

1 **Cellular hnRNPA0 limits HIV-1 production by interference with LTR-activity and**
2 **programmed ribosomal frameshifting**

3 **Running title: hnRNPA0 limits HIV-1 replication**

4
5 Fabian Roesmann¹, Helene Sertznig^{2,3*}, Katleen Klaassen¹, Alexander Wilhelm¹, Delia
6 Heininger¹, Carina Elsner², Mario Santiago⁴, Stefan Esser^{5,6}, Kathrin Sutter^{2,5}, Ulf Dittmer^{2,5} and
7 Marek Widera^{1#}

8

9 ¹Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Paul-Ehrlich-
10 Str. 40, 60596, Frankfurt am Main, Germany

11 ²Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen,
12 Germany

13 ³*Current Address: Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA

14 ⁴Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA

15 ⁵Institute for Translational HIV Research University Hospital Essen, University Duisburg-Essen,
16 45147 Essen, Germany

17 ⁶Clinic for Dermatology, HPSTD, University Hospital Essen, University Duisburg-Essen, 45147
18 Germany

19
20 [#]Correspondence: PD Dr. rer. nat. Marek Widera, marek.widera@kgu.de, Institute for Medical
21 Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich Strasse 40,
22 60528 Frankfurt am Main, Tel: +49 69 6301 87861

23

24 **Word counts:** Main text: 4698; Abstract: 242; Importance: 145

25 **Keywords**

26 HIV-1, hnRNPA0, type I interferons (IFN-I), IFN-repressed genes (IRepGs), IFN-stimulated
27 genes (ISGs) host dependency factors, viral replication, transcription, alternative splicing,
28 programmed ribosomal frameshifting (-1PRF)

29 **Abstract**

30 The interplay between host factors and viral components has a profound impact on the viral
31 replication efficiency and fitness. Heterogeneous nuclear ribonucleoproteins (hnRNPs), in
32 particular members of the subfamily A/B, have been broadly studied as HIV-1 host dependency
33 factors, however, the least related member hnRNPA0 has so far not been functionally studied in
34 its potential role affecting viral replication.

35 In this study, we revealed that hnRNPA0 overexpression in HEK293T cells significantly reduced
36 HIV-1 long terminal repeat (LTR) activity up to 3.5-fold, leading to a significant decrease in total
37 viral mRNA (5.5-fold) and protein levels (3-fold). Conversely, knockdown of hnRNPA0 enhanced
38 LTR activity, suggesting its negative regulatory role in viral gene expression. Moreover, the
39 splicing pattern of HIV-1 remained largely unaffected by altered hnRNPA0 levels indicating
40 changes in viral mRNA expression predominantly occurred at the transcriptional level. Moreover,
41 hnRNPA0 overexpression was found to significantly reduce the programmed ribosomal
42 frameshift efficiency of HIV-1, resulting in a shift in the HIV-1 p55/p15 ratio, compromising viral
43 fitness. Synergistic inhibition of LTR activity and thus reduced viral mRNA transcription and
44 impaired ribosomal frameshifting efficiency, which is important for viral infectivity, were
45 detrimental to HIV-1 replication. Additionally, our study revealed that hnRNPA0 levels were
46 lower in therapy naïve HIV-1-infected individuals compared to healthy controls and temporarily
47 repressed after IFN- λ treatment in HIV-1 target cells.

48 Our findings highlight the significant role of hnRNPA0 in HIV-1 replication and suggests that its
49 IFN- λ regulated expression levels are decisive for viral fitness.

50

51 **Importance**

52 RNA binding proteins, in particular heterogeneous nuclear ribonucleoproteins (hnRNPs) have
53 been extensively studied as host dependency factors for HIV-1 since they are involved in
54 multiple cellular gene expression processes. However, the functional role of hnRNPA0, the least
55 related member of the hnRNPA/B family, and its potential impact on viral replication remains
56 unclear. For the first time, our findings demonstrate the significance of hnRNPA0 in restricting
57 viral replication efficiency. We demonstrate that hnRNPA0 plays a pleiotropic role in limiting viral
58 replication being a negative regulator of viral transcription and significantly impairing ribosomal
59 frameshifting. Our study also revealed hnRNPA0 as an IFN-regulated host factor that is
60 temporarily repressed after IFN-I treatment in HIV-1 target cells and lower expressed in
61 therapy-naïve HIV-1-infected individuals compared to healthy controls. Understanding the mode
62 of action between hnRNPA0 and HIV-1 might help to identify novel therapeutically strategies
63 against HIV-1 and other viruses.

64

65 Introduction

66 The human immunodeficiency virus type 1 (HIV-1) is the causative agent of the acquired
67 immunodeficiency syndrome (AIDS). HIV-1 is highly adapted to the human host and can exploit
68 various host factors (1-3) and hijack essential cellular processes for its own replication. After
69 infection of a susceptible host cell, predominantly CD4⁺ T-cells and macrophages, the single-
70 stranded 9.7kb long RNA is reverse transcribed into double-stranded DNA, which then is
71 irreversibly integrated into the genome of the host cell (4, 5). HIV-1 uses a variety of cellular
72 mechanisms to express its complex genome. The HIV-1 replication strategy includes alternative
73 splicing of its own pre-mRNA (6) by a diverse network of splicing-regulatory-elements (SREs)
74 acting in *cis*- and cellular RNA-binding proteins (RBPs) in *trans*-binding SREs (7). By binding the
75 *cis*-regulatory elements, heterogeneous nuclear ribonucleoproteins (hnRNPs) and
76 serine/arginine-rich-splicing factors (SRSFs) play a crucial role in alternative splicing and are
77 thus essential for HIV-1. To further expand the genetic repertoire, HIV-1 induces a programmed
78 ribosomal frameshift (PRF) to translate two of its three reading frames, resulting either in
79 synthesis of the viral structural proteins Gag (i.a. matrix, capsid, nucleocapsid), or upon -1PRF,
80 generation of the viral enzymes Gag-Pol (i.a. protease, reverse transcriptase, integrase) (8).
81 HnRNPs are ubiquitously expressed in various cell types and tissues. They are able to bind
82 distinct conserved RNA motifs and by doing so might influence the stability, localization,
83 processing and the functionality of cellular and viral RNAs (9). hnRNPA1 and A2/B1 have been
84 extensively studied in many aspects, also several publications focusing on HIV-1 are published
85 for these two proteins (10-16) and hnRNPA3 (7, 17-20).
86 With 305 aa hnRNPA0 is the shortest member of the hnRNPA/B family and has comparably
87 received little attention. HnRNPA0 preferably binds to adenylate-uridylate (AU)-rich elements
88 (AREs), which are commonly located at 3'-untranslated regions (UTRs) of mRNAs (21-24). The
89 consensus motif of the AREs bound by hnRNPA0 is the pentamer AUUUA (23), which is notably
90 also bound by hnRNPA1 (25). Mechanistically, it has been shown that hnRNPA0 together with

91 hnRNPA2B1 and ELAV Like RNA Binding Protein 1 (ELAVL1) binds to the 5'UTR of cellular
92 AXII/R mRNA and by cooperating with upstream open-reading-frames inhibits translation of
93 AXIIR, a receptor important for annexin II-mediated osteoclastogenesis (26, 27). In multiple
94 cases, changes in hnRNPA0 sequence composition, expression and modifications were
95 associated with multiple common cancers like prostate, breast, or colon, but also with several
96 uncommon cancers (28). In particular, hnRNPA0 might also function as a biomarker (29) for
97 cancers like hereditary colorectal cancer (30).

98 It was shown that tumor-specific phosphorylation of hnRNPA0 inhibited apoptosis through the
99 promotion of the G2/M phase maintenance in colorectal cancer cells (31) indicating a role of
100 hnRNPA0 in apoptosis and cell cycle regulation. By binding to the AREs of the respective
101 mRNAs, hnRNPA0 is also involved in the processing of immunomodulatory mRNAs encoding
102 tumor necrosis factor alpha (TNF-alpha), cyclooxygenase 2 (Cox-2) and macrophage
103 inflammatory protein-2 (MIP-2) (23). Furthermore, mutation analysis revealed that hnRNPA0 is
104 involved in the ERK/MAPK signaling pathways, which also play a crucial role in regulating
105 processes such as cell growth, cell differentiation, cell survival, cell migration, and cell division
106 (28).

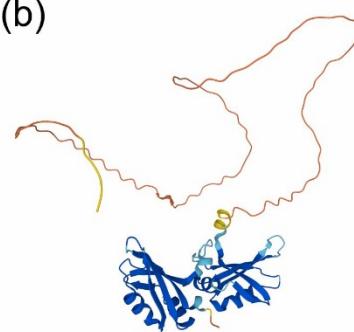
107 Whether hnRNPA0 might also affect viral replication, is so far unclear and needs further
108 investigation. Since other members of the hnRNPA/B subfamily are described to modulate gene
109 expression of cellular and viral genes, in this manuscript we investigated the impact of hnRNPA0
110 on HIV-1 and focused on post integration steps.

111 As overexpression resulted in severe impairments of HIV-1 LTR transcription, -1PRF, and virus
112 production, our findings add another role to the diverse functions of hnRNPA0. In addition, this
113 work highlights the so far undescribed role of hnRNPA0 as a strong antiviral IFN-regulated
114 cellular effector molecule in viral infections.

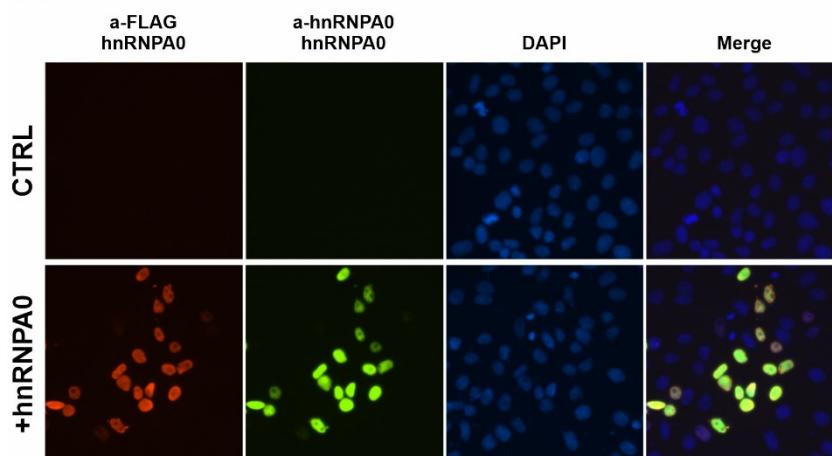
115

116 **Results**

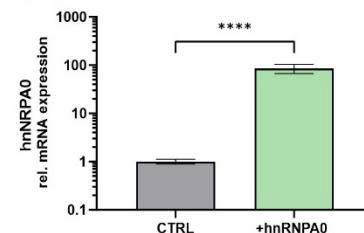
117 ***hnRNPA0 overexpression reduces HIV-1 particle production and infectivity***

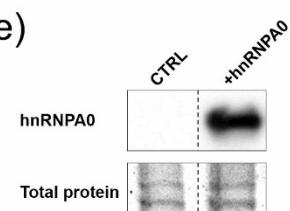

118 The hnRNPA/B family consists of four members that are hnRNPA0, A1, A2B1, and A3. Point-
119 accepted mutation analysis (PAM; Fig.1a) revealed that hnRNPA0 is quite distinct from the other
120 hnRNPA/B members, despite carrying all main characteristics, two RNA-recognition-motifs
121 (RRM) and an unstructured glycine-rich region (Fig.1b) (32). In particular, the C-terminally
122 located glycine-rich region of hnRNPA0 differs compared to the other family members
123 (Supp.Fig.3). HnRNPA0 exhibited the highest similarity to hnRNPA2B1 (score: 0.577), while
124 hnRNPA1, A2B1, and A3 had an average PAM score of 0.264, revealing a higher degree of
125 similarity. While several interactions between HIV-1 and the hnRNPA/B family have been
126 reported so far, little is known about the role of hnRNPA0 in the context of retroviruses.

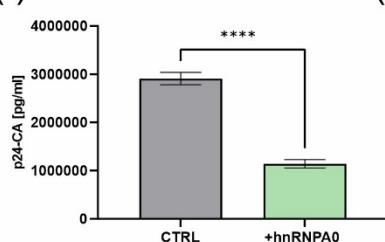
127 *In silico* mapping of hnRNPA0 binding motifs to the HIV-1 reference sequence NL4-3 revealed
128 the presence of multiple hnRNPA0 binding sites, in particular in the Gag-Pol, and splice donor 4
129 (D4) region (Supp.Fig.1). To analyze whether the putative binding sites of hnRNPA0 in the HIV-1
130 genome might indicate a possible regulatory role for hnRNPA0 in viral replication, we generated
131 an hnRNPA0 expression vector, evaluated expression levels and localization of the flag-tagged
132 protein (Fig.1c-e), and proceeded to co-transfect HEK293T cells with the proviral molecular
133 HIV-1 clone NL4-3. 48 h post transfection the viral supernatant was harvested and used for
134 subsequent analysis (Fig.1f-i). Upon elevated hnRNPA0 levels (85.4-fold; $p<0.0001$) we
135 observed a significant decrease in p24-CA production (3-fold; $p<0.0001$), viral copy numbers ($>$
136 5-fold; $p=0.0008$) in the supernatant and production of infectious particles (2-fold; $p<0.0001$).
137 These data indicate, that high levels of hnRNPA0 limit HIV-1 replication and possess a potent
138 antiviral activity.

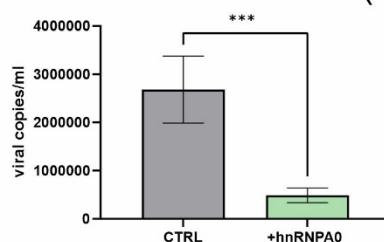

(a)

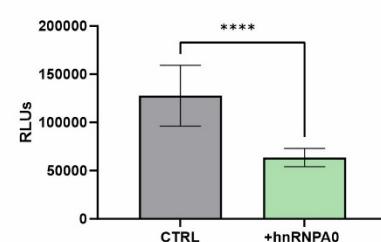
	hnRNPA0	hnRNPA1	hnRNPA2B1	hnRNPA3
hnRNPA0		0.631	0.577	0.602
hnRNPA1	0.631		0.377	0.217
hnRNPA2B1	0.577	0.377		0.311
hnRNPA3	0.602	0.217	0.311	

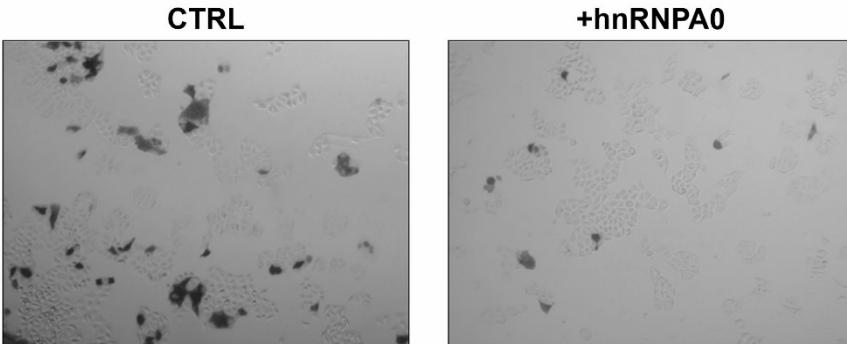

(b)


(c)


(d)


(e)


(f)


(g)

(h)

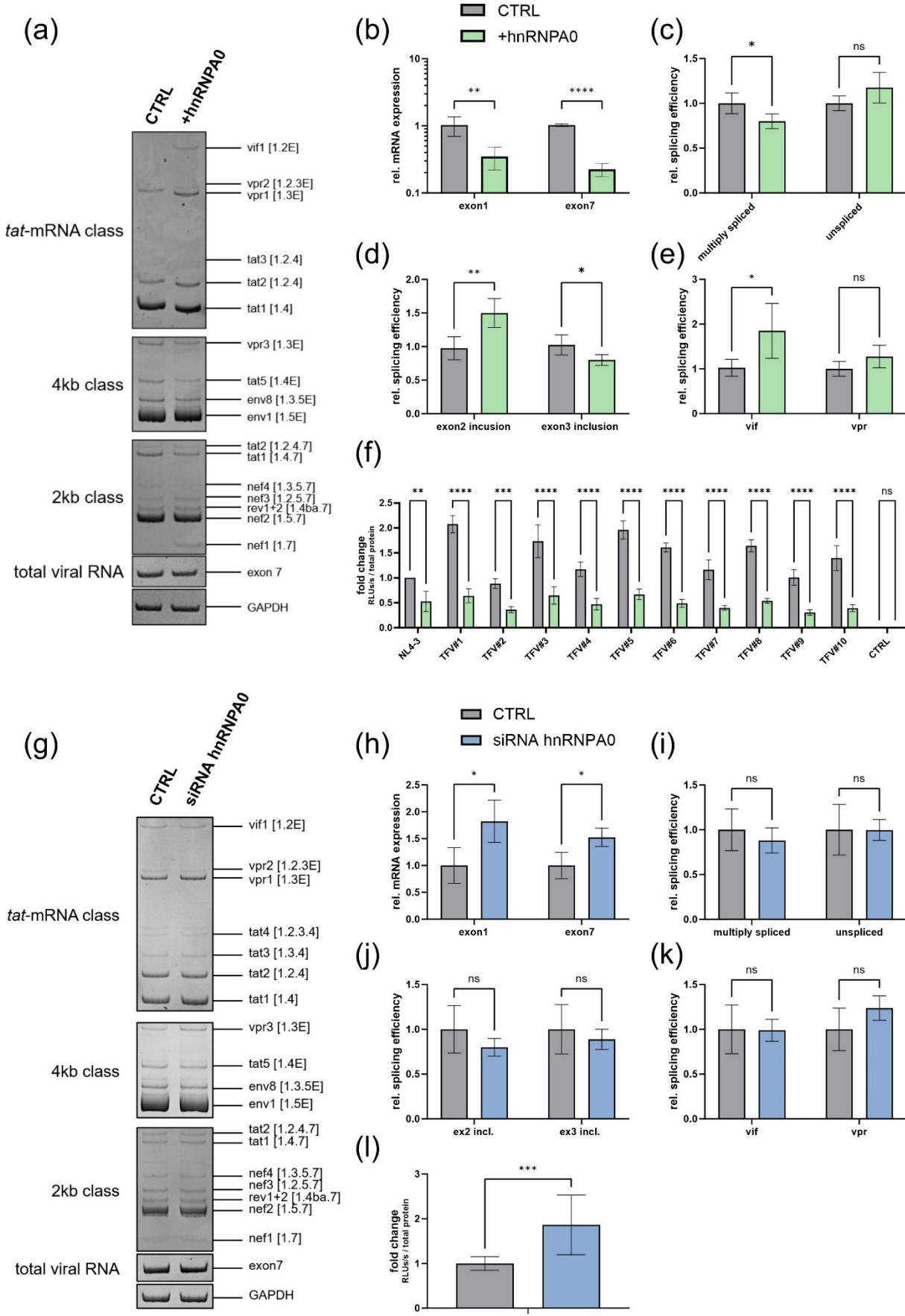
(i)

