

Kin selection as a modulator of human handedness: sex-specific, parental and parent-of-origin effects

Bing Dong^{1,*}, Silvia Paracchini², Andy Gardner¹

1. School of Biology, University of St Andrews, Dyer's Brae, St Andrews KY16 9TH, UK

2. School of Medicine, University of St Andrews, North Haugh, St Andrews KY16 9TF, UK

10 * Corresponding author, email: bd59@st-andrews.ac.uk

26 **Abstract** | The frequency of left-handedness in humans is ~10% worldwide and slightly
27 higher in males than females. Twin and family studies estimate the heritability of human
28 handedness at around 25%. The low but substantial frequency of left-handedness has been
29 suggested to imply negative frequency-dependent selection, e.g. owing to a “surprise”
30 advantage of left-handers in combat against opponents more used to fighting right-handers.
31 Because such game-theoretic hypotheses involve social interaction, here, we perform an
32 analysis of the evolution of handedness based on kin-selection, which is understood to play a
33 major role in the evolution of social behaviour generally. We show that: (1) relatedness
34 modulates the balance of right-handedness versus left-handedness, according to whether left-
35 handedness is marginally selfish versus marginally altruistic; (2) sex differences in
36 relatedness to social partners may drive sex differences in handedness; (3) differential
37 relatedness of parents and offspring may generate parent-offspring conflict and sexual
38 conflict leading to the evolution of maternal and paternal genetic effects in relation to
39 handedness; and (4) differential relatedness of maternal-origin versus paternal-origin genes
40 may generate intragenomic conflict leading to the evolution of parent-of-origin-specific gene
41 effects—such as “genomic imprinting”—and associated maladaptation.

42

43 **Keywords** | evolution; game theory; lateralization; inclusive fitness; genomic imprinting;
44 neurodevelopmental disorders

45

46 **1 | Introduction**

47

48 Most humans show a preference for—or a difference in proficiency of—one hand over the
49 other for a range of tasks (McManus 2019, Papadatou-Pastou et al. 2020). The frequency of
50 left-handedness in humans is estimated at 10.6%, fairly stably across regions and populations,
51 and is somewhat higher in males (11.6%) than in females (9.5%) (Papadatou-Pastou et al.
52 2020). Twin studies (Medland et al. 2009) and family studies (Lien et al. 2015) reveal that
53 handedness is heritable, with additive genetic effects appearing to explain around 25% of the
54 variance (Medland et al. 2009, Somers et al. 2015). Genome-wide association studies
55 (GWAS) have identified 41 loci influencing handedness and explaining around 6% of the
56 heritability (Cuellar-Partida et al. 2021). A recent whole exome sequencing (WES) study in
57 the UK Biobank has suggested an association between mutations in the *TUBB4B* gene and
58 left-handedness and estimated that the heritability of left-handedness due to rare coding
59 variants to be 0.91% (Schijven et al. 2023). Left-handedness is linked to some psychiatric
60 disorders, such as autism spectrum disorders (ASD) (Markou et al. 2017), schizophrenia
61 (Hirnstein & Hugdahl 2014) and dyslexia (Abbondanza et al. 2023), and there is an overlap
62 among genes underlying these conditions, brain asymmetries and handedness (Papadatou-
63 Pastou et al. 2020).

64

65 Although many taxa exhibit some form of lateralization (Rogers 1980, Vallortigara &
66 Bisazza 2002, Ocklenburg & Güntürkün 2012, Ströckens et al. 2013, Versace & Vallortigara
67 2015), of which handedness is just one form, these typically involve roughly equal numbers
68 of left-sided and right-sided individuals, and so the strong population bias towards right-
69 handers is peculiarly human (Frayer et al. 2012, Ströckens et al. 2013, Caspar et al. 2022).
70 The left hemisphere dominance for language processing may have an important role in

71 explaining the rightward bias of handedness, (Levy & Nagylaki 1972). Indeed, atypical
72 language hemispheric lateralization is associated with the degree of left-handedness (Knecht
73 et al. 2000, Mazoyer et al. 2014).

74

75 The stability of the ~10% incidence of left-handedness in human populations through time
76 (Coren & Porac 1977, McManus 1991, Frayer et al. 2012) and across regions (Papadatou-
77 Pastou et al. 2020) has given rise to the suggestion that left-handedness is maintained by
78 negative frequency-dependent selection, and this has motivated the development of a number
79 of evolutionary game-theoretic hypotheses to explain the phenomenon (Raymond et al. 1996,
80 Ghirlanda et al. 2009, Abrams & Panaggio 2012, Schaafsma et al. 2012, Faurie & Raymond
81 2013). As an illustrative example, the “combat hypothesis” suggests that left-handers suffer a
82 basic disadvantage (Schaafsma et al. 2012, Zickert et al. 2018, Papadatou-Pastou et al.
83 2020)—e.g. perhaps owing to disruption of typical brain lateralisation—such that natural
84 selection has resulted in them being in the minority, yet also enjoy a compensating advantage
85 when they are sufficiently rare, owing to the element of surprise in combat and similar
86 competitive interactions (Gibbons 1993, Raymond et al. 1996, Faurie & Raymond 2013). The
87 combat hypothesis is in line with the higher incidences of left-handers among elite athletes in
88 interactive sports, such as tennis, fencing and baseball (Wood & Aggleton 1989, Raymond et
89 al. 1996, Loffing 2017).

90

91 These game-theoretic hypotheses centre upon social interaction, and kin selection—the part
92 of natural selection that arises when individuals have an impact on the fitness of their
93 genetically related social partners—plays a major role in the evolution of social behaviour
94 across the tree of life (Hamilton 1964, Frank 1998, West et al. 2007a). In addition to
95 influencing the overall incidence of traits within and across populations (Turner & Chao

96 1999, Queller et al. 2003, Sachs et al. 2004, West et al. 2007a), patterns of genetic relatedness
97 can explain differences in trait levels between different individuals—such as sex differences
98 (West et al. 2007a, Leedale et al. 2018)—and also modulate evolutionary conflicts of interest
99 within families and even within individual genomes—resulting in the evolution of parental
100 genetic effects (Wolf et al. 1998, Richardson et al. 2004, Kuijper & Johnstone 2016, Kuijper
101 & Johnstone 2019) and parent-of-origin effects e.g. genomic imprinting (Haig 2000, 2002,
102 Wilkins & Úbeda 2011, Crespi 2020). However, the scope for a modulating role of kin
103 selection in the evolution of human handedness remains to be investigated.

104

105 Here we undertake a theoretical investigation of how relatedness and kin selection shape the
106 biology of human handedness. First, we show that, at evolutionary equilibrium, left-
107 handedness may be classified either as a “selfish” or an “altruistic” trait, depending on its
108 fitness consequences for the individual and for her social partners, and that the direction of
109 the modulating effect of genetic relatedness depends on which of these two situations applies.
110 Second, we explore how demographic processes such as dispersal modulate the population
111 level of left-handedness at evolutionary equilibrium, via their impact on the degree of genetic
112 relatedness between social partners. Third, we investigate the consequences of sex-biased
113 dispersal, and associated sex differences in an individual’s relatedness to social partners, for
114 the evolution of sex differences in left-handedness. Fourth, we determine the consequences of
115 extending genetic control of handedness to the individual’s parents, resulting in parent-
116 offspring conflict and sexual conflict and the evolution of parental genetic effects in relation
117 to human handedness. Fifth, we descend to the level of individual genes and investigate the
118 scope for intragenomic conflict between maternal-origin versus paternal-origin genes and the
119 resulting evolution of parent-of-origin effects—including genomic imprinting—in relation to
120 human handedness. For the purpose of illustration and concreteness, in each case we derive

121 quantitative predictions for explicit “within-group combat” and “between-group combat”
122 game-theoretic scenarios, but more generally our analysis applies to any scenario in which an
123 individual’s handedness has an impact upon their own reproductive success and that of
124 genetically related social partners. Our model allows for handedness to be a highly polygenic
125 trait and, although for ease of conceptualization we will often refer to handedness in a binary
126 way, our analysis also readily accommodates a spectrum of handedness.

