

1 Interaction of PINK1 with nucleotides and kinetin

2
3 Zhong Yan Gan^{1,2}, Sylvie Callegari^{1,2}, Thanh N. Nguyen^{1,2,3}, Nicholas S Kirk^{1,2}, Andrew Leis^{1,2},
4 Michael Lazarou^{1,2,3}, Grant Dewson^{1,2}, and David Komander^{1,2,*}

5
6 ¹Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia

7 ²Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia

8 ³Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash
9 University, Melbourne, Australia

10 *Corresponding author. Email: dk@wehi.edu.au

13 Abstract

14 PINK1 is a ubiquitin kinase that accumulates on damaged mitochondria to trigger mitophagy,
15 and PINK1 loss-of-function mutations cause early onset Parkinson's disease. Nucleotide
16 analogues such as kinetin triphosphate (KTP) have been suggested to enhance PINK1 activity
17 and may represent a therapeutic strategy for the treatment of Parkinson's disease.

18 Here, we investigate the interaction of PINK1 with nucleotides, including KTP. We establish a
19 cryo-EM platform exploiting the previously observed dodecamer assembly of *Pediculus*
20 *humanus corporis* (*Ph*) PINK1 to determine PINK1 structures bound to AMP-PNP and ADP,
21 which reveal unexpected conformational changes in the kinase N-lobe to enable PINK1 to form a
22 ubiquitin binding site. Strikingly, we find that KTP is unable to bind *Ph*PINK1 or human (*Hs*)
23 PINK1 due to a steric clash with the kinase 'gatekeeper' residue. Mutation of the gatekeeper to
24 Ala or Gly is required to enable PINK1 to bind and utilise KTP as a phosphate donor in ubiquitin
25 phosphorylation and mitophagy. Indeed, *Hs*PINK1 M318G can be used to conditionally
26 uncouple PINK1 stabilisation and activity on mitochondria.

27
28

29 **Introduction**

30

31 Parkinson's disease (PD) is an incurable neurodegenerative disease, affecting more than 10
32 million individuals globally. While exact molecular mechanisms that cause the pathophysiology
33 of PD remain unclear, much evidence suggests that a decline in mitochondrial health is a major
34 contributor (1, 2). The ubiquitin kinase PINK1 (encoded by *PARK6/PINK1*) and the E3 ubiquitin
35 ligase Parkin (encoded by *PARK2/PRKN*) are amongst >15 *PARK*-encoded proteins that when
36 mutated cause an early onset form of PD (EOPD), accounting for ~5–10% of PD cases (3–5).
37 PINK1 and Parkin are crucial mediators of mitophagy, a mitochondrial quality control pathway
38 that degrades damaged mitochondria (1, 6, 7). PINK1 serves a key damage sensor and initiator
39 of mitophagy. The kinase rapidly turns over under basal conditions (8), but upon mitochondrial
40 depolarisation, accumulates on the outer mitochondrial membrane (OMM) where it forms a
41 complex with the translocase of the outer membrane (TOM) and activates by
42 autophosphorylation (9–11). Active PINK1 phosphorylates ubiquitin (12–16), enabling Parkin to
43 be recruited to mitochondria by binding to phosphorylated ubiquitin (phospho-ubiquitin). PINK1
44 then contributes to activation of Parkin by phosphorylating its ubiquitin-like domain, leading to
45 Parkin-mediated ubiquitination of OMM proteins and mitophagy (1, 6).

46

47 Recent structural analysis of PINK1 from the body louse *Pediculus humanus corporis* (*Ph*) and
48 the flour beetle *Tribolium castaneum* (*Tc*) provided detailed insights into the mechanism of
49 PINK1 activation (17–22). PINK1 harbours a bilobal kinase fold, comprising N- and C-lobes
50 that are embellished by three N-lobe insertions and helical extensions at its N- and C-termini (17,
51 19). Structures of *Ph*PINK1 and *Tc*PINK1 dimers revealed that *trans*-autophosphorylation at a
52 key Ser residue in PINK1 (Ser202/205/228 in *Ph*/*Tc*/*Hs*PINK1, respectively) activates the kinase
53 (17, 19). Furthermore, structures of phosphorylated *Ph*PINK1, with and without ubiquitin,
54 demonstrated that autophosphorylation at the key Ser residue stabilises the third N-lobe insertion
55 (insertion-3), enabling PINK1 to bind and phosphorylate ubiquitin (17, 18). *Tc*PINK1 structures
56 have been determined in complex with ATP analogues, which expectedly bind the cleft between
57 the N- and C-lobes (19, 21). However, structural changes as a consequence of nucleotide binding
58 were not analysed or discussed.

59

60 Enhancing mitophagy by pharmacologically increasing PINK1 activity has been considered as a
61 potential strategy to treat PD (23, 24). In a key study, an analogue of ATP, kinetin triphosphate
62 (KTP), was reported to be utilised by PINK1 with greater efficiency than ATP and restored the
63 activity of a PINK1 EOPD mutant (25). While KTP itself is impermeable to the cell membrane
64 and therefore of limited therapeutic value, its membrane permeable precursor, kinetin, can be
65 intracellularly metabolised into KTP and appeared to accelerate PINK1/Parkin mitophagy (25,
66 26). However, it remains unclear whether the PINK1 activating effect of kinetin is mediated
67 through KTP, or whether an alternate mechanism is involved (27). Regardless, these compounds
68 demonstrate considerable therapeutic potential, and it will be important to understand the
69 molecular basis underlying their activities.

70

71 Here, we investigate PINK1's interaction with the nucleotides AMP-PNP and ADP, and with the
72 reported PINK1 activators, KTP and kinetin. We exploit a *Ph*PINK1 dodecamer as a platform to
73 determine nucleotide-bound PINK1 structures by cryo-electron microscopy (cryo-EM). While
74 structures of AMP-PNP-bound and ADP-bound *Ph*PINK1 reveal nucleotide-induced
75 conformational changes in the PINK1 N-lobe, we failed to detect any binding between PINK1
76 and KTP. Instead, KTP binding is blocked by PINK1's gatekeeper residue, which is analogous to
77 many other kinases. Mutation of the Met gatekeeper residue to smaller residue enables KTP
78 binding, and mutation to a Gly switches PINK1's nucleotide preference from ATP to KTP,
79 which inactivates PINK1 in cells. Mutated PINK1 can now be activated by treatment of cells
80 with kinetin, and be used as a conditional activator of gatekeeper-mutated PINK1, and allows us
81 to uncouple PINK1 stabilisation and PINK1 activity in mitophagy settings.

82

83 **Results**

84

85 ***Determining nucleotide-bound PINK1 structures by cryo-EM***

86 We recently reported that a *Ph*PINK1 construct (residues 115–575) in its unphosphorylated state
87 could assemble into a homo-dodecameric complex, enabling structural determination of the
88 complex by cryo-EM (17). However, these structures of *Ph*PINK1 did not contain nucleotides,
89 and were obtained with kinase inactive mutants or had undergone Cys-crosslinking procedures.
90 While the arrangement of molecules within the dodecamer (six *Ph*PINK1 dimers) provided key

91 insights into PINK1 activation, the *Ph*PINK1 dodecamer itself, with open and unobstructed ATP
92 binding sites (Figure 1A), was the ideal platform to further determine whether and how
93 nucleotide binding alters PINK1 conformation. We therefore sought to determine structures of
94 wild-type (WT) *Ph*PINK1, without crosslinking, bound to ADP or the non-hydrolysable ATP
95 analogue AMP-PNP.

96

97 Thermal shift assays confirmed that ADP, ATP and AMP-PNP, each in the presence of Mg^{2+} ,
98 bind and significantly stabilise monomeric *Ph*PINK1 (Supplementary Figure 1). To obtain WT
99 *Ph*PINK1 dodecamers for cryo-EM analysis, *Ph*PINK1 was purified from bacteria in its
100 monomeric and autophosphorylated form (18). Dephosphorylation using λ -phosphatase (λ -PP)
101 induces oligomerisation into dodecamers that could be isolated and purified (Supplementary
102 Figure 2A, see Materials and Methods). Phos-tag analysis, which resolves proteins according to
103 phosphorylation status, confirmed that *Ph*PINK1 was homogeneously dephosphorylated
104 (Supplementary Figure 2B), although a single phosphate remains on Thr305 due to the adjacent
105 Pro306 that prevents dephosphorylation by λ -PP (Supplementary Figure 2B, 3C). The *Ph*PINK1
106 dodecamer was left untreated or was incubated with ADP/ Mg^{2+} or AMP-PNP/ Mg^{2+} , prior to
107 preparation of cryo-EM grids (Figure 1B, Supplementary Figure 2C, Materials and Methods).
108 Processing in cryoSPARC (28) yielded reconstructions of the six-fold symmetric dodecamer,
109 which was subsequently locally refined using a single dimer (asymmetric unit) to resolutions of
110 2.75 Å, 2.84 Å and 3.13 Å for the nucleotide-free, AMP-PNP-bound and ADP-bound *Ph*PINK1
111 dimers, respectively (Figure 1C, Supplementary Figure 2C, D, Table 1). Clear density could be
112 observed for the bound nucleotides and Mg^{2+} ions (Figure 1C, Supplementary Figure 3A,B). The
113 resolution of the maps enabled unambiguous modelling of *Ph*PINK1 with each nucleotide.

114

115 ***Nucleotide induced conformation changes in the PINK1 N-lobe***

116 The newly generated *Ph*PINK1 structures revealed fresh insights into the interaction of
117 nucleotides with PINK1, and unveiled significant conformational changes that couple nucleotide
118 binding to previously observed conformational changes. The nucleotide-free WT *Ph*PINK1
119 dimer was virtually indistinguishable from the nucleotide-free *Ph*PINK1 D357A dimer we
120 determined previously (17). Both AMP-PNP and ADP bind the ATP binding site of *Ph*PINK1 in
121 the anticipated nucleotide binding mode, and in a similar manner to *Tc*PINK1 (Figure 2A,

122 Supplementary Figure 3D) (19, 21). Hydrophobic residues stemming from N- and C-lobes
123 encapsulate the adenine and ribose groups (Figure 2A). Two hydrogen bonds are made via the N¹
124 and N⁶ nitrogens of adenine, which contact the backbone of Tyr293 and Lys291, respectively, of
125 the kinase hinge region (Figure 2A). The three phosphates of AMP-PNP extend towards the
126 phosphoryl transfer centre of the kinase, and only indirectly bind the so-called P-loop (an
127 extended Gly-rich β -hairpin loop including β 1 and β 2) of the N-lobe (Figure 2A). The
128 phosphates are held in position by a series of electrostatic interactions with Lys193 of the kinase
129 VAIK motif (LAVK in *PhPINK1*), and two Mg²⁺ ions, which themselves are positioned by
130 several polar residues that include Asp357 of the DFG motif (Figure 2A).

131

132 Comparison of the nucleotide-free and nucleotide-bound states of *PhPINK1* revealed prominent
133 reorganisation of the kinase P-loop upon nucleotide binding, which affects insertion-3 that
134 eventually forms the ubiquitin binding site at the kinase N-lobe (Figure 2B). In nucleotide-free
135 (and unphosphorylated) *PhPINK1*, insertion-3 is only partially visible, but the ordered residues
136 interact with, and shield, an otherwise exposed hydrophobic patch on the N-lobe, including
137 Pro164, Ala166, Val172 of the P-loop (Figure 2B, Supplementary Figure 4A). This partially
138 ordered conformation of insertion-3 is structurally incompatible with the fully ordered insertion-
139 3 formed after PINK1 N-lobe phosphorylation that becomes the binding site for ubiquitin and
140 Ubl substrates (Figure 2C)(17, 18). Interestingly, binding of AMP-PNP or ADP to
141 unphosphorylated *PhPINK1* causes the P-loop to clamp onto the nucleotide. P-loop movement
142 (by ~6 Å between the C α 's of Ile165) involves multiple residues, including Val173 of the β 2-
143 strand that forms part of the catalytic spine (C spine) and which is completed upon interaction
144 with the nucleotide (Figure 2B) (29).

145 Two residues in the β 1-strand, Ala166 and Lys167, flip such that Ala166 points its side chain
146 into the ATP binding site, and Lys167 points towards the N-lobe (Figure 2B). As a net result,
147 clamping down of the P-loop generates additional space for insertion-3 to fold, although without
148 phosphorylation, insertion-3 remains disordered, and several hydrophobic side chains on the N-
149 lobe, including the P-loop, are exposed (Figure 2B and Supplementary Figure 4A). Also
150 important is the observed flip in Lys167, which only in the nucleotide bound or phosphorylated
151 state of PINK1 can form interactions with both the ordered insertion-3, as well as with the
152 substrate ubiquitin/Ubl (Figure 2C)(17, 18).

153

154 Taken together, these observations indicate an unexpected and tight coupling between nucleotide
155 binding status of PINK1 and the conformation of insertion-3 through conformational
156 rearrangements of the kinase P-loop. Furthermore, given that phosphorylated *Ph*PINK1 in its
157 nucleotide-free state adopts both active and inactive conformations (17), our structures suggest
158 that ATP, in addition to its role as a phosphate donor, likely contributes to stabilising PINK1 in
159 its active and ubiquitin binding-competent state (Supplementary Figure 5, see Discussion). The
160 hydrophobicity of insertion-3 and residues in the P-loop are conserved in *Hs*PINK1, and we can
161 easily envisage a similar mechanism in human PINK1 (Supplementary Figure 4B).

162

163 *A post-catalytic dimerised state of PINK1*

164

165 To our surprise, we find that ADP-bound *Ph*PINK1 is autophosphorylated at Ser202, most likely
166 due to contaminating ATP in the ADP stock we used (Figure 2D, Supplementary Figure 3E–G).
167 This additional phosphate group interacts with both Mg²⁺ ions in the active site and is positioned
168 ~5 Å from the β-phosphate of the bound ADP (Figure 2D, Supplementary Figure 3G). The
169 phosphorylated *Ph*PINK1–ADP dimer represents the post-catalytic state of PINK1 immediately
170 following phosphoryl transfer, but prior to dimer dissociation. In this situation, *Ph*PINK1
171 molecules within the dimer remain entirely in their inactive conformation, with an extended αC-
172 helix and disordered insertion-3, contrasting the conformational shift observed in our previous
173 structure of phosphorylated and crosslinked *Ph*PINK1 dimer (17). A possible reason why the
174 conformational change is not observed in this scenario could be that the high concentration of
175 ADP in the sample sits snugly with phosphorylated pSer202 in the active site of a stable kinase
176 dimer composition (Supplementary Figure 3G).

177

178 *PINK1 cannot use KTP due to a clash with a gatekeeper residue*

179 We next attempted to investigate how the reported PINK1 activator kinetin triphosphate (KTP;
180 Figure 3A) interacts with PINK1 (25). Using thermal shift binding assays, we first tested whether
181 KTP stabilises *Ph*PINK1, and observed that unlike ATP, KTP does not stabilise *Ph*PINK1
182 (Figure 3B and Supplementary Figure 6C). Next, *in vitro* ubiquitin phosphorylation assays
183 showed that *Ph*PINK1 could not phosphorylate ubiquitin when KTP was the sole nucleotide

184 source (Figure 3C). Given that the previous study reporting PINK1 activity with KTP was based
185 on human PINK1 (25), we tested whether sequence differences between *Ph*PINK1 and *Hs*PINK1
186 (~40% kinase domain identity) may account for the inability of KTP to work with *Ph*PINK1. To
187 minimise these differences, we mutated the three differing residues within the *Ph*PINK1 ATP
188 binding site to *Hs*PINK1 equivalent residues (V247A, M249V, T356A), generating a humanised
189 version of *Ph*PINK1 (Supplementary Figure 6A). Despite now harbouring a *Hs*PINK1-like ATP
190 binding site, the *Ph*PINK1 V247A/M249V/T356A triple mutant was neither stabilised nor
191 showed ubiquitin kinase activity with KTP (Supplementary Figure 6B–D).

