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Abstract

Classifications of single neurons at brain-wide scale is a powerful way to characterize the
structural and functional organization of a brain. We acquired and standardized a large
morphology database of 20,158 mouse neurons, and generated a whole-brain scale potential
connectivity map of single neurons based on their dendritic and axonal arbors. With such an
anatomy-morphology-connectivity mapping, we defined neuron connectivity types and subtypes
(both called “c-types” for simplicity) for neurons in 31 brain regions. We found that neuronal
subtypes defined by connectivity in the same regions may share statistically higher correlation in
their dendritic and axonal features than neurons having contrary connectivity patterns. Subtypes
defined by connectivity show distinct separation with each other, which cannot be recapitulated
by morphology features, population projections, transcriptomic, and electrophysiological data
produced to date. Within this paradigm, we were able to characterize the diversity in secondary
motor cortical neurons, and subtype connectivity patterns in thalamocortical pathways. Our
finding underscores the importance of connectivity in characterizing the modularity of brain
anatomy, as well as the cell types and their subtypes. These results highlight that c-types
supplement conventionally recognized transcriptional cell types (t-types), electrophysiological
cell types (e-types), and morphological cell types (m-types) as an important determinant of cell
classes and their identities.

Introduction

A mammalian brain is a complex network of tens of millions or more neurons and supporting
cells that work together to carry out its functions (Purves, et al, 2019; Luo, 2015). These neurons
form intricate modules within neuronal circuits and connectomes (Lichtman, et al, 2008; Sporns,
2011; Van Essen, et al, 2012; Seung, 2012). Cataloging brain-wide neuron types is recognized as
a powerful way to understand the structural and functional organization of the brain (Peng, et al,
2021; Winnubst, et al, 2019). A definitive class of neuronal cells in a mammalian brain typically
has a number of neurons that share multiple common attributes. Recent advances in classifying


https://doi.org/10.1101/2023.08.09.552547
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.08.09.552547
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.08.09.552547
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.08.09.552547
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.08.09.552547
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.08.09.552547
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.08.09.552547
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.08.09.552547
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.08.09.552547
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.08.09.552547
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.08.09.552547
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.08.09.552547
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.08.09.552547
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.08.09.552547
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.08.09.552547
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.08.09.552547
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.08.09.552547
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.08.09.552547
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.08.09.552547
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.08.09.552547
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.08.09.552547
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.08.09.552547
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.08.09.552547
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.08.09.552547
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.08.09.552547
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.08.09.552547
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.08.09.552547
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.08.09.552547
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.08.09.552547
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.08.09.552547
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.08.09.552547
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.09.552547; this version posted August 12, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

neurons usually rely on four major types of attributes: anatomical (Zeng and Sane, 2017; Mufioz-
Castafieda, et al, 2021), physiological (Gouwens, et al, 2020), morphological (Peng, et al, 2021;
Winnubst, et al, 2019), and molecular (Moffitt, et al, 2018; Zhang, et al, 2021; Zhang, et al,
2023), which are further complemented by other attributes such as lineage or developmental
trajectory of these cells (Sebé-Pedros, et al, 2018; Zhong, et al, 2020; Russ, et al, 2021).

Large-scale data acquisition and analyses at single-neuron resolution have succeeded in
identifying neurons based on their 3-D registered soma-locations to the standard brain atlases.
For mouse brains, the Allen Common Coordinate Framework (Dong, 2008; Wang, et al, 2020)
and image-modality specific variations (Qu, et al, 2022) serve as standard atlases to index
anatomical locations of neurons of interest. However, such soma-location cell types, or s-types,
provide only an anatomical reference of the respective neurons, with marginal indication about
the structural, physiological, molecular, and other attributes of neurons. Practically available
techniques (Lee, et al, 2021; Lipovsek, et al, 2021) to record electrophysiological,
morphological, and transcriptional properties of individual neurons have generated massive
resources of these data modalities (Kalmbach, et al, 2021), enabling the analysis of
electrophysiological cell types (e-types), morphological cell types (m-types), and transcriptional
cell types (t-types) that further classify various s-types (Scala, et al, 2021).

The description of the morphology of neurons has been a crucial force to advance neuroscience
since the time of Cajal (Cajal, 1909). While high-resolution digital reconstruction of the 3-D
morphology of neurons is very challenging (Peng, et al, 2015; Manuben-Gil, et al, 2023), recent
efforts in large-scale, semi-automatic reconstruction have yielded substantial datasets for whole
mouse brains (Peng, et al, 2021; Winnubst, et al, 2019; Gao, et al, 2022) and other complex
primate brains (e.g. Han, et al, 2023). We believe that a comparative approach taking advantage
of these resources will help understand the morphological classification and distribution of single
neurons. We also envision that an objective comparison of the morphology of neurons,
especially from various data sources, should be carried out in a standardized coordinate system
of an entire brain. Recent advances in brain mapping and registration (e.g., Qu, et al, 2022)
provide such an opportunity.

Recent neuroscience research has highlighted the urgent need and various approaches to study
neuronal connectivity and the whole-brain connectome (Abbott, et al, 2020; Whitesell, et al,
2021; Axer, et al, 2022). The MICrONS Consortium has recently produced a number of analyses
about the connectivity of cortical neurons using electron microscopy (EM) datasets (e.g. Turner,
et al, 2022; Dorkenwald, et al, 2022; Yin, et al, 2020). Parallel efforts also include the EM-based
reconstruction and analysis of Drosophila hemibrain that also have a limited use of the cell
connectivity to define cell types (Scheffer, et al, 2020). However, the EM approach has not yet
scaled up to a whole mouse brain, which motivated us to take an alternative approach. Indeed,
the connectivity of neurons has to be mediated by their morphology, making it challenging to
study at the whole-brain scale. While it is clear that neurons can be classified based on their
regional projection and connectivity, a quantitative study of the connectivity types of neurons in
mammalian brains has been challenging. The goal of this study is to make an initial attempt to
define neuronal connectivity in the context of whole brain based on aggregating and augmenting
the largest single neuron morphology reconstruction datasets. In particular, we analyzed data
with axonal and dendritic reconstructions of all brain regions to catalog connectivity types (or c-
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type) and subtypes of anatomically defined neurons. We further investigated the role of such
connectivity types, and found that the connectivity types and subtypes supplement with the
conventionally recognized transcriptional cell types (t-types), electrophysiological cell types (e-
types), and morphological cell types (m-types), as a new determinant of cell classes and
identities. Our finding underscores the importance of potential connectivity in characterizing the
modularity of brain anatomy, as well as the cell types and their subtypes.

Results
Whole-Brain Map of Neuron Arbors and Projections

To formalize terminology, we call each group of neurons whose somas are in the same brain
region a “soma-type”, or s-fype. A neuron type determined based on clustering of morphological
features, or m-features, is called a “morphology-type”, or m-type. Many morphological features,
such as length, surface area, and number of branches of a neuron, are independent of a neuron’s
spatial orientation, while other m-features, such as width and height, may be associated with a
neuron’s orientation. A neuron type determined based on clustering of connectivity
features/profiles, or c-features, of neurons is called a “connectivity-type”, or c-type. All c-
features are orientation-independent and thus c-type is also not associated with a neuron’s
orientation. Of note, connectivity is often associated with a topological direction, which means
where axons project to and where neuronal input signal come from. Morphology features do not
immediately exhibit such a directionality except partitioning into dendritic and axonal arbors.
Remarkably, any quantifiable neuronal “connectivity” must be based on an anatomically precise
mapping of individual neurons’ morphology at the whole brain scale. In another word, c-type is a
derivative of m-types but also involves multiple neurons, neuron-populations, and brain regions,
in a standardized manner.

