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Abstract

Purifying selection is the most pervasive type of selection, as it constantly removes deleterious
mutations arising in populations, directly scaling with population size. Highly expressed genes appear
to accumulate fewer deleterious mutations between divergent species’ lineages (known as E-R
anticorrelation), pointing towards gene expression as an additional driver of purifying selection.
However, estimates of the effect of gene expression on segregating deleterious variants in natural
populations are scarce, as is an understanding of the relative contribution of population size and gene
expression to purifying selection. Here, we analyse genomic and transcriptomic data from two natural
populations of closely related sister species with different demographic histories, the Emperor penguin
(Aptenodytes forsteri) and the King penguin (A. patagonicus), and show that purifying selection at the
population-level depends on gene expression rate, resulting in very high selection coefficients at highly
expressed genes. Leveraging realistic forward simulations, we estimate that the top 10% of the most
highly expressed genes in a genome experience a selection pressure corresponding to an average
selection coefficient of -0.1, which decreases to a selection coefficient of -0.01 for the top 50%. Gene
expression rate can be regarded as a fundamental parameter of protein evolution in natural populations,
maintaining selection effective even at small population size. We suggest it could be used as a proxy for
gene selection coeflicients, which are notoriously difficult to derive in non-model species under real-
world conditions.
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Purifying selection, gene expression, population size, E-R anticorrelation, forward simulations.


https://doi.org/10.1101/2023.08.08.552445
http://creativecommons.org/licenses/by-nc/4.0/

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.08.552445; this version posted March 12, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC 4.0 International license.

Introduction

Protein evolution is constrained by purifying selection, which prevents changes in the underlying gene
sequence with a deleterious effect on organismal fitness from spreading in natural populations. The
intensity of purifying selection on deleterious mutations is directly correlated with the effective size of
a population (N.; Charlesworth 2009, Akashi et al 2012), determined by species-specific life history
traits and population-specific demographic trajectories (Figuet et al 2016, Chen et al 2017), and with
the selection coefficient (s) of each mutation. However, genes with a globally high expression rate
across tissues show a slow rate of accumulation of deleterious substitutions (Duret and Mouchiroud
2000, Pal et al 2001, Zhang and Yang 2015), suggesting high selection coefficients on any mutation
appearing in them. Such an inverse correlation between the rate of evolution and gene expression (so-
called E-R anticorrelation) could be caused by the strong selection acting against the toxic accumulation
of misfolded or mis-interacting proteins in cells (Yang et al 2012, Park et al 2013, Wu et al 2022, but
see Bédard et al 2022 for more hypotheses about the causes of E-R anticorrelation). Assuming that
proteins are selected for their conformational stability (i.e., the protein is folded or not) or for protein—
protein interaction (i.e., the protein is bounded or not to other proteins), the intensity of purifying
selection acting on the protein can be theoretically derived as a function of both gene expression and
effective population size (Latrille & Lartillot 2021), but so far the predictions of these models have not
been tested empirically in an integrated dataset.

Evidence for E-R anticorrelation has been found in several interspecific comparisons by estimating
fixation rates (d) of nonsynonymous (N) over synonymous (S) mutations (i.e., dv/ds) in genes with
different expression rates (Slotte et al 2011, Zhang and Yang 2015, Joseph et al 2017). Considering
diversity at the population level, E-R anticorrelation should explain differences in nonsynonymous and
synonymous segregating polymorphisms (p) across genes (i.e., pa/psor as the corrected estimate 7y/7s).
Although such a pattern has been observed in a few wild populations (Carneiro et al 2012, Williamson
et al 2014, Hodgins et al 2016, Galtier et al 2016), recent laboratory experiments on model organisms
have instead provided contrasting results (Wu et al 2022, Shibai et al 2022). More importantly, the
relative contribution of gene expression and effective population size to purifying selection has not
been empirically explored. Theory predicts that the efficiency of purifying selection depends on the
product of effective population size and selection coefficient to be much larger than 1. We can
therefore ask whether genes with high expression levels are characterised by large enough selection
coeflicients so that purifying selection still exerts its effect even when populations are small. On the
other hand, understanding the range of selection coefficient values across genes would help identify
those genes which are more vulnerable to decreasing population size.

Here, we use two natural populations of closely related sister species, the Emperor and the King
penguins (Aptenodytes forsteri and A. patagonicus), with different demographic histories (Trucchi et al
2014, Cristofari et al 2016, 2018), to test the following hypotheses. First, if the selection coeflicient of
a gene is mainly determined by its expression rate, we should observe a decline in the effect of
purifying selection (e.g. wa/zs) with increasing expression rate and such decline should be determined
by a corresponding decline in missense polymorphism only. Our second question concerns the relative
weight of population size (N.) and gene expression (s) in driving purifying selection. When comparing
populations of different sizes, smaller populations show lower diversity at both neutral and deleterious
sites, but higher wa/7s because of larger drift which reduces the efficacy of purifying selection. If
population size is the main driver of purifying selection (1/N, > s across the whole range of gene
expression), we expect that both the diversity and the zn/7s differences between the two populations of
different sizes will be the same across the whole range of gene expression. Conversely, if high gene
expression is the main driver of purifying selection (s > 1/N, for highly expressed genes), we expect the
difference in diversity between the two populations of different size to decline with increasing gene
expression rate for deleterious sites but not for neutral ones. Finally, we use realistic forward
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86 simulations of evolving populations to estimate the range of selection coefficients producing the same
87 effects of purifying selection as observed in natural populations of Emperor and King penguins.

88  Results and Discussion
89 We use high-coverage whole-genome data of 24 individuals per species to estimate patterns of genetic
90 diversity, and whole transcriptome data of five tissues from three young individuals per species to
91 estimate global mRNA expression levels. Young age class was chosen for this study as genes broadly
92 expressed in early life stages have been shown to be the most affected by purifying selection (Cheng
93 and Kirkpatrick 2021). Both Emperor and King penguins feature single, large and quasi-panmictic
94 populations (Cristofari et al 2016, 2018), but they show different levels of genetic diversity (Fig. 1A),
95 corresponding to their different ecological adaptations and past demographic dynamics (Cristofari et al
96 2016, 2018, Cole et al 2022). As a consequence of the historically larger effective population size in
97 the Emperor penguin, this species has a higher proportion of segregating variants, a lower proportion
98 of fixed derived variants, and a lower proportion of segregating nonsynonymous over Synonymous
99 variants (Fig. 1B); however, the two sister species show a minor difference in the proportion of fixed
100 nonsynonymous over synonymous differences, given their relatively short time since species
101 divergence. Both gene-by-gene estimates of diversity (nucleotide diversity: &) and expression rate
102 (normalised as transcripts per million, TPM) are highly correlated between the two species (Fig. 1C,
103 D), thus minimising any confounding effect of sequence and expression divergence in our downstream
104 analyses.
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105 Figure 1. Patterns of genetic diversity and gene expression in Emperor (E, teal) and King (K, gold) penguins. A.
106 Distribution of nucleotide diversity (;r) and Tajima’s D in 50 kb genomic windows; B. Proportion of derived alleles as
107 segregating variants (p) or fixed differences (d) at synonymous and nonsynonymous sites (left panel) and estimates of pN/pS
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108 and dN/dS (right panel); C. Per gene comparison of nucleotide diversity between King and Emperor penguins; D. Per gene
109 comparison of expression rate between King and Emperor penguins, quantified as transcripts per million (up to TPM = 1100;
110 see Supp. Fig. 5 for the whole expression range).

