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Significance Statement 
 
There is increasing evidence that the function of resting-state brain networks 
contributes to individual differences in cognition and behaviour across development. 
However, the relationship between dynamic, transient patterns of switching between 
resting-state networks and neurodevelopmental diversity is largely unknown. Here, 
we show that cognitive ability in childhood is related to the complexity of resting-state 
brain dynamics. Additionally, we demonstrate that the probability of transitioning into 
and remaining in certain ‘states’ of brain network activity predicts individual 
differences in cognitive ability. 
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1 Abstract 
 

Resting-state network activity has been associated with the emergence of individual 

differences across childhood development. However, due to the limitations of time-

averaged representations of neural activity, little is known about how cognitive and 

behavioural variability relates to the rapid spatiotemporal dynamics of these networks. 

Magnetoencephalography (MEG), which records neural activity at a millisecond 

timescale, can be combined with Hidden Markov Modelling (HMM) to track the 

spatial and temporal characteristics of transient neural states. We applied HMMs to 

resting-state MEG data from (n = 46) children aged 8-13, who were also assessed on 

their cognitive ability and across multiple parent-report measures of behaviour. We 

found that entropy-related properties of participants’ resting-state time-courses were 

positively associated with cognitive ability. Additionally, cognitive ability was 

positively correlated with the probability of transitioning into HMM states involving 

fronto-parietal and somatomotor activation, and negatively associated with a state 

distinguished by default-mode network suppression. We discuss how using dynamical 

measures to characterise rapid, spontaneous patterns of brain activity can shed new 

light on neurodevelopmental processes implicated in the emergence of cognitive 

differences in childhood. 

 

2 Introduction 
 

2.1 The emergence of resting-state networks across childhood 

development 

 

Brain activity is characterised by intrinsic dynamics in the form of spatially-coherent 

and spontaneous fluctuations, which form resting-state networks (RSNs). RSNs were 

first discovered in the form of functionally-correlated features of fMRI timeseries 

during resting-state scans (Biswal et al., 1995; Lowe et al., 1998; Xiong et al., 1999; 

Cordes et al., 2000), and later taxonomised across a wide range of neuroimaging 

modalities (Kiviniemi et al., 2003; van den Heuvel et al., 2009; Allen et al., 2011). 

Further studies revealed a correspondence between the brain’s functional architecture 

across tasks and at rest, indicating that these networks support distinct features of 

sensory processing, cognition, and behaviour (Smith et al. 2009). As such, RSNs are 

thought to have emerged across evolutionary timescales, and are known to develop 

from infancy through adolescence, in order to serve specific functions (Yeo et al., 

2011). Understanding the nature of spontaneous patterns of brain activity, and how 

they develop, is therefore an important challenge within developmental cognitive 

neuroscience. 
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2.2 Resting-state characteristics predict individual differences in 

cognition and behaviour  

 

Divergent RSN development has been observed in those with neurodevelopmental 

conditions. Typical childhood development is characterised by a gradual segregation 

between the default-mode network and task-positive networks across the brain. 

Functional over-connectivity between these networks is associated with cognitive and 

behavioural difficulties, particularly Attention-Deficit Hyperactivity Disorder (ADHD) 

(Cortese et al., 2012; Sripada et al., 2014; Francx et al., 2015; Cai et al., 2018; de Lacy 

& Calhoun, 2018; Jones et al., 2022). Children with conditions like ADHD have also 

been found to demonstrate profiles of lower fronto-parietal activation at rest (Cortese 

et al., 2012; Castellanos & Proal, 2012), as have those diagnosed with intellectual 

disabilities in childhood (Ma et al., 2021). Given the fact that RSN function is 

implicated in developmental divergence, there is value in outlining the precise 

mechanisms by which RSN differences might correspond to population-level 

variations in cognitive ability and behavioural difficulty.  

 

2.3 Using dynamical measures to characterise the spatiotemporal 

properties of spontaneous brain activity  

 

As discussed previously, spontaneous functional network activity can be described 

using static, time-averaged representations of neural activation. However, 

computational models and empirical data suggest that the brain engages in rapid 

switching between distinct states of functional connectivity (Rabinovich et al., 2008; 

Nachstedt & Tetzlaff, 2017). In other words, states of neural activity are not merely 

situated in space, but also in time, and transient, recurrent patterns of activity could 

represent a meaningful mode by which information is processed by the brain. One 

limitation of time-averaged representations is that they are unable to describe the 

transient temporal dynamics of brain activity. An emerging field dedicated to 

measuring these rapid dynamics strives to overcome some of the interpretability 

constraints of time-averaged functional network identification techniques by 

proposing a new set of data-driven, temporally-embedded methods of representing 

neural activity. 

 

One of these relatively novel methods is Hidden Markov Modelling (HMM), an 

unsupervised machine learning technique that reconstructs a sequence of patterns as 

a system of temporally-discrete states. Previously, HMMs have been used to extract 

the underlying dynamical properties of neural data from MEG (Baker et al., 2014; 

Vidaurre et al., 2018b; Quinn et al., 2018, Hawkins et al., 2019),  EEG (Obermaier et 

al., 2001; Williams et al., 2018; Dash & Kolekar, 2020; Marzetti, 2023), and fMRI 

(Duan et al., 2005; Dang et al., 2017; Goucher-Lambert & McComb, 2019; Hussain et 

al., 2023) at rest and in task settings. To our knowledge, there have not been any 

studies of how resting-state neural dynamics vary in a developmental sample, or how 
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these dynamics relate to the emergence of diverse profiles of behaviour and cognitive 

ability.  

