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Abstract
Purifying  selection  is  the  most  pervasive  type  of  selection,  as  it  constantly  removes  deleterious
mutations arising in populations, directly scaling with population size. Highly expressed genes appear
to  accumulate  fewer  deleterious  mutations  between  divergent  species’  lineages  (known  as  E-R
anticorrelation),  pointing  towards  gene  expression  as  an  additional  driver  of  purifying  selection.
However,  estimates  of  the effect  of  gene expression on segregating deleterious  variants  in  natural
populations are scarce, as is an understanding of the relative contribution of population size and gene
expression to purifying selection. Here, we analyse genomic and transcriptomic data from two natural
populations of closely related sister species with different demographic histories, the Emperor penguin
(Aptenodytes forsteri) and the King penguin (A. patagonicus), and show that purifying selection at the
population-level depends on gene expression rate, resulting in very high selection coefficients at highly
expressed genes. Leveraging realistic forward simulations, we estimate that the top 10% of the most
highly  expressed  genes  in  a  genome experience  a  selection  pressure  corresponding  to  an  average
selection coefficient of -0.1, which decreases to a selection coefficient of -0.01 for the top 50%. Gene
expression rate can be regarded as a fundamental parameter of protein evolution in natural populations,
maintaining selection effective even at small population size. We suggest it could be used as a proxy for
gene selection coefficients, which are notoriously difficult to derive in non-model species under real-
world conditions.
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Introduction
Protein evolution is constrained by purifying selection, which prevents changes in the underlying gene
sequence with a deleterious effect on organismal fitness from spreading in natural populations. The
intensity of purifying selection on deleterious mutations is directly correlated with the effective size of
a population (Ne; Charlesworth 2009, Akashi et al 2012), determined by species-specific life history
traits and population-specific demographic trajectories (Figuet et al 2016, Chen et al 2017), and with
the selection coefficient (s) of each mutation. However, genes with a globally high expression rate
across tissues show a slow rate of accumulation of deleterious substitutions (Duret and Mouchiroud
2000, Pal et al 2001, Zhang and Yang 2015), suggesting high selection coefficients on any mutation
appearing in them. Such an inverse correlation between the rate of evolution and gene expression (so-
called E-R anticorrelation) could be caused by the strong selection acting against the toxic accumulation
of misfolded or mis-interacting proteins in cells (Yang et al 2012, Park et al 2013, Wu et al 2022, but
see  Bédard et al 2022 for more hypotheses about the causes of E-R anticorrelation). Assuming that
proteins are selected for their conformational stability (i.e., the protein is folded or not) or for protein–
protein interaction (i.e.,  the protein is bounded or not to other proteins), the intensity of purifying
selection acting on the protein can be theoretically derived as a function of both gene expression and
effective population size (Latrille & Lartillot 2021), but so far the predictions of these models have not
been tested empirically in an integrated dataset. 

Evidence for E-R anticorrelation has been found in several interspecific comparisons by estimating
fixation rates (d) of nonsynonymous (N) over synonymous (S) mutations (i.e.,  dN/dS) in genes with
different expression rates (Slotte et al 2011, Zhang and Yang 2015, Joseph et al 2017). Considering
diversity at the population level, E-R anticorrelation should explain differences in nonsynonymous and
synonymous segregating polymorphisms (p) across genes (i.e., pN/pS or as the corrected estimate πN/πS).
Although such a pattern has been observed in a few wild populations (Carneiro et al 2012, Williamson
et al 2014, Hodgins et al 2016, Galtier et al 2016), recent laboratory experiments on model organisms
have instead provided contrasting results (Wu et al 2022, Shibai et al 2022). More importantly, the
relative contribution of gene expression and effective population size to purifying selection has not
been empirically explored. Theory predicts that the efficiency of purifying selection depends on the
product  of  effective  population  size  and  selection  coefficient  to  be  much  larger  than  1.  We  can
therefore ask whether genes with high expression levels are characterised by large enough selection
coefficients so that purifying selection still exerts its effect even when populations are small. On the
other hand, understanding the range of selection coefficient values across genes would help identify
those genes which are more vulnerable to decreasing population size. 

Here,  we use two natural  populations  of  closely  related sister  species,  the Emperor  and the King
penguins (Aptenodytes forsteri and A. patagonicus), with different demographic histories (Trucchi et al
2014, Cristofari et al 2016, 2018), to test the following hypotheses. First, if the selection coefficient of
a  gene is  mainly  determined by its  expression rate,  we should  observe  a  decline  in  the  effect  of
purifying selection (e.g. πN/πS) with increasing expression rate and such decline should be determined
by a corresponding decline in missense polymorphism only. Our second question concerns the relative
weight of population size (Ne) and gene expression (s) in driving purifying selection. When comparing
populations of different sizes, smaller populations show lower diversity at both neutral and deleterious
sites, but higher  πN/πS because of larger drift which reduces the efficacy of purifying selection. If
population size is the main driver of purifying selection (1/Ne >  s across the whole range of gene
expression), we expect that both the diversity and the πN/πS differences between the two populations of
different sizes will be the same across the whole range of gene expression. Conversely, if high gene
expression is the main driver of purifying selection (s > 1/Ne for highly expressed genes), we expect the
difference in diversity between the two populations of different size to decline with increasing gene
expression  rate  for  deleterious  sites  but  not  for  neutral  ones.  Finally,  we  use  realistic  forward
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simulations of evolving populations to estimate the range of selection coefficients producing the same
effects of purifying selection as observed in natural populations of Emperor and King penguins. 

Results and Discussion
We use high-coverage whole-genome data of 24 individuals per species to estimate patterns of genetic
diversity, and whole transcriptome data of five tissues from three young individuals per species to
estimate global mRNA expression levels. Young age class was chosen for this study as genes broadly
expressed in early life stages have been shown to be the most affected by purifying selection (Cheng
and Kirkpatrick 2021). Both Emperor and King penguins feature single, large and quasi-panmictic
populations (Cristofari et al 2016, 2018), but they show different levels of genetic diversity (Fig. 1A),
corresponding to their different ecological adaptations and past demographic dynamics (Cristofari et al
2016, 2018, Cole et al 2022). As a consequence of the historically larger effective population size in
the Emperor penguin, this species has a higher proportion of segregating variants, a lower proportion
of fixed derived variants,  and a lower proportion of segregating nonsynonymous over synonymous
variants (Fig. 1B); however, the two sister species show a minor difference in the proportion of fixed
nonsynonymous  over  synonymous  differences,  given  their  relatively  short  time  since  species
divergence.  Both gene-by-gene estimates  of  diversity  (nucleotide diversity:  π)  and expression rate
(normalised as transcripts per million, TPM) are highly correlated between the two species (Fig. 1C,
D), thus minimising any confounding effect of sequence and expression divergence in our downstream
analyses. 

Figure 1. Patterns of genetic diversity and gene expression in Emperor (E, teal) and King (K, gold) penguins. A.
Distribution of nucleotide diversity (π)  and Tajima’s D in 50 kb genomic windows;  B. Proportion of derived alleles as
segregating variants (p) or fixed differences (d) at synonymous and nonsynonymous sites (left panel) and estimates of pN/pS
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and dN/dS (right panel);  C. Per gene comparison of nucleotide diversity between King and Emperor penguins; D. Per gene
comparison of expression rate between King and Emperor penguins, quantified as transcripts per million (up to TPM = 1100;
see Supp. Fig. 5 for the whole expression range).