139

140 **Figure 1 Overexpression of hnRNPA0 limits production of infectious HIV-1 particles.** (a) Point accepted
141 mutation 120 matrix (PAM 120) of the hnRNPA/B family. For each hnRNP the canonical sequence was chosen from

142 the Uniprot database (33). Entry IDs: hnRNPA0: Q13151, hnRNPA1: P09651, hnRNPA2B1: P22626, hnRNPA3:
143 P51991. **(b)** Protein structure of hnRNPA0 was predicted using Alphafold (34, 35). **(c-e)** Vero **(c,e)** or HEK293T **(d)**
144 cells were transfected with an hnRNPA0 expressing vector. **(c)** 24 h post transfection cells were fixed using 3%
145 formaldehyde for 10 min at RT and permeabilized using 0.1% Triton X-100 for 10 min. Cells were rinsed twice with
146 PBS and unspecific binding sites were blocked using 2% BSA for 20 min before samples were incubated for 1 h with
147 antibodies against cellular and FLAG-tagged hnRNPA0 following a washing step and an 1 h incubation with
148 secondary antibodies. Nuclei were stained using DAPI **(d)** 24 h post transfection RNA was isolated and expression
149 levels were analyzed via RT-qPCR. **(e)** 24 h post transfection proteins were isolated and Western blotting was
150 performed to analyze the protein amount using an antibody against hnRNPA0. One representative Western blot of
151 three independent experiments is shown. **(f-i)** HEK293T were transfected with the proviral molecular clone NL4-3 and
152 an hnRNPA0 expressing vector. 48 h post transfection viral supernatant was harvested and the **(f)** particle production
153 was analyzed via p24-Capsid-ELISA, the **(g)** viral copy numbers were analyzed using RT-qPCR and the **(h,i)**
154 presence of infectious particles in the cell culture supernatant was analyzed using TZM-bl reporter cells **(h)** luciferase
155 assay and **(i)** X-Gal staining. Mean (+SD) of four independent experiments is shown for (d,f,g,h) Unpaired two-tailed t-
156 tests were performed to determine statistical significance (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001).

157


158 ***hnRNPA0 modulates HIV-1 Tat mediated LTR activity***

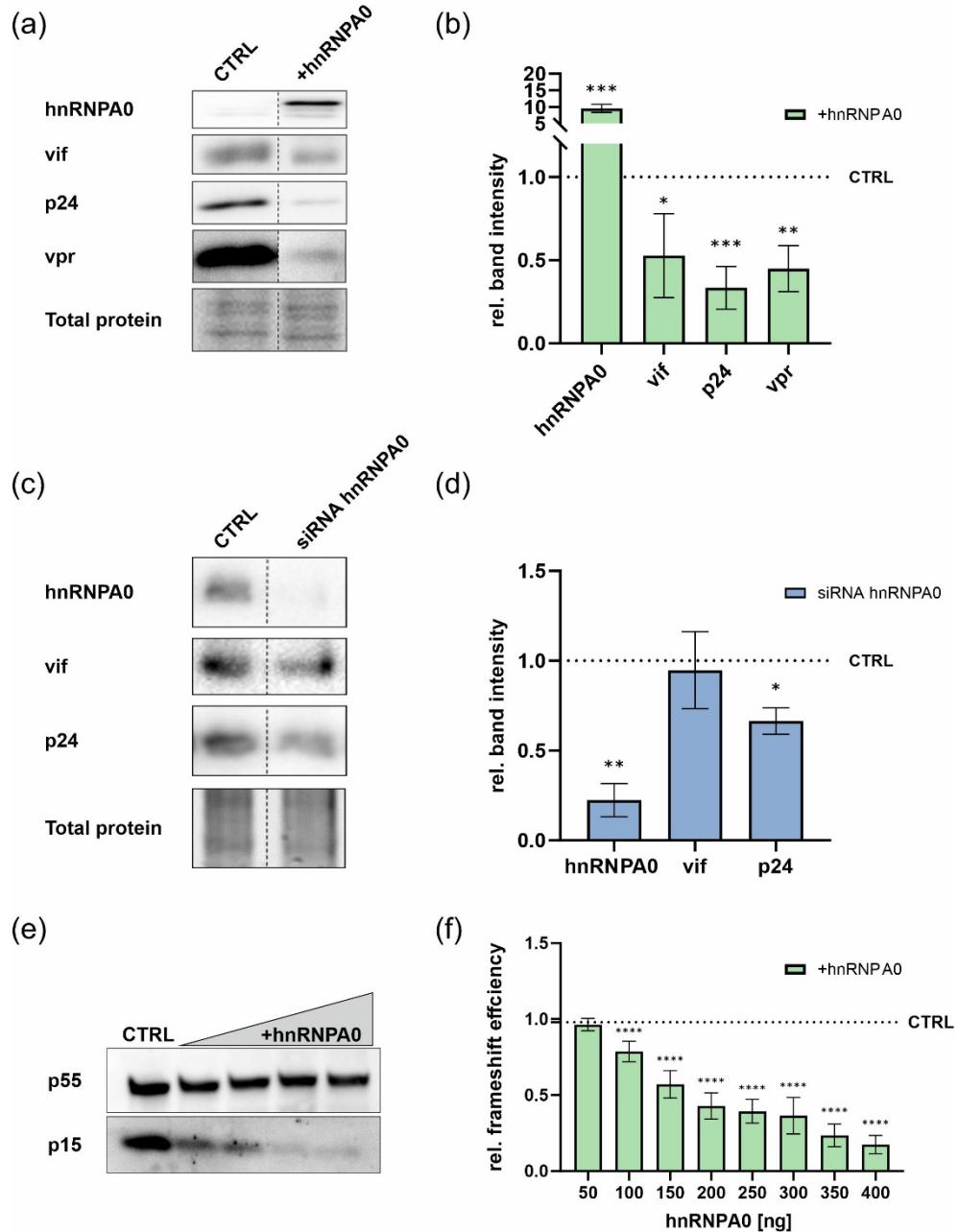
159 Next, we investigated the potential influence of hnRNPA0 on viral replication steps as hnRNPs
160 are responsible for the regulation of alternative splicing in HIV-1. We assumed, that hnRNPA0
161 may decrease viral replication by causing aberrant splice site usage, resulting in insufficient or
162 unbalanced mRNA transcript amounts (7). Hence, RT-qPCR was conducted to assess viral
163 splicing under varying hnRNPA0 levels – overexpression and knockdown conditions (Fig.2).
164 Viral splicing pattern was analyzed using semi-quantitative RT-PCR (Fig.2a,g) with primers
165 targeting specified sites as outlined in (36). Upon high hnRNPA0 levels we observed an increase
166 in *vif1*, *vpr1*, *tat2* (tat-mRNA-class) and *nef1* (2kb-class). *Vpr3*, *tat5* (4kb-class) and *tat1* (2kb-
167 class) levels were slightly decreased. RT-qPCR revealed a strong reduction in total viral mRNA,
168 measured by primer pairs targeting the initial and terminal HIV-1 exons 1 (2.93-fold; p=0.0089)
169 and 7 (4.56-fold; p<0.0001), indicating an inhibitory effect on HIV-1 LTR activity. By using intron

170 1 spanning primers and those covering the 2kb class specific exon junction D4-A7, we observed
171 a trend towards more unspliced and significantly less multiply spliced mRNAs (0.8-fold; $p=0.03$)
172 (Fig.2c). Exon 2 containing transcripts, however, were detected more frequently ($p=0.0088$),
173 while those harboring exon 3 were significantly less detected ($p=0.0388$). Although *in silico*
174 mapping of hnRNPA0 to the NL4-3 genome revealed a strong binding affinity towards D4 (3.97
175 Z-score (Supp.Fig.1), we did not observe a major effect on alternative splice site usage under
176 high hnRNPA0 conditions. When using primers spanning the exonic HIV-1 D1-A1 splice site
177 junction including the *vif* intron, we observed a 1.8-fold ($p=0.0424$) increase in the mRNA coding
178 for the essential accessory protein Vif, which counteracts the host restriction factor APOBEC3G
179 (37) and the cytosolic DNA sensor STING (38). Further usage of primers specific for the HIV-1
180 D1-A2 splice site junction and the *vpr* intron, revealed a slight increase in the splicing efficiency
181 of *Vpr*, a pleiotropic accessory protein necessary for replication in certain non-permissive cell
182 lines like dendritic cells (39).
183 To investigate whether the decrease of total viral mRNA, was due to an influence of hnRNPA0
184 on the LTR activity, we performed luciferase-based reporter assays. Cells were co-transfected
185 with Tat-transactivated LTR-luciferase reporter constructs, and the hnRNPA0 expression vector.
186 24 h post transfection cells were lysed and the luciferase activity was measured. In addition to
187 the LTR sequence of the laboratory strain NL4-3 we tested LTR sequences derived from ten
188 HIV-1 transmitted-founder viruses (TFV, Fig.2f). We observed an almost 2-fold reduction of the
189 NL4-3 LTR ($p=0.0028$) activity, while TFV LTR activities were repressed to a greater degree.
190 To investigate whether hnRNPA0 knockdown would lead to an opposite effect, we co-
191 transfected cells with a plasmid encoding the proviral clone NL4-3 and siRNA against hnRNPA0.
192 Despite a small increase in *vpr3* (4kb-class; Fig.2g) we did not observe any changes in the viral
193 splicing pattern under depleted hnRNPA0 levels using the semi-quantitative approach.
194 Furthermore, we quantified the total viral mRNA (reflected by exon 1 and exon 7 expression). In
195 contrast to high hnRNPA0 levels, we observed an increase in HIV-1 exon 1 (1.8-fold; $p=0.0187$)

196 and exon 7 (1.5-fold; $p=0.0124$) containing mRNAs upon hnRNPA0 knockdown. RT-qPCR
197 revealed no significant changes in the viral splicing pattern (Fig.2g-h). Noteworthy, we did not
198 observe a decrease in *vif* splicing efficiency.

199 To emphasize this finding, we monitored the activity of the NL4-3 LTR via luciferase reporter
200 cells and detected a 1.86-fold increase in LTR activity ($p=0.0003$) under depleted hnRNPA0
201 levels (Fig.2l).

203 **Figure 2 HIV-1 splicing pattern and LTR-activity at high and low hnRNPA0 conditions. (a-e)** HEK293T cells
204 were transfected with a plasmid coding for the proviral clone NL4-3 (pNL4-3) and an expression vector encoding
205 hnRNPA0 or an empty vector control (pcDNA3.1(+)). 48 h post transfection RNA was isolated and subjected to further
206 analysis. **(g-k)** HEK293T cells were transfected with pNL4-3 as well as siRNA against hnRNPA0 or an off-target
207 control. 72 h post transfection cells were lysed, RNA isolated and RT-qPCR was performed to evaluate expression
208 levels. **(a)** RT-PCR was performed using primer pairs covering viral mRNA isoforms of the 2kb, 4kb and tat-mRNA-
209 class (described in (36). Primers covering HIV-1 exon 7 containing transcripts were used for normalization of whole-
210 viral-mRNA and cellular GAPDH was included as loading control. The HIV-1 transcript isoforms are labelled according
211 to (40). The amplified PCR products were separated on a 12% non-denaturing polyacrylamide gel. **(b)** expression
212 levels of exon 1 and exon 7 containing mRNAs (total viral mRNA) were normalized to GAPDH. **(c-e)** Expression levels
213 of **(c)** multiply spliced and unspliced mRNAs, **(d)** exon 2 and exon 3 containing mRNAs, **(e)** *vif* and *vpr* were
214 normalized to exon 1 and exon 7 containing mRNAs (total viral mRNA). **(f)** Vero cells were transfected with plasmids
215 coding for hnRNPA0 (pcDNA-FLAG-NLS-hnRNPA0), Tat (SVcTat) and a Firefly luciferase reporter plasmid with LTR
216 sequences from the proviral clone NL4-3 sequences obtained from transmitted founder viruses (TFV) from patient
217 samples (TFV#1-10) (41, 42) provided by Dr. John C. Kappes. A vector (pTA_Luc) expressing only the Firefly
218 luciferase was used as control. 24h post transfection the cells were lysed and luciferase-based reporter assays were
219 performed. The relative light units (RLUs) were normalized to the protein amount analyzed via Bradford assay. **(I)**
220 A549 LTR Luc-PEST reporter cells were transfected with a plasmid encoding the Tat protein (SVcTat) as well as
221 siRNA against hnRNPA0 or an off-target control. 48 h post transfection cells were lysed and luciferase reporter
222 assays were performed. The RLUs were normalized to the protein amount analyzed via Bradford assay. The reporter
223 cell line was previously generated using the Sleeping Beauty system (43). The PEST sequence fused to the Firefly
224 luciferase causes a rapid degradation of the protein (44). Mean (+SD) of four biological replicates for (b-e & h-k), three
225 replicates for (f) and twelve independent replicates from two biologically independent experiments for (I). Unpaired
226 two-tailed t-tests were calculated to determine whether the difference between sample groups reached the level of
227 statistical significance (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 and ns, not significant) for **(f)** two-way ANOVA
228 with Dunnett post-hoc test was performed.


229
230

231 ***hnRNPA0 affects HIV-1 protein levels by modulating LTR activity and frameshifting***

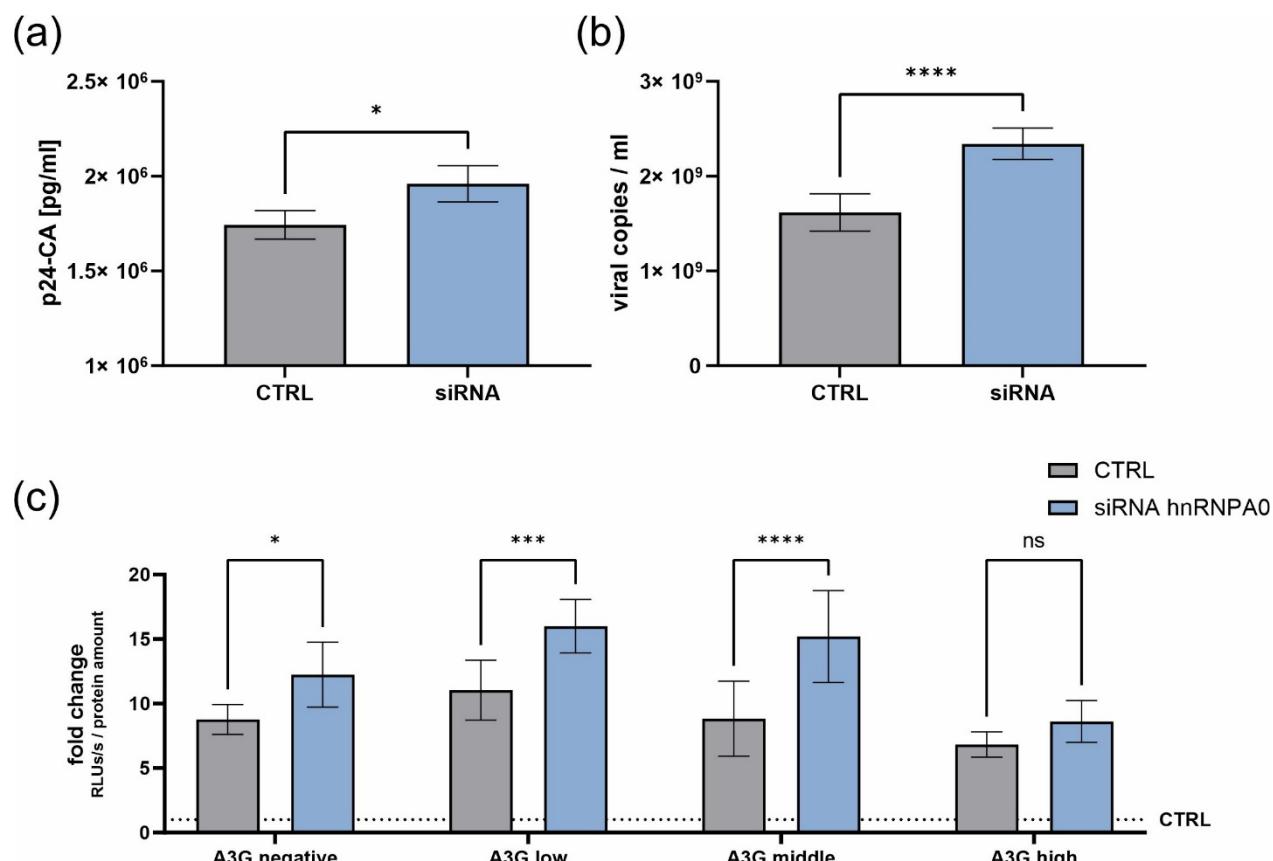
232 Next, we addressed whether the observed transcriptional and post-transcriptional effects would
233 result in altered protein levels (Fig.3). At first, we confirmed the overexpression of hnRNPA0 in
234 the transfected cells and observed an almost 10-fold increase ($p=0.0003$) in hnRNPA0 protein
235 amounts (Fig.3a-b). The Vif and Vpr protein levels reflected the earlier splicing-efficiency
236 observations with Vif (1.89-fold; $p=0.0319$) and Vpr (2.22-fold; $p=0.023$) levels being decreased.
237 Furthermore, we observed a strong repression in p24 levels (3.03-fold; $p=0.0009$). Thus, we
238 observed an overall significant reduction of essential HIV-1 proteins upon elevated hnRNPA0
239 levels.