127

128 **2 | Results**

129

130 **(a) Kin selection and human handedness**

131

132 Natural selection adapts individuals as if for the purpose of passing on their alleles to future
133 generations (Hamilton 1964, Grafen 2006, West & Gardner 2013). There are two basic routes
134 through which individuals can accomplish this: first, by promoting their own reproductive
135 success (direct fitness); and, second, by promoting the reproductive success of their genetic
136 relatives, who tend to share alleles in common (indirect fitness) (Hamilton 1964). According
137 to Hamilton’s (1963, 1964, 1970) rule, a behaviour that incurs a fitness cost (c) for the actor
138 can nevertheless be favoured by natural selection if it provides a sufficiently large fitness
139 benefit (b) to a sufficiently closely related (r) social partner (specifically, such that $-c + r b >$
140 0). More generally, we can define four types of social behaviour, according to the sign of the
141 fitness effects: traits incurring a cost for the actor and yielding a benefit for the recipient ($c >$
142 0 and $b > 0$) are “altruistic”; traits yielding a benefit for the actor and incurring a cost for the
143 recipient ($c < 0$ and $b < 0$) are “selfish”; traits yielding a benefit for both parties ($c < 0$ and
144 $b > 0$) are “mutually beneficial”; and traits incurring a cost for both parties ($c > 0$ and $b < 0$)
145 are “s spiteful” (Hamilton 1964, 1970, West et al. 2007b).

146

147 At evolutionary equilibrium, where natural selection favours neither an increase nor a
148 decrease in the trait ($b r - c = 0$), then so long as relatedness is positive ($r > 0$) the trait must
149 either be marginally altruistic ($c > 0$ and $b > 0$) or marginally selfish ($c < 0$ and $b < 0$)
150 (Hitchcock et al. 2019). Accordingly, if natural selection acts in a negative frequency-
151 dependent way in relation to human handedness—as suggested by the game-theoretic models
152 (Ghirlanda & Vallortigara 2004, Ghirlanda et al. 2009, Abrams & Panaggio 2012)—such that
153 it favours an increase in the incidence of left-handedness when this has dropped below a
154 threshold level and favours a decrease in left-handedness when it has exceeded the threshold,
155 then evolutionary equilibrium is attained when the incidence of left-handedness is at the
156 threshold, and at this point left-handedness is either marginally altruistic or marginally
157 selfish. If left-handedness is marginally altruistic then a higher degree of genetic relatedness
158 between actor and recipient is expected to be associated with a higher incidence of left-
159 handedness at the evolutionary equilibrium, whereas if left-handedness is marginally selfish
160 then a higher degree of genetic relatedness is expected to be associated with a lower
161 incidence of left-handedness.

162

163 Taking the combat hypothesis as a purely illustrative example, if we imagine that combat
164 occurs mainly within human groups—between somewhat-related individuals and over
165 reproductive resources—then the indirect-fitness consequences of enjoying a surprise
166 advantage in combat owing to left-handedness are expected to be negative (because the
167 opponent, who loses out, is a genetic relative), and hence at equilibrium this is expected to be
168 exactly balanced by a direct-fitness benefit (owing to improved success in combat
169 outweighing the basic disadvantage of left-handedness), such that left-handedness is a
170 marginally selfish trait. In this scenario, a higher level of relatedness is expected to be

171 associated with a lower incidence of left-handedness (Figure 1a). Alternatively, if combat
172 mainly occurs between non-relatives in a group-warfare context in which success in combat
173 is associated with a positive indirect-fitness effect owing to the benefits that accrue to the
174 individual's genetically related group mates, then at equilibrium this is expected to be exactly
175 balanced by a direct-fitness cost (owing to the basic disadvantage of left-handedness failing
176 to outweigh the improved success in combat), such that left-handedness is a marginally
177 altruistic trait. In this scenario, a higher level of relatedness is expected to be associated with
178 a higher incidence of left-handedness (Figure 1a).

179

180 Relatedness will usually depend on the ecology and demography of the population, and so the
181 above insights also yield predictions as to how population processes relate to the
182 evolutionarily favoured incidence of left-handedness. As a concrete example, we consider the
183 rate of dispersal. If individuals have a higher tendency to disperse away from their place of
184 origin and pursue reproductive opportunities within other groups, then this is expected to
185 result in lower relatedness between group mates. Accordingly, if left-handedness is
186 marginally selfish—as, for example, in the within-group combat scenario—then as the rate of
187 dispersal increases, the evolutionarily favoured level of left-handedness is expected to
188 increase (Figure 1a). And, in contrast, if left-handedness is marginally altruistic—as, for
189 example, in the between-group combat scenario—then as the rate of dispersal increases, the
190 level of left-handedness is expected to decrease (Figure 1a). These predictions relate to
191 contemporary and/or historical between-population comparisons and also, potentially, to the
192 dynamics of handedness within a single population across evolutionary timescales in
193 responses to demographic change (see Discussion).

194

195 **(b) Sex differences in human handedness**

196

197 Above, we have shown that the average genetic relatedness between social partners—and the
198 population processes that modulate this—is expected to influence the evolutionarily favoured
199 incidence of left-handedness at a population level. Similarly, inter-individual differences in
200 relatedness to one’s social partners—and the population processes responsible for such
201 variation—are expected to drive differences in levels of left-handedness among different
202 subdivisions of the population. In particular, sex-specific demographic processes—such as
203 sex-biased dispersal—may result in a sex difference in the relatedness of social partners,
204 which may favour a sex difference in the incidence of left-handedness. For example, all else
205 being equal, female-biased dispersal is expected to result in relatedness between social
206 partners being lower for women than for men; hence, all else being equal, a higher level of
207 left-handedness would be favoured among women than among men if left-handedness is
208 marginally selfish (such as in the within-group combat scenario) and a higher level of left-
209 handedness would be favoured among men than among women if left-handedness is
210 marginally altruistic (such as in the between-group combat scenario) (Figure 1b). The
211 opposite pattern is expected under male-biased dispersal (Figure 1b).

212

213 In addition to differences in relatedness, the sexes might also differ with respect to the fitness
214 consequences—that is, the benefits and costs—associated with left-handedness. Such fitness
215 differences would also be expected to modulate sex differences in incidence of left-
216 handedness. For example, if the frequency-dependent advantage of left-handedness when rare
217 applies more strongly to men than to women—as would be expected in the combat scenarios
218 if men engage in combat more frequently than do women (Divale & Harris 1976, Micheletti
219 et al. 2018) and/or if men have more to gain from winning in combat in terms of enhanced
220 reproductive success (Gibbons 1993)—then, all else being equal, the incidence of left-

221 handedness is expected to be higher among men than among women. More generally, these
222 sex-difference results concern adaptive evolution, and are based upon considerations of
223 female versus male fitness optima. Accordingly, they neglect non-adaptive sex differences
224 arising, for example, from a greater vulnerability of males to developmental perturbation
225 away from a default phenotype, which has been reported in disorders including ASD (Antaki
226 et al. 2022), and this could offer alternative explanations for the higher incidence of left-
227 handedness among males (see Discussion).

228

229 **(c) Parental genetic effects in human handedness**

230

231 Above, we have shown how the evolutionarily favoured level of left-handedness may be
232 modulated by the valuation that individuals place upon the reproductive success of social
233 partners relative to their own reproductive success. This assumes that an individual's own
234 genotype controls the handedness phenotype and if, instead, the handedness phenotypes were
235 controlled by the parental genotype—i.e. a “parental genetic effect”; (Trivers 1972, Trivers
236 1974, Wilson 1980, Wolf et al. 1998, Badyaev & Uller 2009, Hwang et al. 2020)—then we
237 might expect the evolutionarily favoured incidence of left-handedness to reflect the
238 relatedness valuations made by the individual's parents. More generally, if an individual's
239 predisposition to left-handedness is modulated in part by the individual's own genotype and
240 also in part by the genotypes of the individual's parents then we might expect an evolutionary
241 conflict of interests—and associated evolutionary arms race—between parent and offspring
242 (Trivers 1974), and between the parents themselves (Trivers 1972), as each party is favoured
243 to move the handedness phenotype closer to their own fitness optimum.