Purifying  selection  more  efficiently  removes  nonsynonymous  segregating  variants  in  genes  while
expression rate increases. Corrected estimate of purifying selection on segregating variants per gene,
πN/πS, clearly declines with increasing gene expression rate (Fig. 2A), dropping by 70-80% across the
whole range of gene expression in both species. These results hold regardless of binning or not the
genes in percentiles of expression rate (Supp. Fig. 6) and are consistent with the E - R anticorrelation
found in several taxa at the interspecific divergence level as shown in Zhang and Yang (2015) (Supp.
Fig. 7). As expected, also the rate of fixation of nonsynonymous over synonymous mutations (dN/dS)
declines with gene expression rate in both species, even if divergence estimates are null for many genes
given the shallow split time between two penguin species (Supp. Fig. 6, 7). E-R anticorrelation appears
also if we analyse the expression rate of segregating sites across all genes together (mRNA sequencing
coverage  per  site  normalised  as  count  per  million  reads  -  CPM)  in  order  to  take  into  account
heterogeneous  expression  rate  among  exons:  again,  counts  of  nonsynonymous  over  synonymous
variants in bins of 0.05 CPM, from 0 to 5 CPM, are inversely correlated with expression rate (Supp.
Fig. 9). The decline of  πN/πS with increasing gene expression rate is due to the decreasing count of
nonsynonymous variants in highly expressed genes, whereas the count of synonymous variants is stable
across the whole gene expression range in both species (Fig. 2B, C). More importantly, the difference
in the counts of synonymous variants between the two penguin populations is also stable and always
significant  (Kolmogorov-Smirnov  test  p-value  << 0.005),  whereas  the  difference  in  the  counts  of
nonsynonymous variants decrease with increasing gene expression, with this difference disappearing in
the upper 50-60% of gene expression rate (Fig. 2C). This result supports the hypothesis that gene
expression is a major driver of purifying selection for highly expressed genes, which are then expected
to show very large selection coefficients (s > 1/Ne).  As theoretically predicted (Latrille & Lartillot
2021), the rate of purifying selection appears to linearly decrease with the logarithm of the expression
rate (Fig. 2A). After estimating the change in rate of purifying selection (πN/πS) as a function of the
effective population size of the two penguin species in log scale (Supp.  Fig.  8),  we show that  all
estimated slopes are statistically different from zero and negative. However, the slope estimates are not
significantly  different  from  each  other  and  their  confidence  intervals  overlap  (Supp.  Fig.  8).
Compatible with the assumptions that proteins are selected for their conformational stability or for
protein–protein interaction, these results suggest that both the effects of effective population size and
gene expression can be considered together in integrated models of evolution. However, they should be
assessed more thoroughly,  by comparing more population sizes.  On a different  note,  even if  gene
expression has been suggested to be one of the causes of non-neutrality in synonymous variants in yeast
(Shen et al 2022), or that codon usage bias is more intense in highly expressed genes (Frumkin et al
2018), gene expression rate does not appear to perturb synonymous variation in our datasets from two
vertebrate species (Fig. 2C).
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Figure 2. Increasing purifying selection with gene expression in Emperor (teal) and King (gold) penguins. Estimates
of πN/πS (A, B), and average number of nonsynonymous (C) and synonymous (D) segregating variants (normalised per 1000
bp of coding sequence) in genes binned by 5% percentiles of expression rate (normalised as TPM). Slope of the linear
regression (Emperor penguin: χE = -0.058, R2 = 0.848; King penguin: χK

 = 0.066, R2 = 0.877) is shown as a solid red line and
values of πN/πS for the top 50% (small dashes) and 10% (large dashes) of the most highly expressed genes are indicated by a
dashed grey line in panels A and B. Median (solid white line) and mean (white triangle) is shown in each boxplot in panels C
and D. Statistical significance for the difference in the distribution of synonymous and nonsynonymous variants per percentile
between the two species is shown in panels B and C.
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Purifying  selection  more  efficiently  prevents  nonsynonymous  segregating  variants  from increasing  in
frequency  in  genes  with  higher  expression  rate. The  derived  allele  frequency  spectrum  of
nonsynonymous  variants  with  expression  rate  higher  than  0.3  CPM  is  depleted  in  medium-high
frequency  categories,  while  there  is  no  difference  in  the  derived  allele  frequency  spectrum  of
synonymous variants across the whole expression range (Fig. 3). Changing the arbitrary threshold to
discriminate between low and high expression rate, or using more than two categories of expression
rate (low: < 0.3 CPM, medium: 0.3-2 CPM, high: > 2 CPM) does not change the observed pattern
(Supp. Fig. 10). The pattern holds when all nonsynonymous and synonymous variants are used in the
allele  frequency spectrum estimate  (Supp.  Fig.  10)  as  well  as  when one nonsynonymous and one
synonymous variant are randomly sampled from each gene (Fig. 3), thus excluding the possibility that
few genes with many variants (i.e., pseudoreplication) drive our observation. 

Figure 3. Nonsynonymous variants in highly expressed genes segregate at lower frequency in Emperor (teal) and
King (gold) penguins.  Site frequency spectra of ten random resampling (95% distribution) of one nonsynonymous (upper
panels) and one synonymous (lower panels) variant per gene with lower (dark shade) or higher (light shade) than 0.3 CPM
mRNA expression. The relative frequency of each count class is log10 transformed. Of note, nonsynonymous variants in
highly expressed genes show a higher frequency at low derived allele count classes than in lowly expressed genes. 

Purifying selection in the top 10% of highly expressed genes largely exceeds the effect  of 100,000-
individuals  effective  population  size. In  simulated  populations,  under  either  Wright-Fisher  or  more
realistic non Wright-Fisher models, median  pN/pS (same as  πN/πS  when using simulated data) across
genes declines from 1.8 to 0.9, while population size increases from 1,000 to 100,000 individuals (Fig.
4). Such values of pN/pS are much higher than the values observed in penguin populations for genes in
the top 50% or top 10% of expression rate (Fig. 2A, Supp. Fig. 6). In these models, the effect of
population size on purifying selection was explored by simulating a set of realistic values for mutation
and recombination rate,  synonymous to  nonsynonymous ratio,  selection and dominance coefficient
distributions, coding sequence length and gene numbers. In particular, new mutations were given a
selection and dominance coefficient (h-mix) based on a nearly neutral prior distribution (Kim et al
2017, Kyriazis et al 2021), meaning that most of the mutations are weakly deleterious. To reproduce
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pN/pS values as those observed in highly expressed genes in both penguin species, we designed a more
extreme selection  scenario:  all  nonsynonymous  mutations  appearing  in  a  gene  were  given  a  fixed
selection coefficient of -0.1,  -0.01 or -0.001 (100 replicated genes per selection coefficient) and a
dominance coefficient derived from the  hs relationship (Henn et al 2016). In realistic non Wright-
Fisher models with a selection coefficient of -0.01, pN/pS decreases below 0.4 (Fig. 4) while a selection
coefficient of -0.1 results in pN/pS below 0.3, as largely observed in genes in the top 50% and 10% of
expression rate, respectively (Fig. 2A, Supp. Fig. 6). Such high selection coefficients are then expected
to be effective even when the population size is small (i.e., s >> 1/Ne, per N = 1,000), thus buffering the
effects of changing population size as it was also suggested for the vast majority of X-linked genes in
Drosophila (Andolfatto  et  al  2011).  However,  we also  observe  more variance in  simulations  with
smaller population sizes (Supp. Fig. 11).