To effectively study s-types, m-types, and c-types, we built a comparative morphology neuron
database that consists of 20,158 neuron-morphology reconstructions (Figure 1), with which we
inferred potential axon-dendrite connectivity of single neurons for standard whole-brain
anatomical regions. To do so, we first aggregated four state-of-the-art neuron reconstructions
datasets from independent sources (Supplementary Table 1). In detail, we specifically
generated 3-D dendritic morphology of 10,860 neurons, called DEN-SEU (Figure 1A and 1B,
Supplementary Figure 1), to complement the full morphologies (complete axons and dendrites)
of 1741 neurons in the BICCN AIBS/SEU-ALLEN neuron morphology dataset (Peng, et al,
2021) and 1200 neurons in the Janelia MouseLight project dataset (Winnubst, et al., 2019)
(Supplementary Figure 1), and the axonal morphology of 6357 neurons generated by ION
(Gao, et al, 2022). For fair and comprehensive analyses, we cross-validated neuron morphologies
(Supplementary Figures 2 and 3) to avoid potential systematic bias favoring one particular way
in generating the respective neuron data. Moreover, we applied 3-D brain registration (Methods)
to all these neurons to map them onto the same spatial coordinate system, Allen mouse brain
Common Coordinate Framework, CCFv3 (Wang, et al, 2020), so that all these neurons’ soma-
locations and 3-D morphologies can be compared against each other directly.
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The somas of the DEN-SEU neurons are distributed fairly evenly across major brain regions,
while the other three full morphology or axon datasets focus on specific brain regions of cerebral
cortex, thalamus, striatum, hypothalamus, hippocampus, and claustrum (Figure 1A;
Supplementary Table 2). Compared with the sparse and long projection of axons in the other
datasets, the dendritic arbors of DEN-SEU cover all CCFv3 brain regions (Figure 1B), making
this dataset suitable for analyzing the target projection/connection regions of axons of neurons.
We also cross-validated the quality and distribution of our assembled neuron data with other
public documented neuron morphologies of shared by independent labs (Supplementary
Figures 4 and 5; Supplementary Table 3) via NeuroMorpho.Org (Akram, et al, 2018; Bijari, et
al, 2020). At the same time, the projection pathways of aggregated full neurons and axons data in
this study capture many important regional connections, such as neurons originating from
primary motor cortex (MOp) (Figure 1C). The total number of brain regions reached by
projection axons follows a broad distribution (Figure 1C), indicating that most axons normally
project to relatively distal regions. By contrast, dendrites extend a much shorter distance,
invading at most 5 or 6 brain regions nearby their soma anatomical locations (Figure 1C). The
large number of neurons involved in this study form complex patterns of potential connectivity,
which should be quantified and analyzed in a principled way. We tackled this challenge by
considering the modularity and granularity of individual neurons.

Neuron arbors often correlate with regions of dense connections between neurons. Therefore, we
used a recent machine learning method, AutoArbor (Peng, et al, 2021), to determine the
topologically connected arborization regions of neurons automatically. In particular, we started
with 2941 fully reconstructed neuron morphologies in the Allen/SEU-ALLEN and MouseLight
datasets to produce a brain-wide arborization map of a mouse brain (Figure 1D). In this way,
various neuronal pathways indicated in our datasets (Figure 1C) are quantitatively modeled. For
example, we observed clear modules of projection and potential connection patterns in large
brain regions such as isocortex, striatum, and thalamus. This motivated us to characterize the
potential connectivity among neurons using the structural components, i.e., neurite arbors,
systematically. Accordingly, we generated in total 26205 axonal arbors and 20158 dendritic
arbors (Figure 1B) for all neurons in this study. We subsequently used these arbors to define the
connectivity among neurons and respective c-types.
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Figure 1. Overall distribution, arborization and potential connections of 3-D mapped and registered
neurons at whole brain level. A. Standardized 3-D locations of 20,158 neurons in this study, pooled in
two cohorts, i.e., one with full axon reconstructions (n=9298) and one with local dendritic
reconstructions (n=10860) that covers all brain regions. Bar-chart: soma density (r_soma, per mm’) in
main brain regions (see Supplementary Table 2 for abbreviations). B. 38 full neuron reconstruction
examples with different arborization patterns innervated from 8 brain regions (CTXsp, HPF, Isocortex,
OLF, PAL, STR, TH, P, see Supplementary Table 2 for abbreviations) and 20 dendritic reconstructions
in different brain regions. Bar-chart: arbor density (v_arbor, per um’) for major brain regions. C.
Connection examples indicated by the projection patterns of primary motor cortex (MOp) cells to
primary somatosensory cortex (SSp), SSp - lower limb (SSp-1l), SSp - upper limb (SSp-ul), secondary
somatosensory cortex (SSs), caudate putamen (CP), secondary motor cortex (MOs), posterior complex -
thalamus (PO), pontine gray (PG), medulla (MY), Medulla - sensory related (MY-sen), Medulla - motor
related (MY-mot) regions. Bar-chart: histogram of outgoing and incoming connections of brain-wide
projections; r_proj: the ratio of the number of neurons passing through a specific number of brain
regions normalized against the total number of neurons. D. Whole brain arborization map of 2941
neurons. A similar map for all 9298 neurons with axons was also produced (Supplementary Figure 6).
Horizontal axis: soma location of single cells. Vertical axis: arbor projection regions which are also
grouped into larger brain areas. Size of circles: arbor length in brain regions. Color bar: ratio of local
and distal arbors relative to soma locations.

Connectivity Profiles Augment Morphology-Based Neuron Types
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Distinct from morphology analyses of neurons that rely on various m-features, such as the Sholl
analysis (Binley, et al, 2014), L-Measure (Scorcioni, et al, 2008), and extended global or local
structural features (Wan, et al, 2015), we study cell-typing by generating the neuron connectivity
features. One approach to quantifying single neuron connectivity is based on axon-dendrite
colocalization that needs precise details on synaptic contact location approximation (Rees, et al.
2017), which however is still challenging at the whole brain scale. Our intuitive approach is to
use soma locations and defined spatial domains of neuronal arborization. Specifically, we
determined the connection targets of a neuron based on the 3-D registered brain regions invaded
by its axonal arbor, and the connection strength based on the spatial adjacency of this neuron’s
axonal arbor and nearby dendritic arbors of neurons in our dataset (Figure 2A). We detected
arbor domains of neurons that originate from a specific brain region using Gaussian mixture
models (Methods) and produced spatially and statistically optimal parcellation of projection
sites of all s-types. Within each arbor domain, the arborization pattern of each group of neurons
of the same s-type is approximated using a spatially homogeneous Gaussian distribution. For
example, SSp neurons were found to have 9 arbor domains, 4 of which are axonal arbor domains
and 5 are dendritic arbor domains (Figure 2B).

For each neuron in a specific s-type, we then computed a connection barcode (Figure 2C) as the
features to characterize the axon-dendritic spatial overlap of its axonal arbors and dendritic arbor
domains of all s-types at the whole brain scale, all defined in the standard CCF space. For DEN-
SEU, we produced 19 dendritic arbor domains per brain hemisphere. We also produced another
56 dendritic arbor-domains per brain hemisphere for other s-types with at least 60 reconstructed
neurons. These dendritic arbor domains span an average volume of 8.94 mm?. The resultant
connection barcode is thus a 150-dimensional feature vector for the entire brain, indicating how
axons of neurons in a s-type may project and potentially connect to various dendritic domains in
the context of whole brain anatomy. With this barcode, neurons belonging to a s-type can be
further clustered. For instance, ventral posteromedial nucleus (VPM) neurons were smoothly
clustered into four connection groups (Figure 2C), which are visually separable from each other
(Figure 2D).