244

245 If an individual's handedness phenotype represents a trade-off between the individual's own
246 reproductive success and the reproductive success of the individual's group mates, then in
247 general terms we expect the individual's parents to favour a balance that is relatively in
248 support of the group mates' reproductive interests and the individual to favour a balance that
249 is relatively in support of their own reproductive interests, so long as there is relatedness
250 among group mates (see Supplementary Material §§S1.7&S2.5 for details). This owes to
251 individuals being genetically identical to themselves and only somewhat genetically related
252 to their offspring. Accordingly, if left-handedness is a marginally selfish trait (as in the
253 illustrative within-group combat scenario) then we expect parents to favour a lower
254 predisposition for left-handedness in their offspring than their offspring would themselves
255 favour, and if left-handedness is a marginally altruistic trait (as in the illustrative between-
256 group combat scenario) then we expect parents to favour a higher predisposition for left-
257 handedness in their offspring than their offspring would themselves favour (Figure 1c).

258

259 Moreover, although both parents are equally related to their offspring they may be
260 differentially related to their offspring's social partners, so that mothers and fathers may
261 favour different dispositions for left-handedness among their offspring. For example, under
262 female-biased dispersal, mothers are expected to be less related to their offspring's social
263 partners than are fathers, and hence more inclined to their offspring having a disposition for
264 left-handedness if this is a marginally selfish trait (as in the illustrative within-group combat
265 scenario) and less inclined to their offspring having a disposition for left-handedness if this is
266 a marginally altruistic trait (as in the illustrative between-group combat scenario) and the
267 opposite set of outcomes is expected under male-biased dispersal (Figure S1). Accordingly,
268 considerations of patterns of relatedness and concomitant kin selection yields predictions as
269 to parental genetic effects—including maternal genetic effects and paternal genetic effects—

270 working at cross purposes with the individual's own genome, as well as with each other, in
271 relation to the individual's handedness phenotype.

272

273 **(d) Parent-of-origin effects in human handedness**

274

275 Above, we have shown that sex-specific demography—such as sex-biased dispersal—may
276 generate differences in the relatedness valuations made by mothers and fathers regarding the
277 reproductive success of their offspring versus their offspring's social partners, resulting in the
278 evolution of parental genetic effects in relation to handedness. Similarly, this relatedness
279 asymmetry can also extend into the offspring's own genome and ignite an evolutionary
280 conflict of interests between the individual's own maternal-origin versus paternal-origin
281 genes. Such intragenomic conflict in relation to other social traits has been suggested to drive
282 in the evolution of parent-of-origin specific genetic effects, including genomic imprinting
283 (Haig 2002; Gardner & Úbeda 2017)—and induce vulnerability to a number of associated
284 developmental disorders, e.g. Silver-Russell syndrome (SRS) and Beckwith-Wiedemann
285 syndrome (BWS) (Crespi 2011, Wilkins & Úbeda 2011, Crespi 2020).

286

287 For example, if left-handedness is marginally selfish (such as in the within-group combat
288 scenario) then under female-biased dispersal the relatedness between social partners through
289 maternal-origin genes—all else being equal—will be lower than the relatedness through
290 paternal-origin genes, and hence maternal-origin genes are expected to favour a higher level
291 of left-handedness than are paternal-origin genes (Figure 2); whereas under male-biased
292 dispersal relatedness will be higher through maternal-origin genes than through paternal-
293 origin genes, and hence maternal-origin genes are expected to favour a lower level of left-
294 handedness than are paternal-origin genes (Figure 2). Conversely, when left-handedness is

295 marginally altruistic (such as in the between-group combat scenario) then under female-
296 biased dispersal maternal-origin genes are expected to favour a lower level of left-handedness
297 than are paternal-origin genes, whereas under male-biased dispersal maternal-origin genes are
298 expected to favour a higher level of left-handedness than are paternal-origin genes (Figure 2).

299

300 According to the kinship theory of genomic imprinting (Haig 2002), this form of
301 intragenomic conflict will typically lead to one of the copies of the gene being silenced.
302 Specifically, according to the “loudest voice prevails” principle (Haig 1996), the two copies
303 of the gene at the affected locus are favoured to adjust their level of expression in opposite
304 directions, such that the one favouring a higher level of left-handedness will act to increase
305 the level of left-handedness while the one favouring a lower level of left-handedness will act
306 to decrease the level of left-handedness, with perhaps no net change in the actual level of left-
307 handedness, until the gene being favoured to decrease its expression falls silent, after which
308 point the other gene will increase its expression to a level corresponding with its
309 evolutionarily favoured level of left-handedness. At a locus for which an increase in gene
310 expression results in an increase in the level of left-handedness—a “left-handedness
311 promoter” locus—it is the gene that favours a higher level of left-handedness that is expected
312 to remain expressed while the gene that favours a lower level of left-handedness is silenced,
313 and at a locus for which an increase in gene expression results in a decrease in the level of
314 left-handedness—a “left-handedness inhibitor” locus—it is the gene that favours a lower
315 level of left-handedness that is expected to remain expressed while the gene that favours a
316 higher level of left-handedness is silenced. Accordingly, the function of the gene product
317 determines the direction of imprint.

318

319 For example, if left-handedness is marginally selfish (e.g. within-group combat), then under
320 female-biased dispersal we expect left-handedness promoters to be maternally expressed and
321 paternally silenced and left-handedness inhibitors to be maternally silenced and paternally
322 expressed, and under male-biased dispersal left-handedness promoters are expected to be
323 maternally silenced and paternally expressed and left-handedness inhibitors to be maternally
324 expressed and paternally silenced; however if left-handedness is marginally altruistic (e.g.
325 between-group combat), then under female-biased dispersal we expect left-handedness
326 promoters to be maternally silenced and paternally expressed and left-handedness inhibitors
327 to be maternally expressed and paternally silenced, and under male-biased dispersal left-
328 handedness promoters are expected to be maternally expressed and paternally silenced and
329 left-handedness inhibitors to be maternally silenced and paternally expressed (Figure 3).

330

331 **3 | Discussion**

332

333 Although game theoretic attempts to explain the evolutionary maintenance of a substantial
334 minority of left-handed individuals in human population fundamentally hinge upon social
335 interaction, and although kin selection is a fundamental driver of social evolution, the
336 possible role for kin selection in modulating the evolution of human handedness has
337 previously been neglected. We have shown how patterns of relatedness—and the
338 demographic processes underpinning these—are expected to shape patterns of human
339 handedness. Specifically, our kin-selection analyses reveal that: (1) genetic relatedness
340 between social partners—modulated by population processes such as dispersal—is expected
341 to influence the population level of left-handedness in a direction that depends upon whether
342 left-handedness is marginally selfish (as in our illustrative within-group combat scenario)
343 versus marginally altruistic (as in our illustrative between-group combat scenario); (2) sex-

344 specific demography—such as sex-biased dispersal—can result in differences in sex
345 differences in relatedness to one's social partners, which may go some way to explaining sex
346 differences in incidence of left-handedness; (3) differences in relatedness valuations made by
347 different family members can ignite conflicts of interest between parents and offspring and
348 between an individual's mother and father over their handedness phenotype, driving the
349 evolution of parental genetic effects; and (4) such relatedness differences may even ignite
350 evolutionary conflicts of interest within the individual's own genome, with maternal-origin
351 and paternal-origin genes favouring different handedness phenotype, which is expected to
352 drive the evolution of parent-of-origin effects—such as “genomic imprinting”—in relation to
353 handedness.

