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Abstract 
 
Classifications of single neurons at brain-wide scale is a powerful way to characterize the 
structural and functional organization of a brain. We acquired and standardized a large 
morphology database of 20,158 mouse neurons, and generated a whole-brain scale potential 
connectivity map of single neurons based on their dendritic and axonal arbors. With such an 
anatomy-morphology-connectivity mapping, we defined neuron connectivity types and subtypes 
(both called “c-types” for simplicity) for neurons in 31 brain regions. We found that neuronal 
subtypes defined by connectivity in the same regions may share statistically higher correlation in 
their dendritic and axonal features than neurons having contrary connectivity patterns. Subtypes 
defined by connectivity show distinct separation with each other, which cannot be recapitulated 
by morphology features, population projections, transcriptomic, and electrophysiological data 
produced to date. Within this paradigm, we were able to characterize the diversity in secondary 
motor cortical neurons, and subtype connectivity patterns in thalamocortical pathways. Our 
finding underscores the importance of connectivity in characterizing the modularity of brain 
anatomy, as well as the cell types and their subtypes. These results highlight that c-types 
supplement conventionally recognized transcriptional cell types (t-types), electrophysiological 
cell types (e-types), and morphological cell types (m-types) as an important determinant of cell 
classes and their identities.  
 
 
Introduction 
 
A mammalian brain is a complex network of tens of millions or more neurons and supporting 
cells that work together to carry out its functions (Purves, et al, 2019; Luo, 2015). These neurons 
form intricate modules within neuronal circuits and connectomes (Lichtman, et al, 2008; Sporns, 
2011; Van Essen, et al, 2012; Seung, 2012). Cataloging brain-wide neuron types is recognized as 
a powerful way to understand the structural and functional organization of the brain (Peng, et al, 
2021; Winnubst, et al, 2019). A definitive class of neuronal cells in a mammalian brain typically 
has a number of neurons that share multiple common attributes. Recent advances in classifying 
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neurons usually rely on four major types of attributes: anatomical (Zeng and Sane, 2017; Muñoz-
Castañeda, et al, 2021), physiological (Gouwens, et al, 2020), morphological (Peng, et al, 2021; 
Winnubst, et al, 2019), and molecular (Moffitt, et al, 2018; Zhang, et al, 202l; Zhang, et al, 
2023), which are further complemented by other attributes such as lineage or developmental 
trajectory of these cells (Sebé-Pedrós, et al, 2018; Zhong, et al, 2020; Russ, et al, 2021). 
 
Large-scale data acquisition and analyses at single-neuron resolution have succeeded in 
identifying neurons based on their 3-D registered soma-locations to the standard brain atlases. 
For mouse brains, the Allen Common Coordinate Framework (Dong, 2008; Wang, et al, 2020) 
and image-modality specific variations (Qu, et al, 2022) serve as standard atlases to index 
anatomical locations of neurons of interest. However, such soma-location cell types, or s-types, 
provide only an anatomical reference of the respective neurons, with marginal indication about 
the structural, physiological, molecular, and other attributes of neurons. Practically available 
techniques (Lee, et al, 2021; Lipovsek, et al, 2021) to record electrophysiological, 
morphological, and transcriptional properties of individual neurons have generated massive 
resources of these data modalities (Kalmbach, et al, 2021), enabling the analysis of 
electrophysiological cell types (e-types), morphological cell types (m-types), and transcriptional 
cell types (t-types) that further classify various s-types (Scala, et al, 2021). 
 
The description of the morphology of neurons has been a crucial force to advance neuroscience 
since the time of Cajal (Cajal, 1909). While high-resolution digital reconstruction of the 3-D 
morphology of neurons is very challenging (Peng, et al, 2015; Manuben-Gil, et al, 2023), recent 
efforts in large-scale, semi-automatic reconstruction have yielded substantial datasets for whole 
mouse brains (Peng, et al, 2021; Winnubst, et al, 2019; Gao, et al, 2022) and other complex 
primate brains (e.g. Han, et al, 2023). We believe that a comparative approach taking advantage 
of these resources will help understand the morphological classification and distribution of single 
neurons. We also envision that an objective comparison of the morphology of neurons, 
especially from various data sources, should be carried out in a standardized coordinate system 
of an entire brain. Recent advances in brain mapping and registration (e.g., Qu, et al, 2022) 
provide such an opportunity.  
 
Recent neuroscience research has highlighted the urgent need and various approaches to study 
neuronal connectivity and the whole-brain connectome (Abbott, et al, 2020; Whitesell, et al, 
2021; Axer, et al, 2022). The MICrONS Consortium has recently produced a number of analyses 
about the connectivity of cortical neurons using electron microscopy (EM) datasets (e.g. Turner, 
et al, 2022; Dorkenwald, et al, 2022; Yin, et al, 2020). Parallel efforts also include the EM-based 
reconstruction and analysis of Drosophila hemibrain that also have a limited use of the cell 
connectivity to define cell types (Scheffer, et al, 2020). However, the EM approach has not yet 
scaled up to a whole mouse brain, which motivated us to take an alternative approach. Indeed, 
the connectivity of neurons has to be mediated by their morphology, making it challenging to 
study at the whole-brain scale. While it is clear that neurons can be classified based on their 
regional projection and connectivity, a quantitative study of the connectivity types of neurons in 
mammalian brains has been challenging. The goal of this study is to make an initial attempt to 
define neuronal connectivity in the context of whole brain based on aggregating and augmenting 
the largest single neuron morphology reconstruction datasets. In particular, we analyzed data 
with axonal and dendritic reconstructions of all brain regions to catalog connectivity types (or c-
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type) and subtypes of anatomically defined neurons. We further investigated the role of such 
connectivity types, and found that the connectivity types and subtypes supplement with the 
conventionally recognized transcriptional cell types (t-types), electrophysiological cell types (e-
types), and morphological cell types (m-types), as a new determinant of cell classes and 
identities. Our finding underscores the importance of potential connectivity in characterizing the 
modularity of brain anatomy, as well as the cell types and their subtypes.  
 
 
Results 
 
Whole-Brain Map of Neuron Arbors and Projections 
 
To formalize terminology, we call each group of neurons whose somas are in the same brain 
region a “soma-type”, or s-type. A neuron type determined based on clustering of morphological 
features, or m-features, is called a “morphology-type”, or m-type. Many morphological features, 
such as length, surface area, and number of branches of a neuron, are independent of a neuron’s 
spatial orientation, while other m-features, such as width and height, may be associated with a 
neuron’s orientation. A neuron type determined based on clustering of connectivity 
features/profiles, or c-features, of neurons is called a “connectivity-type”, or c-type. All c-
features are orientation-independent and thus c-type is also not associated with a neuron’s 
orientation. Of note, connectivity is often associated with a topological direction, which means 
where axons project to and where neuronal input signal come from. Morphology features do not 
immediately exhibit such a directionality except partitioning into dendritic and axonal arbors. 
Remarkably, any quantifiable neuronal “connectivity” must be based on an anatomically precise 
mapping of individual neurons’ morphology at the whole brain scale. In another word, c-type is a 
derivative of m-types but also involves multiple neurons, neuron-populations, and brain regions, 
in a standardized manner. 
 