192

193 Next, we investigated *Hs*PINK1 activity, using heavy membranes from OA-treated HeLa
194 *PINK1*^{−/−} cells transiently expressing WT *Hs*PINK1 that were incubated with recombinant
195 ubiquitin in the presence of either ATP or KTP (see Materials and Methods). Incubation with
196 ATP resulted in phosphorylation of ubiquitin at Ser65, as detected by a phospho-Ser65 ubiquitin
197 antibody (Figure 3D). While KTP incubation resulted in a faint phospho-ubiquitin band, a
198 similarly faint band was also visible in the absence of any added nucleotide, indicating the
199 presence of residual ATP in the crude heavy membrane preparation used for the assay (Figure
200 3D). These results indicate that PINK1 is unable to use KTP as a phosphate donor.

201

202 Why was PINK1 unable to use KTP in our experiments? KTP is an analogue of ATP, defined by
203 an additional furfuryl group covalently attached to the N⁶ of the adenine ring (Figure 3A). N⁶-
204 substituted ATP analogues with bulky groups such as furfuryl can typically not be
205 accommodated by protein kinases due to a clash with a so-called gatekeeper residue at the back
206 of the ATP binding site (30). It is possible that the gatekeeper residue of PINK1 (Met290 in
207 *Ph*PINK1, Met318 in *Hs*PINK1) obstructs KTP (Figure 3E). Indeed, mutation of Met290 in
208 *Ph*PINK1 to smaller Ala or Gly residues, while impacting recombinant protein yield and stability
209 (Supplementary Figure 7), enabled the kinase to be stabilised by KTP, and to use KTP as a
210 phosphate donor in ubiquitin phosphorylation experiments (Figure 3F, G). These results were
211 mirrored in *Hs*PINK1 M318A and M318G mutants enriched from OA-treated HeLa cells (Figure
212 3H). While both kinases were expressed at lower levels (Figure 3H), the Gly mutation greatly
213 diminished PINK1's ability to utilise ATP, consistent with the idea that the gatekeeper is also

214 important for ATP binding (Figure 3G, H). However, both mutants were able to use KTP instead
215 of ATP to generate phospho-ubiquitin.

216

217 Taken together, our results show that contrary to what has been suggested (25, 31, 32) PINK1
218 may not bind KTP or use it as a preferred phosphate donor in a direct ATP-competitive fashion.
219 Importantly, we could enable PINK1 to utilise KTP by mutating the gatekeeper Met residue in
220 the PINK1 ATP binding site in insect and human PINK1. Switching PINK1's nucleotide
221 preference from ATP to KTP was next exploited to decouple PINK1 stabilisation from PINK1
222 activity.

223

224 ***Kinetin activates human PINK1 gatekeeper mutants in cells***

225 We assessed the impact of the gatekeeper mutants M318A and M318G on *HsPINK1* function in
226 intact HeLa *PINK1*^{−/−} cells expressing YFP–Parkin that were transiently transfected with
227 constructs encoding *HsPINK1* variants. *HsPINK1* WT accumulated in response to OA and
228 generated phospho-ubiquitin, as expected (Figure 4A). Accumulation of PINK1 was also
229 observed for *HsPINK1* M318A and M318G mutants, and proteasome inhibition induced similar
230 accumulation of the 52-kDa PARL-cleaved PINK1 fragment, indicating that basal turnover of
231 PINK1 variants was unimpaired (Figure 4A). While a *HsPINK1* M318A mutant phosphorylated
232 ubiquitin at slightly reduced levels compared with WT, the M318G mutant generated phospho-
233 ubiquitin at barely detectable levels (Figure 4A), consistent with *in vitro* experiments (Figure
234 3H).

235

236 Given the M318G mutant's preference for KTP over ATP, we wondered whether its inactivity in
237 cells can be overcome by supplying KTP. However, direct KTP treatment is unfeasible as ATP
238 analogues are unable to cross the cell membrane. Instead, the KTP precursor, kinetin, is
239 membrane permeable and has been shown to be intracellularly metabolised into KTP (25). We
240 therefore attempted to activate *HsPINK1* M318G with kinetin. Treatment with OA alone for 2 h
241 did not activate the M318G mutant, but co-treatment with 200 μM kinetin, but not adenine, led
242 to substantial generation of phospho-ubiquitin (Figure 4B). Increasing the duration of kinetin
243 treatment to 24 h did not increase the level of phospho-ubiquitin, but instead hampered cell
244 growth and/or survival (Figure 4B). Kinetin did not enhance the activity of *HsPINK1* WT,

245 suggesting the effect of kinetin is specific to *HsPINK1* M318G (Supplementary Figure 8). These
246 results are consistent with kinetin undergoing intracellular conversion into KTP, which then acts
247 as a phosphate donor specifically for the *HsPINK1* M318G gatekeeper mutant.
248 We also generated cells stably expressing *HsPINK1* M318G. As was observed in transient
249 expression experiments, stably expressed *HsPINK1* M318G accumulated in response to OA
250 treatment and generated barely detectable levels of phospho-ubiquitin unless co-treated with
251 kinetin (Figure 4C). Phos-tag analysis further revealed that kinetin co-treatment significantly
252 increased PINK1 autophosphorylation and Parkin phosphorylation (Figure 4C).

253

254 ***Kinetin-activated PINK1 M318G recruits Parkin to mitochondria***

255 Since Parkin must be in proximity to OMM-stabilised PINK1 to become phosphorylated, our
256 results suggested that kinetin-activated *HsPINK1* M318G could induce translocation of Parkin to
257 mitochondria and trigger mitochondrial clearance via mitophagy. To test this, we performed
258 immunofluorescence using HeLa *PINK1*^{-/-} cells expressing YFP–Parkin and *HsPINK1* to assess
259 YFP–Parkin translocation to mitochondria. As anticipated, by the 1 h timepoint of OA treatment,
260 WT *HsPINK1* had robustly recruited YFP–Parkin to mitochondria (Figure 5). In contrast,
261 *HsPINK1* M318G did not recruit Parkin after 1 h of OA treatment, however, when co-treated
262 with kinetin, robust recruitment was observed at 1 h OA/kinetin treatment (Figure 5).
263 Taken together, the results indicate that *HsPINK1* M318G is functionally compromised to induce
264 mitophagy in normal cells, but now relies on a distinct nucleotide source, KTP, which is
265 generated *in situ* from kinetin. We have hence established an orthogonal system to induce
266 mitophagy, in which PINK1 stabilisation and PINK1 activation are uncoupled.

267

268 **Discussion**

269 In the first part of this study, we exploited established cryo-EM workflows to characterise the
270 interaction of *PhPINK1* with nucleotides. New structures reveal localised conformational
271 changes that occur upon nucleotide binding (Figure 2). While crystal structures of nucleotide-
272 free and AMP-PNP-bound *TcPINK1* have been reported previously (19–21), a direct comparison
273 between nucleotide-free and nucleotide bound states was not performed. We used cryo-EM to
274 directly compare the nucleotide-bound and unbound states of *PhPINK1*, revealing
275 conformational changes in the kinase P-loop and insertion-3 (Supplementary Figure 5). Prior to

276 nucleotide binding, insertion-3 shields a hydrophobic patch in the N-lobe, likely to maintain
277 protein stability and prevent non-specific interactions with other proteins prior to the activation
278 of PINK1. Nucleotide binding is relayed via the flexible P-loop, and opens the N-lobe to
279 accommodate insertion-3; however, without phosphorylation, insertion-3 remains disordered.
280 Such exposed state of PINK1 would be short-lived since subsequent *trans*-autophosphorylation
281 of PINK1 would cause insertion-3 to reconfigure into its activated and ubiquitin binding
282 conformation, thereby re-shielding the hydrophobic patch (17–19). Furthermore, following
283 autophosphorylation, insertion-3 remains dynamic and exchanges between folded and unfolded
284 states, as we have previously resolved using 3D variability analysis (17). Therefore, it is likely
285 that ATP binding, in addition to it serving as a phosphate donor, helps to further stabilise
286 insertion-3 in its folded and ubiquitin binding conformation, increasing the efficiency of
287 ubiquitin binding and phosphorylation.

288
289 The ease with which the nucleotide-bound *Ph*PINK1 structures could be solved means that the
290 *Ph*PINK1 dodecamer could now be used as a platform to understand the binding mechanism of
291 other kinase-interacting molecules, such as PINK1-activating compounds. We had envisaged to
292 use our platform to understand how KTP interacts with PINK1, however we could not
293 biochemically reproduce the reported PINK1-binding and activating properties of KTP (25).
294 With our detailed structural understanding of PINK1, we define exactly why KTP cannot interact
295 with PINK1: the PINK1 gatekeeper residue prevents the enlarged nucleobase to bind in the ATP
296 binding pocket due to a steric clash between KTP furfuryl group and the gatekeeper Met side
297 chain. Importantly, mutation of the gatekeeper to the smaller residue such as Ala and Gly enables
298 KTP to bind and activate PINK1. These results are consistent with numerous reports of kinases
299 that require a gatekeeper mutation to use KTP (in the KTP γ S form) as their phosphate source
300 (33–38). To the best of our knowledge, apart from PINK1, there have been no reports of kinases
301 that are able to accommodate KTP in their unmodified WT form.

302
303 The KTP precursor kinetin and its derivatives have been thought to activate PINK1 in cells by
304 undergoing intracellular conversion into KTP to function as a phosphate donor (25, 26, 32). Our
305 data now indicates that the underlying mechanism behind kinetin induced PINK1 activation is
306 unlikely to occur via KTP providing an improved nucleotide source to PINK1. A recent study

307 reported that a kinetin analogue MTK458, which cannot be converted into a triphosphate form,
308 was able to activate PINK1 activity (27). Our data would agree that MTK458 is unlikely to act as
309 an ATP-analogue/phosphate donor in the PINK1 kinase reaction. How MTK458 acts on PINK1
310 will require further analysis and may also illuminate the role of kinetin in PINK1 biology.

311

312 Interestingly, kinetin or MTK458 appear to work more efficiently in combination with sub-
313 threshold doses of depolarising agents that are insufficient to trigger phospho-ubiquitin
314 generation and mitophagy on their own (26, 27). We used kinetin in combination with typical
315 mitophagy-inducing doses of the depolarising agent OA, but did not detect kinetin-mediated
316 amplification of *HsPINK1* activity. Instead, we saw a remarkable sensitisation to kinetin-
317 mediated activation when the M318G gatekeeper mutation was introduced. The specificity of
318 kinetin toward the M318G mutant strongly indicates that the mechanism underlying PINK1
319 activation in our case is via the conversion of kinetin into KTP, which then acts directly on
320 PINK1 M318G via its enlarged ATP binding site.

321

322 Since *HsPINK1* M318G accumulates on mitochondria upon depolarisation, yet remains almost
323 completely inactive, kinetin may be used to specifically activate pre-accumulated *HsPINK1*
324 M318G, essentially decoupling PINK1 activity from stabilisation of the protein through
325 mitochondrial depolarisation. A similar goal has been achieved previously using a temperature
326 sensitive mutant of PINK1 that becomes active when the temperature is lowered from 37 °C to
327 22 °C (39). Our strategy, while not needing a temperature shift, requires the initial conversion of
328 kinetin into KTP. Based on our immunofluorescence imaging experiments, conversion to KTP
329 produces an effect on Parkin recruitment within 1 h. If a more rapid conversion of kinetin is
330 required, it may be possible to use kinetin riboside derivatives that reduce the number of
331 conversion steps into KTP (32). We note that *HsPINK1* M318G is not a kinase inactive mutant
332 since it can function with ATP when expressed at high levels and subjected to extended OA
333 treatments. Therefore, *HsPINK1* M318G expression should be titrated to a level that induces
334 minimal OA-induced Parkin recruitment and mitophagy, while maintaining robust activation of
335 kinase activity by kinetin.

336

337 The second kinase gatekeeper mutant we used, *HsPINK1* M318A, is active with both ATP and
338 KTP, and remains functional in the absence of kinetin. This mutant has been used previously for
339 the purpose of sensitising PINK1 to inhibition by PP1 analogues such as 1-NA-PP1 and 1-NM-
340 PP1 that were specifically designed specifically to inhibit gatekeeper-mutated kinases (40, 41). It
341 is likely that *HsPINK1* M318G may also be inhibited by PP1 analogues, given that PP1
342 analogues inhibit many kinases harbouring a Gly gatekeeper mutation (40). Therefore, kinetin
343 and PP1 analogues, in combination with the *HsPINK1* M318A and M318G gatekeeper mutants,
344 may comprise a powerful chemical genetics toolkit for the activation or inhibition of PINK1
345 activity in cells in an experimentally controlled manner.

346

347 **Materials and Methods**

348

349 ***Molecular cloning***

350 DNA encoding *PhPINK1* (residues 115–575), codon optimised for expression in *Escherichia*
351 *coli*, was inserted in between the KpnI and HindIII sites of the pOPINK vector (42) using the In-
352 Fusion HD Cloning Kit (Takara). The pOPINK vector incorporates an N-terminal GST tag and a
353 3C protease cleavage site into the *PhPINK1* construct. *PhPINK1* mutants were generated using
354 the Q5 Site-Directed Mutagenesis Kit (NEB).

355

356 ***Protein expression and purification***

357 All *PhPINK1* (residues 115–575) constructs and λ-PP were expressed in *Escherichia coli*
358 Rosetta2 (DE3) pLacI cells (Novagen) and purified as described previously (17). To generate the
359 WT *PhPINK1* dodecamer for cryo-EM analysis, ~11 mg of purified WT *PhPINK1* (residues
360 115–575), at a concentration of 15 μM, was dephosphorylated with 7.5 μM λ-PP in 25 mM Tris
361 (pH 8.5), 500 mM NaCl, 2 mM MnCl₂, 5% (v/v) glycerol, 10 mM DTT for 24 h at 4 °C. To
362 promote *PhPINK1* oligomerisation, the concentration of NaCl was reduced by buffer exchange
363 into 25 mM Tris (pH 8.5), 150 mM NaCl, 10 mM DTT using a HiPrep 26/10 Desalting column
364 (Cytiva), then incubated for 3 h at 4 °C. The resulting *PhPINK1* dodecamer was purified on a
365 HiLoad 26/600 Superdex 200 pg column (Cytiva) in 25 mM Tris (pH 8.5), 150 mM NaCl, 10
366 mM DTT, and fractions corresponding to the dodecamer were pooled. Anion exchange
367 chromatography was used to concentrate the dodecamer. Pooled fractions from SEC were

368 applied to a Mono Q 5/50 GL column (Cytiva) in 25 mM Tris (pH 8.5), 50 mM NaCl, 10 mM
369 DTT and eluted with a 0–50% linear gradient of 25 mM Tris (pH 8.5), 1 M NaCl, 10 mM DTT
370 over 20 column volumes. The *Ph*PINK1 dodecamer eluted at approximately 250 mM NaCl. The
371 fraction containing the highest concentration of *Ph*PINK1 (3.4 mg/mL) was diluted with 25 mM
372 Tris (pH 8.5), 10 mM DTT to achieve a 150 mM NaCl concentration, resulting in a final
373 *Ph*PINK1 concentration of 1.9 mg/mL. The protein was then flash-frozen in liquid nitrogen and
374 stored at -80 °C.

375

376 ***Cryo-EM sample preparation and data collection***

377 To generate the *Ph*PINK1–nucleotide complexes, purified *Ph*PINK1 dodecamer (1.9 mg/mL)
378 was incubated with 10 mM AMP-PNP or ADP and 10 mM MgCl₂ for 10–25 min prior to
379 vitrification. The nucleotide-free or nucleotide-bound dodecamers were dispensed onto glow
380 discharged UltrAuFoil (Quantifoil GmbH, Germany) R1.2/1.3 holey specimen support ('grid') at
381 100% humidity, 4 °C, and blotted for 4 s (nominal blot force -1). Grids were then plunge frozen
382 in liquefied ethane using a Vitrobot Mark IV (Thermo Fisher Scientific). Data were collected
383 using a Titan Krios G4 microscope equipped with a Falcon 4 direct electron detector (Thermo
384 Fisher Scientific) using a nominal magnification of 96,000 \times , corresponding to a pixel size at the
385 detector of 0.808 Å. A total of 2,746, 3,094 and 2,923 movies were captured for the nucleotide-
386 free, AMP-PNP-bound and ADP-bound *Ph*PINK1 datasets, respectively.