354

355 Our analyses have shown that the degree of genetic relatedness between social partners
356 whose reproductive success is modulated by each other's handedness phenotypes is expected
357 to modulate the evolutionary equilibrium frequency of left-handedness in the population, with
358 higher relatedness being associated with a lower level of left-handedness when left-
359 handedness tends to benefit the individual at the expense of social partners (selfishness) and a
360 higher level of left-handedness when left-handedness tends to benefit social partners at the
361 expense of the individual (altruism). The degree of relatedness is itself expected to depend on
362 ecological and demographic parameters such as rate of dispersal, which higher dispersal of
363 individuals tending to reduce the extent of genetic relatedness between social partners. At a
364 comparative level, variation in ecological and demographic parameters between different
365 human populations could potentially explain between-population differences in incidence of
366 left-handedness, and variation in ecological and demographic parameters within a single
367 human population over time might explain temporal differences in the incidence of left-
368 handers, but only insofar as the variation in ecology and demography occurs over a relatively

369 long timescale and the evolutionary fine-tuning of handedness occurs over a relatively short
370 timescale. Our analysis offers little quantitative guidance as to the relevant timescales, but the
371 population bias towards right-handedness does appear to have already been in place when
372 hominin lineages diverged from the great apes around seven million years ago (Uomini &
373 Ruck 2018, Papadatou-Pastou et al. 2020).

374

375 Our analysis also reveals that sex-specific selection can give rise to sex differences in
376 handedness. We have shown how sex-specific demographies—such as sex-biased dispersal—
377 may lead to sex differences in relatedness between social partners and hence sex-differences
378 in the level of left-handedness favoured by females versus males. Whether humans have been
379 characterised by sex-biased dispersal in our evolutionary past, and in which direction,
380 remains a controversial topic: the traditional view is that human dispersal has been female-
381 biased (Ember 1975), but evidence has also been marshalled in support of dispersal having
382 been unbiased or mixed (Marlowe 2004). Our use of sex-biased dispersal is merely as an
383 illustration, and the results extend more generally to any ecological and demographic factors
384 that result in sex-differences in relatedness to one's social partners—such as patterns of
385 inbreeding (Wilkins & Haig 2003). In addition to relatedness, our analysis has emphasised
386 that sex difference in left-handedness might also reflect sex differences in the costs and/or
387 benefits of left-handedness. For example, men are generally understood to engage in—and to
388 benefit from winning—combat more than do women (Divale & Harris 1976, Micheletti et al.
389 2018), which could explain a higher incidence in otherwise-costly left-handedness on account
390 of a surprise advantage in combat settings. The higher incidence of left-handedness in males
391 could also arise for non-adaptive reasons, such as sexually differential liability thresholds
392 (Khramtsova et al. 2019, Merikangas & Almasy 2020), whereby the number of risk alleles

393 required for an individual to exhibit a minority phenotype is greater for females than males,
394 i.e. the female buffering effect.

395

396 Our analysis reveals the potential for parental genetic effects to occur in relation to left-
397 handedness, such that alleles carried by a parent exert an influence on their offspring's
398 handedness phenotype, irrespective of whether the offspring carries the same alleles. These
399 parental genetic effects are expected to arise evolutionarily as a consequence of parents
400 having different interests regarding their offspring's handedness phenotype, and our analysis
401 yields predictions as to patterns of such gene effects depending on the sex of parent and
402 offspring (see Supplementary Material §§S1.7 and S2.5). Schmitz et al. (2022)'s analyses
403 suggested parental effects on hand preference, and stronger maternal effects than paternal
404 effects in another multidimensional laterality trait—footedness. Parental genetic effects have
405 been suggested to arise in neurodevelopmental disorders associated with handedness, such as
406 maternal genetic effects in relation to loci associated with ASD—potential loci include
407 *SHANK3* on chromosome 22 and *WBSCR17* on chromosome 7q11—but these findings are
408 not replicated in other individual data set (Connolly et al. 2017). The predictions of our
409 analysis therefore offer a new perspective for understanding the role of parental genetic
410 effects in neurodevelopmental disorders.

411

412 Finally, our analysis also reveals maternal-origin versus paternal-origin genes within an
413 individual's own genome may come into conflict in relation to their carrier's handedness
414 phenotype, and how this conflict may lead to the evolution of parent-of-origin-specific gene
415 expression. Genomic imprinting is associated with a variety of debilitating disorders, with
416 parent-of-origin-specific clinical effects and nonstandard patterns of inheritance that are often
417 predictable in light of the kinship theory (Wilkins & Ubeda 2011). Our results concerning

418 patterns of imprinting allow us to make predictions as to the effects of a range of different
419 mutational and epimutational perturbations of imprinted loci affecting handedness (Figure
420 S3). For example, a gene deletion at an imprinted locus is expected to have no impact on the
421 phenotype if the gene was to be silenced anyway, but it is expected to have a—potentially
422 major—impact upon the phenotype if it was to be expressed such that no functional gene
423 product at all will derive from the affected locus (Figure S3). Such effects might often be
424 lethal insofar as they involve disruption to early stages of brain development when left-right
425 asymmetry is usually established. These predictions could potentially enhance our
426 understanding of various neurodevelopmental disorders associated with handedness. A range
427 of neurodevelopmental conditions are associated with elevated level of left (or non-right)
428 handedness, e.g. dyslexia or developmental language disorders (Abbondanza et al. 2023,
429 Packheiser et al. 2023), schizophrenia (Hirnstein & Hugdahl 2014), and ASD (Markou et al.
430 2017). Several loci that are associated with ASD have been suggested to have a parent-of-
431 origin effects—with maternally over-expressed components including a region between
432 *LOC391642* and *LOC645641* on chromosome 4 and the *LRRC16A* gene on chromosome 6,
433 and paternally over-transmitted genes including the *STPG2* gene on chromosome 4 and the
434 *TBC1D4* gene on chromosome 13—but these findings are not replicated (Connolly et al.
435 2017). Considering novel parent-of-origin effects on complex traits have recently been
436 reported with larger samples and new method such as probabilistic approach (Hofmeister et
437 al. 2022), we suggest parent-of-origin effects might be more widespread than anticipated.
438

439 In relation to parent-of-origin effects, we have focused on the “loudest voice prevails” model
440 of the evolution of genomic imprinting (Haig 1996), which applies here to loci whereby a
441 greater level of gene expression either increases (“left-handedness promoter”) or decreases
442 (“left-handedness inhibitor”) the likelihood of the individual exhibiting left-handedness. For

443 loci at which an intermediate level of gene expression yields a right-handed phenotype and
444 deviations in gene expression (in either direction) are liable to yield a left-handed
445 phenotype—in line with the developmental instability hypothesis of handedness (Yeo &
446 Gangestad 1993)—we might instead expect the gene that favours a greater incidence of left-
447 handedness to exhibit more stochastic expression, i.e. the “chaotic voice prevails” logic of
448 Úbeda et al. (2014). More generally, the kinship theory of genomic imprinting, as it currently
449 stands, predicts genomic imprinting of all loci that experience parent-of-origin conflict, yet
450 empirical studies suggest that genomic imprinting is quite rare—around 1% of genes in the
451 human genome (Luedi et al. 2007). Clearly, there are additional requirements for a locus to
452 evolve imprinting, and our hope is that through confronting theoretical predictions with
453 empirical data, the theory can be further refined.

