
 1 

Within-Individual	Organization	of	the	Human	Cerebral	Cortex:	
Networks,	Global	Topography,	and	Function	

	

Jingnan	Du1,*,	Lauren	M.	DiNicola1,*,	Peter	A.	Angeli1,*,	Noam	Saadon-Grosman1,	Wendy	Sun1,	
Stephanie	Kaiser1,	Joanna	Ladopoulou1,	Aihuiping	Xue2,		B.T.	Thomas	Yeo2,	Mark	C.	Eldaief3,		

and	Randy	L.	Buckner1,3,4	
	

1Department	of	Psychology,	Center	for	Brain	Science,	Harvard	University,	Cambridge,	MA	02138,	USA;		
2Centre	for	Sleep	&	Cognition	&	Department	of	Electrical	and	Computer	Engineering,	National	University	of	
Singapore,	Singapore,	Singapore;	3Department	of	Psychiatry,	Massachusetts	General	Hospital,	Charlestown,	
MA	02129,	USA;	4Athinoula	A.	Martinos	Center	for	Biomedical	Imaging,	Massachusetts	General	Hospital,	

Charlestown,	MA	02129,	USA.		*Joint	first	author	
	

Correspondence:	jingnandu@fas.harvard.edu	(J.D),	randy_buckner@harvard.edu	(R.L.B)	
	
					The	human	cerebral	cortex	is	populated	by	specialized	regions	that	are	organized	into	networks.	
Here	we	estimated	networks	using	a	Multi-Session	Hierarchical	Bayesian	Model	(MS-HBM)	applied	
to	 intensively	 sampled	 within-individual	 functional	 MRI	 (fMRI)	 data.	 The	 network	 estimation	
procedure	was	initially	developed	and	tested	in	two	participants	(each	scanned	31	times)	and	then	
prospectively	applied	to	15	new	participants	(each	scanned	8	to	11	times).	Detailed	analysis	of	the	
networks	revealed	a	global	organization.	Locally	organized	first-order	sensory	and	motor	networks	
were	surrounded	by	spatially	adjacent	second-order	networks	that	also	 linked	to	distant	regions.	
Third-order	 networks	 each	 possessed	 regions	 distributed	 widely	 throughout	 association	 cortex.	
Moreover,	 regions	 of	 distinct	 third-order	 networks	 displayed	 side-by-side	 juxtapositions	 with	 a	
pattern	 that	 repeated	 similarly	 across	multiple	 cortical	 zones.	We	 refer	 to	 these	 as	 Supra-Areal	
Association	Megaclusters	(SAAMs).	Within	each	SAAM,	two	candidate	control	regions	were	typically	
adjacent	 to	 three	 separate	 domain-specialized	 regions.	 Independent	 task	 data	 were	 analyzed	 to	
explore	 functional	 response	 properties.	 The	 somatomotor	 and	 visual	 first-order	 networks	
responded	 to	body	movements	and	visual	 stimulation,	 respectively.	A	 subset	of	 the	 second-order	
networks	responded	to	transients	in	an	oddball	detection	task,	consistent	with	a	role	in	orienting	to	
salient	 or	 novel	 events.	 The	 third-order	 networks,	 including	 distinct	 regions	 within	 each	 SAAM,	
showed	 two	 levels	 of	 functional	 specialization.	 Regions	 linked	 to	 candidate	 control	 networks	
responded	to	working	memory	load	across	multiple	stimulus	domains.	The	remaining	regions	within	
each	SAAM	did	not	track	working	memory	load	but	rather	dissociated	across	language,	social,	and	
spatial	/	episodic	processing	domains.	These	results	support	a	model	of	the	cerebral	cortex	in	which	
progressively	 higher-order	 networks	 nest	 outwards	 from	 primary	 sensory	 and	 motor	 cortices.	
Within	 the	 apex	 zones	 of	 association	 cortex	 there	 is	 specialization	 of	 large-scale	 networks	 that	
divides	domain-flexible	from	domain-specialized	regions	repeatedly	across	parietal,	temporal,	and	
prefrontal	cortices.	We	discuss	implications	of	these	findings	including	how	repeating	organizational	
motifs	may	emerge	during	development.			 	

					The	primate	cerebral	cortex	is	populated	by	specialized	networks	that	support	sensory,	motor	and	higher-
order	cognitive	and	affective	functions.	Characterizing	how	the	networks	and	their	interconnected	regions	
are	organized	on	the	cortical	surface	began	more	than	a	century	ago	with	landmark	studies	of	myelogenetic	
and	architectonic	patterns	(e.g.,	Flechsig	1901;	Campbell	1905;	Brodmann	1909;	von	Economo	and	Koskinas	
1925;	 von	 Bonin	 and	 Bailey	 1947)	 and	 continued	 with	 modern	 systems	 neuroscience	 integration	 of	
anatomical	projection	data	and	insights	from	study	of	brain	lesions	(e.g.,	Geschwind	1965;	Ungerleider	and	
Desimone	 1986;	 Goldman-Rakic	 1988;	Mesulam	1990;	 1998;	 Van	Essen	 et	 al.	 1992;	 Pandya	 et	 al.	 2015;	
Giarrocco	 and	 Averbeck	 2023).	 Over	 the	 past	 decades	 our	 laboratory,	 and	 the	 field	 more	 broadly,	 has	
undertaken	 data	 collection	 efforts	 and	 analyses	 of	 neuroimaging	 data	 with	 the	 goal	 to	 improve	
understanding	 of	 human	 network	 organization	 and	 provide	 non-invasive	 approaches	 to	 measure	 brain	
organization	for	clinical	use.	
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					It	 is	beyond	the	present	scope	to	cover	the	extensive	literature	that	has	evolved,	but	 it	 is	 important	to	
interpret	 the	 current	 effort	with	 awareness	 that	 new	 details	 and	 revisions	 emerge	 incrementally	 as	 the	
methods	and	data	quality	progress.	Our	efforts	presented	here	reflect	another	step	in	that	progression.	The	
specific	challenge	in	examining	the	details	of	network	organization	in	humans	is	that	the	methods	are	indirect	
and	 limited,	and	often	noisy	within	 individuals.	Despite	 limitations,	advances	 in	structural,	diffusion,	and	
functional	 MRI	 (fMRI)	 provide	 valuable	 information	 about	 human	 cortical	 organization,	 albeit	 with	
ambiguities	consistent	with	the	complexity	of	cortical	architecture	and	the	low	resolution	of	the	techniques.		
					Resting-state	 functional	 connectivity	 MRI	 (fcMRI),	 based	 on	 measuring	 spontaneous	 correlated	
fluctuations	between	brain	regions,	has	been	especially	useful	for	estimating	networks	(Biswal	et	al.	1995;	
see	also	Fox	and	Raichle	2007;	Van	Dijk	et	al.	2010;	Buckner	et	al.	2013;	Murphy	et	al.	2013;	Smith	et	al.	2013;	
Power	et	al.	2014).	Explorations	 in	group-averaged	 fcMRI	data,	with	sample	sizes	 that	range	 from	ten	 to	
thousands	of	participants,	 reveal	network	estimates	 that	are	consistent	across	analytical	approaches	and	
datasets	(e.g.,	Beckmann	et	al.	2005;	Damoiseaux	et	al.	2006;	Yeo	et	al.	2011;	Power	et	al.	2011;	Doucet	et	al.	
2011;	Miller	et	al.	2016;	Glasser	et	al.	2016).	Moreover,	estimated	networks	show	similarities	 to	directly	
observed	anatomical	projection	patterns	from	tracer	injections	in	the	monkey,	providing	support	that	they	
reflect,	to	a	first	approximation,	anatomically	connected	networks	(Vincent	et	al.	2007;	Buckner	et	al.	2008;	
Binder	et	al.	2009;	Margulies	et	al.	2009;	Hutchinson	et	al.	2012;	Ghahremani	et	al.	2017;	Liu	et	al.	2019;	
Buckner	 and	Margulies	 2019;	Du	 and	Buckner	 2021).	 Correspondence	 is	 far	 from	perfect	 and	 there	 are	
unresolved	aspects	to	how	indirect	human	network	estimates	link	to	anatomy,	a	theme	that	we	will	return	
to	in	the	discussion.	
					A	 recent	 advance	 in	 the	 field	 is	 to	 use	 within-individual	 estimates	 of	 networks	 without	 recourse	 to	
averaging	 across	 participants.	 Architectonic	 fields	 tile	 the	 cortical	mantle	 with	 variability	 in	 their	 exact	
locations,	sizes,	and	borders	between	individuals	(Rademacher	et	al	1993;	Rajkowska	and	Goldman-Rakic	
1995;	Amunts	et	al.	1999;	2000;	2020;	Caspers	et	al.	2006;	Fischl	et	al.	2008;	Henssen	et	al.	2016;	Palomero-
Gallagher	et	al.	2019).	Spatial	blurring	–	inherent	in	group-averaging	–	impedes	the	ability	to	estimate	details	
of	network	organization.	Precision	neuroimaging,	involving	intensive	sampling	and	analysis	of	data	within	
the	individual,	preserves	idiosyncratic	anatomical	features.		
					Within-individual	 approaches	have	been	 the	mainstay	 in	human	neuroimaging	 studies	of	 sensory	and	
motor	systems	(e.g.,	Sereno	et	al.	1995;	Rao	et	al.	1995;	DeYoe	et	al.	1996;	Engel,	Glover	and	Wandell	1997;	
Kanwisher,	 McDermott,	 and	 Chun	 1997;	 Epstein	 and	 Kanwisher	 1998)	 and	 emerged	 later	 as	 viable	 to	
estimate	task-based	responses	in	higher-order	association	cortex	(e.g.,	Fedorenko	et	al.	2010;	2012;	Blank	et	
al.	2013;	Peer	et	al.	2015;	Michalka	et	al.	2015;	Huth	et	al.	2016).		Within-individual	precision	mapping	using	
fcMRI	only	became	emphasized	recently,	even	though	the	first	report	was	within	individuals	(Biswal	et	al.	
1995).	Following	a	landmark	demonstration	that	intensive	repeat	scanning	is	possible	(Poldrack	et	al.	2015;	
Laumann	 et	 al.	 2015),	 multiple	 groups	 have	 pursued	 within-individual	 characterization	 of	 network	
organization	(e.g.,	Braga	and	Buckner	2017;	Gordon	et	al.	2017;	Braga	et	al.	2019;	2020;	Smith	et	al.	2021;	
Somers	et	al.	2021;	Noyce	et	al.	2022;	Gordon	et	al.	2023;	for	further	discussion	see	Gratton	and	Braga	2021;	
Laumann,	Zorumski,	and	Dosenbach	2023).		
					Here	 we	 continue	 the	 investigation	 of	 the	 detailed	 organization	 of	 the	 cerebral	 cortex	 using	 within-
individual	approaches.	There	are	multiple	goals	and	methodological	innovations	that	steer	this	work.	First,	
we	employ	deep,	intensive	imaging	to	boost	the	signal-to-noise	(SNR)	within	individual	participants.	Each	
new	participant	was	scanned	on	at	least	8	separate	occasions	and	often	more.	Second,	we	applied	a	novel	
Multi-Session	Hierarchical	Bayesian	Model	(MS-HBM;	Kong	et	al.	2019)	to	automatically	estimate	networks	
in	 the	 intensively	 sampled	participants.	 Specifically,	 the	number	of	 networks	 estimated	was	 set	 at	 15	 to	
capture	established	networks	sometimes	missed	in	simpler	network	parcellations,	as	will	be	detailed	within	
the	 methods.	 Third,	 to	 enable	 clinical	 translational	 research,	 we	 developed	 an	 empirical	 method	 and	
projected	 all	 network	 estimates	 from	 the	 surface	 back	 into	 the	 native-space	 volume	 of	 individual	
participants,	as	is	needed	for	presurgical	planning	and	neuromodulation.	Fourth,	inspired	by	the	possibility	
to	chart	global	spatial	relations	between	networks	(e.g.,	Margulies	et	al.	2016),	we	also	plotted	the	resulting	
network	estimates	on	the	fully	flattened	cortical	surface	(Van	Essen	and	Maunsell	1980;	Fischl	et	al.	1999).	
As	the	results	will	reveal,	there	are	repeating	patterns	of	spatial	juxtapositions	among	networks	that	provide	
insight	 into	 their	 evolutionary	 and	 developmental	 origins.	 Finally,	we	 collected	 and	 examined	 task	 data	
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within	 the	 same	 intensively	 sampled	 participants	 to	 test	 whether	 within-individual	 network	 estimates	
predict	functional	response	patterns	and	also	to	explore	between	network	functional	dissociations.		
					The	 raw	 data	 and	 our	 provisional	 network	 parcellations	 generated	 through	 this	 research	 effort	 are	
provided	to	the	community	as	an	open	resource.	

	 	

Methods	
	

Overview	
					We	sought	to	estimate	networks	within	individuals	with	high	precision.	The	analyses	proceeded	in	three	
stages:	(1)	a	refinement	stage	established	the	methods	for	estimating	networks,	(2)	an	implementation	stage	
applied	 the	 methods	 prospectively	 to	 15	 new	 participants,	 and	 (3)	 a	 functional	 testing	 stage	 explored	
functional	response	properties	and	dissociations	between	networks.	
					In	 the	 refinement	 stage,	previously	 reported	datasets	 (N	=	2;	Braga	et	al.	2019;	Xue	et	al.	2021)	were	
analyzed	to	establish	a	novel	MS-HBM	network	estimate	that	incorporated	priors	for	15	distinct	networks	
(as	contrast	to	10	networks	used	in	earlier	work).	Each	of	the	participants	performed	31	independent	MRI	
sessions	allowing	considerable	data	to	test	for	within-individual	reliability.		
					In	 the	 implementation	 stage,	 the	 15-network	 MS-HBM	 model	 was	 prospectively	 applied	 to	 15	 new	
participants	 that	were	each	scanned	8-11	 times.	The	model	was	estimated	 for	each	participant	 in	a	 fully	
automated	 fashion,	 and	 the	 networks	 were	 confirmed	 using	 model-free	 seed-region	 based	 functional	
connectivity.	Following	network	estimation,	the	overlap	and	variability	of	each	network	across	individuals	
were	examined.		
					In	the	final	functional	testing	stage,	an	extensive	battery	of	tasks	was	administered	and	analyzed	within	
each	individual	to	explore	whether	the	estimated	networks	predicted	functional	responses.		

	

Participants	
					Seventeen	 native	 English-speaking	 volunteers	 participated	 for	 payment.	 History	 of	 a	 neurologic	 or	
psychiatric	illness	was	an	exclusion.	Participants	provided	informed	consent	using	protocols	approved	by	
the	Institutional	Review	Board	of	Harvard	University.	For	the	refinement	stage	data,	2	right-handed	adult	
women	ages	22	-	23	yr	participated	(data	previously	reported	in	Braga	et	al.	2019	and	Xue	et	al.	2021).	The	
refinement	stage	data	participants	are	labeled	S1	and	S2	to	match	Xue	et	al.	(2021).	For	the	implementation	
stage	data,	15	right-handed	adults	ages	18	–	34	yr	participated	 (mean	=	22.1	yr,	SD	=	3.9	yr,	9	women).	
Participants	came	from	diverse	racial	and	ethnic	backgrounds	(9	of	the	17	individuals	self-reported	as	non-
white	and	/	or	Hispanic).	A	subset	of	the	participants	contributing	implementation	stage	data	also	enrolled	
in	 a	 study	 of	 motor	 movement	 mapping	 (Saadon-Grosman	 et	 al.	 2022).	 The	 implementation	 stage	
participants	are	labeled	P1	to	P15.	

	

MRI	Data	Acquisition	
					Data	were	acquired	at	the	Harvard	Center	for	Brain	Science	using	a	3T	Siemens	Prisma-fit	MRI	scanner.	A	
64-channel	 phased-array	 head-neck	 coil	 (Siemens	 Healthcare,	 Erlangen,	 Germany)	 was	 used	 in	 the	
refinement	stage	and	for	a	subset	of	motor	task	sessions	in	the	implementation	stage.	A	32-channel	phased-
array	 head	 coil	 (Siemens	 Healthcare,	 Erlangen,	 Germany)	 was	 used	 to	 acquire	 all	 other	 data	 in	 the	
implementation	stage.	For	functional	neuroimaging,	the	differences	between	these	two	coils	are	minimal	and	
the	data	were	treated	as	comparable.	Foam	and	inflated	padding	mitigated	head	motion.	Participants	were	
instructed	to	remain	still	and	alert	and	to	look	at	a	rear-projected	display	through	a	mirror	attached	to	the	
head	coil.	The	display	had	a	resolution	of	1280	x	1024	pixels	and	screen	width	of	43	cm,	resulting	 in	an	
effective	viewing	distance	of	104	cm	(54	pixels	per	visual	degree).	Eyes	were	video	recorded	using	an	Eyelink	
1000	Plus	with	Long-Range	Mount	(SR	Research,	Ottawa,	Ontario,	Canada),	and	alertness	was	scored	during	
each	functional	run.	MRI	data	quality	was	monitored	during	the	scan	using	Framewise	Integrated	Real-time	
MRI	Monitoring	(FIRMM;	Dosenbach	et	al.	2017).	
					Refinement	Stage	Data.	Each	participant	(S1	and	S2)	was	scanned	across	31	MRI	sessions	over	28-40	wks	
with	no	sessions	on	consecutive	days.	Each	session	involved	multiple	resting-state	fixation	runs	to	be	used	
for	functional	connectivity	analysis,	for	a	total	of	63	functional	MRI	(fMRI)	runs	obtained	for	each	individual.	
fMRI	 data	were	 acquired	using	 blood	oxygenation	 level-dependent	 (BOLD)	 contrast	 (Kwong	 et	 al.	 1992;	
Ogawa	et	al.	1992).	A	custom	multiband	gradient-echo	echo-planar	pulse	sequence	provided	by	the	Center	
for	Magnetic	Resonance	Research	(CMRR)	at	the	University	of	Minnesota	was	used	(Xu	et	al.	2012;	Van	Essen	
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et	al.	2013;	see	also	Setsompop	et	al.	2012):	voxel	size	=	2.4	mm,	repetition	time	(TR)	=	1,000	ms,	echo	time	
(TE)	=	32.6	ms,	flip-angle	=	64°,	matrix	88	x	88	x	65,	anterior-to-posterior	(AP)	phase	encoding,	multislice	5x	
acceleration,	fully	covering	the	cerebrum	and	cerebellum.	Signal	dropout	was	minimized	by	automatically	
(van	der	Kouwe	et	al.	2005)	selecting	a	slice	25°	from	the	anterior-posterior	commissural	plane	toward	the	
coronal	plane	(Weiskopf	et	al.	2006;	Mennes	et	al.	2014).	Each	run	lasted	7	min	2	sec	(422	frames	with	the	
first	12	frames	removed	for	T1	equilibration).	A	dual-gradient-echo	B0	fieldmap	was	acquired	to	correct	for	
spatial	distortions:	TE	=	4.45	and	6.91	ms	with	slice	prescription	/	spatial	resolution	matched	to	the	BOLD	
sequence.	 During	 BOLD	 scanning,	 participants	 fixated	 a	 centrally	 presented	 plus	 sign	 (black	 on	 a	 gray	
background).	The	scanner	room	was	illuminated.	
					A	rapid	T1w	structural	scan	was	obtained	using	a	multi-echo	magnetization	prepared	rapid	acquisition	
gradient	echo	(ME-MPRAGE)	three-dimensional	sequence	(van	der	Kouwe	et	al.	2008):	voxel	size	=	1.2	mm,	
TR	=	2,200	ms,	TE	=	1.57,	3.39,	5.21,	7.03	ms,	TI	=	1,100	ms,	flip-angle	=	7°,	matrix	192	x	192	x	176,	in-plane	
generalized	auto-calibrating	partial	parallel	acquisition	(GRAPPA)	acceleration	=	4.		
					Implementation	Stage	Data.	Each	participant	(P1	to	P15)	was	scanned	across	8-11	sessions	most	often	
over	6	to	10	wks.	A	few	participants	had	longer	gaps	between	the	first	and	last	MRI	sessions	up	to	one	year.	
Each	session	involved	multiple	fMRI	runs	to	be	used	for	functional	connectivity	analysis,	for	a	total	of	17	to	
24	resting-state	fixation	runs	obtained	for	each	individual.	BOLD	acquisition	parameters	were	similar	to	the	
refinement	stage	data:	voxel	size	=	2.4	mm,	TR	=	1,000	ms,	TE	=	33.0	ms,	flip-angle	=	64°,	matrix	92 × 92	×	65	
(FOV	=	221 × 221),	65	slices	covering	the	full	cerebrum	and	cerebellum.	Each	resting-state	fixation	run	again	
lasted	7	min	2	sec	(422	frames	with	the	first	12	frames	removed	for	T1	equilibration).	Dual-gradient-echo	
B0	fieldmaps	were	also	acquired	with	parameters	matched	to	the	refinement	stage.	The	first	two	sessions	of	
P12	were	acquired	in	a	different	FOV	(211 × 211);	therefore,	the	matrix	for	both	BOLD	runs	and	field	maps	
was:	88 × 88	×	65	and	BOLD	TE	=	32.6	ms,	matching	S1	and	S2.	The	change	in	FOV	did	not	affect	the	quality	
of	registration	or	impact	the	analyses	in	any	way	we	could	detect.		
					High-resolution	T1w	and	T2w	scans	were	acquired	for	the	implementation	stage	data	based	on	the	Human	
Connectome	Project	(HCP;	Harms	et	al.	2018).	T1w	MPRAGE	parameters:	voxel	size	=	0.8	mm,	TR	=	2,500	
ms,	TE	=	1.81,	3.60,	5.39,	and	7.18	ms,	TI	=	1,000	ms,	flip-angle	=	8°,	matrix	320	×	320	×	208,	144,	in-plane	
GRAPPA	acceleration	=	2.	T2w	sampling	perfection	with	application-optimized	contrasts	using	different	flip	
angle	evolution	sequence	(SPACE)	parameters:	voxel	size	=	0.8	mm,	TR=3,200	ms,	TE=564	ms,	208	slices,	
matrix=320	x	300	x	208,	in-plane	GRAPPA	acceleration	=	2.	Rapid	T1w	structural	scans	were	also	obtained	
as	backup	using	the	refinement	stage	sequence	but	with	matrix	192	x	192	x	144.	
					Functional	Testing	Stage	Data.	To	explore	functional	response	properties,	extensive	task-based	BOLD	fMRI	
data	were	collected	on	participants	P1	to	P15.	Task	runs	used	the	same	sequence	as	the	resting-state	fixation	
runs,	ensuring	the	estimated	networks	would	be	spatially	aligned	to	the	task-based	data.	Details	of	the	task	
designs,	stimuli	and	run	structure	are	described	below	under	Task	Paradigms.	
	 	