To understand the advantage of the connectivity barcode, we first applied it to assisting
conventional morpho-analysis of cell types that clusters s-types or their sub-types based on m-
features. It was difficult to separate MOp, Subiculum (SUB), and ventral posterolateral nucleus
(VPL) neurons that have heavily overlapping m-features, as seen in both the overlap scores and
the feature scatter plot (Figure 2E top). However, when the connectivity features were appended
to the m-feature vectors to cluster these three s-types, they became clearly separable in terms of a
minimal overlapping in this case (Figure 2E bottom right). When the first principal component
of the connectivity features was added in visualization, the separation of the three s-types was
visible (Figure 2E bottom left). This shows that the connectivity features help discriminate
neuron classes, similar to the dimension-increment analysis or support vector machines (Cortes
and Vapnik, 1995; Steinwart and Christmann, 2008) in pattern recognition and machine learning,
where non-separable classes could become distinguishable in higher-dimensional spaces.
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Figure 2. Formulation of neuronal connectivity and difference between morphological features and
connectivity features of single neurons. A. Schematic overview of the definition of arbor domains and
potential connectivity. (Left) Neurons belong to the same soma-location type (s-type) when their cell
bodies are located in the same Allen brain atlas Common Coordinate Framework (CCFv3) anatomical
region. In each s-type, the neuron morphological coordinates are spatially clustered using a Gaussian
Mixture Model (GMM). Each resultant cluster forms an arbor domain. A dendritic arbor domain
contains a major number of somas. Axonal arbor domains: any non-dendritic domains. (Right)
Overlapping voxels between axonal and dendritic domains define the potential connectivity. B. Exemplar
arbor domains for SSp neurons in middle sections of the CCFv3 atlas outline (top, coronal half-view,
bottom, sagittal half-view). Note that the axonal arbor domains are not shown for clarity. C. Heatmap of
potential connectivity for VPM (ventral posteromedial nucleus - thalamus) neurons, which project to SSp
heavily. Horizontal axis: dendritic domains (as indicated by the prefix ‘d’) with renumbered identifier
denoting the domain center coordinates in B (see Supplementary Table 4 for a complete list of domains),
only the top-25 domains with the greatest variances are shown for clarity while the entire feature vector
was used in clustering. Vertical axis: clustered VPM neurons. Dendrogram in the left: hierarchical
clustering (four clusters in blue, red, green, and purple) of the potential connectivity feature vectors of
neurons. Orange lines: cluster boundaries in the heatmap. Color bar: the number of overlapping voxels
between a neuron-of-interest and dendritic domains. D. Horizontal view of VPM neurons overlayed on
the CCFv3 contour colored by the clusters obtained from potential connectivity. E. Comparison of
clustering results based on morphology features only (top) and based on joint feature vectors by


https://doi.org/10.1101/2023.08.09.552547
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.09.552547; this version posted August 12, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

concatenating morphology and connectivity features (bottom). (Top left) Scatterplot of MOp (green), SUB
(subiculum, dark orange) and VPL (ventral posterolateral nucleus - thalamus, purple) s-types.
Horizontal axis: total length of the neurons in um. Vertical axis: maximum branch order. (Bottom left) 3-
D scatter plot of the total length, maximum branch order, and the first component of a Principal
Component Analysis (PCA) of the potential connectivity matrix. The c-types obtained are colored with
different shades of each s-type color (e.g., MOp_1 dark green, MOp 2 light green). (Top and bottom
right) Heatmaps of the overlap between point clouds in the scatterplots. Color bar: percentage of overlap
between s-type pairs, measured by misclassified neurons when using a Support Vector Machine (SVM) to
classify the data.

Connectivity Types Outperform Morphology Types in Neuron Classification

To investigate whether c-features would classify cell types better than conventionally used m-
features (Zeng and Sane, et al, 2020; Peng, et al, 2021), instead of providing auxiliary
dimensions to assist cell typing, we computed morphological features’ similarity scores (m-
score) of all 31 known s-types (n > 60) (Figure 3A). Except a small amount, i.e., 25.8%, of s-
types that have relatively low similarity in their m-features, the majority of s-types (74.2%) make
up 3 boxed cohorts, within each of which neurons of different s-types share high similarity m-
features (Figure 3A). Remarkably, the similarity score between the c-features (c-score) of all 3
cohorts of s-types are dramatically reduced while the c-scores of the other § s-types remain low
(Figure 3B). In another word, in general a s-type is well separated from other s-types in the
space of c-features.

We further directly compared corresponding m-scores and c-scores to quantify the improvement
of cell typing performance of connectivity features over morphological features. Here, 76% of
entries in the ratio matrix of c-scores and m-scores (Figure 3C, 3D, and 3E) are less than 1,
while 99% of such entries corresponding to the boxed cohorts are less than 1. We also visualized
the actual clustering of neurons based on either morphological features or connectivity features.
Examination of the paired UMAP (Uniform Manifold Approximation and Projection) clustering
for the 12 smallest ratios of c-scores and m-scores shows that c-features are much more
separable than m-features (Figure 3F). For example, ACAv5 neurons have mixed m-features
with Ald2/3 neurons, however their c-features are clearly separable (Figure 3F). This is the
same case for MOs5 neurons vs ILAS5 neurons, ORBm2/3 neurons vs ACAv5 neurons, and all
other visualized pairs of cell types, although all these cases have varying distributions in their
UMAP space (Figure 3F). As our results analyze the largest neuron archives for the mouse brain
containing major neurons classes, it is reasonable to conclude that c-features could serve as
strong contenders of m-features for cell typing of neurons whose somas are from well-
established anatomical regions.
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Figure 3. Classification of cell types based on morphological and connectivity features. A. Clustering
based on similarity score of morphology features, i.e., m-score, of 31 s-types (n>60 in each) in cortex,
thalamus, and striatum. Yellow boxes: 3 cohorts of s-types that share highly similar morphology features.
Values in matrix: normalized similarity between 0 and 1. B. Similarity score of connectivity features, i.e.,
c-scores, sorted using the same order of s-types as in A. Color bar: normalized similarity among features
(also the same as in A). C. Ratio matrix of c-score in B over m-score in A. D. Joint and marginal
distributions of corresponding c-scores and m-scores for all pairs s-types (blue) and boxed pairs in A and
B (vellow). E. Histogram of ¢/m-score ratios in C. F. Paired comparison of UMAP clustering of s-types
using either morphology or connectivity features, corresponding to the 12 smallest c¢/m-score ratios in C.

Connectivity Features Correlate with Spatial Separation of Potential Cell Subtypes

After establishing that connectivity is a powerful attribute for classifying neurons types, we
investigated whether c-features would also help identify sub-types of neurons that share their
soma locations in the same anatomical area. To do so, we generated a distance map (d-map) to
measure the spatial separation of two neurons based on their soma locations (Figure 4A).
Because within any specific brain region neurons were labeled in a stochastic way, the pairwise
soma-distance may form a Gaussian-like or Gaussian-mixture distribution (Figure 4B).
Particularly, when somas scatter almost uniformly within a brain region, their pairwise distance
will be close to Gaussian, such as LGd and CP neurons (Figure 4B, red and blue). Conversely,
when somas form two or more subclusters within a region, their pairwise distances may form a
distribution with long-tail, or approximately a Gaussian mixture distribution, such as the ACAd
6a neurons in this database (Figure 4B, green). Correlating the morphology similarity scores (m-
scores) and connectivity similarity scores (c-scores) with d-map provides a useful way to
understand which kind of features may help identify subtypes of neurons whose somas are from
subareas in an established s-type.

In the example of CP neurons, we calculated the pairwise m-score and c-score matrices (Figure
4C) sorted in the same order of neurons as in the respective d-map (Figure 4A). Using the c-
features, we obtained three major CP clusters (Figure 4D) with different projection and
arborization patterns (Figure 4E), although their somas are mixed fairly uniformly (Figure 4F),
while there is no obvious subcluster based on m-features’ similarity matrix (Figure 4C).
Similarly, we computed the d-maps and respective m-scores and c-scores matrices for LGd and
ACAd6a neurons (Figure 4G, Figure 4H). The Gaussian-mixture like distribution of the
pairwise neuron-distances of ACAd6a neurons also translate to potential clusters in ACAd6a’s d-
map (Figure 4H), while the single Gaussian-like distributions of CP and LGd neurons (Figure
4B) correspond to the less clear hierarchical clustering of the respective sorted d-maps (Figure
4A, Figure 4G).