454

455 The strong population bias in favour of one sidedness type while the other remains a
456 substantial minority appears to be an exclusively human phenomenon. However,
457 lateralization itself has a taxonomically widespread occurrence. The historical view that
458 lateralization is unique in humans was disputed in 1970s during a renaissance of lateralization
459 studies (Güntürkün et al. 2020), and since then lateralization has been reported across the
460 animal kingdom (Rogers 1980, Vallortigara & Bisazza 2002, Ocklenburg & Güntürkün 2012,
461 Ströckens et al. 2013, Versace & Vallortigara 2015). Some species only show lateralization at
462 individual level, such as paw preference in rodents (Manns et al. 2021), and in cats and dogs
463 (Ocklenburg et al. 2019), turning preferences in insects (Hassall et al. 2007) and in fishes
464 (Vallortigara & Rogers 2005), and eye preference in octopuses (Byrne et al. 2004). While
465 lateralization at population level seems to be relatively rarer (Vallortigara & Rogers 2005,
466 Meguerditchian et al. 2013), supporting evidence has steadily accumulated from studies of
467 indoor/captive individuals and from the field (Forrester et al. 2013, Ströckens et al. 2013),

468 including hand preference in nonhuman primates (Caspar et al. 2022), foot (Rogers 1980) and
469 eye preferences (Brown & Magat 2011) in Australian parrots, left-leg preference for prey
470 touching in spitting spiders (Ades & Ramires 2002), right-leg preference in kicking
471 undesirable males by female mosquitoes (Benelli et al. 2015), turning bias in ants (Hunt et al.
472 2014) and a higher frequency of being attacked on the right in trilobites (Babcock 1993).

473

474 Ghirlanda et al. (2009) argued that population-level brain lateralization can occur in two
475 steps: first, individuals should benefit from increased cognitive efficiency by being lateralized
476 in either direction (Levy 1977, Güntürkün et al. 2000, Rogers et al. 2004, Vallortigara &
477 Rogers 2005, Llaurens et al. 2009); second, a population-level bias in preference to one
478 direction should bring additional benefits, e.g. the majority of individuals moving in the same
479 direction creates a dilution effect which reduces the chances of being eaten by predators
480 (Ghirlanda & Vallortigara 2004, Vallortigara & Rogers 2005), while the minority may also
481 enjoy a surprise advantage if predators learn which direction the majority of their prey prefer
482 (Ghirlanda & Vallortigara 2004). The surprise advantage of left-handedness has been found
483 in elite athletes competing in sports such as fencing, boxing, baseball and table tennis
484 (Abrams & Panaggio 2012, Loffing 2017, Papadatou-Pastou et al. 2020). Though the
485 additional benefits were first discussed in relation to prey-predator interactions, similar
486 benefits might also emerge from intraspecific interactions. Ghirlanda et al (2009) and Abrams
487 & Panaggio (2012) have suggested that the population balance of right-handers versus left-
488 handers reflects the relative prevalence of cooperative versus competitive interactions, with
489 cooperative interactions promoting the fitness of the majority handedness type and
490 competitive interactions promoting the fitness of the minority handedness type. All of these
491 game theoretical models focus on social interactions, which are very likely to be mediated by
492 genetic relatedness as shown in general cases of social evolution, yet our investigation is the

493 first time to consider kin selection in human handedness. The predicted effect of relatedness
494 on the evolution of handedness crucially depends on whether left-handedness is marginally
495 altruistic or selfish. Although current data are not sufficient for answering that question, our
496 analyses provide a framework within which future data can be motivated and conceptualised.

497 **References**

498

499 Abbondanza F., Dale P.S., Wang C.A., Hayiou-Thomas M.E., Toseeb U., Koomar T.S. *et al.*
500 2023 Language and reading impairments are associated with increased prevalence of non-
501 right-handedness. *Child Dev.* **00**: 1-16. <https://doi.org/10.1111/cdev.13914>

502 Abrams D.M. & Panaggio M.J. 2012 A model balancing cooperation and competition can
503 explain our right-handed world and the dominance of left-handed athletes. *Journal of The
504 Royal Society Interface* **9**(75): 2718-2722. <https://doi.org/10.1098/rsif.2012.0211>

505 Ades C. & Ramires E.N. 2002 Asymmetry of leg use during prey handling in the spider
506 *Scytodes globula* (Scytodidae). *J. Insect Behav.* **15**(4): 563-570.
507 <https://doi.org/10.1023/A:1016337418472>

508 Antaki D., Guevara J., Maihofer A.X., Klein M., Gujral M., Grove J. *et al.* 2022 A
509 phenotypic spectrum of autism is attributable to the combined effects of rare variants,
510 polygenic risk and sex. *Nat. Genet.* **54**(9): 1284-1292. [https://doi.org/10.1038/s41588-022-01064-5](https://doi.org/10.1038/s41588-022-
511 01064-5)

512 Babcock L.E. 1993 Trilobite malformations and the fossil record of behavioral asymmetry. *J.
513 Paleontol.* **67**(2): 217-229. <https://doi.org/10.1017/S0022336000032145>

514 Badyaev A.V. & Uller T. 2009 Parental effects in ecology and evolution: mechanisms,
515 processes and implications. *Phil. Trans. R. Soc. B* **364**(1520): 1169-1177.
516 <https://doi.org/10.1098/rstb.2008.0302>

517 Benelli G., Romano D., Messing R.H. & Canale A. 2015 First report of behavioural
518 lateralisation in mosquitoes: right-biased kicking behaviour against males in females of the

519 Asian tiger mosquito, *Aedes albopictus*. *Parasitol. Res.* **114**(4): 1613-1617.

520 <https://doi.org/10.1007/s00436-015-4351-0>

521 Brown C. & Magat M. 2011 Cerebral lateralization determines hand preferences in

522 Australian parrots. *Biol. Lett.* **7**(4): 496-498. <https://doi.org/10.1098/rsbl.2010.1121>

523 Byrne R.A., Kuba M.J. & Meisel D.V. 2004 Lateralized eye use in *Octopus vulgaris* shows

524 antisymmetrical distribution. *Anim. Behav.* **68**(5): 1107-1114.

525 <https://doi.org/10.1016/j.anbehav.2003.11.027>

526 Caspar K.R., Pallasdies F., Mader L., Sartorelli H. & Begall S. 2022 The evolution and

527 biological correlates of hand preferences in anthropoid primates. *eLife* **11**: e77875.

528 <https://doi.org/10.7554/eLife.77875>

529 Connolly S., Anney R., Gallagher L. & Heron E.A. 2017 A genome-wide investigation into

530 parent-of-origin effects in autism spectrum disorder identifies previously associated genes

531 including SHANK3. *Europ. J. Hum. Genet.* **25**(2): 234-239.

532 <https://doi.org/10.1038/ejhg.2016.153>

533 Coren S. & Porac C. 1977 Fifty centuries of right-handedness: The historical record. *Science*

534 **198**(4317): 631-632. <https://doi.org/10.1126/science.335510>

535 Crespi B.J. 2011 The evolutionary biology of child health. *Proc. R. Soc. B* **278**(1711): 1441-

536 1449. <https://doi.org/10.1098/rspb.2010.2627>

537 Crespi B.J. 2020 Why and how imprinted genes drive fetal programming. *Front. Endocrinol.*

538 **10**: 940. <https://doi.org/10.3389/fendo.2019.00940>

539 Cuellar-Partida G., Tung J.Y., Eriksson N., Albrecht E., Aliev F., Andreassen O.A. *et al.*
540 2021 Genome-wide association study identifies 48 common genetic variants associated with
541 handedness. *Nat. Hum. Behav.* **5**(1): 59-70. <https://doi.org/10.1038/s41562-020-00956-y>

542 Divale W.T. & Harris M. 1976 Population, warfare, and the male supremacist complex. *Am.*
543 *Anthropol.* **78**(3): 521-538. <https://doi.org/10.1525/aa.1976.78.3.02a00020>

544 Ember C.R. 1975 Residential variation among hunter-gatherers. *Behav. Sci. Res.* **10**(3): 199-
545 227. <https://doi.org/10.1177/106939717501000302>

546 Faurie C. & Raymond M. 2013 The fighting hypothesis as an evolutionary explanation for
547 the handedness polymorphism in humans: Where are we? *Ann. N. Y. Acad. Sci.* **1288**: 110-
548 113. <https://doi.org/10.1111/nyas.12159>