 

2.4 The current study 

 

In the current study, we used resting-state MEG data from children aged 8-13 to test 

how the temporal properties of transient neural dynamics vary with age, gender, 

behavioural difficulties, and general cognitive ability. We also explored the extent to 

which the complexity of individual participants’ resting-state time-courses varied 

across these neurodevelopmental features of interest.  

 

3 Materials and Methods 
 

3.1 Participants  

 

Our MEG analysis sample, following exclusions (n = 46), included children aged 8-13 

(M = 10.09, SD = 1.19). Children were all part of ongoing studies at the MRC Cognition 

and Brain Sciences Unit, and all underwent an identical MEG protocol. Specifically, 

all the children were originally part of two studies, either the Resilience in Education 

and Development (RED) study (n = 40, PRE.2017.102) or the Centre for Attention, 

Learning, and Memory (CALM) cohort (n = 6, 22/WM/0082), and agreed to take part 

in this MEG session. Combined, this sample reflects a range of common behavioural 

difficulties typically seen in mainstream education.   

 

3.2 Cognitive Assessments and Behavioural Questionnaires 

 

3.2.1 Wechsler Abbreviated Scales of Intelligence II – Matrix Reasoning Subtest 

(WASI-II MR) 

 

The Matrix Reasoning subtest of the Wechsler Abbreviated Scales of Intelligence II is 

a general measure of cognitive ability and executive function. In this subtest, children 

are presented with incomplete matrices of images and asked to select an image that 

would suitably complete each matrix from a choice of four options. Children aged 

9 years and older complete a possible total of 30 matrices, which become progressively 

more difficult. The matrix reasoning test is finished when the child produces three 

incorrect answers in a row. Trials correct were converted to age-standardised T-scores. 

 

3.2.2 Strengths and Difficulties Questionnaire 

 

The Strengths and Difficulties Questionnaire (SDQ) asked parents/carers to answer 

25 questions measuring a variety of behavioural challenges (with possible responses 

being ‘Not True,’ ‘Somewhat True,’ and ‘Certainly True’) based on their child’s 

behaviour in the six months prior to assessment. A total SDQ score is calculated, in 

addition to scores for five behavioural subscales: Hyperactivity, Conduct Problems, 
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Emotional Regulation Problems, Peer Relationship Problems, and Prosocial 

Behaviour (see Table 1). See Supplementary Figure 1 for plots representing how 

cognitive, behavioural, and demographic traits were distributed across our combined 

sample. 

 
Table 1: Means, standard deviations, and range values were calculated for cognitive subtest 

and behavioural subscale scores across our sample, which combined data from the RED study 

and CALM cohorts. Here, we summarise these scores, in addition to some additional sample 

characteristics. 

 

Measure Combined Sample 

N 46 

Age in Years 10.09 (± 1.19; range = 8-13) 

Gender 47.8% male 

WASI-II Matrix Reasoning 55.91 (± 9.70; range = 37-80) 

SDQ (Total) 7.78 (± 5.83; range = 0-10) 

SDQ (Hyperactivity) 4.11 (± 2.74; range = 0-10) 

SDQ (Conduct Problems) 1.67 (± 1.99; range = 0-8) 

SDQ (Peer Problems) 2.76 (± 2.52; range = 0-9) 

SDQ (Emotion Regulation Problems) 2.83 (± 2.9; range = 0-10) 

SDQ (Prosocial) 7.83 (± 2.58; range = 0-10) 

 

Correlations were performed between each of the cognitive and behavioural measures 

(see Figure 1). A significant negative relationship was found between WASI-II MR 

scores and all subscales within the SDQ (rsubscales < -0.59, psubscales < 0.0002). 

Additionally, scores on the WASI-II MR were positively correlated with the SDQ 

Prosocial Behaviour subscale (r = 0.34, p = 0.0201).  
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Figure 1: Here, we display a correlation matrix representing relationships between scores on 

the WASI-II MR subtest, total SDQ scores, and SDQ subscale scores. Significant relationships 

at p < 0.05 are marked by one asterisk, and significant relationships at p < 0.001 are marked 

by two asterisks. 

 
 

3.3 Resting-state MEG acquisition  

 

MEG data were acquired using a high-density VectorView MEG system (Elekta-

Neuromag) with 102 magnetometers and 102 orthogonal pairs of planar gradiometers 

(306 sensors in total). Five head position indicator (HPI) coils were attached to the 

child’s head (one on each mastoid bone, two on the child’s forehead, and one on the 

top of their head) in order to monitor changes in head position throughout the 

recording. The positions of the HPI coils was recorded using a 3D digitizer 

(FASTRACK, Polhemus) in addition to over 200 additional points distributed over the 

scalp. Pulse was measured using an electrocardiogram electrode attached to each wrist 

and eye movements were recorded using horizontal and vertical electrooculograms. 

Data were sampled at 1Khz. Smaller children were seated on a booster seat to ensure 

that the tops of their heads were in contact with the scanner and that they could remain 

in a comfortable position for the duration of the scan. 

 

Children were monitored by video camera throughout the scan. During the 10-minute  
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resting-state scan, children were asked to sit as still as possible, close their eyes and let 

their minds wander, without falling asleep.  

 

3.4 Structural MRI acquisition 

 

Out of the 46 participants in our MEG analysis sample (following outlier exclusions), 

40 participants took part in a structural MRI scan, which yielded T1-weighted images 

from a Siemens 3T Tim Trio system. For these images, a magnetization-prepared rapid 

acquisition gradient echo sequence with 1mm isometric image resolution and 2.98ms 

echo time was used. A natural (asymmetric) NIHPD Objective 1 scan template 

intended for children in pre- to mid-puberty (aged 7.5 to 13.5) was used for the 6 

participants who did not undergo a T1-weighted MRI scan (Fonov et al., 2011). 