We computed the corresponding d-maps, m-score, and c-score matrices for all 31 s-types of
neurons. Overall, we found that for any pair of neurons, their c-scores are only slightly greater
than the m-scores (Figure 4I). There is a weak positive correlation between these two scores
(Figure 4J), of which m-scores follow a much flatter marginal distribution than c-scores (Figure
4J); this indicates that statistically it would be harder to produce clearly segregated neuron
clusters based on morphology similarity. However, remarkably the corresponding entries of the
d-map and c-score matrices have evidently negative correlation, which is also much stronger
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than that between d-map and m-score entries (Figure 4K, Figure 4L). Indeed only 6 out of 31,
or 19.4%, s-types show stronger negative-correlation of soma-location-and-morphology
similarity over soma-location-and-connectivity correlation (Figure 4K). Neurons with far away
soma locations can be at most 4 times more likely to have different c-features than m-features
(Figure 4L). Thus, we conclude that potential subtypes for a s-type are statistically better
represented by c-features than by m-features.
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Figure 4. Classification of cell subtypes based on morphological and connectivity features. A. Pairwise
soma-distance map of CP neurons bi-clustered based on spatial adjacency of somas mapped to CCFv3.
B. Histograms of the pairwise soma-distances for neurons in CP, ACAd6a (Anterior cingulate area,
dorsal part, layer 6a) and LGd (lateral geniculate complex - dorsal part) regions. C. Matrices of
morphology-feature similarity scores (m-similarity) and connectivity-feature similarity scores (c-
similarity) of individual CP neurons, rows and columns sorted in the same order of the clustered distance
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map in A. Cosine similarity scores are used. D. Connectivity-feature based clustering of CP neurons into
two main subclasses (red and blue), in the same convention as Fig. 2C. E. 3-D visualization of the two
CP neuron-subclasses in D. F. 3-D soma-locations of CP neurons. Color: the largest Euclidean distance
between axonal terminals and the respective soma. G. LGd neurons’ distance map and respective m- and
c-similarity matrices, rows and columns sorted in the same order. H. ACAd6a neurons’ distance map and
respective m- and c-similarity matrices, rows and columns sorted in the same order. I. Histogram of the
difference between corresponding c- and m-similarities for all neurons of the 31 s-types in this study. J.
Scatter plot and marginal distributions of corresponding c- and m-similarities for all neurons in the 31 s-
types. K. Correlations between soma-distance-map and c- or m-similarity for all 31 s-types. L. Overall
correlations between neurons’ soma distances and the respective similarities in connectivity features or
morphology features. | m_corr: correlation between location-distances and m-similarities. | ¢ _corr:
correlation between location-distances and c-similarities.

Spatially Tuned Connectivity Features Identify Cell Subtypes

Anatomical sub-grouping of neurons within a specific brain region reflects the spatial coherence
of these cells. As c-features correlate more strongly with the spatial adjacency of neurons, for
each s-type we combined connectivity profiles and spatial adjacency to cluster neurons and
identify potential anatomical subtypes. We called this approach Spatially-Tuned c-Features, with
which we produced clear subtyping of neurons (Figure 5) that we had never been able to identify
using alternative methods.

In particular, for cortical neurons (Figure SA~F), we found that neurons in the prelimbic area
(PL) have 2 subtypes for each of the layers 2/3 (Figure 5A), layer 5 (Figure 5B), and layer 6a
(Figure 5C), respectively. Neurons in layers of the secondary motor cortex, MOs, could also be
clustered into subgroups (Figure SD~F). The layer 2/3 MOs neurons are clustered into two large
subgroups indicated by the sorted distance matrix, along with distinct projection patterns of these
subgroups in the cross-sectional views of the CCF space (Figure 5D). Similarly, each of layer 5
and layer 6 MOs neurons were divided into two subgroups, respectively (Figure SE and 5F).
Detailed examination of these MOs subtypes provides guidance for analyzing connectivity-based
subtypes of cortical neurons (see next section).

We also attempted to identify subregions in the thalamic gateway related to sensory and motor
input, particularly VPL (Figure 5G), VPM (Figure SH), and LGd (Figure 5I). We found that
subregions of somas in these areas correspond to neurons projecting to distinguishable spatial
targets, visualized often as homogeneous color-blobs of neuron-subclusters, which are
particularly clear in the three subtypes of VPM neurons (Figure 5SG). LGd has three known
anatomical subregions (Guido, et al, 2018; Okigawa, et al, 2021), i.e., LGd-shell, LGd-core, and
LGd-ip (ipsilateral zone). We found two major distinguishable subtypes of somas using our
approach, which may provide further spatial granularity to study the previously documented
subregions. Of note, LGd neurons could not be clearly clustered using either morphology
features or connectivity or spatial distance features alone (Figure 4G).
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Figure 5. Neuron subtyping based on spatial-connectivity patterns. In each image, Upper row: bi-
clustered spatially tuned connectivity similarity matrices, where different colors along the x- and y-axes
indicate the clusters, and the index-numbers of neurons in a specific s-type are shown in both x- and y-
axes. Lower row: tri-view visualization of neurons in CCFv3; neurons are rendered in the same colors as

13


https://doi.org/10.1101/2023.08.09.552547
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.09.552547; this version posted August 12, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

in the respective upper-row clusters. A: Anterior, P: Posterior, D: Dorsal, V: Ventral, L: Left, R: Right.
A. B. and C. Subtyping of PL (prelimbic area - prefrontal cortex) neurons for layer 2/3 (PL2/3) (n=188),
layer 5 (PL5) (n=795), and layer 6a (PL6a) (n=99), respectively. D. E. and F. Subtyping of secondary
motor cortex neurons in MOs layer 2/3 (MOs2/3) (n=218), layer 5 (MOs5) (n=359), and layer 6a
(MOsb6a) (n=116), respectively. G. H. and 1. Subtyping of thalamic neurons in VPL (n=91), VPM
(n=406), and LGd (n=78), respectively.

Subtyping MOs and VISp Neurons Reveals Diversified Connectivity, Transcriptomic, and
Electrophysiological Characteristics

MOs neurons have long axonal projections that subserve animal decisions (Yang and Kwan,
2021). In addition to individual neurons’ spatial patterning, we also profiled the symmetry of
MOs connectivity using the cortical layer 5 neurons. To do so, we kept the somas separated
when calculating their space distance map. Our examination of individual MOs neurons
confirmed long-range projection targets at the full-brain scale (Figure 6A, top). The overall
projection patterns of these MOs neurons are also consistent with the previously documented
population projection (Oh, et al, 2014) (Figure 6A, bottom-right). We found that the somas in
MOs5_1 and those of MOs5 2 and MOs5 3 clusters distribute on the two sides of the brain
(Figure 6A, bottom-left), while the somas in MOs5 2 and MOs5_3 essentially intermingled.
Indeed, the projection patterns of MOs5 1 match well with the mirrored sum pattern of MOs5 2
and MOs5_3. In another words, the spatially tuned connectivity analysis provides a powerful
way to reveal both the anatomical distribution of neuron subtypes and their symmetry.
Particularly, while the reconstructions of neurons of this MOs5 dataset have three anatomical
subtypes when both hemispheres of the brain are considered, there are only two genuine
subtypes (Figure 5E) that are distributed symmetrically on the brain’s coronal plane. These two
subtypes might be further subdividable as implied in respective clustering tree (Figure 5E).