Exclusion	Criteria	and	Quality	Control	
					Each	BOLD	fMRI	run	was	examined	for	quality.	Exclusion	criteria	generally	consisted	of	the	parameters	
reported	in	Xue	et	al.	(2021)	including:	1)	maximum	absolute	motion	>	1.8	mm	and	2)	slice-based	SNR	<	130.	
Runs	with	SNR	>	100	but	also	SNR	<	130	were	retained	if	motion	and	visual	inspection	indicated	adequate	
quality.	For	the	functional	testing	stage	data,	the	maximum	absolute	motion	for	the	Episodic	Projection	task	
was	>	2.5	mm	given	their	long	duration.	One	borderline	motor	run	(P2)	was	included	with	motion	of	1.9	mm	
as	the	motion	was	largely	due	to	a	linear	drift.	For	the	refinement	stage,	usable	resting-state	runs	were	62	
(S1)	and	61	(S2)	runs.	For	the	implementation	stage,	usable	resting-state	runs	ranged	from	15	(P11)	to	24	
(P12)	runs.	For	the	functional	testing	stage,	usable	task	runs	ranged	from	18	(P5)	to	70	(P12)	runs	(see	Table	
1).	All	data	exclusions	were	finalized	prior	to	functional	connectivity	and	task	response	analyses.		 	 	

-------------------------------------------------------	
Insert	Table	1	About	Here	

-------------------------------------------------------	
	

Data	Processing	and	Registration	that	Minimizes	Spatial	Blurring	
					Data	were	processed	using	an	in-house	preprocessing	pipeline	(“iProc”)	that	preserved	spatial	details	by	
minimizing	blurring	and	multiple	interpolations	(described	in	detail	in	Braga	et	al.	2019).	For	the	refinement	
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stage	data	(S1	and	S2),	the	processed	data	were	taken	directly	from	Xue	et	al.	(2021).	For	the	implementation	
stage	data	 (P1	 to	P15),	 the	 changes	 in	processing	 included	 the	use	of	 the	high	 resolution	T1w	and	T2w	
structural	images.	For	one	participant	(P12),	the	registration	failed	with	the	0.8	mm	T1w	image	and	their	1.2	
mm	image	was	used	as	a	back-up.	For	another	participant	(P1),	only	the	0.8	mm	T1w	image	was	used	without	
a	paired	T2w	image.	
					Data	were	interpolated	to	a	1-mm	isotropic	T1w	native-space	atlas	(with	all	processing	steps	composed	
into	a	single	interpolation)	that	was	then	projected	using	FreeSurfer	v6.0.0	to	the	fsaverage6	cortical	surface	
(40,962	vertices	per	hemisphere;	Fischl	 et	 al.	 1999).	Four	 transformation	matrices	were	calculated:	1)	a	
motion	 correction	matrix	 for	 each	 volume	 to	 the	 run’s	middle	 volume	 [linear	 registration,	 6	 degrees	 of	
freedom	(DOF);	MCFLIRT,	FSL],	2)	a	matrix	for	field-map-unwarping	the	run’s	middle	volume,	correcting	for	
field	inhomogeneities	caused	by	susceptibility	gradients	(FUGUE,	FSL),	3)	a	matrix	for	registering	the	field-
map-unwarped	middle	BOLD	volume	to	the	within-individual	mean	BOLD	template	(12	DOF;	FLIRT,	FSL),	
and	4)	a	matrix	for	registering	the	mean	BOLD	template	to	the	participant’s	T1w	native-space	image	which	
was	resampled	to	1.0	mm	isotropic	resolution	(6	DOF;	using	boundary-based	registration,	Freesurfer).	The	
individual-specific	mean	BOLD	template	was	created	by	averaging	all	field-map-unwarped	middle	volumes	
after	 being	 registered	 to	 an	 upsampled	 1.2	mm	and	 unwarped	mid-volume	 template	 (an	 interim	 target,	
selected	from	a	low	motion	run,	typically	acquired	close	to	a	field	map).	
					For	resting-state	fixation	runs,	confounding	variables	including	6	head	motion	parameters,	whole-brain,	
ventricular	signal,	deep	cerebral	white	matter	signal,	and	their	temporal	derivatives	were	calculated	from	
the	BOLD	data	in	T1w	native	space.	The	signals	were	regressed	out	from	the	BOLD	data	using	3dTproject	
(AFNI;	Cox	et	al.	1996;	2012).	The	residual	BOLD	data	were	 then	bandpass	 filtered	at	0.01–0.1-Hz	using	
3dBandpass	(AFNI;	Cox	et	al.	1996;	2012).	For	task	data	runs,	only	whole-brain	signal	was	regressed	out	(see	
DiNicola	 et	 al.	 2020).	 Data	 registered	 to	 the	 T1w	 native-space	 atlas	 were	 resampled	 to	 the	 fsaverage6	
standardized	cortical	surface	mesh	using	trilinear	interpolation	(featuring	40,962	vertices	per	hemisphere;	
Fischl	et	al.	1999)	and	then	surface-smoothed	using	a	2-mm	full-width-at-half-maximum	(FWHM)	Gaussian	
kernel.	The	iProc	pipeline	thus	allowed	for	high-resolution	and	robustly	aligned	BOLD	data,	with	minimal	
interpolation	and	signal	 loss,	output	 to	 two	relevant	spaces:	 the	native	space	and	the	 fsaverage6	cortical	
surface.	 Analyses	 were	 performed	 on	 the	 fsaverage6	 cortical	 surface,	 but	 the	 network	 estimates	
(parcellations)	were	 projected	 back	 into	 the	 individual	 participant’s	 native	 space	 allowing	 both	 surface-
based	and	volume	visualization.	
	 	

Individualized	Network	Estimates	of	the	Cerebral	Cortex	
					The	 MS-HBM	 was	 implemented	 to	 estimate	 cortical	 networks	 (Kong	 et	 al.	 2019).	 The	 MS-HBM	 was	
independently	 implemented	 for	 the	 refinement	 stage	 data	 (S1	 and	 S2)	 and	 then	 subsequently	 for	 the	
implementation	stage	data	(in	three	separate	groups	P1-P5,	P6-P10,	and	P11-P15).	Estimating	the	model	
separately	 for	 multiple	 small	 groups	 allowed	 for	 prospective	 replication.	 As	 the	 results	 will	 reveal,	 the	
procedure	was	robust.		
					First,	 the	 connectivity	 profile	 of	 each	 vertex	 on	 the	 fsaverage6	 cortical	 surface	 was	 estimated	 as	 its	
functional	connectivity	to	1,175	regions	of	interest	(ROIs)	that	uniformly	distributed	across	the	fsaverage5	
surface	meshes	(Yeo	et	al.	2011).	For	each	run	of	data,	the	Pearson’s	correlation	coefficients	between	the	
fMRI	 time	series	at	each	vertex	 (40,962	vertices	/	hemisphere)	and	 the	1,175	ROIs	were	computed.	The	
resulting	40,962	x	1,175	correlation	matrix	was	then	binarized	by	keeping	the	top	10%	of	the	correlations	
to	obtain	the	functional	connectivity	profiles	(Yeo	et	al.	2011).		
					Next,	 the	 expectation-maximization	 (EM)	 algorithm	 for	 estimating	 parameters	 in	 the	 MS-HBM	 was	
initialized	with	a	group-level	parcellation	 from	the	HCP	S900	data	release	(that	 itself	used	the	clustering	
algorithm	from	our	previous	study;	Yeo	et	al.	2011).	It	is	important	to	note	that	the	goal	of	applying	the	model	
in	this	study	was	to	obtain	the	best	estimate	of	networks	within	each	individual	participant’s	dataset,	not	to	
train	parameters	and	apply	them	to	unseen	data	from	new	participants	(see	Kong	et	al.	2019).	In	this	analysis,	
as	with	our	previous	 study	using	 this	approach	 (Xue	et	 al.	2021),	we	did	not	 include	 the	validation	step	
described	in	Kong	et	al.	(2019),	so	no	spatial	smoothness	prior	was	applied.	Only	the	training	step	described	
in	Kong	et	al.	(2019)	was	conducted	here.	A	network	label	assignment	for	each	vertex	was	obtained	for	each	
participant	within	the	training	step.	
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					Refinement	Stage	Data.	Data	from	the	two	participants	(S1	and	S2)	were	analyzed	together	using	the	same	
MS-HBM	model.	The	data	were	used	to	estimate	and	compare	15-network	and	10-network	MS-HBM	models,	
as	well	as	to	explore	reliability	of	model	estimates	when	subsets	of	data	were	analyzed.	The	results	from	
these	initial	two	participants	guided	the	subsequent	processing	of	the	implementation	stage	data.		
					The	specific	impetus	for	exploring	a	15-network	model	was	that	networks	at	or	near	to	the	insula	did	not	
distinguish	 multiple	 networks	 that	 had	 been	 reported	 in	 the	 literature,	 variably	 labeled	 the	 Cingular-
Opercular	Network	and	Salience	Network	(Seeley	et	al.	2007;	See	also	Seeley	2019),	as	well	as	established	
distinctions	at	or	around	primary	visual	and	somatomotor1	cortex.	The	15	candidate	networks	explored	here	
are	 labeled2:	 Somatomotor-A	 (SMOT-A),	 Somatomotor-B	 (SMOT-B),	 Premotor-Posterior	 Parietal	 Rostral	
(PM-PPr),	Cingular-Opercular	(CG-OP),	Salience	/	Parietal	Memory	Network	(SAL	/	PMN),	Dorsal	Attention-
A	(dATN-A),	Dorsal	Attention-B	(dATN-B),	Frontoparietal	Network-A	(FPN-A)3,	Frontoparietal	Network-B	
(FPN-B),	Default	Network-A	(DN-A),	Default	Network-B	(DN-B),	Language	(LANG),	Visual-Central	(VIS-C),	
Visual-Peripheral	(VIS-P),	and	Auditory	(AUD).		
					Implementation	Stage	Data:	Discovery,	Replication	and	Triplication	Datasets.	A	key	aspect	of	our	methods	
is	generalization	and	replication.	The	15	participants	 in	the	implementation	stage	data	were	divided	into	
discovery,	replication	and	triplication	datasets	of	5	participants	each4.	The	MS-HBM	model,	initialized	with	a	
15-network	group-level	parcellation	obtained	from	the	HCP	S900	data,	was	applied	 independently	to	the	
three	separate	datasets.		

	

Model-Free	Seed-Region	Based	Confirmation	of	the	Networks	
					When	employing	the	MS-HBM,	there	are	assumptions	about	the	organization	of	the	brain	from	the	group	
prior,	how	many	networks	should	be	estimated,	and	assignment	of	vertices	to	only	a	single	network.	The	
idiosyncratic	 patterns	 of	 estimated	 networks	 thus	 could	 be	 distorted	 or	 fail	 to	 capture	 features	 of	 the	
underlying	correlation	matrix.	To	confirm	that	the	individual	network	estimates	were	not	obligated	by	the	
assumptions,	a	model-free	seed-region	based	analysis	was	conducted	using	the	same	data	as	the	MS-HBM	
model,	 mirroring	 the	 procedures	 outlined	 by	 Braga	 and	 Buckner	 (2017).	 The	 results	 were	 expected	 to	
converge	if	the	model	did	not	overly	bias	network	assignments	and	diverge	if	the	assignments	mismatched	
the	underlying	data	patterns.	Model-free	seed-region	based	confirmation	thus	served	as	a	check	to	ensure	
network	estimates	properly	captured	individual	correlation	patterns.	
					For	this	control	check,	the	pair-wise	Pearson	correlation	coefficients	between	the	fMRI	time	courses	at	
each	surface	vertex	were	calculated	for	each	resting-state	fixation	run,	yielding	an	81,924	x	81,924	matrix	
(40,962	vertices	/	hemisphere).	The	matrix	was	then	Fisher	r-to-z	transformed	and	averaged	across	all	runs	
to	yield	a	single	best	estimate	of	the	within-individual	correlation	matrix.	This	averaged	matrix	was	used	to	

 
1 We term these networks somatomotor (SMOT) networks because each comprises both regions of somatosensory 
cortex and regions of motor cortex.  
2 Network labels use conventions that often reflect historical origins and diverge from current understanding. For 
example, the canonical Default Network, originally identified in group-based positron emission tomography (PET) 
data, is now postulated to comprise multiple, distinct networks (see Buckner and DiNicola 2019 for review). The 
names, DN-A and DN-B, reflect the historical naming convention modified to the current understanding of multiple 
networks. As another example, the network labeled here as SAL / PMN has two distinct origins. Seeley et al. (2007) 
referred to the network as the Salience Network and Gilmore et al. (2015) as the Parietal Memory Network. Ideas 
about network organization and function are continuously evolving, while the labels often reflect historical (not 
contemporary) understanding. 
3 The Frontoparietal Network (FPN) has been fractionated into distinct, parallel networks in multiple prior studies, 
but has not been consistently named. Here we label FPN-A and FPN-B to be consistent with the order (A/B naming 
convention) of Kong et al. (2019) and Xue et al. (2021) who also applied an MS-HBM to estimate networks. We 
caution the reader that other studies have used the reverse convention, which could lead to confusion (e.g., Braga 
et al. 2020; DiNicola et al. 2023).  
4 Pilot analyses were conducted to test whether an individual’s network estimate was influenced by the group in 
which the participant was analyzed. In our explorations, the individual’s parcellation was nearly identical whether 
the participant was grouped with one set of other individuals or another set. We do not assume this will always be 
the case, as our analyses were conducted for a group of healthy young adult participants with large amounts of data. 
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explore	network	organization.	The	mean	correlation	maps	were	assigned	to	a	cortical	template	combining	
left	and	right	hemispheres	of	the	fsaverage6	surface	into	the	CIFTI	format	to	interactively	explore	correlation	
maps	using	the	Connectome	Workbench’s	wb_view	software	(Glasser	et	al.	2013;	Marcus	et	al.	2011).	Seed	
regions	 with	 robust	 functional	 connectivity	 correlation	 maps	 were	 manually	 selected	 within	 MS-HBM	
network	boundaries.	Anterior	and	posterior	seed	regions	were	recorded	and	visualized	for	each	network	in	
all	the	participants.	Thresholds	were	set	at	z(r)	>	0.2	for	all	seed	regions.	The	color	scales	of	correlation	maps	
were	thresholded	between	0.2	and	0.6,	using	the	Jet	look-up	table	(colorbar)	for	visualization.		

	

Visualization	Within	the	Individual	Native-Space	Volume		
					Networks	were	first	estimated	and	analyzed	for	each	individual	on	the	normalized	fsaverage6	surface	of	
FreeSurfer.	 Surface-based	 analyses	 allowed	 comparisons	 across	 individuals	 and	utilization	 of	 the	 group-
based	priors	for	initialization	of	the	MS-HBM.	However,	many	applications	require	network	assignments	to	
be	utilized	within	the	native-space	anatomy	of	the	individual’s	own	volume	(e.g.,	 for	presurgical	planning	
and	neuromodulation	targeting).	Given	these	needs,	we	devised	a	robust	empirical	procedure	to	project	the	
network	estimates	back	into	each	individual’s	native-space	T1w	anatomical	volume.	
					We	constructed	three	separate	images	within	the	native-space	volume	that	each	varied	from	0-255	in	one	
of	 the	 three	 Cartesian	 x,	 y,	 and	 z	 coordinate	 axes	 (e.g.,	 the	 X-coordinate	 image	 possessed	 a	 volume	 that	
linearly	varied	in	the	X-dimension	going	from	0	to	255	with	no	other	variation	across	the	image	volume).	
Each	 separate	 axis-volume	 was	 then	 projected	 to	 the	 fsaverage6	 surface	 using	 mri_vol2surf	 and	
mri_surf2surf	 (FreeSurfer	 v6.0.0)	 with	 the	 same	 spatial	 transformation	 used	 for	 the	 projection	 of	 the	
participant’s	BOLD	 fMRI	data	onto	 the	 fsaverage6	surface.	Nearest	neighbor	 interpolation	was	used.	The	
matrices	for	this	projection	were	taken	from	each	participant’s	processing	pipeline	(iProc).		
					In	this	manner,	x,	y,	and	z	volume	coordinates	were	obtained	on	the	surface	using	the	exact	same	spatial	
transformation	matrix	as	originally	applied	to	the	BOLD	data.	We	assigned	each	surface	network	label	to	its	
corresponding	x,	y,	and	z	coordinates	in	the	native-space	volume.	This	resulted	in	a	sparse	256	x	256	x	256	
matrix	in	the	volume,	which	was	filled	in	using	nearest	neighbor	interpolation	(Matlab	knnsearch).	We	then	
masked	 this	with	 the	 individual’s	 FSL-reoriented	 and	 binarized	 cortical	 ribbon	 generated	 by	 FreeSurfer	
during	preprocessing.	As	a	control	check,	the	final	native-space	network	estimates	were	projected	back	to	
the	surface	and	compared	to	the	original	MS-HBM	surface	estimates	for	each	participant	to	ensure	no	spatial	
distortions.		
					The	resulting	estimates	of	networks	 in	volume	space	are	provided	as	a	 reference	 in	 the	Supplemental	
Materials.	 Specifically,	 the	 parcellation	 results	 from	MS-HBM	were	 overlaid	 onto	 each	 individual’s	 T1w	
structural	 image.	 Sagittal,	 axial,	 and	 coronal	 slices	 were	 chosen	 to	 show	 common	 landmarks	 in	 each	
individual	(midline,	left	and	right	insula,	anterior	commissure,	primary	sensory	and	motor	cortices).	

	

Signal-to-Noise	Ratio	(SNR)	Maps	
					Data	using	BOLD-contrast	(T2*	images)	and	echo-planar	imaging	result	in	variable	distortion	and	signal	
dropout	due	to	magnetic	susceptibility	artifacts,	especially	near	the	sinus	and	ear	canals	(e.g.,	Ojemann	et	al.	
1997).	Vertex-based	SNR	maps	were	computed	by	taking	the	preprocessed	time	series	from	each	resting-
state	fixation	run	(prior	to	regressing	out	confounding	variables)	and	dividing	the	mean	signal	at	each	vertex	
by	 its	 standard	deviation	 over	 time.	 The	 SNR	maps	were	 then	 averaged	 across	 the	 runs,	 resulting	 in	 an	
aggregate	within-individual	 SNR	map	 on	 the	 fsaverage6	 surface.	 To	 visualize	 these	 effects	 in	 the	 native	
anatomy,	surface	maps	were	projected	to	the	native-space	volume	using	the	procedure	described	above.	The	
only	difference	is	that	linear	interpolation	(Matlab	scatteredInterpolant)	was	used	to	fill	in	the	sparsely	filled	
256	x	256	x	256	matrix.		
	

Variability	in	Network	Estimates	Between	Individuals	
					To	measure	spatial	variability	across	individuals,	overlap	maps	of	network	assignments	were	computed.	
For	each	individual,	the	spatial	extent	of	their	estimated	network	was	plotted	simultaneously	with	all	other	
participants	and	the	percentage	of	overlap	computed.	In	addition,	the	individual	networks	were	plotted	next	
to	one	another	to	appreciate	the	commonalities	across	individuals	as	well	as	the	idiosyncratic	features	of	
each	individual’s	estimate	(available	in	the	Supplemental	Materials).	
					Overlap	maps	were	also	computed	for	the	model-free	seed-region	correlation	maps.	These	maps	make	no	
assumption	of	a	winner-take-all	network	assignment	so	provide	a	different	view	of	network	consistency	or	
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inconsistency	across	participants.	For	this	final	analysis,	each	individual’s	seed-region	correlation	map	for	
each	network	was	thresholded	at	z(r)	>	0.2	and	the	overlap	across	participants	plotted.	The	analysis	was	
performed	separately	for	both	the	anterior	and	posterior	seed	regions	for	each	network.		

	

Visualization	on	the	Flattened	Cortical	Surface	
					The	human	cerebral	cortex	is	a	complex	structure	with	numerous	sulci	and	gyri	that	can	make	it	difficult	
to	appreciate	topographic	patterns,	including	patterns	that	evolve	over	medial	to	lateral	views	and	through	
complex	structures	like	the	insula.	To	appreciate	global	topographic	relations,	a	flattened	surface	was	created	
by	editing	the	inflated	surface	file	using	the	“TKSurfer”	tool	of	FreeSurfer	v6.0.0.	Five	linear	cuts	were	made	
on	the	midline	of	the	inflated	cortical	surface	(see	Fig.	22),	including	one	along	the	calcarine	sulcus	and	four	
roughly	equally	spaced	cuts	radiating	out	from	the	medial	wall.	Next,	a	circular	cut	was	made	on	the	midline	
to	allow	the	surface	to	unravel.	Finally,	the	“mris_flatten”	tool	of	FreeSurfer	v6.0.0	was	employed	to	create	
the	flattened	surface.	This	procedure	was	performed	separately	for	the	left	and	right	hemispheres.		
	