387

388 ***Cryo-EM refinement and model building***

389 Cryo-EM processing was performed in cryoSPARC (v4.2.1) (28). All *Ph*PINK1 datasets were
390 processed using a similar workflow, detailed in Supplementary Figure 2C. All movies were
391 patch-motion corrected, and CTF parameters were estimated using the patch CTF job. Templates
392 were generated from blob picker performed on the p*Ph*PINK1–ADP dataset and used to pick
393 particles from all datasets using template picker. Particles were extracted and binned
394 (downsampled) 2 \times , and 2D classification was performed. Classes with any PINK1-like features
395 were select as 'good' particles, and ab-initio reconstruction was performed to generate an initial
396 reconstruction of the *Ph*PINK1 dodecamer. A second subset of classes containing particles of
397 indistinct shapes were selected as 'junk' particles, and ab-initio reconstruction was performed to
398 generate a volume for subsequent heterogeneous refinement. Three rounds of heterogeneous

399 refinement were performed against the good and junk maps in C_1 to remove bad particles from
400 the dataset. Reconstruction of the dodecamer was performed using homogeneous refinement in
401 D_3 . A mask of the dimer was generated by zoning the map from homogenous refinement against
402 a model of the *Ph*PINK1 D357A dimer using ChimeraX (17, 43), dilated and soft-padded.
403 Particles were symmetry expanded in D_3 , re-centred and locally refined using the dimer mask.
404 For the AMP-PNP-bound and ADP-bound *Ph*PINK1 datasets, signal subtraction was performed
405 prior to local refinement. 3D variability analysis was performed solving for three modes and the
406 particles clustered to give ~100k particles per cluster. Particles corresponding to the most
407 homogeneous and complete cluster were then locally refined to give the final dimer
408 reconstruction.

409
410 Model building was performed in Coot (v0.9.8.7) (44) and refinement was performed using real-
411 space refinement in Phenix (v1.20.1-4487) (45). The *Ph*PINK1 D357A dimer (PDB: 7T4N) (17)
412 was used as the initial model and was docked into the density of the nucleotide-free *Ph*PINK1
413 dimer using UCSF ChimeraX (v1.6.1) (43). After a round of model building in Coot and
414 refinement in Phenix, the model was docked in the densities of the *Ph*PINK1-AMP-PNP and
415 p*Ph*PINK1-ADP dimers, and nucleotides and Mg²⁺ ions were fitted into the densities. Model
416 building and refinement was then performed on all three models. Regions with
417 disordered/ambiguous densities were not modelled. Cryo-EM data collection and refinement
418 statistics are provided in Table 1.

419

420 ***Thermal shift assays***

421 Thermal shift assays were carried out using 4 μM *Ph*PINK1 (residues 115–575) and 5× SYPRO
422 Orange Protein Gel Stain (Invitrogen) in 25 mM Tris (pH 8.5), 150 mM NaCl, 10 mM DTT, in
423 the presence of 5 mM ADP (Sigma), AMP-PNP (Sigma or Roche), ATP (Sigma) or KTP
424 (Biolog). 10 mM MgCl₂ was included, unless indicated otherwise. Melt curves were measured
425 on a Rotor-Gene Q (Qiagen) with a temperature ramp of 25–80 °C at 1 °C/min, and analysed
426 using the Rotor-Gene Q Series Software (v2.3.1). Graphs were generated in GraphPad Prism
427 (v9.5.1).

428

429 ***Ubiquitin phosphorylation assays***

430 Ubiquitin phosphorylation assays were carried using 1.5 μ M *Ph*PINK1 (residues 115–575) and
431 15 μ M ubiquitin in 25 mM Tris (pH 7.4), 150 mM NaCl, 10 mM MgCl₂, 1 mM DTT. Reactions
432 were initiated by the addition of 1 mM ATP (Sigma) or KTP (Biolog) and incubated at 22 °C for
433 2 h or as indicated. Reactions were quenched in SDS sample buffer (66 mM Tris (pH 6.8), 2%
434 (w/v) SDS, 10% (v/v) glycerol, 0.005% (w/v) bromophenol blue), and samples were run on
435 reducing 17.5% Phos-tag gels (containing 50 μ M Phos-tag Acrylamide AAL-107 (Wako) and
436 100 μ M MnCl₂) and NuPAGE 4–12% Bis-Tris gels (Invitrogen). All gels were stained with
437 InstantBlue Coomassie Protein Stain (Abcam).

438

439 ***Cell culture and constructs***

440 HeLa *PINK1*^{−/−} cells were a gift from Michael Lazarou (WEHI). All HeLa cell lines were
441 cultured at 37 °C, 5% CO₂, in DMEM supplemented with 10% (v/v) foetal bovine serum
442 (Bovogen Biologicals) and penicillin–streptomycin. Cells were routinely checked for
443 mycoplasma contamination using the MycoAlert Mycoplasma Detection Kit (Lonza). For
444 transient expression, DNA encoding *Hs*PINK1 was inserted into the BamHI site of
445 pcDNA5/FRT/TO CMVd3 vector (pcDNA5^{d3}, see (17)) using the In-Fusion HD Cloning Kit
446 (Takara). For stable expression, the *Hs*PINK1 sequence was inserted in between the BamHI and
447 NheI sites of the pFUP MCS SV40 Puro lentiviral vector (pFUP). Mutagenesis was performed
448 using the Q5 Site-Directed Mutagenesis Kit (NEB).

449

450 ***Generation of stable cell lines***

451 HeLa *PINK1*^{−/−} cells stably expressing YFP–Parkin and *Hs*PINK1 were generated by sequential
452 introduction of YFP–Parkin followed by *Hs*PINK1 into HeLa *PINK1*^{−/−} cells. YFP–Parkin was
453 introduced using retroviral transduction with the pBMN-YFP-Parkin plasmid (gift from R.
454 Youle; Addgene plasmid, 59416), followed by fluorescence sorting. *Hs*PINK1 WT and the
455 M318G mutant were introduced using lentiviral transduction with pFUP-*Hs*PINK1 plasmids,
456 followed by selection with puromycin.

457

458 ***Transient transfection and Western blotting***

459 Cells for transient transfection were seeded in 6-well plates 24–48 h prior to transfection.
460 Transient transfections were performed with 1.5 μ g pcDNA5^{d3}-*Hs*PINK1 plasmids using

461 Lipofectamine 3000 Transfection Reagent (Invitrogen), and transfected cells were allowed to
462 grow for 24 h before harvesting. Cell lines stably expressing *HsPINK1* were seeded in 6-well
463 plates 48 h before harvesting. To depolarise mitochondria to induce PINK1 stabilisation, cells
464 were treated with 10 μ M oligomycin and 4 μ M antimycin A (OA) for the indicated times.
465 Adenine and kinetin treatments were performed at 200 μ M for the indicated times, and MG132
466 treatments were performed at 10 μ M for 2 h. Cell lysates were prepared directly in SDS sample
467 buffer, then separated on reducing NuPAGE 4–12% Bis-Tris gels (Invitrogen) or reducing 7.5%
468 Phos-tag gels (containing 50 μ M Phos-tag Acrylamide AAL-107 (Wako) and 100 μ M MnCl₂).
469 Phos-tag gels were washed 3 \times 10 min in 10 mM EDTA and 10 min in water prior to transfer.
470 Protein transfer was carried out using the Trans-Blot Turbo Transfer System (Bio-Rad) onto
471 PVDF membranes. Membranes were then blocked in 5% (w/v) skim milk powder in Tris-
472 buffered saline containing 0.1% Tween-20 (TBS-T) and incubated with primary antibodies in
473 TBS-T overnight at 4 °C. Membranes were washed in TBS-T, incubated in secondary antibody
474 for ~1 h, then washed in TBS-T prior to incubation in Clarity Western ECL Substrate (Bio-Rad)
475 and detection using the ChemiDoc (Bio-Rad). Primary antibodies used were rabbit anti-PINK1
476 D8G3 (1:1,000, Cell Signaling Technology, 6946), rabbit anti-phospho-ubiquitin (Ser65) E2J6T
477 (1:1,000, Cell Signaling Technology, 62802), rabbit anti-Tom20 FL-145 (1:1,000, Santa Cruz
478 Biotechnology, sc-11415), mouse anti-Parkin Prk8 (1:1,000, Cell Signaling Technology, 4211).
479 Secondary antibodies used are goat anti-rabbit HRP-conjugated (1:5,000, SouthernBiotech,
480 4010-05) and goat anti-mouse HRP-conjugated (1:5,000, SouthernBiotech, 1030-05). For
481 loading controls, membranes were incubated in hFAB rhodamine anti-GAPDH (1:5,000, Bio-
482 Rad, 12004167) overnight at 4 °C, washed in TBS-T, then detected using the ChemiDoc (Bio-
483 Rad).
484

485 **Fractionation and ubiquitin phosphorylation assay**

486 Ubiquitin phosphorylation assays using heavy membrane-associated *HsPINK1* from OA-treated
487 HeLa *PINK1*^{−/−} cells transfected with *HsPINK1* WT, M318A and M318G was performed as
488 described previously (17). 1 \times 10⁶ HeLa *PINK1*^{−/−} cells were seeded in 10-cm dishes. After 48 h,
489 cells were transfected with 5 μ g pcDNA5^{d3}-*HsPINK1* WT, M318A or M318G using
490 Lipofectamine 3000 Transfection Reagent (Invitrogen). 24 h after transfection, *HsPINK1* was
491 stabilised by OA treatment for 2 h. Cells were harvested by scraping in cold PBS and pelleted by

492 centrifugation at 200 g for 5 min at 4 °C. Cell pellets were permeabilised by incubating for 20
493 min at 4 °C in 1 mL fractionation buffer (20 mM HEPES (pH 7.4), 250 mM sucrose, 50 mM
494 KCl, 2.5 mM MgCl₂) supplemented with 0.025% (w/v) digitonin, 1× cOmplete Protease
495 Inhibitor Cocktail (Roche) and 1× PhosSTOP (Roche). Heavy membrane fractions were pelleted
496 by centrifugation at 14,000 g for 5 min at 4 °C, washed once with 1 mL fractionation buffer, then
497 resuspended in 100 µL fractionation buffer. 15 µM ubiquitin was added, and membranes were
498 divided into 50 µL aliquots. The reaction was initiated with 1 mM ATP (Sigma-Aldrich), KTP
499 (Biolog), or an equivalent volume of water, and incubated at 30 °C for 60 min or the indicated
500 times with gentle agitation. Heavy membranes were pelleted by centrifugation at 14,000 g for 5
501 min at 4 °C, and samples for the ubiquitin containing supernatant and the *HsPINK1* containing
502 heavy membrane pellet were prepared in SDS sample buffer. Western blotting was performed as
503 described above.

504

505 ***Immunofluorescence assay***

506 HeLa *PINK1*^{−/−} cells stably expressing YFP–Parkin and *HsPINK1* were seeded on HistoGrip-
507 coated coverslips 48 h prior to treatment with OA and/or kinetin for the indicated times. Cells
508 were then fixed with 4% (w/v) paraformaldehyde (PFA) in 0.1 M phosphate buffer on a rocker
509 for 10 min, rinsed three times with PBS and permeabilised with 0.1% (v/v) Triton X-100 in PBS
510 for 10 min. After that, samples were blocked with 3% (v/v) goat serum in 0.1% (v/v) Triton X-
511 100/PBS for 15 min and incubated with anti-GFP (ThermoFisher, A10262) and anti-
512 mitochondrial HSP60 (Abcam, ab128567) antibodies for 90 min. Following three washes with
513 PBS and subsequent 1 h incubation with Alexa Fluor 488 goat anti-chicken IgG (ThermoFisher,
514 A32931) and Alexa Fluor 647 goat anti-mouse IgG (ThermoFisher, A21235), the coverslips
515 were washed three times with PBS and mounted with a Tris-buffered DABCO-glycerol
516 mounting medium onto glass slides. Imaging of the coverslips was done with an inverted Leica
517 SP8 confocal laser scanning microscope under 63×/1.40 NA objective (Oil immersion, HC
518 PLAPO, CS2; Leica microsystems). Details on the staining procedure are available at (46).

519

520

521

522

523 **Author Contributions**

524 ZYG performed all experiments except as listed hereafter and analysed data. SC and TNN
525 performed mitophagy imaging experiments. AL and NSK collected and processed cryo-EM data.
526 ML, GD and DK supervised the work and obtained funding. ZYG and DK wrote the manuscript
527 with input from all authors.

528

529 **Acknowledgements**

530 We thank Jeffrey Babon and Isabelle Lucet for helpful advice. We acknowledge use of the
531 facilities at the Ian Holmes Imaging Centre, Bio21 Institute.
532 Funding in the author's labs is provided by the National Health and Medical Research Council
533 (GNT1178122 to DK, GNT2004446 to GD, GNT1106471 to ML), the Australian Research
534 Council (DP200100347 to ML), the Michael J Fox Foundation (DK, GD), the Bodhi Education
535 Fund (GD) and an Australian Government Research Training Program Fellowship (to ZYG).

536

537 **Conflict of Interest Statement**

538 DK is founder and shareholder of Entact Bio and serves on the SAB of Entact Bio and Proxima
539 Bio. ML is co-founder and member of the SAB of Automera.

540

541 **Data and materials availability:**

542 All data, code, and materials used in the analyses are available upon reasonable request from the
543 corresponding author (dk@wehi.edu.au). Structures have been submitted to relevant repositories
544 (pdb, EMDB). All data are available in the main text or the supplementary materials.

545

546

547 **References**

548

549 1. M. F. Schmidt, Z. Y. Gan, D. Komander, G. Dewson, Ubiquitin signalling in
550 neurodegeneration: mechanisms and therapeutic opportunities. *Cell Death Differ.* **28**, 570–590
551 (2021).

552 2. A. Legati, D. Ghezzi, Parkinson's Disease, Parkinsonisms, and Mitochondria: the Role of
553 Nuclear and Mitochondrial DNA. *Curr. Neurol. Neurosci. Rep.* **23**, 131–147 (2023).

553 2. A. Legati, D. Ghezzi, Parkinson's Disease, Parkinsonisms, and Mitochondria: the Role of
554 Nuclear and Mitochondrial DNA. *Curr. Neurol. Neurosci. Rep.* **23**, 131–147 (2023).

555 3. O. Corti, S. Lesage, A. Brice, What genetics tells us about the causes and mechanisms of
556 Parkinson's disease. *Physiological reviews*. **91**, 1161–1218 (2011).

557 4. T. Kitada, S. Asakawa, N. Hattori, H. Matsumine, Y. Yamamura, S. Minoshima, M. Yokochi,
558 Y. Mizuno, N. Shimizu, Mutations in the parkin gene cause autosomal recessive juvenile
559 parkinsonism. *Nature*. **392**, 605–608 (1998).

560 5. E. M. Valente, P. M. Abou-Sleiman, V. Caputo, M. M. K. Muqit, K. Harvey, S. Gispert, Z.
561 Ali, D. D. Turco, A. R. Bentivoglio, D. G. Healy, A. Albanese, R. Nussbaum, R. González-
562 Maldonado, T. Deller, S. Salvi, P. Cortelli, W. P. Gilks, D. S. Latchman, R. J. Harvey, B.
563 Dallapiccola, G. Auburger, N. W. Wood, Hereditary early-onset Parkinson's disease caused by
564 mutations in PINK1. *Science (New York, NY)*. **304**, 1158–1160 (2004).

565 6. J. W. Harper, A. Ordureau, J.-M. Heo, Building and decoding ubiquitin chains for mitophagy.
566 *Nature reviews Molecular cell biology*. **19**, 93–108 (2018).

567 7. T. N. Nguyen, B. S. Padman, M. Lazarou, Deciphering the Molecular Signals of
568 PINK1/Parkin Mitophagy. *Trends in cell biology*. **26**, 733–744 (2016).