549 Forrester G.S., Quaresmini C., Leavens D.A., Mareschal D. & Thomas M.S.C. 2013 Human
550 handedness: An inherited evolutionary trait. *Behav. Brain Res.* **237**: 200-206.
551 <https://doi.org/10.1016/j.bbr.2012.09.037>

552 Frank S.A. 1998 *Foundations of social evolution*, Princeton University Press.

553 Frayer D.W., Lozano M., Bermúdez de Castro J.M., Carbonell E., Arsuaga J.L., Radovčić J.
554 *et al.* 2012 More than 500,000 years of right-handedness in Europe. *Laterality* **17**(1): 51-69.
555 <https://doi.org/10.1080/1357650X.2010.529451>

556 Ghirlanda S., Frasnelli E. & Vallortigara G. 2009 Intraspecific competition and coordination
557 in the evolution of lateralization. *Phil. Trans. R. Soc. B* **364**(1519): 861-866.
558 <https://doi.org/10.1098/rstb.2008.0227>

559 Ghirlanda S. & Vallortigara G. 2004 The evolution of brain lateralization: a game-theoretical
560 analysis of population structure. *Proc. R. Soc. B* **271**(1541): 853-857.

561 <https://doi.org/10.1098/rspb.2003.2669>

562 Gibbons A. 1993 Evolutionists take the long view on sex and violence. *Science* **261**(5124):
563 987-988. <https://doi.org/10.1126/science.8351524>

564 Grafen A. 2006 Optimization of inclusive fitness. *J. Theor. Biol.* **238**(3): 541-563.
565 <https://doi.org/10.1016/j.jtbi.2005.06.009>

566 Güntürkün O., Diekamp B., Manns M., Nottelmann F., Prior H., Schwarz A. *et al.* 2000
567 Asymmetry pays: visual lateralization improves discrimination success in pigeons. *Curr.*
568 *Biol.* **10**(17): 1079-1081. [https://doi.org/10.1016/S0960-9822\(00\)00671-0](https://doi.org/10.1016/S0960-9822(00)00671-0)

569 Güntürkün O., Ströckens F. & Ocklenburg S. 2020 Brain lateralization: A comparative
570 perspective. *Physiol. Rev.* **100**(3): 1019-1063. <https://doi.org/10.1152/physrev.00006.2019>

571 Haig D. 1996 Placental hormones, genomic imprinting, and maternal—fetal communication.
572 *J. Evol. Biol.* **9**(3): 357-380. <https://doi.org/10.1046/j.1420-9101.1996.9030357.x>

573 Haig D. 2000 Genomic imprinting, sex-biased dispersal, and social behavior. *Ann. N. Y.*
574 *Acad. Sci.* **907**(1): 149-163. <https://doi.org/10.1111/j.1749-6632.2000.tb06621.x>

575 Haig D. 2002 *Genomic imprinting and kinship*, Rutgers University Press.

576 Hamilton W.D. 1963 The evolution of altruistic behavior. *Am. Nat.* **97**(896): 354-356.
577 <https://doi.org/10.1086/497114>

578 Hamilton W.D. 1964 The genetical evolution of social behaviour. I & II. *J. Theor. Biol.* **7**(1):
579 1-52. [https://doi.org/10.1016/0022-5193\(64\)90038-4](https://doi.org/10.1016/0022-5193(64)90038-4)

580 Hamilton W.D. 1970 Selfish and spiteful behaviour in an evolutionary model. *Nature*
581 **228**(5277): 1218-1220. <https://doi.org/10.1038/2281218a0>

582 Hassall M., Turner J. & Girling R. 2007 Do turning biases by the 7-spot ladybird, *Coccinella*
583 *septempunctata*, increase their foraging efficiency? *Behaviour* **144**(2): 143-163.
584 <https://doi.org/10.1163/156853907779947337>

585 Hirnstein M. & Hugdahl K. 2014 Excess of non-right-handedness in schizophrenia: meta-
586 analysis of gender effects and potential biases in handedness assessment. *Br. J. Psychiatry*
587 **205**(4): 260-267. <https://doi.org/10.1192/bjp.bp.113.137349>

588 Hitchcock T.J., Paracchini S. & Gardner A. 2019 Genomic imprinting as a window into
589 human language evolution. *Bioessays* **41**(6): 1800212.
590 <https://doi.org/10.1002/bies.201800212>

591 Hofmeister R.J., Rubinacci S., Ribeiro D.M., Buil A., Kutalik Z. & Delaneau O. 2022 Parent-
592 of-Origin inference for biobanks. *Nature Communications* **13**(1): 6668.
593 <https://doi.org/10.1038/s41467-022-34383-6>

594 Hunt E.R., O'Shea-Wheller T., Albery G.F., Bridger T.H., Gunn M. & Franks N.R. 2014
595 Ants show a leftward turning bias when exploring unknown nest sites. *Biol. Lett.* **10**(12):
596 20140945. <https://doi.org/10.1098/rsbl.2014.0945>

597 Hwang L.-D., Tubbs J.D., Luong J., Lundberg M., Moen G.-H., Wang G. *et al.* 2020
598 Estimating indirect parental genetic effects on offspring phenotypes using virtual parental
599 genotypes derived from sibling and half sibling pairs. *PLoS Genet.* **16**(10): e1009154.
600 <https://doi.org/10.1371/journal.pgen.1009154>

601 Khramtsova E.A., Davis L.K. & Stranger B.E. 2019 The role of sex in the genomics
602 of human complex traits. *Nature Reviews Genetics* **20**(3): 173-190.

603 <https://doi.org/10.1038/s41576-018-0083-1>

604 Knecht S., Dräger B., Deppe M., Bobe L., Lohmann H., Flöel A. *et al.* 2000 Handedness and
605 hemispheric language dominance in healthy humans. *Brain* **123**(12): 2512-2518.

606 <https://doi.org/10.1093/brain/123.12.2512>

607 Kuijper B. & Johnstone R.A. 2016 Parental effects and the evolution of phenotypic memory.
608 *J. Evol. Biol.* **29**(2): 265-276. <https://doi.org/10.1111/jeb.12778>

609 Kuijper B. & Johnstone R.A. 2019 The evolution of early-life effects on social behaviour—
610 why should social adversity carry over to the future? *Phil. Trans. R. Soc. B* **374**(1770):
611 20180111. <https://doi.org/10.1098/rstb.2018.0111>

612 Leedale A.E., Sharp S.P., Simeoni M., Robinson E.J.H. & Hatchwell B.J. 2018 Fine-scale
613 genetic structure and helping decisions in a cooperatively breeding bird. *Mol. Ecol.* **27**(7):
614 1714-1726. <https://doi.org/10.1111/mec.14553>

615 Levy J. 1977 The mammalian brain and the adaptive advantage of cerebral asymmetry. *Ann.*
616 *N. Y. Acad. Sci.* **299**(1): 264-272. <https://doi.org/10.1111/j.1749-6632.1977.tb41913.x>

617 Levy J. & Nagylaki T. 1972 A model for the genetics of handedness. *Genetics* **72**(1): 117-
618 128. <https://doi.org/10.1093/genetics/72.1.117>

619 Lien Y.-J., Chen W.J., Hsiao P.-C. & Tsuang H.-C. 2015 Estimation of heritability for varied
620 indexes of handedness. *Laterality* **20**(4): 469-482.

621 <https://doi.org/10.1080/1357650X.2014.1000920>

622 Llaurens V., Raymond M. & Faurie C. 2009 Why are some people left-handed? An
623 evolutionary perspective. *Phil. Trans. R. Soc. B* **364**(1519): 881-894.