Figure  4.  Population  size  and  gene-specific  extreme  selection  coefficient  explain  low  observed  pN/pS values  in
simulations.  Distribution  of  pN/pS (when  using  simulated  genomic  data  pN/pS is  the  same as  πN/πS)  across  1000 genes
simulated under nonWrightFisher (nonWF, left,  solid border) and WrightFisher (WF, right,  dashed border) models with
effective population size from 1,000 to 100,000 (darker grey background) and across 100 genes with selection coefficient
from -0.001 to -0.1 (lighter grey background). Note that the dominance coefficient is set according to the h-mix or hs models
in simulations testing different population sizes or selection coefficients, respectively. More efficient purifying selection in
nonWF models, where effective population size tends to be lower than in WF models, can be explained by the fact that, in
such models, individuals with high fitness can survive and reproduce for multiple generations (Haller and Messer 2019).

Gene expression can be used as  a  proxy of the  distribution of gene selection coefficients  in  natural
populations  of  non-model  species. Variants  with  highly  deleterious  effects  on individual  fitness  are
expected to be immediately lost in natural populations. Consistent with this expectation, the highly
deleterious variants (less than1000 HIGH effect SNPs per species) predicted by SNPeff (Cingolani et
al  2012)  in  each  penguin  population  show  a  much  lower  average  expression  level  than  weakly
deleterious (MODERATE effect) and nearly-neutral (LOW effect and synonymous) variants (Tab. 1).
This observation means that HIGH effect variants are mainly present in lowly expressed genes with
limited impact on fitness. Expression level is even lower in the very few fixed differences with HIGH
effect  (Tab.  1),  thus  supporting  our  hypothesis.  As  site-specific  expression  of  highly  deleterious
variants (mainly start/stop codons loss/gain and splice acceptor/donor variants) could be biassed in
mature  mRNA sequencing,  we also  estimated the  expression of  highly  deleterious  variants  as  the
expression of the gene they belong to. Even applying a rather conservative test, the expression of genes
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with predicted highly deleterious variants is on average three times lower than all genes (Kolmogorov-
Smirnov test p-value = 0.00095) in the King penguin and slightly lower, even if not significant, in the
Emperor penguin. As  previously suggested for the distribution of dominance coefficients in a model
plant species (Huber et al 2018), gene expression should be taken into account when using predictions
of fitness effects and, more generally, when using such predictions to calculate the genetic load in
populations  of  conservation  concern  (Bertorelle  et  al  2022).  In  fact,  predicted  highly  deleterious
variants could be on lowly expressed genes, thus with little contribution to individual or population
fitness. 

Table 1. Expression rate by predicted fitness effect. LOWsyn: low effect and synonymous; MDR: moderate effect; HIGH:
high effect.

PREDICTED FITNESS EFFECT LOWsyn LOWsyn MDR MDR HIGH HIGH

Species Emperor King Emperor King Emperor King

Total variants 73501 57088 47183 41352 934 840

→Average (stdev) Z-normalised CPM 1.5 (5.02) 1.3 (4.56) 0.78 (2.85) 0.78 (2.86) 0.24 (1.97) 0.14 (0.88)

Fixed differences 1846 3500 1166 2229 16 44

→Average (stdev) Z-normalised CPM 1.41 (4.12) 1.22 (4.14) 1.4 (6.31) 0.93 (3.39) 0.08 (0.54) 0.02 (0.57)

Average count of derived alleles in 
segregating variants 6.17 6.25 4.75 4.73 5.14 5.48

Concluding remarks
Overall,  our  study  provides  evidence  that  gene  expression  is  a  fundamental  driver  of  purifying
selection in natural populations and to a higher extent than population size for highly expressed genes.
About half of the genes in a genome, which are likely responsible for basic cellular and molecular
functions (Boyle et al 2017), are under a strong selective constraint preventing deleterious sequence
changes even when population size declines to about 1,000 individuals. Selection coefficients on the top
10%  of  the  expressed  genes  could  be  so  high  to  buffer  even  smaller  population  size  (ca.  100
individuals). Below this order of magnitude, random effects would necessarily prevail in the proteins'
evolutionary trajectory. Importantly, gene expression can be used as a proxy of the gene selection
coefficient, which is notoriously difficult to study in natural populations of non-model species (Huber et
al 2017). Gene expression data are easier to collect than selection coefficients and are usually highly
conserved across closely related species (Fig. 1D), so that they can be used to refine estimates of
genetic load (Bertorelle et al 2022) in natural populations of conservation concern.
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Data availability
Genomic and transcriptomic raw reads are publicly available at ENA database with Project accession 
number XXX (genomic raw reads to be submitted) and PRJEB64484, respectively.
The filtered SNPs dataset is available here: 10.5281/zenodo.10688854.
Bioinformatic scripts are available here: github.com/emitruc/ExpressionLoad;
github.com/ThibaultLatrille/PenguinExpression;
github.com/PiergiorgioMassa/penguin_gene_expression_slimulations.
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Extended methods and supplementary information

1. Genomic data
1.1 Samples collection and storage
Genomic DNA extractions of 24 King penguins (Aptenodytes patagonicus from South Georgia, Crozet
archipelago, and Heard island), and 24 Emperor penguins (Aptenodytes forsteri from Terre Adélie and
Dronning Maud Land, Antarctica), were selected from samples used in Cristofari et al (2016) and
Cristofari et al (2018). In addition, four Gentoo penguin (Pygoscelis papua from Crozet archipelago)
and two Adelie  penguins  (Pygoscelis  adeliae  from Terre  Adélie,  Antarctica,  2007)  were  collected
during the field campaigns of the French IPEV programme 137 in 2017 and 2007, respectively (Supp.
File 1). Samples were stored in ETOH (muscle biopsy) or in Queen Lysis buffer (blood samples),
frozen at -80°C from the field to the lab. 

1.2 DNA extraction, pooled library preparation and sequencing
DNA extraction was performed using DNeasy Blood and Tissue kit (Qiagen) following manufacturer’s
instructions.  Whole  genome  sequencing  libraries  were  prepared  and  sequenced  at  the  Norwegian
Sequencing Centre,  Oslo,  using Illumina pcr-free  single  or  dual-indexing kits.  To minimise  batch
effects, genomic samples from different species and different localities were randomised in six libraries
and sequenced on 1-3 lanes of Illumina HiSeq2500 and HiSeq4000 aiming at 20X coverage depth.
Raw reads are publicly available at ENA database (XXX, to be made available).

1.3 Variant calling, filtering and annotation
After  Illumina adapters  trimming and quality  filtering with Trimmomatic  (Bolger  et  al  2014)  and
URQT (Modolo and Lerat 2015), respectively, fastq reads were mapped to the  Aptenodytes forsteri
reference genome (ASM69914v1; RefSeq assembly accession: GCF_000699145.1) using  bwa mem
(v0.7.15; Li 2013), converted to bam files and sorted with samtools (v0.1.19; Li et al 2009), keeping
only reads with phred-scaled mapping quality higher than 10. Duplicated reads were removed with
picard-tools (v1.98) and bam files were assigned to individual samples by adding ID read groups with
picard-tools. 