To effectively study s-types, m-types, and c-types, we built a comparative morphology neuron 
database that consists of 20,158 neuron-morphology reconstructions (Figure 1), with which we 
inferred potential axon-dendrite connectivity of single neurons for standard whole-brain 
anatomical regions. To do so, we first aggregated four state-of-the-art neuron reconstructions 
datasets from independent sources (Supplementary Table 1). In detail, we specifically 
generated 3-D dendritic morphology of 10,860 neurons, called DEN-SEU (Figure 1A and 1B, 
Supplementary Figure 1), to complement the full morphologies (complete axons and dendrites) 
of 1741 neurons in the BICCN AIBS/SEU-ALLEN neuron morphology dataset (Peng, et al, 
2021) and 1200 neurons in the Janelia MouseLight project dataset (Winnubst, et al., 2019) 
(Supplementary Figure 1), and the axonal morphology of 6357 neurons generated by ION 
(Gao, et al, 2022). For fair and comprehensive analyses, we cross-validated neuron morphologies 
(Supplementary Figures 2 and 3) to avoid potential systematic bias favoring one particular way 
in generating the respective neuron data. Moreover, we applied 3-D brain registration (Methods) 
to all these neurons to map them onto the same spatial coordinate system, Allen mouse brain 
Common Coordinate Framework, CCFv3 (Wang, et al, 2020), so that all these neurons’ soma-
locations and 3-D morphologies can be compared against each other directly.  
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The somas of the DEN-SEU neurons are distributed fairly evenly across major brain regions, 
while the other three full morphology or axon datasets focus on specific brain regions of cerebral 
cortex, thalamus, striatum, hypothalamus, hippocampus, and claustrum (Figure 1A; 
Supplementary Table 2). Compared with the sparse and long projection of axons in the other 
datasets, the dendritic arbors of DEN-SEU cover all CCFv3 brain regions (Figure 1B), making 
this dataset suitable for analyzing the target projection/connection regions of axons of neurons. 
We also cross-validated the quality and distribution of our assembled neuron data with other 
public documented neuron morphologies of shared by independent labs (Supplementary 
Figures 4 and 5; Supplementary Table 3) via NeuroMorpho.Org (Akram, et al, 2018; Bijari, et 
al, 2020). At the same time, the projection pathways of aggregated full neurons and axons data in 
this study capture many important regional connections, such as neurons originating from 
primary motor cortex (MOp) (Figure 1C). The total number of brain regions reached by 
projection axons follows a broad distribution (Figure 1C), indicating that most axons normally 
project to relatively distal regions. By contrast, dendrites extend a much shorter distance, 
invading at most 5 or 6 brain regions nearby their soma anatomical locations (Figure 1C). The 
large number of neurons involved in this study form complex patterns of potential connectivity, 
which should be quantified and analyzed in a principled way. We tackled this challenge by 
considering the modularity and granularity of individual neurons.  
 
Neuron arbors often correlate with regions of dense connections between neurons. Therefore, we 
used a recent machine learning method, AutoArbor (Peng, et al, 2021), to determine the 
topologically connected arborization regions of neurons automatically. In particular, we started 
with 2941 fully reconstructed neuron morphologies in the Allen/SEU-ALLEN and MouseLight 
datasets to produce a brain-wide arborization map of a mouse brain (Figure 1D). In this way, 
various neuronal pathways indicated in our datasets (Figure 1C) are quantitatively modeled. For 
example, we observed clear modules of projection and potential connection patterns in large 
brain regions such as isocortex, striatum, and thalamus. This motivated us to characterize the 
potential connectivity among neurons using the structural components, i.e., neurite arbors, 
systematically. Accordingly, we generated in total 26205 axonal arbors and 20158 dendritic 
arbors (Figure 1B) for all neurons in this study. We subsequently used these arbors to define the 
connectivity among neurons and respective c-types.  
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Figure 1. Overall distribution, arborization and potential connections of 3-D mapped and registered 
neurons at whole brain level. A. Standardized 3-D locations of 20,158 neurons in this study, pooled in 
two cohorts, i.e., one with full axon reconstructions (n=9298) and one with local dendritic 
reconstructions (n=10860) that covers all brain regions. Bar-chart: soma density (r_soma, per mm3) in 
main brain regions (see Supplementary Table 2 for abbreviations). B. 38 full neuron reconstruction 
examples with different arborization patterns innervated from 8 brain regions (CTXsp, HPF, Isocortex, 
OLF, PAL, STR, TH, P, see Supplementary Table 2 for abbreviations) and 20 dendritic reconstructions 
in different brain regions. Bar-chart: arbor density (r_arbor, per μm3) for major brain regions. C. 
Connection examples indicated by the projection patterns of primary motor cortex (MOp) cells to 
primary somatosensory cortex (SSp), SSp - lower limb (SSp-ll), SSp - upper limb (SSp-ul), secondary 
somatosensory cortex (SSs), caudate putamen (CP), secondary motor cortex (MOs), posterior complex - 
thalamus (PO), pontine gray (PG), medulla (MY), Medulla - sensory related (MY-sen), Medulla - motor 
related (MY-mot) regions. Bar-chart: histogram of outgoing and incoming connections of brain-wide 
projections; r_proj: the ratio of the number of neurons passing through a specific number of brain 
regions normalized against the total number of neurons. D.  Whole brain arborization map of 2941 
neurons. A similar map for all 9298 neurons with axons was also produced (Supplementary Figure 6). 
Horizontal axis: soma location of single cells. Vertical axis: arbor projection regions which are also 
grouped into larger brain areas. Size of circles: arbor length in brain regions. Color bar: ratio of local 
and distal arbors relative to soma locations.  
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Distinct from morphology analyses of neurons that rely on various m-features, such as the Sholl 
analysis (Binley, et al, 2014), L-Measure (Scorcioni, et al, 2008), and extended global or local 
structural features (Wan, et al, 2015), we study cell-typing by generating the neuron connectivity 
features. One approach to quantifying single neuron connectivity is based on axon-dendrite 
colocalization that needs precise details on synaptic contact location approximation (Rees, et al. 
2017), which however is still challenging at the whole brain scale. Our intuitive approach is to 
use soma locations and defined spatial domains of neuronal arborization. Specifically, we 
determined the connection targets of a neuron based on the 3-D registered brain regions invaded 
by its axonal arbor, and the connection strength based on the spatial adjacency of this neuron’s 
axonal arbor and nearby dendritic arbors of neurons in our dataset (Figure 2A). We detected 
arbor domains of neurons that originate from a specific brain region using Gaussian mixture 
models (Methods) and produced spatially and statistically optimal parcellation of projection 
sites of all s-types. Within each arbor domain, the arborization pattern of each group of neurons 
of the same s-type is approximated using a spatially homogeneous Gaussian distribution. For 
example, SSp neurons were found to have 9 arbor domains, 4 of which are axonal arbor domains 
and 5 are dendritic arbor domains (Figure 2B).  
 
For each neuron in a specific s-type, we then computed a connection barcode (Figure 2C) as the 
features to characterize the axon-dendritic spatial overlap of its axonal arbors and dendritic arbor 
domains of all s-types at the whole brain scale, all defined in the standard CCF space. For DEN-
SEU, we produced 19 dendritic arbor domains per brain hemisphere. We also produced another 
56 dendritic arbor-domains per brain hemisphere for other s-types with at least 60 reconstructed 
neurons. These dendritic arbor domains span an average volume of 8.94 mm3. The resultant 
connection barcode is thus a 150-dimensional feature vector for the entire brain, indicating how 
axons of neurons in a s-type may project and potentially connect to various dendritic domains in 
the context of whole brain anatomy. With this barcode, neurons belonging to a s-type can be 
further clustered. For instance, ventral posteromedial nucleus (VPM) neurons were smoothly 
clustered into four connection groups (Figure 2C), which are visually separable from each other 
(Figure 2D). 
 
To understand the advantage of the connectivity barcode, we first applied it to assisting 
conventional morpho-analysis of cell types that clusters s-types or their sub-types based on m-
features. It was difficult to separate MOp, Subiculum (SUB), and ventral posterolateral nucleus 
(VPL) neurons that have heavily overlapping m-features, as seen in both the overlap scores and 
the feature scatter plot (Figure 2E top). However, when the connectivity features were appended 
to the m-feature vectors to cluster these three s-types, they became clearly separable in terms of a 
minimal overlapping in this case (Figure 2E bottom right). When the first principal component 
of the connectivity features was added in visualization, the separation of the three s-types was 
visible (Figure 2E bottom left). This shows that the connectivity features help discriminate 
neuron classes, similar to the dimension-increment analysis or support vector machines (Cortes 
and Vapnik, 1995; Steinwart and Christmann, 2008) in pattern recognition and machine learning, 
where non-separable classes could become distinguishable in higher-dimensional spaces.  
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 7 