 

3.5 MEG Preprocessing and Source Reconstruction 

 

3.5.1 Maxwell filtering and artefact removal 

 

Maxwell filtering was performed using a script and repository of functions developed 

by Alex Anwyl-Irvine called RED Tools, which implements MNE Python’s Maxfiltering 

procedure (https://github.com/u01ai11/RED_Rest/tree/master/REDTools). Blinks, 

saccades, and pulse-related artefacts were removed by running an automated 

temporal independent components analysis (ICA), which applied MNE’s fastICA 

function to the sensor-space time-courses. Following this, we performed an additional 

ICA for which components were manually inspected, and any remaining ECG and EOG 

components were removed. Additionally, components dominated by 50Hz noise were 

removed to reduce electrical interference. 

 

3.5.2 Co-registration and bandpass filtering 

 

40 participants’ MEG data from our original sample (n = 52) were co-registered to 

their T1-weigthed structural MRI image acquired using a 3T Siemens Tim Trio and an 

MPRAGE sequence. A natural (asymmetric) NIHPD Objective 1 scan template 

intended for children in pre- to mid-puberty (aged 7.5 to 13.5) was used for the 

remaining 12 participants in our original sample (6 from the RED subsample and 6 

from the CALM subsample) who did not undergo a T1-weighted MRI scan. Co-

registration was performed using the digitized scalp locations and fiducial markers 

using an iterative closest point algorithm in SPM12 (Penny et al., 2011; Wellcome Trust 

Centre for Neuroimaging, 2014). A forward model was fitted using a single sphere 

homogeneous head shape model for each subject (Mosher et al., 1999). Then, data 

were bandpass filtered to be between 1-30Hz in SPM12, as these slower frequencies 

are better for considering functional connectivity with MEG (Luckhoo et al., 2012). 

 

 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 12, 2023. ; https://doi.org/10.1101/2023.08.08.552448doi: bioRxiv preprint 

https://github.com/u01ai11/RED_Rest/tree/master/REDTools
https://doi.org/10.1101/2023.08.08.552448
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

3.5.3 Source-localisation and parcellation  

 

The remaining preprocessing steps were implemented using the OHBA Software 

Library (OSL v2.0.3; OHBA Analysis Group, 2017; https://github.com/OHBA-

analysis/osl-core) and OHBA’s Hidden Markov Model Library (HMM-MAR; Vidaurre 

et al., 2016). First, a covariance matrix was computed across the whole time-course for 

each participant and was regularized to 50 dimensions using PCA rank reduction. 

Sensor normalisation was then performed across planar gradiometers and 

magnetometers. Following this, we used a linearly-constrained minimum variance 

beamformer to estimate whole-brain source-space activity for points in an 8mm grid 

(Van Veen et al., 1997). The signal-space separation algorithm reduced the 

dimensionality of the data, resulting in a set of estimated time-courses of brain activity 

for each child for 3,559 source locations across the brain (Woolrich et al., 2011). At this 

point in the preprocessing pipeline, we excluded 5 participants from our original 

sample (n = 52) who had a very high predominance of bad segments across their time-

series (>60%), which was assessed using the OSL function ‘osl_detect_artefacts.m’. 

We excluded an additional participant on the basis of their having a poor co-

registration solution. Upon visually inspecting the co-registration solution using SPM 

12’s GUI, it became clear to us that scalp locations had been digitised improperly (with 

points placed too far from the scalp). These exclusions reduced our MEG sample from 

n=52 to n=46. 

 

Following artefact-related exclusions, MEG data were further reduced down into a 38-

node parcellation following the method outlined in Quinn et al. (2018). A binarised 

parcellation with 38 cortical regions was applied and a single time-course was 

estimated per node from the first principal component across voxels. This further 

reduced each time-course down to 38 parcels, as opposed to 3,559 voxels, and made it 

possible to perform additional corrections for signal leakage.   

 

3.5.4 Additional preprocessing steps 

 

Following parcellation, further preprocessing was conducted according to OHBA’s 

HMM-MAR library, which recommends an additional set of preprocessing steps prior 

to the initialisation of the Hidden Markov Model: detrending, signal standardisation, 

corrections for signal leakage, and downsampling. We first completed detrending, 

which removes linear trends in the data for each channel separately, which was 

followed by a standardisation of the signal across participants’ concatenated time-

courses. Next, symmetric multivariate orthogonalization was used to correct for signal 

leakage introduced by source reconstruction with zero temporal lag according to the 

methods specified in Colclough et al. (2015). Following this, the absolute signal 

amplitude for each source at each timepoint was estimated using the Hilbert 

transform. To reduce dimensionality in the data, we performed a PCA, which retained 

the number of dimensions necessary to explain 95% of variance in the data. Finally, 
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MEG time-courses were downsampled to 250Hz. For a full schematic of our 

preprocessing procedure, please see Figure 2. 

 

Figure 2: Here, we outline each step of our MEG data preprocessing pipeline, in addition to 

the software packages and toolboxes used to complete each step of the pipeline. 

 

 
 

3.6 Hidden Markov Modelling (HMM) 

 

In the current study, we used the HMM-MAR toolbox, developed by OHBA to infer a 

Hidden Markov Model from resting-state timeseries MEG data. The base code and set 

of functions that we adapted to suit our analyses is publicly-available on GitHub 

(https://github.com/OHBA-analysis/HMM-MAR). The analysis scripts for this study 

are also publicly-available on GitHub 

(https://github.com/nataliazdorovtsova/HMM_MEG).  