We also examined both the axonal and dendritic morphologies of MOs5 subtypes. While the
most dendritic features of the two genuine subtypes, MOs5 2 and MOs5 3, are similar to each
other, their axonal features (Figure SE) are clearly different in area, width, and relative shift of
centers, despite the similar numbers of axonal bifurcations. This means that, although these two
subtypes have similar branching complexity, their projection patterns differ. Such variability of
MOs5_2 and MOs5 3 is also seen in the different correlation and neuron-beta (Peng, et al, 2021;
Methods) values compared to the overall MOs population projection (Figure 6C). The
respective scores of MOs5-vs-population and MOs5_1-vs-population are comparable to each
other, indicating MOs5 1 is a good ipsilateral approximation of the overall MOs5 patterns, also
as the “sum” reference for MOs5_2 and MOs5_3 (Figure 6C). The MOs5 and MOs2/3 neurons
also covary strongly with the MOs population projection. Differently, MOp neurons show more
variation in the single-neuron-vs-population comparison, while their integrative projection
pattern also matches with previous population projection data (Oh, et al, 2014) (Figure 6C). We
also correlated the m-features of individual neurons’ dendritic and axonal arbors. For MOs5
neurons, m-features such as the number of bifurcations and total length show recognizable level
of correlation, in the range of 0.3~0.7, between dendrites and axons (Figure 6D).

We also produced UMAP analyses to compare the transcriptomic subtypes of single MOs
neurons (Yao, et al, 2021), connectivity subtypes and morphological subtypes (Figure 6E). As
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the transcriptomic data of MOs and FRP (frontal pole, cerebral cortex) were mixed due to the
limited spatial resolution at this point, we prepared connectivity and morphological features of
individual neurons in a similar way, also specifically for layer 5. Within each of the individual
scenarios, we observed relatively coherent subtyping except for the cases of morphological
features. However, it seems that the diversity exhibited in the c-features cannot be immediately
explained by the subgrouping of the transcriptomic features. We have not observed a conclusive
layer-by-layer correspondence between transcriptomic and connectivity subtypes, either.
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Figure 6. Comparison of various cell typing methods for MOs neurons. A. Three connectivity-based
clusters for MOs5 neurons (top row) along with the distribution of their somas (bottom-left) and the
overall projection patterns of MOs5 neurons (bottom-right) (Harris, et al, 2019). B. Key morphological
features of the three connectivity-based MOs5 subtypes. C. Two metrics, neuron-beta and correlation



coefficient, between single neurons and neuron-populations in motor cortex, specifically MOp, MOs2/3,
MOs5, and MOsb6a subtypes. D. Correlation of dendritic and axonal morphological features for MOs5
connectivity subtypes, along with examples of the first MOs5 cluster. Note that the clustered neurons in A
might not have dendrite reconstructions, however in this dendro-axonal correlation analysis only neurons
in A but also with full dendrites and axons are counted. E. Transcriptomic profile-based single neuron
clustering of FRP-MOs neurons (n=34,331) and more specific FRP-MOs layer 5 neurons (n=9879),
compared with the clustering based on connectivity and morphology features of FRP-MOs / FRP-MOs
layer 5 neurons.

Moreover, we performed a joint analysis of the m-type, c-type, t-type and e-type data based on
retrieving the publicly available electrophysiological and transcriptomic recordings of single
neurons that also fall into the brain regions used in this study. For the primary visual area (VISp),
we analyzed 48 fully reconstructed neuron morphologies and their regional connectivity patterns
(Supplementary Figure 7A), along with their morphometric features (Supplementary Figure
7B) and anatomical locations of cell bodies (Supplementary Figure 7C). We found that VISp
neurons in different cortical layers have a less clear separation in morphology (Supplementary
Figure 6D) than in connectivity (Supplementary Figure 7E). We also re-analyzed previous
single neuron electrophysiological recordings (Gouwens, et al, 2020) based on the concatenated
e-type features (Supplementary Table 7) and colored these e-type data using their molecular
profiles and anatomical locations (Supplementary Figure 7F-G). While it is clear that certain
neurons in different layers have preferences in their physiological and molecular properties, there
is a general disparity between such features and their c-types.

Subtyping Single-Cell Connectivity of VP Nuclei Indicates Broader Multisensory
Integration

By subtyping single cell reconstructions of 390 VPM and 83 VPL neurons, we were able to
document the broad regional connections of VP neurons in a comprehensive manner. First, we
clustered individual neurons’ detailed projections onto cortical areas and layers into 8 subtypes
as a matrix (Figure 7A). These 8 groups have similar separation of their soma locations as well
as the respective axonal arbor targets’ locations (Figure 7B and 7C). The longest dendrite can
be about 5 times of the shortest dendrites in these groups (Figure 7D). We also confirmed the
majority projection of VP neurons to layer 2/3 and 4 of somatosensory cortex (Figure 7A)
consistent with previous knowledge at the neuron population level (e.g., Bureau, et al, 2006;
Viaene, et al, 2011; Clasca, et al, 2012; Staiger and Petersen, 2021). It is interesting to note that,
while our previous study (Peng, et al, 2021) implied that a small portion of VP projection may
target MOp, the detailed examination presented in the next section (Figure 8) visualizes
abundant outgoing arborization of VP neurons in MOp regions. Strikingly, we estimated a non-
negligible 20.7% VP cells (n = 98) actually project to multiple cortical areas such as motor or
visceral areas that are outside somatosensory cortex, and even beyond such as CP (Figure 7A).

Furthermore, we found that a single VP neuron could target multiple sensory areas. For example,
a VPM neuron can simultaneously projects to SSs and sub-areas of SSp, such as SSp-m, SSp-n,
SSp-11 or SSp-ul (Figure 7A and 7E). Indeed, some VPL neurons even project to layer 1 in
addition to layer 4 (lower right panel in Figure 7E). Such neurons carry two separate axonal
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clusters: a larger one projecting to VPL neuron’s typical projection target, i.e., SSp-layer 4, and a
smaller one targeting layer 1 of a different cortical area, such as SSs or even VIS (visual cortex).

Also of note, the surface-area of some VPM cells’ axonal cluster in SSp-bfd (largest:
384,942um?) is twice larger than that of a barrel (Figure 7F). Traditionally, it is believed that
each VPM cell only projects to one barrel (Pierret, et al, 2000). Our finding suggests potential
signal regulation across multiple barrels; thus, the tactile sense signaling transmission could be a
multithread process.

Additionally, 18.6% of VP neurons (n = 88) possess small branches with bouton terminations in
subcortical striatum, suggesting VP-striatum projections (Figure 7G). Our finding indicates a
new pathway in thalamic-subcortical circuit, supplementing the main pathway of VP nuclei to
somatosensory cortex. Taken together, these single-cell VP reconstructions give clues to
supplementary and complex signal transmission paths in multisensory integration circuits.
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Fig 7. Alternative examination of connection types in ventral posterior (VP) nucleus. A. 8 different VP
neuron subtypes clustered and color-coded by projecting target regions, particularly cortical layers
(Supplementary Table 8). Columns: individual neurons. Rows: projection targets of neurons. Color bar:
axonal length of a neuron projecting to a specific area. B. Axonal clusters of these VP subtypes mapped
to CCF. C. Soma positions and connected dendrites of the 8 subtypes. D. Analysis of dendritic total length
(um) of these 8 clusters of neurons. E. Examples of VP neurons with zoomed-in coronal view of
dendrites. Red arrows: projection targets outside of somatosensory areas; note the VIS target is in layer
1. F. Examples of cluster size located in the barrel field. Note the right cluster covers more than one
barrel. G. Visualized CP projections of VPM neurons.
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Subtyping Target Connections of Thalamocortical Neurons in MOp Cortex

In addition to the outgoing “forward” connection patterns examined in preceding sections, we
also investigated the diversity of incoming connections of a target brain region. Previous
literature shows that the primary motor cortex (MOp) receives thalamocortical projection from
the sensory-motor relay nuclei VAL and the modulatory or high order nuclei like VM or PO
(Kuramoto, et al, 2011; Guo, et al, 2018; Guo, et al, 2000). Our analysis revealed additional
connections from sensory relay nuclei VPM and VPL (Figure 7 and Figure 8).