111 Purifying selection more efficiently removes nonsynonymous segregating variants in genes while
112 expression rate increases. Corrected estimate of purifying selection on segregating variants per gene,
113 mnl7s, clearly declines with increasing gene expression rate (Fig. 2A), dropping by 70-80% across the
114 whole range of gene expression in both species. These results hold regardless of binning or not the
115 genes in percentiles of expression rate (Supp. Fig. 6) and are consistent with the E - R anticorrelation

116 found in several taxa at the interspecific divergence level as shown in Zhang and Yang (2015) (Supp.
117 Fig. 7). As expected, also the rate of fixation of nonsynonymous over synonymous mutations (dn/ds)
118 declines with gene expression rate in both species, even if divergence estimates are null for many genes
119 given the shallow split time between two penguin species (Supp. Fig. 6, 7). E-R anticorrelation appears
120 also if we analyse the expression rate of segregating sites across all genes together (mRNA sequencing
121 coverage per site normalised as count per million reads - CPM) in order to take into account

122 heterogeneous expression rate among exons: again, counts of nonsynonymous over synonymous
123 variants in bins of 0.05 CPM, from 0 to 5 CPM, are inversely correlated with expression rate (Supp.
124 Fig. 9). The decline of wa/ms with increasing gene expression rate is due to the decreasing count of
125 nonsynonymous variants in highly expressed genes, whereas the count of synonymous variants is stable
126 across the whole gene expression range in both species (Fig. 2B, C). More importantly, the difference
127 in the counts of synonymous variants between the two penguin populations is also stable and always

128 significant (Kolmogorov-Smirnov test p-value << 0.005), whereas the difference in the counts of
129 nonsynonymous variants decrease with increasing gene expression, with this difference disappearing in
130 the upper 50-60% of gene expression rate (Fig. 2C). This result supports the hypothesis that gene
131 expression is a major driver of purifying selection for highly expressed genes, which are then expected
132 to show very large selection coefficients (s > 1/N.). As theoretically predicted (Latrille & Lartillot
133 2021), the rate of purifying selection appears to linearly decrease with the logarithm of the expression
134 rate (Fig. 2A). After estimating the change in rate of purifying selection (;a/7s) as a function of the

135 effective population size of the two penguin species in log scale (Supp. Fig. 8), we show that all
136 estimated slopes are statistically different from zero and negative. However, the slope estimates are not
137 significantly different from each other and their confidence intervals overlap (Supp. Fig. 8).
138 Compatible with the assumptions that proteins are selected for their conformational stability or for

139 protein—protein interaction, these results suggest that both the effects of effective population size and
140 gene expression can be considered together in integrated models of evolution. However, they should be
141 assessed more thoroughly, by comparing more population sizes. On a different note, even if gene
142 expression has been suggested to be one of the causes of non-neutrality in synonymous variants in yeast
143 (Shen et al 2022), or that codon usage bias is more intense in highly expressed genes (Frumkin et al
144 2018), gene expression rate does not appear to perturb synonymous variation in our datasets from two
145 vertebrate species (Fig. 2C).
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146 Figure 2. Increasing purifying selection with gene expression in Emperor (teal) and King (gold) penguins. Estimates
147 of wn/7s (A, B), and average number of nonsynonymous (C) and synonymous (D) segregating variants (normalised per 1000
148 bp of coding sequence) in genes binned by 5% percentiles of expression rate (normalised as TPM). Slope of the linear

149 regression (Emperor penguin: x* = -0.058, R’ = 0.848; King penguin: y*= 0.066, R’ = 0.877) is shown as a solid red line and
150 values of sa/ws for the top 50% (small dashes) and 10% (large dashes) of the most highly expressed genes are indicated by a
151 dashed grey line in panels A and B. Median (solid white line) and mean (white triangle) is shown in each boxplot in panels C
152 and D. Statistical significance for the difference in the distribution of synonymous and nonsynonymous variants per percentile
153 between the two species is shown in panels B and C.
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154 Purifying selection more efficiently prevents nonsynonymous segregating variants from increasing in
155 frequency in genes with higher expression rate. The derived allele frequency spectrum of
156 nonsynonymous variants with expression rate higher than 0.3 CPM is depleted in medium-high
157 frequency categories, while there is no difference in the derived allele frequency spectrum of

158 synonymous variants across the whole expression range (Fig. 3). Changing the arbitrary threshold to
159 discriminate between low and high expression rate, or using more than two categories of expression
160 rate (low: < 0.3 CPM, medium: 0.3-2 CPM, high: > 2 CPM) does not change the observed pattern
161 (Supp. Fig. 10). The pattern holds when all nonsynonymous and synonymous variants are used in the

162 allele frequency spectrum estimate (Supp. Fig. 10) as well as when one nonsynonymous and one
163 synonymous variant are randomly sampled from each gene (Fig. 3), thus excluding the possibility that
164 few genes with many variants (i.e., pseudoreplication) drive our observation.
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165 Figure 3. Nonsynonymous variants in highly expressed genes segregate at lower frequency in Emperor (teal) and
166 King (gold) penguins. Site frequency spectra of ten random resampling (95% distribution) of one nonsynonymous (upper
167 panels) and one synonymous (lower panels) variant per gene with lower (dark shade) or higher (light shade) than 0.3 CPM
168 mRNA expression. The relative frequency of each count class is loglO transformed. Of note, nonsynonymous variants in
169 highly expressed genes show a higher frequency at low derived allele count classes than in lowly expressed genes.

170 Purifying selection in the top 10% of highly expressed genes largely exceeds the effect of 100,000-
171 individuals effective population size. In simulated populations, under either Wright-Fisher or more
172 realistic non Wright-Fisher models, median pa/ps (same as sa/s when using simulated data) across
173 genes declines from 1.8 to 0.9, while population size increases from 1,000 to 100,000 individuals (Fig.

174 4). Such values of pa/ps are much higher than the values observed in penguin populations for genes in
175 the top 50% or top 10% of expression rate (Fig. 2A, Supp. Fig. 6). In these models, the effect of
176 population size on purifying selection was explored by simulating a set of realistic values for mutation
177 and recombination rate, synonymous to nonsynonymous ratio, selection and dominance coefficient

178 distributions, coding sequence length and gene numbers. In particular, new mutations were given a
179 selection and dominance coefficient (h-mix) based on a nearly neutral prior distribution (Kim et al
180 2017, Kyriazis et al 2021), meaning that most of the mutations are weakly deleterious. To reproduce
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181 pnps values as those observed in highly expressed genes in both penguin species, we designed a more
182 extreme selection scenario: all nonsynonymous mutations appearing in a gene were given a fixed
183 selection coefficient of -0.1, -0.01 or -0.001 (100 replicated genes per selection coefficient) and a
184 dominance coefficient derived from the ks relationship (Henn et al 2016). In realistic non Wright-
185 Fisher models with a selection coefficient of -0.01, ps/ps decreases below 0.4 (Fig. 4) while a selection
186 coeflicient of -0.1 results in pa/ps below 0.3, as largely observed in genes in the top 50% and 10% of
187 expression rate, respectively (Fig. 2A, Supp. Fig. 6). Such high selection coefficients are then expected
188 to be effective even when the population size is small (i.e., s >> 1/N., per N = 1,000), thus buffering the
189 effects of changing population size as it was also suggested for the vast majority of X-linked genes in
190 Drosophila (Andolfatto et al 2011). However, we also observe more variance in simulations with
191 smaller population sizes (Supp. Fig. 11).
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192 Figure 4. Population size and gene-specific extreme selection coefficient explain low observed pN/pS values in
193 simulations. Distribution of puy/ps (when using simulated genomic data pw/ps is the same as sza/ms) across 1000 genes
194 simulated under nonWrightFisher (nonWF, left, solid border) and WrightFisher (WF, right, dashed border) models with
195 effective population size from 1,000 to 100,000 (darker grey background) and across 100 genes with selection coefficient
196 from -0.001 to -0.1 (lighter grey background). Note that the dominance coefficient is set according to the h-mix or hs models
197 in simulations testing different population sizes or selection coefficients, respectively. More efficient purifying selection in
198 nonWF models, where effective population size tends to be lower than in WF models, can be explained by the fact that, in
199 such models, individuals with high fitness can survive and reproduce for multiple generations (Haller and Messer 2019).
200 Gene expression can be used as a proxy of the distribution of gene selection coefficients in natural