 

3.6.1 Model description and specifications 

 

Hidden Markov Models (HMMs) comprise a set of unsupervised machine learning 

techniques that extract the spatial and temporal structure of timeseries of data by 

inferring discrete number of mutually-exclusive states. The HMM assumes that 

timeseries data, which are comprised of a set of observed features, can be described 

using a sequence of a finite, hidden variables (HMM states). Within a single model, 

HMM states are inferred on the basis that they belong to the same family of 

distributions, but are each parameterised differently. HMM states correspond to 

distinct patterns of brain activity that occur at different points across a timeseries. 

More formally, if we take xt to represent the time-series data and st to represent a given 

state at time point t, we assume that  
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xt|st = k∼ Multivariate Gaussian(μk, Σk), 

 

where μk is a vector with (number of channels) elements containing the mean 

activation and Σk is the (number of channels x number of channels) covariance matrix 

that represents the activation relationships between channels when state k is active. 

This is commonly referred to as the observational model. In this case, the observation 

model characterises a multivariate Gaussian distribution of each state k by parameters 

(μk, Σk). Although we use a multivariate Gaussian distribution to characterise states in 

the current study, there are a number of different methods that can be applied 

depending on the context-dependent theoretical goals of the researcher (e.g. Baker et 

al., 2014; Vidaurre et al., 2016; Vidaurre et al., 2018a; Quinn et al., 2018; Gohil et al., 

2022). Here, we chose to use a multivariate Gaussian HMM with state-specific means 

and covariances, which can be treated as a Multivariate Autoregressive (MAR) model 

with an order equal to zero. This meant that the segmentation of states within our 

model was based on instantaneous patterns of activation and connectivity—two 

features of resting-state brain activity that we were interested in capturing for the 

purposes of this study. Previously, Vidaurre et al. (2018b) also demonstrated that 

multivariate Gaussian HMMs are suitable for exploring the temporal features of 

spontaneous transitions between large-scale resting-state brain networks. 

 
The sequence of HMM states across a time-course is characterised by modelling the 

joint transition probabilities between state pairs. Put more simply, the probability Pr 

of a given state at time point t depends on which state was active at time point t-1:  

 

𝑃𝑟(𝑠𝑡  = 𝑘)  =  ∑ Θ𝑙,𝑘  𝑃𝑟(𝑠𝑡−1  =  l)𝑙 , 

 

where Θl,k refers to the transition probabilities. Within matrix Θ, we can further 

distinguish between the diagonal elements, Θkk, which control the persistence of each 

state, and the off-diagonal elements, Θkl, which refer to transitions between mutually-

exclusive states. The observed data at each time point are modelled as a mixture of 

Gaussian distributions, with weights given by wtk = Pr(st = k). 

 

In the current study, we ran a Hidden Markov Model on concatenated time-series data 

from all of the participants included in our dataset, which allowed us to obtain a group-

level estimate of the states. Whereas the states were calculated at the group level, 

information pertaining to when a state is most likely to be active (the state time-

course) were calculated independently for each participant.  

 

The HMM applies an inference algorithm to estimate the parameters of each state 

(characterised by parameters μk and Σk), the probability of each state being active at 

each time point (st), and the joint transition probabilities for each pair of states (Θl,k). 
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3.6.2 Model outputs 

 

The hmmmar.m function from the HMM-MAR toolbox produces a range of outputs 

that can be used to estimate different features of HMM states. Below, we provide a 

brief description of the state properties that we used within subsequent analyses.  

 

Following HMM inference, the temporal characteristics of each state can be quantified 

in terms of state fractional occupancies (the fraction of the total time spent in a state), 

state lifetimes (the time spent in a given state before transitioning out of that state), 

and interval lengths (the time it takes to re-enter a given state). Additionally, a 

switching rate can be calculated for each participant. Switching rates provide a 

measure of stability for each subject, since they represent the frequency of state 

switching across an individual time-course.  

 

Using the hmmmar.m output Ξ (which holds matrices containing joint posterior 

probabilities of transitions between pairs of states), it is also possible to compute state 

transition probability matrices for each individual participant, as well as for an entire 

concatenated time-course. The relationships between transition probabilities and 

other measures of interest can be investigated in their own right, as we shall explore 

in the next section.  

 

In the current study, we also used these probability matrices to derive an entropy rate 

estimate for each participant’s MEG timeseries data. The entropy rate measures the 

average uncertainty, or information, generated by a transition within a sequence. In 

general, the entropy rate of a sequence of random variables (st) is defined as the limit 

of H[s0,s1,…,sn]/n as n is taken to infinity. Although this is not feasible to evaluate the 

entropy rate for general sequences, a sequence taken from a homogenous Markov 

chain posesses a compact and computationally-efficient formula for the entropy rate.  