With the whole-brain mapped full reconstructions we produced, it can be seen that individual
neurons from PO, VM, VAL project to motor and somatosensory areas as a whole spectrum of
connectivity subtypes (Figure 8A and 8B). Indeed, projections of individual neurons display
different layer preferences in thalamocortical areas. Such preference in MOp can be summarized
as the following: PO neurons (n=14) focus on mainly layer 2/3 (4/14), layer 2/3 and layer 5
(4/14) and layer 5 (6/14). VAL neurons (n=34) have 5 main subtypes of connectivity projecting
to (a) layer 1 (4/34), (b) layer 2/3 mainly (6/34), (c) layer 2/3 and layer 5 combined (6/34), (d)
layer 5 mainly and layer 6 weakly (16/34), and (e) mainly layer 6a (2/34). VM neurons (n=13)
have several subtypes projecting to layer 1 (8/13) combined with weak projection into other
layers, layer 2/3 and layer 5 (4/13) and all layers (1/13). VP neurons (n=35) can be classified as
subtypes including projections to layer 2/3 (30/35), layer 5 (3/35) and layer 6 (2/35), respectively
(Figure 8B). Individual examples display axonal cluster phenotypes and projections (Figure
8C). Taken together, these new layer projections from individual thalamocortical neurons
suggest fine regulations of the sensory-motor signal circuits.
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Figure 8. Conjugated MOp projections of individual thalamocortical neurons from PO, VM, VAL and VP
nuclei. A. Co-projection of axonal arbors to MOp and nearby cortical areas originated from PO, VAL,
VP, and VM. Color code: normalized arbor density. B. Projection matrices of individual neurons in A.
Columns: individual neurons. Rows: projection targets, particularly with MOp layers. C. Example-
neurons from each nucleus. Circular plots: distribution of target projection regions for each neuron.

Discussion

This work studies the whole-brain scale connectivity of single neurons using one of the largest
data archives produced to date, leveraging both new dendritic reconstructions that cover the
entire brain and existing axonal and full reconstructions (Winnubst, et al., 2019; Peng, et al,
2021; Gao, et al, 2022). While multi-dataset aggregation enables powerful analysis, it also
necessitates that these three existing datasets (Winnubst, et al., 2019; Peng, et al, 2021; Gao, et
al, 2022) share cross-validated distributions of morphological properties of single neurons
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indicating quality reconstructions. The consistency of these data suggests a novel approach to
reveal how individual neurons in different regions are wired into different networks with
different circuit motifs at whole brain scale. There are two remarkable topics in such an
integrative approach. First, one may be able to study the building blocks of a brain, i.e.,
organizational “types” or “subtypes” of individual neurons, in terms of connectivity. This work
makes an initial attempt toward this end. Second, one may be able to construct and study the
“microscale” connectome based on individual neurons, filling a gap between previous work at
the population level mesoscale connectome and the nanoscale connectome that relies on using
electron microscopy and/or other super-resolution microscopy methods more suitable for
examining synaptic level connections of neurons in potentially smaller, local brain regions. We
have also attempted the second approach in another ongoing study (unpublished work).

To understand the potential connectivity of neurons throughout a brain at single neuron
resolution, it is essential to analyze the arborization of axons and dendrites in different
anatomical areas. An overall axonal arborization distribution map (Figure 1) provides an
understanding of the marginal distribution of neurons that innervate from different regions, and
also highlights that arbors can be powerful entities to study neuronal connectivity. To complete
this paradigm, we produced brain-wide dendritic arbor domains, which were used to generate the
connectivity profiles for each individual neuron. In this way, the connectivity features can be
precisely defined and utilized for analysis. This approach therefore constitutes a contribution
essential for whole brain scale single-neuron analysis.

Our framework derives potential connectivity from full morphology plus atlas mapping into a
standard space, so that the regional connection relationship of multiple neurons can be compared
objectively with the appropriate context of their relative locations, distributions of their shapes,
and spatial adjacency and/or overlap of their axon-dendritic arbors. Atlas mapping thus enables
the expansion of previous approaches to neuron-type circuit analysis that were limited to local
anatomical domains (Tecuatl, et al, 2021) to the entire mouse brain and long-range projection
neurons. Our data show that connectivity features of neurons not only provide additional
dimensions to distinguish neurons from different anatomical regions, but also allow effective
neuron-typing when they are used alone. Within each of the anatomically established brain
regions, we also see a strong correlation between the connectivity-based similarity and the spatial
adjacency of neurons and their somas. Therefore, to approach the more challenging task of
subtyping neurons, we can aggregate both connectivity and spatial information to observe
distinct neuron-groups that are otherwise difficult to distinguish. Our application in analyzing
MOs neurons demonstrates diversity of such neuron subtypes that cannot be readily inferred
from existing data of neuron population-projections and molecular profiling. Further screening of
the enriched regional connectivity of neurons in VP nuclei and MOp may provide additional
evidence that connectivity subtypes do exist, and carry biological significance in signal relay and
integration.

Within a general framework of cell typing, our study demonstrates that morphology cannot
accomplish this alone. Indeed, based on this study and also previous work (Peng, et al, 2021), as
well as converging results from invertebrate nervous systems (Mehta, et al, 2023), we
hypothesize that t-types or e-types alone may also be insufficient, and it is an interesting open
question how to synergize all these data in a common connectivity framework. We believe that
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there are two key steps to address this challenge. The first is the generation of connectivity
associated t-type, e-type, and m-types data. A second step is building a thorough statistical model
of all such data to mine the associations and distribution patterns, which could be homogeneous
clusters or globally nonlinear manifold patterns (Liu and Qian, 2022).

This approach of leveraging connectivity-type analysis toward the determination and validation
of neuronal cell types is powerful. It can be extended to brain-scale analysis of single neurons’
synaptic connectivity when data becomes available. An excellent example can be seen in the
single-cell connectivity-types defined for a Drosophila brain (Scheffer, et al, 2020) that elaborate
on the connection detail built upon morphological and lineage similarities. While such an
approach provides the electron microscopy-based, ultrascale spatial resolution to precisely
pinpoint synaptic connections, it is also subject to noise and imperfect process of data acquisition
and computation, which would likely be exacerbated when applied to a much larger and
complicated mammalian brain. The strength of the present approach is that we can readily study
cell typing and subtyping using the arborization based regional connectivity, without precise
pinpointing of synaptic level connections. This may be valuable when considering that individual
synapses are subject to turnover via structural plasticity, while arbor geometry provides a
relatively more stable circuit scaffolding (Stepanyants et al, 2002). Connection types and
subtypes can also provide a useful blueprint of future synaptic level analysis. In summary,
neuronal connectivity in mammalian brain provides a powerful discriminant in the classification
of neuronal cell types, refining and adding novel class information to existing and widely studied
modalities.

We caution that the subtlety in definitions of “morphology” and ‘connectivity” might cause
slight confusion in a specific context. In literature, sometimes the analysis of morphology type
might have used part of the connectivity information, such as the orientation-aligned neurons
could be analyzed using lamination information (Gouwens, et a, 2019). The goal of this study,
however, is to factorize the analysis in an understandable way. In this sense, our paradigm can
contribute to a more organized and clear communication in this field.
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Methods
Full and axon reconstructions

We performed a detailed analysis of 1741 fully reconstructed single neuron morphologies (Peng,
et al, 2021) called BICCN AIBS/SEU-ALLEN, and 1200 full single neuron reconstructions from
the Janelia MouseLight project (Winnubst, et al, 2019). We also analyzed the axonal morphology
of 6357 neurons generated by ION (Gao, et al, 2022). All neurons were registered to the Allen
Mouse Brain Common Coordinate Framework v3 (CCFv3). These data are also documented in
Supplementary Table 1. The naming convention of brain regions follows the CCFv3 and also
consistent with the previous studies. Abbreviations are also recorded in Supplementary Table 2.