201 populations of non-model species. Variants with highly deleterious effects on individual fitness are
202 expected to be immediately lost in natural populations. Consistent with this expectation, the highly
203 deleterious variants (less than1000 HIGH effect SNPs per species) predicted by SNPeff (Cingolani et

204 al 2012) in each penguin population show a much lower average expression level than weakly
205 deleterious (MODERATE effect) and nearly-neutral (LOW effect and synonymous) variants (Tab. 1).
206 This observation means that HIGH effect variants are mainly present in lowly expressed genes with
207 limited impact on fitness. Expression level is even lower in the very few fixed differences with HIGH

208 effect (Tab. 1), thus supporting our hypothesis. As site-specific expression of highly deleterious
209 variants (mainly start/stop codons loss/gain and splice acceptor/donor variants) could be biassed in
210 mature mRNA sequencing, we also estimated the expression of highly deleterious variants as the
211 expression of the gene they belong to. Even applying a rather conservative test, the expression of genes
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212 with predicted highly deleterious variants is on average three times lower than all genes (Kolmogorov-
213 Smirnov test p-value = 0.00095) in the King penguin and slightly lower, even if not significant, in the
214 Emperor penguin. As previously suggested for the distribution of dominance coefficients in a model
215 plant species (Huber et al 2018), gene expression should be taken into account when using predictions

216 of fitness effects and, more generally, when using such predictions to calculate the genetic load in
217 populations of conservation concern (Bertorelle et al 2022). In fact, predicted highly deleterious
218 variants could be on lowly expressed genes, thus with little contribution to individual or population
219 fitness.

220 Table 1. Expression rate by predicted fitness effect. LOWsyn: low effect and synonymous; MDR: moderate effect; HIGH:
221 high effect.

PREDICTED FITNESS EFFECT LOWsyn LOWsyn MDR MDR HIGH HIGH
Species Emperor King Emperor King Emperor King
Total variants 73501 57088 47183 41352 934 840

—>Average (stdev) Z-normalised CPM 1.5 (5.02) 1.3(4.56) 078 (2.85) 078 (2.86)  0.24(1.97)  0.14 (0.88)

Fixed differences 1846 3500 1166 2229 16 44
—Average (stdev) Z-normalised CPM 1.41 (4.12) 1.22 (4.14) 1.4 (6.31) 0.93 (3.39) 0.08 (0.54) 0.02 (0.57)

Average count of derived alleles in
segregating variants 6.17 6.25 475 4.73 5.14 5.48

222 Concluding remarks

223 Overall, our study provides evidence that gene expression is a fundamental driver of purifying
224 selection in natural populations and to a higher extent than population size for highly expressed genes.
225 About half of the genes in a genome, which are likely responsible for basic cellular and molecular
226 functions (Boyle et al 2017), are under a strong selective constraint preventing deleterious sequence
227 changes even when population size declines to about 1,000 individuals. Selection coefficients on the top
228 10% of the expressed genes could be so high to buffer even smaller population size (ca. 100

229 individuals). Below this order of magnitude, random effects would necessarily prevail in the proteins'
230 evolutionary trajectory. Importantly, gene expression can be used as a proxy of the gene selection
231 coefficient, which is notoriously difficult to study in natural populations of non-model species (Huber et
232 al 2017). Gene expression data are easier to collect than selection coefficients and are usually highly

233 conserved across closely related species (Fig. 1D), so that they can be used to refine estimates of
234 genetic load (Bertorelle et al 2022) in natural populations of conservation concern.
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235 Data availability

236 Genomic and transcriptomic raw reads are publicly available at ENA database with Project accession
237 number XXX (genomic raw reads to be submitted) and PRIEB64484, respectively.

238 The filtered SNPs dataset is available here: 10.5281/zenodo.10688854.

239 Bioinformatic scripts are available here: github.com/emitruc/Expressionl.oad;

240 github.com/ThibaultLatrille/PenguinExpression;

241 github.com/PiergiorgioMassa/penguin_gene_expression_slimulations.
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352  Extended methods and supplementary information

353 1. Genomic data

354 1.1 Samples collection and storage

355 Genomic DNA extractions of 24 King penguins (Aptenodytes patagonicus from South Georgia, Crozet
356 archipelago, and Heard island), and 24 Emperor penguins (Aptenodytes forsteri from Terre Adélie and
357 Dronning Maud Land, Antarctica), were selected from samples used in Cristofari et al (2016) and
358 Cristofari et al (2018). In addition, four Gentoo penguin (Pygoscelis papua from Crozet archipelago)
359 and two Adelie penguins (Pygoscelis adeliae from Terre Adélie, Antarctica, 2007) were collected
360 during the field campaigns of the French IPEV programme 137 in 2017 and 2007, respectively (Supp.
361 File 1). Samples were stored in ETOH (muscle biopsy) or in Queen Lysis buffer (blood samples),
362 frozen at -80°C from the field to the lab.

363 1.2 DNA extraction, pooled library preparation and sequencing

364 DNA extraction was performed using DNeasy Blood and Tissue kit (Qiagen) following manufacturer’s
365 instructions. Whole genome sequencing libraries were prepared and sequenced at the Norwegian
366 Sequencing Centre, Oslo, using Illumina pcr-free single or dual-indexing kits. To minimise batch
367 effects, genomic samples from different species and different localities were randomised in six libraries

368 and sequenced on 1-3 lanes of Illumina HiSeq2500 and HiSeq4000 aiming at 20X coverage depth.
369 Raw reads are publicly available at ENA database (XXX, to be made available).

370 1.3 Variant calling, filtering and annotation

371 After Illumina adapters trimming and quality filtering with Trimmomatic (Bolger et al 2014) and
372 URQT (Modolo and Lerat 2015), respectively, fastq reads were mapped to the Aptenodytes forsteri
373 reference genome (ASM69914v1; RefSeq assembly accession: GCF_000699145.1) using bwa mem
374 (v0.7.15; Li 2013), converted to bam files and sorted with samtools (v0.1.19; Li et al 2009), keeping
375 only reads with phred-scaled mapping quality higher than 10. Duplicated reads were removed with
376 picard-tools (v1.98) and bam files were assigned to individual samples by adding ID read groups with
377 picard-tools.

378 Small variants (SNPs, indel and MNPs) were called with freebayes (Garrison and Marth 2012) using
379 reference genome scaffolds longer than 100Kb (481 in total), all samples grouped per species (--
380 populations flag), and a minimum phred-scaled mapping quality of 20. Resulting vcf files (one per
381 scaffold) were then filtered: i) MNPs were first broken down into SNPs using vcfallelicprimitives script
382 in veflib (with -k -g flags; Garrison et al 2022); i) variants were then filtered for quality (QUAL > 30),
383 strand bias (SAF > 0 & SAR > 0), read placement bias (RPL > 0 & RPR > 0), and type of variants
384 (TYPE = snp) with vcffilter script in vcflib; iii) SNPs were finally filtered using vcftools (v0.1.15;
385 Danecek et al 2011) for minimum coverage depth of 3 reads per individual (--minDP 3; individual
386 genotypes discarded if below threshold), mean maximum coverage depth of 50 (--max-meanDP 50
387 which is ca. three times the average individual coverage depth; whole locus discarded if above
388 threshold), and retained only if biallelic across all samples. A total of 44 sex-linked scaffolds were
389 identified and removed from the dataset by running samtools idxstats on all bam files and the SATC
390 (Nursyifa et al 2022) Rscript on the resulting data. SNPs were annotated using SNPeff (Cingolani et al
391 2012) and the GCF_000699145.1 genome annotation. Annotated vcf files are available upon request.
392 Mean coverage depth of filtered SNPs per allele was 6.93X, standard deviation 1.07X.
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393 1.4 SNPs polarisation in ancestral and derived alleles