 

Given a transition matrix Pr(st|st-1) defining an irreducible Markov chain over a finite 

state space, there exists a unique invariant distribution for that chain, π, satisfying π(s) 

= ∑ 𝑃𝑟(𝑠|𝑠’)𝜋(𝑠’)𝑠′ . The entropy rate can then be computed as 

− ∑ 𝜋(𝑠’) Pr(𝑠|𝑠′) log 𝑃𝑟(𝑠|𝑠’)𝑠′ . We can understand this formula as follows: the entropy 

rate quantifies the average entropy of a transition within the sequence. Hence, another 

equivalent formula (in the case of a strongly stationary process, such as a Markov 

chain) is the limit of H[st+1|st]. At long timescales, the convergence theorem tells us 

that the distribution of st is given by invariant distribution. Hence, the entropy rate is 

the sum of the conditional entropies H[st+1|st = s’] weighted by the invariant 

distribution 𝜋(𝑠’).  
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4 Statistical Analysis 
 

4.1 HMM inference and calculation of state characteristics 

 

HMM inference requires an a priori specification of the number of states used in the 

model, k. Free energy metrics lend some objectivity to state number selection—in 

theory, the ‘optimal’ number of states should be determined by the model that has the 

smallest free energy (measured in arbitrary units). However, it is questionable whether 

this practice lends itself to parsimony and theoretical coherence; the aim of the current 

study was to establish whether a limited collection of neural states can track 

differences in behaviour and cognition across our sample. Baker et al. (2014), for 

instance, found that free energy often increases monotonically up to k = 15 states, 

suggesting that an even higher number of states would be needed to yield a Bayes-

optimal solution. A similar limitation exists for more traditional dimensionality 

reduction methods like Independent Components Analysis, which is driven by the 

goals and constraints of the research question at hand. A smaller number of 

prespecified components often yields canonical resting-state networks, whereas a 

larger number can be used to extract finer-grained distinctions between patterns of 

activity (Smith et al., 2011, Smitha et al., 2017). 

 

In the current study, we trained 11 separate HMMs on our resting-state MEG dataset 

with prespecified states ranging from k = 4 to k = 14. Free energy metrics and 

information about cycles to model convergence can be found in Supplementary Table 

1.  After inspecting the topological features of states for each solution, we chose a HMM 

with k = 7 in order to achieve a good representation of spatially-segregated states while 

minimising redundancy. Varying the number of states between 4 and 14 did not appear 

to change the topographical features of the most prominent HMM states, which appear 

across solutions regardless of the addition of extra states (see Supplementary Figure 2 

for plots of different model results).   

 

4.2 Comparisons between measures of neural dynamics and measures of 

cognition and behaviour 

 

We first used an array of General Linear Models (GLMs) to explore how participants’ 

switching rates, entropy rates, state fractional occupancies, and maximum fractional 

occupancies vary with age in order to explore developmental effects among our 

participants (who were 8 to 13 years old). Gender was included as a regressor in these 

models. Additionally, we ran a series of between-subjects t-tests to isolate any unique 

relationships between gender and states’ temporal properties. 

 

We then investigated how the state measures listed above vary with measures of 

cognitive ability (WASI-II MR scores) and behaviour (SDQ Total and SDQ 

Hyperactivity, Conduct Problems, Peer Problems, Emotion Regulation Problems, and 

Prosocial Behaviour subscale scores). To control for potential confounds, we included 
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gender and age as regressors in each of these models at the level of the cognitive and 

behavioural outcome measures. 

 

To control for multiple comparisons, we applied a False Discovery Rate (FDR) 

correction with a 5% threshold in each of these analyses (see Supplementary Figures 

3 and 4 for a schematic representation of the cognitive and behavioural GLMs).  

 

5 Results 
 

5.1 State characteristics for the seven-state HMM  

 

A seven-state HMM revealed distinct spatial patterns of activity and variations in 

oscillatory amplitude (see Figure 3). Each state-map represents the mean activation 

profile of each parcel for the concatenated MEG dataset. State-specific increases and 

decreases in oscillatory amplitude are plotted as yellow/orange and cyan/blue, and 

represent neural activation and suppression, respectively. 

 

State 1 is primarily characterised by DMN activation, and state 2 shows prominent 

patterns of activation in visuo-temporal regions of the cortex. States 3 and 7 both 

demonstrate patterns of default-mode suppression, although state 7 is also 

characterised by concurrent left-parietal activation. Similarly, states 4 and 5 both show 

fronto-temporal suppression, along with patterns of somatomotor and visual 

activation, respectively. State 6, meanwhile, is characterised by fronto-parietal 

activation and visual suppression.  
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Figure 3: Here, we illustrate the results from our seven-state HMM. For each state, we plotted 

the top 20% of positive activations and bottom 20% of negative activations on a cortical surface 

using the HCP Workbench GUI. State labels correspond to our descriptions of the macroscopic 

features of cortical activation and suppression patterns.  

 

 
 

 

Using the state time-courses, it was possible to calculate some temporal properties of 

each state. As illustrated in Figure 4, the temporal characteristics of the states vary 

considerably. Notably, state 1 has the most variable distribution in both lifetimes and 

intervals, which can be explained by the fact that it is the first state represented in 

participants’ MEG time-courses—what seems to vary, in this case, is how long 

participants remain in this first state that is characterised by DMN activation (see 

Figure 5).   
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Figure 4: Here, we plot the intervals (A) and lifetimes (B) of the states in our k = 7 HMM. 

Note that state intervals and lifetimes were thresholded at 50ms, such that state appearances 

that were sub-50ms were not included in the calculation of these temporal metrics. 

 

 
 

A one-way ANOVA revealed significant differences between the states’ fractional 

occupancies, F(6,315) = 81.42, p = 4.16 x e-61. Because intervals and lifetimes were 

calculated for each individual state, and not between participants, it was not possible 

to compare them in the same fashion as fractional occupancies. Nonetheless, their 

means and standard deviations, along with those of states’ fractional occupancies, are 

summarised in Table 2. 

 
Table 2: Means and standard deviations (in brackets) for state intervals, lifetimes, and 

fractional occupancies.   