Small variants (SNPs, indel and MNPs) were called with freebayes (Garrison and Marth 2012) using
reference genome scaffolds longer than 100Kb (481 in total),  all  samples grouped per species (--
populations flag), and a minimum phred-scaled mapping quality of 20. Resulting vcf files (one per
scaffold) were then filtered: i) MNPs were first broken down into SNPs using vcfallelicprimitives script
in vcflib (with -k -g flags; Garrison et al 2022); ii) variants were then filtered for quality (QUAL > 30),
strand bias (SAF > 0 & SAR > 0), read placement bias (RPL > 0 & RPR > 0), and type of variants
(TYPE = snp) with  vcffilter script  in vcflib;  iii) SNPs were finally filtered using vcftools (v0.1.15;
Danecek et al 2011) for minimum coverage depth of 3 reads per individual (--minDP 3; individual
genotypes discarded if below threshold), mean maximum coverage depth of 50 (--max-meanDP 50
which  is  ca.  three  times  the  average  individual  coverage  depth;  whole  locus  discarded  if  above
threshold), and retained only if biallelic across all samples. A total of 44 sex-linked scaffolds were
identified and removed from the dataset by running samtools  idxstats on all bam files and the SATC
(Nursyifa et al 2022) Rscript on the resulting data. SNPs were annotated using SNPeff (Cingolani et al
2012) and the GCF_000699145.1 genome annotation. Annotated vcf files are available upon request.
Mean coverage depth of filtered SNPs per allele was 6.93X, standard deviation 1.07X. 
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1.4 SNPs polarisation in ancestral and derived alleles
Annotated  vcf  files  were  parsed  using  a  custom  python  script  (vcf2missenseFreq.2d.py;
https://github.com/emitruc/ExpressionLoad) to decide on the derived allele. Using the Emperor and
King penguins samples as ingroups and the Adelie and Gentoo penguins samples as outgroups, we
defined all of the possible configurations of a globally polymorphic site (Supp. Fig. 1). After assessing
the most likely ancestral  allele based on our algorithm (Supp. Fig.  1),  for each SNP position,  we
calculated the joint derived allele counts for King and Emperor penguin samples and summarised the
data in the table  daf.joint  (Supp. Tab. 1) including the following information (column labels are in
brackets):
 

- counts of derived alleles and total alleles in Emperor penguin (der1;  tot1), King penguin (der2;
tot2), and Adélie and Gentoo penguins (der_out; tot_out) samples; 
- average allele coverage (avgCov); 
- ancestral (ref) and derived (alt) allele; 
- genomic site type (vartype) based on the first annotation by SNPeff as missense if containing the
word ‘missense’,  synonymous if  containing the word ‘synonymous’,  intergenic if  containing the
word ‘intergenic’, intronic if containing the word ‘intron’, else otherwise;
- genomic site predicted effect (effect) based on the the first annotation description as HIGH,
MODERATE, LOW, MODIFIER;
- a flag whether the polymorphic site was originally called as MNP or SNP by freebayes (flagQual:
haplo, snp);
- a flag to track how the derived allele was called (flagPol) on the basis of the options shown in
Supplementary Figure 1.

Supplementary Table 1. Example of SNPs recorded in the summary table daf.joint

scaffold position flagPol flagQual der1 tot1 der2 tot2 der_out tot_out avgCov ref alt vartype effect

NW_008793941.1 85516 InFixAnc snp 0 48 0 44 6 8 7.2 G A intron MODIFIER

NW_008793941.1 85528 unfolded snp 3 48 46 46 0 8 6.6 G A intron LOW

NW_008793941.1 85558 allFix snp 0 48 0 46 8 8 6.4 T C synonymous LOW

NW_008793941.1 85657 unfolded snp 0 48 1 48 0 12 6 C T synonymous LOW

NW_008793941.1 85734 unfolded snp 2 48 0 48 0 12 6.9 C T intron MODIFIER

NW_008793941.1 85746 allFix snp 0 48 0 48 12 12 6.8 G A intron MODIFIER

NW_008793941.1 85762 unfolded snp 5 48 0 48 0 10 6.6 C T intron MODIFIER

NW_008793941.1 85788 InFixAnc snp 0 48 0 46 4 8 7.1 A C intron MODIFIER

NW_008793941.1 85790 unfolded snp 0 48 15 46 0 8 7.1 T C intron MODIFIER

NW_008793941.1 85800 unfolded snp 2 48 0 48 0 8 6.9 C T intron MODIFIER

NW_008793941.1 85804 unfolded snp 1 48 0 48 0 8 6.9 C T intron MODIFIER

NW_008793941.1 85829 unfolded snp 0 48 11 48 0 8 6.7 T C intron MODIFIER
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Supplementary Figure 1. Schematic representations of the potential distribution of ancestral and derived alleles at a biallelic
site across two ingroup and one outgroup samples. Ingroup1: Emperor penguin; ingroup2: King penguin; outgroup: Pygoscelis
(Adélie + Gentoo) penguins. Blue and yellow circles represent copies of the ancestral and derived alleles. The number of
allele copies per sample is only given as an example. Missing data are represented as no circles. The yellow star represents the
branch and timing the mutation to the derived allele likely occurred at. For ALLFIX and INFIXOUTMISS configurations, the
allele of ingroup1 is arbitrarily considered as ancestral. Ingroup1 or ingroup2 missing data configurations are not shown. This
algorithm  is  implemented  in  the  python  script  vcf2missenseFreq.2d.py  (available  at
https://github.com/emitruc/ExpressionLoad).

1.5 Final data filtering and sanity checks
After removing monomorphic sites across Emperor and King penguin samples (e.g., INFIXANC and
ALLFIX  configurations  in  Supp.  Fig.  1)  from  the  dataset  (daf.joint.no00,  https://zenodo.org/doi/
10.5281/zenodo.10688853), we checked whether the derived alleles distribution was in line with basic
expectations from population genetics.  To avoid downstream normalisation,  we selected only sites
without missing data in the target species. In addition, we choose sites which were properly polarised
(flagPol=UNFOLDED) based on at least four alleles present in the outgroup and with coverage depth
range per allele between 6X and 8X, i.e., one standard deviation (ca. 1X) from the mean (ca. 7X). Such
a narrow coverage range was applied to mitigate as much as possible the inclusion of sex-chromosome
related regions, which could have been incorrectly assembled within autosomal scaffolds, and multiple-
copy regions, which were not properly assembled in the reference genome sequence (see Supp. Fig. 2
for a comparison at different coverage ranges). Both types of regions are also characterised by marked
deviation from Hardy-Weinberg equilibrium (HWE). Applying a coverage threshold as a filter, we
could retain sites which are not in HWE due to other processes (e.g., population structure, selection).
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Using all intergenic sites with no missing data for both species, we summarised the joint derived allele
frequency (DAF) distribution (Supp. Fig. 2). As expected, a very small proportion (note the log scale
of the heatmap in Supp. Fig. 2) of derived alleles appear as segregating in both species, with a minimal
covariance in the low and in the very high frequency classes. The latter suggests some mis-polarisation
due to  sites  hit  by multiple  mutations  (see below).  Nevertheless,  when setting the coverage range
between 6X and 8X, co-segregating derived allele frequencies largely appear as uncorrelated between
the two species as expected in case of incompletely sorted ancient variation. 

Supplementary Figure 2.  Joint   derived allele frequency distributions in King and Emperor penguins samples at different
ranges of coverage.