394 Annotated vcf files were parsed using a custom python script (vef2missenseFreq.2d.py;
395 https://github.com/emitruc/ExpressionLoad) to decide on the derived allele. Using the Emperor and
396 King penguins samples as ingroups and the Adelie and Gentoo penguins samples as outgroups, we
397 defined all of the possible configurations of a globally polymorphic site (Supp. Fig. 1). After assessing
398 the most likely ancestral allele based on our algorithm (Supp. Fig. 1), for each SNP position, we
399 calculated the joint derived allele counts for King and Emperor penguin samples and summarised the
400 data in the table daf.joint (Supp. Tab. 1) including the following information (column labels are in
401 brackets):

402

403 - counts of derived alleles and total alleles in Emperor penguin (der/; totl), King penguin (der2;
404 tot2), and Adélie and Gentoo penguins (der_out; tot_out) samples;

405 - average allele coverage (avgCov);

406 - ancestral (ref) and derived (alf) allele;

407 - genomic site type (vartype) based on the first annotation by SNPeff as missense if containing the
408 word ‘missense’, synonymous if containing the word ‘synonymous’, infergenic if containing the
409 word ‘intergenic’, intronic if containing the word ‘intron’, else otherwise;

410 - genomic site predicted effect (effect) based on the the first annotation description as HIGH,
411 MODERATE, LOW, MODIFIER;

412 - a flag whether the polymorphic site was originally called as MNP or SNP by freebayes (flagQual:
413 haplo, snp);

414 - a flag to track how the derived allele was called (flagPol) on the basis of the options shown in
415 Supplementary Figure 1.

416 Supplementary Table 1. Example of SNPs recorded in the summary table daf. joint

scaffold position  flagPol flagQual  derl totl der2 tot2 der_out tot_out avgCov ref alt  vartype effect
NW_008793941.1 85516 InFixAnc snp 0 48 0 44 6 8 72 G A intron MODIFIER
NW_008793941.1 85528 unfolded  snp 3 48 46 46 0 8 6.6 G A intron LOW
NW_008793941.1 85558 | allFix snp 0 48 0 46 8 8 64 T C synonymous  LOW
NW_008793941.1 85657 unfolded  snp 0 48 1 48 0 12 6 C T synonymous  LOW
NW_008793941.1 85734 unfolded  snp 2 48 0 48 0 12 69 C T intron MODIFIER
NW_008793941.1 85746 allFix snp 0 48 0 48 12 12 68 G A intron MODIFIER
NW_008793941.1 85762 unfolded  snp 5 48 0 48 0 10 6.6 C T intron MODIFIER
NW_008793941.1 85788  InFixAnc  snp 0 48 0 46 4 8 71 A C intron MODIFIER
NW_008793941.1 85790 unfolded snp 0 48 15 46 0 8 71 T C intron MODIFIER
NW_008793941.1 85800 ' unfolded  snp 2 48 0 48 0 8 69 C T intron MODIFIER
NW_008793941.1 85804 unfolded  snp 1 48 0 48 0 8 69 C T intron MODIFIER

NW_008793941.1 85829  unfolded snp 0 48 11 48 0 8 67 T C intron MODIFIER


https://doi.org/10.1101/2023.08.08.552445
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.08.552445; this version posted March 12, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

@ ancestral allele
derived allele
¢ mutation

FlagPol FlagPol
UNFOLDED

FlagPol
UNFOLDED

UNFOLDED

e ~ A I o et
sesse” “sde XY scee “aee

[

Ingroupl Ingroup2 Outgroup Ingroupl Ingroup2 Qutgroup Ingroupl. Ingroup2 Outgroup

FlagPol
ALLFOLD

FlagPol
INFIXANC

FlagPol
ALLFIX

—7| “_—71
[ seece

Ingroupl Ingroup2 autgroup Ingroupl Ingroupz Qutgroup Ingroupl Ingroup2 Outgroup

FlagPol
UNFOLDOUTMISS

FlagPol
UNFOLDOUTMISS

FlagPol
INFIXOUTMISS

Y P ol xS ~ 71
e e eecee escce LR socce

Ingroupl Ingroup2 Outgroup Ingroupl Ingroup2 outgroup Ingroupl Ingroup2 Outgroup

FlagPol
INFOLD

FlagPol
INIFOLD

FlagPol
IN2FOLD

[ eee - o ()

Trgrout oz Owwew Trgroupt ngroun? Gutgroun Trgroupl ngraup?. Outgrovp
417 Supplementary Figure 1. Schematic representations of the potential distribution of ancestral and derived alleles at a biallelic
418 site across two ingroup and one outgroup samples. Ingroupl: Emperor penguin; ingroup2: King penguin; outgroup: Pygoscelis
419 (Adélie + Gentoo) penguins. Blue and yellow circles represent copies of the ancestral and derived alleles. The number of
420 allele copies per sample is only given as an example. Missing data are represented as no circles. The yellow star represents the
421 branch and timing the mutation to the derived allele likely occurred at. For ALLFIX and INFIXOUTMISS configurations, the
422 allele of ingroupl is arbitrarily considered as ancestral. Ingroup1 or ingroup2 missing data configurations are not shown. This

423 algorithm is implemented in the python script vef2missenseFreq.2d.py (available at
424 https://github.com/emitruc/ExpressionLoad).

425 1.5 Final data filtering and sanity checks

426 After removing monomorphic sites across Emperor and King penguin samples (e.g., INFIXANC and
427 ALLFIX configurations in Supp. Fig. 1) from the dataset (daf.joint.no00, https://zenodo.org/doi/
428 10.5281/zenodo.10688853), we checked whether the derived alleles distribution was in line with basic
429 expectations from population genetics. To avoid downstream normalisation, we selected only sites
430 without missing data in the target species. In addition, we choose sites which were properly polarised
431 (flagPol=UNFOLDED) based on at least four alleles present in the outgroup and with coverage depth
432 range per allele between 6X and 8X, i.e., one standard deviation (ca. 1X) from the mean (ca. 7X). Such
433 a narrow coverage range was applied to mitigate as much as possible the inclusion of sex-chromosome
434 related regions, which could have been incorrectly assembled within autosomal scaffolds, and multiple-
435 copy regions, which were not properly assembled in the reference genome sequence (see Supp. Fig. 2
436 for a comparison at different coverage ranges). Both types of regions are also characterised by marked
437 deviation from Hardy-Weinberg equilibrium (HWE). Applying a coverage threshold as a filter, we
438 could retain sites which are not in HWE due to other processes (e.g., population structure, selection).
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439 Using all intergenic sites with no missing data for both species, we summarised the joint derived allele
440 frequency (DAF) distribution (Supp. Fig. 2). As expected, a very small proportion (note the log scale
441 of the heatmap in Supp. Fig. 2) of derived alleles appear as segregating in both species, with a minimal
442 covariance in the low and in the very high frequency classes. The latter suggests some mis-polarisation
443 due to sites hit by multiple mutations (see below). Nevertheless, when setting the coverage range
444 between 6X and 8X, co-segregating derived allele frequencies largely appear as uncorrelated between
445 the two species as expected in case of incompletely sorted ancient variation.
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446 Supplementary Figure 2. Joint derived allele frequency distributions in King and Emperor penguins samples at different

447 ranges of coverage.