569 8. S. Sekine, R. J. Youle, PINK1 import regulation; a fine system to convey mitochondrial stress
570 to the cytosol. *Bmc Biol.* **16**, 2 (2018).

571 9. M. Lazarou, S. M. Jin, L. A. Kane, R. J. Youle, Role of PINK1 binding to the TOM complex
572 and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin.
573 *Developmental cell*. **22**, 320–333 (2012).

574 10. K. Okatsu, T. Oka, M. Iguchi, K. Imamura, H. Kosako, N. Tani, M. Kimura, E. Go, F.
575 Koyano, M. Funayama, K. Shiba-Fukushima, S. Sato, H. Shimizu, Y. Fukunaga, H. Taniguchi,
576 M. Komatsu, N. Hattori, K. Mihara, K. Tanaka, N. Matsuda, PINK1 autophosphorylation upon
577 membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria.
578 *Nature Communications*. **3**, 1016 (2012).

579 11. K. Okatsu, M. Uno, F. Koyano, E. Go, M. Kimura, T. Oka, K. Tanaka, N. Matsuda, A
580 dimeric PINK1-containing complex on depolarized mitochondria stimulates Parkin recruitment.
581 *The Journal of biological chemistry*. **288**, 36372–36384 (2013).

582 12. F. Koyano, K. Okatsu, H. Kosako, Y. Tamura, E. Go, M. Kimura, Y. Kimura, H. Tsuchiya,
583 H. Yoshihara, T. Hirokawa, T. Endo, E. A. Fon, J.-F. Trempe, Y. Saeki, K. Tanaka, N. Matsuda,
584 Ubiquitin is phosphorylated by PINK1 to activate parkin. *Nature*. **510**, 162–166 (2014).

585 13. A. Kazlauskaite, C. Kondapalli, R. Gourlay, D. G. Campbell, M. S. Ritorto, K. Hofmann, D.
586 R. Alessi, A. Knebel, M. Trost, M. M. K. Muqit, Parkin is activated by PINK1-dependent
587 phosphorylation of ubiquitin at Ser65. *The Biochemical journal*. **460**, 127–139 (2014).

588 14. L. A. Kane, M. Lazarou, A. I. Fogel, Y. Li, K. Yamano, S. A. Sarraf, S. Banerjee, R. J.
589 Youle, PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. *The*
590 *Journal of Cell Biology*. **205**, 143–153 (2014).

591 15. A. Ordureau, S. A. Sarraf, D. M. Duda, J.-M. Heo, M. P. Jedrychowski, V. O. Sviderskiy, J.
592 L. Olszewski, J. T. Koerber, T. Xie, S. A. Beausoleil, J. A. Wells, S. P. Gygi, B. A. Schulman, J.
593 W. Harper, Quantitative Proteomics Reveal a Feedforward Mechanism for Mitochondrial
594 PARKIN Translocation and Ubiquitin Chain Synthesis. *Molecular Cell*. **56**, 360–375 (2014).

595 16. T. Wauer, K. N. Swatek, J. L. Wagstaff, C. Gladkova, J. N. Pruneda, M. A. Michel, M.
596 Gersch, C. M. Johnson, S. M. V. Freund, D. Komander, Ubiquitin Ser65 phosphorylation affects
597 ubiquitin structure, chain assembly and hydrolysis. *The EMBO Journal*. **34**, 307–325 (2015).

598 17. Z. Y. Gan, S. Callegari, S. A. Cobbold, T. R. Cotton, M. J. Mlodzianoski, A. F. Schubert, N.
599 D. Geoghegan, K. L. Rogers, A. Leis, G. Dewson, A. Glukhova, D. Komander, Activation
600 mechanism of PINK1. *Nature*. **602**, 328–335 (2022).

601 18. A. F. Schubert, C. Gladkova, E. Pardon, J. L. Wagstaff, S. M. V. Freund, J. Steyaert, S. L.
602 Maslen, D. Komander, Structure of PINK1 in complex with its substrate ubiquitin. *Nature*. **552**,
603 51–56 (2017).

604 19. S. Rasool, S. Veyron, N. Soya, M. A. Eldeeb, G. L. Lukacs, E. A. Fon, J.-F. Trempe,
605 Mechanism of PINK1 activation by autophosphorylation and insights into assembly on the TOM
606 complex. *Mol Cell*. **82**, 44-59.e6 (2022).

607 20. A. Kumar, J. Tamjar, A. D. Waddell, H. I. Woodroof, O. G. Raimi, A. M. Shaw, M. Peggie,
608 M. M. Muqit, D. M. van Aalten, Structure of PINK1 and mechanisms of Parkinson's disease-
609 associated mutations. *Elife*. **6**, e29985 (2017).

610 21. K. Okatsu, Y. Sato, K. Yamano, N. Matsuda, L. Negishi, A. Takahashi, A. Yamagata, S.
611 Goto-Ito, M. Mishima, Y. Ito, T. Oka, K. Tanaka, S. Fukai, Structural insights into ubiquitin
612 phosphorylation by PINK1. *Sci Rep-uk*. **8**, 10382 (2018).

613 22. H. I. Woodroof, J. H. Pogson, M. Begley, L. C. Cantley, M. Deak, D. G. Campbell, D. M. F.
614 van Aalten, A. J. Whitworth, D. R. Alessi, M. M. K. Muqit, Discovery of catalytically active
615 orthologues of the Parkinson's disease kinase PINK1: analysis of substrate specificity and impact
616 of mutations. *Open Biology*. **1**, 110012 (2011).

617 23. S. Padmanabhan, N. K. Polinski, L. B. Menalled, M. A. S. Baptista, B. K. Fiske, The
618 Michael J. Fox Foundation for Parkinson's Research Strategy to Advance Therapeutic
619 Development of PINK1 and Parkin. *Biomol*. **9**, 296 (2019).

620 24. S. Miller, M. M. K. Muqit, Therapeutic approaches to enhance PINK1/Parkin mediated
621 mitophagy for the treatment of Parkinson's disease. *Neurosci Lett*. **705**, 7–13 (2019).

622 25. N. T. Hertz, A. Berthet, M. L. Sos, K. S. Thorn, A. L. Burlingame, K. Nakamura, K. M.
623 Shokat, A neo-substrate that amplifies catalytic activity of parkinson's-disease-related kinase
624 PINK1. *Cell*. **154**, 737–747 (2013).

625 26. A. Ordureau, J. A. Paulo, W. Zhang, T. Ahfeldt, J. Zhang, E. F. Cohn, Z. Hou, J.-M. Heo, L.
626 L. Rubin, S. S. Sidhu, S. P. Gygi, J. W. Harper, Dynamics of PARKIN-Dependent Mitochondrial
627 Ubiquitylation in Induced Neurons and Model Systems Revealed by Digital Snapshot
628 Proteomics. *Molecular Cell*. **70**, 211-227.e8 (2018).

629 27. R. M. Chin, R. Rakshit, D. Ditsworth, C. Wang, J. Bartholomeus, S. Liu, A. Mody, A. Laishu,
630 A. Eastes, C. Tai, R. Y. Kim, J. Li, S. Hansberry, S. Khasnavis, V. Rafalski, D. Herendeen, V.
631 Garda, J. Phung, D. de Roulet, A. Ordureau, J. W. Harper, S. Johnstone, J. Stöhr, N. T. Hertz,
632 *Biorxiv*, in press, doi:10.1101/2023.02.14.528378.

633 28. A. Punjani, J. L. Rubinstein, D. J. Fleet, M. A. Brubaker, cryoSPARC: algorithms for rapid
634 unsupervised cryo-EM structure determination. *Nat Methods*. **14**, 290–296 (2017).

635 29. S. S. Taylor, A. P. Kornev, Protein kinases: evolution of dynamic regulatory proteins. *Trends
636 in Biochemical Sciences*. **36**, 65–77 (2011).

637 30. K. Islam, The Bump-and-Hole Tactic: Expanding the Scope of Chemical Genetics. *Cell
638 Chem Biol.* **25**, 1171–1184 (2018).

639 31. O. A. Lambourne, S. Bell, L. P. Wilhelm, E. B. Yarbrough, G. G. Holly, O. M. Russell, A.
640 M. Alghamdi, A. M. Fdel, C. Varricchio, E. L. Lane, I. G. Ganley, A. T. Jones, M. S. Goldberg,
641 Y. Mehellou, PINK1-Dependent Mitophagy Inhibits Elevated Ubiquitin Phosphorylation Caused
642 by Mitochondrial Damage. *J Med Chem* (2023), doi:10.1021/acs.jmedchem.3c00555.

643 32. L. Osgerby, Y.-C. Lai, P. J. Thornton, J. Amalfitano, C. S. L. Duff, I. Jabeen, H. Kadri, A.
644 Miccoli, J. H. R. Tucker, M. M. K. Muqit, Y. Mehellou, Kinetin Riboside and Its ProTides
645 Activate the Parkinson's Disease Associated PTEN-Induced Putative Kinase 1 (PINK1)
646 Independent of Mitochondrial Depolarization. *Journal of medicinal chemistry*. **60**, 3518–3524
647 (2017).

648 33. R. C. C. Hengeveld, N. T. Hertz, M. J. M. Vromans, C. Zhang, A. L. Burlingame, K. M.
649 Shokat, S. M. A. Lens, Development of a Chemical Genetic Approach for Human Aurora B
650 Kinase Identifies Novel Substrates of the Chromosomal Passenger Complex*. *Mol Cell
651 Proteomics*. **11**, 47–59 (2012).

652 34. R. S. Levin, N. T. Hertz, A. L. Burlingame, K. M. Shokat, S. Mukherjee, Innate immunity
653 kinase TAK1 phosphorylates Rab1 on a hotspot for posttranslational modifications by host and
654 pathogen. *Proc National Acad Sci*. **113**, E4776–E4783 (2016).

655 35. A. W. Lin, K. K. Gill, M. S. Castañeda, I. Matucci, N. Eder, S. Claxton, H. Flynn, A. P.
656 Snijders, R. George, S. K. Ultanir, Chemical genetic identification of GAK substrates reveals its
657 role in regulating Na⁺/K⁺-ATPase. *Life Sci Alliance*. **1**, e201800118 (2018).

658 36. N. L. Maas, N. Singh, J. A. Diehl, Generation and characterization of an analog-sensitive
659 PERK allele. *Cancer Biol Ther.* **15**, 1106–1111 (2014).

660 37. S. Sharma, T. Zhang, W. Michowski, V. W. Rebecca, M. Xiao, R. Ferretti, J. M. Suski, R. T.
661 Bronson, J. A. Paulo, D. Frederick, A. Fassl, G. M. Boland, Y. Geng, J. A. Lees, R. H. Medema,
662 M. Herlyn, S. P. Gygi, P. Sicinski, Targeting the cyclin-dependent kinase 5 in metastatic
663 melanoma. *Proc National Acad Sci.* **117**, 8001–8012 (2020).

664 38. A. D. Yildirim, M. Citir, A. E. Dogan, Z. Veli, Z. Yildirim, O. Tufanli, A. Traynor-Kaplan,
665 C. Schultz, E. Erbay, ER Stress-Induced Sphingosine-1-Phosphate Lyase Phosphorylation
666 Potentiates the Mitochondrial Unfolded Protein Response. *J Lipid Res.* **63**, 100279 (2022).

667 39. D. P. Narendra, C. Wang, R. J. Youle, J. E. Walker, PINK1 rendered temperature sensitive
668 by disease-associated and engineered mutations. *Hum Mol Genet.* **22**, 2572–2589 (2013).

669 40. A. C. Bishop, J. A. Ubersax, D. T. Petsch, D. P. Matheos, N. S. Gray, J. Blethow, E.
670 Shimizu, J. Z. Tsien, P. G. Schultz, M. D. Rose, J. L. Wood, D. O. Morgan, K. M. Shokat, A
671 chemical switch for inhibitor-sensitive alleles of any protein kinase. *Nature.* **407**, 395–401
672 (2000).

673 41. C. Zhang, S. Lee, Y. Peng, E. Bunker, C. Shen, E. Giaime, J. Shen, J. Shen, Z. Zhou, X. Liu,
674 A chemical genetic approach to probe the function of PINK1 in regulating mitochondrial
675 dynamics. *Cell Res.* **25**, 394–397 (2015).

676 42. N. S. Berrow, D. Alderton, S. Sainsbury, J. Nettleship, R. Assenberg, N. Rahman, D. I.
677 Stuart, R. J. Owens, A versatile ligation-independent cloning method suitable for high-
678 throughput expression screening applications. *Nucleic acids research.* **35**, e45 (2007).

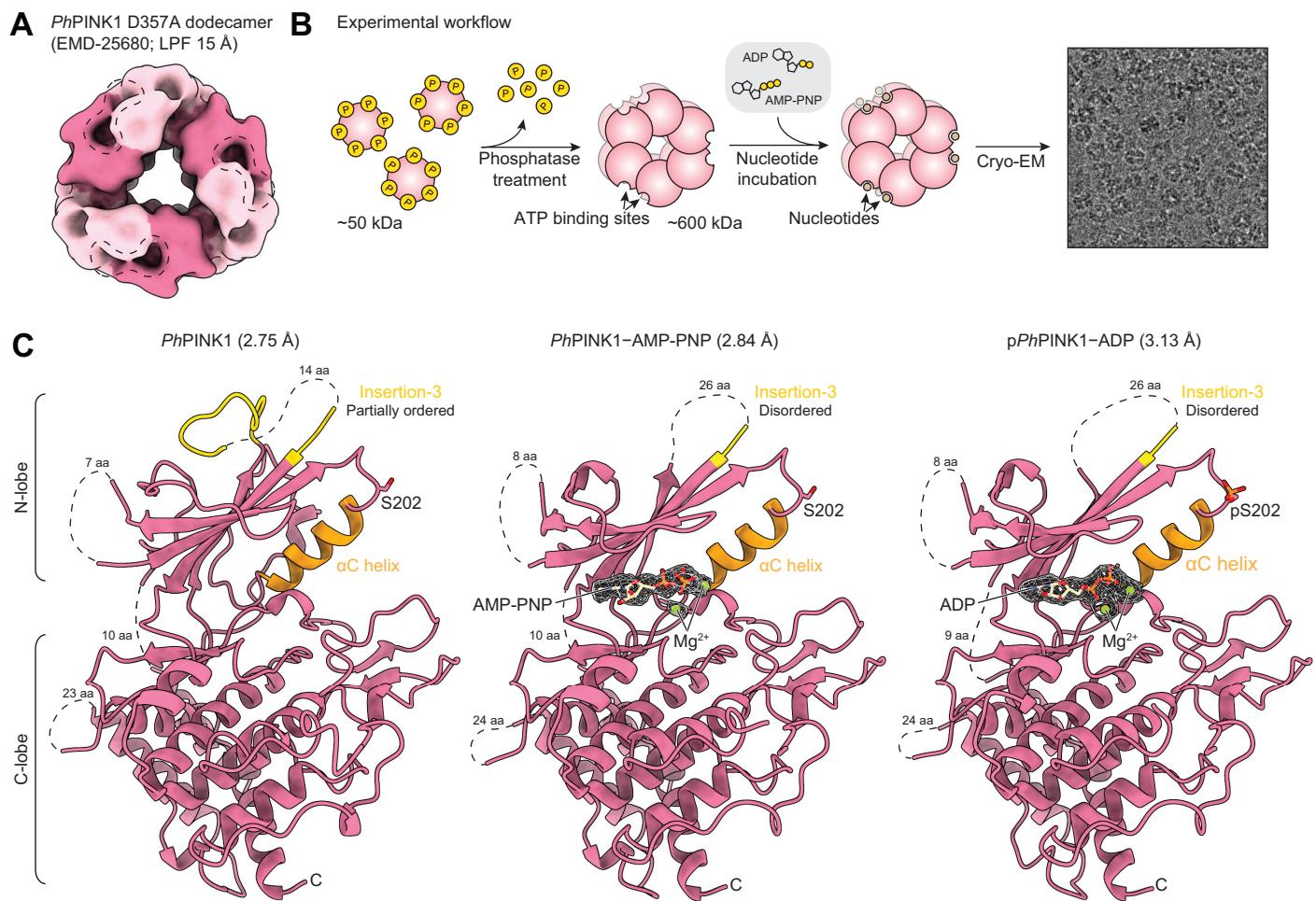
679 43. E. F. Pettersen, T. D. Goddard, C. C. Huang, E. C. Meng, G. S. Couch, T. I. Croll, J. H.
680 Morris, T. E. Ferrin, UCSF ChimeraX: Structure visualization for researchers, educators, and
681 developers. *Protein Sci.* **30**, 70–82 (2021).