 
Figure 2. Formulation of neuronal connectivity and difference between morphological features and 
connectivity features of single neurons. A. Schematic overview of the definition of arbor domains and 
potential connectivity. (Left) Neurons belong to the same soma-location type (s-type) when their cell 
bodies are located in the same Allen brain atlas Common Coordinate Framework (CCFv3) anatomical 
region. In each s-type, the neuron morphological coordinates are spatially clustered using a Gaussian 
Mixture Model (GMM). Each resultant cluster forms an arbor domain. A dendritic arbor domain 
contains a major number of somas. Axonal arbor domains: any non-dendritic domains. (Right) 
Overlapping voxels between axonal and dendritic domains define the potential connectivity. B. Exemplar 
arbor domains for SSp neurons in middle sections of the CCFv3 atlas outline (top, coronal half-view; 
bottom, sagittal half-view). Note that the axonal arbor domains are not shown  for clarity. C. Heatmap of 
potential connectivity for VPM (ventral posteromedial nucleus - thalamus) neurons, which project to SSp 
heavily. Horizontal axis: dendritic domains (as indicated by the prefix ‘d’) with renumbered identifier 
denoting the domain center coordinates in B (see Supplementary Table 4 for a complete list of domains); 
only the top-25 domains with the greatest variances are shown for clarity while the entire feature vector 
was used in clustering. Vertical axis: clustered VPM neurons. Dendrogram in the left: hierarchical 
clustering (four clusters in blue, red, green, and purple) of the potential connectivity feature vectors of 
neurons. Orange lines: cluster boundaries in the heatmap. Color bar: the number of overlapping voxels 
between a neuron-of-interest and dendritic domains. D. Horizontal view of VPM neurons overlayed on 
the CCFv3 contour colored by the clusters obtained from potential connectivity. E. Comparison of 
clustering results based on morphology features only (top) and based on joint feature vectors by 
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concatenating morphology and connectivity features (bottom). (Top left) Scatterplot of MOp (green), SUB 
(subiculum; dark orange) and VPL (ventral posterolateral nucleus - thalamus; purple) s-types. 
Horizontal axis: total length of the neurons in µm. Vertical axis: maximum branch order. (Bottom left) 3-
D scatter plot of the total length, maximum branch order, and the first component of a Principal 
Component Analysis (PCA) of the potential connectivity matrix. The c-types obtained are colored with 
different shades of each s-type color (e.g., MOp_1 dark green, MOp_2 light green). (Top and bottom 
right) Heatmaps of the overlap between point clouds in the scatterplots. Color bar: percentage of overlap 
between s-type pairs, measured by misclassified neurons when using a Support Vector Machine (SVM) to 
classify the data. 
 
 
Connectivity Types Outperform Morphology Types in Neuron Classification  
 
To investigate whether c-features would classify cell types better than conventionally used m-
features (Zeng and Sane, et al, 2020; Peng, et al, 2021), instead of providing auxiliary 
dimensions to assist cell typing, we computed morphological features’ similarity scores (m-
score) of all 31 known s-types (n > 60) (Figure 3A). Except a small amount, i.e., 25.8%, of s-
types that have relatively low similarity in their m-features, the majority of s-types (74.2%) make 
up 3 boxed cohorts, within each of which neurons of different s-types share high similarity m-
features (Figure 3A). Remarkably, the similarity score between the c-features (c-score) of all 3 
cohorts of s-types are dramatically reduced while the c-scores of the other 8 s-types remain low 
(Figure 3B). In another word, in general a s-type is well separated from other s-types in the 
space of c-features. 
 
We further directly compared corresponding m-scores and c-scores to quantify the improvement 
of cell typing performance of connectivity features over morphological features. Here, 76% of 
entries in the ratio matrix of c-scores and m-scores (Figure 3C, 3D, and 3E) are less than 1, 
while 99% of such entries corresponding to the boxed cohorts are less than 1. We also visualized 
the actual clustering of neurons based on either morphological features or connectivity features. 
Examination of the paired UMAP (Uniform Manifold Approximation and Projection) clustering 
for the 12 smallest ratios of c-scores and m-scores shows that c-features are much more 
separable than m-features (Figure 3F). For example, ACAv5 neurons have mixed m-features 
with AId2/3 neurons, however their c-features are clearly separable (Figure 3F). This is the 
same case for MOs5 neurons vs ILA5 neurons, ORBm2/3 neurons vs ACAv5 neurons, and all 
other visualized pairs of cell types, although all these cases have varying distributions in their 
UMAP space (Figure 3F). As our results analyze the largest neuron archives for the mouse brain 
containing major neurons classes, it is reasonable to conclude that c-features could serve as 
strong contenders of m-features for cell typing of neurons whose somas are from well-
established anatomical regions. 
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cm-score ratio = c-score / m-score 
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Figure 3. Classification of cell types based on morphological and connectivity features. A. Clustering 
based on similarity score of morphology features, i.e., m-score, of 31 s-types (n>60 in each) in cortex, 
thalamus, and striatum. Yellow boxes: 3 cohorts of s-types that share highly similar morphology features. 
Values in matrix: normalized similarity between 0 and 1. B. Similarity score of connectivity features, i.e., 
c-scores, sorted using the same order of s-types as in A. Color bar: normalized similarity among features 
(also the same as in A). C. Ratio matrix of c-score in B over m-score in A.  D. Joint and marginal 
distributions of corresponding c-scores and m-scores for all pairs s-types (blue) and boxed pairs in A and 
B (yellow). E. Histogram of c/m-score ratios in C. F. Paired comparison of UMAP clustering of s-types 
using either morphology or connectivity features, corresponding to the 12 smallest c/m-score ratios in C. 
 
 
Connectivity Features Correlate with Spatial Separation of Potential Cell Subtypes  
 
After establishing that connectivity is a powerful attribute for classifying neurons types, we 
investigated whether c-features would also help identify sub-types of neurons that share their 
soma locations in the same anatomical area. To do so, we generated a distance map (d-map) to 
measure the spatial separation of two neurons based on their soma locations (Figure 4A). 
Because within any specific brain region neurons were labeled in a stochastic way, the pairwise 
soma-distance may form a Gaussian-like or Gaussian-mixture distribution (Figure 4B). 
Particularly, when somas scatter almost uniformly within a brain region, their pairwise distance 
will be close to Gaussian, such as LGd and CP neurons (Figure 4B, red and blue). Conversely, 
when somas form two or more subclusters within a region, their pairwise distances may form a 
distribution with long-tail, or approximately a Gaussian mixture distribution, such as the ACAd 
6a neurons in this database (Figure 4B, green). Correlating the morphology similarity scores (m-
scores) and connectivity similarity scores (c-scores) with d-map provides a useful way to 
understand which kind of features may help identify subtypes of neurons whose somas are from 
subareas in an established s-type.  
 
In the example of CP neurons, we calculated the pairwise m-score and c-score matrices (Figure 
4C) sorted in the same order of neurons as in the respective d-map (Figure 4A). Using the c-
features, we obtained three major CP clusters (Figure 4D) with different projection and 
arborization patterns (Figure 4E), although their somas are mixed fairly uniformly (Figure 4F), 
while there is no obvious subcluster based on m-features’ similarity matrix (Figure 4C). 
Similarly, we computed the d-maps and respective m-scores and c-scores matrices for LGd and 
ACAd6a neurons (Figure 4G, Figure 4H). The Gaussian-mixture like distribution of the 
pairwise neuron-distances of ACAd6a neurons also translate to potential clusters in ACAd6a’s d-
map (Figure 4H), while the single Gaussian-like distributions of CP and LGd neurons (Figure 
4B) correspond to the less clear hierarchical clustering of the respective sorted d-maps (Figure 
4A, Figure 4G). 
 
We computed the corresponding d-maps, m-score, and c-score matrices for all 31 s-types of 
neurons. Overall, we found that for any pair of neurons, their c-scores are only slightly greater 
than the m-scores (Figure 4I). There is a weak positive correlation between these two scores 
(Figure 4J), of which m-scores follow a much flatter marginal distribution than c-scores (Figure 
4J); this indicates that statistically it would be harder to produce clearly segregated neuron 
clusters based on morphology similarity. However, remarkably the corresponding entries of the 
d-map and c-score matrices have evidently negative correlation, which is also much stronger 
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than that between d-map and m-score entries (Figure 4K, Figure 4L). Indeed only 6 out of 31, 
or 19.4%, s-types show stronger negative-correlation of soma-location-and-morphology 
similarity over soma-location-and-connectivity correlation (Figure 4K). Neurons with far away 
soma locations can be at most 4 times more likely to have different c-features than m-features 
(Figure 4L). Thus, we conclude that potential subtypes for a s-type are statistically better 
represented by c-features than by m-features.  
 