Task	Paradigms	
					Following	 estimation	 of	 within-individual	 networks,	 functional	 response	 properties	 were	 explored	 in	
independent	task-based	data	collected	on	the	same	individuals.	The	task	paradigms	were	chosen	based	on	
literature	review	and	our	prior	studies	because	of	their	ability	to	differentially	activate	distinct	networks,	
and	to	do	so	robustly.	A	second	feature	of	the	selected	task	paradigms	is	that	they	were	amenable	to	repeat	
testing	either	because	extensive	novel	stimuli	could	be	constructed	(e.g.,	sentences,	question	probes)	or,	by	
their	nature,	were	resilient	to	habituation	even	after	many	repetitions	(e.g.,	flickering	visual	stimuli).	Task	
details	are	described	below.	
					Somatomotor	 Topography.	 The	 motor	 task	 extended	 from	 Buckner	 et	 al.	 (2011)	 to	 examine	 the	
organization	of	the	foot,	glute,	hand	and	tongue	representations.	Novel	targeting	of	the	glute	representation	
allowed	an	 intermediate	body	position	 to	be	mapped	between	 the	hand	and	 foot	 (as	 reported	earlier	 in	
Saadon-Grosman	et	al.	2022).	The	goal	of	this	task	paradigm	was	to	activate	somatotopic	portions	of	SMOT-
A	and	SMOT-B.	
					Following	 extensive	 pre-scan	 training,	 participants	 performed	 six	 types	 of	 active	 movements	 in	 the	
scanner:	1,2)	left	and	right	finger	taps	(thumb	to	index	and	thumb	to	middle),	3,4)	left	and	right	toes	plantar	
flexion	and	dorsiflexion,	5)	tongue	movements	from	right	to	left	(touching	the	premolar	upper	teeth),	and	6)	
contraction	and	relaxation	of	their	gluteal	muscles.	Each	movement	type	was	performed	repeatedly	across	
10-sec	movement	blocks.	Prior	to	each	movement	block,	a	2-sec	visual	cue	of	a	drawn	body	part	with	a	text	
label	informed	the	participant	to	initiate	one	of	the	six	movement	types.	The	fixation	crosshair	then	changed	
to	a	slow	flickering	black	circle	to	pace	the	movements.	The	onset	of	the	black	circle	cued	movement	of	thumb	
to	index	finger,	toes	plantarflexion,	tongue	to	the	right	and	glutes	contraction.	The	offset	of	the	black	circle	
cued	movement	of	thumb	to	middle	finger,	toes	dorsiflexion,	tongue	to	the	left	and	glutes	relaxation.	After	
five	cycles,	the	word	‘END’	instructed	movement	cessation.	Twenty-four	movement	blocks	(4	per	movement	
type)	occurred	within	each	run,	with	16-sec	blocks	of	passive	fixation	following	each	set	of	six	movement	
blocks.	Runs	began	and	ended	with	fixation	yielding	5	fixation	blocks	per	run.		
					Each	run	lasted	7	min	8	sec	(428	frames	with	the	first	12	frames	removed	for	T1	equilibration).	Six	motor	
runs	 were	 collected	 with	 full	 counterbalanced	 orders	 of	 movement	 conditions	 on	 each	 day.	 Runs	 were	
excluded	 from	 analysis	 if	 participants	 missed	 or	 failed	 to	 respond	 to	 cues,	 as	 confirmed	 by	 operators	
observing	their	alertness	and	movements	from	the	control	room.	
					Visual	Topography.	A	visual	retinotopic	stimulation	task	was	used	to	map	visual	cortex	(similar	to	Fox	et	
al.	1987;	Engel	et	al.	1997).	Our	design	had	three	levels	of	eccentricity	stimuli	(to	map	eccentricity	gradients	
that	span	the	V1,	V2,	V3	cluster)	and	separate	vertical	versus	horizontal	meridian	stimuli	(to	map	polar	angle	
reversals	that	separate	the	borders	of	V1,	V2,	and	V3;	Tootell	et	al.	1995;	see	also	Wandell	and	Winawer	
2011).	The	goal	of	this	task	was	to	activate	retinotopic	portions	of	VIS-C	and	VIS-P.	
					The	basic	stimulus	consisted	of	a	circular	checkerboard	that	expanded	outwards	from	the	central	fixation	
point	 to	 approximate	 cortical	 expansion	 in	 visual	 cortex.	 Moving	 from	 center,	 the	 radius	 ring	 of	 the	
checkerboard	became	larger	by	a	log	step	of	0.29.	The	resulting	checkerboard	was	rendered	out	to	36	even	
rings	 cropped	 to	 a	 resolution	 of	 1024	 x	 1024	pixels.	 To	 localize	 the	meridians,	 two	wedges	masked	 the	
checkerboard	each	covering	0.5°	to	16.2°	of	eccentricity	and	11.2°	of	polar	angle.	Horizontal	wedges	were	
centered	 at	 polar	 angles	 360°	 and	 180°;	 vertical	 wedges	 at	 0°	 and	 90°.	 To	 localize	 polar	 angle,	 the	
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checkerboard	was	masked	with	a	 circular	 ring,	which	 increased	 in	 size	with	 increasing	eccentricity.	The	
center	ring	covered	0.5°	to	1.6°,	the	middle	ring	1.6°	to	5.1°,	and	the	peripheral	ring	5.1°	to	16.2°.	
					Each	run	consisted	of	10	10-sec	blocks	of	visual	stimulation	(2	blocks	of	each	of	the	5	conditions).	The	
beginning,	middle,	and	end	of	each	run	included	a	20-sec	block	of	extended	fixation.	During	stimulation	the	
checkerboard	 changed	 6	 times	 per	 sec	 in	 the	 order:	white/black,	 color,	 black/white,	 color,	white/black,	
black/white.	 The	 black	 center	 fixation	 dot	 unpredictably	 changed	 to	 gray	 (every	 1	 to	 5	 sec).	 To	 ensure	
continuous	fixation,	participants	pressed	a	button	every	time	the	fixation	dot	changed	to	gray.	The	primary	
contrasts	of	interest	were	horizontal	versus	vertical	meridian	blocks,	and	separately	the	three	eccentricity	
blocks	versus	each	other.	
					Each	run	lasted	4	min	30	sec	(270	frames	with	the	first	6	frames	removed	for	T1	equilibration).	Five	runs	
were	collected	for	each	participant.	Runs	were	excluded	from	analysis	if	participants	missed	trials	and	the	
eye	 video	 recordings	 indicated	 drowsiness.	 Lights	 within	 the	 scanner	 room	 were	 off	 during	 visual	
topography	 mapping,	 and	 a	 black	 occluding	 board	 was	 inserted	 into	 the	 scanner	 to	 prevent	 any	 light	
reflections.	
					Oddball	Task.	The	oddball	task	explored	detection	of	transient	responses	to	salient,	visual	oddball	targets	
that	were	uncommon	relative	to	irrelevant	non-targets	and	distracting	non-targets	(similar	to	Wynn	et	al.	
2015).	The	goal	of	the	task	was	to	activate	the	SAL	/	PMN	and	CG-OP	networks.	Both	networks	have	regions	
at	or	near	the	anterior	insula	and	have	been	variably	associated	with	response	to	task-relevant	transients	
(see	Dosenbach	et	al.	2006;	Seeley	et	al.	2007;	Seeley	2019	for	discussion).		
					Participants	viewed	a	sequence	of	uppercase	letters	O	and	K	in	either	black	or	red.	Participants	pressed	a	
button	using	their	right	index	finger	when	a	red	K	appeared	and	withheld	their	responses	to	all	the	other	
letter-color	combinations.	The	random	trial	ordering	was	set	using	Optseq	(Dale	1999).	In	each	run,	10%	of	
the	trials	were	target	red	Ks,	10%	were	lure	red	Os,	40%	were	distractor	black	Ks,	and	40%	were	distractor	
black	Os.	The	contrast	of	interest	was	the	target	red	Ks	versus	all	other	trials	coded	as	the	implicit	baseline.	
					Each	run	lasted	5	min	50	sec	(350	frames	with	the	first	6	frames	removed	for	T1	equilibration).	Following	
6	sec	of	fixation	overlapping	the	initial	stabilization	frames,	a	block	of	20	sec	of	fixation	was	followed	by	a	
continuous	extended	block	of	300	1-sec	trials	(0.15	sec	presentation	of	the	 letter	 followed	by	1.85	sec	of	
fixation),	and	 then	a	 final	20-sec	block	of	extended	 fixation.	Before	 the	 first	 trial,	a	2-sec	start	cue	(1	sec	
“Begin”,	1	sec	fixation)	was	presented,	as	well	as	a	similar	“End”	cue	after	the	final	trial.	Thus,	the	design	was	
a	rapid,	event-related	paradigm	sandwiched	between	blocks	of	extended	fixation.	Five	runs	were	collected	
for	each	participant.	Runs	were	excluded	from	the	analysis	if	participants	missed	more	than	six	targets	within	
a	task	run,	which	accounted	for	20%	of	the	total	targets.	
					Working	Memory	 (N-Back)	 Task.	 The	working	memory	 (N-Back)	 task	was	 extended	 from	Cohen	 et	 al.	
(1994)	and	Braver	et	al.	(1997)	to	explore	demands	on	cognitive	control	under	varied	levels	of	memory	load.	
Specifically,	 the	 N-Back	 task	 utilized	 a	 2-back	 versus	 0-back	 comparison	 to	 target	 FPN-A	 and	 FPN-B.	 In	
addition,	following	the	design	of	the	HCP	N-Back	task,	multiple	stimulus	types	/	matching	rules	were	included	
to	explore	whether	the	load	effect	was	domain-flexible	or	domain-specialized	(Barch	et	al.	2013).		
					Stimuli	were	presented	sequentially	in	the	center	of	the	computer	screen.	Participants	decided	whether	
the	current	stimulus	matched	a	consistent	template	target	(the	0-Back	or	low	load	condition)	or	whether	the	
current	stimulus	matched	the	stimulus	presented	two	stimuli	back	in	the	sequence	(the	2-Back	or	high	load	
condition).	Participants	maintained	fixation	on	a	central	crosshair	throughout	the	run.		
					The	stimuli	varied	across	 four	conditions	(Face,	Word,	Scene,	and	Letter)	 that	were	each	presented	 in	
separate	blocks.	Faces	and	scenes	were	color	images,	with	scenes	showing	both	indoor	and	outdoor	spaces	
and	chosen	not	 to	 feature	people	 (faces	 from	HCP;	Barch	et	al.	2013;	scenes	generously	provided	by	 the	
Konkle	laboratory;	Konkle	et	al.	2012;	Josephs	and	Konkle	2020).	Letters	included	subsets	of	consonants,	
and	words	featured	1-syllable	words	from	10-word	sets	matched	for	length	and	frequency	(as	reported	by	
the	 Corpus	 of	 Contemporary	 English;	 Davies	 2008,	 vDecember	 2015).	 In	 all	 but	 the	 Word	 condition,	
participants	matched	the	stimuli	to	an	exact	stimulus	referent,	or	the	exact	stimulus	presented	two	trials	
before.	For	the	Word	condition,	the	participants	decided	if	the	current	word	rhymed	with	the	target	(e.g.,	
“dream”	would	be	a	positive	match	with	“steam”).	
					Each	N-Back	run	featured	8	blocks	(a	0-Back	and	a	2-Back	for	each	of	the	four	stimulus	categories).	Each	
block	included	a	cue	and	9	trials.	During	the	first	cue	stimulus,	participants	also	saw	the	block	type,	either	2-
Back	or	0-Back.	During	2-Back	blocks,	participants	looked	for	matches	(identical	images	or	rhyming	words)	
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with	the	stimulus	2	trials	back,	and	during	0-Back	blocks,	participants	looked	for	matches	to	the	cue.	The	
background	was	black	(matching	the	HCP	format).	All	blocks	included	2	target	and	2	lure	(repeated	non-
target)	trials.	Targets	and	lures	were	equally	likely	to	appear	in	each	viable	trial	position	within	and	across	
runs.	Participants	pressed	a	button	for	every	trial,	 indicating	match	(right	 index	finger)	or	no-match	(left	
index	finger).		
					Each	run	lasted	4	min	44	sec	(284	frames	with	the	first	12	frames	removed	for	T1	equilibration).	Following	
12	sec	of	fixation	overlapping	the	initial	stabilization	frames,	an	additional	block	of	12	sec	of	fixation	was	
followed	by	blocks	of	the	N-Back	task	interspersed	with	15-sec	fixation	blocks	(the	fixation	blocks	came	after	
two	25-sec	N-Back	task	blocks).	Across	runs,	0-Back	and	2-Back	blocks,	categories,	and	their	 interactions	
were	counterbalanced.	Each	trial	was	2.5	sec	in	duration	(2	sec	of	stimulus	presentation	followed	by	0.5	sec	
of	fixation).	The	fixation	crosshair	was	white	for	the	extended	fixation	blocks	and	green	during	the	N-Back	
task	blocks.	Within	a	run,	all	categories	were	seen	before	a	category	repeated.	Eight	runs	were	collected	for	
each	participant.	Runs	where	participants	missed	responses	 in	more	 than	two	trials	were	excluded	 from	
analysis.		
					Sentence	Processing	Task.	The	Sentence	Processing	task	was	adapted	from	Fedorenko	et	al.	(2010;	2012)	
to	examine	domain-specialized	processing	related	to	accessing	word	meaning	and	phrase-level	meaning.	The	
target	task	involved	sentences	presented	one	word	at	a	time.	The	reference	control	task	was	presentation	of	
nonword	strings	that	were	matched	in	length	and	visually	similar.	The	goal	of	this	task	was	to	activate	the	
LANG	network	(see	Braga	et	al.	2020).		
					Participants	passively	read	real	sentences	(“IN	THE	MORNING	THE	TAILOR	WAS	SHOWING	DIFFERENT	
FABRICS	TO	THE	CUSTOMER")	or	pronounceable	nonword	strings	(“SMOLE	MUFRISONA	VEDER	SMOP	FO	
BON	FE	PAME	OMOSTREME	GURY	U	FO”).	The	centered	stimuli	were	presented	one	word	(or	nonword)	at	
a	time	(0.45	sec	per	word).	After	each	word	or	nonword	string,	a	cue	appeared	for	0.50	sec,	prompting	the	
participants	 to	 make	 a	 right	 index	 finger	 button	 press.	 Stimuli,	 generously	 provided	 by	 the	 Fedorenko	
laboratory,	never	 repeated.	Word	or	nonword	 strings	 (6	 sec	each)	were	presented	 in	18-sec	blocks	of	3	
strings.	Extended	fixation	blocks	(18	sec	each)	appeared	at	the	start	of	each	run	and	after	every	fourth	string	
block.	The	primary	comparison	of	interest	was	the	contrast	between	sentence	and	nonword	blocks.		
					Each	run	lasted	5	min	0	sec	(300	frames	with	the	first	12	frames	removed	for	T1	equilibration).	Six	runs	
were	collected	for	each	participant.	Runs	were	excluded	if	the	participant	did	not	read	the	stimuli	(observed	
through	eye	monitoring)	or	missed	responses.	
					Theory-of-Mind	 Task.	 The	 Theory-of-Mind	 tasks	 were	 adopted	 from	 Saxe	 and	 colleagues	 to	 explore	
domain-specialized	processing	associated	with	representation	of	other’s	mental	states	(Saxe	and	Kanwisher	
2003;	 Dodell-Feder	 et	 al.	 2011;	 Bruneau	 et	 al.	 2012;	 Jacoby	 et	 al.	 2016).	 In	 the	 False	 Belief	 paradigm,	
participants	viewed	a	brief	story	and	then,	on	a	separate	screen,	a	question	about	that	story.	In	the	False	
Belief	 condition,	 the	 target	 stories	 described	 events	 surrounding	 a	 person’s	 perspective,	 followed	 by	 a	
question	about	the	thoughts	and	beliefs	of	that	person.	In	the	control	False	Photo	condition,	stories	described	
similar	situations	involving	objects	(e.g.,	in	photos,	on	maps,	and	in	descriptions).	In	the	Emotional	/	Physical	
Pain	Stories	paradigm	(subsequently	abbreviated	‘Pain’),	the	target	stories	described	a	situation	that	evoked	
personal	emotional	pain	(Emo	Pain	condition)	and	were	contrasted	with	control	stories	of	similar	length	and	
complexity	involving	physical	pain	(Phys	Pain	condition).	Participants	rated	the	level	of	pain	from	“None”	to	
“A	Lot”	during	the	question	period.	These	two	paradigms	yield	similar	task	activation	maps	(Jacoby	et	al.	
2016).	 Here	 the	 task	 contrasts	 of	 False	 Belief	 versus	 False	 Photo	 and	 Emo	 Pain	 versus	 Phys	 Pain	were	
combined	with	the	goal	to	activate	DN-B	(extending	from	DiNicola	et	al.	2020).	
					Each	run	consisted	of	a	series	of	stories	and	questions	(15	sec	per	individual	story	/	question	pairing).	For	
both	paradigms,	each	run	included	5	target	trials	(False	Belief	or	Emo	Pain)	and	5	control	trials	(False	Photo	
or	Phys	Pain).	 15-sec	 fixation	periods	occurred	between	 trials.	 Stimuli,	 generously	provided	by	 the	Saxe	
laboratory,	never	repeated.	
					Each	run	lasted	5	min	18	sec	(318	frames	with	the	first	12	frames	removed	for	T1	equilibration).	Eight	
runs	were	collected	for	each	participant	–	4	of	the	False	Belief	paradigm	and	4	of	the	Pain	paradigm.	We	
implemented	an	exclusion	criterion	to	exclude	any	run	with	more	than	one	missed	trial.	No	runs	met	this	
criterion.	
					Episodic	Projection	Task.	The	Episodic	Projection	task	was	adapted	from	Andrews-Hanna	et	al.	(2010)	and	
DiNicola	 et	 al	 (2020)	 to	 encourage	processes	 related	 to	 remembering	 the	past	 and	 imagining	 the	 future	
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(prospection).	In	the	target	task	conditions,	participants	viewed	a	brief	scenario	that	oriented	to	a	situation	
in	the	past	(Past	Self)	or	future	(Future	Self)	simultaneously	with	a	question	about	the	event	that	encouraged	
participants	to	imagine	the	specific	scenario	described.	The	similarly	structured	control	condition	asked	the	
participants	about	a	present	situation	(Present	Self).	The	task	contrasts	of	Past	Self	versus	Present	Self	and	
Future	Self	versus	Present	Self	were	combined	with	the	goal	to	activate	DN-A	(extending	from	DiNicola	et	al.	
2020).	 Of	 relevance,	 detailed	 behavioral	 analysis	 of	 these	 contrasts	 has	 suggested	 the	main	 component	
process	tracking	increased	response	in	DN-A	is	the	process	of	mentally	constructing	scenes	(DiNicola	et	al.	
2023;	see	also	Hassabis	and	Maguire	2007).	Thus,	the	task	contrast	used	here	taps	into	domain-specialized	
processing	related	to	spatial	/	scene	processing	(see	Hassabis	and	Maguire	2009	for	discussion).	
					Each	 run	 contained	 a	 series	 of	 scenarios	with	 questions	 (10	 sec	 of	 scenario	 /	 question	 presentation,	
followed	by	10	sec	of	fixation).	30	questions	appeared	per	run,	with	3	per	each	condition	of	relevance	(Past	
Self,	 Future	 Self,	 Present	 Self).	 Additional	 conditions	 were	 included	 towards	 goals	 distinct	 from	 those	
targeted	here.	For	our	analyses,	we	focus	on	the	condition	contrasts	that	have	previously	dissociated	DN-A	
from	DN-B	in	DiNicola	et	al.	(2020).	All	scenarios	were	unique.		
					Each	run	lasted	10	min	17	sec	(617	frames	with	the	first	12	frames	removed	for	T1	equilibration).	Ten	
runs	were	collected	 for	each	participant	 that	 included	90	relevant	 trials	across	runs	(30	of	each	of	 the	3	
conditions).	Runs	with	more	than	two	missed	trials	were	excluded.		

	

Within-individual	Task	Activation	Analysis	
					Functional	task	data	were	analyzed	using	the	general	linear	model	(GLM)	as	implemented	by	FSL’s	first-
level	FEAT	(FSL	version	5.0.4;	Woolrich	et	al.	2001).	All	conditions	were	included	in	each	model	design,	even	
those	not	relevant	to	the	contrasts	of	interest,	except	for	the	Oddball	Effect	task	contrast	which	coded	the	
targets	against	the	implicit	baseline.	The	data	were	high-pass	filtered	using	a	cutoff	of	100	sec	(0.01-Hz)	to	
remove	low-	frequency	noise	within	each	run.	GLM	outputs	included,	for	each	contrast,	β-values	for	each	
vertex	that	were	converted,	within	FEAT,	to	z-values.	Within	each	participant,	z-value	maps	from	all	runs	
were	 averaged	 together	using	 fslmaths	 (Smith	 et	 al.	 2004)	 to	 create	 a	 single	 cross-session	map	 for	 each	
contrast	of	interest.	For	the	N-Back	task,	GLM	outputs	included	z-value	maps	for	each	trial	block,	which	were	
averaged	 by	 condition	 across	 runs.	 A	 single	 cross-session	 contrast	map	was	 then	 created	 by	 taking	 the	
difference	between	condition	mean	maps.		
					Task	contrasts	were	designed	to	functionally	target	specific	networks	and	dissociate	response	properties	
between	networks.	Two	convergent	methods	were	used	for	visualization	and	quantification.	First,	z-value	
maps	were	compared	visually	by	overlaying	the	borders	of	networks	onto	the	task	contrast	maps	on	the	
same	 cortical	 surface	 (fsaverage6	 cortical	 surface).	 This	 form	 of	 visualization	 allowed	 comprehensive	
assessment	 of	 task	 response	 patterns.	 Contrast	 z-value	 maps	 were	 manually	 thresholded	 to	 best	
demonstrate	 the	 task	 activation	 patterns	 for	 each	 participant.	 The	 PSYCH-FIXED	 look-up	 table	 within	
Connectome	Workbench	was	used	for	the	color	scale.		
					Second,	a	priori	networks	within-individuals	were	used	to	formally	quantify	differences	in	response	levels	
between	networks,	 including	direct	 tests	 for	 significant	differences	between	networks	and	between	 task	
contrasts.	For	each	 task	contrast,	 the	average	z-value	was	calculated	 for	all	vertices	within	each	selected	
network,	combining	across	hemispheres.	Mean	z-values	were	computed	for	each	task	run,	and	the	cross-run	
mean	z-values	for	each	network	was	then	plotted	in	a	bar	graph,	along	with	the	standard	error	of	the	mean	
across	 participants.	 This	 analysis	 has	 the	 advantage	 of	 quantifying	 the	 magnitude	 and	 variance	 of	 the	
response	in	each	a	priori	defined	network	for	each	participant,	without	any	subjective	decisions.		
					For	both	approaches	to	task	response	analysis,	the	networks	were	defined	within	the	individuals	prior	to	
examination	of	the	task	maps,	to	avoid	the	possibility	of	bias.	
	

Software	and	Statistical	Analysis	
					Functional	 connectivity	 between	 brain	 regions	 was	 calculated	 in	 MATLAB	 (version	 2019a;	
http://www.mathworks.com;	 MathWorks,	 Natick,	 MA)	 using	 Pearson’s	 product	 moment	 correlations.	
FreeSurfer	v6.0.0,	FSL,	and	AFNI	were	used	during	data	processing.	The	estimates	of	networks	in	volume	
space	were	visualized	in	FreeView	v6.0.0.	The	estimates	of	networks	on	the	cortical	space	were	visualized	in	
Connectome	Workbench	v1.3.2.	Statistical	analyses	were	performed	using	R	v3.6.2.	Model-free	seed-region	
confirmations	 were	 performed	 in	 Connectome	Workbench	 v1.3.2.	 Network	 parcellation	 was	 performed	
using	code	from	Kong	et	al.	(2019)	on	Github:	
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(https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Kong2019_MS
HBM).	

	

Results	
	

Networks	Can	Be	Estimated	Robustly	Within	Individuals	
					Networks	 were	 estimated	 for	 the	 refinement	 stage	 data	 using	 a	 15-network	 MS-HBM	model.	 Figs.	 1	
through	6	display	the	main	results	for	S1	and	S2	on	the	surface,	and	the	Supplementary	Materials	display	the	
comprehensive	results	and	quality	control	visualizations	on	the	surface	and	in	the	native	volume.		
	