624 <https://doi.org/10.1098/rstb.2008.0235>

625 Loffing F. 2017 Left-handedness and time pressure in elite interactive ball games. *Biol. Lett.*
626 **13**(11): 20170446. <https://doi.org/10.1098/rsbl.2017.0446>

627 Luedi P.P., Dietrich F.S., Weidman J.R., Bosko J.M., Jirtle R.L. & Hartemink A.J. 2007
628 Computational and experimental identification of novel human imprinted genes. *Genome*
629 *Res.* **17**(12): 1723-1730. <https://doi.org/10.1101/gr.6584707>

630 Manns M., Basbasse Y.E., Freund N. & Ocklenburg S. 2021 Paw preferences in mice and
631 rats: Meta-analysis. *Neurosci. Biobehav. Rev.* **127**: 593-606.

632 <https://doi.org/10.1016/j.neubiorev.2021.05.011>

633 Markou P., Ahtam B. & Papadatou-Pastou M. 2017 Elevated levels of atypical handedness in
634 autism: Meta-analyses. *Neuropsychol. Rev.* **27**(3): 258-283. <https://doi.org/10.1007/s11065-017-9354-4>

636 Marlowe Frank W. 2004 Marital residence among foragers. *Curr. Anthropol.* **45**(2): 277-284.

637 <https://doi.org/10.1086/382256>

638 Mazoyer B., Zago L., Jobard G., Crivello F., Joliot M., Perchey G. *et al.* 2014 Gaussian
639 mixture modeling of hemispheric lateralization for language in a large sample of healthy
640 individuals balanced for handedness. *PLoS ONE* **9**(6): e101165.

641 <https://doi.org/10.1371/journal.pone.0101165>

642 McManus C. 1991 The inheritance of left-handedness. in *Ciba Foundation Symposium 162 -*
643 *Biological Asymmetry and Handedness*, Wiley: 251-281.

644 McManus C. 2019 Half a century of handedness research: Myths, truths; fictions; backwards, but mostly forwards. *Brain Neurosci. Adv.* **3**: 2398212818820513.

646 <https://doi.org/10.1177/2398212818820513>

647 Medland S.E., Duffy D.L., Wright M.J., Geffen G.M., Hay D.A., Levy F. *et al.* 2009 Genetic influences on handedness: Data from 25,732 Australian and Dutch twin families.

649 *Neuropsychologia* **47**(2): 330-337. <https://doi.org/10.1016/j.neuropsychologia.2008.09.005>

650 Meguerditchian A., Vauclair J. & Hopkins W.D. 2013 On the origins of human handedness and language: A comparative review of hand preferences for bimanual coordinated actions and gestural communication in nonhuman primates. *Dev. Psychobiol.* **55**(6): 637-650.

653 <https://doi.org/10.1002/dev.21150>

654 Merikangas A.K. & Almasy L. 2020 Using the tools of genetic epidemiology to understand sex differences in neuropsychiatric disorders. *Genes Brain Behav.* **19**(6): e12660.

656 <https://doi.org/10.1111/gbb.12660>

657 Micheletti A.J.C., Ruxton G.D. & Gardner A. 2018 Why war is a man's game. *Proc. R. Soc. B* **285**(1884): 20180975. <https://doi.org/10.1098/rspb.2018.0975>

659 Ocklenburg S. & Güntürkün O. 2012 Hemispheric asymmetries: The comparative view.

660 *Front Psychol* **3**: 5. <https://doi.org/10.3389/fpsyg.2012.00005>

661 Ocklenburg S., Isparta S., Peterburs J. & Papadatou-Pastou M. 2019 Paw preferences in cats and dogs: Meta-analysis. *Laterality* **24**(6): 647-677.

663 <https://doi.org/10.1080/1357650X.2019.1578228>

664 Packheiser J., Papadatou-Pastou M., Koufaki A., Paracchini S., Stein C.C., Schmitz J. *et al.*

665 2023 Elevated levels of mixed-handedness in dyslexia: Meta-analyses of 68 studies.

666 *PsyArXiv.* <https://doi.org/10.31234/osf.io/rqdma>

667 Papadatou-Pastou M., Ntolka E., Schmitz J., Martin M., Munafò M.R., Ocklenburg S. *et al.*

668 2020 Human handedness: A meta-analysis. *Psychol. Bull.* **146**(6): 481-524.

669 <https://doi.org/10.1037/bul0000229>

670 Queller D.C., Ponte E., Bozzaro S. & Strassmann J.E. 2003 Single-gene greenbeard effects in

671 the social Amoeba *Dictyostelium discoideum*. *Science* **299**(5603): 105-106.

672 <https://doi.org/10.1126/science.1077742>

673 Raymond M., Pontier D., Dufour A.-B. & Møller A.P. 1996 Frequency-dependent

674 maintenance of left handedness in humans. *Proc. R. Soc. B* **263**(1377): 1627-1633.

675 <https://doi.org/10.1098/rspb.1996.0238>

676 Richardson D.S., Komdeur J. & Burke T. 2004 Inbreeding in the seychelles warbler:

677 environment-dependent maternal effects. *Evolution* **58**(9): 2037-2048.

678 <https://doi.org/10.1111/j.0014-3820.2004.tb00488.x>

679 Rogers L.J. 1980 Lateralisation in the avian brain. *Bird Behav.* **2**(1): 1-12.

680 <https://doi.org/10.3727/015613880791573835>

681 Rogers L.J., Zucca P. & Vallortigara G. 2004 Advantages of having a lateralized brain. *Proc.*

682 *R. Soc. B* **271**: S420-S422. <https://doi.org/10.1098/rsbl.2004.0200>

683 Sachs J.L., Mueller U.G., Wilcox T.P. & Bull J.J. 2004 The Evolution of Cooperation. *Q.*

684 *Rev. Biol.* **79**(2): 135-160. <https://doi.org/10.1086/383541>

685 Schaafsma S.M., Geuze R.H., Riedstra B., Schiepenhovel W., Bouma A. & Groothuis T.G.G.

686 2012 Handedness in a nonindustrial society challenges the fighting hypothesis as an

687 evolutionary explanation for left-handedness. *Evol. Hum. Behav.* **33**(2): 94-99.

688 <https://doi.org/10.1016/j.evolhumbehav.2011.06.001>

689 Schijven D., Sourena S.-N., Simon E.F. & Clyde F. 2023 Exome-wide analysis implicates

690 rare protein-altering variants in human handedness. *bioRxiv*: 2023.2005.2031.543042.

691 <https://doi.org/10.1101/2023.05.31.543042>

692 Schmitz J., Zheng M., Lui K.F.H., McBride C., Ho C.S.H. & Paracchini S. 2022 Quantitative

693 multidimensional phenotypes improve genetic analysis of laterality traits. *Transl. Psychiatry*

694 **12**(1): 68. <https://doi.org/10.1038/s41398-022-01834-z>

695 Somers M., Ophoff R.A., Aukes M.F., Cantor R.M., Boks M.P., Dauwan M. *et al.* 2015

696 Linkage analysis in a Dutch population isolate shows no major gene for left-handedness or

697 atypical language lateralization. *J. Neurosci. Methods* **35**(23): 8730-8736.

698 <https://doi.org/10.1523/JNEUROSCI.3287-14.2015>

699 Ströckens F., Güntürkün O. & Ocklenburg S. 2013 Limb preferences in non-human

700 vertebrates. *Laterality* **18**(5): 536-575. <https://doi.org/10.1080/1357650X.2012.723008>

701 Trivers R. 1972 Parental Investment and Sexual Selection. in *Sexual Selection and the*

702 *Descent of Man*. Campbell B. Chicago, IL: Aldine: 136-179.

703 Trivers R.L. 1974 Parent-Offspring Conflict. *Am. Zool.* **14**(1): 249-264.

704 <https://doi.org/10.1093/icb/14.1.249>

705 Turner P.E. & Chao L. 1999 Prisoner's dilemma in an RNA virus. *Nature* **398**(6726): 441-

706 443. <https://doi.org/10.1038/18913>

707 Úbeda F., Ohtsuki H. & Gardner A. 2014 Ecology drives intragenomic conflict over
708 menopause. *Ecol. Lett.* **17**(2): 165-174. <https://doi.org/https://doi.org/10.1111/ele.12208>

709 Uomini N.T. & Ruck L. 2018 Chapter 11 - Manual laterality and cognition through
710 evolution: An archeological perspective. in *Prog. Brain Res.* Forrester GS, Hopkins WD,
711 Hudry K & Lindell A, Elsevier. **238**: 295-323.