 
Figure 4. Classification of cell subtypes based on morphological and connectivity features. A. Pairwise 
soma-distance map of CP neurons bi-clustered based on spatial adjacency of somas mapped to CCFv3. 
B. Histograms of the pairwise soma-distances for neurons in CP, ACAd6a (Anterior cingulate area, 
dorsal part, layer 6a) and LGd (lateral geniculate complex - dorsal part) regions. C. Matrices of 
morphology-feature similarity scores (m-similarity) and connectivity-feature similarity scores (c-
similarity) of individual CP neurons, rows and columns sorted in the same order of the clustered distance 
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map in A. Cosine similarity scores are used.  D. Connectivity-feature based clustering of CP neurons into 
two main subclasses (red and blue), in the same convention as Fig. 2C. E. 3-D visualization of the two 
CP neuron-subclasses in D. F. 3-D soma-locations of CP neurons. Color: the largest Euclidean distance 
between axonal terminals and the respective soma. G. LGd neurons’ distance map and respective m- and 
c-similarity matrices, rows and columns sorted in the same order. H. ACAd6a neurons’ distance map and 
respective m- and c-similarity matrices, rows and columns sorted in the same order. I. Histogram of the 
difference between corresponding c- and m-similarities for all neurons of the 31 s-types in this study.  J. 
Scatter plot and marginal distributions of corresponding c- and m-similarities for all neurons in the 31 s-
types. K. Correlations between soma-distance-map and c- or m-similarity for all 31 s-types.  L. Overall 
correlations between neurons’ soma distances and the respective similarities in connectivity features or 
morphology features. l_m_corr: correlation between location-distances and m-similarities. l_c_corr: 
correlation between location-distances and c-similarities. 
 
 
Spatially Tuned Connectivity Features Identify Cell Subtypes  
 
Anatomical sub-grouping of neurons within a specific brain region reflects the spatial coherence 
of these cells. As c-features correlate more strongly with the spatial adjacency of neurons, for 
each s-type we combined connectivity profiles and spatial adjacency to cluster neurons and 
identify potential anatomical subtypes. We called this approach Spatially-Tuned c-Features, with 
which we produced clear subtyping of neurons (Figure 5) that we had never been able to identify 
using alternative methods.  
 
In particular, for cortical neurons (Figure 5A~F), we found that neurons in the prelimbic area 
(PL) have 2 subtypes for each of the layers 2/3 (Figure 5A), layer 5 (Figure 5B), and layer 6a 
(Figure 5C), respectively. Neurons in layers of the secondary motor cortex, MOs, could also be 
clustered into subgroups (Figure 5D~F). The layer 2/3 MOs neurons are clustered into two large 
subgroups indicated by the sorted distance matrix, along with distinct projection patterns of these 
subgroups in the cross-sectional views of the CCF space (Figure 5D). Similarly, each of layer 5 
and layer 6 MOs neurons were divided into two subgroups, respectively (Figure 5E and 5F). 
Detailed examination of these MOs subtypes provides guidance for analyzing connectivity-based 
subtypes of cortical neurons (see next section). 
 
We also attempted to identify subregions in the thalamic gateway related to sensory and motor 
input, particularly VPL (Figure 5G), VPM (Figure 5H), and LGd (Figure 5I). We found that 
subregions of somas in these areas correspond to neurons projecting to distinguishable spatial 
targets, visualized often as homogeneous color-blobs of neuron-subclusters, which are 
particularly clear in the three subtypes of VPM neurons (Figure 5G). LGd has three known 
anatomical subregions (Guido, et al, 2018; Okigawa, et al, 2021), i.e., LGd-shell, LGd-core, and 
LGd-ip (ipsilateral zone). We found two major distinguishable subtypes of somas using our 
approach, which may provide further spatial granularity to study the previously documented 
subregions. Of note, LGd neurons could not be clearly clustered using either morphology 
features or connectivity or spatial distance features alone (Figure 4G). 
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Figure 5. Neuron subtyping based on spatial-connectivity patterns. In each image, Upper row: bi-
clustered spatially tuned connectivity similarity matrices, where different colors along the x- and y-axes 
indicate the clusters, and the index-numbers of neurons in a specific s-type are shown in both x- and y-
axes. Lower row: tri-view visualization of neurons in CCFv3; neurons are rendered in the same colors as 
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in the respective upper-row clusters. A: Anterior, P: Posterior, D: Dorsal, V: Ventral, L: Left, R: Right. 
A. B. and C. Subtyping of PL (prelimbic area - prefrontal cortex) neurons for layer 2/3 (PL2/3) (n=188), 
layer 5 (PL5) (n=795), and layer 6a (PL6a) (n=99), respectively.  D. E. and F. Subtyping of secondary 
motor cortex neurons in MOs layer 2/3 (MOs2/3) (n=218), layer 5 (MOs5) (n=359), and layer 6a 
(MOs6a) (n=116), respectively. G. H. and I. Subtyping of thalamic neurons in VPL (n=91), VPM 
(n=406), and LGd (n=78), respectively.  
 
 
Subtyping MOs and VISp Neurons Reveals Diversified Connectivity, Transcriptomic, and 
Electrophysiological Characteristics 
 
MOs neurons have long axonal projections that subserve animal decisions (Yang and Kwan, 
2021). In addition to individual neurons’ spatial patterning, we also profiled the symmetry of 
MOs connectivity using the cortical layer 5 neurons. To do so, we kept the somas separated 
when calculating their space distance map. Our examination of individual MOs neurons 
confirmed long-range projection targets at the full-brain scale (Figure 6A, top). The overall 
projection patterns of these MOs neurons are also consistent with the previously documented 
population projection (Oh, et al, 2014) (Figure 6A, bottom-right). We found that the somas in 
MOs5_1 and those of MOs5_2 and MOs5_3 clusters distribute on the two sides of the brain 
(Figure 6A, bottom-left), while the somas in MOs5_2 and MOs5_3 essentially intermingled. 
Indeed, the projection patterns of MOs5_1 match well with the mirrored sum pattern of MOs5_2 
and MOs5_3. In another words, the spatially tuned connectivity analysis provides a powerful 
way to reveal both the anatomical distribution of neuron subtypes and their symmetry. 
Particularly, while the reconstructions of neurons of this MOs5 dataset have three anatomical 
subtypes when both hemispheres of the brain are considered, there are only two genuine 
subtypes (Figure 5E) that are distributed symmetrically on the brain’s coronal plane. These two 
subtypes might be further subdividable as implied in respective clustering tree (Figure 5E). 
 
We also examined both the axonal and dendritic morphologies of MOs5 subtypes. While the 
most dendritic features of the two genuine subtypes, MOs5_2 and MOs5_3, are similar to each 
other, their axonal features (Figure 5E) are clearly different in area, width, and relative shift of 
centers, despite the similar numbers of axonal bifurcations. This means that, although these two 
subtypes have similar branching complexity, their projection patterns differ. Such variability of 
MOs5_2 and MOs5_3 is also seen in the different correlation and neuron-beta (Peng, et al, 2021; 
Methods) values compared to the overall MOs population projection (Figure 6C). The 
respective scores of MOs5-vs-population and MOs5_1-vs-population are comparable to each 
other, indicating MOs5_1 is a good ipsilateral approximation of the overall MOs5 patterns, also 
as the “sum” reference for MOs5_2 and MOs5_3 (Figure 6C). The MOs5 and MOs2/3 neurons 
also covary strongly with the MOs population projection. Differently, MOp neurons show more 
variation in the single-neuron-vs-population comparison, while their integrative projection 
pattern also matches with previous population projection data (Oh, et al, 2014) (Figure 6C). We 
also correlated the m-features of individual neurons’ dendritic and axonal arbors. For MOs5 
neurons, m-features such as the number of bifurcations and total length show recognizable level 
of correlation, in the range of 0.3~0.7, between dendrites and axons (Figure 6D). 
 