-------------------------------------------------------	
Insert	Figures	1	to	6	About	Here	

-------------------------------------------------------	
	

					The	first	results	pertain	to	data	quality.	The	SNR	maps	are	displayed	on	the	cortical	surface	(Figs.	1	and	
4).	Most	of	the	cortical	mantle	possessed	high	SNR.	As	expected,	given	signal	dropout	near	the	sinuses	and	
the	inner	ear	(Ojemann	et	al.	1997),	there	is	variability	in	SNR	across	the	cortical	surface	with	orbitofrontal	
cortex	(OFC)	and	adjacent	ventrolateral	prefrontal	cortex	(VLPFC),	rostral	inferior	temporal	cortex,	and	the	
temporal	 pole	 showing	 low	 SNR	 (see	 Supplementary	 Materials	 for	 additional	 visualizations).	 Network	
assignments	in	low	SNR	regions	should	be	interpreted	cautiously.	
					The	primary	result	of	our	procedures	was	an	estimated	parcellation	into	distinct	candidate	networks.	Figs.	
2	and	5	display	the	15-network	estimates	for	S1	and	S2.	All	networks,	 including	local	sensory	and	motor	
networks,	as	well	as	distributed	association	networks,	were	identified	in	both	participants.	While	the	general	
organization	was	 shared	between	 the	 two	participants,	 the	 spatial	 boundaries	were	 idiosyncratic.	 These	
patterns	will	be	elaborated	upon	in	detail	in	the	upcoming	results	of	the	novel	15	participants.	For	these	first	
two	individuals	we	focused	on	validating	the	methods.		
	

Model-Free	Seed-Region	Based	Correlation	Confirms	the	15-Network	Parcellation		
					The	network	estimates	were	based	on	a	15-network	MS-HBM	model.	In	addition	to	assuming	a	specific	
number	of	networks,	the	method	also	employed	group	priors	to	constrain	the	estimates	(see	Supplementary	
Materials).	As	such,	it	is	possible	that	the	resultant	networks	do	not	accurately	reflect	the	underlying	within-
individual	correlation	patterns	as	one	might	expect.	To	explore	this	possibility	and	intuitively	visualize	the	
degree	 to	 which	 the	 model	 captures	 underlying	 correlation	 patterns,	 a	 model-free	 seed-region	 based	
correlation	 analysis	 was	 performed.	 A	 seed	 region	was	 placed	 in	 an	 anterior	 position	 and	 separately	 a	
posterior	position	within	each	network	within	each	individual.	The	resulting	correlation	maps	are	displayed	
in	Figs.	3	and	6	in	relation	to	the	MS-HBM	network	boundaries.		
					The	estimated	networks	captured	features	of	the	correlation	patterns	remarkably	well	including	across	
small,	distributed	regions	that	might	otherwise	be	overlooked.	The	alignments	were	not	perfect.	Specifically,	
the	correlation	patterns	included	most	of	the	distributed	regions	in	the	MS-HBM	solutions,	and	the	patterns	
were	largely	selective	to	the	estimated	networks.	Small	deviations,	in	the	form	of	extensions	of	the	patterns	
beyond	the	network	boundaries	were	common,	likely	in	part	because	the	network	estimates	forced	a	winner-
take-all	assignment,	but	also	possibly	because	additional	network	details	may	be	missed5.	The	consistency	
between	the	general	correlational	structure	and	the	network	estimates	in	one	sense	is	unsurprising	because	
the	underlying	correlation	matrix	was	employed	by	the	network	model.	However,	 it	 is	not	obligated,	and	
deviation	could	be	seen	if	the	model	forced	assignments,	or	the	model	failed	to	capture	the	structure	of	the	
data.	
	

The	15-Network	Parcellation	Captures	Features	that	Are	Not	Captured	by	a	10-Network	Parcellation	
					We	next	sought	to	explore	what	is	gained	by	adopting	the	15-network	parcellation	rather	than	the	simpler	
10-network	parcellation.	Figs.	7	and	10	display	the	MS-HBM	parcellation	estimate	for	the	10-network	and	

 
5 Gordon et al. (2023) recently described a set of inter-effector regions along the central sulcus, which was not 
explicitly incorporated into our group prior or model. Examining the details of Figs. 3 and 6 shows that the 
correlation patterns from the seed regions placed within the CG-OP extend farther into the motor strip than the MS-
HBM defined CG-OP network regions themselves. This could be due to blurring or, alternatively, that inter-effector 
regions are not properly distinguished by the present model. 
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15-network	solutions	for	each	participant.	The	first	notable	result	is	that,	for	most	networks,	there	was	little	
difference	 between	 the	 two	models’	 estimates.	 For	 example,	 the	 separation	 of	DN-A	 and	DN-B	was	well	
captured	 by	 both	model	 solutions	with	 the	 distributed	 spatial	 patterns	 and	 idiosyncratic	 features	 quite	
similar	between	models.	That	is,	if	the	goal	were	to	study	DN-A	and	DN-B,	there	is	little	gained	by	utilizing	
the	more	complex	15-network	model.	In	both	S1	and	S2,	many	of	the	other	major	networks	were	also	similar	
between	 the	 two	 parcellations,	 including	 FPN-A,	 FPN-B,	 SMOT-A	 and	 SMOT-B.	 Thus,	 for	 networks	 well	
captured	by	the	10-network	model,	they	appear	to	be	roughly	unchanged	in	the	15-network	model.	For	other	
networks	though,	there	were	substantive	differences.	
	

-------------------------------------------------------	
Insert	Figures	7	to	12	About	Here	

-------------------------------------------------------	
	

					One	motivation	 for	 investigating	 a	 15-network	model	was	 that	 certain	 networks	 did	 not	 differentiate	
established	distinctions	at	or	around	somatomotor	cortex	and	visual	 cortex,	as	well	as	between	multiple	
networks	within	 or	 adjacent	 to	 the	 insula	 including	 separation	 of	 a	 Cingular-Opercular	Network	 from	 a	
Salience	Network	(Seeley	et	al.	2007;	see	Seeley,	2019	for	discussion).	These	features	were	captured	in	the	
15-network	MS-HBM.	Specifically,	the	single	visual	network	in	the	10-network	estimate	was	differentiated	
among	dATN-B,	VIS-C	and	VIS-P	 in	the	15-network	solution	(Fig.	8).	The	SAL	network	in	the	10-network	
estimate	was	differentiated	into	two	separate	networks	here	labeled	SAL	/	PMN	and	CG-OP	(Fig.	12).	The	
dATN	in	the	10-network	estimate	was	differentiated	into	dATN-A	and	PM-PPr	in	the	15-network	solution	
(Fig.	9),	and	a	distinct	AUD	network	emerged	near	to	LANG	and	SMOT-B	(Fig.	11).	Critically,	seed-region	
based	correlation	patterns	suggested	that	this	expansion	of	networks	from	10	to	15	captured	clear	features	
of	the	underlying	correlation	patterns	(Figs.	8,	9,	11,	and	12).		
					One	unexpected	 result	was	 that	 our	15-network	parcellation	 included	a	 single	network	 that	has	been	
variably	described	 in	 the	 literature.	What	has	been	called	 the	“Parietal	Memory	Network”	(Gilmore	et	al.	
2015),	with	focus	on	the	posterior	midline,	has	often	been	discussed	separately	from	the	network	referred	
to	by	Seeley	and	colleagues	as	the	“Salience	Network”	(Seeley	2019).	Here	a	single	distributed	network	was	
identified	that	possessed	the	canonical	features	of	both	networks.	The	seed-region	based	correlation	maps	
supported	that	the	two	networks	discussed	historically	as	distinct	are	likely	a	single	network	(Figs.	3,	6,	12),	
a	result	that	will	be	further	examined	in	the	prospectively	acquired	and	analyzed	data.	
	 	

Network	Estimates	Are	Reliable	Within	Individuals		
					We	next	sought	to	address	two	related	questions.	First,	are	the	network	estimates	described	above	reliable	
within	individuals?	Second,	can	they	be	obtained	with	a	lesser	amount	of	data?	The	resting-state	fixation	runs	
of	S1	and	S2	were	divided	into	three	datasets	with	roughly	equal	amounts	of	runs	contributing	to	each	data	
subset	 (20/20/22	 runs	of	data	 for	S1	and	20/20/21	 runs	of	data	 for	S2).	The	15-network	MS-HBM	was	
estimated	independently	for	each	data	subset.	Results	are	displayed	in	Fig.	13.	
	

-------------------------------------------------------	
Insert	Figure	13	About	Here	

-------------------------------------------------------	
	

					In	 S1,	 84.2%	 of	 cortical	 vertices	 were	 assigned	 to	 the	 same	 networks	 across	 the	 three	 independent	
datasets	from	within	the	individual.	In	S2,	88.0%	of	cortical	vertices	were	assigned	to	the	same	networks.	By	
contrast,	overlap	between	the	separate	parcellations	of	S1	and	S2	were	58.3%,	58.9%	and	59.2%,	indicating	
that	between-individual	variability	was	substantially	larger	than	within-individual	variability.		
					These	findings	suggest	that	cortical	parcellations	of	the	resolution	and	within-individual	detail	targeted	
here	are	replicable	for	models	based	on	~20	runs	of	data.	Notably,	this	is	the	amount	of	data	collected	for	the	
15	new	participants	in	the	implementation	stage	dataset	analyzed	throughout	the	rest	of	this	paper.	

	

Network	Estimates	in	15	New	Participants	Reveal	Organizational	Features	
					Discovery,	 Replication	 and	 Triplication	 in	 the	 Implementation	 Stage	 Data.	 15	 cerebral	 networks	 were	
estimated	 for	 all	 new	 participants.	 The	 15	 individuals	 were	 analyzed	 within	 subsamples	 (each	 n	 =	 5)	
intended	to	replicate	the	MS-HBM’s	network	estimates	in	prospective	participants	including	novel	discovery	
(P1-P5),	 replication	 (P6-P10)	 and	 triplication	 (P11-P15)	 datasets.	 Results	 were	 similar	 across	 all	 three	
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subsamples,	and	the	full	parcellation	for	each	individual	is	available	in	the	Supplementary	Materials	on	the	
surface	and	within	the	individual’s	own	native-space	volume.	Despite	idiosyncratic	spatial	details	of	network	
organization,	the	broad	properties	were	largely	consistent.	Three	representative	participants,	one	from	each	
subsample,	are	displayed	in	Figs.	14	to	16.	

	

-------------------------------------------------------	
Insert	Figures	14-16	About	Here	

-------------------------------------------------------	
	

					Network	 Estimates	 Reveal	 Predominantly	 Local	 Sensory	 and	 Motor	 Networks.	 VIS-C	 and	 VIS-P	 were	
identified	in	each	participant	extending	from	the	calcarine	sulcus	on	the	midline	to	the	lateral	surface.	The	
extent	of	the	two	networks	across	the	occipital	lobe	did	not	align	them	with	individual	visual	areas,	but	rather	
the	expanded	regions	of	the	V1/V2/V3	retinotopic	cluster,	and	likely	adjacent	retinotopic	clusters	(Wandell	
et	 al.	 2005;	 Wandell,	 Domoulin,	 Brewer	 2007).	 The	 multiple	 networks	 appeared	 to	 divide	 along	 the	
eccentricity	gradient	(Buckner	and	Yeo	2014).	The	VIS-C	network	overlapped	regions	likely	aligned	to	the	
central	 portions	 of	 the	 V1/V2/V3	 retinotopic	 representations,	 while	 VIS-P	 overlapped	 the	 peripheral	
retinotopic	representations	(see	Yeo	et	al.	2011).	The	relation	of	VIS-C	and	VIS-P	to	task-elicited	responses	
is	directly	explored	in	a	later	section.		
					While	 the	 VIS-C	 and	 VIS-P	 networks	 contained	 vertices	 that	 were	 mostly	 contiguous,	 there	 were	
exceptions.	Discontinuous	islands	were	sometimes	found	in	occipital-temporal	cortex,	possibly	a	reflection	
of	separate	extrastriate	retinotopic	clusters	(e.g.,	at	or	near	the	MT/V5	hemifield	representation).	VIS-P	also	
occasionally	contained	small,	punctate	representations	near	to	dorsolateral	prefrontal	cortex	(DLPFC).	These	
were	the	exceptions:	the	majority	of	the	VIS-C	and	VIS-P	networks’	included	vertices	were	continuous	and	
adjacent	to	one	another,	overlapping	the	expected	location	of	early	retinotopic	visual	cortex.	
					Similarly,	SMOT-A	and	SMOT-B	were	identified	reliably	as	spatially	continuous	networks	along	the	central	
sulcus,	extending	onto	the	midline	and	into	the	posterior	insula.	These	two	somatomotor	networks	also	do	
not	likely	align	to	individual	architectonic	areas,	but	rather	extend	across	the	pre-	and	post-central	sulcus	
including	primary	motor	as	well	as	somatosensory	areas.	The	extent	along	the	midline	and	into	the	posterior	
insula	further	suggests	the	networks	span	multiple	body	maps,	not	simply	the	dominant	inverted	body	map	
along	the	central	sulcus.	The	separation	into	two	networks	is	consistent	with	separation	of	distinct	portions	
of	the	somatotopic	map	along	the	body	axis,	a	functional	hypothesis	that	will	also	be	directly	tested	in	a	later	
section.	
					A	 final	 predominantly	 local	 sensory	 network,	 AUD,	 was	 consistently	 identified	 near	 to	 the	 superior	
temporal	sulcus.	This	network	extended	across	the	full	supratemporal	plane	including	Heschl’s	gyrus,	and	
into	adjacent	regions.		
					Multiple	Distributed	Networks	Lie	Adjacent	to	the	Local	Sensory	and	Motor	Networks.	Multiple	distributed	
networks	were	identified	in	each	participant	that	were	immediately	adjacent	to	the	local	sensory	and	motor	
networks,	with	each	network	containing	distributed	regions	that	spanned	multiple	zones	of	cortex.	dATN-A	
and	dATN-B	were	adjacent	to	VIS-C	and	VIS-P	but	also	with	distant	regions	in	the	frontal	cortex,	likely	at	or	
near	the	frontal	eye	field	(FEF)	(Corbetta	&	Shulman	2002;	Hutchinson	et	al.	2012).	Similarly,	CG-OP	and	PM-
PPr	 radiated	 outwards	 from	 the	 early	 somatomotor	 networks	 SMOT-A	 and	 SMOT-B.	 CG-OP	 and	PM-PPr	
sometimes	contained	small	islands	indenting	or	even	within	the	SMOT	network	boundaries	that	may	relate	
to	interspersed	inter-effector	regions	along	the	central	sulcus	(Gordon	et	al.	2023).	CG-OP	and	PM-PPr	also	
included	regions	abutting	and	within	the	Sylvian	fissure.	The	relations	among	the	networks	will	become	even	
clearer	in	the	upcoming	flat	map	visualizations.	
					A	final	network,	SAL	/	PMN,	displayed	a	spatial	pattern	that	was	adjacent	to	CG-OP	in	many	locations	but	
also	with	differences.	While	SAL	/	PMN	contained	a	prominent	region	in	the	anterior	insula,	the	network’s	
positioning	did	not	juxtapose	the	somatosensory	networks.	Rather,	SAL	/	PMN	was	adjacent	to	a	posterior	
midline	cluster	of	association	networks	near	to	regions	of	the	canonical	“Default	Network”	(e.g.,	Shulman	et	
al.	1997;	Buckner	et	al.	2008;	Power	et	al.	2011;	Yeo	et	al.	2011).	SAL	/	PMN	consistently	included	a	region	
within	ACC	 anterior	 to	 CG-OP	 and	 a	 prominent	 set	 of	 regions	 along	 the	mid-cingulate	 and	 the	posterior	
midline.	As	noted	for	S1	and	S2,	the	SAL	/	PMN	network’s	spatial	pattern	combined	features	described	in	
prior	work	on	the	Salience	Network	(Seeley	et	al.	2007;	see	Seeley	2019	for	discussion	and	Dosenbach	et	al.	
2006	for	related	work)	and	the	Parietal	Memory	Network	(Gilmore	et	al.	2015).		
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					Much	of	Association	Cortex	is	Populated	by	Multiple	Parallel	Juxtaposed	Networks.		The	remaining	regions	
of	 association	 cortex	 --	 that	 contain	 the	 majority	 of	 PFC,	 a	 large	 region	 of	 PPC	 extending	 into	 the	
temporoparietal	junction	(TPJ)	and	lateral	temporal	cortex	(LTC)	--	were	populated	by	five	distinct	networks.	
With	some	exceptions,	each	of	these	five	networks	tended	to	possess	regions	in	each	of	the	distributed	zones.	
The	five	networks	were	interwoven	with	local	patterns	of	adjacencies	that	repeated	across	cortex.	
					Specifically,	FPN-A	and	FPN-B	were	adjacent	to	one	another	throughout	the	cortical	mantle.	FPN-A	and	
FPN-B	 displayed	 a	 distributed	 pattern	 consistent	 with	 the	 well-studied	 group-estimated	 Frontoparietal	
Control	Network,	also	referred	to	as	the	Multiple-Demand	System	(Duncan	et	al.	2010;	Power	et	al.	2011;	
Yeo	et	al.	2011).	These	two	juxtaposed	networks	(FPN-A	and	FPN-B)	consistently	neighbored	an	additional	
clustered	 set	 of	 three	 networks	 –	 LANG,	DN-B,	 and	DN-A.	 These	 three	 additional	 networks	were	 tightly	
juxtaposed	 among	 themselves	 on	 the	 lateral	 cortical	 surface	 including	 zones	within	 PPC,	 LTC,	 and	 both	
DLPFC	and	VLPFC.	DN-A	and	DN-B	were	 interdigitated	as	well	 along	 the	anterior	and	posterior	midline,	
consistent	with	previous	studies	(Braga	and	Buckner	2017;	Gordon	et	al.	2017;	Braga	et	al.	2019).		
					Despite	 being	 adjacent	 in	many	 locations,	 clear	 features	 distinguished	 the	 three	 networks.	 The	 LANG	
network	surrounded	the	Sylvian	fissure	and	included	regions	near	to	the	AUD	network	and	in	VLPFC	at	or	
near	 historically	 defined	 “Broca’s	 area”.	 The	 LANG	 network	was	 generally	 larger	 in	 the	 left	 hemisphere	
compared	to	the	right	(but	see	Braga	et	al.	2020	for	an	exception).	DN-A	showed	a	strong	correlation	with	
the	posterior	parahippocampal	cortex	(PHC)	(see	also	Reznick	et	al.	2023	for	further	details).	Additionally,	
DN-A	occupied	regions	at	or	adjacent	to	the	retrosplenial	cortex	(RSC)	and	ventral	posterior	cingulate	cortex	
(PCC).	DN-B	prominently	included	anterior	regions	of	the	inferior	parietal	lobule	extending	into	the	TPJ	(a	
region	of	particular	focus,	e.g.,	Saxe	and	Kanwisher	2003;	Jacoby	et	al.	2016).	The	posterior	midline	region	of	
DN-B	fell	between	regions	of	DN-A	and	specifically	did	not	extend	into	RSC.	DN-B	also	included	a	larger	region	
of	the	LTC	than	DN-A;	DN-A	tended	to	include	a	small	region	or	a	few	discontinuous	regions	in	anterior	LTC.		
					Of	 importance,	 the	 spatial	 arrangements	of	 the	 five	networks	 (FPN-A,	 FPN-B,	 LANG,	DN-B,	 and	DN-A)	
repeated	multiple	times	across	the	cortical	mantle,	a	discovery	that	will	be	expanded	upon	in	the	analyses	of	
spatial	juxtapositions	on	the	flattened	cortical	surface.	

	

A	Cautionary	Note	About	Potential	Artifacts	
					Certain	aspects	of	the	network	estimates	were	impacted	by	signal	loss.	Low	SNR	regions	were	observed	
in	 the	OFC,	 ventral	 regions	 of	 VLPFC,	 and	 anterior	 regions	 of	 the	 temporal	 lobe	 (see	 Figs.	 1	 and	 4,	 and	
Supplementary	 Materials).	 When	 interpreting	 the	 network	 assignments,	 it	 is	 important	 to	 keep	 these	
spatially	 variable	 effects	 in	 mind.	 For	 example,	 a	 localized	 AUD	 network	 was	 observed	 across	 the	
supratemporal	plane	including	Heschl’s	gyrus.	Inconsistent,	discontinuous	vertices	were	also	labelled	as	part	
of	the	AUD	network	in	the	inferior	temporal	cortex	and	OFC,	in	the	regions	of	the	greatest	signal	dropout	due	
to	magnetic	susceptibility	differences.	The	network	assignments	in	low	SNR	regions	should	not	be	trusted.		
	

Model-Free	Seed-Region	Based	Correlations	Again	Confirm	Network	Estimates	
					To	demonstrate	that	the	correlation	properties	of	the	within-individual	data	were	captured	in	the	network	
assignments,	 seed-region	 based	 correlation	 maps	 were	 visualized.	 While	 there	 were	 minor	 differences	
between	the	MS-HBM	network	estimates	and	the	seed-region	based	correlation	maps,	networks	could	be	
identified	in	all	participants	using	both	methods.	Furthermore,	the	maps	defined	by	anterior	and	posterior	
seed	 regions	were	 similar,	 indicating	 that	 the	 seed-region	based	method	was	not	 dependent	 on	 a	 single	
vertex	or	one	general	region	of	cortex.	Seed-region	based	confirmation	for	DN-A,	DN-B,	LANG,	FPN-A,	FPN-
B,	CG-OP,	and	SAL	/	PMN	are	displayed	for	three	representative	participants	in	Figs.	17	to	19,	and	for	all	
participants	in	the	Supplementary	Materials.	

	

-------------------------------------------------------	
Insert	Figures	17-19	About	Here	

-------------------------------------------------------			
Variability	in	Network	Estimates	Across	Individuals	
					An	 overlap	map	 of	 assignments	 for	 each	 network	 from	 the	MS-HBM	model	 for	 the	 15	 participants	 is	
displayed	in	Fig.	20.	Results	revealed	that	the	general	organization	of	the	networks	was	highly	conserved	
across	individuals,	but	with	differences	in	the	idiosyncratic	spatial	positioning	and	extents	of	the	networks.		
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Insert	Figure	20	About	Here	
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					A	challenge	in	examining	spatial	overlap	is	that	there	is	circularity	in	network	definition	since	the	process	
initiates	with	the	same	15-network	group	prior,	which	could	bias	the	networks	to	show	more	overlap	than	
is	truly	in	the	data.	To	mitigate	this	concern,	we	also	examined	overlap	using	the	network	estimates	derived	
from	 the	 seed-region	 correlation	maps.	 These	maps	 are	 not	 constrained	 by	 the	 group	 prior	 and	 do	 not	
enforce	a	winner-take-all	assumption,	allowing	deviations	to	emerge.	Overlap	maps	of	correlation	patterns	
were	obtained	using	anterior	and	posterior	seed	regions	within	each	network	for	all	15	participants	(Fig.	
21).		

	
-------------------------------------------------------	

Insert	Figure	21	About	Here	
-------------------------------------------------------	

	
					As	a	final	exploration	of	variability,	the	individual	networks	were	plotted	next	to	one	another	for	all	15	
participants,	 allowing	 another	means	 to	 identify	 shared	 and	 idiosyncratic	 features	 of	 each	 participant’s	
estimate.	The	results	of	this	final	analysis	are	available	in	the	Supplementary	Materials.	
	

