.5125 

3yrs-8-12yrs 836.0326 0.3310 
3yrs-Adult 627.8909 0.6534 

 
4yrs-5yrs 1716.9 4.8131 x 10-4 

4yrs-7yrs 660.6819 0.6012 
4yrs-8-12yrs 2212.4 1.3882 x 10-6 

4yrs-Adult 2004.2 1.9045 x 10-5 

 
5yrs-7yrs -1056.2 0.1095 

5yrs-8-12yrs 495.4784 0.8386 
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5yrs-Adult 287.3368 0.9827 
 

7yrs-8-12yrs 1551.7 0.0025 
7yrs-Adult 1343.6 0.0149 

 
8-12yrs-Adult -208.1416 0.9961 

 
Pain ROIs –Angular Distance-derived Z-score 

 
Pairs of Comparison Difference P-value 

3yrs-4yrs -971.6333 0.1754 
3yrs-5yrs 763.7011 0.4367 
3yrs-7yrs -191.0140 0.9974 

3yrs-8-12yrs 1365.7 0.0125 
3yrs-Adult 1196.6 0.0445 

 
4yrs-5yrs 1735.3 3.9715 x 10-4 

4yrs-7yrs 780.6193 0.4109 
4yrs-8-12yrs 2337.3 2.6373 x 10-7 

4yrs-Adult 2168.2 2.4350 x 10-6 

 
5yrs-7yrs -954.7151 0.1914 

5yrs-8-12yrs 601.9608 0.6936 
5yrs-Adult 432.8930 0.9024 

 
7yrs-8-12yrs 1556.7 0.0023 
7yrs-Adult 1387.6 0.0104 

 
8-12yrs-Adult -169.0677 0.9985 

 
TOM ROIs –Angular Distance-derived Z-score 

 
Pairs of Comparison Difference P-value 

3yrs-4yrs -549.8047 0.7694 
3yrs-5yrs 263.8945 0.9882 
3yrs-7yrs -16.3372 1.0000 

3yrs-8-12yrs 1286.6 0.0232 
3yrs-Adult 769.3854 0.4280 

 
4yrs-5yrs 813.6992 0.3623 
4yrs-7yrs 533.4675 0.7914 

4yrs-8-12yrs 1836.4 1.3342 x 10-4 

4yrs-Adult 1319.2 0.0180 
 

5yrs-7yrs -280.2317 0.9845 
5yrs-8-12yrs 1022.7 0.1329 
5yrs-Adult 505.4909 0.8267 
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7yrs-8-12yrs 1302.9 0.0205 
7yrs-Adult 785.7226 0.4033 

 
8-12yrs-Adult -517.1980 0.8123 

 

Table 9: Table with (the first) minimal AIC score and the corresponding Model Order 
number, obtained for the stochastic characterization of the Angular and Mahalanobis 
Distance temporal matrices for 6 age groups (3, 4, 5, 7, 8-12, and Adult) of subjects 

 

Angular Distance  Mahalanobis Distance 
       

All ROIs  All ROIs 
 AIC MO   AIC MO 

3 yrs -461.39 5  3 yrs -1550.3 4 
4 yrs -360.21 6  4 yrs -1349.6 4 
5 yrs -508.79 2  5 yrs -1535.1 5 
7 yrs -488.25 5  7 yrs -1525.4 4 

8-12 yrs 98.69 6  8-12 yrs -944.94 11 
Adult -502.03 4  Adult -1440.6 4 

 
Pain ROIs  Pain ROIs 

 AIC MO   AIC MO 
3 yrs -494.14 5  3 yrs -1506.8 4 
4 yrs -455.69 8  4 yrs -1516.4 4 
5 yrs -493.04 6  5 yrs -1461.9 4 
7 yrs -513.25 4  7 yrs -1353.5 10 

8-12 yrs -613.47 5  8-12 yrs -1349.4 4 
Adult -632.96 6  Adult -1815.1 4 

 
ToM ROIs  ToM ROIs 

 AIC MO   AIC MO 
3 yrs -584.51 4  3 yrs -1743.5 4 
4 yrs -485.89 5  4 yrs -467.01 4 
5 yrs -595.74 4  5 yrs -1785.2 5 
7 yrs -615.09 8  7 yrs -1391.5 4 

8-12 yrs -442.53 6  8-12 yrs -1771.7 11 
Adult -480.73 2  Adult -1322.6 8 
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Results for ISC:  

 

Figure 12: Mean ISC for 3-yrs age group 
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Figure 13: Mean ISC for 4-yrs age group 
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Figure 14: Mean ISC for 5-yrs age group 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 14, 2023. ; https://doi.org/10.1101/2023.08.09.552564doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.09.552564
http://creativecommons.org/licenses/by/4.0/


 
 

24 
 

 

Figure 15: Mean ISC for 7-yrs age group 
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Figure 16: Mean ISC for 8-12 yrs age group 
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Figure 17: Mean ISC for Adult Group 
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Figure 18: Mean ISC for false-belief task pass group 
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Figure 19: Mean ISC for false-belief task fail group 
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Figure 20: Mean ISC for false-belief task inconsistent group 
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