448 DAF were separately summarised according to the predicted annotation as intergenic, intronic,
449 synonymous and nonsynonymous in each species (Supp. Fig. 3). In general, the shape of observed DAF
450 is consistent with the expectations from population genetics theory. The slight (note the log scale on the
451 y-axis in Supp. Fig. 3) increase in very high frequency variants has been commonly observed (also in
452 human population data; Marchi and Excoffier 2020) and it is likely due to mis-polarisation of
453 ancestral/derived alleles at sites hit by multiple mutations (Hernandez et al 2007), rather than to
454 migration from a “ghost” population (Marchi and Excoffier 2020). DAF from intergenic sites represent
455 the best approximation to neutrality, with a shape depending on past population demography only. On
456 the contrary, DAF from missense sites are expected to be enriched in low frequency and depleted in
457 medium-high frequency classes as deleterious alleles are less likely to increase in frequency in the
458 population due to negative selection. Such a pattern is clearly appearing in both Emperor and King
459 penguins. Synonymous sites DAF show small deviations from neutrality, likely due to linked selection
460 within missense sites in exons. On the other hand, DAF from intronic and intergenic sites are fully
461 overlapping with each other, suggesting very limited linked selection spanning from exons to introns.
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462 Supplementary Figure 3. Derived allele frequency distributions for different types of variants (Intergenic, intronic,
463 synonymous and missense as annotated by SNPeff)

464 1.6 Population-level summary molecular statistics

465 Nucleotide diversity (;r) and Tajima’s D were estimated in non-overlapping windows of 10 thousand
466 base pairs (kbp) in Emperor and King penguin samples using vcftools across 437 reference genome
467 scaffolds. As we are interested in the species-level long-term adaptation processes, we included in our

468 samples individuals from multiple locations to get an accurate representation of the whole species
469 diversity. Previous studies, based on reduced-representation genome sequencing of hundreds of
470 individuals per species, described both Emperor and King penguin as quasi-panmictic species, with
471 only one very large population each and very little differentiation among colonies (Cristofari et al 2016,

472 2018). By estimating Weir and Cockerham (1984) Fgr in 10 kbp non-overlapping windows using
473 vcftools (Supp. Fig. 4 inset), we confirmed previous results finding negligible genetic differentiation
474 between King penguin samples from Crozet and Heard, and South Georgia (Fsr mean 0.003, std 0.024)
475 and between Emperor penguin samples from Terre Adélie and Dronning Maud Land (Fsr mean 0.004,
476 std 0.020). Principal component analysis (SNPRelate - Zheng et al 2012, 500 bp pruning for linkage
477 disequilibrium) on a subset of ca. 20,000 SNPs from scaffold NW_008796188 showed no genetic
478 structure in any of the two species (Supp. Fig. 4).
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Supplementary Figure 4. No signature of genetic differentiation among distant colonies of Emperor (left) and King penguin
(right). Main plots show the results of Principal Component Analysis run in SNPRelate using 20,256 and 18,256 SNPs not
closer than 500 bp from scaffold NW_008796188, respectively. Histograms of Fs; estimated in non-overlapping 10 kbp
windows across the whole genome are shown as insets. DML: Dronning Maud Land; ADE: Terre Adélie; CRO: Crozet; HEA:
Heard; GEO: South Georgia.
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484 2. Gene expression data

485 2.1 Sample collection and storage

486 During June-September 2016 field campaigns at Dumont d'Urville Station in Antarctica and at the
487 Alfred Faure station in Crozet archipelago, samples of five different tissues (brain, liver, kidney, skin
488 and muscle) were collected from three freshly-predated 3-7 months-old chicks from natural
489 populations of Emperor and King penguins, respectively (Paris et al 2023). All tissue samples were
490 collected immediately after death, directly fixed in RNAlater (Applied Biosystems, Warrington, UK)
491 and frozen at —80°C until RNA extraction.

492 2.2 RNA extraction, pooled library preparation and sequencing

493 Total RNA was isolated from 40 mg of each tissue sample by a standard laboratory-based chloroform
494 extraction after homogenization in 500 ul of TRIzol® reagent (Invitrogen, ThermoFisher Scientific).
495 Samples were added to 100 ul of chloroform, vortexed, and centrifuged at 12,000xg for 15 min at 8°C;
496 the upper aqueous phase was collected and transferred to a new tube for precipitation with isopropanol
497 by centrifugation at 12,000 g for 10 min at 8 °C; the RNA pellet was washed with 75% ethanol and
498 centrifuged at 7,500xg for 5 min at 8 °C, the ethanol removed and the RNA pellet resuspended in
499 RNase free water to be stored at -80C°. As TRIzol-based extraction from skin and muscle yielded poor

500 RNA quality and quantity, likely due to large amount of proteins, connective tissue, and collagen in
501 these tissues, RNA from these two tissues was extracted using the RNeasy Fibrous Tissue Mini Kit
502 (Qiagen) according to the manufacturer’s instructions. Also in this case, isolated RNA was dissolved in

503 RNase free water and stored at -80C°. Concentration and purity (i.e., the A260/A280 ratio) of each
504 RNA sample was assessed by Nanodrop 2000 (Thermo Fisher Scientific) and Qubit 4.0 fluorometer
505 (ThermoFisher Scientific) while RNA integrity was evaluated by capillary electrophoresis on Agilent
506 2100 Bioanalyzer (Agilent technologies, Santa Clara, CA). As the target of our study was to estimate
507 the global level of gene expression (across tissues), a total of six RNA pools (three pools of five tissues
508 per three individuals for each species) were assembled starting from 15 RNA samples per species,
509 after concentration was normalised. RNA-seq library preparation and sequencing was carried out by
510 BMR Genomics Service (Padova, Italy). Libraries were synthesised using the TruSeq Stranded mRNA
511 Sample Prep kit (Illumina, San Diego, CA), according to the manufacturer’s instructions. Poly-A
512 mRNA was fragmented for 3 minutes at 94°C, and each purification step was carried out with 1 x
513 Agencourt AMPure XP beads. Paired-end sequencing (100 bp from each end) was then performed on
514 the Novaseq 6000 (Illumina, San Diego, CA) at a sequencing depth of 100 million reads per library.
515 Raw reads are publicly available at ENA database as one pool of reads per species (Project ID:
516 PRJEB64484, sample accession ID King penguin: ERS16093259; sample accession ID Emperor
517 penguin, ERS16093260).

518 2.3 RNA mapping, base-pair and gene expression rate estimates

519 RNAseq reads from the two penguin species were mapped to the same reference genome (i.e., A.
520 forsteri reference genome - RefSeq assembly accession: GCF_000699145.1) as for the genomic data.
521 In particular, after standard filtering and trimming with Trimmomatic, RNA reads were mapped using
522 STAR v.2.7.9a (Dobin et al 2013) and resulting bam files indexed with SAMtools. From bam files,
523 counts of reads overlapping each gene were estimated with HTseq (Anders et al 2015) using the
524 available genes annotation for GCF_000699145.1 reference genome. Multi-mapped and overlapping
525 multiple expression features reads were discarded. For each gene, genomic coordinates, exon and CDS
526 length were extracted from the annotation of GCF_000699145.1 reference genome with the following
527 bash commands and merged with the RN Aseq expression counts from both Emperor and King penguin
528 samples:
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529 while read i; do echo -ne $i '\t'; grep -e 'gene='$i";' GCF_000699145.1_ASM69914v1_genomic.gff | grep - ' gene 'l cut -f 1,4,5 | sort -
530 k1,1 -k2n | bedtools merge ; done < gene.list > geneCoord

531 while read i e ; do echo -ne $i '\t' ; grep -e 'gene='$i";' GCF_000699145.1_ASM69914v1_genomic.gff | grep exon | cut -f 1,4,5 | sort -k1,1 -
532 k2n | bedtools merge | awk '{sum+=$3-$2-1} END {print sum}'; done < gene.list > geneLength

533 while read i e ; do echo -ne $i \t' ; grep -e 'gene='$i";’ GCF_000699145.1_ASM69914v1_genomic.gff | grep -e " CDS" | cut -f 1,4,5 | sort -
534 k1,1 -k2n | bedtools merge | awk '{sum+=$3-$2-1} END {print sum}'; done < gene.list > cdsLength