Generation of dendritic tracing

We generated 10860 dendrite reconstructions from fMOST imaging with the following protocol.
First, we collected image samples following the same protocol in our previous study on
generating the full reconstructions (Peng, et al, 2021). Next, we ran the APP2 algorithm (Xiao
and Peng, 2013) for tracing local arbors by taking manually defined and validated somas as the
central starting points in local image volumes (1024x1024x512 voxels), for the goal that the joint
area of these local volumes covers main dendrite arbors. We ran APP2 with a number of
background thresholds (10,15, 20, 25, 30, 35) resulting in 6 tracing candidates. Then, we
leveraged the set of manually annotated and validated dendritic arbors (from MouseLight and
BICCN AIBS/SEU-ALLEN) to filter the automatic tracing results. The [min, max] interval of
the following five features of the dendritic arbors were considered realistic, including 'Tips' [7,
143], '"Length' [700, 13615], 'Max Path Distance' [108, 1382], 'Average Bifurcation Angle
Remote' [35, 129], and 'Max Branch Order' [3, 32]. An automatic tracing would be discarded if
less than four of its features fell out of these limits. In case more than one tracing qualified for a
soma location, we kept the tracing with greatest length. We spatially registered all tracings to
CCFv3 using mBrainAligner (Qu, et al, 2022). In total, we collected images from 53 mouse
brains, we identified 31,625 neurons, and we generated 17,228 qualified tracings. We visually
inspected all tracings and discarded those with obvious errors (e.g., 1 trace covers multiple
touching neurons, mis-alignment during registration), finally obtaining 10,860 proofread
dendritic tracings.

Independent reconstructions for validation

To cross-validate the neuron morphologies used in this work, we also considered independent
morphologies produced and documented in public resources. Particularly, we searched adult
mouse neuron reconstructions in certain brain regions via keywords using the searching tool of
NeuroMorpho.Org (http://neuromorpho.org/KeywordSearch.jsp). When possible, we only kept
the neuron reconstructions tagged as complete or, in case those were not available, moderately
complete. We searched neurons in 4 different brain regions (HPF, SS, MO and ACA; see
Supplementary Table 2 for a complete list of abbreviations) using keywords
“{region}&dendrite&mouse&adult” where {region} was one of the 4 acronyms. Details of data
sources are listed in Supplementary Table 3 (Yamashita, et al, 2018; Gong, et al, 2016; lascone,
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et al, 2020; Cohen, et al, 2013; Smit-Rigter, et al, 2012; Suter, et al, 2015; Jiang, et al, 2020; Lin,
et al, 2018; Morelli, et al, 2014; Murase, et al, 2016; Karlsson, et al, 2016).

Gaussian Mixture Model classification of neuron nodes

We resampled fully traced SWC files (n = 9298) to have nodes every 10 um and saved their
coordinates in the space of the Common Coordinate Framework v3 (CCFv3) (Wang, et al, 2020)
at 25um isotropic voxel resolution. For each of the 19 CCFv3 brain regions with most neurons in
the analyzed datasets (MOs, Ald, ACAd, ACAv, ORBvl, ORBI, ORBm, VPM, CP, Alv, FRP,
ILA, MOp, SSp, VPL, SUB, LGd, SSs; see Supplementary Table 2 for reference), we pooled all
SWC coordinates in a single data frame containing their X, y, and z locations. We clustered the
pooled data using the Mclust function with default parameters (mclust R package version 5.4.7
(Scrucca, et al, 2016)). We selected the Gaussian Mixture Model (GMM; among all combinations
of spherical, diagonal and ellipsoidal with equal or varying volume, shape and orientation) as it
provides optimal clustering as measured by the Bayesian Information Criterion (BIC) (Schwarz,
1978). BIC is a measure for the comparative evaluation among a finite set of statistical models,
based on maximizing the likelihood function while penalizing for the number of parameters in the
models. We saved the resulting classification with the node IDs of each neuron.

Definition of arbor domains using a-shape

We defined 3-D dendritic domains by using the pooled, clustered SWC coordinate dataset. We
found the minimal volume enclosing all nodes belonging to each single cluster by obtaining the
3D a-shape of the point set (alphashape3d R package version 1.3.1) (Edelsbrunner, et al, 1994).
The 3D a-shape is a generalized definition derived from the Delaunay triangulation (Delaunay, et
al, 1934) with a parameter a to control for the level of detail (the convex hull is obtained when
a~). To obtain detailed volumes enclosing all neuron nodes in each cluster, we used a=0.4. We
call the obtained 3D shapes “arbor domains”. When the majority of the nodes within an arbor
domain belonged to neurons with their soma in the domain itself, we categorized those as dendritic
arbor domains. Otherwise, we considered the obtained domains to be axonal. We saved all arbor
domains as surface objects. We plotted 2D slices of the arbor domains using the R base plot
function (version 4.1.0).

The definition of dendritic domains based on full tracings was obtained both for raw data
distributed in both brain hemispheres and for flipped neurons, ensuring that all of them had somas
in the same hemisphere. To further analyze connectivity, in that case, dendritic domains were
flipped to also recapitulate homologous contra-lateral regions.

In addition to the arbor domains obtained from fully traced neurons, we also generated single
dendritic domains from using all node coordinates for dendritic tracings with somas inside each of
the 19 brain regions with most neurons. 3D a-shapes were defined using the same method.
However, in this case we did not perform GMM-clustering and all coordinates were pooled in a
single set for each brain hemisphere.

Single neuron connectivity to dendritic arbor domains

30



To define outgoing connections from single fully traced neurons to dendritic arbor domains, we
measured the spatial overlap between single neurons and arbor domains. To do so, we obtained all
voxels enclosed by each domain 3D a-shape (we tested whether they are inside the surface of the
domain using the inashape3d function in the alphashape3d R package version 1.3.1) and saved
them as a 3D mask in the CCFv3 space. To convert surface polygon file format .ply files to 3D
masks we used binvox version 1.35 (Nooruddin, et al, 2003). We then obtained a 3D volume where
each voxel contains an array of indices identifying each 3D a-shape volume visiting such voxel.
We obtained a-shapes for each individual fully traced neuron (a=0.4) and saved the enclosed
volume as a 3D mask. Finally, we measured the overlap volume between each single neuron mask
and the volume containing all 3D arbor domain indices. We saved the overlapping volume between
each neuron and each dendritic domain as a connectivity matrix.

Support Vector Machine clustering of morphology and connectivity

To assess the relevance of arbor domain connectivity for defining cell types and subtypes, we used
a Support Vector Machine (SVM; hyperoverlap R package version 1.1.1; linear kernel, cost=1000
and stoppage.threshold=0.2) to classify neurons with somas located in MOp, SUB and VPL
regions (Brown, et al, 2020; Cortes, et al, 1995). For each pair of brain regions, we used SVM to
cluster the data in two groups. To assess the separation of the neurons in the space defined by the
two morphological variables “total length” and “maximum branch order”, we measured the
pairwise overlap of points from each of the three brain regions. To account for arbor domain
connectivity, we obtained a PCA from the connectivity matrix of the analyzed neurons. We
performed pairwise SVM classification analogously by adding the first three principal components
of the connectivity matrix in the dataset. We plotted these results using the ggplot2 R package
(version 3.4.0).

m/c-score metric

The m/c-score can be used to quantify the dissimilarity of morphological (see Supplementary
Table 5 for axonal features and Supplementary Table 6 for dendritic features) and connectivity
(arrays of spatial overlap between each single neuron and all dendritic arbor domains) features
between two clusters, taking into account both their intra-class similarity and inter-class
separation. A higher score indicates the greater difference between two clusters, while a lower
score indicates more similarity. The m/c-score is calculated as the following formula:

2+Distinter—class >
9

1 . .
2* (DlStintra—class(l) +Distintra-class(2))

m/c — score = exp (—

where, DiStiyter—class fepresents inter-class distance between the centers of two clusters, which
is calculated using Manhattan distance metric (Han, et al, 2022). Distn¢rq—ciass(x) Tepresents
intra-class distance of cluster x, which is defined as the average of the Manhattan distances
between each sample and all other samples within the same cluster.