 

State Intervals (ms) Lifetimes (ms) 

Fractional 

occupancies 

(proportion) 

State 1 (DMN+) 1925.9 (± 3344) 129.49 (± 158.14) 0.0177 (± 0.0145) 

State 2 (VT+) 293.9 (± 395.18) 69.09 (± 20.90) 0.1311 (± 0.0210) 

State 3 (DMN-) 230.38 (± 192.23) 95.24 (± 94.50) 0.2330 (± 0.1085) 

State 4 (SM+, FP-) 191.31 (± 143.90) 59.75 (± 10.24) 0.1578 (± 0.0314) 

State 5 (V+, FT-) 223.52 (± 200.73) 63.05 (± 13.90) 0.1524 (± 0.0229) 

State 6 (FP+, V-) 194.75 (± 149.74) 61.99 (± 14.08) 0.1542 (± 0.0320) 

State 7 (LP+, DMN-) 196.42 (± 170.58) 61.20 (± 12.05) 0.1538 (± 0.0290) 

 

In addition to calculating state lifetimes, intervals, and fractional occupancies, as well 

as generating state-maps, we also calculated state transition probabilities between and 

across participants. As anticipated, the most common timepoint-to-timepoint 

transition was the ‘self-transition’, forming the diagonal of the state transition 
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probability matrix. State-to-state transition probabilities, which are less probable than 

self-transitions, are still readily-visualised when the diagonal of the matrix is zeroed-

out (see Figure 5). State transition matrices with all values retained were used in later 

analyses.  

 
Figure 5: In panel (A), we present the first 1000 timesteps (4 seconds sampled at 250Hz) of 

the Viterbi path, which represents the maximum a posteriori sequence of states in a HMM. 

Notably, state-switching is rapid, and can be detected at very short timescales. Using the joint 

posterior probabilities of state transitions, we computed transition matrices for each of our 

participants, as shown in (B). Panels (C) and (D), in which self-transitions have been 

intentionally excluded for the purposes of plotting state-to-state transitions, display the 

average transition probabilities across our entire sample (n = 46). No thresholds were applied 

in the generation of these plots. The node sizes in panel (C) reflect the fractional occupancies 

of each of the states. 

 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 12, 2023. ; https://doi.org/10.1101/2023.08.08.552448doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.08.552448
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

5.2 Entropy-related measures of neural dynamics are related to cognitive 

ability, but not age, gender, or behaviour  

 

First, we used a series of general Linear Models (GLMs) to investigate the effect of age 

on states’ temporal properties. Gender was included as a control regressor in these 

models. We did not find any significant effects of age on switching rates (t(43) = 0.7221, 

padjusted = 0.4741), entropy rates (t(43) = 0.61, padjusted = 0.5451), state fractional 

occupancies (t(43) < |-0.5611|, padjusted = 0.9333), or maximum fractional occupancies 

(t(43) = 0.0763, padjusted = 0.9395).  

 

Similarly, t-tests comparing these state measures between genders did not find any 

significant effects for switching rates (t(44) = -0.3125, p = 0.7562), entropy rates (t(44) 

= -0.3078, p = 0.7597), state fractional occupancies (t(44) < |-0.5020|, padjusted = 

0.9851), or maximum fractional occupancies (t(44) = -0.1576, p = 0.8755). 

 

Next, we investigated whether the temporal properties of states varied with six 

measures of behaviour (SDQ Total and SDQ Hyperactivity, Conduct Problems, 

Emotional Regulation Problems, Peer Problems, and Prosocial Behaviour subscales) 

and one measure of cognitive ability (WASI-II Matrix Reasoning). To do this, we used 

a series of GLMs in which age and gender were included as control regressors. No 

significant relationships were found between any measures of behaviour or state 

measures, t(43) < |-2.1504|, padjusted > 0.0932 (see Supplementary Table 2 for a full 

summary of these non-significant results). We did, however, find significant 

relationships between cognitive ability and entropy rates (t(43) = 2.2704, padjusted = 

0.0284), and cognitive ability and switching rates (t(43) = 2.1688, padjusted = 0.0358). 

Additionally, entropy rates and switching rates were found to be highly correlated (r = 

0.9979, p < 0.00001), indicating that individual variations in entropy are almost fully 

explained by state switching (see Figure 6). 

 

Figure 6: Panels (A) and (B) display the significant linear relationships between switching 

rates and entropy rates, respectively, and cognitive ability. Panel (C) shows the strong linear 

relationship between switching rates and entropy rates. 

 

 
 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 12, 2023. ; https://doi.org/10.1101/2023.08.08.552448doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.08.552448
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

5.3 Switching is not random—state-specific fractional occupancies are 

related to cognitive ability 

 

Although we found positive correlations between state switching, entropy, and 

cognitive ability, we wanted to investigate whether spending longer amounts of time 

in specific states could further explain the relationships between neural dynamics and 

cognition. Again, we used a series of GLMs in which age and gender were included as 

control regressors. We found significant relationships between cognitive ability and 

fractional occupancies in state 1 (t(43) = -2.7178, padjusted = 0.0162), state 3 (t(43) = -

2.7693, padjusted = 0.0162), state 4 (t(43) = 2.9467, padjusted = 0.0162), state 6 (t(43) = 

3.2673, padjusted = 0.0152), and state 7 (t(43) = 2.6402, padjusted = 0.0162). An additional 

GLM revealed a significant relationship between cognitive ability and maximum 

fractional occupancies, t(43) = -2.6754, padjusted = 0.0106 (see Figure 7). 