682 44. P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Features and development of Coot. *Acta
683 Crystallogr D Biol Crystallogr.* **66**, 486–501 (2010).

684 45. P. D. Adams, P. V. Afonine, G. Bunkóczki, V. B. Chen, N. Echols, J. J. Headd, L.-W. Hung,
685 S. Jain, G. J. Kapral, R. W. G. Kunstleve, A. J. McCoy, N. W. Moriarty, R. D. Oeffner, R. J.
686 Read, D. C. Richardson, J. S. Richardson, T. C. Terwilliger, P. H. Zwart, The Phenix software
687 for automated determination of macromolecular structures. *Methods (San Diego, Calif).* **55**, 94–
688 106 (2011).

689 46. T. N. Nguyen, Immunofluorescence assay (IFA) v1 (2022),
690 doi:10.17504/protocols.io.5qpvobz99l4o/v1.

691 47. T. Ansai, L. C. Dupuy, S. Barik, Interactions Between a Minimal Protein Serine/Threonine
692 Phosphatase and Its Phosphopeptide Substrate Sequence. *J Biol Chem.* **271**, 24401–24407
693 (1996).


694 48. J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K.
695 Tunyasuvunakool, R. Bates, A. Žídek, A. Potapenko, A. Bridgland, C. Meyer, S. A. A. Kohl, A.
696 J. Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D.
697 Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer, S. Bodenstein,
698 D. Silver, O. Vinyals, A. W. Senior, K. Kavukcuoglu, P. Kohli, D. Hassabis, Highly accurate
699 protein structure prediction with AlphaFold. *Nature.* **596**, 583–589 (2021).

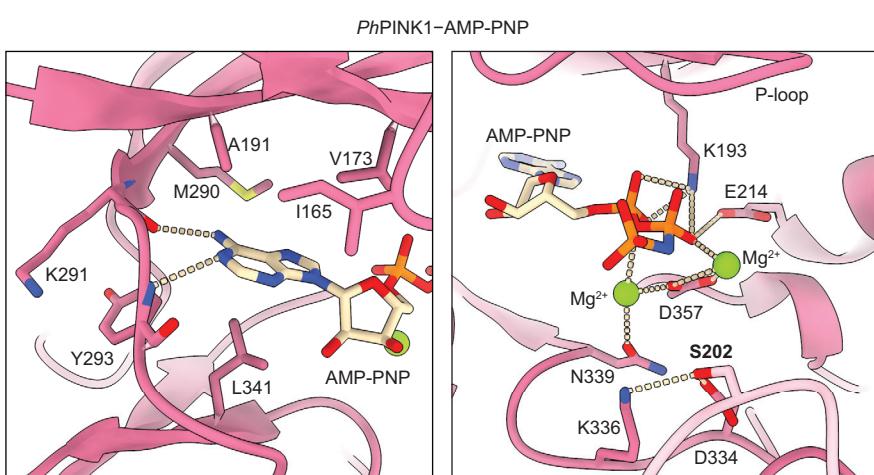
700 49. K. Tunyasuvunakool, J. Adler, Z. Wu, T. Green, M. Zielinski, A. Žídek, A. Bridgland, A.
701 Cowie, C. Meyer, A. Laydon, S. Velankar, G. J. Kleywegt, A. Bateman, R. Evans, A. Pritzel, M.
702 Figurnov, O. Ronneberger, R. Bates, S. A. A. Kohl, A. Potapenko, A. J. Ballard, B. Romera-
703 Paredes, S. Nikolov, R. Jain, E. Clancy, D. Reiman, S. Petersen, A. W. Senior, K. Kavukcuoglu,
704 E. Birney, P. Kohli, J. Jumper, D. Hassabis, Highly accurate protein structure prediction for the
705 human proteome. *Nature.* **596**, 590–596 (2021).

706

707

Figure 1

708 **Figure 1. Determining nucleotide-bound *PhPINK1* structures.**


709 **(A)** 15-Å low-pass filtered (LPF) cryo-EM density map of the published *PhPINK1* D357A
710 dodecamer ((17); EMDB-25680). Individual *PhPINK1* monomers are shown in alternating
711 colours. Accessible ATP binding sites are highlighted in the dotted outlines (two binding sites
712 per enclosed outline). **(B)** Workflow to generate the WT *PhPINK1* dodecamer for cryo-EM
713 analysis in complex with nucleotides. The micrograph image is reused from Supplementary
714 Figure 2C. **(C)** Structures of the nucleotide-free, AMP-PNP-bound and ADP-bound *PhPINK1*
715 dimer (only chain B is shown, see Supplementary Figure 3 for whole dimers) at 2.75 Å, 2.84 Å
716 and 3.13 Å resolution, respectively. Insertion-3 and the α C-helix are coloured in yellow and
717 orange, respectively. Density of AMP-PNP, ADP and Mg^{2+} in the *PhPINK1* ATP binding site
718 are shown as a mesh. aa, amino acids. Dotted lines indicate regions lacking electron density.

719

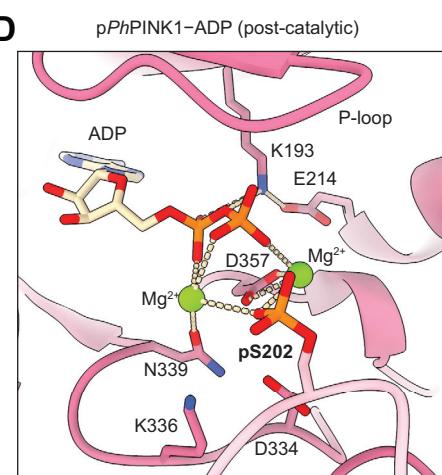
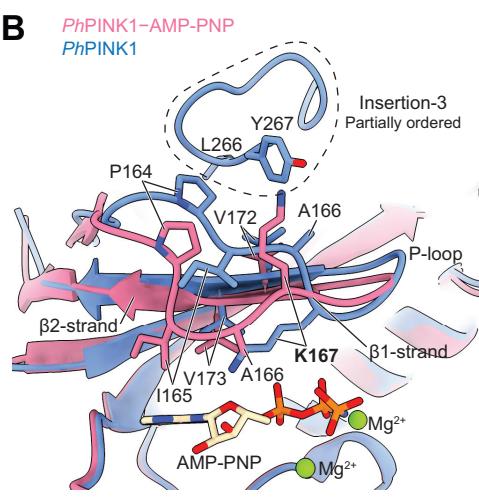
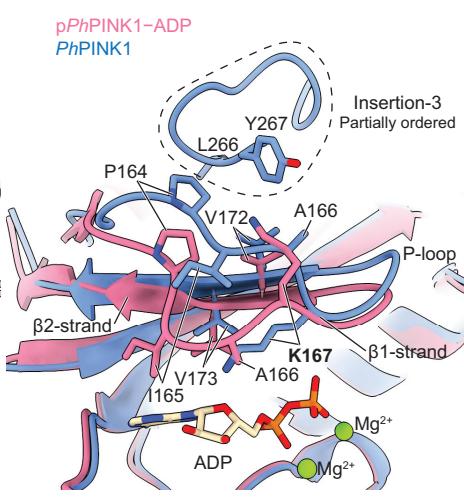
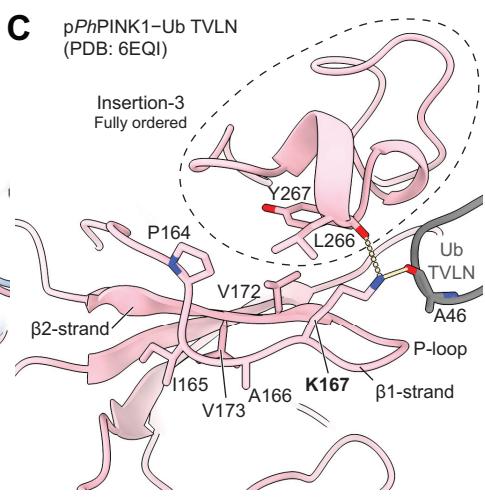

720

Figure 2

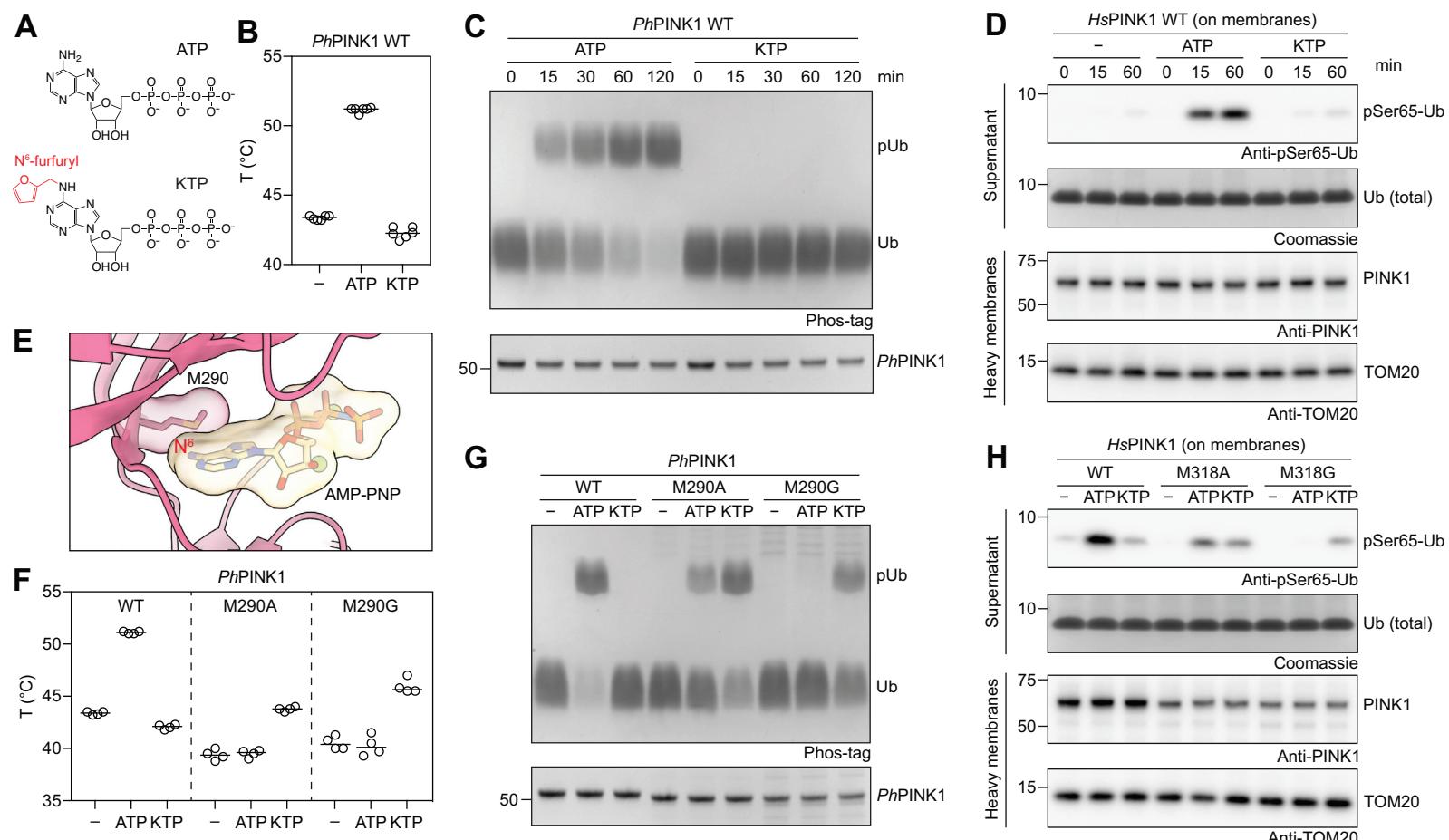

A


D


B

pPhPINK1-ADP
PhPINK1

C


721 **Figure 2. *Ph*PINK1-nucleotide interactions.**

722 **(A)** Details of the interaction between AMP-PNP in the ATP binding site of *Ph*PINK1 (chain B
723 of the dimer). Interacting residues are shown as sticks, and polar interactions are shown as dotted
724 lines. The interaction with Ser202 of chain A (light pink) is also shown. **(B)** Superimpositions of
725 the N-lobe of AMP-PNP-bound and ADP-bound *Ph*PINK1 with nucleotide-free *Ph*PINK1,
726 revealing differences in conformation of the P-loop and insertion-3 (highlighted in the dotted
727 outlines). **(C)** The N-lobe of the published phosphorylated and ubiquitin-bound *Ph*PINK1
728 complex (Ub TVLN, ubiquitin T66V L67N mutant, PDB: 6EQI; (18)), in the same orientation as
729 in **B**. **(D)** The interaction between ADP and the ATP binding site of *Ph*PINK1 (chain B of the
730 dimer), and with phosphorylated Ser202 of chain A. The structure is displayed in the same
731 orientation as the right panel of **A**.