DAF  were  separately  summarised  according  to  the  predicted  annotation  as  intergenic,  intronic,
synonymous and nonsynonymous in each species (Supp. Fig. 3). In general, the shape of observed DAF
is consistent with the expectations from population genetics theory. The slight (note the log scale on the
y-axis in Supp. Fig. 3) increase in very high frequency variants has been commonly observed (also in
human  population  data;  Marchi  and  Excoffier  2020)  and  it  is  likely  due  to  mis-polarisation  of
ancestral/derived  alleles  at  sites  hit  by  multiple  mutations  (Hernandez  et  al  2007),  rather  than  to
migration from a “ghost” population (Marchi and Excoffier 2020). DAF from intergenic sites represent
the best approximation to neutrality, with a shape depending on past population demography only. On
the contrary, DAF from missense sites are expected to be enriched in low frequency and depleted in
medium-high frequency classes as deleterious alleles are less likely to increase in frequency in the
population due to negative selection. Such a pattern is clearly appearing in both Emperor and King
penguins. Synonymous sites DAF show small deviations from neutrality, likely due to linked selection
within missense sites in exons. On the other hand, DAF from intronic and intergenic sites are fully
overlapping with each other, suggesting very limited linked selection spanning from exons to introns.
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Supplementary  Figure  3.  Derived  allele  frequency  distributions  for  different  types  of  variants  (Intergenic,  intronic,
synonymous and missense as annotated by SNPeff)

1.6 Population-level summary molecular statistics 
Nucleotide diversity (π) and Tajima’s  D were estimated in non-overlapping windows of 10 thousand
base pairs (kbp) in Emperor and King penguin samples using vcftools across 437 reference genome
scaffolds. As we are interested in the species-level long-term adaptation processes, we included in our
samples individuals from multiple locations to get an accurate representation of the whole species
diversity.  Previous  studies,  based  on  reduced-representation  genome  sequencing  of  hundreds  of
individuals per species, described both Emperor and King penguin as quasi-panmictic species, with
only one very large population each and very little differentiation among colonies (Cristofari et al 2016,
2018).  By estimating Weir  and Cockerham (1984)  FST in  10 kbp non-overlapping windows using
vcftools (Supp. Fig. 4 inset), we confirmed previous results finding negligible genetic differentiation
between King penguin samples from Crozet and Heard, and South Georgia (FST mean 0.003, std 0.024)
and between Emperor penguin samples from Terre Adélie and Dronning Maud Land (FST mean 0.004,
std 0.020). Principal component analysis (SNPRelate - Zheng et al 2012, 500 bp pruning for linkage
disequilibrium) on a subset of ca. 20,000 SNPs from scaffold NW_008796188 showed no genetic
structure in any of the two species (Supp. Fig. 4).
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Supplementary Figure 4. No signature of genetic differentiation among distant colonies of Emperor (left) and King penguin
(right). Main plots show the results of Principal Component Analysis run in SNPRelate using 20,256 and 18,256 SNPs not
closer than 500 bp from scaffold NW_008796188, respectively. Histograms of  FST estimated in non-overlapping 10 kbp
windows across the whole genome are shown as insets. DML: Dronning Maud Land; ADE: Terre Adélie; CRO: Crozet; HEA:
Heard; GEO: South Georgia.
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2. Gene expression data
2.1 Sample collection and storage
During June-September 2016 field campaigns at Dumont d'Urville Station in Antarctica and at the
Alfred Faure station in Crozet archipelago, samples of five different tissues (brain, liver, kidney, skin
and  muscle)  were  collected  from  three  freshly-predated  3-7  months-old  chicks  from  natural
populations of Emperor and King penguins, respectively (Paris et al 2023). All tissue samples were
collected immediately after death, directly fixed in RNAlater (Applied Biosystems, Warrington, UK)
and frozen at −80°C until RNA extraction.

2.2 RNA extraction, pooled library preparation and sequencing
Total RNA was isolated from 40 mg of each tissue sample by a standard laboratory-based chloroform
extraction after homogenization in 500 ul of TRIzol® reagent (Invitrogen, ThermoFisher Scientific).
Samples were added to 100 μl of chloroform, vortexed, and centrifuged at 12,000×g for 15 min at 8°C;
the upper aqueous phase was collected and transferred to a new tube for precipitation with isopropanol
by centrifugation at 12,000 g for 10 min at 8 °C; the RNA pellet was washed with 75% ethanol and
centrifuged at 7,500×g for 5 min at 8 °C, the ethanol removed and the RNA pellet resuspended in
RNase free water to be stored at -80C°. As TRIzol-based extraction from skin and muscle yielded poor
RNA quality and quantity, likely due to large amount of  proteins, connective tissue, and collagen in
these tissues,  RNA from these two tissues was extracted using the RNeasy Fibrous Tissue Mini Kit
(Qiagen) according to the manufacturer’s instructions. Also in this case, isolated RNA was dissolved in
RNase free water and stored at -80C°.  Concentration and purity (i.e., the A260/A280 ratio) of each
RNA sample was assessed by Nanodrop 2000 (Thermo Fisher Scientific) and Qubit 4.0 fluorometer
(ThermoFisher Scientific) while RNA integrity was evaluated by capillary electrophoresis on Agilent
2100 Bioanalyzer (Agilent technologies, Santa Clara, CA). As the target of our study was to estimate
the global level of gene expression (across tissues), a total of six RNA pools (three pools of five tissues
per three individuals for each species) were assembled starting from 15 RNA samples per species,
after concentration was normalised. RNA-seq library preparation and sequencing was carried out by
BMR Genomics Service (Padova, Italy). Libraries were synthesised using the TruSeq Stranded mRNA
Sample  Prep  kit  (Illumina,  San  Diego,  CA),  according  to  the  manufacturer’s  instructions.  Poly-A
mRNA was fragmented for 3 minutes at 94°C, and each purification step was carried out with 1 ×
Agencourt AMPure XP beads. Paired-end sequencing (100 bp from each end) was then performed on
the Novaseq 6000 (Illumina, San Diego, CA) at a sequencing depth of 100 million reads per library.
Raw reads  are  publicly  available  at  ENA database  as  one pool  of  reads  per  species  (Project  ID:
PRJEB64484,  sample  accession  ID  King  penguin:  ERS16093259;  sample  accession  ID  Emperor
penguin, ERS16093260).

2.3 RNA mapping, base-pair and gene expression rate estimates 
RNAseq reads from the two penguin species were mapped to the same reference genome (i.e.,  A.
forsteri reference genome - RefSeq assembly accession: GCF_000699145.1) as for the genomic data.
In particular, after standard filtering and trimming with Trimmomatic, RNA reads were mapped using
STAR v.2.7.9a (Dobin et al 2013) and resulting bam files indexed with SAMtools. From bam files,
counts  of  reads overlapping each gene were estimated with HTseq (Anders  et  al  2015)  using the
available genes annotation for GCF_000699145.1 reference genome. Multi-mapped and overlapping
multiple expression features reads were discarded. For each gene, genomic coordinates, exon and CDS
length were extracted from the annotation of GCF_000699145.1 reference genome with the following
bash commands and merged with the RNAseq expression counts from both Emperor and King penguin
samples:
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while read i; do echo -ne $i '\t' ; grep -e 'gene='$i';' GCF_000699145.1_ASM69914v1_genomic.gff | grep -e '   gene    ' | cut -f 1,4,5 | sort -
k1,1 -k2n | bedtools merge ; done < gene.list > geneCoord

while read i e ; do echo -ne $i '\t' ; grep -e 'gene='$i';' GCF_000699145.1_ASM69914v1_genomic.gff | grep exon | cut -f 1,4,5 | sort -k1,1 -
k2n | bedtools merge | awk '{sum+=$3-$2-1} END {print sum}'; done < gene.list > geneLength

while read i e ; do echo -ne $i '\t' ; grep -e 'gene='$i';' GCF_000699145.1_ASM69914v1_genomic.gff | grep -e " CDS" | cut -f 1,4,5 | sort -
k1,1 -k2n | bedtools merge | awk '{sum+=$3-$2-1} END {print sum}'; done < gene.list > cdsLength

RNAseq counts per gene from HTseq were then normalised by CDS length and total number of reads
as transcript per million (TPM), separately per Emperor and King penguin samples (Supp. Fig. 5). 