 

Figure 7: Panels (A1) to (A5) display the significant linear relationships between state 

fractional occupancies and cognitive ability. Panel (B) displays the significant negative linear 

relationship that was found between maximum fractional occupancies and cognitive ability.   

 
 

 

5.4 Specific state transition probabilities are related to cognitive ability 

 

Our next aim was to test whether specific state transitions were related to cognitive 

ability. Using the transition matrices we previously extracted for each participant, we 

ran a series of correlations between each cell of the 7-by-7 transition matrices and 

WASI-II MR scores. Although a number of significant effects at p < 0.025 were initially 

found (see Figure 8), indicating the presence of strong positive and negative 
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correlations between cognitive ability and state transitions, these effects did not 

survive corrections for multiple comparisons at the 95% confidence interval.  

 

Figure 8: On the left, we illustrate significant relationships found between cognitive ability 

and transitions into specific states at p < 0.025. Node sizes represent states’ fractional 

occupancies, and green versus pink transition arrows represent positive and negative 

correlations with cognitive ability, respectively. On the right, we have plotted a heatmap 

representing correlations between cognitive ability and state transitions in a 7-by-7 matrix. 

Notably, the columns for states 3, 4 and 6 show the highest correlation coefficients, suggesting 

that transitions into these states are most strongly associated with cognitive ability.  

 
 

Instead of performing correlations across 49 separate cells of the state transition 

matrix, we decided to investigate how transitions into states 1-7, represented by the 

columns of the matrix (which, unlike the rows, do not sum to 1), might relate to 

individual differences in cognitive ability. We performed 7 correlations to this effect, 

and found that three states were significantly correlated with cognitive ability 

following corrections for multiple comparisons: state 3 (r = -0.3794, padjusted = 0.0217), 

state 4 (r = 0.3889, padjusted = 0.0217), and state 6 (r = 0.4095, padjusted = 0.0217). We 

did not find any significant relationships between transitions into states 1, 2, 5, or 7  (r 

< |0.3154|, padjusted > 0.0573). While state 3 was negatively correlated with cognitive 

ability, states 4 and 6 were positively correlated with cognitive ability (see Figure 9). 
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Figure 9: Here, we provide a finer-grained illustration of the linear relationships between 

transitions into specific HMM states and cognitive ability. Transitions into state 3 (A), state 4 

(B), and state 6 (C) were found to be significantly correlated with cognitive ability following 

corrections for multiple comparisons.  

 
 

6 Discussion 
 

By inferring an HMM using group-concatenated MEG data from our developmental 

sample, we identified spatiotemporally-defined states that corresponded to well-

known RSNs, including the default mode, fronto-temporal, visual, and sensorimotor 

networks. The spatial topographies of states in our HMM mirrored that of numerous 

other studies that utilised this method to extract the underlying features of resting-

state MEG data, including Baker et al. (2014) and Becker et al (2020). State time-

courses were characterised by a predominance of self-transitions, and that states 

exhibited transient (<100ms) average lifetimes. Across participants, there were 

individual differences in how long participants spent in each state. Cognitive ability—

but not behaviour, gender, or age—was positively associated with participants’ state-

switching and entropy rates. Additionally, there were state-specific relationships 

between cognitive ability and states’ fractional occupancies. The directionality of these 

relationships was preserved in analyses exploring whether transitions into each of the 

states is predictive of cognitive ability. Transitions into and time spent within DMN-

heavy states was associated with lower cognitive ability, whereas the opposite was true 

of states with more fronto-parietal and sensory network activation profiles.  

 

The broad alignment between our findings and those outlined in previous research 

suggests that an HMM approach can be applied successfully in the study of transient 

neural dynamics in the developing brain. Although data quality issues are known to 

typically affect the reliability of MEG scans in children (e.g. Wehner et al., 2008; Pang, 

2011), and particularly those with high levels of behavioural difficulties (Kaiser et al., 

2021), we believe our findings demonstrate that HMM inference is robust to these 

potential issues, provided that data are preprocessed with enough attention to noise 

removal and the exclusion of scans with high proportions of outliers.  
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6.1 Time-course entropy and state-switching are positively associated with 

cognitive ability 

 

The switching and entropy rates of participants’ time-courses, which we found to be 

highly intercorrelated in our sample, were positively associated with cognitive ability 

(but not age, gender, or behaviour). Although state-switching and entropy were highly 

correlated in the current study, they have different formal definitions, and therefore 

have different possible interpretations. While the switching rate quantifies the extent 

to which a participant engages in state-to-state transitions, as opposed to self-

transitions, the entropy rate can be regarded as a measure of the complexity of a 

participant’s time-course. Since switching rates explained the majority of the variance 

in participants’ entropy rates, it is reasonable to conclude that the information of MEG 

time-series data increased in proportion to the number of rapid and largely stochastic 

transitions between neural states. Had non-random and recurrent patterns of state 

transition sequences dominated the time-series, entropy rates would have been lower 

and more weakly associated with state-switching. Since the information of a time-

course in our sample relies so heavily upon the flexibility and speed with which state-

switching takes place, it may be useful to regard the neural entropy rate as a more 

complex measure that is nonetheless heavily driven by a latent switching factor.  