240 Upon knockdown, the protein levels of hnRNPA0 were decreased 4.46-fold ($p=0.0011$) (Fig.3d).
241 Although we previously observed enhanced transcriptional activity under depleted hnRNPA0
242 levels, the protein levels of p24 were significantly reduced (1.51-fold; $p=0.0009$), and Vif levels
243 were also not elevated compared to the control. This led to the assumption, that hnRNPA0 might
244 not only regulate LTR-activity but might also be involved in late post-transcriptional steps.

245

246

247 **Figure 3 HIV-1 protein levels are modulated upon hnRNPA0 overexpression or knockdown.** HEK293T cells
 248 were transfected with a plasmid encoding the proviral clone NL4-3 and an expression vector coding for hnRNPA0.
 249 48 h post transfection cells were lysed and the protein amounts were analyzed via Western blotting using the
 250 antibodies listed in (Tab.1). Trichloroethanol was used to stain total protein amounts, which were further used for
 251 normalization. (a) Representative Western blot of four independent replicates for the overexpression of hnRNPA0
 252 quantified in (b). For improved comparability, the samples were repositioned adjacently after imaging, as denoted by
 253 the dotted line. The depicted samples underwent processing on the same nitrocellulose membrane. (c-d) HEK293T


254 cells were transfected with pNL4-3 as well as siRNA against hnRNPA0 or an off-target control. 72h post transfection
255 cells were lysed and Western blotting was performed to evaluate the protein amounts. (c) Representative Western
256 blot of four independent replicates of the quantification shown in (d). (e) HEK293T cells were transfected with pNL4-3
257 and increasing amounts of a plasmid encoding hnRNPA0 (250, 500, 1000, 1500 ng). 48 h post transfection cells were
258 lysed, proteins were separated via PAGE and analyzed via immunoblotting using an antibody targeting p15. One
259 representative Western blot of three independent experiments is shown (f) HEK293T cells were transfected with the
260 indicated amounts of a plasmid encoding hnRNPA0. 6h post transfection a second transfection was performed using
261 luciferase reporter plasmids including the HIV-1 frameshift site. 24h post second transfection the cells were harvested
262 and the Firefly to Renilla luciferase activity ratio was measured via luciferase reporter assay. In the luciferase reporter
263 the Renilla luciferase is positioned in-frame, facilitating translation during ribosomal scanning of the RNA, while the
264 Firefly luciferase is placed in the -1-frame, yielding a functional polyprotein only upon occurrence of the -1 frameshift.
265 Mean (+SD) of three biologically independent experiments with three replicates each is shown. For 350 and 400 ng
266 one experiment with three independent replicates was performed. Unpaired two-tailed t-tests were calculated to
267 determine whether the difference between the sample groups reached the level of statistical significance (*p<0.05,
268 **p<0.01, ***p<0.001, ****p<0.0001 and ns, not significant), for (f) Mixed-effects analyses followed by Dunnett post-
269 hoc test were performed.

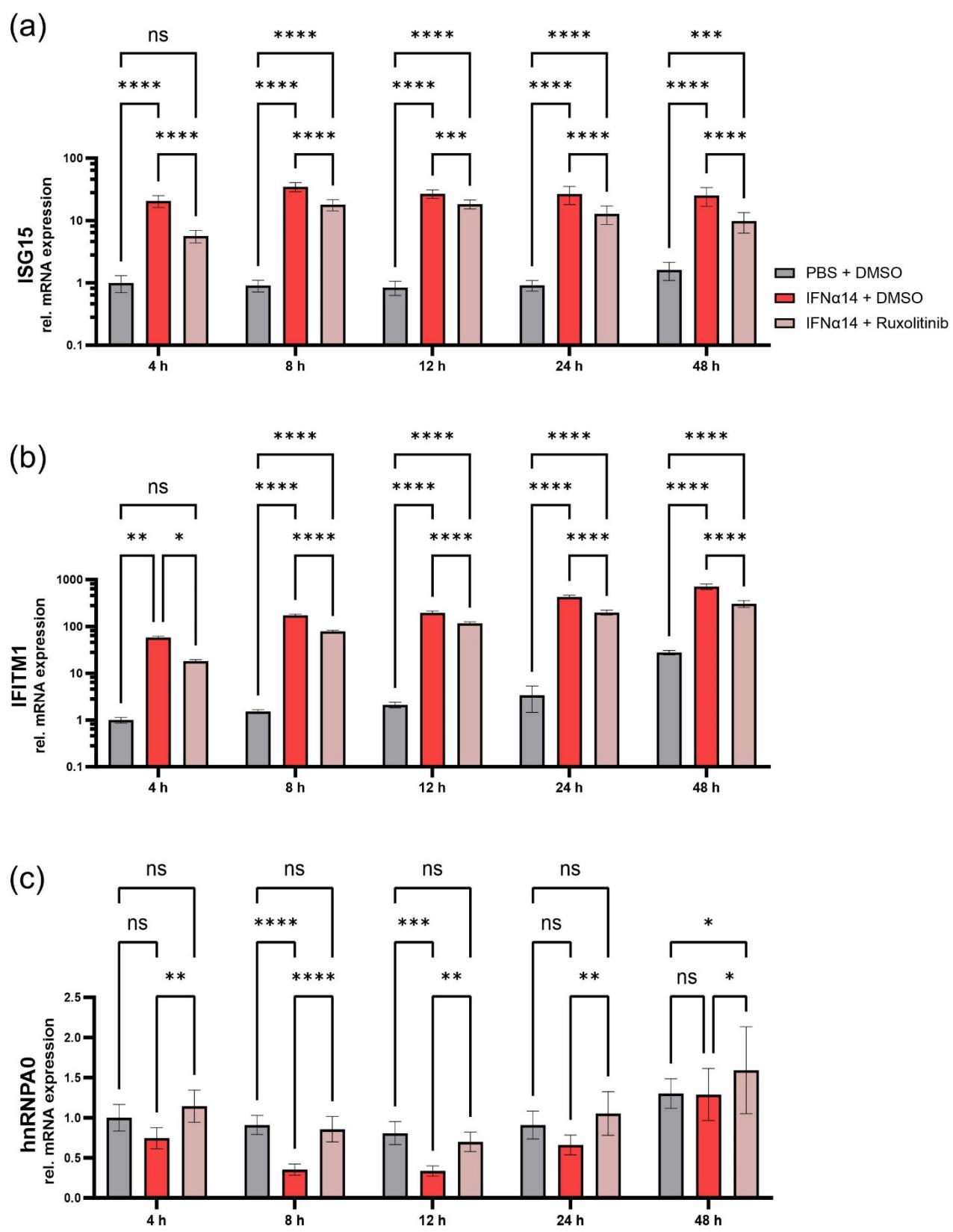
270
271 Indeed, we noticed a shift between HIV-1 p15 and p55 upon high hnRNPA0 levels. A shift in the
272 p15/p55-ratio would indicate an effect on the viral-frameshift efficiency, as both genes are
273 translated from the same unspliced mRNA. Indeed, we observed a dose-dependent inhibition of
274 PRF by a reduced p15/p55 ratio dropping from 1.18 to 0.53 (Fig.3e). To proof this hypothesis,
275 we used a luciferase reporter plasmid encoding a Renilla luciferase, the viral frameshift site of
276 HIV-1 and a Firefly luciferase (Fig.3f). Supporting the previous results, we observed a dose-
277 dependent reduction of -1PRF efficiency upon increased hnRNPA0 levels. Thus, we concluded
278 that hnRNPA0 is not only capable of modulating the HIV-1 LTR-activity, but it is also able to
279 modify frameshifting efficiency modulating the viral replication.

280 With the contradictory results on mRNA and protein levels under hnRNPA0 knockdown
281 conditions we performed end-point readouts of the previously performed knockdown
282 experiments.

283 **Knockdown of hnRNPA0 enhance HIV-1 particle production and infectivity**

284 We observed significantly more particles in the viral supernatant under depleted hnRNPA0
285 conditions (Fig.4a). Concomitantly, viral copies in the supernatant were also significantly
286 increased (1.12-fold; $p=0.0117$; Fig.4b). To proof whether low hnRNPA0-levels might facilitate
287 viral replication even in the presence of host restriction factors, we transfected A3G expressing
288 cells with an anti-hnRNPA0 siRNA and a NL4 3 encoding plasmid (Fig.4a). The subsequent
289 luciferase assay revealed increased infectivity of the supernatants from cells low and
290 intermediate expressing APOBEC3G (Fig.4c). At higher APOBEC3G levels we did not observe
291 significant increased infectivity. Thus, depleted hnRNPA0 levels facilitate HIV-1 infectivity even
292 in APOBEC3G expressing cells.

293
294 **Figure 4 Knockdown of hnRNPA0 elevates viral particle production, copy numbers and infectivity.** HEK293T
295 cells were transfected with a plasmid coding for the proviral clone NL4-3 and siRNA against hnRNPA0 and an off-
296 target control. 72 h post transfection the supernatant was harvested and used for subsequent experiments. Particle


297 production was analyzed via **(a)** p24-Capsid-ELISA. **(b)** RNA of the viral supernatant was isolated and RT-qPCR was
298 performed to evaluate viral copy numbers. **(c)** Viral supernatant was used to infect TZM-bl reporter cells. 48 h post
299 infection TZM-bl cells were lysed and the luciferase activity was measured. The relative light units were normalized to
300 the total protein amount analyzed via Bradford assay. Mean (+SD) is shown of four independent replicates of (a), six
301 of (b) and four of (c) with two technical replicates each. Unpaired two-tailed t-tests were calculated to determine
302 whether the difference between the sample groups reached the level of statistical significance (*p<0.05, **p<0.01,
303 ***p<0.001, ****p<0.0001 and ns, not significant) for (c) the groups were compared by two-way ANOVA with
304 Bonferroni post hoc test.

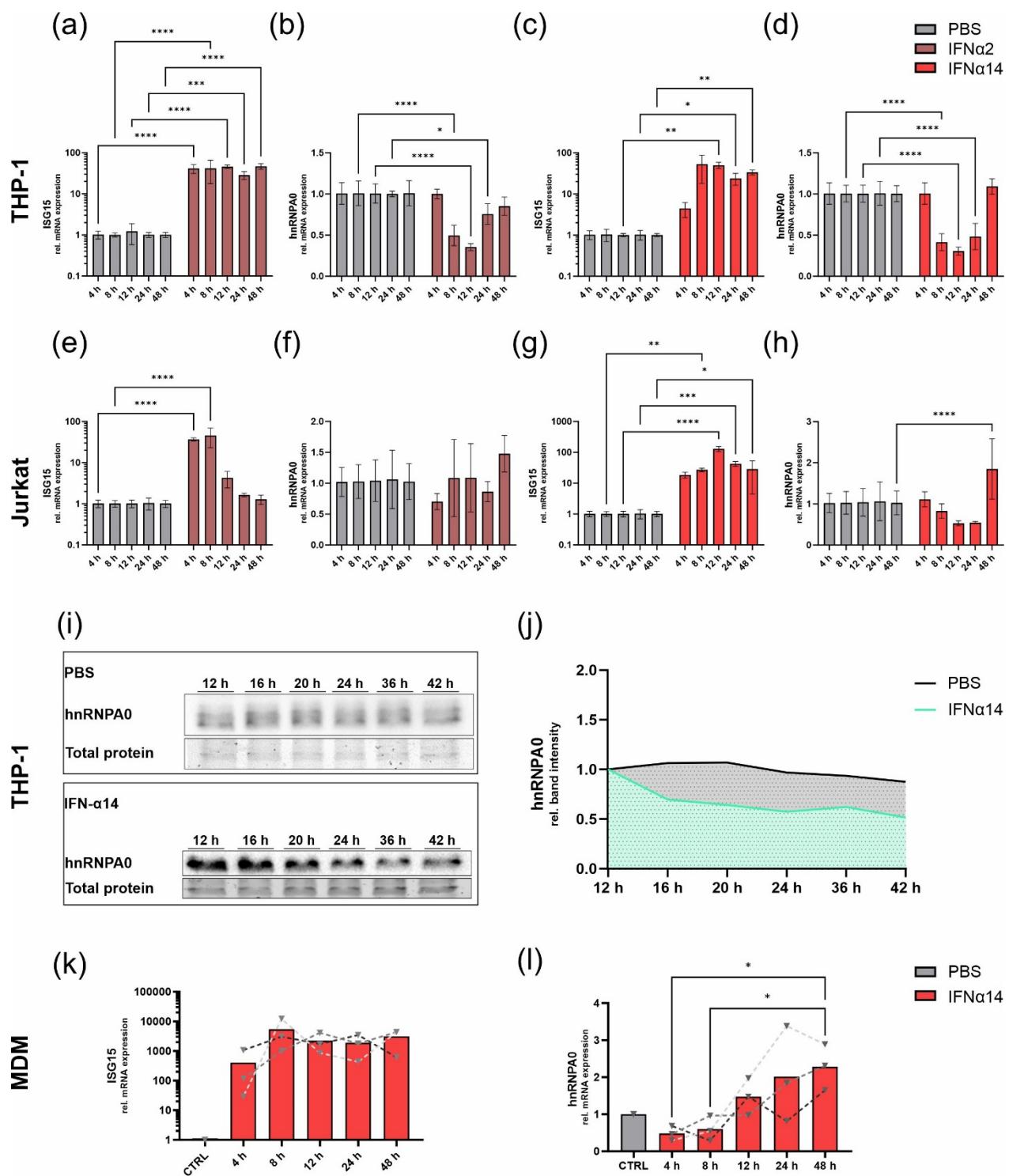
305

306 ***hnRNPA0 expression levels are regulated by interferons***

307 Interferons play a critical role in limiting HIV-1 replication by inducing an antiviral state in the
308 infected and bystander cells (45, 46). In a previous study, we could demonstrate a significant
309 deregulation of the RNA binding protein SRSF1 in IFN treated macrophage-like THP-1 cells.
310 Since we found that high levels of hnRNPA0 were detrimental for viral replication but low levels
311 of hnRNPA0 seem to boost the infectivity of HIV-1, we were interested whether hnRNPA0 levels
312 might be regulated upon IFN stimulations. Hence, comparable settings were used and phorbol
313 12-myristate 13-acetate (PMA)-differentiated THP-1 cells were subjected to infection
314 experiments using the CCR5-tropic HIV-1 NL4-3 AD8 strain (47). Additionally, we treated the
315 cells 16 h post infection with IFN α 14, as this was reported to be the most potent IFN-I against
316 HIV-1 (48, 49) and was previously shown to strongly repress SRSF1 expression (36). To
317 investigate whether hnRNPA0 might be specifically regulated by exogenous IFNs we added a
318 Jak1-2 inhibitor Ruxolitinib, preventing IFN signaling (Fig.5). At the indicated time points total
319 cellular RNA was isolated and expression levels were analyzed via RT-qPCR.

320

321
322 **Figure 5 Interferon signaling regulates hnRNPA0 mRNA expression.** Differentiated THP-1 macrophages were
323 treated with 1 μ M Ruxolitinib or a DMSO solvent control 1 h before inoculation of the viral clone NL4-3 AD8 (MOI 1).


324 16 h post infection cells were washed and medium containing 10 ng/ml IFN α 14 or PBS and 1 μ M Ruxolitinib or DMSO
325 was added. At the indicated time points post treatment, cells were lysed and further subjected to RNA isolation. RT-
326 qPCR was performed to monitor mRNA expression levels of (a) ISG15 (b) IFITM1 and (c) hnRNPA0. Mean (+SD) of
327 two biologically independent experiments were performed with 4 biological replicates each. The groups were
328 compared with two-way repeated-measures ANOVA with Tukey's post-hoc test to determine whether the difference
329 between the sample groups reached the level of statistical significance (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001
330 and ns, not significant).