535 RNAseq counts per gene from HTseq were then normalised by CDS length and total number of reads
536 as transcript per million (TPM), separately per Emperor and King penguin samples (Supp. Fig. 5).
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537 Supplementary Figure 5. Expression rate as transcripts per million (TPM) per gene in King (gold) and Emperor (teal)
538 penguins. Whole range of expression (left panel) and up to 6000 TPM (right panel).
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539 3. Testing the effect of gene expression and population size on purifying selection
540 3.1 Theoretical expectation
541 Thermodynamic equations allow us to derive the proportion of protein molecules that are in the native

542 (folded) conformation in the cytoplasm. We assume that each misfolded protein molecule has the same
543 selective cost, caused by its toxicity for the cell. Under this model, the total selective cost of a
544 destabilising mutation is now directly proportional to the total amount of misfolded proteins and it is
545 proportional to the expression level y. It is then possible to derive the equilibrium at mutation-selection
546 equilibrium as a function of expression level y. Moreover, under different effective population size
547 (N.), the strength of selection exerted on destabilising mutations is different and thus the equilibrium is

548 different. At the specific equilibrium between mutation, selection and drift, the rate of evolution is
549 given by the probability of fixation of a selected mutation (relative to neutral mutation), called w. In
550 practice, @ is approximated from the ratio of nonsynonymous to synonymous polymorphism, zn/ss,
551 and or divergence, dy/ds. Altogether, it is possible to derive analytically the change in w as a function
552 of N.and y as in eq 18 from Latrille & Lartillot (2021).

Aw Aw

X Alog(V,) ~ Alogly)  C <"

553 where C is a constant that depends on thermodynamic parameters. From this equation, @ is linearly
554 decreasing with N, (in log scale) as well as with y (in log scale), importantly the slope of the linear
555 model is the same for both. Additionally, the assumption that proteins are selected against toxicity for
556 the cell can be relaxed and the above equation is also valid more broadly under the assumption that
557 selection is acting on protein-protein interactions (i.e. the protein is bounded or not to other proteins).

558 3.2 Estimates of synonymous and nonsynonymous polymorphism and divergence per gene

559 Across different genes, polymorphism and divergence counts are not directly comparable because they
560 are not in the same unit and are mechanically higher for genes with more sites. Moreover, even under
561 neutrality, non-synonymous polymorphism counts are expected to be higher than synonymous counts
562 because a mutation is more likely to be nonsynonymous than synonymous. This argument is also true

563 for nonsynonymous and synonymous substitutions that must be corrected for when estimating species
564 divergence. The number of sites (a.k.a. opportunities of synonymous and nonsynonymous mutations) is
565 thus needed to correct polymorphism and divergence counts and to obtain normalised nonsynonymous
566 divergence (dy), synonymous divergence (ds), synonymous polymorphism (;zy) and nonsynonymous
567 polymorphism (szs) in the same unit.

568 For each gene, all possible nucleotide mutations were computed from the reference protein-coding
569 DNA sequence (3 x L mutations for a sequence of L nucleotides). Whether a mutation was

570 synonymous or nonsynonymous was determined by comparing the reference codon to the codon
571 obtained after the mutation. Moreover, each mutation was weighted by the instantaneous rate of
572 change between nucleotides, derived from fitting a nucleotide substitution model to the b10k genome

573 alignment (Feng et al 2020).

574 Counts of synonymous and nonsynonymous polymorphic sites were summarised per gene using a
575 custom python script (FinalPipeline.ipynb; https://github.com/emitruc/ExpressionLoad). After applying
576 the stringent filters for coverage (from 6X to 8X per allele) and missing data (no missing genotype), we
577 used the genomic coordinates of all genes to subset the list of SNPs in the daf.joint.no00 dataset and
578 count the number of synonymous and nonsynonymous polymorphic sites per gene.
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579 The proportion of synonymous mutations was then given as the sum of the instantaneous rates of all
580 synonymous mutations, divided by the sum across all possible mutations (synonymous,
581 nonsynonymous, stop). This proportion of mutations being synonymous is multiplied by the number of
582 sites in the gene to obtain the number of synonymous sites. Repeating this process for nonsynonymous

583 mutations gives the number of non-synonymous sites.
584 As an estimator of genetic diversity, we used Tajima's s, the average pairwise difference between all
585 sequences in the sample. ;x was obtained for each population from the site-frequency spectrum (SFS)

586 as eq. 5-6 in Achaz (2009).

587 Formally, & is a vector that represents the unfolded frequency spectrum composed of &, the number of
588 polymorphic sites at frequency i/n in the sample (1 <i < n - 1), where n = 48 is the sample size (twice
589 the number of individuals) in the population. 7 is a function of & as:

Y- xix&

R S

590 zr was computed separately for nonsynonymous (7zx) and synonymous (7zs) polymorphism per gene and
591 also globally for intergenic regions (s, , see below). Finally, to correct dy, ds, v, 7ts such that they are
592 comparable between them, they are expressed in the same unit (per site) by normalising with the
593 number of nonsynonymous or synonymous sites (see above), respectively.

594 Python scripts used for data handling, parsing, plotting and statistical testing are available at
595 github.com/emitruc/Expressionl.oad and github.com/ThibaultLatrille/PenguinExpression.
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596 3.3 Rate of protein evolution (w) as function of expression level

597 w represents the rate of evolution of a protein and it was computed for each gene as the ratio of
598 nonsynonymous to synonymous polymorphism (za/7s) or divergence (dy/ds). To compute mn/ms or
599 dnlds, each gene must have at least one synonymous count, otherwise the ratio is undefined. y is the
600 slope of the linear regression of w as a function of log(y), where y is the expression level of the gene in
601 TPM (transcripts per million). We computed y independently in the two penguin populations
602 (Emperor, E) and (King, K), and we denote y* and x* their estimates of y, respectively (Supp. Fig. 6).
603 To assess the robustness of the results and assess the fit of the linear model, we performed the same
604 analysis while binning genes by their expression level. We performed the analysis with respectively 20,
605 50 and 100 bins, and computed the slope of the linear regression y and R? (Supp. Fig. 6).
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606 Supplementary Figure 6. Protein evolutionary rate (@) as dy/ds (left) or zn/ms (right) as a function of expression rate (log
607 TPM) in King and Emperor penguins using all genes or binning genes by expression rate in 100, 50, or 20 bins (from top to
608 bottom). x* and ¥ are the slopes of the linear regressions for Emperor (teal) and King (gold) penguins respectively. The slope
609 of ma/ms as a function of log expression level is not dependent on the number of bins used to compute zn/ws or dy/ds.

610 However, for fewer bins, the linear model is a strong fit (high R?), but the fit decreases as the number of bins increases.
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To compare our results with the patterns shown in Figure 1 of Zhang and Yang (2015), we plot w as
dnlds or mnlms in log scale as a function of expression rate (log TPM) in Emperor and King penguins
using all genes (Supp. Fig. 7). As dnv/ds= 0 and zn/ts=0 cannot be log-transformed, they are clipped to
dnlds = 10e-3 and mn/ms = 10e-3, respectively, as in Zhang and Yang (2015). The pattern shown by
mnlms is similar to those presented in Figure 1 of Zhang and Yang (2015), in particular in the case of
Drosophila melanogaster, Mus musculus and Homo sapiens. The very recent divergence between the two
penguin species resulted in many genes with dy/ds=0.
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Supplementary Figure 7. Protein evolutionary rate (w) as dn/ds (top) or ma/ms (bottom) in log scale as a function of
expression rate (log TPM) in Emperor penguin (left) and King penguin (right) using all genes.
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3.4 Rate of protein evolution (w) as function of effective population size (N.)
Given the two penguins populations (Emperor, E) and (King, K), we also estimated y as the change of
w as a function of N,:

B Aw
X7 Alog (V)
WE oK

~ log (NF) —log (NX)’

Under the assumption that the mutation rate () is the same between the two species, and since & = 4
N. u from neutral markers, y simplifies to:

E K

W — W

log (7 ( E/xk )