732

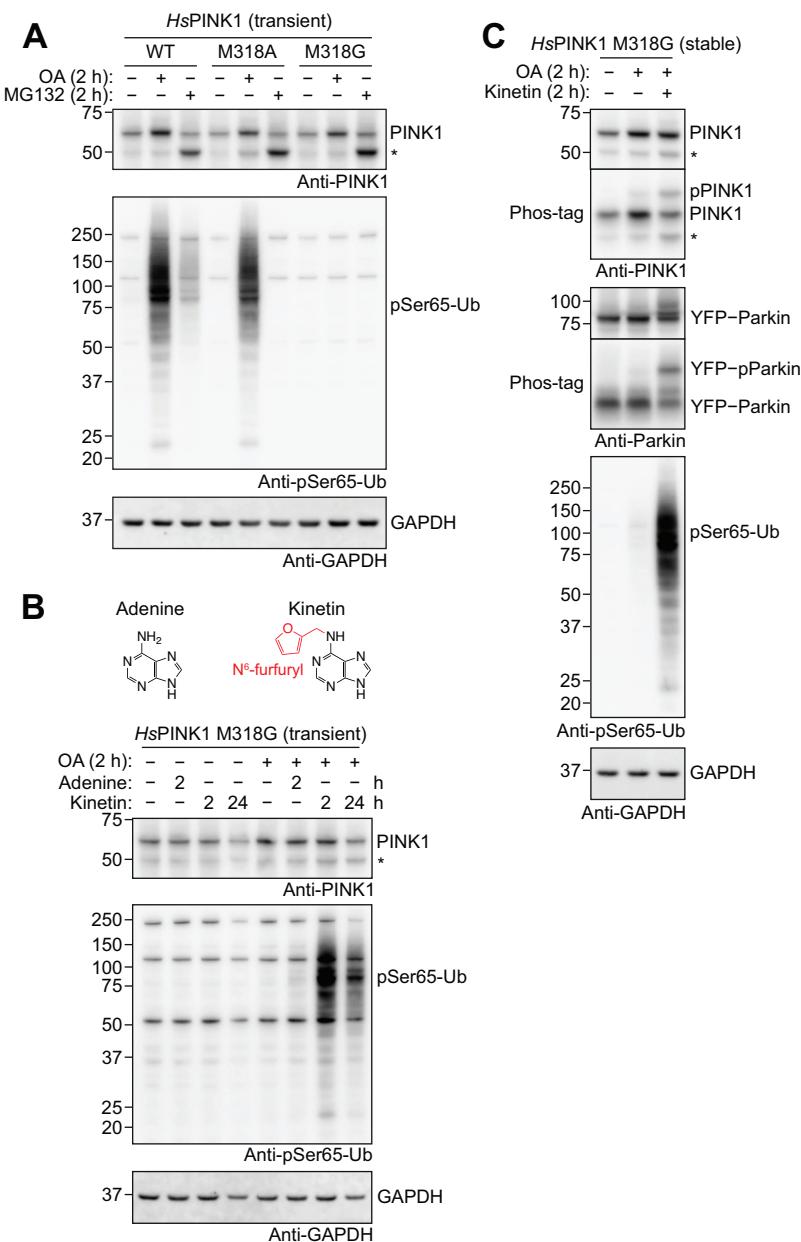
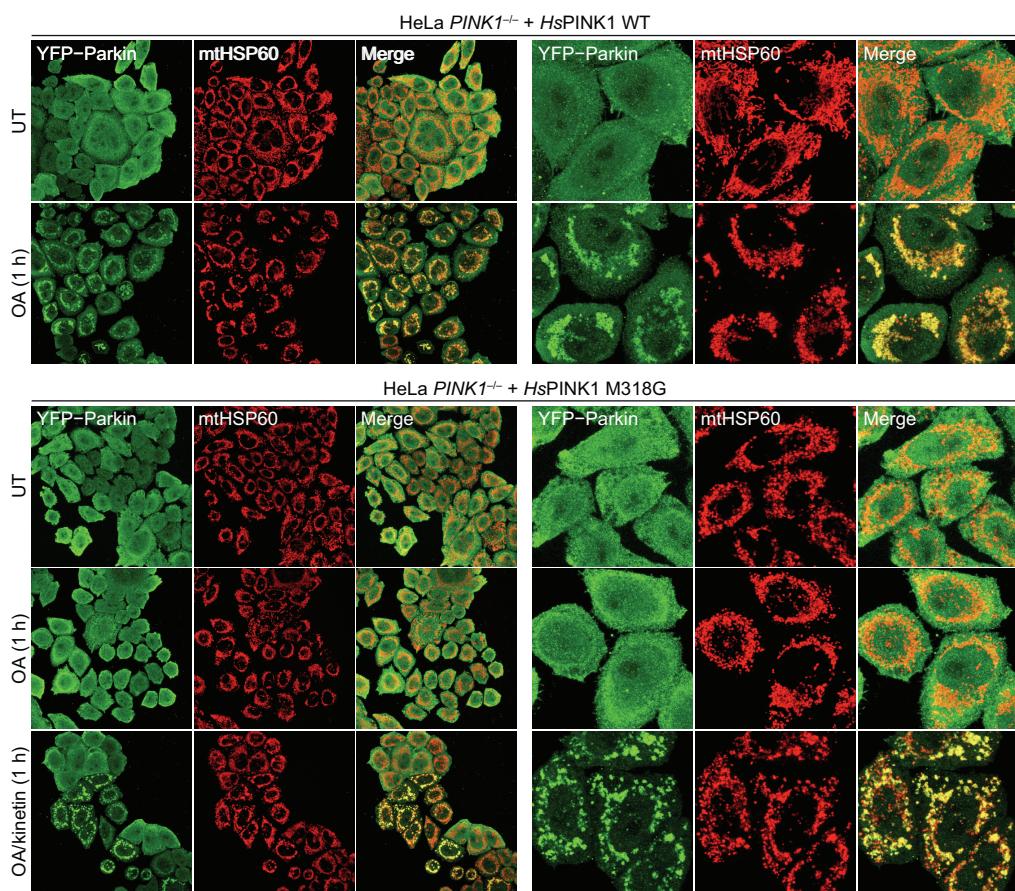

733

Figure 3

734 **Figure 3. The PINK1 gatekeeper residue prevents KTP binding.**
735 **(A)** Chemical structures of ATP and KTP. The N⁶-furfuryl group of KTP is highlighted in red.
736 **(B)** Melting temperatures of WT *PhPINK1* (residues 115–575) in the presence of ATP or KTP.
737 Experiment was performed three times in technical duplicates. **(C)** Time course ubiquitin
738 phosphorylation assay using WT *PhPINK1* in the presence of ATP or KTP and analysed by
739 Phos-tag SDS-PAGE. Experiment was performed in triplicate. **(D)** Time course ubiquitin
740 phosphorylation assay using *HsPINK1*-containing heavy membranes from OA-treated HeLa
741 cells in the presence of ATP or KTP (see Materials and Methods) and analysed by Western
742 blotting. Experiment was performed in triplicate. **(E)** The ATP binding site of AMP-PNP-bound
743 *PhPINK1*, revealing that the gatekeeper Met290 would sterically block an N⁶-modified ATP
744 analogue from binding *PhPINK1*. **(F)** Melting temperatures of *PhPINK1* WT and gatekeeper
745 mutants M290A and M290G in the presence of ATP or KTP. Experiment was performed two
746 times in technical duplicates, while M290A in the absence of nucleotide was performed three
747 times in technical duplicates (see Supplementary Figure 7). **(G)** Ubiquitin phosphorylation assay
748 using *PhPINK1* WT and gatekeeper mutants M290A and M290G in the presence of ATP or KTP
749 for 2 h and analysed by Phos-tag SDS-PAGE. Experiment was performed in triplicate. **(H)**
750 Ubiquitin phosphorylation assay using *HsPINK1*-containing heavy membranes from OA-treated
751 HeLa cells in the presence of ATP or KTP for 2 h (see Materials and Methods) and analysed by
752 Western blotting. Experiment was performed in triplicate.
753
754

Figure 4


755 **Figure 4. Kinetin activates *HsPINK1* M318G in cells.**

756 **(A)** HeLa *PINK1*^{-/-} YFP–Parkin cells transiently expressing *HsPINK1* WT, M318A and M318G
757 were treated with OA or MG132 for 2 h, then immunoblotted for PINK1 and phospho-Ser65-
758 ubiquitin (pSer65-Ub). *HsPINK1* M318G is stabilised upon OA treatment but is unable to
759 generate phospho-ubiquitin. Experiment was performed in triplicate. **(B)** HeLa *PINK1*^{-/-} YFP–
760 Parkin cells transiently expressing *HsPINK1* M318G were treated with 200 μM adenine for 2 h,
761 or 200 μM kinetin for 2 h or 24 h. OA was added 2 h before lysis. Immunoblotting revealed that
762 the addition of kinetin co-treatment with OA activates *HsPINK1* M318G and leads to ubiquitin
763 phosphorylation. Experiment was performed in triplicate. **(C)** HeLa *PINK1*^{-/-} YFP–Parkin cells
764 stably expressing *HsPINK1* M318G treated for 2 h with OA alone, or in the presence of 200 μM
765 kinetin. As in **B**, immunoblotting revealed that kinetin activates ubiquitin phosphorylation.
766 Additional Phos-tag analysis shows induction of PINK1 autophosphorylation and Parkin
767 phosphorylation. Experiment was performed in triplicate. An asterisk in **A–C** indicates the 52-
768 kDa PARL-cleaved PINK1.

769

770

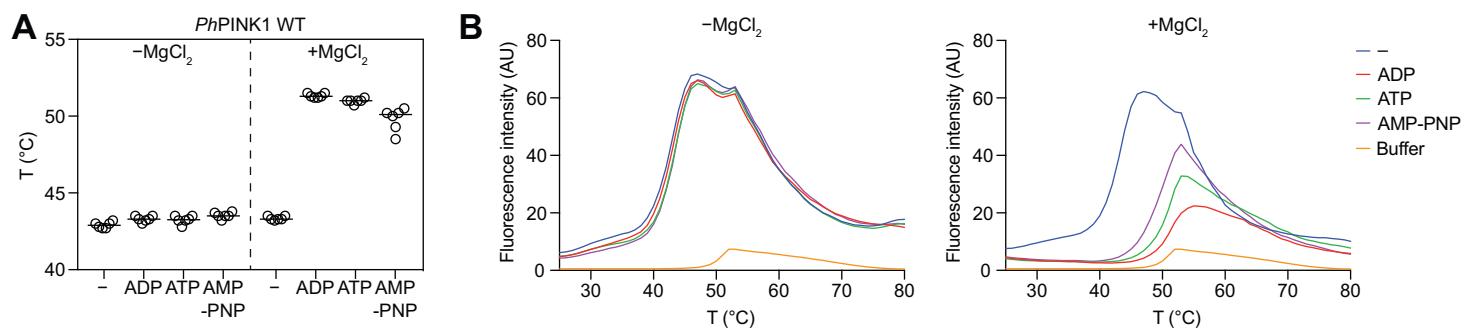
Figure 5

771 **Figure 5. Kinetin-activated *HsPINK1* M318G induces Parkin translocation.**

772 YFP–Parkin translocation in fixed HeLa *PINK1*^{−/−} cells stably expressing *HsPINK1* WT or
773 M318G and immunostained for mtHSP60 (mitochondrial marker). Cells were treated with either
774 OA alone or in combination of 200 μ M kinetin for 1 h prior to fixing and staining. While YFP–
775 Parkin translocation was induced with OA alone in cells expressing *HsPINK1* WT, translocation
776 in *HsPINK1* M318G-expressing cells was only induced when co-treated with kinetin. However,
777 the M318G mutant is not completely inactive; when cells were treated with OA alone for 2 h,
778 YFP–Parkin translocation was observable (see Supplementary Figure 9). Experiment was
779 performed in duplicate with Supplementary Figure 9, and representative images are shown.

780

781


782

783 **Table 1. Cryo-EM data collection, refinement and validation statistics**
 784

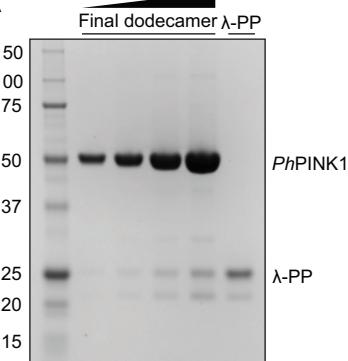
	<i>P</i> hPINK1 dimer (EMDB-xxxx) (PDB xxxx)	<i>P</i> hPINK1-AMP-PNP dimer (EMDB-xxxx) (PDB xxxx)	p <i>P</i> hPINK1-ADP dimer (EMDB-xxxx) (PDB xxxx)
Data collection and processing			
Magnification	96,000 \times	96,000 \times	96,000 \times
Voltage (kV)	300	300	300
Electron exposure (e $^-$ /Å 2)	50	50	50
Defocus range (μm)	-0.5 to -1.5	-0.5 to -1.5	-0.5 to -1.5
Pixel size (Å)	0.808	0.808	0.808
Symmetry imposed	C1	C1	C1
Initial particle images (no.)	322,520	490,247	304,506
Final particle images (no.)	1,272,219	114,790	130,515
Map resolution (Å)	2.75	2.84	3.13
FSC threshold	0.143	0.143	0.143
Map resolution range (Å)	1.8–19.4	1.7–5.1	1.9–6.0
Refinement			
Initial model used (PDB code)	7T4N	7T4N	7T4N
Model resolution (Å)	2.4	2.8	3.1
FSC threshold	0.143	0.143	0.143
Model resolution range (Å)	2.1–2.9	2.7–3.1	3.0–3.3
Map sharpening <i>B</i> factor (Å 2)	0	-63	-101
Model composition			
Non-hydrogen atoms	6460	6036	5980
Protein residues	801	745	738
Ligands	0	MG: 3, ANP: 2	MG: 4, ADP: 2
<i>B</i> factors (Å 2)			
Protein	86.89	78.60	123.55
Ligand	0	87.71	113.33
R.m.s. deviations			
Bond lengths (Å)	0.002	0.003	0.003
Bond angles (°)	0.430	0.534	0.608
Validation			
MolProbity score	1.28	1.29	1.25
Clashscore	4.72	3.66	4.03
Poor rotamers (%)	1.12	1.52	1.08
Ramachandran plot			
Favored (%)	98.84	98.87	97.85
Allowed (%)	1.16	1.13	2.15
Disallowed (%)	0.00	0.00	0.00

785
 786
 787

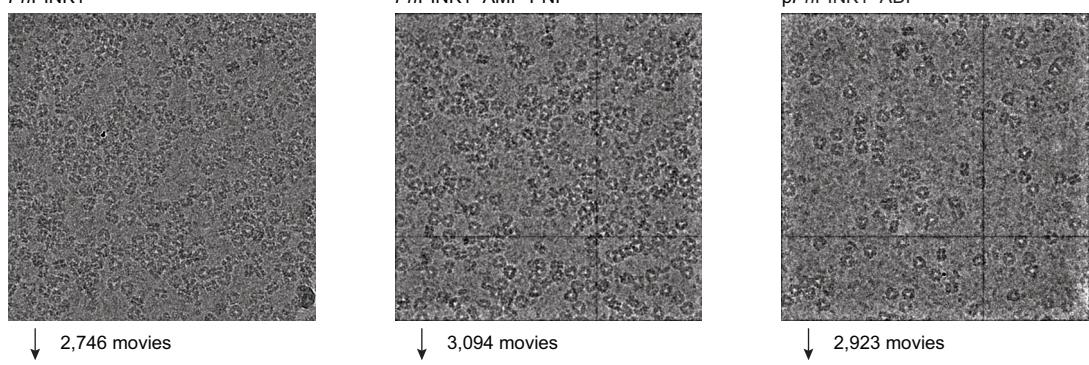
Supplementary Figure 1

788 **Supplementary Figure 1. Thermal stability of WT *PhPINK1* in the presence of nucleotides**
789 **and Mg²⁺.**

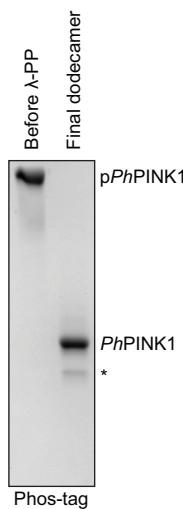
790 (A) Melting temperatures of WT *PhPINK1* (residues 115–575, monomeric, autophosphorylated)
791 in the presence of ADP, ATP or AMP-PNP, with/without MgCl₂. All nucleotides bind and
792 stabilise *PhPINK1* in the presence of MgCl₂. Experiment was performed three times in technical
793 duplicates. (B) Representative thermal melt curves for the data in A. Note that buffer alone (no
794 protein, nucleotide or MgCl₂) produces a small melt curve that overlaps with but is unlikely to
795 significantly impact the melt curves of nucleotide bound *PhPINK1*. The melt curves for
796 *PhPINK1* in the absence of MgCl₂ (left) and in the presence of MgCl₂ (right) were generated in
797 the same experiment, and are separated for clarity; the buffer curve shown is the same between
798 the two graphs.