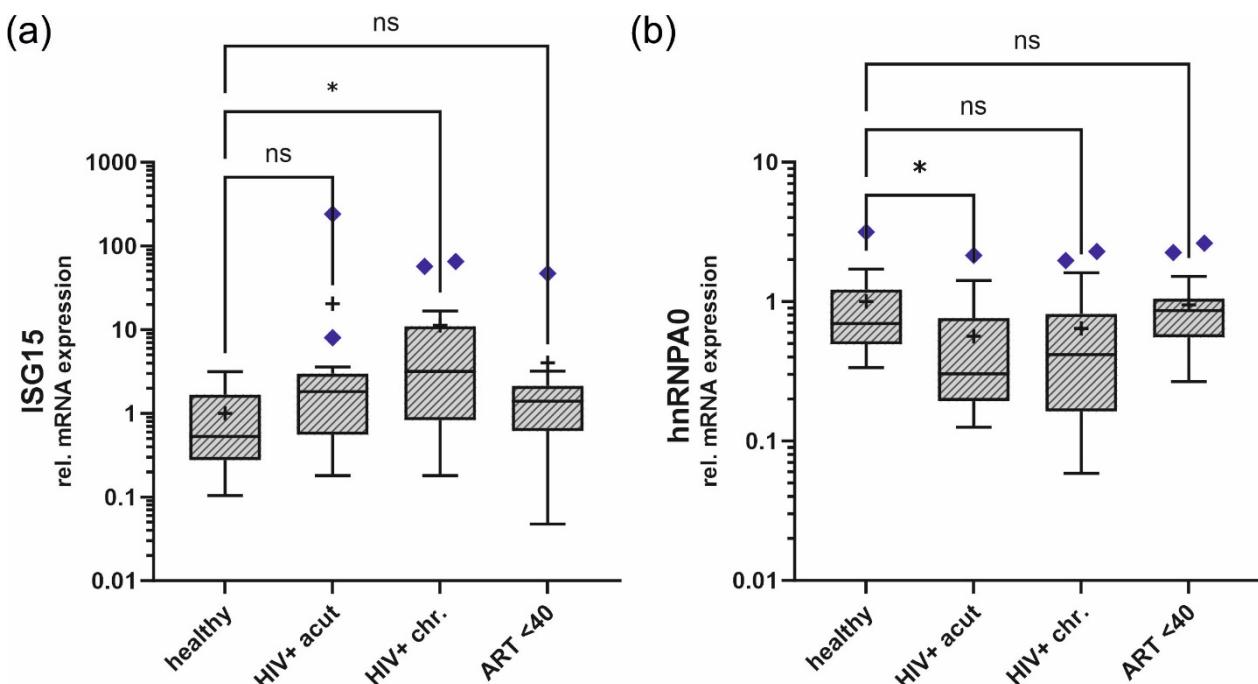
331
332 To monitor IFN-stimulation we additionally measured *ISG15* and *IFITM1* (Fig.5a-b). A significant
333 increase in *ISG15* and *IFITM1* mRNA expression, was observed upon IFN-treatment throughout
334 all time points. Of note, even though the Ruxolitinib-treated cells showed elevated *ISG15* and
335 *IFITM1* mRNA expression, the expression levels remained below the samples lacking the
336 JAK1-2 inhibitor. In agreement with previous studies, the induction of ISG15 and IFIMT1 despite
337 inhibition of JAK1/2 could be explained by combinatory effects of the IFN treatment and viral
338 sensing via TLRs (50-52). While the *hnRNPA0* mRNA expression levels of the
339 Ruxolitinib-treated cells were unaffected, we observed a reduction of *hnRNPA0* mRNA
340 expression in the solely IFN-treated cells, already at 4h post treatment. After 8h (2.56-fold;
341 p<0.0001) the mRNA expression was significantly decreased and further waned until 12h post
342 treatment but was fully restored after 48h. These results indicated that hnRNPA0 is regulated by
343 JAK1-2 dependent IFNs signaling.

344 To further evaluate IFN-mediated regulation of hnRNPA0, we treated both HIV-1 target cell
345 types using cell lines THP-1 (Fig.6a-d) and Jurkat (Fig.6e-h) with IFN-I. We additionally included
346 IFN α 2 since it is used in clinical treatment of chronic viral infections like hepatitis-B-virus (53).
347 *ISG15* was again used as surrogate marker for IFN induced ISG induction. Similar to the
348 previous experiment, the mRNA expression of *hnRNPA0* was significantly reduced after 8h,
349 while the strongest repression was observed at 12h post treatment. After 24h the mRNA
350 expression increased again until it was almost recovered after 48h. A similar, although stronger

351 and longer lasting effect, was observed when treating THP-1 cells with IFN α 14. In Jurkat T-cells
352 *ISG15* expression after IFN α 2 treatment was strongly induced 4h and 8h post stimulation, but
353 the levels rapidly declined after 12h (Fig.6e). The *ISG15* expression in IFN α 14-treated Jurkat
354 cells was high and long lasting, and comparable to IFN treated THP-1 cells. While no alteration
355 in *hnRNPA0* expression was observed in IFN α 2-treated Jurkat cells, an initial tendency for lower
356 *hnRNPA0* mRNA levels 8-24h post treatment with IFN α 14 was observed. Strikingly, a significant
357 (p=0.0233) increase in mRNA levels was measured 48h post stimulation. As we observed the
358 strongest reduction in *hnRNPA0* mRNA levels in IFN α 14-treated THP-1 cells, we also confirmed
359 the decrease in protein amount under these conditions using Western blot analysis (Fig.6f-j).
360 Lastly, primary monocyte-derived macrophages (MDMs) from healthy donors were isolated and
361 treated with IFN α 14 (Fig.6k-l). *ISG15* expression was strongly and persistently induced to levels
362 comparable to stimulated THP-1 cells. Notably, following initial repression of *hnRNPA0*
363 expression levels in MDMs already 4h after IFN α 14 treatment, levels were significantly increased
364 to levels 2-fold higher when compared to the PBS control.
365 These results further emphasized that *hnRNPA0* is differently regulated by IFN-I in a cell-type
366 specific manner.

367

373 monitor expression levels. *ACTB* was used as loading control. (I,J) THP-1 cells were treated with 10 ng/ml IFN α 14.
374 Proteins were separated by SDS-PAGE, blotted on a nitrocellulose membrane, and analyzed using an antibody
375 against hnRNPA0. Total protein amounts were stained using Trichloroethanol and used for normalization. (I)
376 Representative Western blots of hnRNPA0 from THP-1 cells treated with PBS or IFN α 14. (J) The mean values of the
377 quantification of 4 independent Western blots per condition are shown. (K,L) Monocyte derviced macrophages were
378 treated with 10 ng/ml IFN α 14. At the indicated time points cells were lysed and RNA was isolated to evaluate mRNA
379 expression levels via RT-qPCR of (K) *ISG15* and (L) hnRNPA0. Expression levels of three independent experiments
380 are shown. (A-H) Mean (+SD) is shown of four independent experiments ((A-D) at 12-48 h contain three replicates). (A-
381 J) Two-way repeated-measures ANOVA with Šidák multiple comparisons test, and (K,L) one-way repeated-measures
382 ANOVA with Dunnett post-hoc test were performed to evaluate whether the differences between the groups reached
383 statistical significance (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001).

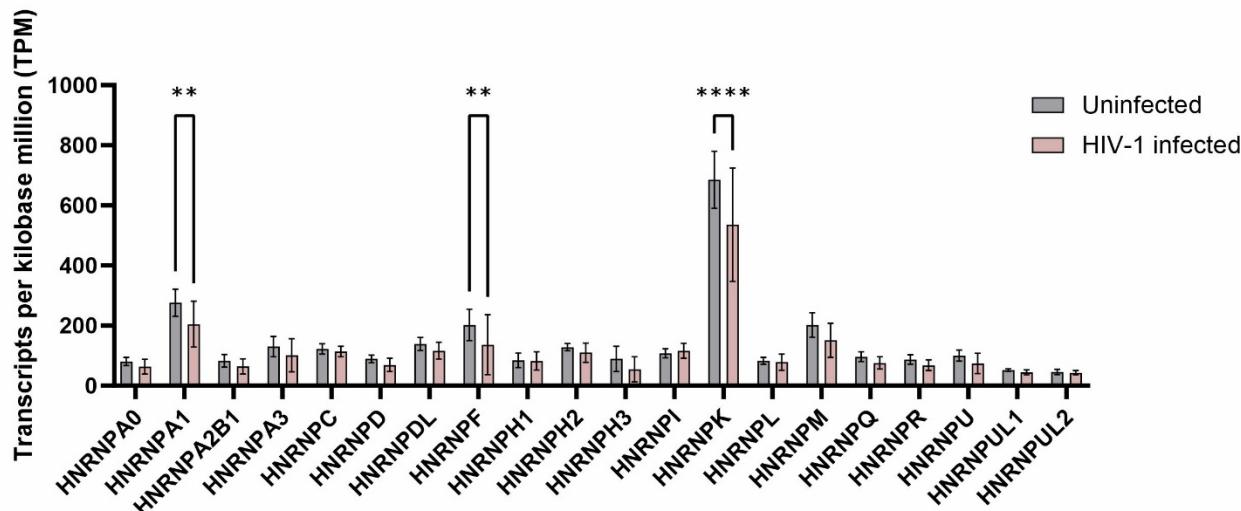

384

385 ***hnRNPA0* transcript levels are lower in HIV-1-infected individuals compared to healthy
386 controls**

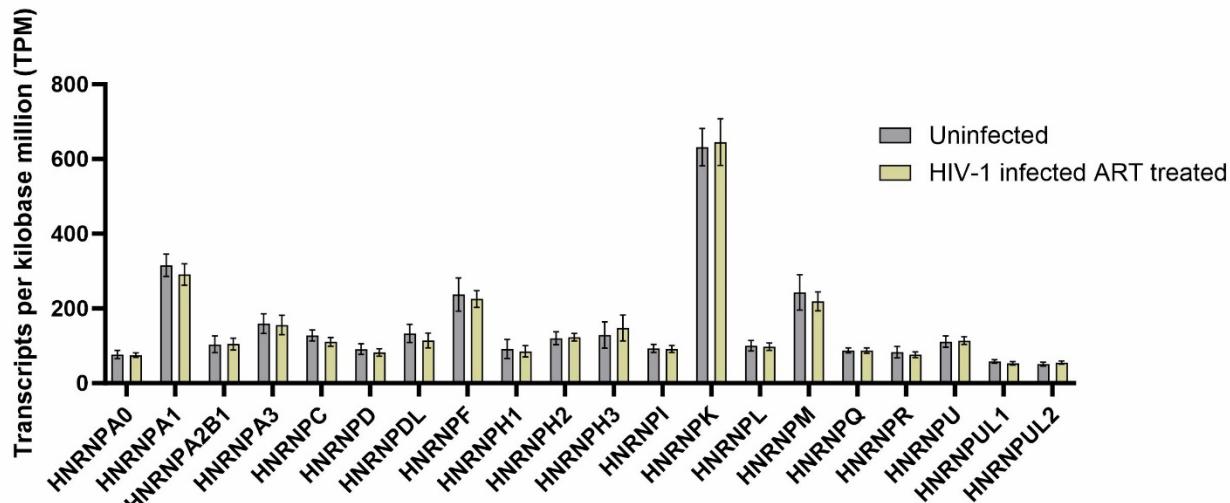
387 To evaluate whether hnRNPA0 levels might be differently expressed in HIV-1-infected
388 individuals, we isolated PBMCs from HIV-1 acutely and chronically HIV-1-infected individuals
389 and those receiving anti-retroviral therapy (ART) and compared the *ISG15* and hnRNPA0
390 expression levels to a healthy cohort (Fig.7). Elevated *ISG15* levels were observed in individuals
391 with an acute and chronic HIV infection, albeit the differences to healthy controls were only
392 significant for the chronically infected cohort (p=0.0246). For ART-treated individuals we
393 observed expression levels for both *ISG15* and *hnRNPA0* that were comparable to the
394 uninfected control cohort. Strikingly, individuals with acute (p=0.0483) and chronic (p=0.0549)
395 HIV-1 infection had lower *hnRNPA0* mRNA levels.

396 In conclusion, the HIV-1-infected therapy-naïve individuals had lower *hnRNPA0* and
397 concomitantly higher *ISG15* levels compared to the healthy controls.

398



399
400 **Figure 7 ISG15 and hnRNPA0 mRNA expression levels in HIV-1 infected cohorts.** Relative expression levels of
401 (a) ISG15 and (b) hnRNPA0 of PBMCs of healthy, HIV acutely infected, HIV chronically infected, and HIV infected
402 ART treated individuals. ART <40 patients were below 40 copies/ml (measured by RT-qPCR). ACTB was used for
403 normalization. Mean is indicated as "+". Error bars are indicated as Tukey min and max values. Purple rectangles
404 represent outliers that were not included into statistical analysis. PMBCs were isolated from 11 healthy donors, 13
405 with acute HIV-1 infection, 17 treatment-naïve patients with chronic HIV-1 infection and 17 HIV-1 infected patients on
406 ART. Kruskal-Wallis test with the Dunn's post-hoc multiple comparisons test was used to determine whether the
407 difference between the sample groups reached the level of statistical significance (*p<0.05, and ns, not significant).


408
409 We performed a comprehensive re-analysis of RNA sequencing data obtained from intestinal
410 lamina propria monocyte-derived cells (LPMCs) derived from HIV-1-infected patients (Fig.8). Our
411 previously published findings demonstrated dysregulation of host-dependent factors, particularly
412 the SRSF family, in these patients (36). Additionally, we observed concurrent upregulation of
413 ISGs, including HIV-1 host restriction factors (54). Compared to other hnRNPs including A1, F or
414 K, which were significantly lower in HIV-1-infected treatment-naïve individuals, hnRNPA0, was
415 rather weakly expressed. However, we detected 1.28-fold lower expression in HIV-1-infected
416 treatment-naïve patients, compared to uninfected controls.

417 In summary, HIV-1 treatment-naïve individuals generally exhibit reduced levels of hnRNPA0 and
418 others in PBMCs and LPMCs.

(a)

(b)

419
420 **Figure 8 Gene expression levels of hnRNPs in HIV-1-uninfected versus HIV-1-infected and (un)-treated**
421 **individuals.** RNA-sequencing analysis was used to measure transcript levels of hnRNP genes in intestinal lamina
422 propria mononuclear cells (LPMCs). Comparison of the transcript levels of (a) HIV-1 infected (n=19) and healthy
423 individuals (n=13) and (b) HIV-1 infected ART receiving individuals (n=14) and healthy individuals (n=11). TPM are
424 presented as mean (+ SD). To evaluate whether the differences of the groups reached statistical significance they
425 were compared by two-way ANOVA with Bonferroni post hoc test (*p<0.05, **p<0.01, ***p<0.001 and ****p<0.0001).

426 **Discussion**

427 HIV-1 depends on the host cellular machinery to fully utilize its genome, encompassing
428 processes such as transcription, pre-mRNA splicing, mRNA export, and translation. RNA-
429 binding proteins (RBPs) as members of the heterogeneous nuclear ribonucleoproteins (hnRNP)
430 and serine-arginine-rich splicing factor (SRSF) families play indispensable roles in HIV-1
431 replication. Various RBPs from these families have been characterized for their interactions with
432 HIV-1 and their functions as host-dependent factors (HDFs).

433 Mechanistically, RBPs were described to positively or negatively influence the transcriptional
434 efficiency of HIV-1 by interacting with the viral LTR promoter region affecting the recruitment of
435 transcriptional regulators (55-57) and thereby influencing the overall production of viral RNAs
436 (36). Furthermore, during HIV-1 replication multiple spliced and unspliced mRNA transcripts
437 which are categorized into 2, 4 and 9kb classes, are synthesized. hnRNPs are involved in
438 regulating the HIV-1 alternative splice site usage, which determines the production of different
439 mRNA isoforms coding for viral proteins. When hnRNPA0 levels are elevated *in vitro* we
440 observed a drastic decrease in viral particle production and viral copies in the supernatant,
441 which led to a significant decrease in infected TZM-bl reporter cells (Fig.1f-i), exposing a potent
442 antiviral activity.

443 This antiviral activity was not due to inefficient alternative splice site usage, the predominant
444 effect reported in similar studies with multiple other hnRNPs (47, 58-61), but rather due to a
445 decrease in LTR-activity, which resulted primarily in decreased total viral mRNA (exon 1 and
446 exon 7; Fig.2b). *In silico* mapping of hnRNPA0 motifs revealed multiple binding sites in the HIV-1
447 genome (Supp.Fig.1). Despite not obtaining the highest Z-scores (max. 3.18) several binding
448 sites are located within the HIV-1 LTR (Supp.Fig.2).