712 Vallortigara G. & Bisazza A. 2002 How ancient is brain lateralization? in *Comparative*
713 *Vertebrate Lateralization*. Rogers LJ & Andrew R. Cambridge, Cambridge University Press:
714 9-69.

715 Vallortigara G. & Rogers L. 2005 Survival with an asymmetrical brain: advantages and
716 disadvantages of cerebral lateralization. *Behav. Brain Res.*
717 <https://doi.org/10.1017/S0140525X05000105>

718 Versace E. & Vallortigara G. 2015 Forelimb preferences in human beings and other species:
719 multiple models for testing hypotheses on lateralization. *Front Psychol* **6**: 233.
720 <https://doi.org/10.3389/fpsyg.2015.00233>

721 West S.A. & Gardner A. 2013 Adaptation and Inclusive Fitness. *Curr. Biol.* **23**(13): R577-
722 R584. <https://doi.org/10.1016/j.cub.2013.05.031>

723 West S.A., Griffin A.S. & Gardner A. 2007a Evolutionary explanations for cooperation.
724 *Curr. Biol.* **17**(16): R661-R672. <https://doi.org/10.1016/j.cub.2007.06.004>

725 West S.A., Griffin A.S. & Gardner A. 2007b Social semantics: altruism, cooperation,
726 mutualism, strong reciprocity and group selection. *J. Evol. Biol.* **20**(2): 415-432.
727 <https://doi.org/10.1111/j.1420-9101.2006.01258.x>

728 Wilkins J.F. & Haig D. 2003 Inbreeding, Maternal Care and Genomic Imprinting. *J. Theor.*
729 *Biol.* **221**(4): 559-564. <https://doi.org/10.1006/jtbi.2003.3206>

730 Wilkins J.F. & Úbeda F. 2011 Chapter 13 - Diseases Associated with Genomic Imprinting. in
731 *Progress in Molecular Biology and Translational Science*. Cheng X & Blumenthal RM.
732 Cambridge, MA, USA, Academic Press. **101**: 401-445.

733 Wilson E.O. 1980 *Sociobiology: The abridged edition*. Cambridge, The Belknap Press of
734 Harvard University Press.

735 Wolf J.B., Brodie Iii E.D., Cheverud J.M., Moore A.J. & Wade M.J. 1998 Evolutionary
736 consequences of indirect genetic effects. *Trends Ecol. Evol.* **13**(2): 64-69.
737 [https://doi.org/10.1016/S0169-5347\(97\)01233-0](https://doi.org/10.1016/S0169-5347(97)01233-0)

738 Wood C.J. & Aggleton J.P. 1989 Handedness in 'fast ball' sports: Do lefthanders have an
739 innate advantage? *Br. J. Psychol.* **80**(2): 227-240. <https://doi.org/10.1111/j.2044-8295.1989.tb02316.x>

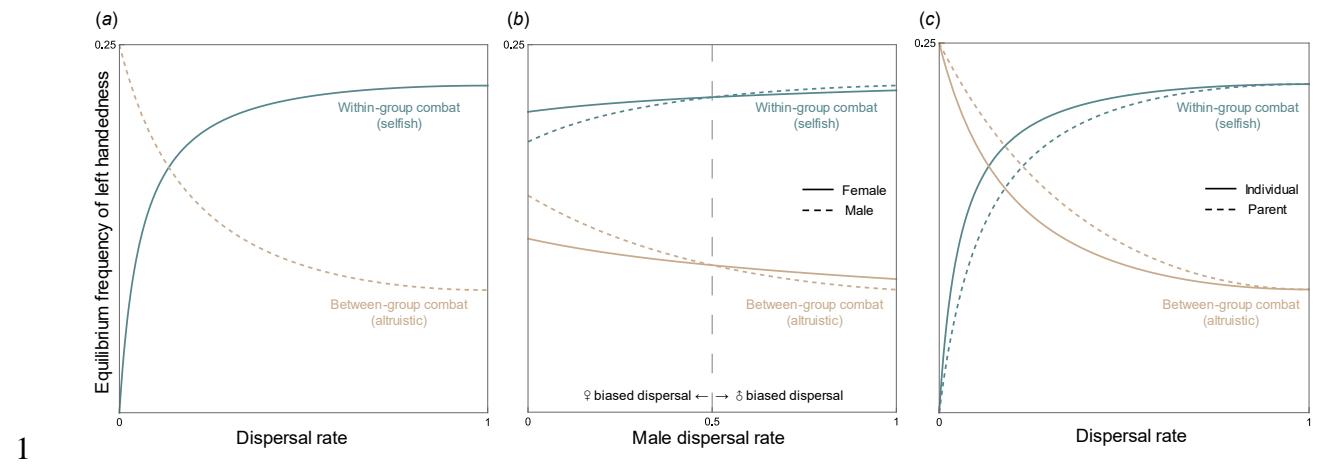
741 Yeo R.A. & Gangestad S.W. 1993 Developmental origins of variation in human hand
742 preference. *Genetica* **89**(1): 281-296. <https://doi.org/10.1007/BF02424521>

743 Zickert N., Geuze R.H., van der Feen F.E. & Groothuis T.G.G. 2018 Fitness costs and
744 benefits associated with hand preference in humans: A large internet study in a Dutch sample.
745 *Evol. Hum. Behav.* **39**(2): 235-248. <https://doi.org/10.1016/j.evolhumbehav.2018.01.001>
746

747 **Figure Legends**

748

749 Figure 1 | Level of left-handedness can be mediated by demographic features such as
750 dispersal, as higher dispersal reduces relatedness between social partners. (a) Level of left-
751 handedness is mediated by dispersal in the context of within-group combat (left-handedness
752 is selfish) versus between-group combat (left-handedness is altruistic). (b) Sex effects in left-
753 handedness: level of left-handedness can be mediated by sex and dispersal pattern
754 (female/male biased dispersal). (c) Parental genetic effects in left-handedness: level of left-
755 handedness can be mediated by dispersal, and further result in parent-offspring disagreement
756 on handedness. Here, we set female dispersal rate m_f to be 0.5, the relative importance of
757 combat in relation to other types of competitions for females b_f and males b_m both to be 1,
758 and the number of individuals each sex born in the same patch n to be 5 (parameter details
759 see Supplementary Material §§S1.3).


760

761 Figure 2 | Parent-of-origin effects in left-handedness: level of left-handedness can be
762 mediated by where the genes are inherited (from mother versus from father) effects and
763 dispersal pattern (female/male biased dispersal) in the context of within-group combat (left-
764 handedness is selfish) versus between-group combat (left-handedness is altruistic). Here, we
765 set female dispersal rate m_f to be 0.5, the relative importance of combat in relation to other
766 types of competitions for females b_f and males b_m both to be 1, and the number of individuals
767 each sex born in the same patch n to be 5.

768

769 Figure 3 | How dispersal type and gene type modulate the expression/imprinting pattern of
770 maternal- versus paternal-origin genes in relation to the level of left-handedness, according to

771 the kinship theory (see Supplementary Material Figure S3 for the phenotypic consequences of
772 gene deletions, gene duplications, epimutations and uniparental disomies).

5

6

7 Figure 2.

8

9

2

10

Dispersal	Female-biased	Female-biased	Male-biased	Male-biased
Gene type	Promotor	Inhibitor	Promotor	Inhibitor
Selfish	M Maternal P expression	M Paternal P expression	M Paternal P expression	M Maternal P expression
Altruistic	M Paternal P expression	M Maternal P expression	M Maternal P expression	M Paternal P expression

11 Figure 3.

12