Higher-Order	Networks	Nest	Outwards	from	Primary	Cortices		
					To	better	reveal	spatial	relations	among	networks,	a	flattened	cortical	surface	was	constructed	(Fig.	22).	
The	15	networks	are	displayed	in	representative	participants	in	Figs.	23	to	25,	and	for	all	participants	in	the	
Supplementary	Materials.	A	broad	observation	was	that	higher-order	networks	nest	outwards	from	sensory	
and	motor	cortices.		
	

-------------------------------------------------------	
Insert	Figures	22-25	About	Here	
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					Specifically,	 the	 networks	 could	 be	 heuristically	 grouped	 into	 three	 levels	 beginning	 with	 first-order	
sensory	and	motor	networks6.	The	first-order	networks	were	primarily	locally	organized,	spatially	arranged	
along	the	central	sulcus	(for	SMOT-A	and	SMOT-B)	and	near	to	the	calcarine	sulcus	(for	VIS-C	and	VIS-P).	
Surrounding	these	first-order	networks	were	adjacent	networks	that	radiated	outwards.	We	refer	these	as	
second-order	networks.	CG-OP	and	PM-PPr	surrounded	SMOT-A	and	SMOT-B,	and	dATN-A	and	dATN-B	were	
adjacent	to	VIS-C	and	VIS-P.	In	between	these	second-order	networks	were	third-order	networks	(FPN-A	
and	FPN-B,	LANG,	DN-B,	DN-A)	that	populated	the	large,	expanded	zones	of	higher-order	association	cortex.	
The	flattened	representation	allowed	further	features	to	be	appreciated.		
					CG-OP	and	PM-PPr	nearly	fully	surrounded	both	the	anterior	and	posterior	extents	of	the	somatomotor	
networks,	including	the	insular	regions	that	are	buried	within	the	Sylvian	fissure.	While	CG-OP	and	PM-PPr	
were	generally	interdigitated	around	the	first-order	somatomotor	networks,	in	several	locations	CG-OP	fell	
distal	to	PM-PPr	(meaning	PM-PPr	directly	juxtaposed	SMOT-A	and	SMOT-B	and	CG-OP	juxtaposed	PM-PPr).	
Furthermore,	while	the	PM-PPr	network	was	adjacent	to	the	somatomotor	networks	across	its	extent,	CG-
OP	 also	 involved	 distant	 regions	 in	 PFC	 and	 posterior	 association	 zones	 that	 were	 not	 adjacent	 to	
somatomotor	networks.	Thus,	CG-OP	possessed	a	partially	distributed	motif.	Additional	details	of	dATN-A	
and	dATN-B	were	also	evident.	Of	the	two	networks,	dATN-B	fell	more	proximal	to	the	early	visual	networks	
and	dATN-A	more	distal.	dATN-A	included	distributed	regions	in	frontal	cortex	at	or	near	FEF,	while	dATN-
B	was	more	locally	organized	but	not	exclusively	so.		

 
6 Any heuristic framework will necessarily emphasize certain features of organization and deemphasize others. A 
three-level hierarchy, while not capturing local features of organization, is a useful framework to emphasize aspects 
of global organization that are the focus of this paper and, as will be discussed, converges with similar frameworks 
that have arisen from direct anatomical description (e.g., Flechsig 1904; 1920). Alternative organizational schemes 
are possible, and the three-level hierarchy proposed should viewed as an orienting framework. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 10, 2023. ; https://doi.org/10.1101/2023.08.08.552437doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.08.552437
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

					Comparing	dATN-A	and	dATN-B	with	CG-OP	and	PM-PPr,	as	highlighted	in	panels	A	and	B	of	Figs.	23	to	
25,	revealed	parallel	features.	The	second-order	networks	were	all	spatially	anchored	near	to	the	early	(first-
order)	sensory	and	motor	networks,	appearing	as	if	they	grew	out	or	formed	from	the	earlier	networks.	And,	
despite	 being	 far	 apart	 in	 their	 major	 extents,	 both	 sets	 of	 networks	 had	 distributed	 components	 with	
adjacencies	 in	 frontal	 cortex.	 Thus,	 from	 the	 standpoint	 of	 a	 potential	 hierarchy	 among	 networks,	 these	
second-order	networks	possess	a	motif	 that	anchors	 them	to	 the	early	sensory	and	motor	networks	and	
simultaneously	connects	them	to	distributed	zones	of	cortex.	
					We	provisionally	label	SAL	/	PMN	as	a	second-order	network,	but	it	has	juxtapositions	that	differentiate	
it	 from	 the	 other	 second-order	 networks.	 Across	much	 of	 its	 extent,	 SAL	 /	 PMN	 paralleled	 CG-OP	with	
multiple	juxtapositions.	SAL	/	PMN	differed	in	that	it	was	not	adjacent	to	early	sensory	and	motor	networks.	
Rather,	 SAL	 /	 PMN	 contained	 regions	 that	were	 near	 to	 the	 network	 labeled	DN-A,	 especially	 along	 the	
posterior	midline,	where	 its	regions	could	easily	be	confused	with	the	 large	DN-A	and	DN-B	regions	that	
occupied	much	of	the	posterior	midline.		
					The	 zones	 farthest	 away	 from	 the	 sensory	 and	 motor	 regions	 were	 populated	 by	 five	 third-order	
association	networks	(FPN-A,	FPN-B,	LANG,	DN-B,	and	DN-A).	Each	third-order	network	possessed	regions	
distributed	 widely	 throughout	 association	 cortex.	 Moreover,	 regions	 of	 distinct	 third-order	 networks	
displayed	side-by-side	juxtapositions	with	a	pattern	that	repeated	similarly	across	multiple	zones	of	cortex.	
We	will	focus	on	these	repeating	clusters	of	five	networks	extensively	in	later	sections.		

 

Somatomotor	and	Visual	Networks	Respond	to	Body	Movements	and	Visual	Stimulation	in	a	
Topographic	Manner	
					The	spatial	extent	of	task-elicited	responses	to	body	movements	and	visual	stimulation	were	mapped	in	
direct	 relation	 to	 the	 network	 boundaries.	 The	 goal	 of	 these	 analyses	 was	 to	 explore	 whether	 within-
individual	network	estimates	predict	task	responses.	In	all	cases,	the	network	boundaries	were	established	
before	examination	of	the	task	responses.	Fig.	26	illustrates	the	mapping	strategy,	and	Fig.	27	displays	the	
detailed	body	movement	and	visual	stimulation	maps	for	one	representative	participant	on	the	inflated	and	
flattened	surfaces.	Several	results	are	notable.	
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					First,	while	not	without	exceptions,	body	movements	and	visual	stimulation	elicited	responses	that	were	
aligned	to,	and	generally	 filled	 in,	 the	 first-order	network	estimates	(SMOT-A,	SMOT-B,	VIS-C,	and	VIS-P).	
That	is,	the	idiosyncratic	network	estimates	in	each	individual	predicted	the	localization	of	the	movement	
and	visual	stimulation	responses.	The	visual	responses	often	extended	beyond	the	anterior	boundaries	of	
VIS-C	and	VIS-P,	including	visually	responsive	portions	of	dATN-B.		
					Second,	the	main	body	map	along	the	central	sulcus	extended	across	networks	(SMOT-A	and	SMOT-B)	as	
did	 the	 retinotopic	 eccentricity	 gradient	 (VIS-C	 and	 VIS-P).	Within	 the	 visual	 system,	 there	 was	 a	 clear	
correspondence	between	the	two	visual	networks	and	eccentricity.	VIS-C,	as	anticipated	given	its	anatomical	
position,	tracked	the	central	representation.	VIS-P	covered	the	peripheral	representation.	A	gap	emerged	for	
the	most	peripheral	regions	of	the	dorsal	and	ventral	eccentricity	portions	of	VIS-P,	likely	because	the	visual	
stimulation	did	not	extend	fully	to	the	periphery	(see	Park	et	al.	2023).	Within	the	somatosensory	and	motor	
systems,	there	was	a	distinct	gap	between	the	representations	of	the	hand	and	glutes	which	may	be	an	inter-
effector	region	(Gordon	et	al.	2023).	
					Third,	the	response	patterns,	like	the	networks,	did	not	align	to	expected	boundaries	of	individual	brain	
areas	(i.e.,	V1,	S1).	The	body	movements	activated	regions	pre-	and	post-central	sulcus,	spanning	multiple	
motor	and	somatosensory	areas.	Examined	in	detail,	the	body	movement	responses	suggest	at	least	three	
distinct	maps	of	the	main	body	axis,	labeled	I,	II,	and	III	in	Fig.	27.	The	largest	distinct	body	map	was	found	
aligned	 to	 primary	 somatomotor	 cortex,	 exhibiting	 a	medial-to-lateral	 progression	 from	 foot	 to	 hand	 to	
tongue	(Fig.	27,	 labeled	 I).	 In	 the	posterior	 insula,	 the	body	map	was	buried	with	a	posterior	 to	anterior	
orientation	(Fig.	27,	labeled	II).	On	the	medial	wall,	the	body	map	progressed	from	anterior	to	posterior	(Fig.	
27,	 labeled	 III).	 Similarly,	 the	 visual	 responses	 spanned	 the	 extent	 of	 at	 least	 the	 V1/V2/V3	 retinotopic	
cluster,	with	networks	cutting	across	areas	(verified	through	polar	mapping	as	illustrated	in	Fig.	26E).	Thus,	
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the	response	patterns	confirm	that	early	somatomotor	and	visual	networks	group	multiple	areas	together	
and	are	separated	one	from	another	along	topographic	gradients	(e.g.,	VIS-C	versus	VIS-P).		
					The	features	described	above	can	be	observed	in	additional	participants	(Fig.	28),	and	in	all	participants	
with	available	task	data	as	shown	in	the	Supplemental	Materials.		
	

CG-OP	and	SAL	/	PMN	Respond	to	Salient	Transients		
					The	oddball	task	was	designed	to	measure	the	transient	response	to	uncommon	visually	salient	targets	
that	require	participant	response.	The	mapping	strategy	 is	 illustrated	 in	Fig.	29.	On	the	 flattened	cortical	
surface,	the	within-individual	a	priori-defined	networks	CG-OP	and	SAL	/	PMN	are	displayed	in	relation	to	
the	 Oddball	 Effect	 task	 contrast.	 The	 details	 of	 the	 Oddball	 Effect	 task	 contrast	 are	 shown	 for	 one	
representative	 participant	 in	 Fig.	 30.	 Fig.	 31	 illustrates	 that	 the	 features	 can	 be	 observed	 in	 additional	
participants,	and	in	all	participants	as	shown	in	the	Supplemental	Materials.	
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					The	 Oddball	 Effect	 task	 contrast	 response	 was	 widely	 distributed	 across	 the	 cortex.	 The	 response	
prominently	involved	the	distributed	regions	of	the	CG-OP	and	SAL	/	PMN	networks,	including	regions	in	the	
anterior	insula	as	well	as	along	the	posterior	midline.	These	collective	regions	revealing	an	Oddball	Effect	
task	contrast	response	have	been	the	emphasis	of	prior	studies	separately	focused	on	the	Salience	Network	
and	Parietal	Memory	Network.	Thus,	as	predicted	by	the	hypothesis	that	SAL	/	PMN	is	a	single	network,	the	
response	pattern	observed	here	extended	across	the	full	distributed	extent	of	the	network.		
					In	addition	to	the	consistent	responses	across	the	distributed	regions	of	CG-OP	and	SAL	/	PMN,	additional	
responses	were	 reliably	 observed	 –	 a	 response	 along	 the	 central	 sulcus	 in	 the	 left	 hemisphere	 near	 the	
estimated	location	of	the	hand	representation	and	along	the	calcarine	sulcus	near	the	central	representation	
of	the	visual	field	(contrast	Fig.	30	with	Fig.	27).	The	response	in	the	hand	region	of	the	central	sulcus	was	
exclusively	in	the	left	hemisphere	consistent	with	the	right-handed	response.	
					To	quantify	the	selectivity	of	the	task	response,	the	mean	z-values	for	the	Oddball	Effect	task	contrast	were	
calculated	separately	for	each	association	network.	The	estimates	were	obtained	within	the	bounds	of	each	
individual’s	a	priori	defined	networks	and	then	averaged	across	participants	(N	=	14).	Quantification	at	the	
group	level	showed	a	strong,	significant	positive	response	to	oddball	targets	in	both	the	CG-OP	(t(13)	=	7.97,	
p	 <	 0.001)	 and	 SAL	 /	 PMN	networks	 (t(13)	 =	 6.21,	p	 <	 0.001).	 By	 contrast,	 for	many	 of	 the	 third-order	
association	networks,	the	response	was	significantly	negative	(DN-A:	t(13)	=	-11.76,	p	<	0.001,	DN-B:	t(13)	
=	-8.81,	p	<	0.001,	LANG:	t(13)	=	-3.82,	p	<	0.01,	FPN-B:	t(13)	=	-3.02,	p	<	0.01),	with	FPN-A	being	the	exception.	
FPN-A	showed	a	weak,	non-significant	positive	response	(t(13)	=	1.82,	p	=	0.09).	These	observations	suggest	
that	the	CG-OP	and	SAL	/	PMN	networks	are	recruited	during	the	Oddball	Effect	task	contrast.	
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					Given	the	historical	focus	on	the	Salience	Network	and	Parietal	Memory	Network	as	separate	networks,	
and	their	proximity	along	the	posterior	midline	to	the	Default	Network,	we	replotted	the	Oddball	Effect	task	
contrast	on	the	inflated	surface	(Fig.	33).	For	this	visualization,	the	task	map	threshold	was	reduced	to	zero.	
Much	of	the	full	extent	of	the	CG-OP	and	SAL	/	PMN	networks	was	strongly	activated.	The	positive	response	
included	the	posterior	midline	regions	that	have	been	the	focus	of	the	Parietal	Memory	Network	(Gilmore	et	
al.	2015)	as	well	as	the	anterior	insula	region	that	has	been	a	focus	of	the	Salience	Network	(Seeley	et	al.	
2007;	2019).	An	interesting	feature	is	that	islands	of	the	CG-OP	network	that	fell	within	the	frontal	midline	
showed	 positive	 responses	 in	 the	 within-individual	 maps	 (Fig.	 33).	 These	 small	 responses,	 which	 were	
adjacent	to	large	regions	with	an	opposite	response	pattern,	were	absent	in	the	group-averaged	response	
(Fig.	33,	bottom).	The	positive	response	was	not	selective	to	these	two	specific	networks,	with	motor	and	
visual	responses	as	noted	earlier.	The	positive	response	also	extended	into	the	region	of	the	visual	second-
order	networks	(e.g.,	dATN-B).		
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					Critically,	 the	networks	at	or	near	the	historical	Default	Network,	here	estimated	within-individuals	as	
encompassing	 at	 least	 DN-A	 and	 DN-B,	 were	 all	 strongly	 ‘deactivated’	 meaning	 more	 active	 during	 the	
implicitly	coded	baseline	reference	than	during	the	salient	targets.	That	is,	the	contrast	replicated	the	task	
deactivation	pattern	that	originally	generated	interest	in	the	Default	Network	(Shulman	et	al.	1997;	Mazoyer	
et	al.	2001;	Raichle	et	al.	2001)	in	the	presence	of	a	robust	positive	response	across	the	distributed	extent	of	
the	SAL	/	PMN	network.	Thus,	the	separation	of	the	effects	along	the	posterior	midline	revealed	a	spatial	
dissociation	between	the	second-order	network	SAL	/	PMN	and	the	third-order	networks	DN-A	and	DN-B.	
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Higher-Order	Zones	of	Association	Cortex	Possess	a	Repeating	Motif	
					Distributed	 throughout	 association	 cortex,	 in	 the	 zones	 roughly7	between	 the	 second-order	 networks,	
were	the	five	association	networks	FPN-A,	FPN-B,	LANG,	DN-B,	and	DN-A	(Fig.	34).	Among	these	networks,	
side-by-side	juxtapositions	repeated	across	multiple	cortical	zones	(refer	to	I,	II,	III	and	IV	in	Fig.	34).	FPN-A	
and	FPN-B	were	reliably	positioned	adjacent	to	one	another	and,	as	a	pair,	were	adjacent	to	a	repeating	group	
of	the	three	other	networks:	LANG,	DN-B	and	DN-A.	We	call	these	repeating	clusters	of	five	networks	Supra-
Areal	Association	Megaclusters	or	SAAMs.	The	reproducibility	of	the	SAAMs	across	participants	was	striking	
and	is	illustrated	for	the	posterior	association	zones	in	all	15	participants	in	Fig.	35.	While	the	idiosyncratic	
spatial	details	varied,	multiple	SAAMs	were	consistently	observed.	The	remaining	task	analyses	explored	
functional	response	properties	of	the	association	networks	embedded	within	the	SAAMs.	
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FPN-A	and	FPN-B	Respond	to	Domain-Flexible	Working	Memory	Demands		
					The	functional	properties	of	the	association	networks	comprising	the	SAAMs	(FPN-A,	FPN-B,	LANG,	DN-B,	
DN-A)	were	 explored	 first	 in	 relation	 to	 domain-flexible	 demands	 on	working	memory	 and,	 in	 the	 next	
section,	in	relation	to	domain-specialized	processing	functions.	The	hypothesis	was	that	FPN-A	and	FPN-B	
would	modulate	their	response	in	relation	to	increasing	working	memory	load	across	multiple	verbal	and	
non-verbal	 stimulus	 conditions.	 The	mapping	 strategy	 is	 illustrated	 in	 Fig.	 36.	 On	 the	 flattened	 cortical	
surface,	the	within-individual	a	priori-defined	networks	FPN-A	and	FPN-B	are	displayed	in	relation	to	the	N-
Back	Load	Effect	task	contrast	(collapsed	across	stimulus	conditions).	The	N-Back	Load	Effect	task	contrast	
is	shown	in	detail	 in	Fig.	37	for	one	representative	participant.	Fig.	38	illustrates	that	the	features	can	be	
observed	 in	 additional	 participants,	 and	 in	 all	 participants	with	 available	 task	 data	 in	 the	 Supplemental	
Materials.	
					As	hypothesized,	the	N-Back	Load	Effect	task	contrast	increased	activation	within	and	near	the	boundaries	
of	 the	FPN-A	and	FPN-B	networks	(Figs.	36	and	37).	The	widely	distributed	response	 included	extensive	
regions	of	PFC,	as	well	as	regions	of	PPC	and	the	dorsal	ACC	–	all	canonical	regions	associated	with	domain-
flexible	cognitive	control	(e.g.,	Duncan	2001;	Cromer	et	al.	2010;	Duncan	2013;	Fedorenko	et	al.	2012).	As	
predicted	by	the	network	estimates,	there	was	also	a	response	in	LTC	and	a	small	subregion	of	the	anterior	
insula	that	is	spatially	distinct	from	that	of	other	networks.		
					Of	equal	importance	was	the	consistent	absence	of	response	in	the	distributed	association	regions	linked	
to	the	LANG,	DN-B,	and	DN-A	networks,	including	within	the	PPC	and	LTC.	In	essence,	the	N-Back	Load	Effect	
task	contrast	split	the	SAAMs	and	activated	the	portions	linked	to	the	FPN-A	and	FPN-B	networks	selectively	
with	minimal	or	no	response	in	the	juxtaposed	portions	associated	with	the	LANG,	DN-B,	and	DN-A	networks.	
	
	

	

 
7 While the higher-order association networks were generally positioned between the second-order networks, an 
exception to that pattern is that the LANG network juxtaposes the AUD network, without second-order networks 
interdigitated. It is unclear whether this is a true exception, or there are local organizational details that are not 
resolved by our current methods. 
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						To	quantify	the	selectivity	of	the	task	response,	the	mean	z-values	for	the	N-Back	Load	Effect	task	contrast	
were	calculated	separately	for	each	association	network.	The	estimates	were	obtained	within	the	bounds	of	
each	individual’s	independent	a	priori	defined	networks	and	then	averaged	(N	=	15).	Results	plotted	in	Fig.	
39	reveal	a	positive	N-Back	Load	Effect	response	that	was	strongest	in	FPN-A	(t(14)	=	21.67,	p	<	0.001)	and	
also	quite	strong	in	FPN-B	(t(14)	=	6.45,	p	<	0.001).	SAL	/	PMN	unexpectedly	showed	a	significant	positive	
response	(t(14)	=	7.91,	p	<	0.001)	that	was	significantly	weaker	than	either	FPN-A	(t(14)	=	-15.09,	p	<	0.001)	
or	FPN-B	(t(14)	=	-2.91,	p	<	0.01).	Thus,	while	SAL	/	PMN	showed	a	response,	the	functional	response	was	
less	relative	to	FPN-A	and	FPN-B,	opposite	to	the	pattern	found	earlier	(contrast	Fig.	39	with	Fig.	32).	The	
remaining	networks,	including	the	three	additional	networks	that	were	adjacent	within	the	SAAMs,	showed	
a	negative	N-Back	Load	Effect.	The	effect	was	significantly	negative	for	DN-A	(t(14)	=	-4.85,	p	<	0.001)	and	
DN-B	(t(14)	=	-7.14,	p	<	0.001)	but	not	LANG	(t(14)	=	-0.81,	p	=	0.43).	These	results	provide	evidence	that	
two	parallel	networks	–	FPN-A,	FPN-B	–	are	involved	in	processes	enhanced	by	increasing	working	memory	
demands,	while	other	juxtaposed	networks	–	LANG,	DN-B	and	DN-A	–	are	functionally	dissociated,	consistent	
with	the	qualitative	patterns	visualized	in	the	activation	maps.	
					To	further	investigate	the	domain	flexibility	of	FPN-A	and	FPN-B,	the	mean	z-values	for	each	of	the	four	
stimulus	conditions	of	the	N-Back	Load	Effect	(Face,	Letter,	Word,	and	Scene)	were	separately	plotted	(Fig.	
39).	Both	FPN-A	(Face:	t(14)	=	11.74;	Letter:	t(14)	=	16.03;	Word:	t(14)	=	11.30;	Scene:	t(14)	=	12.05,	all	p	<	
0.001)	and	FPN-B	(Face:	t(14)	=	5.13;	Letter:	t(14)	=	5.60;	Word:	t(14)	=	5.15;	Scene:	t(14)	=	5.54,	all	p	<	
0.001)	 exhibited	 a	 significant	 response	 across	 all	 conditions	 of	 the	 N-Back	 Load	 Effect	 task	 contrast,	
supporting	that	their	processing	role	generalizes	across	both	verbal	and	nonverbal	domains.	That	is,	FPN-A	
and	FPN-B	responded	robustly	to	working	memory	demands,	more	so	than	adjacent	networks	and	did	so	in	
a	do’ain-flexible	manner.	
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LANG,	DN-B,	and	DN-A	Respond	Differentially	to	Distinct	Cognitive	Domains	
					Among	the	networks	that	populate	the	distributed	zones	of	higher-order	association	cortex,	FPN-A	and	
FPN-B	 responded	 in	 a	 domain-flexible	manner	 to	 increasing	working	memory	 load.	 The	 adjacent	 trio	 of	
networks	–	LANG,	DN-B,	and	DN-A	–	did	not.	In	our	final	analyses,	we	explored	the	functional	specialization	
of	 these	 additional	 three	 networks	 by	 examining	 Episodic	 Projection,	 Theory-of-Mind	 and	 Sentence	
Processing	 task	 contrasts	 designed	 to	 emphasize	 distinct	 specialized	 domains	 of	 higher-order	 cognitive	
processing.		
						The	mapping	strategy	is	illustrated	in	Fig.	40.	On	the	flattened	cortical	surface,	the	within-individual	a	
priori-defined	networks	LANG,	DN-B,	and	DN-A	are	displayed	in	relation	to	the	three	separate	task	contrasts	
simultaneously,	 to	 illustrate	 the	adjacency	of	 the	 responses	 in	 relation	 to	each	other	and	 to	 the	network	
boundaries.	The	details	of	one	composite	task	contrast	map	are	displayed	for	a	representative	participant	in	
Fig.	41.	Fig.	42	illustrates	additional	participants,	and	all	participants	with	available	data	are	shown	in	the	
Supplemental	Materials.	Several	results	are	notable.	
	