449 hnRNPs might interact with other nucleic-acid-binding proteins either via their auxiliary domain,
450 which in case of hnRNPA1 is the unstructured glycine-rich domain (62, 63), or via the RBD in
451 case of hnRNPA2B1 (12). Therefore, hnRNPA0 could act as mediator facilitating LTR

452 transcription by binding or scaffolding of other nucleic-acid related proteins, already observed for
453 other hnRNPs (64-68). Additionally, hnRNPA0 could potentially interact with the 7SK particle,
454 which binds and thus inhibits the function of P-TEFb (69) crucial for HIV-1 transcriptional
455 elongation (70). Notably, knockdown of hnRNPA1 and A2B1 (71, 72) attenuated the dissociation
456 of P-TEFb from the 7SK complex, resulting more active P-TEFb. However, based on our results,
457 hnRNPA0 would rather facilitate the inhibition i.e. binding of P-TEFb by the 7SK complex.
458 Although we cannot exclude the mentioned possibilities, it seems more reasonable that
459 hnRNPA0 might directly bind to the LTR as we observed a decrease in LTR-activity under
460 depleted hnRNPA0 levels and in the absence of Tat (Supp.Fig.4). By using electrophoresis
461 mobility shift assays (EMSA) DNA-binding capacity has been observed for several hnRNPs,
462 including hnRNPA1 (73) and A3 (74), the latter one binding DNA via its RNA-recognition-motif 1
463 (RRM1) domain. Further, hnRNPK (75-80), and U were not only able to bind DNA, but were also
464 directly involved in transcription (81), with hnRNP K primary known as a transcription factor.
465 Furthermore, it has been reported that hnRNPA1 and A2B1 can exert opposing effects on HIV-1
466 particle production and infectivity, with repression under high expression levels and
467 enhancement under low expression levels. The observed effects were predominantly attributed
468 to their impact on viral transcriptional activity. Importantly, hnRNPA3 showed no significant effect
469 on viral replication, highlighting the selective role of hnRNPA/B family members in HIV-1 gene
470 regulation (55). Furthermore, a competitive binding interaction, which resulted in the repression
471 of the LTR activity when Tat was present, was already observed for the RBP SRSF1 by binding
472 to overlapping sequences within TAR and the 7SK RNA (56). Notably, SRSF1 also increased
473 the basal level of viral transcription when Tat was absent, a comparable observation was made
474 for hnRNPA0 in our study (Supp.Fig.4). The hypothesis that hnRNPA0 competitively binds to the
475 LTR is further supported by the increased LTR activity of the siRNA transfected reporter cells
476 (Fig.2I). However, further studies are needed to elucidate the mode of action, but based on our

477 findings, hnRNPA0 emerges as a promising candidate for shock-and-kill or block-and-lock follow
478 up studies, given its ability to modulate LTR activity depending on its expression levels.
479 During PRF in the course of translation the ribosome shifts the viral reading frames (-1) at
480 specific RNA secondary site in the *gag-pol* overlap region, enabling the production of the Gag-
481 Pol polyprotein (82). HIV-1 (83) uses -1PRF to maintain correct stoichiometry of Gag and Pol
482 proteins, which are essential for virion assembly and maturation. During this study, we
483 demonstrated that hnRNPA0 might significantly regulate viral frameshifting in HIV-1, although
484 we cannot discriminate between a direct or indirect interaction. Previously described proteins
485 regulating viral -1PRF are among others zinc finger antiviral protein (ZAP) (84) and the
486 interferon-stimulated gene C19Orf66 (Shiftless, SFL) (85). Of note, in SARS-CoV-2 context,
487 hnRNPH1 and H2 were able to reduce -1PRF in an intensity comparable to ZAP (84). Interacting
488 with the ribosome requires a cytoplasmic localization of the RBPs. It has already been observed,
489 that hnRNPA1 and A2B1 are capable of shuttling between the cytoplasm and the nucleus (12,
490 86). Given that hnRNPA0 has been identified both as a nuclear and cytoplasmic RBP in
491 neurons, it is plausible that it possesses the capability for nucleocytoplasmic shuttling (87).
492 Studies have demonstrated that the binding affinity between SFL and its target RNA can be
493 influenced by RBPs (88). Consequently, it is intriguing to hypothesize that hnRNPA0 may act as
494 a chaperone for SFL, facilitating its association with HIV-1 mRNA and thereby promoting
495 frameshift inhibition.
496 Interferons (IFNs) play a crucial and indispensable role in the host's defense against viral
497 infections. They are essential components of the innate immune response, being rapidly induced
498 upon viral recognition (45, 46). IFNs activate a complex signaling cascade leading to the
499 reprogramming of the cellular expression profile, by inducing interferon-stimulated-genes (ISGs)
500 and repressing interferon-repressed-genes (IRGs), which collectively establish an antiviral
501 state inhibiting viral replication, limiting viral spread, and enhancing overall antiviral immunity
502 (89, 90).

503 Previously we were able to show that the expression of SRSF1, an essential RBP and host
504 dependency factor is modulated by IFN- λ (36). In this study, we identified hnRNPA0 as
505 interferon-regulated gene, which is directly or indirectly regulated by a JAK1/2 dependent
506 pathway. In fact, JAK1 can phosphorylate STAT1 (91) and STAT1 is defined as a transcription
507 factor of hnRNPA0 by the *ENCODE Transcription Factor Targets* data set (92, 93). Which
508 mechanism might facilitate a repression in mRNA levels of hnRNPA0 remains unclear, however
509 it is plausible that STAT1 promotes the substantial transcription of hnRNPA0 mRNA, which
510 subsequently underlies auto-regulation similar to what has been previously reported for various
511 other hnRNPs (94-98). With hnRNPA0 preferably binding to AU-rich elements (AREs), which are
512 predominantly located in the 3' UTR, it is most likely that hnRNPA0 binds a regulatory element
513 within its 3' UTR and either inhibits or causes premature polyadenylation of its own mRNA (99).
514 Another regulatory level involves IFN-induced phosphorylation, since hnRNPA0 can be
515 phosphorylated by MAPK-activated protein kinases (MAPKAPKs) 2 and 3 (100). Particularly,
516 MAPKAPK2 has been demonstrated to phosphorylate hnRNPA0 at Serine 84 residue in
517 response to Lipopolysaccharide (LPS) stimulation. Additionally, hnRNPA0 is regulated by short
518 RNAs complementary to ribosomal 5.8S RNA (101) and miR205HG that has been identified as
519 an translational inhibitor (102). Nevertheless, further investigations are needed to elucidate the
520 mechanisms underlying hnRNPA0 regulation upon IFN-treatment.
521 Treating HIV-1 target cells with IFN α 2 and IFN α 14 revealed cell-type and IFN-specific
522 differences with macrophages showing the strongest effects. Interestingly, THP-1 cells and
523 MDMs differed in their expression patterns as an overexpression of hnRNPA0 was observed in
524 MDMs but not in THP-1 cells, even when we additionally monitored later time points (data not
525 shown).
526 Concomitantly to high ISG15 mRNA expression, we observed low hnRNPA0 mRNA levels in
527 PBMCs isolated from HIV-1 acutely and chronically infected individuals, however, the impact of
528 hnRNPA0 downregulation induced by interferons, even if temporarily limited, remains unclear in

529 the *in vivo* context. Depleted hnRNPA0 levels significantly increased the LTR-activity and
530 consequently resulted in higher production of infectious viral particles (Fig.4). Whether this plays
531 a facilitating role for virus replication during acute infection cannot be answered at this point and
532 requires further studies. Consistent with prior studies (103), the expression levels of hnRNPA0 in
533 ART-treated patients were found to be comparable to those in the naïve cohort. This observation
534 suggests that only ongoing viral replication may result in decreased hnRNPA0 levels due to
535 heightened Jak1/2 induction (104), thereby partially counteracting or compensating for the direct
536 antiviral effects exerted by ISGs and restriction factors by higher LTR activity.

537 This study has limitations: hnRNPs might interact with the viral RNA genome and facilitate its
538 packaging into new viral particles during the assembly process. hnRNPs can impact the stability
539 of HIV-1 RNA by binding to specific regions within the viral transcript and influencing its
540 degradation or stabilization. No packaging and stability studies were performed in this study and
541 future work is needed to address these issues. A possible influence of hnRNPA0 on the
542 expression of host immune factors, including interferons and cytokines, affecting the host's
543 ability to control HIV-1 infection, was not analyzed. hnRNPs participate in the transport of HIV-1
544 RNA from the nucleus to the cytoplasm, where viral translation and assembly occur. Since in this
545 study the RNA localization was not analyzed, we cannot exclude a direct or indirect effect of
546 RNA trafficking as another level of inhibition by hnRNPA0. No multiround replication experiments
547 were performed since long term overexpression of hnRNPA0 was technically challenging due to
548 autoregulatory mechanisms as discussed above. The regulation of hnRNPA0 mRNA levels
549 remains to be further analyzed in the context of multiple cell types, in particular primary cells.
550 Given the initial repression, which turned into an overexpression in Jurkat T-cells and MDMs a
551 timeline of hnRNPA0 levels connected to HIV-1 pre and post infection states in different cell-
552 types would also be reasonable. Although it is very likely that hnRNPA0 binds the HIV-1 LTR,
553 further studies are needed to prove a direct binding of hnRNPA0 to the 5' LTR sequence.

554 Additional studies are also required to elucidate the mechanistic role of hnRNPA0 in
555 frameshifting.

556

557 **Material and methods**

558 ***Cell culture and preparation of virus stocks***

559 PBMC isolation procedures, cell culturing and preparation of virus stocks were performed as
560 described elsewhere (105).

561

562 ***Transient transfection and siRNA-mediated knockdown***

563 Vero cells seeded into 12-well plates and incubated overnight were transfected using plasmids
564 harboring different HIV-1 LTRs upstream of a Firefly luciferase, and plasmids encoding
565 HIV-1 Tat (SVcTat) (106) and FLAG-tagged hnRNPA0 (pcDNA3.1-FLAG-NLS-hnRNPA0). A
566 promoter-lacking but luciferase encoding plasmid was used as a control (pTA-Luc).

567 A549-LTR-Luc-PEST reporter cells were generated using the Sleeping Beauty transposase
568 system (43, 107). For the LTR-assay, 24h post seeding cells were transfected with siRNA
569 targeting hnRNPA0 (s21545 (Thermo Scientific)) and a plasmid encoding HIV-1 Tat (SVcTat).
570 Off-target siRNA (Silencer Select Negative Control #2, Thermo Scientific), and an empty vector
571 control (pcDNA3.1).

572 24h (Vero) or 48h (A549-LTR-Luc-PEST) post transfection cells were lysed using Lysis-Juice
573 (PJK), incubated for 15min under agitation subjected to a freeze and thaw cycle. Lysates were
574 centrifuged for 10min at 13,000rpm using a tabletop centrifuge and transferred into an Immuno
575 96 MicroWell plate (Nunc). Luciferase assays were performed using the GloMax Discover
576 (Promega) and Beetle-Juice (PJK) or Luciferase Assay System (Promega).

577 To perform dual luciferase frameshift assays HEK293T cells were seeded 24h prior transfection
578 in 12-well plates. Cells were transfected with varying amounts of pcDNA3.1 FLAG NLS
579 hnRNPA0. After 6h the cells were transfected with the reporter plasmid pDual-HIV either
580 containing the wildtype frameshift site with Renilla luciferase in frame and Firefly luciferase in the
581 -1 frame or the mutated frameshift site with both luciferases in frame. After 24h the cells were
582 harvested using protein lysis buffer (Promega) and centrifuged for 10min at 13,000rpm. Lysates
583 were transferred into a white 96-well assay plate. Luciferase reporter assays were performed on
584 the GloMax Discover (Promega) using the Dual Luciferase Reporter Assay System (Promega).
585 Frameshift efficiency was determined by the ratio of Firefly luciferase to Renilla luciferase.

586

587 ***Detection of cellular and viral RNA, proteins and HIV-1 infectivity***

588 RNA isolation, quantitative and semi-quantitative RT-PCR and p24-CA ELISA were performed
589 as described previously (105). Primary antibodies used in this study are listed in Table1. The
590 workflow to determine viral infectivity using TZM-bl cells is described elsewhere (47, 105).
591 Detection

592

593 **Table 1 Primary antibodies used in this study**

Target	Supplier
hnRNPA0	Abcam (ab197023)
FLAG-tag	Abcam (ab49763)
HIV-1 Vif	Abcam (ab66643)
HIV-1 p24	Aalto (D7320)
APOBEC3G	HIV Reagent Program
HIV-1 p15	Abcam (66951)
HIV-1 Vpr	Proteintech (51143-1-AP)
Human CD11b	Biolegend (301306)

594

595

596

597

598

599 **Statistical analysis**

600 Differences between two groups were analyzed by unpaired two-tailed student's or Welch's t-
601 test. Multiple group analyses were performed using one- or two-way ANOVA followed by
602 Bonferroni, Dunnett's or Tukey's *post hoc* test. Mixed-models followed by Dunnett's *post hoc*
603 tests were used for time series analysis of multiple groups. A Kruskal-Wallis test with the Dunn's
604 *post hoc* multiple comparisons test was applied to compare mRNA levels in PBMCs from acutely
605 and chronically HIV-1-infected patients as well as from healthy donors due to violation of the
606 assumptions for a parametric test. Outlier were identified via Tukey's range test and excluded
607 from further statistical analysis. If not indicated differently, all experiments were repeated in three
608 independent replicates. Asterisks indicated p-values as *p<0.05), **p<0.01), ***p<0.005) and
609 ****p<0.0001).

610

611 **Acknowledgements**

612 We thank Christiane Pallas and Barbara Reimer for excellent technical assistance. We thank
613 Heiner Schaal for providing plasmid DNA. The following reagents were obtained through the
614 AIDS Research and Reference Reagent Program, Division of AIDS, NIAID, NIH: Panel of Full-
615 Length Transmitted/Founder (T/F) Human Immunodeficiency Virus Type 1 (HIV-1) Infectious
616 Molecular Clones, HRP-11919 contributed by Dr. John C. Kappes. TZM-bl cells from Dr. John C.
617 Kappes and Dr. Xiaoyun Wu. ApoC17 antibody from Dr. Klaus Strelbel.

618

619 **Ethic statement**

620 This study has been approved by the Ethics Committee of the Medical Faculty of the University
621 of Duisburg-Essen (14-6155-BO, 16-7016-BO, 19-8909-BO). Form of consent was not obtained
622 since the data was analyzed anonymously. The funders had no role in study design, data
623 collection and analysis, decision to publish, or preparation of the manuscript.

624

625 **Funding**

626 These studies were funded by the DFG priority program SPP1923 (WI 5086/1-1; SU1030/1-2),
627 the Jürgen-Manchot-Stiftung (H.S., M.W.), the Hessian Ministry of Higher Education, Research
628 and the Arts (TheraNova, M.W.), and the Medical Faculty of the University of Duisburg-Essen
629 (H.S., K.S.). The authors thank the Jürgen-Manchot-Stiftung for the doctoral fellowship of Helene
630 Sertznig.

631

632 **Competing interests**

633 The authors declare that they have no competing interests.

634

635 **Data availability**

636 Next-generation sequencing data were deposited at the NCBI Sequence Archive Bioproject
637 PRJNA422935. Further inquiries can be directed to the corresponding author

638

639 **References**

- 640 1. Jia X, Zhao Q, Xiong Y. 2015. HIV suppression by host restriction factors and viral
641 immune evasion. *Curr Opin Struct Biol* 31:106-14.
- 642 2. Inubushi R, Tamaki M, Shimano R, Koyama AH, Akari H, Adachi A. 1998. Functional
643 roles of HIV accessory proteins for viral replication (review). *Int J Mol Med* 2:429-33.
- 644 3. Fanales-Belasio E, Raimondo M, Suligoi B, Butto S. 2010. HIV virology and pathogenetic
645 mechanisms of infection: a brief overview. *Ann Ist Super Sanita* 46:5-14.
- 646 4. Deeks SG, Overbaugh J, Phillips A, Buchbinder S. 2015. HIV infection. *Nat Rev Dis
647 Primers* 1:15035.
- 648 5. Watts JM, Dang KK, Gorelick RJ, Leonard CW, Bess JW, Jr., Swanstrom R, Burch CL,
649 Weeks KM. 2009. Architecture and secondary structure of an entire HIV-1 RNA genome.
650 *Nature* 460:711-6.
- 651 6. Emery A, Swanstrom R. 2021. HIV-1: To Splice or Not to Splice, That Is the Question.
652 *Viruses* 13.
- 653 7. Sertznig H, Hillebrand F, Erkelenz S, Schaal H, Widera M. 2018. Behind the scenes of
654 HIV-1 replication: Alternative splicing as the dependency factor on the quiet. *Virology*
655 516:176-188.
- 656 8. Brakier-Gingras L, Charbonneau J, Butcher SE. 2012. Targeting frameshifting in the
657 human immunodeficiency virus. *Expert Opin Ther Targets* 16:249-58.
- 658 9. Geuens T, Bouhy D, Timmerman V. 2016. The hnRNP family: insights into their role in
659 health and disease. *Hum Genet* 135:851-67.
- 660 10. Kaur R, Lal SK. 2020. The multifarious roles of heterogeneous ribonucleoprotein A1 in
661 viral infections. *Rev Med Virol* 30:e2097.

662 11. Zheng Y, Jonsson J, Hao C, Shoja Chaghervand S, Cui X, Kajitani N, Gong L, Wu C,
663 Schwartz S. 2020. Heterogeneous Nuclear Ribonucleoprotein A1 (hnRNP A1) and
664 hnRNP A2 Inhibit Splicing to Human Papillomavirus 16 Splice Site SA409 through a
665 UAG-Containing Sequence in the E7 Coding Region. *J Virol* 94.

666 12. Wang L, Wen M, Cao X. 2019. Nuclear hnRNPA2B1 initiates and amplifies the innate
667 immune response to DNA viruses. *Science* 365.

668 13. Wang Y, Zhou J, Du Y. 2014. hnRNP A2/B1 interacts with influenza A viral protein NS1
669 and inhibits virus replication potentially through suppressing NS1 RNA/protein levels and
670 NS1 mRNA nuclear export. *Virology* 449:53-61.

671 14. Zhou F, Wan Q, Chen S, Chen Y, Wang PH, Yao X, He ML. 2021. Attenuating innate
672 immunity and facilitating beta-coronavirus infection by NSP1 of SARS-CoV-2 through
673 specific redistributing hnRNP A2/B1 cellular localization. *Signal Transduct Target Ther*
674 6:371.

675 15. Chiu LY, Emery A, Jain N, Sugarman A, Kendrick N, Luo L, Ford W, Swanstrom R,
676 Tolbert BS. 2022. Encoded Conformational Dynamics of the HIV Splice Site A3
677 Regulatory Locus: Implications for Differential Binding of hnRNP Splicing Auxiliary
678 Factors. *J Mol Biol* 434:167728.