X =

where 7/ and 7/ are estimated from the intergenic regions, which are assumed to be neutral. Here
normalisation by the number of sites is not required since 7* and 7" are already expressed in the same
unit in the two species (the same reference genome was used), which cancels out in the ratio 7//7/~. w
(either wa/ms or dyl/ds) is computed as the total count (polymorphism or divergence) across all genes,
divided by the total number of sites across all genes, respectively for polymorphism and divergence.
We performed a bootstrap sampling (1000 replicates) to estimate the confidence interval of y, where
genes were sampled with replacement in each replicate (Supp. Fig. 8).
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Supplementary Figure 8. Rate of protein evolution (w) as function of expression level and of effective population size (N.).
x is the slope of the linear regression of w (either dy/ds in left panel ;ta/7s in right panel) as a function of the expression level
of the gene in TPM (transcripts per million) in the log scale. We computed y independently in the two penguin populations
(Emperor, E) and (King, K), and we denote y* and x* their estimates of y, respectively. y is also estimated (third column) as
the change of w as a function of N. (section 3.4). Confidence intervals of y are obtained from bootstrap sampling (1000
replicates) where genes are sampled with replacement in each replicate.
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638 3.5 Polymorphic sites-based analyses

639 For each polymorphic SNP in our genomic dataset (daf.joint.no00), we separately estimated the RNA
640 reads coverage in King and Emperor penguin samples using SAMtools module depth and a bed file
641 listing all polymorphic sites in the genomic dataset. Per site RNA read coverage was then added to the
642 genomic dataset, as one value (total number of reads) per species (daf.joint.no00.rnaCov;
643 https://doi.org/10.6084/m9.figshare.23863503.v1). Raw mRNA coverage per site was normalised as
644 counts per million reads (CPM) dividing this value by the sum of mapped RNA reads x 1 million,
645 separately per species:

646 emp_counts = [62589631 + 85819833 + 72587896] #mapped reads in each of the three pools
647 king_counts = [66803162 + 64732729 + 58348853] #mapped reads in each of the three pools

648 emp_CPM = emp_RnaCov / emp_counts * 1000000
649 king_ CPM = king_RnaCov / king_counts * 1000000

650 After applying the same stringent filters for coverage (from 6X to 8X per allele), outgroup missing data
651 (at least 4 alleles present), and King and Emperor penguin missing data (no missing genotype allowed),
652 we generated one dataset of synonymous and nonsynonymous variants together per species. Next, after
653 capping the maximum CPM value to 5, we grouped the variants in each dataset applying 100 bins of
654 CPM. We then estimated the ratio of nonsynonymous over synonymous variants in each bin separately
655 per species (Supp. Fig. 9). To investigate the effect of gene expression on the allele frequency of
656 synonymous and nonsynonymous variants, we estimated the derived allele frequency spectra grouping
657 the variants by discrete values of CPM (Supp. Fig. 10): i) CPM < 0.3, CPM > 0.3; ii) CPM < 0.5, CPM
658 > 0.5; iii) CPM < 0.3, 0.3 < CPM < 2, CPM > 2. In order to exclude the possibility that a few genes
659 were driving the observed pattern (i.e., pseudoreplication) in the comparison of the site frequency
660 spectra at different expression rates, we replicated ten times the analysis by grouping variants with
661 CPM < 0.3 or CPM > 0.3 after randomly subsampling one synonymous and one nonsynonymous
662 variant per gene. Out of ten replicas, we estimated the 95% intervals for each derived allele count in
663 the site frequency spectra (Figure 3 in main text).
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664 Supplementary Figure 9. Ratio of missense to synonymous segregating sites per 0.05 intervals of counts per million (CPM)
665 mRNA coverage of each site. Total mRNA read coverage (normalised as counts per million reads) across five tissues from
666 three specimens has been scored for all nonsynonymous and synonymous sites. Note these are density histograms where the
667 total sums up to 1 in each species.
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668 Supplementary Figure 10. Site frequency spectra of all nonsynonymous (left column) and synonymous variants (right
669 column) across all genes of Emperor (teal) and King (gold) penguins with mRNA expression partitioned by different values of

670 CPM. The relative frequency of each count class is log10 transformed.
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671 4. Estimating the selection coefficients of highly expressed genes using realistic forward
672 simulations

673 The genomic and transcriptomic data analysed in the previous section show that i) purifying selection
674 on genes appear as correlated with their level of expression, and that ii) the effect of gene expression

675 on purifying selection overrides the effect of population size at highly expressed genes. To infer the
676 selection coeflicients causing the pattern of purifying selection observed at highly expressed genes, we
677 devised a forward in time genomic simulation framework in SLiM v4.0.1 (Haller and Messer 2023). In

678 particular, we used both general Wright-Fisher (WF) and penguin-specific non Wright-Fisher (nonWF)
679 models to study the effect of different population sizes (i.e., genetic drift) and the effect of different
680 selection coefficients on pa/ps (which is the same as ma/ms when analysing simulated data). Our
681 hypothesis was that the effect of demography (N.) alone isn’t strong enough to generate the pa/ps values
682 as observed in the King and Emperor penguin data, but much stronger selection coefficients are needed
683 in the model to explain the pattern observed at highly expressed genes.

684 Firstly, to investigate the correlation between population size (N,) and pa/ps, we designed a WF (“WF
685 Pop Size Effect Model”) and a nonWF model (“nonWF Pop Size Effect Model”), which we ran with
686 different carrying capacities (N, = 1,000, 10,000 and 100,000). The main difference in the nonWF

687 model is that we modelled realistic King penguin life history traits (Céline Le Bohec, personal
688 communication) with population size as a non-fixed parameter which can fluctuate around the set
689 carrying capacity. The genomic model is the same in WF and nonWF simulations and it is

690 implemented as a reduced version of the whole CDS of the King penguin with the coding component
691 of 1,000 genes of length 2,400 bp (i.e., the mean value for the coding sequence per gene in King
692 penguin). The recombination rate is set at le-8 within genes and at 4.8e-4 between genes (le-8 rate
693 scaled to the average intergene length). Mutation rate is set at le-8 and the ratio between the
694 occurrence of deleterious and neutral mutations is 2.31:1 (Kim et al 2017). The selection coefficient is
695 assigned to each deleterious mutation using a random value from a gamma distribution with mean -
696 0.01314833 and shape 0.186 (Kim et al 2017). This distribution has been used before in humans and

697 other mammals but we believe it could approximate the distribution of fitness effect also in our target
698 species. For the dominance coefficient we used a s-mix model (Kyriazis et al 2021), where weakly
699 deleterious mutations (s = —0.01) are partially recessive (A = 0.25), while strongly deleterious

700 mutations (s < -0.01) are totally recessive (& = 0).

701 We designed similar WF and nonWF models (“WF Gene Expression Effect Model” and “non WF Gene
702 Expression Effect Model”, respectively) to investigate the effect of gene expression on pa/ps. As the
703 pnIps in the largest simulated population size (N. = 100,000) of the Pop Size Effect models did not reach
704 small values as observed in our King and Emperor penguin data, we implemented a more extreme
705 selection scenario. In the initial Pop Size Effect models, the gamma distribution used to randomly assign
706 the selection coefficient of a novel deleterious mutation resulted in most of the mutations being weakly
707 deleterious (s >= -0.01). Here, we assigned a fixed selection coefficient (s = -0.001, -0.01, and -0.1) to

708 every gene so that all nonsynonymous mutations appearing in a gene have the same selection
709 coefficient, then we simulated 100 genes for each selection coefficient resulting in a set of 300 genes.
710 We followed the same strategy for the dominance coefficient assignment, thus it is assigned to every
711 gene deriving it from its fixed selection coeflicient following the hs relationship (Kyriazis et al 2021),
712 so that dominance and selection coeflicients result to be inversely proportional:

(1+7071.07 x 5|

713 The recombination coefficient is set at 1e-8 within genes and 0.5 between genes in order to make genes
714 independent to one another. Since most of the genes resulted in a low number of mutations at the end
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715 of the simulated generations and to keep the computational running time tractable, we instead
716 increased the gene length from 2,400 to 34,000 bp (the average total gene length in King penguin
717 genome) in the final models, we then estimated the py/ps per each selection coefficient category of
718 genes under different carrying capacities (N. = 1,000, 10,000, 100,000).