We also produced UMAP analyses to compare the transcriptomic subtypes of single MOs 
neurons (Yao, et al, 2021), connectivity subtypes and morphological subtypes (Figure 6E). As 
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the transcriptomic data of MOs and FRP (frontal pole, cerebral cortex) were mixed due to the 
limited spatial resolution at this point, we prepared connectivity and morphological features of 
individual neurons in a similar way, also specifically for layer 5. Within each of the individual 
scenarios, we observed relatively coherent subtyping except for the cases of morphological 
features. However, it seems that the diversity exhibited in the c-features cannot be immediately 
explained by the subgrouping of the transcriptomic features. We have not observed a conclusive 
layer-by-layer correspondence between transcriptomic and connectivity subtypes, either.  
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Figure 6. Comparison of various cell typing methods for MOs neurons. A. Three connectivity-based 
clusters for MOs5 neurons (top row) along with the distribution of their somas (bottom-left) and the 
overall projection patterns of MOs5 neurons (bottom-right) (Harris, et al, 2019). B. Key morphological 
features of the three connectivity-based MOs5 subtypes. C. Two metrics, neuron-beta and correlation 
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coefficient, between single neurons and neuron-populations in motor cortex, specifically MOp, MOs2/3, 
MOs5, and MOs6a subtypes. D. Correlation of dendritic and axonal morphological features for MOs5 
connectivity subtypes, along with examples of the first MOs5 cluster. Note that the clustered neurons in A 
might not have dendrite reconstructions, however in this dendro-axonal correlation analysis only neurons 
in A but also with full dendrites and axons are counted. E. Transcriptomic profile-based single neuron 
clustering of FRP-MOs neurons (n=34,331) and more specific FRP-MOs layer 5 neurons (n=9879), 
compared with the clustering based on connectivity and morphology features of FRP-MOs / FRP-MOs 
layer 5 neurons. 
 
Moreover, we performed a joint analysis of the m-type, c-type, t-type and e-type data based on 
retrieving the publicly available electrophysiological and transcriptomic recordings of single 
neurons that also fall into the brain regions used in this study. For the primary visual area (VISp), 
we analyzed 48 fully reconstructed neuron morphologies and their regional connectivity patterns 
(Supplementary Figure 7A), along with their morphometric features (Supplementary Figure 
7B) and anatomical locations of cell bodies (Supplementary Figure 7C). We found that VISp 
neurons in different cortical layers have a less clear separation in morphology (Supplementary 
Figure 6D) than in connectivity (Supplementary Figure 7E). We also re-analyzed previous 
single neuron electrophysiological recordings (Gouwens, et al, 2020) based on the concatenated 
e-type features (Supplementary Table 7) and colored these e-type data using their molecular 
profiles and anatomical locations (Supplementary Figure 7F-G). While it is clear that certain 
neurons in different layers have preferences in their physiological and molecular properties, there 
is a general disparity between such features and their c-types. 
 
 
Subtyping Single-Cell Connectivity of VP Nuclei Indicates Broader Multisensory 
Integration  
 
By subtyping single cell reconstructions of 390 VPM and 83 VPL neurons, we were able to 
document the broad regional connections of VP neurons in a comprehensive manner. First, we 
clustered individual neurons’ detailed projections onto cortical areas and layers into 8 subtypes 
as a matrix (Figure 7A). These 8 groups have similar separation of their soma locations as well 
as the respective axonal arbor targets’ locations (Figure 7B and 7C). The longest dendrite can 
be about 5 times of the shortest dendrites in these groups (Figure 7D). We also confirmed the 
majority projection of VP neurons to layer 2/3 and 4 of somatosensory cortex (Figure 7A) 
consistent with previous knowledge at the neuron population level (e.g., Bureau, et al, 2006; 
Viaene, et al, 2011; Clascá, et al, 2012; Staiger and Petersen, 2021). It is interesting to note that, 
while our previous study (Peng, et al, 2021) implied that a small portion of VP projection may 
target MOp, the detailed examination presented in the next section (Figure 8) visualizes 
abundant outgoing arborization of VP neurons in MOp regions. Strikingly, we estimated a non-
negligible 20.7% VP cells (n = 98) actually project to multiple cortical areas such as motor or 
visceral areas that are outside somatosensory cortex, and even beyond such as CP (Figure 7A).  
 
Furthermore, we found that a single VP neuron could target multiple sensory areas. For example, 
a VPM neuron can simultaneously projects to SSs and sub-areas of SSp, such as SSp-m, SSp-n, 
SSp-ll or SSp-ul (Figure 7A and 7E). Indeed, some VPL neurons even project to layer 1 in 
addition to layer 4 (lower right panel in Figure 7E). Such neurons carry two separate axonal 
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clusters: a larger one projecting to VPL neuron’s typical projection target, i.e., SSp-layer 4, and a 
smaller one targeting layer 1 of a different cortical area, such as SSs or even VIS (visual cortex).  
 
Also of note, the surface-area of some VPM cells’ axonal cluster in SSp-bfd (largest: 
384,942μm2) is twice larger than that of a barrel (Figure 7F). Traditionally, it is believed that 
each VPM cell only projects to one barrel (Pierret, et al, 2000). Our finding suggests potential 
signal regulation across multiple barrels; thus, the tactile sense signaling transmission could be a 
multithread process.  
 
Additionally, 18.6% of VP neurons (n = 88) possess small branches with bouton terminations in 
subcortical striatum, suggesting VP-striatum projections (Figure 7G). Our finding indicates a 
new pathway in thalamic-subcortical circuit, supplementing the main pathway of VP nuclei to 
somatosensory cortex. Taken together, these single-cell VP reconstructions give clues to 
supplementary and complex signal transmission paths in multisensory integration circuits. 
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Fig 7. Alternative examination of connection types in ventral posterior (VP) nucleus. A. 8 different VP 
neuron subtypes clustered and color-coded by projecting target regions, particularly cortical layers 
(Supplementary Table 8). Columns: individual neurons. Rows: projection targets of neurons. Color bar: 
axonal length of a neuron projecting to a specific area. B. Axonal clusters of these VP subtypes mapped 
to CCF. C. Soma positions and connected dendrites of the 8 subtypes. D. Analysis of dendritic total length 
(μm) of these 8 clusters of neurons. E.  Examples of VP neurons with zoomed-in coronal view of 
dendrites. Red arrows: projection targets outside of somatosensory areas; note the VIS target is in layer 
1. F. Examples of cluster size located in the barrel field. Note the right cluster covers more than one 
barrel. G. Visualized CP projections of VPM neurons. 
 

SSp

SSs

AUD

SSs

VISC

SSp-m

SSp-n

SSs

VIS

SSp

CP SSs

SSp-m
SSp-bfd

CP

CP

SSp-n
SSp-bfd

SSp-ll
SSp-m
SSp-ul
SSp-tr

SSp-un
SSs
CP
RT

1
2/3

4
5

6a
6b

sagittal
axial

coronal

VP

Isocortex

axial
sagittal
coronal

1 2 3 4 5 6 7 8cluster

100 µm 100 µm

1 mm

1 mm1 mm

1 mm

A

B C D

E F

0

1

axonal projection strength

neurons

G

To
ta

l L
en

gt
h 

(μ
m

)

cluster



 

 20 

 
Subtyping Target Connections of Thalamocortical Neurons in MOp Cortex 
 
In addition to the outgoing “forward” connection patterns examined in preceding sections, we 
also investigated the diversity of incoming connections of a target brain region. Previous 
literature shows that the primary motor cortex (MOp) receives thalamocortical projection from 
the sensory-motor relay nuclei VAL and the modulatory or high order nuclei like VM or PO 
(Kuramoto, et al, 2011; Guo, et al, 2018; Guo, et al, 2000). Our analysis revealed additional 
connections from sensory relay nuclei VPM and VPL (Figure 7 and Figure 8).  
 