Supplementary Figure 5.  Expression rate as transcripts per million (TPM) per gene in King (gold) and Emperor (teal)
penguins. Whole range of expression (left panel) and up to 6000 TPM (right panel).
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3. Testing the effect of gene expression and population size on purifying selection
3.1 Theoretical expectation
Thermodynamic equations allow us to derive the proportion of protein molecules that are in the native
(folded) conformation in the cytoplasm. We assume that each misfolded protein molecule has the same
selective  cost,  caused  by  its  toxicity  for  the  cell.  Under  this  model,  the  total  selective  cost  of  a
destabilising mutation is now directly proportional to the total amount of misfolded proteins and it is
proportional to the expression level y. It is then possible to derive the equilibrium at mutation-selection
equilibrium as a function of expression level  y. Moreover, under different effective population size
(Ne), the strength of selection exerted on destabilising mutations is different and thus the equilibrium is
different. At the specific equilibrium between mutation, selection and drift, the rate of evolution is
given by the probability of fixation of a selected mutation (relative to neutral mutation), called ω. In
practice,  ω is approximated from the ratio of nonsynonymous to synonymous polymorphism,  πN/πS,
and or divergence, dN/dS. Altogether, it is possible to derive analytically the change in ω as a function
of Ne and y as in eq 18 from Latrille & Lartillot (2021).

where  C is a constant that depends on thermodynamic parameters. From this equation,  ω is linearly
decreasing with  Ne (in log scale) as well as with  y (in log scale), importantly the slope of the linear
model is the same for both. Additionally, the assumption that proteins are selected against toxicity for
the cell can be relaxed and the above equation is also valid more broadly under the assumption that
selection is acting on protein-protein interactions (i.e. the protein is bounded or not to other proteins).

3.2 Estimates of synonymous and nonsynonymous polymorphism and divergence per gene
Across different genes, polymorphism and divergence counts are not directly comparable because they
are not in the same unit and are mechanically higher for genes with more sites. Moreover, even under
neutrality, non-synonymous polymorphism counts are expected to be higher than synonymous counts
because a mutation is more likely to be nonsynonymous than synonymous. This argument is also true
for nonsynonymous and synonymous substitutions that must be corrected for when estimating species
divergence. The number of sites (a.k.a. opportunities of synonymous and nonsynonymous mutations) is
thus needed to correct polymorphism and divergence counts and to obtain normalised nonsynonymous
divergence (dN),  synonymous divergence (dS),  synonymous polymorphism (πN) and nonsynonymous
polymorphism (πS) in the same unit.

For each gene, all possible nucleotide mutations were computed from the reference protein-coding
DNA  sequence  (3  x  L  mutations  for  a  sequence  of  L  nucleotides).  Whether  a  mutation  was
synonymous  or  nonsynonymous  was  determined  by  comparing  the  reference  codon  to  the  codon
obtained  after  the  mutation.  Moreover,  each  mutation  was  weighted  by  the  instantaneous  rate  of
change between nucleotides, derived from fitting a nucleotide substitution model to the b10k genome
alignment (Feng et al 2020). 

Counts  of  synonymous and nonsynonymous polymorphic  sites  were  summarised per  gene using a
custom python script (FinalPipeline.ipynb; https://github.com/emitruc/ExpressionLoad). After applying
the stringent filters for coverage (from 6X to 8X per allele) and missing data (no missing genotype), we
used the genomic coordinates of all genes to subset the list of SNPs in the daf.joint.no00 dataset and
count the number of synonymous and nonsynonymous polymorphic sites per gene.
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The proportion of synonymous mutations was then given as the sum of the instantaneous rates of all
synonymous  mutations,  divided  by  the  sum  across  all  possible  mutations  (synonymous,
nonsynonymous, stop). This proportion of mutations being synonymous is multiplied by the number of
sites in the gene to obtain the number of synonymous sites. Repeating this process for nonsynonymous
mutations gives the number of non-synonymous sites.

As an estimator of genetic diversity, we used Tajima's π, the average pairwise difference between all
sequences in the sample. π was obtained for each population from the site-frequency spectrum (SFS)
as eq. 5-6 in Achaz (2009).

Formally, ξ is a vector that represents the unfolded frequency spectrum composed of ξi , the number of
polymorphic sites at frequency i/n in the sample (1 ≤ i ≤ n − 1), where n = 48 is the sample size (twice
the number of individuals) in the population. π is a function of ξ as:

π was computed separately for nonsynonymous (πN) and synonymous (πS) polymorphism per gene and
also globally for intergenic regions (πI , see below). Finally, to correct dN, dS, πN, πS such that they are
comparable between them, they are expressed in the same unit  (per site) by normalising with the
number of nonsynonymous or synonymous sites (see above), respectively.

Python  scripts  used  for  data  handling,  parsing,  plotting  and  statistical  testing  are  available  at
github.com/emitruc/ExpressionLoad and github.com/ThibaultLatrille/PenguinExpression.
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3.3 Rate of protein evolution (ω) as function of expression level
ω represents the rate of evolution of a protein and it was computed for each gene as the ratio of
nonsynonymous to synonymous polymorphism (πN/πS)  or divergence (dN/dS).  To compute  πN/πS or
dN/dS, each gene must have at least one synonymous count, otherwise the ratio is undefined.  χ is the
slope of the linear regression of ω as a function of log(y), where y is the expression level of the gene in
TPM  (transcripts  per  million).  We  computed  χ independently  in  the  two  penguin  populations
(Emperor, E) and (King, K), and we denote χE and χK their estimates of χ, respectively (Supp. Fig. 6).
To assess the robustness of the results and assess the fit of the linear model, we performed the same
analysis while binning genes by their expression level. We performed the analysis with respectively 20,
50 and 100 bins, and computed the slope of the linear regression χ and R2 (Supp. Fig. 6).

Supplementary Figure 6. Protein evolutionary rate (ω) as dN/dS (left) or πN/πS (right) as a function of expression rate (log
TPM) in King and Emperor penguins using all genes or binning genes by expression rate in 100, 50, or 20 bins (from top to
bottom). χE and χK are the slopes of the linear regressions for Emperor (teal) and King (gold) penguins respectively. The slope
of  πN/πS as a function of log expression level is  not dependent on the number of bins used to compute  πN/πS or  dN/dS.
However, for fewer bins, the linear model is a strong fit (high R2), but the fit decreases as the number of bins increases.
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To compare our results with the patterns shown in Figure 1 of Zhang and Yang (2015), we plot ω as
dN/dS or πN/πS in log scale as a function of expression rate (log TPM) in Emperor and King penguins
using all genes (Supp. Fig. 7). As dN/dS = 0 and πN/πS=0 cannot be log-transformed, they are clipped to
dN/dS  = 10e-3 and  πN/πS  = 10e-3, respectively, as in Zhang and Yang (2015). The pattern shown by
πN/πS  is similar to those presented in Figure 1 of Zhang and Yang (2015), in particular in the case of
Drosophila melanogaster, Mus musculus and Homo sapiens. The very recent divergence between the two
penguin species resulted in many genes with dN/dS=0.

Supplementary Figure 7. Protein evolutionary rate  (ω) as  dN/dS (top)  or  πN/πS (bottom) in  log scale  as  a  function of
expression rate (log TPM) in Emperor penguin (left) and King penguin (right) using all genes. 
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3.4 Rate of protein evolution (ω) as function of effective population size (Ne)
Given the two penguins populations (Emperor, E) and (King, K), we also estimated χ as the change of
ω as a function of Ne:

Under the assumption that the mutation rate (u) is the same between the two species, and since π = 4
Ne u from neutral markers, χ simplifies to:

where  πI
E and  πI

K are estimated from the intergenic regions, which are assumed to be neutral. Here
normalisation by the number of sites is not required since πE and πK are already expressed in the same
unit in the two species (the same reference genome was used), which cancels out in the ratio πI

E/πI
K. ω

(either πN/πS or dN/dS) is computed as the total count (polymorphism or divergence) across all genes,
divided by the total number of sites across all genes, respectively for polymorphism and divergence.
We performed a bootstrap sampling (1000 replicates) to estimate the confidence interval of χ, where
genes were sampled with replacement in each replicate (Supp. Fig. 8).