719 In total, we designed four models, each of them testing three carrying capacities. For each of these 12
720 scenarios, we ran three replicas of 10*N generations each (except for the N, = 100,000 model where
721 we ran for N, generations due to computational time), as suggested by SLiM authors in order to make

722 the population reach an equilibrium state (i.e., burn-in). At the end of the simulations, we estimated the
723 pwlps based on 24 individuals, as in our genomic and transcriptomic real data, repeating the estimate
724 100 times by randomly resampling 24 individuals (Supp. Fig. 11). Slim scripts are available at
725 github.com/PiergiorgioMassa/penguin_gene_expression_slimulations.
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726 Supplementary Figure 11. Selection coefficients in highly expressed genes. Distributions of py/ps estimated in 100 genes
727 where each deleterious mutation is assigned a fixed selection coefficient of -0.001, -0.01, or -0.1 in simulated populations of

728 1,000, 10,000, or 100,000 individuals, plotted by population size (left panels) or selection coefficient (right panels). As
729 expected, stronger selection coeflicients (i.e., s = -0.1) are effective also when population size is small.
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730 5. Expression rate per fitness effect class predicted by SNPeff
731 Genetic load is the cost paid by any population to its potential further evolution. It is an inherent
732 feature of populations evolving by random mutations which more often have deleterious than

733 advantageous effects on fitness. Deleterious mutations can accumulate in some individuals as a
734 consequence of small population size (i.e., high genetic drift and high inbreeding) reducing the fitness
735 of these high load individuals as compared to individuals which bear fewer such mutations. In
736 conservation genomics, genetic load is getting growing attention as a more appropriate measure of a
737 population's genomic health (Bertorelle et al 2022). However, genetic load is difficult to estimate in

738 non-model species, especially when relying on genomic data only, without information on mutations'
739 fitness effect. In such a case, genetic load can be estimated using i) either the predicted effect of a
740 mutation on the amino acid sequence (Cingolani et al 2012), ii) or the evolutionary conservation of a
741 certain allele at orthologous sites across multiple species (i.e., GERP; Davydov et al 2010). The latter
742 has the advantage that it can be applied even outside coding regions, but on the other hand, it requires

743 large multi-species genomic alignments, which are extremely computation intensive and error-prone.
744 Even if it can only be applied to coding sequences, a genomic load proxy based on gene expression
745 could be more accurate and easier to compute, given that mRNA expression data from multiple tissues
746 of the target species (or one closely related) are available.

747 After excluding intergenic variants from the daf.joint.no00.rnaCov file with a simple bash command

748 (awk '$14 != "intergenic" daf.joint.no00.rnaCov > daf.joint.no00.rnaCov.nolntergenic) and applying
749 the same filters for coverage (between 6X and 8X per allele) and missing data in ingroup (no missing)
750 and outgroup samples (at least 4 alleles present for polarisation) as before, we applied an additional Z-
751 normalisation to the CPM for clarity of interpretation only.

752 #CPM normalization

753 eCPMscal = sum of rnaCov_emp / 1000000
754 kCPMscal = sum of rnaCov_king /1 000000
755 eCPM = rnaCov_emp / eCPMscal

756 kCPM = rnaCov_king / kCPMscal

757 #CPM Z-normalisation
758 eCPMstdz = eCPM - eCPM_mean / eCPM_std
759 kCPMstdz = kCPM - kCPM_mean / kCPM_std

760 Next we selected the variants based on their fitness effect predicted by SNPeff (Cingolani et al 2012):
761 LOW-synonymous (we excluded all of the LOW which are present in introns, mostly as splice-region-
762 variants, as these are not covered by mature mRNA seq data), MODERATE, and HIGH effect.

763 We then summarised the Z-normalised CPM mean and standard deviation across all private variants
764 (segregating and fixed) or only in private fixed variants in each species per SNP effect (Table 1 in the
765 main text).

766 As site-specific expression of HIGH deleterious variants (mainly start/stop codons loss/gain and splice
767 acceptor/donor variants) could be biassed in mature mRNA sequencing due to their sequence position,
768 we also estimated their expression using the expression rate of the gene they occurred in. Using the
769 gene-based expression data generated before, we tested whether the expression rate of the group of
770 genes with HIGH deleterious derived alleles was significantly lower than all the rest of the genes. Even
771 if we applied a rather conservative test, the expression of genes with predicted highly deleterious
772 variants is on average three times lower than all genes (Kolmogorov-Smirnov test p-value = 0.00095) in
773 the King penguin and slightly lower, even if not significant, in the Emperor penguin.
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774 MODERATE variants show the same average expression rate in both Emperor and King penguin
775 samples (0.78) while a higher average expression in private fixed variants, with a larger difference in
776 Emperor (1.41) than King (0.93) penguin sample. The variance in expression is also larger in fixed than

777 in segregating variants (Table 1 in the main text). Instead of a major role of purging, which could
778 anyway still be part of the process, derived nonsynonymous (which mainly contribute to the
779 MODERATE effect variants) alleles which are fixed at highly expressed genes could actually be truly
780 advantageous variants fixed by positive selection. The lower average expression in King penguin is in

781 line with the expected larger effect of random drift in this population leading to fixation of a larger
782 number of derived nonsynonymous variants (2229 in the King penguin as compared to 1166 in the
783 Emperor penguin), but in genes with lower expression rate and, hence, lower effect on individual
784 fitness. More purging could be again suggested in this case, limiting the fixation of deleterious missense
785 in highly expressed genes. We also suggest that the more intense purging of deleterious variants in the
786 King penguin could be the cause of the lower average expression of synonymous variants which were
787 reduced in more expressed genes by background selection (Table 1 in the main text).

788 To test our hypothesis that private fixed derived MODERATE variants could actually be truly

789 advantageous, we screened the Emperor and King penguin genome data for selection signatures using
790 Sweepfinder2 (De Giorgio et al 2016) and OmegaPlus (Alachiotis et al 2012) in windows of 10 kb,
791 following the authors’ instructions with default settings. Fixed derived alleles are in regions showing

792 higher signatures of selection and lower diversity in both species, and higher differentiation between
793 the two species, hallmarks of highly conserved and lowly recombining genomic regions (Supp. Tab. 3).
794 This has to be considered as a preliminary indication of the potentially positive effect of some of the
795 private fixed MODERATE variants in each species. More targeted analyses are, however, necessary to
796 conclude on the fitness effect of fixed differences with a MODERATE effect on fitness.

797 Supplementary Table 3. Signatures of selection (SF2: Sweepfinder2; OP: Omega+), nucleotide diversity () and

798 differentiation between King (k) and Emperor (e) penguins (Fs7) in 10 kb genomic regions with fixed differences (Fix) or
799 segregating variants (Seg) identified of MODERATE effect by SNPeff annotation. All comparisons between the distribution
800 of the statistics across regions with fixed differences and segregating variants for both species are significant (Kolmogorov-

801 Smirnov test p-value < 0.05).

eFix eSeg kFix kSeg
eSF2 29.953265 3.8860132 21.077176 5764172
kSF2 11.175642 2.338862 10.622353 1.844183
eOP 3.166764 2.367568 2.759333 2.46341
kOP 3.613646 2.965366 3.808706 2.965772
en 0.002055 0.003088 0.002386 0.002906
kn 0.001484 0.00196 0.001539 0.001929

Fsr 0.644212 0.509277 0.612177 0.521541
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