With the whole-brain mapped full reconstructions we produced, it can be seen that individual 
neurons from PO, VM, VAL project to motor and somatosensory areas as a whole spectrum of 
connectivity subtypes (Figure 8A and 8B). Indeed, projections of individual neurons display 
different layer preferences in thalamocortical areas. Such preference in MOp can be summarized 
as the following: PO neurons (n=14) focus on mainly layer 2/3 (4/14), layer 2/3 and layer 5 
(4/14) and layer 5 (6/14). VAL neurons (n=34) have 5 main subtypes of connectivity projecting 
to (a) layer 1 (4/34), (b) layer 2/3 mainly (6/34), (c) layer 2/3 and layer 5 combined (6/34), (d) 
layer 5 mainly and layer 6 weakly (16/34), and (e) mainly layer 6a (2/34). VM neurons (n=13) 
have several subtypes projecting to layer 1 (8/13) combined with weak projection into other 
layers, layer 2/3 and layer 5 (4/13) and all layers (1/13). VP neurons (n=35) can be classified as 
subtypes including projections to layer 2/3 (30/35), layer 5 (3/35) and layer 6 (2/35), respectively 
(Figure 8B). Individual examples display axonal cluster phenotypes and projections (Figure 
8C). Taken together, these new layer projections from individual thalamocortical neurons 
suggest fine regulations of the sensory-motor signal circuits. 
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Figure 8. Conjugated MOp projections of individual thalamocortical neurons from PO, VM, VAL and VP 
nuclei. A. Co-projection of axonal arbors to MOp and nearby cortical areas originated from PO, VAL, 
VP, and VM. Color code: normalized arbor density. B. Projection matrices of individual neurons in A. 
Columns: individual neurons. Rows: projection targets, particularly with MOp layers. C. Example-
neurons from each nucleus. Circular plots: distribution of target projection regions for each neuron.  
 
 
 
Discussion 
 
This work studies the whole-brain scale connectivity of single neurons using one of the largest 
data archives produced to date, leveraging both new dendritic reconstructions that cover the 
entire brain and existing axonal and full reconstructions (Winnubst, et al., 2019; Peng, et al, 
2021; Gao, et al, 2022). While multi-dataset aggregation enables powerful analysis, it also 
necessitates that these three existing datasets (Winnubst, et al., 2019; Peng, et al, 2021; Gao, et 
al, 2022) share cross-validated distributions of morphological properties of single neurons 
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indicating quality reconstructions. The consistency of these data suggests a novel approach to 
reveal how individual neurons in different regions are wired into different networks with 
different circuit motifs at whole brain scale. There are two remarkable topics in such an 
integrative approach. First, one may be able to study the building blocks of a brain, i.e., 
organizational “types” or “subtypes” of individual neurons, in terms of connectivity. This work 
makes an initial attempt toward this end.  Second, one may be able to construct and study the 
“microscale” connectome based on individual neurons, filling a gap between previous work at 
the population level mesoscale connectome and the nanoscale connectome that relies on using 
electron microscopy and/or other super-resolution microscopy methods more suitable for 
examining synaptic level connections of neurons in potentially smaller, local brain regions. We 
have also attempted the second approach in another ongoing study (unpublished work). 
 
To understand the potential connectivity of neurons throughout a brain at single neuron 
resolution, it is essential to analyze the arborization of axons and dendrites in different 
anatomical areas. An overall axonal arborization distribution map (Figure 1) provides an 
understanding of the marginal distribution of neurons that innervate from different regions, and 
also highlights that arbors can be powerful entities to study neuronal connectivity. To complete 
this paradigm, we produced brain-wide dendritic arbor domains, which were used to generate the 
connectivity profiles for each individual neuron. In this way, the connectivity features can be 
precisely defined and utilized for analysis. This approach therefore constitutes a contribution 
essential for whole brain scale single-neuron analysis. 
 
Our framework derives potential connectivity from full morphology plus atlas mapping into a 
standard space, so that the regional connection relationship of multiple neurons can be compared 
objectively with the appropriate context of their relative locations, distributions of their shapes, 
and spatial adjacency and/or overlap of their axon-dendritic arbors. Atlas mapping thus enables 
the expansion of previous approaches to neuron-type circuit analysis that were limited to local 
anatomical domains (Tecuatl, et al, 2021) to the entire mouse brain and long-range projection 
neurons. Our data show that connectivity features of neurons not only provide additional 
dimensions to distinguish neurons from different anatomical regions, but also allow effective 
neuron-typing when they are used alone. Within each of the anatomically established brain 
regions, we also see a strong correlation between the connectivity-based similarity and the spatial 
adjacency of neurons and their somas. Therefore, to approach the more challenging task of 
subtyping neurons, we can aggregate both connectivity and spatial information to observe 
distinct neuron-groups that are otherwise difficult to distinguish. Our application in analyzing 
MOs neurons demonstrates diversity of such neuron subtypes that cannot be readily inferred 
from existing data of neuron population-projections and molecular profiling. Further screening of 
the enriched regional connectivity of neurons in VP nuclei and MOp may provide additional 
evidence that connectivity subtypes do exist, and carry biological significance in signal relay and 
integration.  
 
Within a general framework of cell typing, our study demonstrates that morphology cannot 
accomplish this alone. Indeed, based on this study and also previous work (Peng, et al, 2021), as 
well as converging results from invertebrate nervous systems (Mehta, et al, 2023), we 
hypothesize that t-types or e-types alone may also be insufficient, and it is an interesting open 
question how to synergize all these data in a common connectivity framework. We believe that 
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there are two key steps to address this challenge. The first is the generation of connectivity 
associated t-type, e-type, and m-types data. A second step is building a thorough statistical model 
of all such data to mine the associations and distribution patterns, which could be homogeneous 
clusters or globally nonlinear manifold patterns (Liu and Qian, 2022). 
 
This approach of leveraging connectivity-type analysis toward the determination and validation 
of neuronal cell types is powerful. It can be extended to brain-scale analysis of single neurons’ 
synaptic connectivity when data becomes available. An excellent example can be seen in the 
single-cell connectivity-types defined for a Drosophila brain (Scheffer, et al, 2020) that elaborate 
on the connection detail built upon morphological and lineage similarities. While such an 
approach provides the electron microscopy-based, ultrascale spatial resolution to precisely 
pinpoint synaptic connections, it is also subject to noise and imperfect process of data acquisition 
and computation, which would likely be exacerbated when applied to a much larger and 
complicated mammalian brain. The strength of the present approach is that we can readily study 
cell typing and subtyping using the arborization based regional connectivity, without precise 
pinpointing of synaptic level connections. This may be valuable when considering that individual 
synapses are subject to turnover via structural plasticity, while arbor geometry provides a 
relatively more stable circuit scaffolding (Stepanyants et al, 2002). Connection types and 
subtypes can also provide a useful blueprint of future synaptic level analysis. In summary, 
neuronal connectivity in mammalian brain provides a powerful discriminant in the classification 
of neuronal cell types, refining and adding novel class information to existing and widely studied 
modalities. 
 
We caution that the subtlety in definitions of “morphology” and ‘connectivity” might cause 
slight confusion in a specific context. In literature, sometimes the analysis of morphology type 
might have used part of the connectivity information, such as the orientation-aligned neurons 
could be analyzed using lamination information (Gouwens, et a, 2019). The goal of this study, 
however, is to factorize the analysis in an understandable way. In this sense, our paradigm can 
contribute to a more organized and clear communication in this field.  
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Methods 
 
Full and axon reconstructions 
 
We performed a detailed analysis of 1741 fully reconstructed single neuron morphologies (Peng, 
et al, 2021) called BICCN AIBS/SEU-ALLEN, and 1200 full single neuron reconstructions from 
the Janelia MouseLight project (Winnubst, et al, 2019). We also analyzed the axonal morphology 
of 6357 neurons generated by ION (Gao, et al, 2022). All neurons were registered to the Allen 
Mouse Brain Common Coordinate Framework v3 (CCFv3). These data are also documented in 
Supplementary Table 1. The naming convention of brain regions follows the CCFv3 and also 
consistent with the previous studies. Abbreviations are also recorded in Supplementary Table 2.  
 