-------------------------------------------------------	
Insert	Figures	40	to	42	About	Here	

-------------------------------------------------------	
	

	

					First,	 the	composite	activation	patterns	across	the	three	task	contrasts	filled	in	the	remaining	zones	of	
association	cortex.	Strikingly,	the	domain-specialized	task	responses	are	situated	adjacent	to,	but	separate	
from,	the	regions	activated	by	domain-flexible	working	memory	demands	(contrast	Fig.	41	with	Fig.	37).	This	
separation	can	be	seen	in	many	locations,	with	a	particularly	clear	example	visualized	within	the	PPC	where	
the	N-Back	Load	Effect	 task	contrast	 showed	a	posterodorsal	 response	relative	 to	 the	 three	current	 task	
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contrasts.	 The	 side-by-side	 juxtaposition	 of	 domain-specialized	 and	 domain-flexible	 regions	 was	 also	
observed	within	LTC	and	multiple	locations	throughout	PFC.	
					Second,	 within	 each	 juxtaposed	 cluster	 of	 domain-specialized	 regions,	 the	 region	 preferentially	
responding	 to	 the	Sentence	Processing	 task	 contrast	 abutted	 the	 region	preferentially	 responding	 to	 the	
Theory-of-Mind	task	contrast,	and	these	abutted	the	region	preferentially	responding	to	the	Episodic	Project	
task	contrast.	While	overlap	and	exceptions	were	found,	the	differential	response	patterns	generally	tracked	
the	network	separations	between	LANG,	DN-B,	and	DN-A.	The	idiosyncratic	positions	and	boundaries	of	the	
three	networks	in	any	given	individual	–	LANG,	DN-B,	and	DN-A	–	predicted	the	positions	of	the	domain-
specialized	activation	responses	(Fig.	42).		
					Thus,	within	each	local	zone	the	regions	associated	with	the	separate	networks	responded	to	their	distinct	
specialized	cognitive	domains.	Moreover,	the	spatially	differentiated	response	patterns	repeated	across	the	
multiple	SAAMs	(refer	 to	 I,	 II,	 III	 and	 IV	 in	Fig.	41).	There	were	exceptions.	For	example,	 regions	of	 task	
activation	in	VLPFC	did	not	overlap	well	with	the	estimated	networks	in	P12.	The	discrepancies	tended	to	
fall	within	anterior	temporal	regions	and	PFC	regions	where	SNR	is	low,	raising	the	possibility	that	technical	
variance	played	a	role.	To	reveal	the	details	of	the	task	maps	more	fully,	the	Supplementary	Materials	include	
task	maps	for	each	task	contrast	separately	in	addition	to	the	composite	maps	for	all	available	participants.		
					The	response	was	quantified	for	each	of	the	three	task	contrasts	for	each	network	to	formally	test	for	the	
hypothesized	interaction.	For	each	domain-specialized	task	contrast,	the	z-values	within	the	bounds	of	each	
individual’s	three	independent	a	priori	defined	networks	(LANG,	DN-B	and	DN-A)	were	obtained	and	then	
averaged	 (N	 =	 13).	 The	 resulting	mean	 z-values	 are	 plotted	 in	 Fig.	 43.	 A	 repeated	measures	 ANOVA	 on	
network-level	task	response	revealed	a	significant	3	x	3	interaction	between	the	effect	of	task	contrast	and	
network	(F(4,	48)	=	77.82,	p	<	0.001).	Paired	t-tests	then	tested	the	individual	contrasts,	with	the	hypothesis	
that	 each	network’s	within-domain	 response	would	be	 significantly	 greater	 than	either	of	 the	other	 two	
networks.	 All	 six	 of	 these	 planned	 comparisons	 were	 significant.	 The	 Episodic	 Projection	 task	 contrast	
recruited	DN-A	regions	over	those	of	DN-B	(t(12)	=	16.38,	p	<	0.001)	and	LANG	(t(12)	=	14.49,	p	<	0.001).	
The	Theory-of-Mind	task	recruited	DN-B	regions	over	those	of	DN-A	(t(12)	=	5.27,	p	<	0.001)	and	LANG	(t(12)	
=	10.09,	p	<	0.001),	and	the	Sentence	Processing	task	contrast	recruited	the	LANG	regions	over	those	of	DN-
A	(t(12)	=	6.55,	p	<	0.001)	and	DN-B	(t(12)	=	5.42,	p	<	0.001).		
					Thus,	in	addition	to	the	qualitative	impressions	(Figs.	40-42),	statistical	tests	revealed	the	full	interaction	
was	significant	with	all	pairwise	tests	also	significant	in	support	of	a	triple	functional	dissociation	across	the	
three	networks.	These	observations	suggest	that	the	parallel	networks	LANG,	DN-B,	and	DN-A,	with	adjacent	
regions	across	multiple	cortical	zones,	are	specialized	to	support	distinct	higher-order	cognitive	domains.	

	

-------------------------------------------------------	
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-------------------------------------------------------	
	

Discussion	
	

					Detailed	 network	 estimates	 reveal	 a	 global	 organization	 that	 can	 be	 conceptualized	 as	 three	 levels	 of	
cortical	 hierarchy:	 locally-organized	 first-order	 sensory	 and	motor	 networks,	 spatially	 adjacent	 second-
order	networks	 that	 link	 to	distant	 regions,	 and	 third-order	networks	 that	populate	 and	 connect	widely	
distributed	zones	of	higher-order	association	cortex.	Repeating	side-by-side	spatial	 juxtapositions	among	
the	 third-order	 association	 networks	 form	 organized	 motifs	 that	 we	 call	 Supra-Areal	 Association	
Megaclusters	or	SAAMs.	Within	each	SAAM,	the	regions	linked	to	distinct	association	networks	demonstrate	
differential	task	response	properties.	Certain	networks	contribute	to	domain-flexible	cognitive	control	and	
others	 to	domain-specialized	processes	 involved	 in	 language,	 social,	 and	spatial	 /	episodic	 functions.	We	
discuss	the	practical	and	conceptual	implications	of	these	findings	including	how	repeating	organizational	
motifs	might	arise	during	development.		

	

Within-Individual	Network	Estimates	
					In	 the	 present	 work,	 we	 explored	 the	 utility	 of	 a	 15-network	 MS-HBM	 estimate	 of	 cerebral	 cortical	
organization	that	allowed	the	idiosyncratic	details	of	each	individual’s	own	anatomy	to	guide	the	solutions	
(e.g.,	Figs.	2	and	4).	The	method	yielded	robust,	stable	network	estimates	that	were	confirmed	using	analyses	
of	seed-region	based	correlation	(e.g.,	Figs.	3	and	5).	All	quantitative	analyses	and	visual	inspections	of	the	
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data	reinforced	that	the	present	15-network	estimate	captured	a	great	deal	of	the	structured	correlations	
present	in	the	underlying	data.	From	a	methodological	standpoint,	the	present	results	indicate	that	a	MS-
HBM	can	be	used	to	estimate	networks	automatically	and	robustly	within	individuals	(Kong	et	al.	2019;	Xue	
et	al.	2021).	Several	features	of	our	network	estimates	revise	or	expand	earlier	ideas.		
					First,	the	current	network	parcellation	falls	into	a	class	of	within-individual	network	estimates	that	refine	
group-based	estimates.	In	group-based	estimates,	 including	multiple	estimates	from	our	laboratory,	 large	
monolithic	 networks	 have	 been	 identified	 that	 encompass	 extensive	 regions	 of	 association	 cortex	 (e.g.,	
Damoiseaux	et	al.	2006;	Yeo	et	al.	2011;	Power	et	al.	2011;	Doucet	et	al.	2011;	Smith	et	al.	2013).	Our	network	
estimates	are	broadly	similar	but	separate	the	 large	group-based	networks	 into	multiple	distinct	parallel	
networks.	 For	 example,	 the	 network	 historically	 known	 as	 the	 Default	 Network	 overlaps	 four	 separate	
networks	in	the	present	parcellation	including	networks	LANG,	DN-B,	DN-A,	and	SAL	/	PMN.	Each	of	these	
four	distinct	networks	can	be	identified	in	every	individual	in	the	present	study.	The	multiple	networks	are	
not	estimated	to	be	“sub-networks”	with	shared	regions	or	anatomical	convergence,	but	rather	are	distinct	
networks	that	are	near	to	one	another	and	often	blurred	in	group-averaged	data	(see	also	Fedorenko	et	al.	
2010;	2012;	Laumann	et	al.	2015;	Michalka	et	al.	2015;	Braga	et	al.	2017;	2019;	Gordon	et	al.	2017;	Buckner	
and	DiNicola	2019;	Smith	et	al.	2021).	Thus,	an	advance	of	within-individual	network	estimates,	including	
the	 present	 contribution,	 is	 to	 fully	 resolve	 adjacent	 networks	 that	 are	 difficult	 to	 separate	 through	
approaches	that	average	over	people.	
					Second,	among	within-individual	parcellation	estimates,	we	settled	on	a	15-network	solution	because	of	
our	goal	to	separate	nearby	networks	within	the	anterior	insula	(Seeley	2019),	as	well	as	to	better	separate	
early	 sensory	 and	 adjacent	 networks.	 Our	 analyses	 confirmed	 that	 the	 newly	 proposed	 15-network	
parcellation	could	capture	correlational	features	absent	in	simpler	network	solutions,	including	our	own	10-
network	solution	previously	estimated	in	Xue	et	al.	(2021;	see	current	Figs.	8,	9,	11,	and	12).	In	addition	to	
detecting	distinctions	among	networks	that	have	close	juxtapositions	in	the	anterior	insula,	the	present	15-
network	parcellation	also	revealed	clear	separation	of	the	estimated	AUD	network	from	the	nearby	LANG	
network.	 Multiple	 networks	 identified	 in	 the	 simpler	 network	 solutions	 remained	 in	 the	 15-network	
estimates,	indicating	the	refinements	did	not	come	at	the	expense	of	the	established	networks.	
					Third,	the	present	parcellation	identifies	a	single	distributed	network,	labeled	SAL	/	PMN,	that	includes	
regions	that	have	historically	been	studied	separately	as	components	of	the	Salience	Network	(Seeley	et	al.	
2007)	and	the	Parietal	Memory	Network	(Gilmore	et	al.	2015).	Note	that	we	do	not	say	“joins”	two	previously	
described	networks,	as	we	suspect	there	have	never	been	two	separate	networks.	Rather,	different	research	
lineages	may	have	focused	on	distinct	regional	components	of	what	 is	ultimately	the	same	network.	This	
hypothesis	will	require	further	testing,	but	several	lines	of	evidence	lead	to	the	present	proposal	that	SAL	/	
PMN	is	a	single,	coherent	network.	In	every	individual,	the	estimated	SAL	/	PMN	network	included	regions	
along	the	posterior	midline	and	within	the	anterior	insula	(Fig.	20).	Seed-region	based	correlation	patterns	
recapitulated	the	automated	network	estimates:	seed	regions	placed	in	PFC	and	posterior	cortex	revealed	
clear	regional	correlation	in	the	anterior	insula	as	well	as	multiple	distinct	posterior	midline	regions	(Fig.	
21).	 Furthermore,	 independent	 task	 data	 focused	 on	 salience	 processing,	 via	 an	 oddball	 detection	 task,	
elicited	robust	responses	in	the	distributed	regions	of	the	SAL	/	PMN	network	including	the	posterior	midline	
and	anterior	insula	(Figs.	30,	31,	and	33).	
					Finally,	it	is	important	to	note	that	the	present	estimates	assume	(and	are	optimized	to	detect)	large-scale	
distributed	 networks.	 For	 this	 reason,	 our	 resultant	 parcellation	 is	 different	 from	 parcellations	 that	 are	
optimized	to	detect	local	gradients	of	change	and	/	or	directly	estimate	“area”	boundaries	(e.g.,	Cohen	et	al.	
2008;	Gordon	et	al.	2016;	Glasser	et	al.	2016;	for	discussion	see	Buckner	and	Yeo	2014;	Eickhoff	et	al.	2018).	
While	 there	 is	 some	 convergence	 between	 approaches,	 and	 it	 is	 possible	 to	 apply	 mutual	 constraints	
(Schaefer	 et	 al.	 2018),	 our	 present	 parcellation	 is	 weighted	 to	 estimate	 networks	 based	 on	 long-range	
correlational	properties,	without	weighting	local	gradients.		
	

Supra-Areal	Association	Megaclusters	(SAAMs)	
					A	striking	observation	that	is	apparent	in	the	flat	map	visualizations	is	the	recurrent	spatial	grouping	of	
the	same	five	higher-order	networks	throughout	association	cortex	(FPN-A,	FPN-B,	LANG,	DN-B,	DN-A).	The	
clearest	examples	are	found	in	PPC	and	LTC	(Fig.	35),	but	the	adjacencies	are	also	present	in	multiple	PFC	
zones	(Fig.	34),	as	if	a	shared	organizing	force	plays	out	repeatedly	across	different	cortical	territories.	Each	
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grouping	of	regions	possesses	similar	spatial	relations	among	the	five	networks:	networks	FPN-A	and	FPN-
B	are	next	to	one	another,	and	that	pair	of	networks	is	adjacent	to	the	trio	of	networks	LANG,	DN-B,	and	DN-
A.		
					SAAMs	possess	several	additional	features.	While	their	global	patterning	–	meaning	spatial	adjacencies	
between	networks	–	is	identifiable	for	multiple	SAAMs	within	and	across	individuals,	the	orientations	shift,	
and	the	exact	spatial	positions	vary.	For	example,	within	the	PPC	the	axis	that	begins	with	the	FPN-A	/	FPN-
B	pairing	and	ends	with	the	LANG	/	DN-B	/	DN-A	triad	is	oriented	dorsal-to-ventral.	Within	the	LTC,	the	axis	
is	oriented	ventral-to-dorsal	(Fig.	34).	Moreover,	while	the	SAAMs	are	readily	identified	in	every	person	in	
the	PPC	and	LTC,	usually	with	a	discontinuity	between	the	two	SAAMs,	the	idiosyncratic	spatial	details	vary	
from	one	person	to	the	next.	In	some	individuals	the	two	zones	appear	fused	(Fig.	35).	It	is	thus	unsurprising	
that	group-averaged	data,	while	revealing	certain	spatial	features	apparent	in	the	SAAMs,	blur	over	the	fine	
spatial	details	that	are	apparent	in	the	within-individual	maps.	
					The	spatial	juxtapositions	that	define	the	SAAMs	in	PPC	and	LTC	are	also	present	in	multiple	zones	of	the	
PFC.	However,	there	is	not	always	spatial	separation.	The	boundaries	of	individual	SAAMs	in	PFC	are	thus	
ambiguous.	In	Fig.	34	we	note	candidate	SAAMs	in	VLPFC	(labeled	III)	and	DLPFC	(labeled	IV),	recognizing	
these	 are	 hypotheses.	 A	 future	 endeavor	 might	 explore	 how	 a	 repeating	 pattern	 could	 parsimoniously	
explain	the	juxtapositions	in	PFC	with	the	assumption	that	multiple	SAAMs	are	present	like	those	observed	
in	PPC	and	LTC,	but	with	the	additional	complication	that	there	are	multiple	adjacent	SAAMs	that	collide	into	
one	another,	perhaps	as	a	consequence	of	their	formation	during	development.		
					A	final	detail	regarding	the	SAAMs	is	subtle	but	potentially	informative.	While	the	presence	of	five	regions	
linked	to	the	distinct	networks	is	a	consistent	feature	of	PPC,	LTC,	VLPFC,	and	DLPFC,	there	are	also	partial	
sets	 of	 the	 network	 juxtapositions	 in	 other	 cortical	 zones.	 For	 example,	 along	 the	midline	 there	 is	 clear	
representation	of	networks	DN-A	and	DN-B	in	PMC	and	MPFC,	but	not	consistently	the	other	networks	(Fig.	
34).	 The	 partial	 SAAMs	 may	 provide	 an	 insight	 into	 the	 origins	 of	 the	 patterning.	 DN-A	 is	 a	 putative	
hippocampal-cortical	network	that	has	been	extensively	studied	in	humans	(e.g.,	Grecius	et	al.	2004;	Vincent	
et	al.	2007;	Braga	and	Buckner	2017;	Braga	et	al.	2019;	Zheng	et	al.	2021;	Reznik	et	al.	2023)	and	monkeys	
(e.g.,	Buckner	et	al.	2008;	Binder	et	al.	2009;	Margulies	et	al.	2009;	Buckner	and	Margulies	2019;	Buckner	
and	DiNicola	2019).	The	hippocampal	formation,	via	polysynaptic	projections	through	entorhinal	cortex	and	
PHC,	projects	heavily	 to	RSC	and	ventral	PCC	along	 the	posterior	midline,	and	also	 to	MPFC	(Suzuki	and	
Amaral	 1994;	 Lavenex	 et	 al.	 2002;	 Blatt	 et	 al.	 2003).	 The	 exclusive	 assignment	 of	 PHC	 to	DN-A	 and	 the	
predominance	of	DN-A	along	the	midline	may	thus	reflect	connectivity	to	the	hippocampal	formation.	The	
interdigitation	of	DN-A	with	other	higher-order	networks	might	emerge	as	the	hippocampal-predominant	
projections	intermix	with	other	anatomical	projection	gradients	in	the	apex	association	zones	where	the	fully	
formed	SAAMs	are	present.		
	

The	Relation	of	the	Present	Network	Estimates	with	the	Historical	Default	Network	
					The	Default	Network,	or	Default	Mode	Network,	has	received	considerable	attention	among	investigations	
of	cerebral	networks	(Gusnard	and	Raichle	2001;	Buckner	et	al.	2008;	Smallwood	et	al.	2021).	In	relation	to	
estimating	networks	using	resting-state	functional	connectivity,	after	the	seminal	description	of	the	method	
(Biswal	et	al.	1995),	the	Default	Network	was	the	first	distributed	association	network	to	be	characterized	in	
humans	 (Greicius	 et	 al.	 2003;	 2004)	 and	 in	 monkeys	 (Vincent	 et	 al.	 2007).	 All	 group-based	 network	
estimates,	even	low-dimensional	solutions	that	identify	as	few	as	seven	networks,	find	a	large,	distributed	
network	that	has	the	spatial	pattern	of	the	Default	Network	(e.g.,	Beckmann	et	al.	2005;	Damoiseaux	et	al.	
2006;	Yeo	et	al.	2011;	Power	et	al.	2011;	Doucet	et	al.	2011).	Thus,	 a	 critical	 issue	 to	address,	 given	 the	
historical	emphasis	on	the	Default	Network,	 is	how	the	present	network	estimates	relate	to	these	earlier	
descriptions.	
					Our	 current	 hypothesis	 is	 that	 the	 large	monolithic	 (or	 core-subnetwork)	 descriptions	 of	 the	 Default	
Network	based	on	group-averaged	data,	including	our	own	contributions	(e.g.,	Buckner	et	al.	2008;	Andrews-
Hanna	et	al.	2010),	are	inaccurate	and	reflect	an	artifact	of	spatial	blurring.		As	noted	above,	the	canonical	
group-averaged	Default	Network	overlaps	fully	or	partially	four	distinct	networks:	LANG,	DN-B,	DN-A,	and	
SAL	/	PMN.	The	separation	of	these	networks	is	anticipated	in	some	prior	group-based	analyses.	For	example,	
Andrews-Hanna	and	colleagues	(2014)	noted	that	regions	within	PPC	responding	to	social	inference	(theory-
of-mind)	tasks	tended	to	activate	an	anterior	region	relative	to	tasks	targeting	remembering.	This	distinction	
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likely	 captures	 the	 separation	 of	 DN-B	 and	 DN-A	 in	 PPC.	 Similarly,	 in	 a	 thorough	 analysis	 of	 functional	
connectivity	in	group	data,	the	network	identified	here	as	LANG	was	separated	from	the	canonical	Default	
Network	(Lee	et	al.	2012;	for	discussion	see	Braga	et	al.	2020).	However,	the	blurring	induced	by	between-
subject	averaging,	to	date,	has	negated	the	ability	to	resolve	the	spatial	details	that	fully	distinguish	the	four	
nearby	networks	that	are	described	here.	
					A	further	observation	emerges	from	our	task-based	results.	In	addition	to	the	challenge	of	identifying	the	
multiple,	 juxtaposed	 networks	 due	 to	 spatial	 blurring,	 there	 is	 a	 separate	 functional	 property	 that	 has	
anchored	study	of	the	Default	Network.	The	Default	Network	was	originally	described	based	on	task-induced	
deactivations,	referring	to	the	observation	that	the	distributed	association	regions	that	comprise	the	Default	
Network	are	more	active	in	passive	tasks	and	fixation	than	active,	externally-orientated	tasks	(Shulman	et	
al.	1997;	Gusnard	and	Raichle	2001;	Mazoyer	et	al.	2001;	see	Buckner	and	DiNicola	2019	for	review).		When	
a	contrast	is	made	between	active	and	passive	tasks,	a	distributed	pattern	of	“deactivations”	emerges	that	is	
robust	and	overlaps	with	group-based	estimates	of	the	Default	Network	(Buckner	et	al.	2008;	Buckner	2014;	
Smallwood	et	al.	2021).	What	 is	 surprising	and	 interesting	 is	 that,	even	with	 the	present	high-resolution	
within-individual	 estimates,	 the	 task-induced	 pattern	 of	 deactivation	 remains	 broad	 and	 spans	multiple	
networks.		
					Specifically,	 the	Oddball	 Effect	 task	 contrast	 reveals	 a	 broad	 task-induced	deactivation	 pattern	within	
individual	participants	(Fig.	33).	That	is,	the	regions	deactivated	by	attending	and	responding	to	external	
stimuli	span	multiple	association	networks	even	when	group	averaging	is	not	a	factor.	Fig.	32	quantifies	this	
effect:	 DN-A,	 DN-B,	 and	 LANG	 all	 show	 significant	 “deactivation,”	 with	 DN-A	 and	 DN-B	 being	 almost	
indistinguishable	 from	one	 another,	 despite	 clear	 functional	 double	 dissociation	 during	 domain-relevant	
active	 tasks	(e.g.,	Fig.	43;	see	also	DiNicola	et	al.	2020).	One	possibility	 is	 that,	while	DN-A	and	DN-B	are	
anatomically	 and	 functionally	 distinct	 networks,	 they	 may	 collectively	 be	 suppressed	 during	 certain	
externally	oriented	task	events,	perhaps	as	a	result	of	a	broad	antagonistic	process	between	externally	versus	
internally	oriented	processing	modes	(Buckner	and	DiNicola	2019;	see	also	Nyberg	et	al.	1996;	Fransson	
2005;	Fox	et	al.	2005;	Miller,	Weaver,	and	Ojemann	2009;	Anticevic	et	al.	2012).	Thus,	the	phenomenon	of	
task-induced	deactivation,	which	is	not	selective	to	specific	networks,	may	have	reinforced	that	there	is	a	
coherent	monolithic	function	across	large	swaths	of	association	cortex,	a	possibility	refuted	by	a	growing	
number	of	robust	functional	dissociations	(e.g.,	Peer	et	al.	2015;	Silson	et	al.	2019;	DiNicola	et	al.	2020;	Deen	
and	Friewald	2022;	DiNicola	et	al.	2023).	
					Another	 relevant	 observation	 surrounds	 the	 relation	 between	 the	 Default	 Network	 and	 the	 present	
estimate	of	network	SAL	/	PMN.	The	SAL	/	PMN	network	possesses	regions	distributed	across	the	cortex,	
including	multiple	distinct	regions	along	the	posterior	midline	side-by-side	with	DN-A	and	DN-B	network	
regions.	The	adjacencies	make	the	regions	easy	to	confuse.	Despite	their	spatial	proximity,	Zheng	et	al.	(2021;	
see	their	Fig.	6)	noted	that	“deactivations”	are	restricted	to	the	Default	Network	and	separate	 from	their	
estimate	 of	 SAL	 /	 PMN	 (labeled	 as	 the	Parietal	Memory	Network	 in	 their	 paper).	 The	 transient	 positive	
response	in	SAL	/	PMN	observed	here	to	salient	oddballs	is	robust	including	the	regions	along	the	posterior	
midline,	separate	from	the	juxtaposed	DN-A	and	DN-B	regions	showing	deactivation	(Fig.	33).	Moreover,	SAL	
/	PMN	has	small,	focal	regions	of	response	in	MPFC,	which	are	also	surrounded	by	DN-A	and	DN-B	network	
regions.	 In	 the	 group-averaged	 map	 displayed	 in	 the	 bottom	 of	 Fig.	 33,	 there	 is	 no	 detectable	 positive	
response	 in	MPFC.	 Each	 individual	 shows	 a	 response	 but	 in	 slightly	 different	 spatial	 positions	 from	one	
person	to	the	next.	The	positive	task	response	in	MPFC	is	likely	lost	in	the	process	of	spatial	averaging.		
					Our	results	thus	converge	with	Zheng	et	al.	(2021)	to	suggest	that	SAL	/	PMN	is	spatially	and	functionally	
distinct	from	the	network	historically	described	as	the	Default	Network.	The	SAL	/	PMN	network	does	not	
exhibit	task-induced	deactivation;	rather,	it	displays	an	opposite	functional	response	pattern	–	transiently	
activating	to	salient	external	task	events,	including	in	both	posterior	and	anterior	regions	along	the	midline.	
	