679 16. Li Z, Zeng W, Ye S, Lv J, Nie A, Zhang B, Sun Y, Han H, He Q. 2018. Cellular hnRNP A1
680 Interacts with Nucleocapsid Protein of Porcine Epidemic Diarrhea Virus and Impairs Viral
681 Replication. *Viruses* 10.

682 17. Black DL. 2003. Mechanisms of alternative pre-messenger RNA splicing. *Annu Rev
683 Biochem* 72:291-336.

684 18. Jean-Philippe J, Paz S, Caputi M. 2013. hnRNP A1: the Swiss army knife of gene
685 expression. *Int J Mol Sci* 14:18999-9024.

686 19. Martinez-Contreras R, Cloutier P, Shkreta L, Fisette JF, Revil T, Chabot B. 2007. hnRNP
687 proteins and splicing control. *Adv Exp Med Biol* 623:123-47.

688 20. Matera AG, Wang Z. 2014. A day in the life of the spliceosome. *Nat Rev Mol Cell Biol*
689 15:108-21.

690 21. Chen CY, Shyu AB. 1995. AU-rich elements: characterization and importance in mRNA
691 degradation. *Trends Biochem Sci* 20:465-70.

692 22. Myer VE, Steitz JA. 1995. Isolation and characterization of a novel, low abundance
693 hnRNP protein: A0. *RNA* 1:171-82.

694 23. Rousseau S, Morrice N, Peggie M, Campbell DG, Gaestel M, Cohen P. 2002. Inhibition
695 of SAPK2a/p38 prevents hnRNP A0 phosphorylation by MAPKAP-K2 and its interaction
696 with cytokine mRNAs. *EMBO J* 21:6505-14.

697 24. Young DJ, Stoddart A, Nakitandwe J, Chen SC, Qian Z, Downing JR, Le Beau MM.
698 2014. Knockdown of Hnrnpa0, a del(5q) gene, alters myeloid cell fate in murine cells
699 through regulation of AU-rich transcripts. *Haematologica* 99:1032-40.

700 25. Hamilton BJ, Burns CM, Nichols RC, Rigby WF. 1997. Modulation of AUUUA response
701 element binding by heterogeneous nuclear ribonucleoprotein A1 in human T
702 lymphocytes. The roles of cytoplasmic location, transcription, and phosphorylation. *J Biol
703 Chem* 272:28732-41.

704 26. Zhang J, Kong L, Guo S, Bu M, Guo Q, Xiong Y, Zhu N, Qiu C, Yan X, Chen Q, Zhang
705 H, Zhuang J, Wang Q, Zhang SS, Shen Y, Chen M. 2017. hnRNPs and ELAVL1
706 cooperate with uORFs to inhibit protein translation. *Nucleic Acids Res* 45:2849-2864.

707 27. Lu G, Maeda H, Reddy SV, Kurihara N, Leach R, Anderson JL, Roodman GD. 2006.
708 Cloning and characterization of the annexin II receptor on human marrow stromal cells. *J
709 Biol Chem* 281:30542-50.

710 28. Wei C, Peng B, Han Y, Chen WV, Rother J, Tomlinson GE, Boland CR, Chaussabel D,
711 Frazier ML, Amos CI. 2015. Mutations of HNRNPA0 and WIF1 predispose members of a
712 large family to multiple cancers. *Fam Cancer* 14:297-306.

713 29. Lu Y, Wang X, Gu Q, Wang J, Sui Y, Wu J, Feng J. 2022. Heterogeneous nuclear
714 ribonucleoprotein A/B: an emerging group of cancer biomarkers and therapeutic targets.
715 *Cell Death Discov* 8:337.

716 30. Belhadj S, Terradas M, Munoz-Torres PM, Aiza G, Navarro M, Capella G, Valle L. 2020.
717 Candidate genes for hereditary colorectal cancer: Mutational screening and systematic
718 review. *Hum Mutat* 41:1563-1576.

719 31. Konishi H, Fujiya M, Kashima S, Sakatani A, Dokoshi T, Ando K, Ueno N, Iwama T,
720 Moriichi K, Tanaka H, Okumura T. 2020. A tumor-specific modulation of heterogeneous
721 ribonucleoprotein A0 promotes excessive mitosis and growth in colorectal cancer cells.
722 *Cell Death Dis* 11:245.

723 32. Dreyfuss G, Matunis MJ, Pinol-Roma S, Burd CG. 1993. hnRNP proteins and the
724 biogenesis of mRNA. *Annu Rev Biochem* 62:289-321.

725 33. UniProt C. 2023. UniProt: the Universal Protein Knowledgebase in 2023. *Nucleic Acids
726 Res* 51:D523-D531.

727 34. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool
728 K, Bates R, Zidek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie
729 A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy
730 E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D,
731 Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D. 2021. Highly accurate
732 protein structure prediction with AlphaFold. *Nature* 596:583-589.

733 35. Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, Yuan D, Stroe
734 O, Wood G, Laydon A, Zidek A, Green T, Tunyasuvunakool K, Petersen S, Jumper J,
735 Clancy E, Green R, Vora A, Lutfi M, Figurnov M, Cowie A, Hobbs N, Kohli P, Kleywegt G,
736 Birney E, Hassabis D, Velankar S. 2022. AlphaFold Protein Structure Database:
737 massively expanding the structural coverage of protein-sequence space with high-
738 accuracy models. *Nucleic Acids Res* 50:D439-D444.

739 36. Sertznig H, Roesmann F, Wilhelm A, Heininger D, Bleekmann B, Elsner C, Santiago M,
740 Schuhenn J, Karakoeze Z, Benatzy Y, Snodgrass R, Esser S, Sutter K, Dittmer U,
741 Widera M. 2022. SRSF1 acts as an IFN-I-regulated cellular dependency factor decisively
742 affecting HIV-1 post-integration steps. *Front Immunol* 13:935800.

743 37. Takaori-Kondo A, Shindo K. 2013. HIV-1 Vif: a guardian of the virus that opens up a new
744 era in the research field of restriction factors. *Front Microbiol* 4:34.

745 38. Wang Y, Qian G, Zhu L, Zhao Z, Liu Y, Han W, Zhang X, Zhang Y, Xiong T, Zeng H, Yu
746 X, Yu X, Zhang X, Xu J, Zou Q, Yan D. 2022. HIV-1 Vif suppresses antiviral immunity by
747 targeting STING. *Cell Mol Immunol* 19:108-121.

748 39. Miller CM, Akiyama H, Agosto LM, Emery A, Ettinger CR, Swanstrom RI, Henderson AJ,
749 Gummuluru S. 2017. Virion-Associated Vpr Alleviates a Postintegration Block to HIV-1
750 Infection of Dendritic Cells. *J Virol* 91.

751 40. Purcell DF, Martin MA. 1993. Alternative splicing of human immunodeficiency virus type
752 1 mRNA modulates viral protein expression, replication, and infectivity. *J Virol* 67:6365-
753 78.

754 41. Keele BF, Giorgi EE, Salazar-Gonzalez JF, Decker JM, Pham KT, Salazar MG, Sun C,
755 Grayson T, Wang S, Li H, Wei X, Jiang C, Kirchherr JL, Gao F, Anderson JA, Ping LH,
756 Swanstrom R, Tomaras GD, Blattner WA, Goepfert PA, Kilby JM, Saag MS, Delwart EL,
757 Busch MP, Cohen MS, Montefiori DC, Haynes BF, Gaschen B, Athreya GS, Lee HY,
758 Wood N, Seoighe C, Perelson AS, Bhattacharya T, Korber BT, Hahn BH, Shaw GM.
759 2008. Identification and characterization of transmitted and early founder virus envelopes
760 in primary HIV-1 infection. *Proc Natl Acad Sci U S A* 105:7552-7.

761 42. Salazar-Gonzalez JF, Salazar MG, Keele BF, Learn GH, Giorgi EE, Li H, Decker JM,
762 Wang S, Baalwa J, Kraus MH, Parrish NF, Shaw KS, Guffey MB, Bar KJ, Davis KL,
763 Ochsenbauer-Jambor C, Kappes JC, Saag MS, Cohen MS, Mulenga J, Derdeyn CA,
764 Allen S, Hunter E, Markowitz M, Hraber P, Perelson AS, Bhattacharya T, Haynes BF,

765 Korber BT, Hahn BH, Shaw GM. 2009. Genetic identity, biological phenotype, and
766 evolutionary pathways of transmitted/founder viruses in acute and early HIV-1 infection. *J*
767 *Exp Med* 206:1273-89.

768 43. Widera M, Wilhelm A, Toptan T, Raffel JM, Kowarz E, Roesmann F, Grozinger F,
769 Siemund AL, Luciano V, Kulp M, Reis J, Bracharz S, Pallas C, Ciesek S, Marschalek R.
770 2021. Generation of a Sleeping Beauty Transposon-Based Cellular System for Rapid
771 and Sensitive Screening for Compounds and Cellular Factors Limiting SARS-CoV-2
772 Replication. *Front Microbiol* 12:701198.

773 44. Rogers S, Wells R, Rechsteiner M. 1986. Amino acid sequences common to rapidly
774 degraded proteins: the PEST hypothesis. *Science* 234:364-8.

775 45. Katze MG, He Y, Gale M, Jr. 2002. Viruses and interferon: a fight for supremacy. *Nat*
776 *Rev Immunol* 2:675-87.

777 46. Lee AJ, Ashkar AA. 2018. The Dual Nature of Type I and Type II Interferons. *Front*
778 *Immunol* 9:2061.

779 47. Widera M, Hillebrand F, Erkelenz S, Vasudevan A, Munk C, Schaal H. 2014. A functional
780 conserved intronic G run in HIV-1 intron 3 is critical to counteract APOBEC3G-mediated
781 host restriction. *Retrovirology* 11:72.

782 48. Lavender KJ, Gibbert K, Peterson KE, Van Dis E, Francois S, Woods T, Messer RJ,
783 Gawanbacht A, Muller JA, Munch J, Phillips K, Race B, Harper MS, Guo K, Lee EJ,
784 Trilling M, Hengel H, Piehler J, Verheyen J, Wilson CC, Santiago ML, Hasenkrug KJ,
785 Dittmer U. 2016. Interferon Alpha Subtype-Specific Suppression of HIV-1 Infection In
786 Vivo. *J Virol* 90:6001-13.

787 49. Sutter K, Dickow J, Dittmer U. 2018. Interferon alpha subtypes in HIV infection. *Cytokine*
788 *Growth Factor Rev* 40:13-18.

789 50. Victoria S, Temerozo JR, Gobbo L, Pimenta-Inada HK, Bou-Habib DC. 2013. Activation
790 of Toll-like receptor 2 increases macrophage resistance to HIV-1 infection.
791 *Immunobiology* 218:1529-36.

792 51. Zhou Y, Wang X, Liu M, Hu Q, Song L, Ye L, Zhou D, Ho W. 2010. A critical function of
793 toll-like receptor-3 in the induction of anti-human immunodeficiency virus activities in
794 macrophages. *Immunology* 131:40-9.

795 52. Pietrobon AJ, Yoshikawa FSY, Oliveira LM, Pereira NZ, Matozo T, de Alencar BC,
796 Duarte AJS, Sato MN. 2022. Antiviral Response Induced by Toll-Like Receptor (TLR)
797 7/TLR8 Activation Inhibits Human Immunodeficiency Virus Type 1 Infection in Cord Blood
798 Macrophages. *J Infect Dis* 225:510-519.

799 53. Antonelli G, Scagnolari C, Moschella F, Proietti E. 2015. Twenty-five years of type I
800 interferon-based treatment: a critical analysis of its therapeutic use. *Cytokine* *Growth*
801 *Factor Rev* 26:121-31.

802 54. Dillon SM, Guo K, Austin GL, Gianella S, Engen PA, Mutlu EA, Losurdo J, Swanson G,
803 Chakradeo P, Keshavarzian A, Landay AL, Santiago ML, Wilson CC. 2018. A
804 compartmentalized type I interferon response in the gut during chronic HIV-1 infection is
805 associated with immunopathogenesis. *AIDS* 32:1599-1611.

806 55. Jablonski JA, Caputi M. 2009. Role of cellular RNA processing factors in human
807 immunodeficiency virus type 1 mRNA metabolism, replication, and infectivity. *J Virol*
808 83:981-92.

809 56. Paz S, Krainer AR, Caputi M. 2014. HIV-1 transcription is regulated by splicing factor
810 SRSF1. *Nucleic Acids Res* doi:10.1093/nar/gku1170.

811 57. Damgaard CK, Kahns S, Lykke-Andersen S, Nielsen AL, Jensen TH, Kjems J. 2008. A 5'
812 splice site enhances the recruitment of basal transcription initiation factors in vivo. *Mol*
813 *Cell* 29:271-8.

814 58. Marchand V, Mereau A, Jacquet S, Thomas D, Mougin A, Gattoni R, Stevenin J,
815 Branlant C. 2002. A Janus splicing regulatory element modulates HIV-1 tat and rev

816 mRNA production by coordination of hnRNP A1 cooperative binding. *J Mol Biol* 323:629-
817 52.

818 59. Damgaard CK, Tange TO, Kjems J. 2002. hnRNP A1 controls HIV-1 mRNA splicing
819 through cooperative binding to intron and exon splicing silencers in the context of a
820 conserved secondary structure. *RNA* 8:1401-15.

821 60. Widera M, Erkelenz S, Hillebrand F, Krikoni A, Widera D, Kaisers W, Deenen R,
822 Gombert M, Dellen R, Pfeiffer T, Kaltschmidt B, Münk C, Bosch V, Kohrer K, Schaal H.
823 2013. An Intronic G Run within HIV-1 Intron 2 Is Critical for Splicing Regulation of vif
824 mRNA. *J Virol* 87:2707-20.

825 61. Lund N, Milev MP, Wong R, Sanmuganantham T, Woolaway K, Chabot B, Abou Elela S,
826 Moulard AJ, Cochrane A. 2012. Differential effects of hnRNP D/AUF1 isoforms on HIV-1
827 gene expression. *Nucleic Acids Res* 40:3663-3675.

828 62. Cartegni L, Maconi M, Morandi E, Cobianchi F, Riva S, Biamonti G. 1996. hnRNP A1
829 selectively interacts through its Gly-rich domain with different RNA-binding proteins. *J
830 Mol Biol* 259:337-48.

831 63. Weighardt F, Biamonti G, Riva S. 1996. The roles of heterogeneous nuclear
832 ribonucleoproteins (hnRNP) in RNA metabolism. *Bioessays* 18:747-56.

833 64. Pont AR, Sadri N, Hsiao SJ, Smith S, Schneider RJ. 2012. mRNA decay factor AUF1
834 maintains normal aging, telomere maintenance, and suppression of senescence by
835 activation of telomerase transcription. *Mol Cell* 47:5-15.

836 65. Malik AK, Flock KE, Godavarthi CL, Loh HH, Ko JL. 2006. Molecular basis underlying the
837 poly C binding protein 1 as a regulator of the proximal promoter of mouse mu-opioid
838 receptor gene. *Brain Res* 1112:33-45.

839 66. Fukuda A, Nakadai T, Shimada M, Hisatake K. 2009. Heterogeneous nuclear
840 ribonucleoprotein R enhances transcription from the naturally configured c-fos promoter
841 in vitro. *J Biol Chem* 284:23472-80.

842 67. Kukalev A, Nord Y, Palmberg C, Bergman T, Percipalle P. 2005. Actin and hnRNP U
843 cooperate for productive transcription by RNA polymerase II. *Nat Struct Mol Biol* 12:238-
844 44.

845 68. Hay DC, Kemp GD, Dargemont C, Hay RT. 2001. Interaction between hnRNPA1 and
846 IkappaBalphα is required for maximal activation of NF-kappaB-dependent transcription.
847 *Mol Cell Biol* 21:3482-90.

848 69. Byers SA, Price JP, Cooper JJ, Li Q, Price DH. 2005. HEXIM2, a HEXIM1-related
849 protein, regulates positive transcription elongation factor b through association with 7SK.
850 *J Biol Chem* 280:16360-7.

851 70. Sedore SC, Byers SA, Biglione S, Price JP, Maury WJ, Price DH. 2007. Manipulation of
852 P-TEFb control machinery by HIV: recruitment of P-TEFb from the large form by Tat and
853 binding of HEXIM1 to TAR. *Nucleic Acids Res* 35:4347-58.

854 71. Van Herreweghe E, Egloff S, Goiffon I, Jady BE, Froment C, Monsarrat B, Kiss T. 2007.
855 Dynamic remodelling of human 7SK snRNP controls the nuclear level of active P-TEFb.
856 *EMBO J* 26:3570-80.

857 72. Barrandon C, Bonnet F, Nguyen VT, Labas V, Bensaude O. 2007. The transcription-
858 dependent dissociation of P-TEFb-HEXIM1-7SK RNA relies upon formation of hnRNP-
859 7SK RNA complexes. *Mol Cell Biol* 27:6996-7006.

860 73. Lau JS, Baumeister P, Kim E, Roy B, Hsieh TY, Lai M, Lee AS. 2000. Heterogeneous
861 nuclear ribonucleoproteins as regulators of gene expression through interactions with the
862 human thymidine kinase promoter. *J Cell Biochem* 79:395-406.

863 74. Huang PR, Hung SC, Wang TC. 2010. Telomeric DNA-binding activities of
864 heterogeneous nuclear ribonucleoprotein A3 in vitro and in vivo. *Biochim Biophys Acta*
865 1803:1164-74.

866 75. Michelotti EF, Michelotti GA, Aronsohn AI, Levens D. 1996. Heterogeneous nuclear
867 ribonucleoprotein K is a transcription factor. *Mol Cell Biol* 16:2350-60.