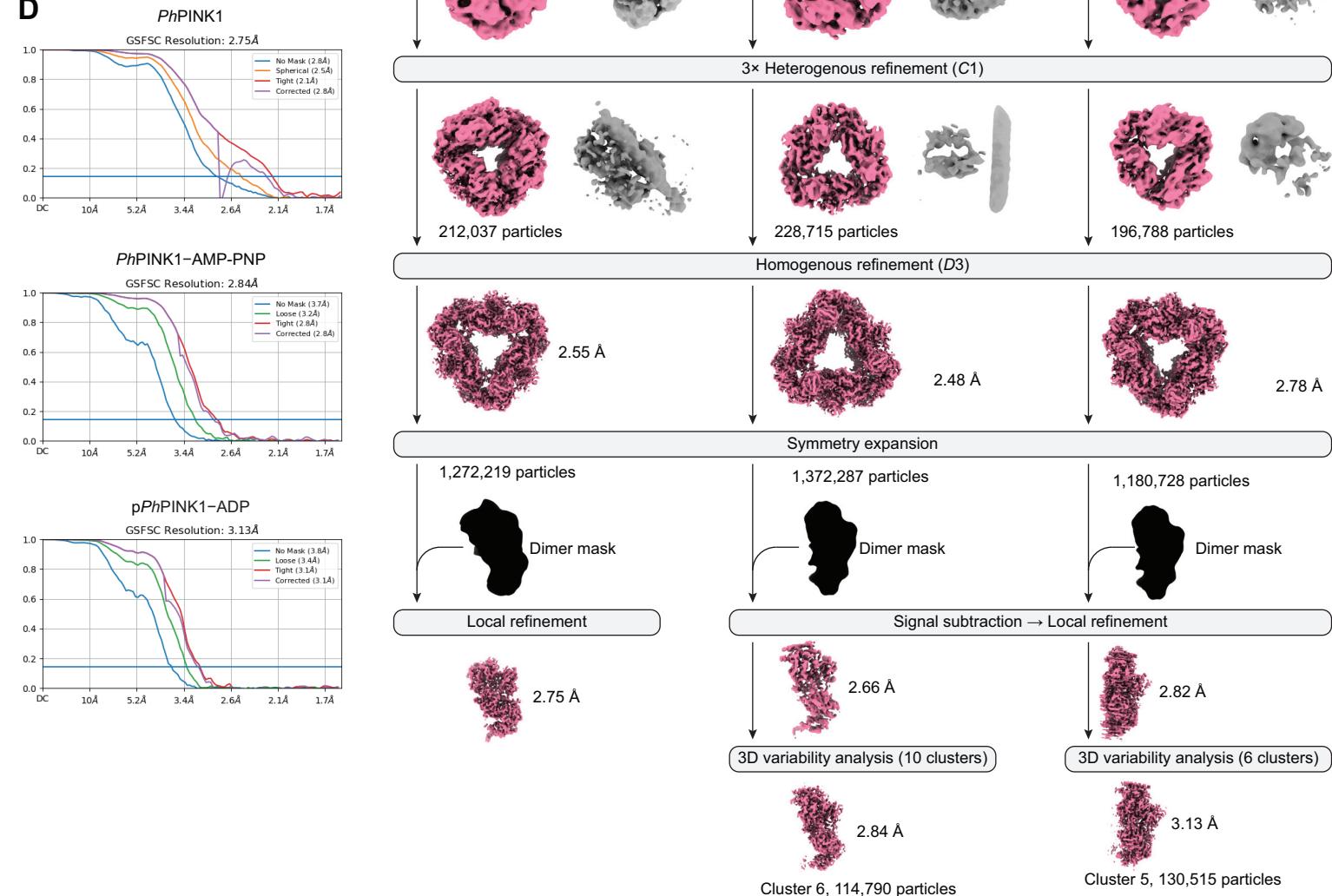

799

800


801

Supplementary Figure 2

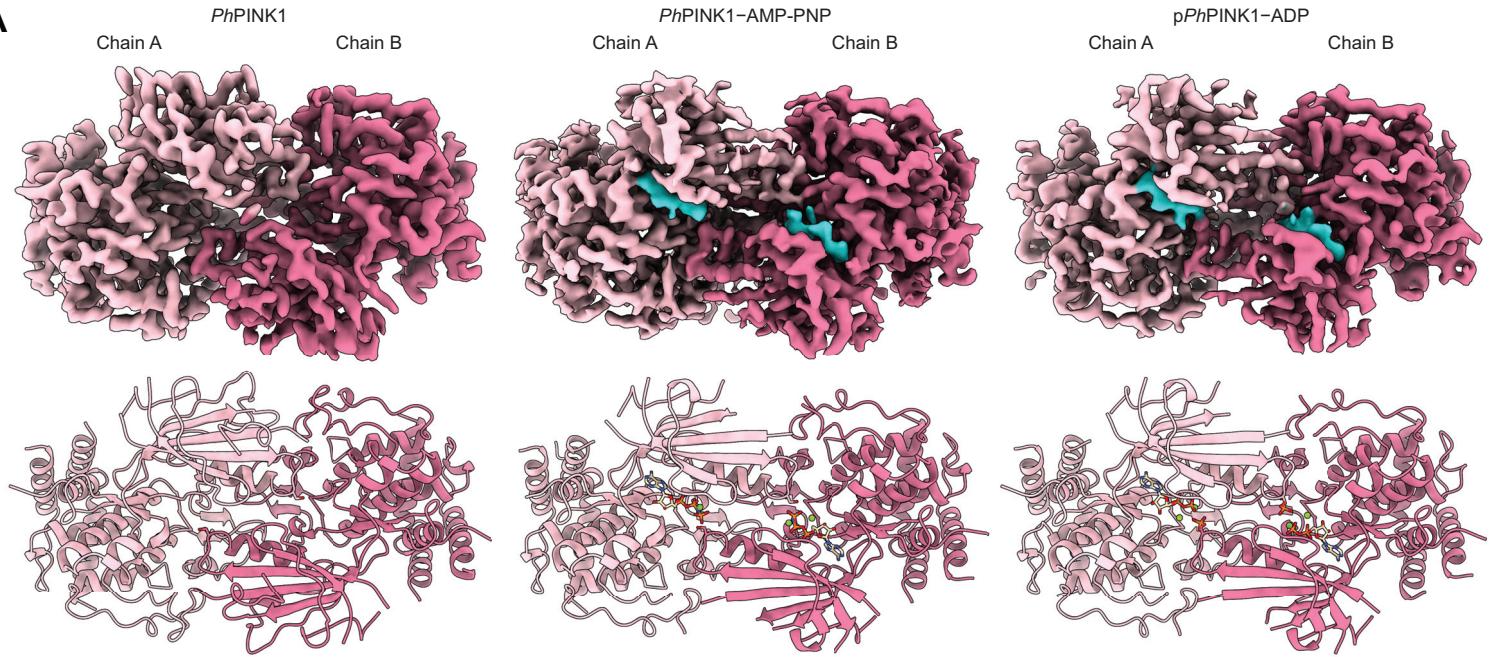

A


C

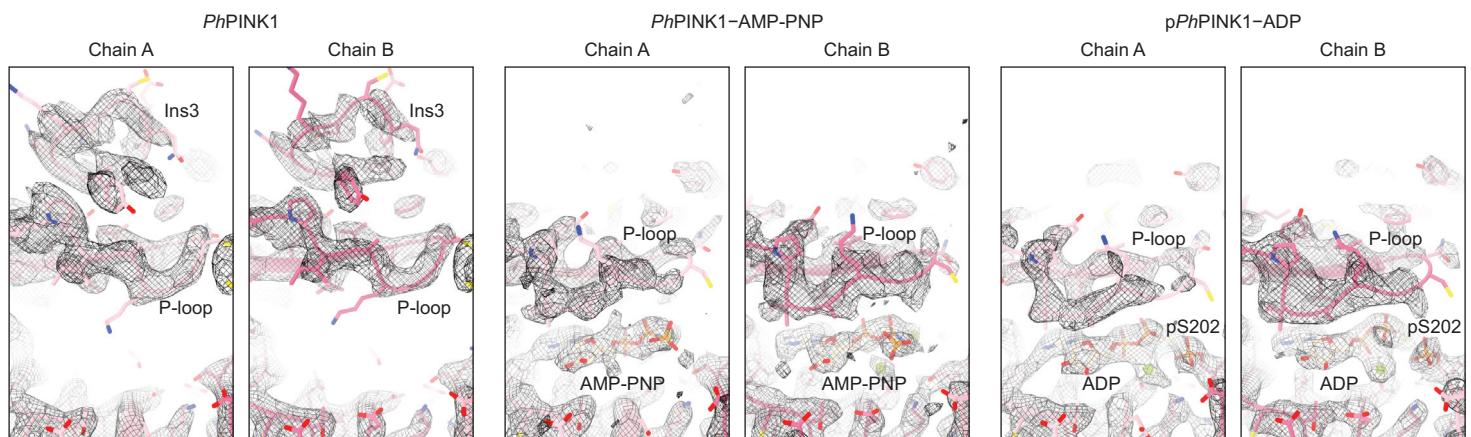
B

D

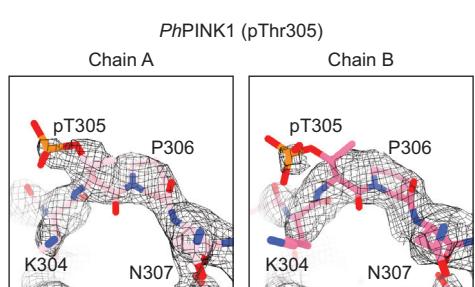
802 **Supplementary Figure 2. Cryo-EM analysis of nucleotide-bound *PhPINK1*.**

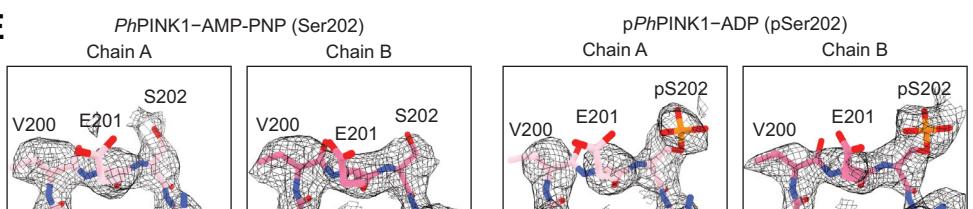

803 **(A)** The final purified dephosphorylated WT *PhPINK1* dodecamer run at increasing
804 concentrations on SDS-PAGE, revealing a minor contaminating species at approximately 25
805 kDa, likely to be λ -PP. **(B)** Phos-tag analysis of *PhPINK1* before dephosphorylation by λ -PP,
806 and after purification of the final *PhPINK1* dodecamer. Note, the faster migrating band (labelled
807 with an asterisk) is likely to be fully dephosphorylated *PhPINK1*, while the major band is
808 presumed to be *PhPINK1* pThr305 given that density for pThr305 can be seen in subsequent
809 cryo-EM reconstructions (Supplementary Figure 3C). Dephosphorylation of pThr305 is likely
810 prevented by the adjacent Pro306 (18, 47). Phosphorylation of Thr305 is a by-product of non-
811 specific *PhPINK1* autophosphorylation during expression in bacteria (18). **(C)** Cryo-EM
812 processing pipeline for the nucleotide-free, AMP-PNP-bound and ADP-bound *PhPINK1* dimers.
813 Representative micrographs and select 2D classes are shown. **(D)** Gold standard Fourier shell
814 correlation (GSFSC) curves for each of the final maps in C.

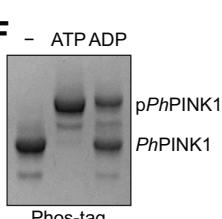
815

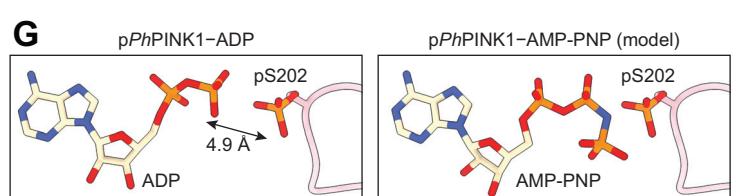

816

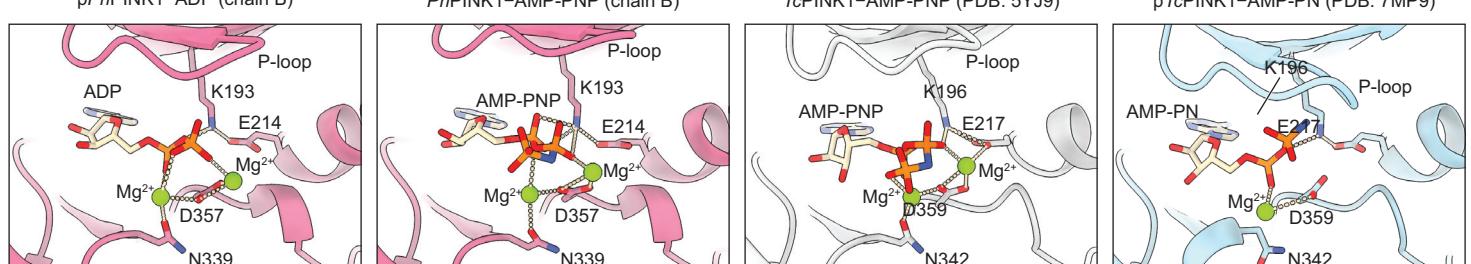
Supplementary Figure 3


A


B


C


E


F

G

D

817 **Supplementary Figure 3. Cryo-EM structure of the nucleotide-bound *Ph*PINK1 dimers.**

818 **(A)** Cryo-EM densities (*top*) and cartoon model (*bottom*) of the nucleotide-free, AMP-PNP-
819 bound and ADP-bound *Ph*PINK1 dimers. Each *Ph*PINK1 monomer is coloured in a different
820 shade of pink, and density for the nucleotide and Mg²⁺ ions is coloured in cyan. Densities for
821 nucleotide-free, AMP-PNP-bound and ADP-bound *Ph*PINK1 are contoured to levels 0.35, 0.12
822 and 0.12, respectively. **(B)** Zoomed view of the ATP binding site, P-loop and insertion-3 of
823 chains A and B of each *Ph*PINK1 dimer. Residue side chains and nucleotides are shown as
824 sticks, and Mg²⁺ as green spheres. Corresponding densities are displayed as a mesh. **(C)** Density
825 for phosphorylated Thr305 can be seen in each chain of the nucleotide-free *Ph*PINK1 dimer,
826 consistent with Phos-tag analysis of the purified dephosphorylated *Ph*PINK1 dodecamer that was
827 used for cryo-EM (see Supplementary Figure 2B and legend) and previous observations (18). **(D)**
828 Comparison between the binding *Ph*PINK1 to AMP-PNP and ADP (only chain B is shown) and
829 the binding of *Tc*PINK1 to AMP-PNP (PDB: 5YJ9, (21)) and AMP-PN (PDB: 7MP9, (19)).
830 Polar interactions are shown as dotted lines. *Ph*PINK1 and *Tc*PINK1 bind nucleotides via similar
831 interactions. **(E)** Density for phosphorylated Ser202 can be seen for both chains of p*Ph*PINK1–
832 ADP, but not *Ph*PINK1–AMP-PNP. **(F)** The dephosphorylated *Ph*PINK1 dodecamer was
833 incubated with 10 mM ADP (or ATP as a positive control) and 10 mM MgCl₂ for 10 min on ice.
834 The ADP stock used in the experiment was the same stock used for cryo-EM analysis. Phos-tag
835 analysis revealed that ADP incubation leads to *Ph*PINK1 autophosphorylation, indicating that
836 the ADP stock is contaminated with ATP and explaining the density for pSer202 seen in cryo-
837 EM reconstructions (see E). **(G)** *Left*, the position of ADP (chain B) relative to pSer202 (chain
838 A) in the p*Ph*PINK1–ADP structure. *Right*, AMP-PNP is modelled using pSer202 from the
839 p*Ph*PINK1–ADP.