Hierarchical	Organization	of	the	Cerebral	Cortex		
					Paul	 Flechsig	 (1901;	 1904;	 1920)	 contributed	 the	 powerful	 but	 simple	 idea	 that	 the	 cerebral	 cortex	
develops	sequentially	radiating	outwards	from	motor	and	sensory	cortex	(see	Bailey	and	von	Bonin	1951;	
Meyer	1981;	Clarke	and	O’Malley	1996;	Mesulam	2015	for	translations	and	discussion;	see	Zilles	2018	for	
further	context).	The	basis	of	Flechsig’s	hierarchy	was	the	developmental	timing	of	myelination	of	the	fibers	
reaching	the	cortex.	By	his	account	“in	the	cerebral	convolutions,	as	in	all	other	parts	of	the	central	nervous	
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system,	 the	 nerve-fibers	 do	 not	 develop	 everywhere	 simultaneously,	 but	 step	 by	 step	 in	 a	 definitive	
succession”	(translated	in	Clarke	and	O’Malley	1996,	p.	548).	The	cortical	motor	and	sensory	(and	certain	
limbic)	zones	myelinate	first.	Next	are	the	intermediate	zones	that	surround	the	motor	and	sensory	zones.	
The	 terminal	 zones	 myelinate	 in	 the	 final	 stage,	 beginning	 approximately	 four	 months	 after	 birth,	 and	
encompass	prefrontal,	temporal,	and	parietal	regions	thought	of	today	as	higher-order	association	cortex.	
The	prescient	lens	of	hierarchical	cortical	organization	provides	a	framework	to	understand	our	findings.	
					Specifically,	the	candidate	assignments	of	first-,	second-,	and	third-order	networks	are	motivated	by	(and	
agree	well	with)	Flechsig’s	reference	maps	of	sequential	myelination	(Fig.	44).	In	particular,	the	distributed	
regions	late	to	myelinate	(the	terminal	zones)	are	positionally	similar	to	our	estimated	association	zones	
containing	 the	 five	 higher-order	 networks	 that	 make	 up	 the	 SAAMs.	 These	 same	 general	 zones	 were	
emphasized	more	than	a	century	ago	as	the	regions	distinguishing	human	and	ape	brains	from	the	those	of	
smaller	monkeys	 (Mesulam	 2015)	 and	 have	 been	 supported,	 based	 on	modern	 comparative	 anatomical	
approaches,	to	be	disproportionately	expanded	in	humans	relative	to	monkeys	(Hill	et	al.	2010;	Chaplin	et	
al.	 2013;	 Amlien	 et	 al.	 2016;	 DiNicola	 et	 al.	 2021).	 Taken	 together,	 the	 global	 spatial	 relations	 among	
networks	(Figs.	23	to	25)	and	the	repeating	fractionation	of	the	higher-order	associations	zones	into	five	
networks	 (Figs.	 34	 to	 35)	 are	 consistent	 with	 processes	 that	 organize	 the	 cortex	 through	 distinct	
developmental	stages.		

	

-------------------------------------------------------	
Insert	Figure	44	About	Here	

-------------------------------------------------------	
	

	

					In	a	hypothesized	 first	 stage,	 cortical	networks	might	progressively	organize	outwards	 from	 the	early	
sensory	and	motor	areas	that	themselves	are	patterned	through	structured	inputs.	For	example,	retinotopic	
organization	is	imparted	on	early	visual	cortex	via	spontaneous	retinal	activity	waves	that	are	present	before	
birth	and	carried	to	the	cortex	through	the	thalamic	nuclei	(Katz	and	Shatz	1996;	Ackman	et	al.	2012).	These	
early	organizing	events	may	anchor	 the	 formation	of	 the	 retinotopic	 clusters	 (Rosa	and	Tweedale	2005;	
Wandell	et	al.	2007)	captured	by	our	estimates	of	the	VIS-C	and	VIS-P	networks.	The	second-order	networks	
may	then	organize	tethered	to	these	first-order	networks,	but	with	progressively	more	distributed	regions,	
corresponding	to	Flechsig’s	intermediate	(or	border)	zones.	Averbeck	and	colleagues	have	also	proposed	a	
similar	nesting	of	networks	outwards	from	the	primary	motor	and	somatosensory	areas	(S1-M1)	based	on	
extensive	 analyses	 on	 anatomical	 connectivity	 patterns	 (Giarrocco	 and	 Averbeck	 2021;	 2023;	 see	 also	
Vijayakumar	et	al.	2019;	Du	and	Buckner	2021).	The	zones	that	generally	fall	between	the	regions	of	the	
second-order	 networks	 include	 large	 swaths	 of	 prefrontal,	 temporal,	 and	 posterior	 parietal	 association	
cortex	 that	 correspond	 to	 Flechsig’s	 terminal	 (or	 central)	 zones	 and	 are	 hypothesized	 to	 be	 the	 last	 to	
develop,	forming	our	hypothesized	third-order	networks	(Fig.	44).	Thus,	much	of	the	cortical	mantle	may	be	
patterned	by	a	series	of	networks	that	nest	outwards	from	the	primary	cortical	areas	(Margulies	et	al.	2016;	
Huntenburg,	Bazin,	and	Margulies	2018;	Smallwood	et	al.	2021).	
					In	 a	 second	 developmental	 stage,	 we	 hypothesize	 that,	 as	 the	 networks	 sequentially	 form,	 they	 may	
undergo	a	second	process	of	fractionation	and	specialization	(DiNicola	and	Buckner	2021).	Our	proposal	of	
a	distinct	second	process	is	specifically	put	forth	to	explain	how	juxtapositions	might	arise	similarly	across	
widely	distributed	(non-contiguous)	zones	of	cortex,	such	as	observed	for	the	distinct	SAAMs	in	LTC	and	PPC	
(Fig.	 35).	 A	 specific	 prediction	 of	 this	 hypothesis	 is	 that,	 as	 development	 progresses,	 activity-dependent	
processes	may	eliminate	and	/	or	 stabilize	 synapses	 that	 support	 specialization	evident	 in	 the	adult	 (for	
discussion	see	Schwartz	and	Goldman-Rakic	1990;	Bourgeois	et	al.	1994;	Price	et	al.	2006;	Cadwell	et	al.	
2019).	In	the	cortical	mantle	of	humans,	the	expanded	associations	zones	may	fractionate	and	specialize	into	
the	multiple	juxtaposed	networks	that	support	higher-order	cognition.	
	

Functional	Specialization	of	Higher-Order	Association	Networks	
					By	combining	network	estimation	and	task-based	fMRI	within	the	same	individuals,	the	present	results	
provide	insight	into	the	functional	specialization	of	the	networks.	A	broad	observation	was	that	the	second-
order	 distributed	 networks	 SAL	 /	 PMN	 and	 CG-OP	 were	 dissociated	 from	 the	 third-order	 association	
networks	via	their	robust,	transient	response	to	oddballs	(Fig.	32)	consistent	with	prior	studies	(Seeley	et	al.	
2007;	 see	also	Dosenbach	et	 al.	2006;	Seeley	2019).	None	of	 the	 third-order	networks	 that	populate	 the	
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SAAMs	displayed	a	robust	transient	positive	response.	In	fact,	four	of	the	five	networks	within	the	SAAMs	
(FPN-B,	LANG,	DN-B,	and	DN-A)	showed	a	significant	negative	response	(network	FPN-A	was	equivocal).	By	
contrast,	 all	 of	 the	 third-order	 association	 networks	 responded	 robustly	 to	 ongoing	 task	 demands	with	
distinct	forms	of	functional	specialization	as	described	below.	
					A	first	robust	dissociation	among	the	third-order	networks	came	in	their	differential	response	to	working	
memory	demands.	FPN-A	and	FPN-B	responded	to	high	memory	load	in	the	N-Back	Load	Effect	task	contrast	
and	did	so	similarly	across	verbal	and	non-verbal	materials	(Fig.	39).	FPN-B’s	response	was	quantitatively	
lower	 but	 both	 FPN-A	 and	 FPN-B	 responded	 robustly	 across	 all	 conditions8 .	 Further,	 FPN-A	 and	 FPN-B	
display	the	same	general	spatial	pattern	as	the	previously	described	multiple-demand	network	(Duncan	and	
Owen	2000;	Duncan	2010;	Fedorenko,	Duncan,	and	Kanwisher	2013;	Assem	et	al.	2022;	see	also	Badre	and	
Nee	2018;	Friedman	and	Robbins	2022).	Our	data	are	thus	convergent	with	the	existing	literature	to	suggest	
there	 is	 a	 distributed	 frontal-parietal	 network	 (or	 networks)	 that	 responds	 when	 tasks	 become	 more	
effortful,	perhaps	related	to	processing	functions	associated	with	cognitive	control	(e.g.,	Miller	and	Cohen	
2001;	Badre	 and	Nee	2018).	The	within-individual	 precision	mapping	 allowed	 spatially	precise	network	
estimates	 to	 be	 made	 of	 FPN-A	 and	 FPN-B	 that	 predicted	 the	 idiosyncratic	 response	 patterns	 across	
participants.		
					A	few	further	details	are	of	interest.	First,	across	most	individuals,	FPN-A	included	a	small	region	in	the	
anterior	insula	(labeled	in	Fig.	37).	This	small	region	showed	a	N-Back	Load	Effect	response	surrounded	by	
spatially	distinct	components	of	the	CG-OP	and	SAL	/	PMN	networks.	It	would	be	easy	to	blur	over	or	miss	
this	 buried	 insular	 region	 in	 group	 analysis.	 Our	 current	 estimates	 suggest	 that	 the	 anterior	 insula	 is	 a	
particularly	 challenging	 region	 of	 the	 cortex	 to	 study	 because	 multiple,	 distinct	 networks	 are	 spatially	
juxtaposed	near	to	where	the	cortex	folds	onto	itself	in	the	volume.	Examinations	of	group	data,	especially	
data	 that	 averages	 across	 participants	 within	 the	 volume,	 may	 be	 particularly	 vulnerable	 to	 distorting	
functional	properties	of	the	region.		
					Second,	the	spatially	circumscribed	regions	of	each	SAAM	that	aligned	to	FPN-A	and	FPN-B,	with	some	
exceptions	in	low	SNR	regions,	tended	to	show	a	robust	N-Back	Load	Effect	(Figs.	37	and	38).	The	adjacent	
regions	of	LANG,	DN-B,	and	DN-A	did	not.	Thus,	the	N-Back	Load	Effect	functionally	dissociated	the	FPN-A	/	
FPN-B	cluster	from	the	LANG,	DN-B,	DN-A	cluster	multiple	times	across	the	distributed	association	zones	
including	PPC,	LTC,	VLPFC	and	DLPFC.		
					Fedorenko	 and	 colleagues	 (2010;	 2012)	 have	 previously	 noted	 that	 regions	 of	 the	 multiple-demand	
network	 lay	 side-by-side	with	 functionally	distinct	domain-selective	 regions	 (specifically	 in	 the	 language	
domain).	 Our	 present	 results	 are	 consistent	 with	 their	 observations	 and	 reinforce	 that	 the	 functional	
dissociation	is	a	general	property	of	the	association	cortex	including	close	spatial	juxtapositions	in	temporal	
and	parietal	cortex,	not	only	within	PFC.	We	interpret	the	repeating	pattern	across	the	cortical	mantle	to	
reflect	that	functional	specialization	is	a	property	of	the	networks,	including	all	their	distributed	regions	(see	
also	Blank,	Kanwisher,	and	Fedorenko	2013).	Furthermore,	robust	functional	dissociations	were	present	for	
higher-order	cognitive	domains	beyond	language	(see	also	DiNicola	et	al.	submitted).	That	is,	while	networks	
LANG,	DN-B,	and	DN-A	did	not	modulate	in	a	domain-flexible	manner	to	working	memory	demands,	each	
network	responded	robustly	and	selectively	to	a	distinct	specialized	domain	of	higher-order	cognition.		
					The	most	striking	functional	observation	of	the	present	study	was	the	robust	triple	dissociation	across	
networks	LANG,	DN-B,	and	DN-A.	The	LANG	network	responded	when	participant	processed	meaningful	
sentences;	the	DN-B	network	when	participants	engaged	theory-of-mind	tasks;	and	the	DN-A	network	when	
participants	 remembered	 from	 their	past	 or	 contemplated	 a	 future	 scenario.	The	 triple	dissociation	was	
carried	by	a	formal	statistical	interaction	(Fig.	43)	and	could	be	visualized	qualitatively	on	the	flat	maps	of	
individual	participants	(Figs.	41	and	42;	see	also	DiNicola	et	al.	2020;	Braga	et	al.	2020).	Considering	that	
until	 recently,	we	and	others	conceptualized	 these	zones	of	association	cortex	as	being	deployed	 flexibly	

 
8 We do not yet interpret the differential response between FPN-A and FPN-B as there was no condition where 
FPN-B responded more than FPN-A. Main effects in BOLD response magnitude between regions can come from 
any number of technical reasons including the regional vasculature sampled and the inclusion of voxels with 
susceptibility artifact. We thus conservatively interpret differential responses when there is direct evidence for a 
double dissociation within or across task contrasts (following the logic of Shallice 1988). 
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across	a	range	of	higher-order	cognitive	domains	(e.g.,	Buckner	and	Carroll	2007;	Buckner	et	al.	2008;	Spreng	
et	al.	2009),	this	is	a	major	revision	to	our	understanding.		
					Our	composite	results	suggest	higher-order	association	cortex	possesses	at	least	three	domain-specialized	
parallel	 networks	 supporting	 language,	 social	 behaviors	 and	 remembering	 the	 past	 and	 future.	 These	
domain-specialized	networks	 are	 themselves	 separate	 from	domain-flexible	networks	 that	participate	 in	
cognitive	control.	We	do	not	know	how	these	networks	interact	or	whether	they	remain	functionally	separate	
across	multiple	 task	 classes,	 but	 the	 robust	 dissociations	 among	 juxtaposed	 regions	 demonstrated	 here	
suggest	 that	 there	 is	 more	 modularity	 in	 association	 cortex,	 including	 PFC,	 than	 has	 typically	 been	
considered.		
	

Limitations	and	Future	Directions	
					A	key	limitation	of	the	present	work	is	the	reliance	on	correlational,	indirect	methods	to	infer	network	
organization.	The	caveats	surrounding	interpreting	such	network	estimates,	and	the	empirical	tests	of	their	
utility	 despite	 known	 limitations,	 are	 discussed	 elsewhere	 (Fox	 and	 Raichle	 2007;	 Van	Dijk	 et	 al.	 2010;	
Buckner	et	al.	2013;	Murphy	et	al.	2013;	Smith	et	al.	2013;	Power	et	al.	2014;	Xue	et	al.	2021).	Specific	to	the	
present	work,	 it	 is	 notable	 that	 the	 boundaries	 in	 networks	 generally	 predicted	 task	 response	 patterns,	
bolstering	confidence	that	valid	organizational	features	are	being	described.	However,	there	were	exceptions	
and	regions	of	mismatch,	consistent	with	poor	signal	quality	around	the	sinuses	and	inner	ear	(see	Figs	1	
and	4).	Network	estimates	in	these	poorly	sampled	regions	of	cortex	may	be	distorted.	
					There	are	also	limitations	to	our	modeling	approach.	In	choosing	the	present	parameters	of	the	MS-HBM	
used	 to	 estimate	 networks,	 decisions	were	made	 that	 influence	 the	 estimates.	 Specifically,	we	 choose	 to	
model	15	networks	and	initiated	the	model	with	a	prior	that	arose	from	a	group-averaged	data	set.	As	the	
seed-region	analyses	verified,	the	model	captured	within-individual	correlational	properties	well,	but	not	
perfectly.	Thus,	a	limitation	in	our	current	model	is	knowing	whether	one	could	do	better	and	whether	our	
specific	 decisions	 imparted	 bias.	We	 assume	 the	 answer	 is	 yes	 to	 both	 questions.	 As	 our	 own	work	 has	
evolved	from	a	relatively	crude	7-network	estimate	in	average	participant	groups	(Yeo	et	al.	2011)	to	a	10-
network	 estimate	within	 individuals	 (Xue	 et	 al.	 2021),	we	 expect	 the	 current	 network	 estimates	will	 be	
refined	 further	 and	 eventually	 replaced.	As	 a	 specific	 example,	 it	 is	 unclear	 that	 the	present	model	 fully	
captures	the	details	of	the	recently	described	inter-effector	connectivity	pattern	(Gordon	et	al.	2023)5.	The	
structured	correlations	they	observed,	and	we	also	find,	are	partially	incorporated	(perhaps	erroneously)	in	
our	estimate	of	the	CG-OP	network	(Figs.	20	and	21)	but	not	entirely	(e.g.,	see	diamond	in	Fig.	27).	With	the	
expectation	 of	 further	 improvements	 in	 mind,	 we	 are	 struck	 by	 how	 the	 present	 network	 parcellation	
captures	 multiple	 functional	 dissociations	 prospectively	 in	 task	 data,	 including	 idiosyncratic	 and	 small	
regions	of	response.		
					Another	limitation	is	that,	while	the	task	contrasts	allowed	for	robust	functional	dissociations,	the	tasks	
were	designed	and	implemented	to	differentiate	networks,	which	is	a	different	goal	than	interrogating	in	
detail	 a	 hypothesized	 cognitive	 operation.	 That	 is,	 the	 limited	 task	 data	 we	 collected	 falls	 far	 short	 of	
systematically	manipulating	 variables	 to	 clarify	 the	 component	 computations	 performed	 by	 each	 of	 the	
networks.	In	this	sense,	the	robust	empirical	dissociations	found	here	are	positive	evidence	that	networks	
perform	distinct	functions,	but	further	work	is	needed	to	understand	the	nature	of	the	processes.	
					Another	 future	 direction	 pertains	 to	 the	 need	 to	 better	 understand	 the	 relation	 of	 traditional	 area	
estimates	with	the	present	network	estimates.	By	“area”	we	mean	the	demarcation	of	regions	of	cortex	as	
separate,	defined	zones	using	functional,	architectonic,	connectivity,	and	topographic	constraints	(Kaas	1987;	
Felleman	and	Van	Essen	1991).	We	previously	noted	discrepancies	between	functional	connectivity	patterns	
and	areal	boundaries	(e.g.,	Yeo	et	al.	2011;	Buckner	and	Yeo	2014;	Buckner	and	DiNicola	2019)	as	have	others	
(e.g.,	Van	Essen	and	Glasser	2014).	There	are	two	topics	to	be	considered.		
					First,	for	regions	of	cortex	that	have	well	recognized	areas,	our	network	borders	do	not	align	with	the	areal	
borders	(e.g.,	Fig.	26E).	For	example,	networks	VIS-C	and	VIS-P	group	together	V1,	V2,	and	V3	and	split	them	
roughly	 along	 the	 5°	 eccentricity	 line.	 The	 estimated	 networks	 likely	 reflect	 the	 dominant	 anatomical	
connectivity	gradient	that,	within	early	visual	areas,	progresses	along	eccentricity	(Maunsell	and	Van	Essen	
1983;	 Ungerleider	 et	 al.	 2014;	 see	 also	 Falchier	 et	 al.	 2002).	 The	 V1/V2/V3	 areal	 boundaries	 are	
distinguished	by	a	local	reversal	in	polar	angle	along	the	horizontal	meridian.	Thus,	connectivity	transitions	
between	early	visual	areas	are	relatively	subtle	(for	 further	discussion	of	 this	 issue	see	Buckner	and	Yeo	
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2014).	 The	 somatomotor	 networks	 similarly	 group	 M1	 /	 S1	 and	 multiple	 body	 maps	 that	 span	
architectonically	distinct	areas	(Hatanaka	et	al.	2001).	One	future	direction	is	to	understand	the	relation	of	
the	networks	estimated	here	and	the	finer-scale	anatomical	differences	that	demarcate	adjacent	areas.		
					The	second	related	topic	is	the	relation	between	the	present	network	estimates	and	architectonic	features	
in	 higher-order	 association	 cortex.	 This	 is	 a	 trickier	 topic.	 Varied	 perspectives	 have	 been	 put	 forth	 on	
whether	association	cortex	possesses	sharp	areal	boundaries	that	parallel	those	found	in	sensory	systems	
(for	discussion	see	Bailey	and	von	Bonin	1951;	Rosa	2002;	Rosa	et	al.	2005;	Buckner	and	DiNicola	2019).	
There	is	also	an	open	question	of	whether,	in	practice,	there	are	known	stable	features	that	can	define	areal	
borders	in	association	cortex,	especially	when	architectonics	are	considered	in	isolation	(e.g.,	Lashley	and	
Cark	1946;	Bailey	and	von	Bonin	1951).	We	will	not	resolve	the	debate	here,	but	some	of	our	observations	
are	relevant	to	the	discussion.		
					Most	critically,	the	extent	and	complexity	of	the	network	juxtapositions	encompassed	within	the	SAAMs	
are	of	such	a	spatial	scale	that	they	seem	unlikely	to	align	to	traditional	architectonic	borders,	at	least	those	
reflected	 in	any	of	 the	commonly	used	atlases.	 In	 the	spirit	of	supra-areal	clusters	reported	 in	 the	visual	
system	(Buckner	and	Yeo	2014;	Arcaro	et	al.	2015;	see	also	Rosa	and	Tweedale	2005;	Wandell	et	al.	2007),	
we	refer	to	the	repeated	groupings	of	multiple	association	networks	as	Supra-Areal	Association	Megaclusters	
specifically	to	reinforce	the	possibility	that	they	might	span	and	split	traditional	architectonic	patterns.	One	
possibility	is	that	future	advances	will	find	architectonic	features	that	align	to	the	transitions	between	SAAMs	
as	well	as	between	the	multiple	network	regions	within	the	SAMMs	(perhaps	via	spatial	transcriptomics;	
Nano	et	al.	2021).	Alternatively,	there	may	be	broad	patterning	forces	during	development,	such	as	captured	
in	Flechsig’s	maps	of	sequential	myelination,	that	reflect	processes	that	guide	where	SAAMs	develop,	but	that	
do	not	specify	 the	details	of	 the	borders	and	regional	specializations	within	 the	SAAMs.	The	 local	spatial	
arrangements	might	be	carried	by	extrinsic	anatomical	connectivity	differences	that	refine	relatively	late	in	
development	 through	 activity-dependent	 processes,	 without	 rigid	 alignment	 to	 architectonic	 features	
(Buckner	and	DiNicola	2019;	DiNicola	and	Buckner	2021).		
					Data	to	 inform	these	and	other	possibilities	will	emerge	as	the	field	charts	development	of	association	
networks	 in	 non-human	 primates	 with	 direct	 anatomical	 techniques	 and	 in	 human	 infants	 using	 non-
invasive	approaches.	
	