868 76. Baber JL, Libutti D, Levens D, Tjandra N. 1999. High precision solution structure of the
869 C-terminal KH domain of heterogeneous nuclear ribonucleoprotein K, a c-myc
870 transcription factor. *J Mol Biol* 289:949-62.

871 77. Ostrowski J, Kawata Y, Schullery DS, Denisenko ON, Bomsztyk K. 2003. Transient
872 recruitment of the hnRNP K protein to inducibly transcribed gene loci. *Nucleic Acids Res*
873 31:3954-62.

874 78. Stains JP, Lecanda F, Towler DA, Civitelli R. 2005. Heterogeneous nuclear
875 ribonucleoprotein K represses transcription from a cytosine/thymidine-rich element in the
876 osteocalcin promoter. *Biochem J* 385:613-23.

877 79. Fackelmayer FO, Dahm K, Renz A, Ramsperger U, Richter A. 1994. Nucleic-acid-binding
878 properties of hnRNP-U/SAF-A, a nuclear-matrix protein which binds DNA and RNA in
879 vivo and in vitro. *Eur J Biochem* 221:749-57.

880 80. Bi HS, Yang XY, Yuan JH, Yang F, Xu D, Guo YJ, Zhang L, Zhou CC, Wang F, Sun SH.
881 2013. H19 inhibits RNA polymerase II-mediated transcription by disrupting the hnRNP U-
882 actin complex. *Biochim Biophys Acta* 1830:4899-906.

883 81. Han SP, Tang YH, Smith R. 2010. Functional diversity of the hnRNPs: past, present and
884 perspectives. *Biochem J* 430:379-92.

885 82. Brierley I, Dos Ramos FJ. 2006. Programmed ribosomal frameshifting in HIV-1 and the
886 SARS-CoV. *Virus Res* 119:29-42.

887 83. Ofori LO, Hilmire TA, Bennett RP, Brown NW, Jr., Smith HC, Miller BL. 2014. High-
888 affinity recognition of HIV-1 frameshift-stimulating RNA alters frameshifting in vitro and
889 interferes with HIV-1 infectivity. *J Med Chem* 57:723-32.

890 84. Zimmer MM, Kibe A, Rand U, Pekarek L, Ye L, Buck S, Smyth RP, Cicin-Sain L,
891 Caliskan N. 2021. The short isoform of the host antiviral protein ZAP acts as an inhibitor
892 of SARS-CoV-2 programmed ribosomal frameshifting. *Nat Commun* 12:7193.

893 85. Wang X, Xuan Y, Han Y, Ding X, Ye K, Yang F, Gao P, Goff SP, Gao G. 2019.
894 Regulation of HIV-1 Gag-Pol Expression by Shiftless, an Inhibitor of Programmed -1
895 Ribosomal Frameshifting. *Cell* 176:625-635 e14.

896 86. Jonson L, Vikesaa J, Krogh A, Nielsen LK, Hansen T, Borup R, Johnsen AH,
897 Christiansen J, Nielsen FC. 2007. Molecular composition of IMP1 ribonucleoprotein
898 granules. *Mol Cell Proteomics* 6:798-811.

899 87. Wolozin B, Ivanov P. 2019. Stress granules and neurodegeneration. *Nat Rev Neurosci*
900 20:649-666.

901 88. Suzuki Y, Chin WX, Han Q, Ichiyama K, Lee CH, Eyo ZW, Ebina H, Takahashi H,
902 Takahashi C, Tan BH, Hishiki T, Ohba K, Matsuyama T, Koyanagi Y, Tan YJ, Sawasaki
903 T, Chu JJ, Vasudevan SG, Sano K, Yamamoto N. 2016. Characterization of RyDEN
904 (C19orf66) as an Interferon-Stimulated Cellular Inhibitor against Dengue Virus
905 Replication. *PLoS Pathog* 12:e1005357.

906 89. Megger DA, Philipp J, Le-Trilling VTK, Sitek B, Trilling M. 2017. Deciphering of the
907 Human Interferon-Regulated Proteome by Mass Spectrometry-Based Quantitative
908 Analysis Reveals Extent and Dynamics of Protein Induction and Repression. *Front
909 Immunol* 8:1139.

910 90. Trilling M, Bellora N, Rutkowski AJ, de Graaf M, Dickinson P, Robertson K, Prazeres da
911 Costa O, Ghazal P, Friedel CC, Alba MM, Dolken L. 2013. Deciphering the modulation of
912 gene expression by type I and II interferons combining 4sU-tagging, translational arrest
913 and in silico promoter analysis. *Nucleic Acids Res* 41:8107-25.

914 91. O'Shea JJ, Schwartz DM, Villarino AV, Gadina M, McInnes IB, Laurence A. 2015. The
915 JAK-STAT pathway: impact on human disease and therapeutic intervention. *Annu Rev
916 Med* 66:311-28.

917 92. Consortium EP. 2012. An integrated encyclopedia of DNA elements in the human
918 genome. *Nature* 489:57-74.

919 93. Luo Y, Hitz BC, Gabdank I, Hilton JA, Kagda MS, Lam B, Myers Z, Sud P, Jou J, Lin K,
920 Baymuradov UK, Graham K, Litton C, Miyasato SR, Strattan JS, Jolanki O, Lee JW,
921 Tanaka FY, Adenekan P, O'Neill E, Cherry JM. 2020. New developments on the
922 Encyclopedia of DNA Elements (ENCODE) data portal. *Nucleic Acids Res* 48:D882-
923 D889.

924 94. Bampton A, Gittings LM, Fratta P, Lashley T, Gatt A. 2020. The role of hnRNPs in
925 frontotemporal dementia and amyotrophic lateral sclerosis. *Acta Neuropathol* 140:599-
926 623.

927 95. Rossbach O, Hung LH, Schreiner S, Grishina I, Heiner M, Hui J, Bindereif A. 2009. Auto-
928 and cross-regulation of the hnRNP L proteins by alternative splicing. *Mol Cell Biol*
929 29:1442-51.

930 96. Kemmerer K, Fischer S, Weigand JE. 2018. Auto- and cross-regulation of the hnRNPs D
931 and DL. *RNA* 24:324-331.

932 97. Chabot B, LeBel C, Hutchison S, Nasim FH, Simard MJ. 2003. Heterogeneous nuclear
933 ribonucleoprotein particle A/B proteins and the control of alternative splicing of the
934 mammalian heterogeneous nuclear ribonucleoprotein particle A1 pre-mRNA. *Prog Mol
935 Subcell Biol* 31:59-88.

936 98. Dassi E. 2017. Handshakes and Fights: The Regulatory Interplay of RNA-Binding
937 Proteins. *Front Mol Biosci* 4:67.

938 99. Muller-McNicoll M, Rossbach O, Hui J, Medenbach J. 2019. Auto-regulatory feedback by
939 RNA-binding proteins. *J Mol Cell Biol* 11:930-939.

940 100. Ronkina N, Menon MB, Schwermann J, Tiedje C, Hitti E, Kotlyarov A, Gaestel M. 2010.
941 MAPKAP kinases MK2 and MK3 in inflammation: complex regulation of TNF
942 biosynthesis via expression and phosphorylation of tristetraprolin. *Biochem Pharmacol*
943 80:1915-20.

944 101. Lambert M, Benmoussa A, Diallo I, Ouellet-Boutin K, Dorval V, Majeau N, Joly-
945 Beauparlant C, Droit A, Bergeron A, Tetu B, Fradet Y, Pouliot F, Provost P. 2021.
946 Identification of Abundant and Functional dodecaRNAs (doRNAs) Derived from
947 Ribosomal RNA. *Int J Mol Sci* 22.

948 102. Dong X, Chen X, Lu D, Diao D, Liu X, Mai S, Feng S, Xiong G. 2022. LncRNA
949 miR205HG hinders HNRNPA0 translation: anti-oncogenic effects in esophageal
950 carcinoma. *Mol Oncol* 16:795-812.

951 103. Dillon SM, Lee EJ, Kotter CV, Austin GL, Gianella S, Siewe B, Smith DM, Landay AL,
952 McManus MC, Robertson CE, Frank DN, McCarter MD, Wilson CC. 2016. Gut dendritic
953 cell activation links an altered colonic microbiome to mucosal and systemic T-cell
954 activation in untreated HIV-1 infection. *Mucosal Immunol* 9:24-37.

955 104. Haile WB, Gavegnano C, Tao S, Jiang Y, Schinazi RF, Tyor WR. 2016. The Janus
956 kinase inhibitor ruxolitinib reduces HIV replication in human macrophages and
957 ameliorates HIV encephalitis in a murine model. *Neurobiol Dis* 92:137-43.

958 105. Sertznig H, Roesmann F, Wilhelm A, Heininger D, Bleekmann B, Elsner C, Santiago M,
959 Schuhenn J, Karakoeze Z, Benatzy Y, Snodgrass R, Esser S, Sutter K, Dittmer U,
960 Widera M. 2022. SRSF1 acts as an IFN-I-regulated cellular dependency factor decisively
961 affecting HIV-1 post-integration steps. *Frontiers in Immunology* 13.

962 106. Schaal H, Pfeiffer P, Klein M, Gehrmann P, Scheid A. 1993. Use of DNA end joining
963 activity of a *Xenopus laevis* egg extract for construction of deletions and expression
964 vectors for HIV-1 Tat and Rev proteins. *Gene* 124:275-80.

965 107. Kowarz E, Loscher D, Marschalek R. 2015. Optimized Sleeping Beauty transposons
966 rapidly generate stable transgenic cell lines. *Biotechnol J* 10:647-53.

967 108. Dominguez D, Freese P, Alexis MS, Su A, Hochman M, Palden T, Bazile C, Lambert NJ,
968 Van Nostrand EL, Pratt GA, Yeo GW, Graveley BR, Burge CB. 2018. Sequence,
969 Structure, and Context Preferences of Human RNA Binding Proteins. *Mol Cell* 70:854-
970 867 e9.

971 109. Paz I, Kosti I, Ares M, Jr., Cline M, Mandel-Gutfreund Y. 2014. RBPmap: a web server
972 for mapping binding sites of RNA-binding proteins. Nucleic Acids Res 42:W361-7.
973 110. Letunic I, Khedkar S, Bork P. 2021. SMART: recent updates, new developments and
974 status in 2020. Nucleic Acids Res 49:D458-D460.

975

976

977

978 **Figure legends:**

979 **Figure 9 Overexpression of hnRNPA0 limits production of infectious HIV-1 particles.** (a)
980 Point accepted mutation 120 matrix (PAM 120) of the hnRNPA/B family. For each hnRNP the
981 canonical sequence was chosen from the Uniprot database (33). Entry IDs: hnRNPA0: Q13151,
982 hnRNPA1: P09651, hnRNPA2B1: P22626, hnRNPA3: P51991. (b) Protein structure of
983 hnRNPA0 was predicted using Alphafold (34, 35). (c-e) Vero (c,e) or HEK293T (d) cells were
984 transfected with an hnRNPA0 expressing vector. (c) 24 h post transfection cells were fixed using
985 3% formaldehyde for 10 min at RT and permeabilized using 0.1% Triton X-100 for 10 min. Cells
986 were rinsed twice with PBS and unspecific binding sites were blocked using 2% BSA for 20 min
987 before samples were incubated for 1 h with antibodies against cellular and FLAG-tagged
988 hnRNPA0 following a washing step and an 1 h incubation with secondary antibodies. Nuclei
989 were stained using DAPI (d) 24 h post transfection RNA was isolated and expression levels
990 were analyzed via RT-qPCR. (e) 24 h post transfection proteins were isolated and Western
991 blotting was performed to analyze the protein amount using an antibody against hnRNPA0. One
992 representative Western blot of three independent experiments is shown. (f-i) HEK293T were
993 transfected with the proviral molecular clone NL4-3 and an hnRNPA0 expressing vector. 48 h
994 post transfection viral supernatant was harvested and the (f) particle production was analyzed
995 via p24-Capsid-ELISA, the (g) viral copy numbers were analyzed using RT-qPCR and the (h,i)
996 presence of infectious particles in the cell culture supernatant was analyzed using TZM-bl
997 reporter cells (h) luciferase assay and (i) X-Gal staining. Mean (+SD) of four independent
998 experiments is shown for (d,f,g,h) Unpaired two-tailed t-tests were performed to determine
999 statistical significance (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001).

1000 **Figure 10 HIV-1 splicing pattern and LTR-activity at high and low hnRNPA0 conditions.** (a-
1001 e) HEK293T cells were transfected with a plasmid coding for the proviral clone NL4-3 (pNL4-3)
1002 and an expression vector encoding hnRNPA0 or an empty vector control (pcDNA3.1(+)). 48 h

1003 post transfection RNA was isolated and subjected to further analysis. **(g-k)** HEK293T cells were
1004 transfected with pNL4-3 as well as siRNA against hnRNPA0 or an off-target control. 72 h post
1005 transfection cells were lysed, RNA isolated and RT-qPCR was performed to evaluate expression
1006 levels. **(a)** RT-PCR was performed using primer pairs covering viral mRNA isoforms of the 2kb,
1007 4kb and tat-mRNA-class (described in (36). Primers covering HIV-1 exon 7 containing
1008 transcripts were used for normalization of whole-viral-mRNA and cellular GAPDH was included
1009 as loading control. The HIV-1 transcript isoforms are labelled according to (40). The amplified
1010 PCR products were separated on a 12% non-denaturing polyacrylamide gel. **(b)** expression
1011 levels of exon 1 and exon 7 containing mRNAs (total viral mRNA) were normalized to GAPDH.
1012 **(c-e)** Expression levels of **(c)** multiply spliced and unspliced mRNAs, **(d)** exon 2 and exon 3
1013 containing mRNAs, **(e)** *vif* and *vpr* were normalized to exon 1 and exon 7 containing mRNAs
1014 (total viral mRNA). **(f)** Vero cells were transfected with plasmids coding for hnRNPA0 (pcDNA-
1015 FLAG-NLS-hnRNPA0), Tat (SVcTat) and a Firefly luciferase reporter plasmid with LTR
1016 sequences from the proviral clone NL4-3 sequences obtained from transmitted founder viruses
1017 (TFV) from patient samples (TFV#1-10) (41, 42) provided by Dr. John C. Kappes. A vector
1018 (pTA_Luc) expressing only the Firefly luciferase was used as control. 24h post transfection the
1019 cells were lysed and luciferase-based reporter assays were performed. The relative light units
1020 (RLUs) were normalized to the protein amount analyzed via Bradford assay. **(I)** A549 LTR Luc-
1021 PEST reporter cells were transfected with a plasmid encoding the Tat protein (SVcTat) as well
1022 as siRNA against hnRNPA0 or an off-target control. 48 h post transfection cells were lysed and
1023 luciferase reporter assays were performed. The RLUs were normalized to the protein amount
1024 analyzed via Bradford assay. The reporter cell line was previously generated using the Sleeping
1025 Beauty system (43). The PEST sequence fused to the Firefly luciferase causes a rapid
1026 degradation of the protein (44). Mean (+SD) of four biological replicates for (b-e & h-k), three
1027 replicates for (f) and twelve independent replicates from two biologically independent
1028 experiments for (I). Unpaired two-tailed t-tests were calculated to determine whether the

1029 difference between sample groups reached the level of statistical significance (*p<0.05,
1030 **p<0.01, ***p<0.001, ****p<0.0001 and ns, not significant) for (f) two-way ANOVA with Dunnett
1031 post-hoc test was performed.