840

841

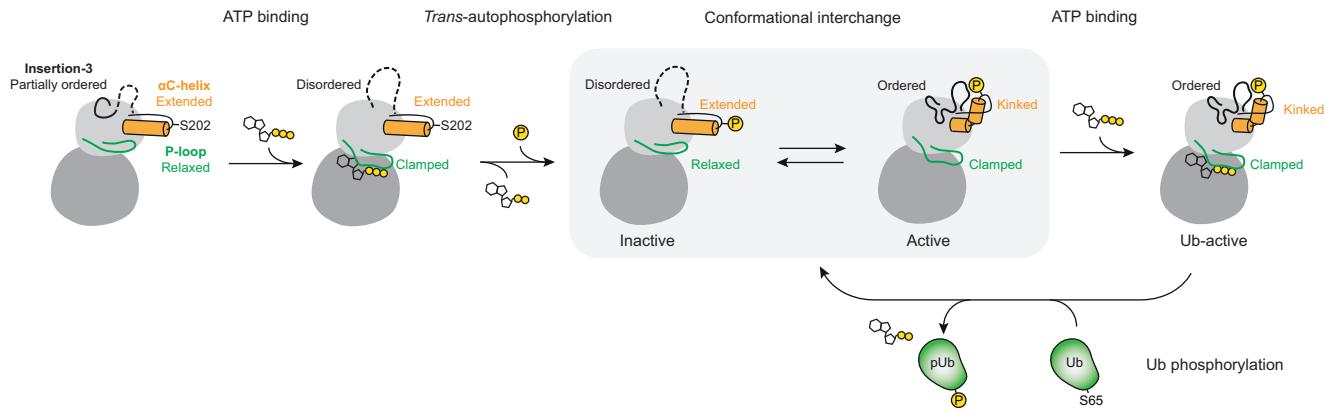
Supplementary Figure 4

B

Insertion-3

P258 L260 Y267 A270
I257 | | L266 | | P272 | I275

PhPINK1(part. ordered ins3) 257-**IPDLQCNKQLYPEALPPRINPEGSGRN**-283
PhPINK1(fully ordered ins3) 257-**IPDLQCNKQLYPEALPPRINPEGSGRN**-283
HsPINK1(AlphaFold) 285-**VPLLPGALVDYPDVLPSRLHPEGLGHG**-311


842 **Supplementary Figure 4. The hydrophobic interface between insertion-3 and the N-lobe**

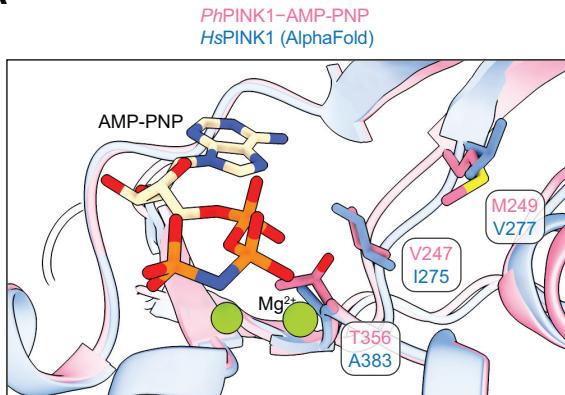
843 **(A)** Hydrophobicity of the N-lobe of *PhPINK1* in the nucleotide-free, AMP-PNP-bound and
844 ADP-bound states (only chain B is shown), and the phosphorylated and ubiquitin-bound
845 *PhPINK1* complex (PDB: 6EQI, (18)). Insertion-3, shown in cartoon representation, shields a
846 hydrophobic patch in the N-lobe. Hydrophobic residues are shown as sticks. aa, amino acids. **(B)**
847 Sequence alignment of insertion-3 from *PhPINK1* and *HsPINK1*. *PhPINK1* residues involved in
848 the hydrophobic insertion-3–N-lobe interaction are highlighted in red. *HsPINK1* residues
849 predicted by AlphaFold (48, 49) to be involved in the hydrophobic insertion-3–N-lobe
850 interaction are highlighted in blue. Residues in light grey are disordered in the structure. ins3,
851 insertion-3.

852

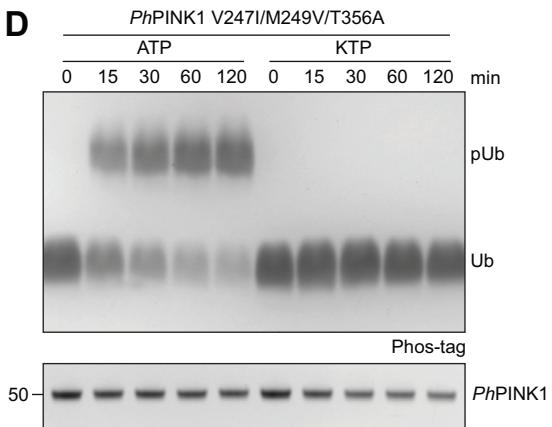
853

Supplementary Figure 5

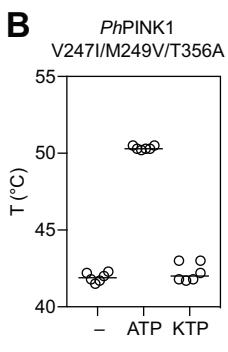
854 **Supplementary Figure 5. Model of how ATP binding contributes to PINK1 activation and**
855 **ubiquitin phosphorylation.**

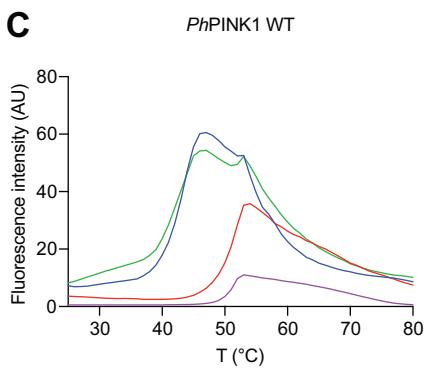

856 Unphosphorylated PINK1 dimerises and utilises ATP to *trans*-autophosphorylate at Ser202. The
857 resulting phosphorylated PINK1 can adopt two conformations, an inactive conformation that
858 cannot bind ubiquitin (relaxed P-loop, extended α C-helix, disordered insertion-3) and an active
859 conformation that can bind ubiquitin (clamped P-loop, kinked α C-helix, ordered insertion-3).
860 Binding of ATP to phosphorylated PINK1 stabilises the active conformation via its interaction
861 with the clamped P-loop, enabling efficient ubiquitin recognition and phosphorylation by
862 PINK1.

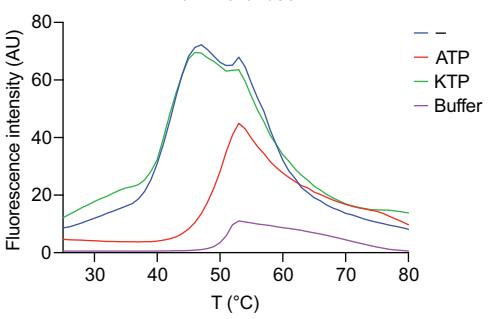
863


864

Supplementary Figure 6


A

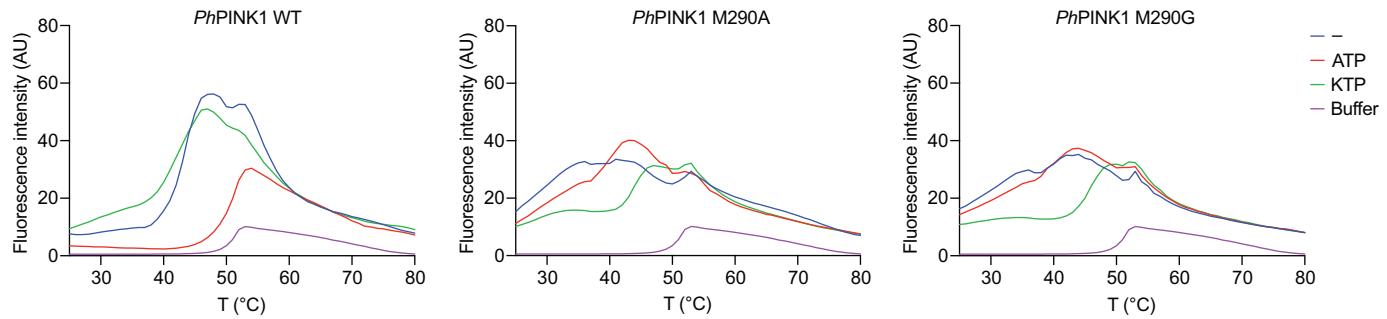

D


B

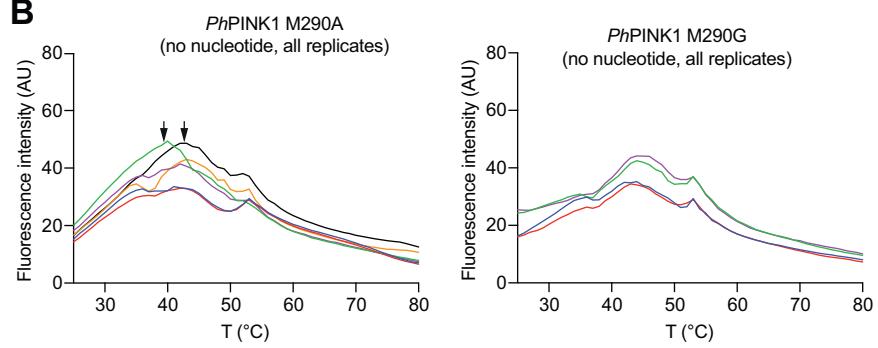
C

PhPINK1
V247I/M249V/T356A

865 **Supplementary Figure 6. A humanised mutant of *PhPINK1* does not bind KTP.**


866 **(A)** Superimposed ATP binding sites of *PhPINK1*–AMP–PNP and *HsPINK1* (AlphaFold; (48,
867 49)). The N-lobe β 1-, β 2- and β 3-strands are hidden for clarity. Three AMP–PNP–proximal
868 residues in *PhPINK1* (Val247, Met249, Thr356) were mutated into their equivalent *HsPINK1*
869 counterparts to generate a humanised version of *PhPINK1* for the experiments in **B–D**. **(B)**
870 Melting temperatures of *PhPINK1* V247I/M249V/T356A in the presence of ATP or KTP. No
871 increase in melting temperature is observed for KTP, indicating an absence of interaction.
872 Experiment was performed three times in duplicate. **(C)** Representative thermal melt curves for
873 the data in **B** and Figure 3B. The buffer curve was generated in the absence of protein and
874 nucleotide. The melt curves for WT *PhPINK1* and *PhPINK1* V247I/M249V/T356A were
875 separated into different graphs for clarity, and the buffer curve shown is the same between the
876 two graphs. **(D)** Ubiquitin phosphorylation assay using *PhPINK1* V247I/M249V/T356A in the
877 presence of ATP or KTP, analysed on a Phos-tag gel. *PhPINK1* activity was not detected when
878 KTP was supplied. Experiment was performed in triplicate.

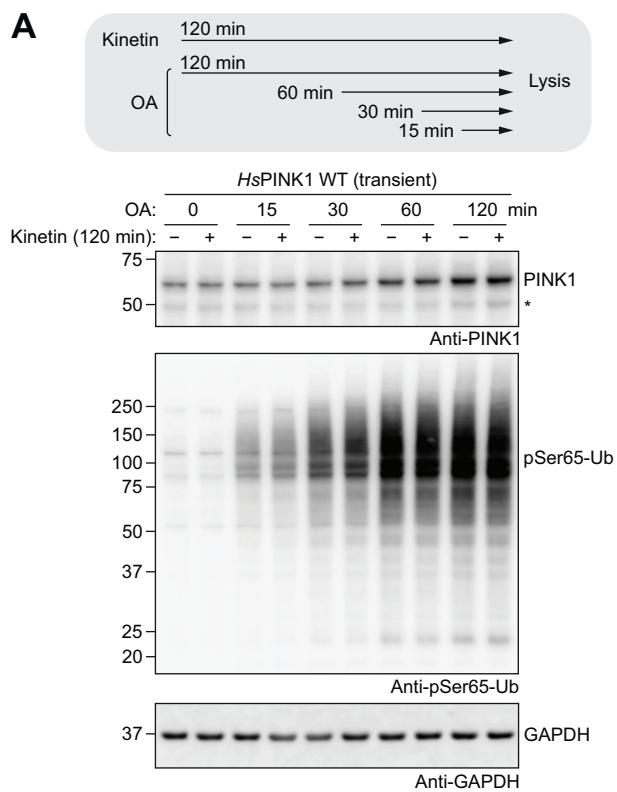
879


880

Supplementary Figure 7

A

B

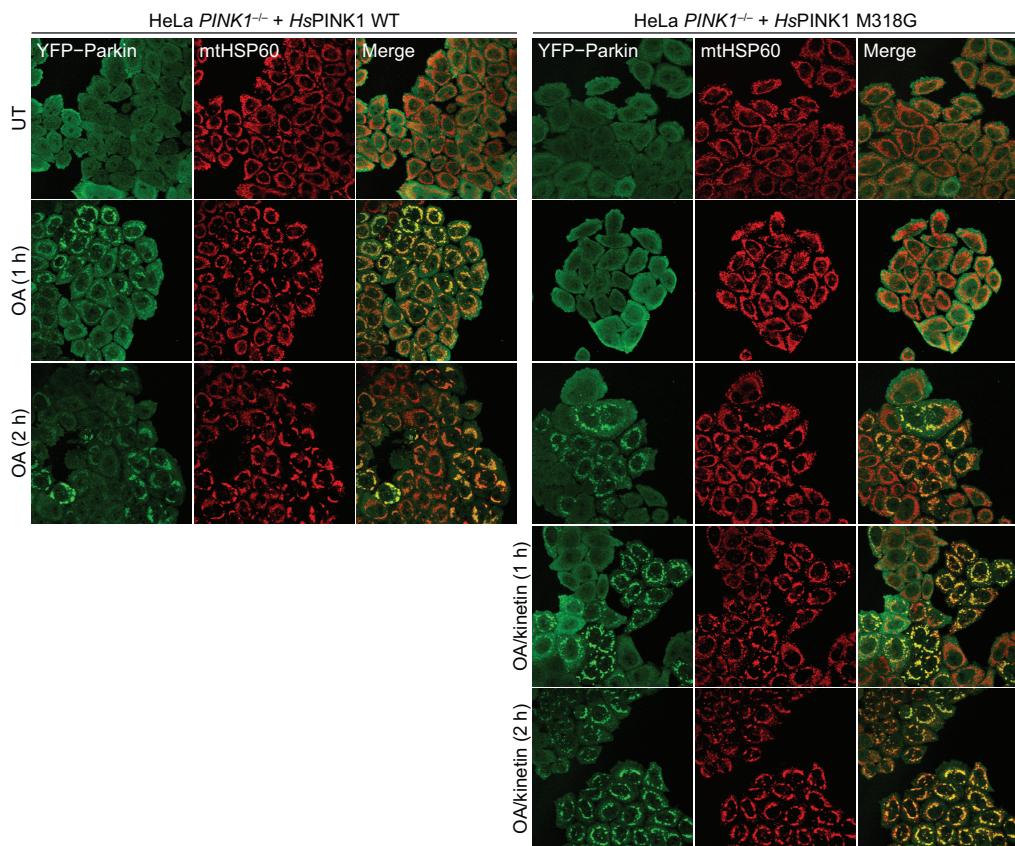

881 **Supplementary Figure 7. Instability of *PhPINK1* M290A and M290G.**

882 **(A)** Representative thermal melt curves for experiment in Figure 3F. *PhPINK1* M290A and
883 M290G (*middle* and *right*, respectively) in the absence of nucleotide (blue curves) or in the
884 presence of ATP (red curves) show relatively indistinct melt curves, indicating low stability of
885 either mutant. Addition of KTP resulted in better defined melt curves (green curves), consistent
886 with nucleotide binding increasing the stability of the M290A and M290G mutants. The
887 experiment was repeated a total of two (WT, M290G) or three (M190A) times in technical
888 duplicates. Melting temperatures could only be calculated for a subset of replicates (see **B**). Melt
889 curves for all three *PhPINK1* variants were separated for clarity; the buffer curve shown is the
890 same between the three graphs. **(B)** All replicate melt curves for M290A and M290G in the
891 absence of nucleotide are shown. While melting temperatures could not be determined for two of
892 the M290A curves (arrows), the other four curves displayed a small inflection at ~40 °C that was
893 sufficient for melting temperature calculation.

894

895

Supplementary Figure 8


896 **Supplementary Figure 8. Kinetin does not appear to affect the ubiquitin kinase activity of**
897 ***HsPINK1* WT.**

898 HeLa *PINK1*^{-/-} YFP–Parkin cells transiently expressing WT *HsPINK1* were co-treated with OA
899 and kinetin according to the schematic (top panel). Immunoblotting shows that kinetin has no
900 effect on WT *HsPINK1*-mediated ubiquitin phosphorylation. The asterisk indicates the 52-kDa
901 PARN-cleaved PINK1. Experiment was performed in triplicate.

902

903

Supplementary Figure 9

904 **Supplementary Figure 9.**

905 Repeat of Figure 5 but showing the 2 h OA/kinetin treatment timepoints. At 2 h, OA treatment
906 alone induced YFP–Parkin translocation in *HsPINK1* M318G-expressing cells. In this repeat,
907 cells were additionally immunostained for PINK1, but fluorescence signal consistent with
908 PINK1 was not detected and therefore not shown. Experiment was performed in duplicate with
909 Figure 5.