Generation of dendritic tracing 
 
We generated 10860 dendrite reconstructions from fMOST imaging with the following protocol. 
First, we collected image samples following the same protocol in our previous study on 
generating the full reconstructions (Peng, et al, 2021). Next, we ran the APP2 algorithm (Xiao 
and Peng, 2013) for tracing local arbors by taking manually defined and validated somas as the 
central starting points in local image volumes (1024x1024x512 voxels), for the goal that the joint 
area of these local volumes covers main dendrite arbors. We ran APP2 with a number of 
background thresholds (10,15, 20, 25, 30, 35) resulting in 6 tracing candidates. Then, we 
leveraged the set of manually annotated and validated dendritic arbors (from MouseLight and 
BICCN AIBS/SEU-ALLEN) to filter the automatic tracing results. The [min, max] interval of 
the following five features of the dendritic arbors were considered realistic, including 'Tips' [7, 
143], 'Length' [700, 13615], 'Max Path Distance' [108, 1382], 'Average Bifurcation Angle 
Remote' [35, 129], and 'Max Branch Order' [3, 32]. An automatic tracing would be discarded if 
less than four of its features fell out of these limits. In case more than one tracing qualified for a 
soma location, we kept the tracing with greatest length. We spatially registered all tracings to 
CCFv3 using mBrainAligner (Qu, et al, 2022). In total, we collected images from 53 mouse 
brains, we identified 31,625 neurons, and we generated 17,228 qualified tracings. We visually 
inspected all tracings and discarded those with obvious errors (e.g., 1 trace covers multiple 
touching neurons, mis-alignment during registration), finally obtaining 10,860 proofread 
dendritic tracings.  
 
Independent reconstructions for validation 
 
To cross-validate the neuron morphologies used in this work, we also considered independent 
morphologies produced and documented in public resources. Particularly, we searched adult 
mouse neuron reconstructions in certain brain regions via keywords using the searching tool of 
NeuroMorpho.Org (http://neuromorpho.org/KeywordSearch.jsp). When possible, we only kept 
the neuron reconstructions tagged as complete or, in case those were not available, moderately 
complete. We searched neurons in 4 different brain regions (HPF, SS, MO and ACA; see 
Supplementary Table 2 for a complete list of abbreviations) using keywords 
“{region}&dendrite&mouse&adult” where {region} was one of the 4 acronyms. Details of data 
sources are listed in Supplementary Table 3 (Yamashita, et al, 2018; Gong, et al, 2016; Iascone, 
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et al, 2020; Cohen, et al, 2013; Smit-Rigter, et al, 2012; Suter, et al, 2015; Jiang, et al, 2020; Lin, 
et al, 2018; Morelli, et al, 2014; Murase, et al, 2016; Karlsson, et al, 2016). 
 
Gaussian Mixture Model classification of neuron nodes 
 
We resampled fully traced SWC files (n = 9298) to have nodes every 10 µm and saved their 
coordinates in the space of the Common Coordinate Framework v3 (CCFv3) (Wang, et al, 2020) 
at 25µm isotropic voxel resolution. For each of the 19 CCFv3 brain regions with most neurons in 
the analyzed datasets (MOs, AId, ACAd, ACAv, ORBvl, ORBl, ORBm, VPM, CP, AIv, FRP, 
ILA, MOp, SSp, VPL, SUB, LGd, SSs; see Supplementary Table 2 for reference), we pooled all 
SWC coordinates in a single data frame containing their x, y, and z locations. We clustered the 
pooled data using the Mclust function with default parameters (mclust R package version 5.4.7 
(Scrucca, et al, 2016)). We selected the Gaussian Mixture Model (GMM; among all combinations 
of spherical, diagonal and ellipsoidal with equal or varying volume, shape and orientation) as it 
provides optimal clustering as measured by the Bayesian Information Criterion (BIC) (Schwarz, 
1978). BIC is a measure for the comparative evaluation among a finite set of statistical models, 
based on maximizing the likelihood function while penalizing for the number of parameters in the 
models. We saved the resulting classification with the node IDs of each neuron. 
 
Definition of arbor domains using a-shape 
 
We defined 3-D dendritic domains by using the pooled, clustered SWC coordinate dataset. We 
found the minimal volume enclosing all nodes belonging to each single cluster by obtaining the 
3D a-shape of the point set (alphashape3d R package version 1.3.1) (Edelsbrunner, et al, 1994). 
The 3D a-shape is a generalized definition derived from the Delaunay triangulation (Delaunay, et 
al, 1934) with a parameter a to control for the level of detail (the convex hull is obtained when 
a»¥). To obtain detailed volumes enclosing all neuron nodes in each cluster, we used a=0.4. We 
call the obtained 3D shapes “arbor domains”. When the majority of the nodes within an arbor 
domain belonged to neurons with their soma in the domain itself, we categorized those as dendritic 
arbor domains. Otherwise, we considered the obtained domains to be axonal. We saved all arbor 
domains as surface objects. We plotted 2D slices of the arbor domains using the R base plot 
function (version 4.1.0). 
 
The definition of dendritic domains based on full tracings was obtained both for raw data 
distributed in both brain hemispheres and for flipped neurons, ensuring that all of them had somas 
in the same hemisphere. To further analyze connectivity, in that case, dendritic domains were 
flipped to also recapitulate homologous contra-lateral regions. 
 
In addition to the arbor domains obtained from fully traced neurons, we also generated single 
dendritic domains from using all node coordinates for dendritic tracings with somas inside each of 
the 19 brain regions with most neurons. 3D a-shapes were defined using the same method. 
However, in this case we did not perform GMM-clustering and all coordinates were pooled in a 
single set for each brain hemisphere. 
 
Single neuron connectivity to dendritic arbor domains 
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To define outgoing connections from single fully traced neurons to dendritic arbor domains, we 
measured the spatial overlap between single neurons and arbor domains. To do so, we obtained all 
voxels enclosed by each domain 3D α-shape (we tested whether they are inside the surface of the 
domain using the inashape3d function in the alphashape3d R package version 1.3.1) and saved 
them as a 3D mask in the CCFv3 space. To convert surface polygon file format .ply files to 3D 
masks we used binvox version 1.35 (Nooruddin, et al, 2003). We then obtained a 3D volume where 
each voxel contains an array of indices identifying each 3D a-shape volume visiting such voxel. 
We obtained a-shapes for each individual fully traced neuron (a=0.4) and saved the enclosed 
volume as a 3D mask. Finally, we measured the overlap volume between each single neuron mask 
and the volume containing all 3D arbor domain indices. We saved the overlapping volume between 
each neuron and each dendritic domain as a connectivity matrix. 
 
Support Vector Machine clustering of morphology and connectivity 
 
To assess the relevance of arbor domain connectivity for defining cell types and subtypes, we used 
a Support Vector Machine (SVM; hyperoverlap R package version 1.1.1; linear kernel, cost=1000 
and stoppage.threshold=0.2) to classify neurons with somas located in MOp, SUB and VPL 
regions (Brown, et al, 2020; Cortes, et al, 1995). For each pair of brain regions, we used SVM to 
cluster the data in two groups. To assess the separation of the neurons in the space defined by the 
two morphological variables “total length” and “maximum branch order”, we measured the 
pairwise overlap of points from each of the three brain regions. To account for arbor domain 
connectivity, we obtained a PCA from the connectivity matrix of the analyzed neurons. We 
performed pairwise SVM classification analogously by adding the first three principal components 
of the connectivity matrix in the dataset. We plotted these results using the ggplot2 R package 
(version 3.4.0). 
 
m/c-score metric 
 
The m/c-score can be used to quantify the dissimilarity of morphological (see Supplementary 
Table 5 for axonal features and Supplementary Table 6 for dendritic features) and connectivity 
(arrays of spatial overlap between each single neuron and all dendritic arbor domains) features 
between two clusters, taking into account both their intra-class similarity and inter-class 
separation. A higher score indicates the greater difference between two clusters, while a lower 
score indicates more similarity. The m/c-score is calculated as the following formula: 

𝑚/𝑐 − 𝑠𝑐𝑜𝑟𝑒 = exp -− !∗#$%&!"#$%&'()**
+
,∗(#$%&!"#%)&'()**(+)(#$%&!"#%)&'()**(,))

. , 

 
where, 𝐷𝑖𝑠𝑡*+,-./01233 represents inter-class distance between the centers of two clusters, which 
is calculated using Manhattan distance metric (Han, et al, 2022). 𝐷𝑖𝑠𝑡$4&56/786%%(9) represents 
intra-class distance of cluster 𝑥, which is defined as the average of the Manhattan distances 
between each sample and all other samples within the same cluster. 
 