1032 **Figure 11 HIV-1 protein levels are modulated upon hnRNPA0 overexpression or**
1033 **knockdown.** HEK293T cells were transfected with a plasmid encoding the proviral clone NL4-3
1034 and an expression vector coding for hnRNPA0. 48 h post transfection cells were lysed and the
1035 protein amounts were analyzed via Western blotting using the antibodies listed in (Tab.1).
1036 Trichloroethanol was used to stain total protein amounts, which were further used for
1037 normalization. (a) Representative Western blot of four independent replicates for the
1038 overexpression of hnRNPA0 quantified in (b). For improved comparability, the samples were
1039 repositioned adjacently after imaging, as denoted by the dotted line. The depicted samples
1040 underwent processing on the same nitrocellulose membrane. (c-d) HEK293T cells were
1041 transfected with pNL4-3 as well as siRNA against hnRNPA0 or an off-target control. 72h post
1042 transfection cells were lysed and Western blotting was performed to evaluate the protein
1043 amounts. (c) Representative Western blot of four independent replicates of the quantification
1044 shown in (d). (e) HEK293T cells were transfected with pNL4-3 and increasing amounts of a
1045 plasmid encoding hnRNPA0 (250, 500, 1000, 1500 ng). 48 h post transfection cells were lysed,
1046 proteins were separated via PAGE and analyzed via immunoblotting using an antibody targeting
1047 p15. One representative Western blot of three independent experiments is shown (f) HEK293T
1048 cells were transfected with the indicated amounts of a plasmid encoding hnRNPA0. 6h post
1049 transfection a second transfection was performed using luciferase reporter plasmids including
1050 the HIV-1 frameshift site. 24h post second transfection the cells were harvested and the Firefly
1051 to Renilla luciferase activity ratio was measured via luciferase reporter assay. In the luciferase
1052 reporter the Renilla luciferase is positioned in-frame, facilitating translation during ribosomal
1053 scanning of the RNA, while the Firefly luciferase is placed in the -1-frame, yielding a functional
1054 polyprotein only upon occurrence of the -1 frameshift. Mean (+SD) of three biologically

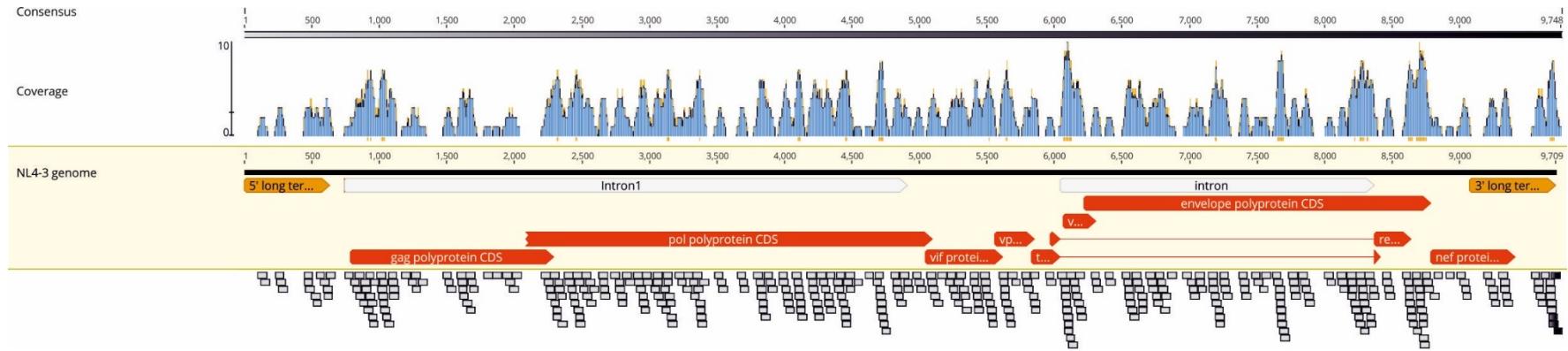
1055 independent experiments with three replicates each is shown. For 350 and 400 ng one
1056 experiment with three independent replicates was performed. Unpaired two-tailed t-tests were
1057 calculated to determine whether the difference between the sample groups reached the level of
1058 statistical significance (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 and ns, not significant), for
1059 (f) Mixed-effects analyses followed by Dunnett post-hoc test were performed.

1060 **Figure 12 Knockdown of hnRNPA0 elevates viral particle production, copy numbers and**
1061 **infectivity.** HEK293T cells were transfected with a plasmid coding for the proviral clone NL4-3
1062 and siRNA against hnRNPA0 and an off-target control. 72 h post transfection the supernatant
1063 was harvested and used for subsequent experiments. Particle production was analyzed via (a)
1064 p24-Capsid-ELISA. (b) RNA of the viral supernatant was isolated and RT-qPCR was performed
1065 to evaluate viral copy numbers. (c) Viral supernatant was used to infect TZM-bl reporter cells.
1066 48 h post infection TZM-bl cells were lysed and the luciferase activity was measured. The
1067 relative light units were normalized to the total protein amount analyzed via Bradford assay.
1068 Mean (+SD) is shown of four independent replicates of (a), six of (b) and four of (c) with two
1069 technical replicates each. Unpaired two-tailed t-tests were calculated to determine whether the
1070 difference between the sample groups reached the level of statistical significance (*p<0.05,
1071 **p<0.01, ***p<0.001, ****p<0.0001 and ns, not significant) for (c) the groups were compared by
1072 two-way ANOVA with Bonferroni post hoc test.

1073 **Figure 13 Interferon signaling regulates hnRNPA0 mRNA expression.** Differentiated THP-1
1074 macrophages were treated with 1 μ M Ruxolitinib or a DMSO solvent control 1 h before
1075 inoculation of the viral clone NL4-3 AD8 (MOI 1). 16 h post infection cells were washed and
1076 medium containing 10 ng/ml IFN α 14 or PBS and 1 μ M Ruxolitinib or DMSO was added. At the
1077 indicated time points post treatment, cells were lysed and further subjected to RNA isolation. RT-
1078 qPCR was performed to monitor mRNA expression levels of (a) ISG15 (b) IFITM1 and (c)
1079 hnRNPA0. Mean (+SD) of two biologically independent experiments were performed with 4

1080 biological replicates each. The groups were compared with two-way repeated-measures ANOVA
1081 with Tukey's post-hoc test to determine whether the difference between the sample groups
1082 reached the level of statistical significance (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 and ns,
1083 not significant).

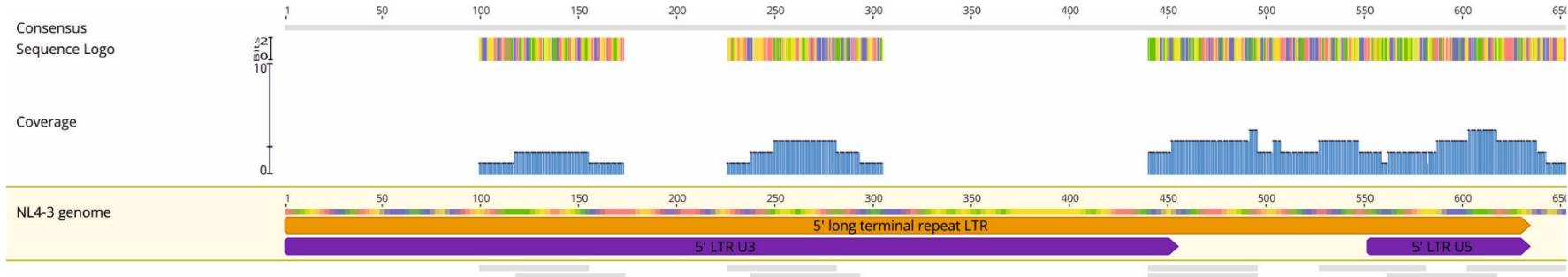
1084 **Figure 14 hnRNPA0 mRNA and protein levels are decreased upon IFN stimulation in HIV**
1085 **target cells.** Differentiated THP-1 (**a-d**) or Jurkat (**e-h**) cells were treated with IFN α 2 (dark red)
1086 or IFN α 14 (bright red) [10 ng/ml]. At the indicated time points cells were lysed and subjected to
1087 the respective read-out. (**a-h**) mRNA expression of (**a,c,e,g**) ISG15 and (**b,d,f,h**) hnRNPA0 in
1088 THP-1 and Jurkat cells upon IFN treatment RT-qPCR was performed to monitor expression
1089 levels. ACTB was used as loading control. (**i,j**) THP-1 cells were treated with 10 ng/ml IFN α 14.
1090 Proteins were separated by SDS-PAGE, blotted on a nitrocellulose membrane, and analyzed
1091 using an antibody against hnRNPA0. Total protein amounts were stained using Trichloroethanol
1092 and used for normalization. (**i**) Representative Western blots of hnRNPA0 from THP-1 cells
1093 treated with PBS or IFN α 14. (**j**) The mean values of the quantification of 4 independent Western
1094 blots per condition are shown. (**k,l**) Monocyte derviced macrophages were treated with 10 ng/ml
1095 IFN α 14. At the indicated time points cells were lysed and RNA was isolated to evaluate mRNA
1096 expression levels via RT-qPCR of (**k**) ISG15 and (**l**) hnRNPA0. Expression levels of three
1097 independent experiments are shown. (**a-h**) Mean (+SD) is shown of four independent
1098 experiments ((**a-d**) at 12-48 h contain three replicates). (**a-j**) Two-way repeated-measures
1099 ANOVA with Šidák multiple comparisons test, and (**k,l**) one-way repeated-measures ANOVA
1100 with Dunnett post-hoc test were performed to evaluate whether the differences between the
1101 groups reached statistical significance (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001).


1102 **Figure 15 ISG15 and hnRNPA0 mRNA expression levels in HIV-1 infected cohorts.** Relative
1103 expression levels of (**a**) ISG15 and (**b**) hnRNPA0 of PBMCs of healthy, HIV acutely infected, HIV
1104 chronically infected, and HIV infected ART treated individuals. ART <40 patients were below 40

1105 copies/ml (measured by RT-qPCR). ACTB was used for normalization. Mean is indicated as “+”.
1106 Error bars are indicated as Tukey min and max values. Purple rectangles represent outliers that
1107 were not included into statistical analysis. PMBCs were isolated from 11 healthy donors, 13 with
1108 acute HIV-1 infection, 17 treatment-naïve patients with chronic HIV-1 infection and 17 HIV-1
1109 infected patients on ART. Kruskal–Wallis test with the Dunn’s post-hoc multiple comparisons test
1110 was used to determine whether the difference between the sample groups reached the level of
1111 statistical significance (*p<0.05, and ns, not significant).

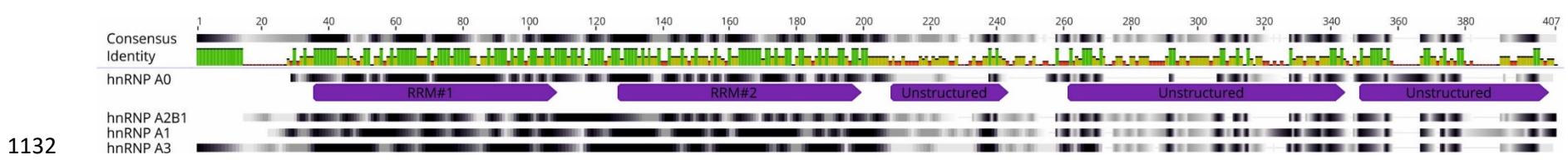
1112 **Figure 16 Gene expression levels of hnRNPs in HIV-1-uninfected versus HIV-1-infected**
1113 **and (un-)treated individuals.** RNA-sequencing analysis was used to measure transcript levels
1114 of hnRNP genes in intestinal lamina propria mononuclear cells (LPMCs). Comparison of the
1115 transcript levels of **(a)** HIV-1 infected (n=19) and healthy individuals (n=13) and **(b)** HIV-1
1116 infected ART receiving individuals (n=14) and healthy individuals (n=11). TPM are presented as
1117 mean (+ SD). To evaluate whether the differences of the groups reached statistical significance
1118 they were compared by two-way ANOVA with Bonferroni post hoc test (*p<0.05, **p<0.01,
1119 ***p<0.001 and ****p<0.0001).

1120


1121 **Supplementary Material**

1122

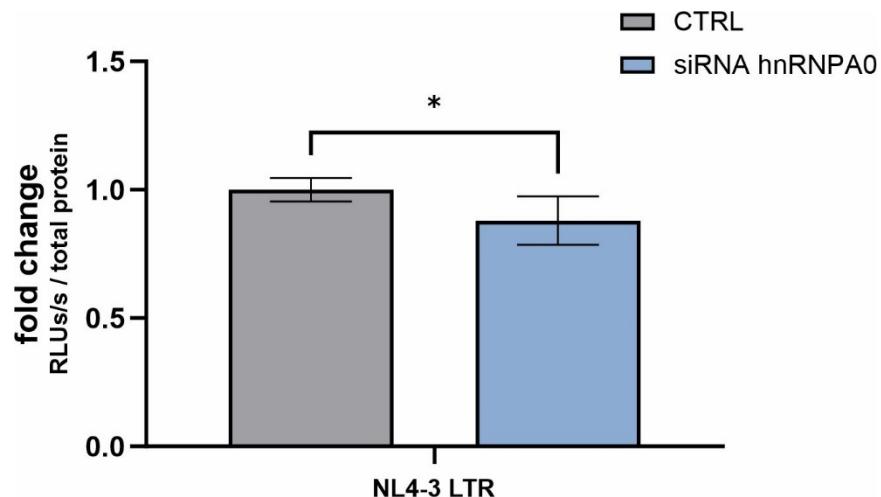
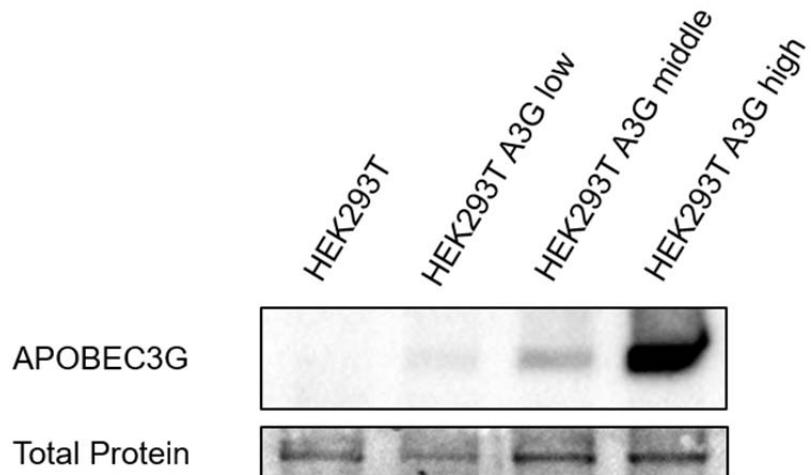
1123 **Supplementary Figure 1 hnRNPA0 binding sites within the subviral clone NL4-3.** The binding sequence motifs of hnRNPA0 (108) were mapped to the subviral
1124 clone NL4-3 using RBPmap (109). Regions with more than 6 clustered binding sites are highlighted in orange below the coverage graph. The frequency of binding
1125 sites per region is indicated by the coverage, shown in blue bars. The respective sequences are shown below the NL4-3 genome.


1126

1127

1128 **Supplementary Figure 2 hnRNPA0 binding sites within the NL4-3 5' LTR.** The binding sequence motifs of hnRNPA0 (108) were mapped to the subviral clone
 1129 NL4-3 using RBPmap (109). The frequency of binding sites per region is indicated by the coverage, shown in blue bars. The respective sequences are shown below
 1130 the NL4-3 genome. The unique 3 (U3) and unique 5 (U5) elements of the 5' LTR promoter are indicated in purple.

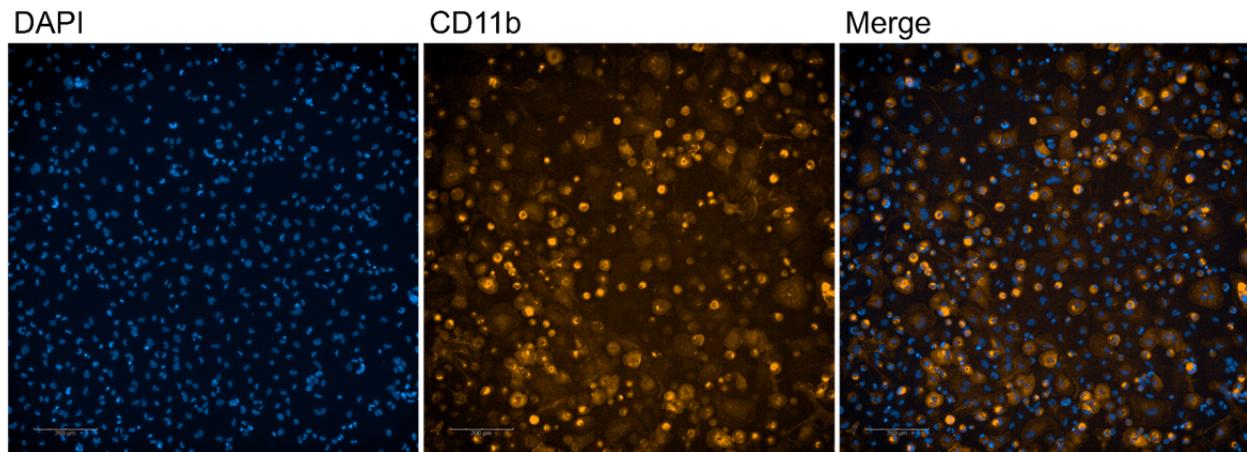
1131

1132

1133 **Supplementary Figure 3 Protein alignment of the four members of the hnRNP A/B family.** Clustal Omega alignment of the canonical sequences of hnRNPA0,
 1134 A1, A2B1, A3. The similarity of sequences was calculated using a Blosum62 score matrix and visualized using different shades of grey with black indicating 100%
 1135 similarity. Mean pairwise identity over all pairs in the column is visualized under "Identity" using bars with a color code from red to green with tall green bars indicating
 1136 100% similarity between the pairs in the respective region. The protein sequences were ordered according to similarity to each other. Sequences were obtained from
 1137 the Uniprot database (33) with the respective entry IDs: hnRNPA0: Q13151, hnRNPA1: P09651, hnRNPA2B1: P22626, hnRNPA3: P51991. Domains of hnRNPA0
 1138 were annotated according to SMART prediction (110). RRM = RNA-recognition-motif

1139


1140

1148

1149 **Supplementary Figure 5 NL4-3 LTR activity is decreased under depleted hnRNPA0 levels in the absence of**
1150 **Tat.** A549 LTR Luc-PEST cells were transfected with either siRNA targeting hnRNPA0 or a non-template siRNA as
1151 control. 48h post transfection cells were rinsed with PBS, lysed and the luciferase activity was measured via luciferase
1152 assay. Unpaired two-tailed t-tests were calculated to determine whether the difference between sample groups
1153 reached the level of statistical significance (*p<0.05, **p<0.01, ***p<0.001, ****p< 0.0001 and ns, not significant)

1154

1155

1156 **Supplementary Figure 6 CD11b staining in differentiated THP-1 cells.** THP-1 cells were seeded into 6-well plates
1157 and treated with 100nM Phorbol-12-myristate-13-acetate (PMA). 5 days post treatment cells were washed using PBS,
1158 fixed for 10min using 3% formaldehyde and permeabilized for 10min using 0.1% Triton X-100. Unspecific binding sites
1159 were blocked using 2% BSA for 20min before immunohistochemistry staining was performed. Nuclei were stained using
1160 DAPI and CD11b was stained as a marker for differentiation using an PE labeled antibody directed against CD11b.