Supplementary Figure 8. Rate of protein evolution (ω) as function of expression level and of effective population size (Ne).
χ is the slope of the linear regression of ω (either dN/dS  in left panel πN/πS in right panel) as a function of the expression level
of the gene in TPM (transcripts per million) in the log scale. We computed χ independently in the two penguin populations
(Emperor, E) and (King, K), and we denote χE and χK their estimates of χ, respectively. χ is also estimated (third column) as
the change of  ω as a function of  Ne (section 3.4). Confidence intervals of  χ are obtained from bootstrap sampling (1000
replicates) where genes are sampled with replacement in each replicate.
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3.5 Polymorphic sites-based analyses
For each polymorphic SNP in our genomic dataset (daf.joint.no00), we separately estimated the RNA
reads coverage in King and Emperor penguin samples using SAMtools module  depth  and a bed file
listing all polymorphic sites in the genomic dataset. Per site RNA read coverage was then added to the
genomic  dataset,  as  one  value  (total  number  of  reads)  per  species  (daf.joint.no00.rnaCov;
https://doi.org/10.6084/m9.figshare.23863503.v1). Raw mRNA coverage per site was normalised as
counts per million reads (CPM) dividing this value by the sum of mapped RNA reads x 1 million,
separately per species:

emp_counts = [62589631 + 85819833 + 72587896] #mapped reads in each of the three pools
king_counts = [66803162 + 64732729 + 58348853] #mapped reads in each of the three pools

emp_CPM = emp_RnaCov / emp_counts * 1000000
king_CPM = king_RnaCov  / king_counts * 1000000

After applying the same stringent filters for coverage (from 6X to 8X per allele), outgroup missing data
(at least 4 alleles present), and King and Emperor penguin missing data (no missing genotype allowed),
we generated one dataset of synonymous and nonsynonymous variants together per species. Next, after
capping the maximum CPM value to 5, we grouped the variants in each dataset applying 100 bins of
CPM. We then estimated the ratio of nonsynonymous over synonymous variants in each bin separately
per species (Supp. Fig. 9).  To investigate the effect of gene expression on the allele frequency of
synonymous and nonsynonymous variants, we estimated the derived allele frequency spectra grouping
the variants by discrete values of CPM (Supp. Fig. 10): i) CPM < 0.3, CPM > 0.3; ii) CPM < 0.5, CPM
> 0.5; iii) CPM < 0.3, 0.3 < CPM < 2, CPM > 2. In order to exclude the possibility that a few genes
were driving the observed pattern (i.e.,  pseudoreplication) in the comparison of the site frequency
spectra at different expression rates, we replicated ten times the analysis by grouping variants with
CPM < 0.3 or CPM > 0.3 after  randomly subsampling one synonymous and one nonsynonymous
variant per gene. Out of ten replicas, we estimated the 95% intervals for each derived allele count in
the site frequency spectra (Figure 3 in main text).

Supplementary Figure 9. Ratio of missense to synonymous segregating sites per 0.05 intervals of counts per million (CPM)
mRNA coverage of each site. Total mRNA read coverage (normalised as counts per million reads) across five tissues from
three specimens has been scored for all nonsynonymous and synonymous sites. Note these are density histograms where the
total sums up to 1 in each species.
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Supplementary Figure 10.  Site  frequency spectra  of  all  nonsynonymous (left  column) and synonymous variants  (right
column) across all genes of Emperor (teal) and King (gold) penguins with mRNA expression partitioned by different values of
CPM. The relative frequency of each count class is log10 transformed. 
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4.  Estimating  the  selection  coefficients  of  highly  expressed  genes  using  realistic  forward
simulations
The genomic and transcriptomic data analysed in the previous section show that i) purifying selection
on genes appear as correlated with their level of expression, and that ii) the effect of gene expression
on purifying selection overrides the effect of population size at highly expressed genes. To infer the
selection coefficients causing the pattern of purifying selection observed at highly expressed genes, we
devised a forward in time genomic simulation framework in SLiM v4.0.1 (Haller and Messer 2023). In
particular, we used both general Wright-Fisher (WF) and penguin-specific non Wright-Fisher (nonWF)
models to study the effect of different population sizes (i.e., genetic drift) and the effect of different
selection  coefficients  on  pN/pS (which  is  the  same  as  πN/πS  when  analysing  simulated  data).  Our
hypothesis was that the effect of demography (Ne) alone isn’t strong enough to generate the pN/pS values
as observed in the King and Emperor penguin data, but much stronger selection coefficients are needed
in the model to explain the pattern observed at highly expressed genes. 

Firstly, to investigate the correlation between population size (Ne) and pN/pS, we designed a WF (“WF
Pop Size Effect Model”) and a nonWF model (“nonWF Pop Size Effect Model”), which we ran with
different carrying capacities (Ne = 1,000, 10,000 and 100,000). The main difference in the nonWF
model  is  that  we  modelled  realistic  King  penguin  life  history  traits  (Céline  Le  Bohec,  personal
communication)  with  population  size  as  a  non-fixed parameter  which  can  fluctuate  around the  set
carrying  capacity.  The  genomic  model  is  the  same  in  WF  and  nonWF  simulations  and  it  is
implemented as a reduced version of the whole CDS of the King penguin with the coding component
of 1,000 genes of length 2,400 bp (i.e.,  the mean value for the coding sequence per gene in King
penguin). The recombination rate is set at 1e-8 within genes and at 4.8e-4 between genes (1e-8 rate
scaled  to  the  average  intergene  length).  Mutation  rate  is  set  at  1e-8  and  the  ratio  between  the
occurrence of deleterious and neutral mutations is 2.31:1 (Kim et al 2017). The selection coefficient is
assigned to each deleterious mutation using a random value from a gamma distribution with mean -
0.01314833 and shape 0.186 (Kim et al 2017). This distribution has been used before in humans and
other mammals but we believe it could approximate the distribution of fitness effect also in our target
species. For the dominance coefficient we used a  h-mix model (Kyriazis et al 2021), where weakly
deleterious  mutations  (s ≥  −0.01)  are  partially  recessive  (h =  0.25),  while  strongly  deleterious
mutations (s < -0.01) are totally recessive (h = 0).

We designed similar WF and nonWF models (“WF Gene Expression Effect Model” and “nonWF Gene
Expression Effect Model”, respectively) to investigate the effect of gene expression on  pN/pS. As the
pN/pS in the largest simulated population size (Ne = 100,000) of the Pop Size Effect models did not reach
small values as observed in our King and Emperor penguin data, we implemented a more extreme
selection scenario. In the initial Pop Size Effect models, the gamma distribution used to randomly assign
the selection coefficient of a novel deleterious mutation resulted in most of the mutations being weakly
deleterious (s >= -0.01). Here, we assigned a fixed selection coefficient (s = -0.001, -0.01, and -0.1) to
every  gene  so  that  all  nonsynonymous  mutations  appearing  in  a  gene  have  the  same  selection
coefficient, then we simulated 100 genes for each selection coefficient resulting in a set of 300 genes.
We followed the same strategy for the dominance coefficient assignment, thus it is assigned to every
gene deriving it from its fixed selection coefficient following the hs relationship (Kyriazis et al 2021),
so that dominance and selection coefficients result to be inversely proportional:

h ( s)= 1/2
(1+7071.07×s )

The recombination coefficient is set at 1e-8 within genes and 0.5 between genes in order to make genes
independent to one another. Since most of the genes resulted in a low number of mutations at the end
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of  the  simulated  generations  and  to  keep  the  computational  running  time  tractable,  we  instead
increased the gene length from 2,400 to 34,000 bp (the average total gene length in King penguin
genome) in the final models, we then estimated the  pN/pS per each selection coefficient category of
genes under different carrying capacities (Ne = 1,000, 10,000, 100,000).