With regard to m-score matrix clustering, we applied hierarchical clustering by clustermap 
function (method="ward", metric="euclidean") in Seaborn Python package (version 0.11.2). We 
used umap-learn Python package (version 0.5.1) to implement UMAP decomposition with 
default parameters and plotted results as scatterplots with Matplotlib (version 3.3.4).  
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Anatomy-based distance metric 
 
The distance metric follows the Mahalanobis definition (McLachlan, et al, 1999). Let 𝑠$ =
[𝑥$ , 𝑦$ , 𝑧$] be the position of soma 𝑖 in 3-D space. Due to the computational convenience, the 
soma location should be mirrored to the ipsilateral hemisphere. For two somas 𝑠:, 𝑠!, anatomy-
based distance was defined using the following equation: 

𝐷𝑖𝑠𝑡;(𝑠:, 𝑠!) = :(𝑠: − 𝑠!)<𝐶𝑜𝑣646&=>?/: (𝑠: − 𝑠!) , 

where, 𝐶𝑜𝑣646&=>? represents the covariance of 3D positions of voxels of relevant ipsilateral 
anatomical region in the 25µm CCFv3 reference space volume.  
 
Distance-weighted connectivity-based clustering 
 
Distance-weighted connectivity-based clustering was used to cluster s-type cells based on both 
their connectivity feature similarity and physical distance of somas. Two matrices were 
generated to represent these components: a connectivity similarity matrix (c-similarity matrix 
denoted by 𝑀@) calculated using cosine similarity, and a distance matrix (d-map denoted by 𝑀#) 
calculated based on the anatomy-based distance between the somas of the cells. Both matrices 
were linearly normalized to values between 0 and 1. To emphasize spatial adjacency, a distance 
affinity matrix (𝑀#A) was constructed using Gaussian kernel;	𝑀#A = exp(−𝑀# ∙ 𝑀#). This 
ensured that larger values in the affinity matrix indicated greater spatial adjacency between cells.  
Hierarchical clustering was subsequently applied on the matrix resulting from multiplying 𝑀@  
and 𝑀#A to produce diversity clustering results. The optimal number of clusters was determined 
by the Calinski-Harabasz (Caliński, et al, 1974) score (metrics.calinski_harabaz_score function 
from scikit-learn Python package version 0.24.2) automatically.  
 
Correlation between single cell and population morphology, projections, and 
transcriptomics  
 
We used a transcriptomic dataset of 34,331 neurons in MOs and FRP brain regions, which is 
collected from a newly released dataset (Yao, et al., 2021). The analysis is performed by 
SCANPY (a python package, version: 1.9.3). To ensure the data quality, we filtered out 9432 
genes that are detected in less than 3 cells, and filtered out 624 cells that expressed over 6,000 
genes. We normalized the data (using functions: pp.normalize_total, pp.log1p, pp. regress_out, 
under default parameters), and reduced its dimension (using tl.pca, and tl.umap, under default 
parameters) for visualization. We further extracted L5 related cells (9,879 cells) using this 
genetic modality, following the same procedures. 

Electrophysiological data analysis  

For electrophysiological modality, we selected 919 cells in VISp layers from a Path-seq dataset 
(Gouwens, et al., 2020). The selected dataset has 5 transcriptomic labels (Pvalb Reln Itm2a, Sst 
Hpse Cbln4, Sst Calb2 Pdlim5, Lamp5 Lsp1, Pvalb Sema3e Kank4), and 5 strcuture labels 
(VISp1, VISp2/3, VISp4, VISp5, VISp6a). UMAP layout of the dataset shows three distinct 
populations. For 919 cells in electrophysiological profile, we used IPFX (a python package, 
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version: 1.0.7) for the feature extraction, generating 13 electrophysiological features 
(Supplementary Table 7) for each cell. We concatenated these features as one vector profiling 
each cell in subsequent analyses. 
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Supplementary Figure 1. Exemplar summary of the spatial anatomical distribution of several 
neuron reconstruction datasets. Eight axial slices are selected for visualization. (a) CCF atlas 
showing brain regions of selected slices. Brain regions are colored following CCF’s color code. 
CCF slice ID is shown on the top-left of each image. (b) Visualization of dendrite 
reconstructions. (c) Dendrite density within each brain region. (d) Visualization of axonal arbor 
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reconstructions. (e) Axonal arbor density within each brain region. (b) and (d), In each image, 
dendrite/axonal arbors within 500 μm (20 slices) of the target slice are shown. 
Different color is assigned to different dataset. (c) and (e), Density is computed by dividing total 
dendrite/axonal arbor length (mm) inside a brain region by the volumetric size (mm3) of the 
brain region. The unit of arbor density is mm-2. The color map is shown on the bottom. 
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Supplemental Figure 2. Comparative analysis of morphological features of axons in three 
datasets, i.e. BICCN AIBS/SEU-ALLEN (SEU-AIBS), Janleia MouseLight (MouseLight), and 
ION.  
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Supplemental Figure 3. Comparative analysis of morphological features of dendrites in three 
datasets, i.e. BICCN AIBS/SEU-ALLEN (SEU-AIBS), Janleia MouseLight (MouseLight), and 
DEN-SEU (SEU).  
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Supplemental Figure 4. Comparative analysis of dendrite morphology features of neurons in 
selected brain regions, for multiple datasets including full single neuron reconstructions (BICCN 
AIBS/SEU-ALLEN and MouseLight), dendritic reconstructions (DEN-SEU), and publicly 
available reconstructions from multiple independent labs (as archived at NeuroMorpho.Org, see 
Methods). Each row corresponds to a brain region, while each column corresponds to a feature. 
Four brain regions, i.e. somatosensory area (SS), somatomotor area (MO), hippocampal area 
(HPF), and anterior cingulate area (ACA), with available neuron feature data were selected. Nine 
informative features are shown as examples. Refer to Supplementary Figure 5 for a complete 
comparison of all 32 features. 
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(a) somatosensory area (SS) 
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(b) somatomotor area (MO) 
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(c) hippocampal area (HPF) 
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(d) anterior cingulate area (ACA) 

 
Supplemental Figure 5. Comparative analysis of dendrite morphology features of neurons in 
selected brain regions, for multiple datasets including full single neuron reconstructions (BICCN 
AIBS/SEU-ALLEN and MouseLight, labeled as “MouseLight+Full-SEU-AIBS”), dendritic 
reconstructions (DEN-SEU/“Den-SEU”), and publicly available reconstructions from multiple 
independent labs (“NeuroMorpho”, as archived at NeuroMorpho.Org, see Methods). Four brain 
regions, i.e. (a) somatosensory area (SS), (b) somatomotor area (MO), (c) hippocampal area (HPF), 
and (d) anterior cingulate area (ACA), are shown with the comparison, in which all 32 morphology 
features are visualized with the respective names under each subplot.  
  



 

 44 

 
Supplemental Figure 6. Whole brain arborization map of all neurons with axons in this study. 
See Figure 1D for labels of brain regions. 
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Supplemental Figure 7. Comparative analysis of projection patterns of VISp neurons originated 
in various cortical layers (2/3, 4, 5, and 6), the respective morphological features and soma 
locations, and public-domain electrophysiological recording and transcriptomic profiles of single 
neurons. A. Projection and regional connectivity patterns of VISp neurons, grouped by soma-
locations in four cortical layers. B. Comparison of axon features of VISp neurons in four layers. 
C. Locations of VISp neurons used in this study. D. Joint distribution of morphological features 
and soma locations in the respective UMAP space. E.  Joint distribution of connectivity features 
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and soma locations in the respective UMAP space. F. Joint distribution of electrophysiological 
features and molecular types of VISp neurons in the respective UMAP space. G. Joint 
distribution of electrophysiological features and soma locations in the respective UMAP space.   
 
 