 

Cortical feedback and feedforward pathways are known to rapidly control local brain 

network states, and this process is optimised to flexibly change the gain, precision, and 

synchronisation of neural activity (Zagha & McCormick, 2014). Furthermore, dynamic 

transitions between hidden neural states are believed to enable the flexible 

reconfiguration of functional circuits across the brain, thereby enabling adaptive 

cognitive and behavioural processes. A number of previous studies have highlighted 

the positive associations between state switching and cognitive ability. For instance, 

Taghia et al. (2018) found that task performance is strongly predicted by state-

switching at rest, and that considering task-related neural dynamics only minimally 

improves the ability to predict task performance. Additionally, Cabral et al. (2017) 

found that more flexible patterns of state-switching predict better cognitive 

performance in older adults, and that this relationship is mediated by the tendency to 

transition between particular states in the neural attractor landscape. In the context 

of neurodevelopment, rapid switching between states is known to increase during 

adolescence (Medaglia et al., 2018) and accompany motor-skill acquisition (Reddy et 

al., 2018). Entropy, like state-switching, has also been found to increase throughout 

childhood development, reflecting a gradual expansion in the diversity of neural 

processes available to the child (Amalric & Cantlon, 2023). More broadly, brain 

entropy has been positively associated with general intelligence in samples with large 

age ranges, suggesting this brain-cognition relationship persists across the lifetime 

(Saxe et al., 2018; Wang, 2021; Thiele et al., 2023). Although there are many different 

operationalisations of brain signal complexity (e.g. Shannon entropy, multiscale 

entropy, Fuzzy entropy, and microstate characteristics; see Keshmiri, 2020, for 

review), the entropy rate of the neurophysiological HMM timeseries may also provide 
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a useful means of exploring individual differences in the intrinsic complexity of neural 

activity.  

 

6.2 Tendency to stay within, and transition into, certain HMM states 

predicts differences in cognitive ability 

 

Although the relationship between cognitive ability and neural entropy rates was 

largely defined by rapid, stochastic patterns of brain switching, we wanted to 

investigate whether there were state-specific relationships between different 

neurodevelopmental characteristics and neural dynamics. While we did not find any 

relationships between the seven states’ fractional occupancies and age, gender, or 

behaviour, cognition was positively associated with time spent in states 4, 6, and 7, 

and negatively associated with time spent in states 1 and 3. Upon examining whether 

transitions into certain states also characterised these relationships, we found a 

similar profile of results. Transitions into states 4 and 6 had positive associations with 

cognition, whereas the opposite was true for state 3.  

 

The spatial topographies of these states may provide some insight into the reason for 

this pattern of effects. One benefit of using MEG data to study these relationships is 

its high temporal resolution, which allows one to record patterns of neural activation 

and suppression (inhibition) that occur in very short time-windows. States 4 and 6, for 

instance, were primarily characterised by fronto-parietal activation and suppression, 

whereas state 3 was dominated by suppression across the default-mode network. As 

mentioned in the Introduction, previous research indicates that the emergence and 

spatiotemporal segregation of fronto-parietal networks supports executive function 

across development (Keller et al., 2023), whereas the overactivation and hyper-

integrated spatiotemporal patterning of the DMN is associated with cognitive and 

behavioural difficulties (Cortese et al., 2012). The fact that both fronto-parietal 

activation and suppression predicts increases in cognitive ability may relate to large-

scale coordination of brain activity performed by fronto-parietal networks (Marek & 

Dosenbach, 2018; Chen et al., 2022). Indeed, Gu et al. (2020) found that transitions 

to, and between, different task-positive states was positively related to performance 

on a cognitive task.  

 

While DMN suppression has previously been viewed as a process that optimises for 

goal-directed cognition (Anticevik et al., 2012; Leonards et al., 2023), it is possible that 

an increased need to suppress DMN activity could also be viewed as a hindrance to 

cognitive functioning. In the current study, we found that the time spent within states 

corresponding to DMN activation and suppression was negatively associated with 

cognitive ability. The same was true of transitions from other states into the DMN-

suppression state, which suggests that broad differences in DMN control may 

contribute to cognitive differences in childhood. To build a coherent theoretical model 

of the directionality of these effects, future studies of HMM states in childhood should 
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aim to collect a wider breadth of data, and to assess how the activity of these states 

changes throughout development. 

 

6.3 Limitations  

 

The primary limitations of the current study are its small sample size and relatively 

constrained age range, which could account for why we did not find any effects of age 

or gender on HMM state properties. Our sample size was reduced from n=52 to n=46 

due to exclusions based on data quality, which is a common difficulty within research 

in developmental cognitive neuroscience. While the size of our dataset was sufficient 

for inferring robust HMM states, it is possible that we would have been able to explore 

more granular neurodevelopmental effects had we had access to a larger sample. In 

the same vein, a sample that included a wider age range would have enabled us to 

investigate how neural dynamics change over time, rather than how they exist at one 

phase of development. We encourage future research in this area to build upon our 

findings with these core limitations in mind. 

 

In this study, we also used a 38-node parcellation developed by Colclough et al. (2015) 

and subsequently used in other studies that applied HMM to MEG data (e.g. Colclough 

et al., 2017; Quinn et al., 2018). We chose this parcellation because the effective 

dimensionality of MEG data in source-space is approximately 60-70 (Quinn et al., 

2018; Farahibozorg et al., 2018), and the number of parcels should be less than the 

rank of the data in order for corrections for signal leakage to work. Although using this 

parcellation allowed us to infer an HMM, it also reduced the spatial resolution at which 

we were able to observe neural effects.  

 

7 Conclusion 
 

Using a multivariate Gaussian Hidden Markov Model, we inferred a seven-state model 

of resting-state brain activity in a developmental sample. We found spatial and 

temporal differences between each of the states identified in our model. Entropy-

related metrics of dynamic neural activity were positively associated with cognitive 

ability. Particular states provided more clarity about the nature of these relationships; 

DMN states were negatively associated, and fronto-parietal states were positively 

associated, with cognitive ability in our sample.  
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