In total, we designed four models, each of them testing three carrying capacities. For each of these 12
scenarios, we ran three replicas of 10*N generations each (except for the Ne = 100,000 model where
we ran for Ne generations due to computational time), as suggested by SLiM authors in order to make
the population reach an equilibrium state (i.e., burn-in). At the end of the simulations, we estimated the
pN/pS based on 24 individuals, as in our genomic and transcriptomic real data, repeating the estimate
100  times  by  randomly  resampling  24  individuals  (Supp.  Fig.  11).  Slim  scripts  are  available  at
github.com/PiergiorgioMassa/penguin_gene_expression_slimulations.

Supplementary Figure 11.  Selection coefficients in highly expressed genes. Distributions of  pN/pS estimated in 100 genes
where each deleterious mutation is assigned a fixed selection coefficient of -0.001, -0.01, or -0.1 in simulated populations of
1,000,  10,000,  or  100,000 individuals,  plotted by population size (left  panels)  or  selection coefficient  (right  panels).  As
expected, stronger selection coefficients (i.e., s = -0.1) are effective also when population size is small.
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5. Expression rate per fitness effect class predicted by SNPeff
Genetic load is the cost paid by any population to its potential further evolution. It is an inherent
feature  of  populations  evolving  by  random  mutations  which  more  often  have  deleterious  than
advantageous  effects  on  fitness.  Deleterious  mutations  can  accumulate  in  some  individuals  as  a
consequence of small population size (i.e., high genetic drift and high inbreeding) reducing the fitness
of  these  high  load  individuals  as  compared  to  individuals  which  bear  fewer  such  mutations.  In
conservation genomics, genetic load is getting growing attention as a more appropriate measure of a
population's genomic health (Bertorelle et al 2022). However, genetic load is difficult to estimate in
non-model species, especially when relying on genomic data only, without information on mutations'
fitness effect. In such a case, genetic load can be estimated using  i)  either the predicted effect of a
mutation on the amino acid sequence (Cingolani et al 2012), ii) or the evolutionary conservation of a
certain allele at orthologous sites across multiple species (i.e., GERP; Davydov et al 2010). The latter
has the advantage that it can be applied even outside coding regions, but on the other hand, it requires
large multi-species genomic alignments, which are extremely computation intensive and error-prone.
Even if it can only be applied to coding sequences, a genomic load proxy based on gene expression
could be more accurate and easier to compute, given that mRNA expression data from multiple tissues
of the target species (or one closely related) are available.

After excluding intergenic variants from the daf.joint.no00.rnaCov file with a simple bash command
(awk '$14 != "intergenic"'  daf.joint.no00.rnaCov > daf.joint.no00.rnaCov.noIntergenic)  and applying
the same filters for coverage (between 6X and 8X per allele) and missing data in ingroup (no missing)
and outgroup samples (at least 4 alleles present for polarisation) as before, we applied an additional Z-
normalisation to the CPM for clarity of interpretation only. 

#CPM normalization
eCPMscal = sum of rnaCov_emp / 1000000
kCPMscal = sum of rnaCov_king /1 000000
eCPM = rnaCov_emp / eCPMscal
kCPM = rnaCov_king / kCPMscal

#CPM Z-normalisation
eCPMstdz = eCPM - eCPM_mean / eCPM_std
kCPMstdz = kCPM - kCPM_mean / kCPM_std

Next we selected the variants based on their fitness effect predicted by SNPeff (Cingolani et al 2012):
LOW-synonymous (we excluded all of the LOW which are present in introns, mostly as splice-region-
variants, as these are not covered by mature mRNA seq data), MODERATE, and HIGH effect.

We then summarised the Z-normalised CPM mean and standard deviation across all private variants
(segregating and fixed) or only in private fixed variants in each species per SNP effect (Table 1 in the
main text).

As site-specific expression of HIGH deleterious variants (mainly start/stop codons loss/gain and splice
acceptor/donor variants) could be biassed in mature mRNA sequencing due to their sequence position,
we also estimated their expression using the expression rate of the gene they occurred in. Using the
gene-based expression data generated before, we tested whether the expression rate of the group of
genes with HIGH deleterious derived alleles was significantly lower than all the rest of the genes. Even
if  we applied a rather conservative test,  the expression of genes with predicted highly deleterious
variants is on average three times lower than all genes (Kolmogorov-Smirnov test p-value = 0.00095) in
the King penguin and slightly lower, even if not significant, in the Emperor penguin.
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MODERATE variants  show the same average expression rate in both Emperor and King penguin
samples (0.78) while a higher average expression in private fixed variants, with a larger difference in
Emperor (1.41) than King (0.93) penguin sample. The variance in expression is also larger in fixed than
in segregating variants (Table 1 in the main text). Instead of a major role of purging, which could
anyway  still  be  part  of  the  process,  derived  nonsynonymous  (which  mainly  contribute  to  the
MODERATE effect variants) alleles which are fixed at highly expressed genes could actually be truly
advantageous variants fixed by positive selection. The lower average expression in King penguin is in
line with the expected larger effect of random drift in this population leading to fixation of a larger
number of derived nonsynonymous variants (2229 in the King penguin as compared to 1166 in the
Emperor penguin),  but  in genes with lower expression rate and,  hence,  lower effect  on individual
fitness. More purging could be again suggested in this case, limiting the fixation of deleterious missense
in highly expressed genes. We also suggest that the more intense purging of deleterious variants in the
King penguin could be the cause of the lower average expression of synonymous variants which were
reduced in more expressed genes by background selection (Table 1 in the main text). 

To  test  our  hypothesis  that  private  fixed  derived  MODERATE  variants  could  actually  be  truly
advantageous, we screened the Emperor and King penguin genome data for selection signatures using
Sweepfinder2 (De Giorgio et al 2016) and OmegaPlus (Alachiotis et al 2012) in windows of 10 kb,
following the authors’ instructions with default settings. Fixed derived alleles are in regions showing
higher signatures of selection and lower diversity in both species, and higher differentiation between
the two species, hallmarks of highly conserved and lowly recombining genomic regions (Supp. Tab. 3).
This has to be considered as a preliminary indication of the potentially positive effect of some of the
private fixed MODERATE variants in each species. More targeted analyses are, however, necessary to
conclude on the fitness effect of fixed differences with a MODERATE effect on fitness.

Supplementary  Table  3.  Signatures  of  selection  (SF2:  Sweepfinder2;  OP:  Omega+),  nucleotide  diversity  (π)  and
differentiation between King (k) and Emperor (e) penguins (FST) in 10 kb genomic regions with fixed differences (Fix) or
segregating variants (Seg) identified of MODERATE effect by SNPeff annotation. All comparisons between the distribution
of the statistics across regions with fixed differences and segregating variants for both species are significant (Kolmogorov-
Smirnov test p-value < 0.05).

eFix eSeg kFix kSeg

eSF2 29.953265 3.886132 21.077176 5.764172

kSF2 11.175642 2.338862 10.622353 1.844183

eOP 3.166764 2.367568 2.759333 2.46341

kOP 3.613646 2.965366 3.808706 2.965772

eπ 0.002055 0.003088 0.002386 0.002906

kπ 0.001484 0.00196 0.001539 0.001929

FST 0.644212 0.509277 0.612177 0.521541
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