With regard to m-score matrix clustering, we applied hierarchical clustering by clustermap
function (method="ward", metric="euclidean") in Seaborn Python package (version 0.11.2). We
used umap-learn Python package (version 0.5.1) to implement UMAP decomposition with
default parameters and plotted results as scatterplots with Matplotlib (version 3.3.4).
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Anatomy-based distance metric

The distance metric follows the Mahalanobis definition (McLachlan, et al, 1999). Let s; =

[x;, ¥;, z;] be the position of soma i in 3-D space. Due to the computational convenience, the
soma location should be mirrored to the ipsilateral hemisphere. For two somas s;, s,, anatomy-
based distance was defined using the following equation:

Dists(sq,52) = \/(51 — 52)TCoVanatomy (51— 52) »

where, CoVgnqtom,y TEPresents the covariance of 3D positions of voxels of relevant ipsilateral

anatomical region in the 25um CCFv3 reference space volume.
Distance-weighted connectivity-based clustering

Distance-weighted connectivity-based clustering was used to cluster s-type cells based on both
their connectivity feature similarity and physical distance of somas. Two matrices were
generated to represent these components: a connectivity similarity matrix (c-similarity matrix
denoted by M) calculated using cosine similarity, and a distance matrix (d-map denoted by M)
calculated based on the anatomy-based distance between the somas of the cells. Both matrices
were linearly normalized to values between 0 and 1. To emphasize spatial adjacency, a distance
affinity matrix (Mp,) was constructed using Gaussian kernel; Mp, = exp(—Mp, - Mp). This
ensured that larger values in the affinity matrix indicated greater spatial adjacency between cells.
Hierarchical clustering was subsequently applied on the matrix resulting from multiplying M
and Mp, to produce diversity clustering results. The optimal number of clusters was determined
by the Calinski-Harabasz (Calinski, et al, 1974) score (metrics.calinski_harabaz_score function
from scikit-learn Python package version 0.24.2) automatically.

Correlation between single cell and population morphology, projections, and
transcriptomics

We used a transcriptomic dataset of 34,331 neurons in MOs and FRP brain regions, which is
collected from a newly released dataset (Yao, et al., 2021). The analysis is performed by
SCANPY (a python package, version: 1.9.3). To ensure the data quality, we filtered out 9432
genes that are detected in less than 3 cells, and filtered out 624 cells that expressed over 6,000
genes. We normalized the data (using functions: pp.normalize total, pp.loglp, pp. regress_out,
under default parameters), and reduced its dimension (using tl.pca, and tl.umap, under default
parameters) for visualization. We further extracted L5 related cells (9,879 cells) using this
genetic modality, following the same procedures.

Electrophysiological data analysis

For electrophysiological modality, we selected 919 cells in VISp layers from a Path-seq dataset
(Gouwens, et al., 2020). The selected dataset has 5 transcriptomic labels (Pvalb Reln Itm2a, Sst
Hpse Cbln4, Sst Calb2 Pdlim5, Lamp5 Lspl, Pvalb Sema3e Kank4), and 5 strcuture labels
(VISpl, VISp2/3, VISp4, VISpS, VISp6a). UMAP layout of the dataset shows three distinct
populations. For 919 cells in electrophysiological profile, we used IPFX (a python package,
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version: 1.0.7) for the feature extraction, generating 13 electrophysiological features
(Supplementary Table 7) for each cell. We concatenated these features as one vector profiling
each cell in subsequent analyses.
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Supplementary Figure 1. Exemplar summary of the spatial anatomical distribution of several
neuron reconstruction datasets. Eight axial slices are selected for visualization. (a) CCF atlas
showing brain regions of selected slices. Brain regions are colored following CCF’s color code.
CCF slice ID is shown on the top-left of each image. (b) Visualization of dendrite
reconstructions. (¢) Dendrite density within each brain region. (d) Visualization of axonal arbor

35



reconstructions. () Axonal arbor density within each brain region. (b) and (d), In each image,
dendrite/axonal arbors within 500 um (20 slices) of the target slice are shown.

Different color is assigned to different dataset. (c) and (e), Density is computed by dividing total
dendrite/axonal arbor length (mm) inside a brain region by the volumetric size (mm?) of the
brain region. The unit of arbor density is mm™. The color map is shown on the bottom.
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Supplemental Figure 2. Comparative analysis of morphological features of axons in three
datasets, i.e. BICCN AIBS/SEU-ALLEN (SEU-AIBS), Janleia MouseLight (MouseLight), and
ION.
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Supplemental Figure 3. Comparative analysis of morphological features of dendrites in three
datasets, i.e. BICCN AIBS/SEU-ALLEN (SEU-AIBS), Janleia MouseLight (MouseLight), and
DEN-SEU (SEU).

38



Morphological Features

Center Average Number of Total Max Euclidean
Shift Contraction Bifurcations Length Distance
SS

5

‘@ MO

9

L

£

© HPF

o

ACA
3D Density Volume Slimness Flatness
ss Mouselight +

BICCN AIBS/SEU-ALLEN

c

.0

)

po) MO

bad DEN-SEU

=

o

& HPF
Multiple labs via
NeuroMorpho.Org

ACA

Supplemental Figure 4. Comparative analysis of dendrite morphology features of neurons in
selected brain regions, for multiple datasets including full single neuron reconstructions (BICCN
AIBS/SEU-ALLEN and MouseLight), dendritic reconstructions (DEN-SEU), and publicly
available reconstructions from multiple independent labs (as archived at NeuroMorpho.Org, see
Methods). Each row corresponds to a brain region, while each column corresponds to a feature.
Four brain regions, i.e. somatosensory area (SS), somatomotor area (MO), hippocampal area
(HPF), and anterior cingulate area (ACA), with available neuron feature data were selected. Nine
informative features are shown as examples. Refer to Supplementary Figure 5 for a complete
comparison of all 32 features.
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(d) anterior cingulate area (ACA)

Supplemental Figure 5. Comparative analysis of dendrite morphology features of neurons in
selected brain regions, for multiple datasets including full single neuron reconstructions (BICCN
AIBS/SEU-ALLEN and MouseLight, labeled as “MouseLight+Full-SEU-AIBS”), dendritic
reconstructions (DEN-SEU/“Den-SEU”), and publicly available reconstructions from multiple
independent labs (“NeuroMorpho”, as archived at NeuroMorpho.Org, see Methods). Four brain
regions, i.e. (a) somatosensory area (SS), (b) somatomotor area (MO), (c) hippocampal area (HPF),
and (d) anterior cingulate area (ACA), are shown with the comparison, in which all 32 morphology
features are visualized with the respective names under each subplot.
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Supplemental Figure 6. Whole brain arborization map of all neurons with axons in this study.
See Figure 1D for labels of brain regions.
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Supplemental Figure 7. Comparative analysis of projection patterns of VISp neurons originated
in various cortical layers (2/3, 4, 5, and 6), the respective morphological features and soma
locations, and public-domain electrophysiological recording and transcriptomic profiles of single
neurons. A. Projection and regional connectivity patterns of VISp neurons, grouped by soma-

locations in four cortical layers. B. Comparison of axon features of VISp neurons in four layers.
C. Locations of VISp neurons used in this study. D. Joint distribution of morphological features
and soma locations in the respective UMAP space. E. Joint distribution of connectivity features
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and soma locations in the respective UMAP space. F. Joint distribution of electrophysiological
features and molecular types of VISp neurons in the respective UMAP space. G. Joint
distribution of electrophysiological features and soma locations in the respective UMAP space.
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