Conclusions	
					The	present	study	examined	the	organization	of	cerebral	networks	within	intensively	sampled	individual	
participants.	We	provide	 the	 resulting	network	estimates	and	 the	 raw	data	used	 to	derive	 them	as	open	
resources	 for	 the	 community.	Our	 initial	 explorations	 on	 the	data	uncovered	 a	hierarchical	 organization	
which	distinguishes	 three	 levels	 of	 cortical	 hierarchy:	 first-,	 second-,	 and	 third-order	networks.	Notably,	
regions	of	distinct	third-order	association	networks	consistently	displayed	side-by-side	juxtapositions	that	
repeated	across	multiple	cortical	zones,	with	clear	and	robust	functional	specialization	among	the	embedded	
regions.	
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Table	1.	Functional	data	analyzed	for	each	participant.	

	
Participant	

	
Fixation	

	
Motor	

	
Visual	

	
Oddball	

	
N-Back	

Theory-of-
Mind	

Sentence		
Processing	

Episodic	
Projection	

S1	 62(63)	 -	 -	 -	 -	 -	 -	 -	
S2	 61(63)	 -	 -	 -	 -	 -	 -	 -	
P1	 17(17)	 0(0)	 5(5)	 5(5)	 8(8)	 8(8)	 6(6)	 10(10)	
P2	 16(17)	 11(12)	 5(5)	 5(5)	 8(8)	 8(8)	 6(6)	 10(10)	

P3	 19(22)	 10(12)	 5(5)	 4(5)	 8(8)	 7(8)	 6(6)	 8(10)	

P4	 20(22)	 10(12)	 5(5)	 5(5)	 8(8)	 8(8)	 5(6)	 9(10)	
P5	 22(22)	 8(12)	 0(5)	 4(5)	 6(7)	 8(8)	 3(6)	 7(10)	
P6	 21(22)	 12(12)	 5(5)	 5(5)	 8(8)	 8(8)	 6(6)	 10(10)	

P7	 22(22)	 12(12)	 5(5)	 5(5)	 8(8)	 8(8)	 6(6)	 10(10)	

P8	 21(22) 12(12)	 5(5)	 5(5)	 8(8)	 8(8)	 6(6)	 10(10)	
P9	 20(22)	 12(12)	 5(5)	 5(5)	 8(8)	 8(8)	 6(6)	 8(10)	
P10	 23(23)	 24(24)	 0(5)	 2(5)	 7(8)	 8(8)	 12(12)	 10(10)	

P11	 15(20)	 3(12)	 3(5)	 3(5)	 8(8)	 8(8)	 6(6)	 7(10)	

P12	 24(24)	 24(24)	 5(5)	 4(5)	 8(8)	 8(8)	 11(12)	 10(10)	
P13	 22(22)	 12(12)	 5(5)	 5(5)	 8(8)	 8(8)	 6(6)	 10(10)	
P14	 19(19) 9(11)	 5(5)	 5(5)	 8(8)	 8(8)	 6(6)	 10(10)	
P15	 20(22)	 12(12)	 5(5)	 3(5)	 8(8)	 8(8)	 6(6)	 10(10)	

	
Notes:	Numbers	show	fMRI	runs	available	for	analysis	after	exclusions;	numbers	in	brackets	are	the	total	
scanned	runs.	Bold	indicates	data	were	included	in	final	analyses;	italics	indicates	that	the	task	was	excluded	
for	that	participant.	The	Theory-of-Mind	numbers	combine	the	Pain	and	False	Belief	task	runs.	P10	and	P12	
had	24	Motor	runs	and	up	to	12	Sentence	Processing	runs	due	to	their	participation	in	Saadon-Grosman	et	
al.	(2022).	
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Figure	Legends	
	

Figure	1.	Temporal	signal-to-noise	ratio	(SNR)	map	for	S1.	The	mean	estimate	of	temporal	SNR	for	the	
fMRI	data	is	illustrated	for	multiple	views	of	the	left	hemisphere	on	the	inflated	cortical	surface	(from	62	
runs	collected	over	31	days).	Note	the	low	SNR	within	the	orbitofrontal	cortex	and	the	temporal	pole.	This	
pattern	 is	 typical	of	 the	data	across	all	participants	 in	 the	present	work	and	should	be	considered	when	
evaluating	network	organization.	A,	anterior;	P,	posterior;	D,	dorsal;	V,	ventral.	SNR	maps	for	all	participants	
are	provided	in	the	Supplementary	Materials.		
	

Figure	2.	15-network	cerebral	cortical	parcellation	estimated	for	S1.	Network	estimates	from	the	multi-
session	hierarchical	Bayesian	model	(MS-HBM)	are	displayed	across	four	views.	The	left	hemisphere	is	on	
top	and	right	hemisphere	below.	Each	color	represents	a	distinct	network	estimated	by	the	model.	Some	
networks	possess	primarily	 local	organization	 (e.g.,	 Somatomotor,	Visual),	while	other	networks	possess	
widely	distributed	organization	(e.g.,	those	involving	prefrontal,	temporal,	and	parietal	association	zones).	
The	 network	 labels	 are	 used	 similarly	 throughout	 the	 figures.	 SMOT-A,	 Somatomotor-A;	 SMOT-B,	
Somatomotor-B;	 PM-PPr,	 Premotor-Posterior	 Parietal	 Rostral;	 CG-OP,	 Cingular-Opercular;	 SAL	 /	 PMN,	
Salience	 /	 Parietal	 Memory	 Network;	 dATN-A,	 Dorsal	 Attention-A;	 dATN-B,	 Dorsal	 Attention-B;	 FPN-A,	
Frontoparietal	 Network-A;	 FPN-B,	 Frontoparietal	 Network-B;	 DN-A,	 Default	 Network-A;	 DN-B,	 Default	
Network-B;	LANG,	Language;	VIS-C,	Visual	Central;	VIS-P,	Visual	Peripheral;	AUD,	Auditory.	
	

Figure	3.	Model-free	confirmation	of	networks	using	seed-region	correlation	for	S1.	The	correlation	
patterns	from	individual	seed	regions	placed	within	networks	are	displayed.	In	each	row,	a	distinct	network	
is	targeted,	labeled	to	the	left.	The	two	left	columns	display	correlation	maps	using	an	anterior	seed	region	
of	each	network,	while	the	two	right	columns	display	correlation	maps	using	a	posterior	seed	region.	Lateral	
and	medial	views	are	displayed.	White-filled	circles	display	the	seed	region	locations.	Black	outlines	show	
the	 boundaries	 of	 individual-specific	 networks	 estimated	 from	 the	 MS-HBM	 as	 shown	 in	 Fig.	 2.	 The	
correlation	 maps	 are	 plotted	 as	 z(r)	 with	 the	 color	 scale	 at	 the	 bottom.	 The	 correlation	 maps	 are	 not	
constrained	to	fall	within	the	estimated	network	boundaries.	Nonetheless,	the	network	boundaries	capture	
a	great	deal	of	the	spatial	correlational	properties	of	the	underlying	data.		
	

Figure	 4.	 Temporal	 signal-to-noise	 ratio	 (SNR)	map	 for	 S2.	 Paralleling	 Fig.	 1,	 the	mean	 estimate	 of	
temporal	SNR	for	the	fMRI	data	is	illustrated	for	multiple	views	of	the	left	hemisphere	on	the	inflated	cortical	
surface	(from	61	runs	collected	over	31	days).	A,	anterior;	P,	posterior;	D,	dorsal;	V,	ventral.	
	

Figure	 5.	 15-network	 cerebral	 cortical	 parcellation	 estimated	 for	 S2.	 Paralleling	 Fig.	 2,	 network	
estimates	 from	 the	 MS-HBM	 are	 displayed	 across	 four	 views.	 The	 left	 hemisphere	 is	 on	 top	 and	 right	
hemisphere	below.	Each	color	represents	a	distinct	network	estimated	by	the	model.	The	names	of	cortical	
networks	are	shown	at	the	bottom.		
	

Figure	6.	Model-free	confirmation	of	networks	using	seed-region	correlation	for	S2.	Paralleling	Fig.	3,	
the	correlation	patterns	from	individual	seed	regions	placed	within	networks	are	displayed	for	S2.	The	two	
left	columns	display	correlation	maps	using	an	anterior	seed	region	for	each	network,	while	the	two	right	
columns	display	correlation	maps	using	a	posterior	seed	region.	Lateral	and	medial	views	are	displayed	for	
each	seed	region.	White-filled	circles	display	the	seed	region	locations.	Black	outlines	indicate	the	boundaries	
of	corresponding	individual-specific	parcellation-defined	networks	estimated	from	the	MS-HBM	as	shown	in	
Fig.	5.	The	correlation	maps	are	plotted	as	z(r)	with	the	color	scale	at	the	bottom.		
	

Figure	7.	Direct	comparison	of	10-network	and	15-network	cerebral	cortical	parcellations	for	S1.	The	
left	displays	the	10-network	estimate	and	the	right	the	15-network	estimate.	Many	of	the	major	networks	
are	similar	between	the	two	parcellations,	including	LANG,	DN-A,	DN-B,	FPN-A,	FPN-B,	SMOT-A,	SMOT-B.	VIS	
in	 the	10-network	estimate	 is	differentiated	 into	dATN-B,	VIS-C	and	VIS-P	 in	 the	15-network	estimate.	A	
monolithic	large	network	in	the	10-network	estimate	is	differentiated	into	SAL	/	PMN	and	CG-OP	in	the	15-
network	estimate.	dATN	in	the	10-network	estimate	is	differentiated	into	dATN-A	and	PM-PPr	in	the	15-
network	estimate,	and	a	distinct	AUD	network	emerges	near	to	LANG	and	SMOT-B.	The	network	labels	are	
shown	at	the	bottom.		
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Figure	8.	Model-free	estimates	illustrate	the	utility	of	the	15-network	cerebral	parcellation	for	visual	
networks	for	S1.	Seed	region	correlation	maps	illustrate	features	captured	by	the	15-network	estimate	as	
contrast	to	the	10-network	estimate.	VIS	in	the	10-network	estimate	(A)	is	differentiated	into	dATN-B,	VIS-
C	 and	VIS-P	 in	 the	 15-network	 estimate	 (E).	White-filled	 circles	 display	 the	 seed	 region	 locations.	 Black	
outlines	indicate	the	boundaries	of	the	networks	above.	The	network	labels	are	shown	below.	Correlation	
maps	 for	 three	distinct	seed	regions	 in	and	around	the	vicinity	of	visual	cortex	are	 illustrated	within	 the	
boundaries	 of	 the	 10-network	 estimate	 (B,	 C,	D)	 and	 the	 15-network	 estimate	 (F,	G,	H).	 Note	 that	 the	
correlation	patterns	are	well	captured	by	the	15-network	estimate.	Black	and	gray	outlines	 illustrate	 the	
networks	from	each	parcellation	estimate.	The	correlation	maps	are	plotted	as	z(r)	with	the	color	scale	at	
the	bottom.	
	

Figure	 9.	Model-free	 estimates	 illustrate	 the	 utility	 of	 the	 15-network	 cerebral	 parcellation	 for	
networks	 surrounding	 somatomotor	 cortex	 for	 S1.	 Paralleling	 Fig.	 8,	 seed	 region	 correlation	 maps	
illustrate	features	captured	by	the	15-network	estimate	as	contrast	to	the	10-network	estimate.	dATN	in	the	
10-network	estimate	(A)	is	differentiated	into	dATN-A	and	PM-PPr	in	the	15-network	estimate	(E).	White-
filled	circles	display	the	seed	region	locations.	Black	outlines	indicate	the	boundaries	of	the	networks	above.	
The	 network	 labels	 are	 shown	 below.	 Correlation	 maps	 for	 three	 distinct	 seed	 regions	 surrounding	
somatomotor	cortex	are	illustrated	within	the	boundaries	of	the	10-network	estimate	(B,	C,	D)	and	the	15-
network	estimate	(F,	G,	H).	Black	and	gray	outlines	illustrate	the	networks	from	each	parcellation	estimate.	
The	correlation	maps	are	plotted	as	z(r)	with	the	color	scale	at	the	bottom.	
	

Figure	10.	Direct	comparison	of	10-network	and	15-network	cerebral	cortical	parcellations	for	S2.	
Paralleling	 Fig.	 7,	 the	 left	 displays	 the	 10-network	 estimate	 and	 the	 right	 the	 15-network	 estimate.	 The	
network	labels	are	shown	at	the	bottom.	
	

Figure	 11.	Model-free	 estimates	 illustrate	 the	 utility	 of	 the	 15-network	 cerebral	 parcellation	 for	
auditory	and	language	networks	for	S2.	Seed	region	correlation	maps	illustrate	features	captured	by	the	
15-network	 estimate	 as	 contrast	 to	 the	 10-network	 estimate.	 LANG	 in	 the	 10-network	 estimate	 (A)	 is	
differentiated	into	AUD	and	LANG	in	the	15-network	estimate	(E).	White-filled	circles	display	the	seed	region	
locations.	Black	outlines	indicate	the	boundaries	of	the	networks	above.	The	network	labels	are	shown	below.	
Correlation	maps	for	three	distinct	seed	regions	in	and	around	the	vicinity	of	auditory	cortex	are	illustrated	
within	the	boundaries	of	the	10-network	estimate	(B,	C,	D)	and	the	15-network	estimate	(F,	G,	H).	Black	and	
gray	outlines	illustrate	the	networks	from	each	parcellation	estimate.	The	correlation	maps	are	plotted	as	
z(r)	with	the	color	scale	at	the	bottom.	
	

Figure	 12.	Model-free	 estimates	 illustrate	 the	 utility	 of	 the	 15-network	 cerebral	 parcellation	 for	
networks	at	and	around	cingulate	cortex	for	S2.	Paralleling	Fig.	11,	seed	region	maps	illustrate	features	
captured	by	the	present	15-network	estimate	as	contrast	to	the	10-network	estimate.	SAL	in	the	10-network	
estimate	(A)	is	differentiated	into	the	SAL	/	PMN	and	the	CG-OP	networks	in	the	15-network	estimate	(E).	
White-filled	circles	display	the	seed	region	locations.	Black	outlines	indicate	the	boundaries	of	the	networks	
above.	The	network	labels	are	shown	below.	Correlation	maps	for	three	seed	regions	around	the	cingulate	
are	illustrated	within	the	boundaries	of	the	10-network	estimate	(B,	C,	D)	and	the	15-network	estimate	(F,	
G,	H).	Black	and	gray	outlines	illustrate	the	networks	from	each	parcellation	estimate.	The	correlation	maps	
are	plotted	as	z(r)	with	the	color	scale	at	the	bottom.	
	

Figure	 13.	 Cerebral	 cortical	 network	 estimates	 are	 reliable	 across	 independent	 datasets	 within	
individuals.	Independently	analyzed	subsets	of	data	from	S1	(Top)	and	S2	(Bottom)	illustrate	the	reliability	
of	 the	 network	 estimates.	 The	 resting-state	 fixation	 data	 of	 S1	 and	 S2	were	 split	 into	 three	 datasets	 to	
estimate	networks	using	the	MS-HBM	applied	independently	to	each	dataset.	The	individual-specific	cortical	
parcellations	 are	 replicable	within	 participants,	 critically	 for	models	 based	 on	~20	 runs	 of	 resting-state	
fixation	data	as	will	be	employed	 for	 the	15	new	participants	analyzed	throughout	 the	remainder	of	 this	
paper.	The	network	labels	are	shown	at	the	bottom.		
	

Figures	 14-16.	 Network	 estimates	 for	 novel	 participants.	 Networks	 estimated	 for	 representative	
participants	from	the	novel	discovery	(P1),	replication	(P6)	and	triplication	(P11)	datasets	are	displayed.	
The	network	estimates	are	from	the	15-network	MS-HBM.	Four	views	for	each	hemisphere	show	details	of	
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cortical	network	organization,	with	lateral	and	medial	views	as	well	as	rotated	frontal	and	posterior	views.	
The	left	hemisphere	is	on	top	and	right	hemisphere	below.	Each	color	represents	a	distinct	network	with	the	
network	 labels	 shown	 at	 the	 bottom.	 Similar	 maps	 for	 all	 available	 participants	 are	 provided	 in	 the	
Supplementary	Materials.		
	

Figures	 17-19.	 Model-free	 confirmation	 of	 networks	 using	 seed-region	 based	 correlation	 for	 the	
implementation	stage	participants.	The	correlation	patterns	from	individual	seed	regions	placed	within	
networks	are	displayed	for	representative	participants	from	the	novel	discovery	(P1),	replication	(P6)	and	
triplication	(P11)	datasets.	The	two	left	columns	display	correlation	maps	using	an	anterior	seed	region	for	
each	network,	while	the	two	right	columns	display	correlation	maps	using	a	posterior	seed	region.	Lateral	
and	medial	views	are	displayed	for	each	seed	region.	Black	outlines	indicate	the	boundaries	of	corresponding	
individual-specific	parcellation-defined	networks	estimated	from	the	MS-HBM	as	shown	in	Figs.	14-16.	The	
correlation	maps	are	plotted	as	z(r)	with	the	color	scale	at	the	bottom.	Strong	agreement	is	evident	between	
the	seed-region	based	correlation	maps	and	the	estimated	network	boundaries.	Similar	maps	for	all	available	
participants	are	provided	in	the	Supplementary	Materials.	
	

Figure	 20.	 Overlap	 of	 network	 estimates	 derived	 from	 the	MS-HBM	model.	 Each	 row	 displays	 the	
overlap	map	from	one	target	network	for	the	full	set	of	15	novel	participants	using	the	estimates	from	the	
15-network	MS-HBM.	The	network	targets	are	labeled	to	the	left.	DN-A,	DN-B,	LANG,	FPN-A,	FPN-B,	CG-OP,	
and	SAL	/	PMN	networks	are	examined	separately.	The	purpose	of	these	maps	is	to	illustrate	the	overlap	of	
network	organization	across	participants	as	well	as	illustrate	how	the	separate	networks	are	distinct	from	
one	another.		
	

Figure	21.	Overlap	of	network	estimates	derived	from	model-free	seed-region	correlation	maps.	Each	
row	displays	the	overlap	map	from	one	target	network	for	the	full	set	of	15	novel	participants	using	only	
seed-region	based	 correlation	estimates	of	 the	networks.	 In	 the	 left	 two	 columns,	 each	 row	displays	 the	
overlap	map	of	correlation	patterns	based	on	an	anterior	seed	region.	In	the	right	two	columns,	each	row	
displays	the	overlap	map	based	on	a	posterior	seed	region.	The	network	targets	are	labeled	to	the	left.	DN-A,	
DN-B,	LANG,	FPN-A,	FPN-B,	CG-OP,	and	SAL	/	PMN	networks	are	examined	separately.	The	purpose	of	these	
maps	is	to	illustrate	the	overlap	of	network	organization	without	strong	model	assumptions	(priors)	that	
might	bias	the	degree	of	overlap.		
	

Figure	 22.	 Visualization	 on	 the	 flattened	 cortical	 surface.	 A	 fully	 flattened	 cortical	 surface	 was	
constructed	to	better	reveal	topographic	relations	among	networks.	By	applying	five	cuts	along	the	colorful	
lines	on	the	midline,	the	inflated	cortical	surface	(A)	was	flattened	(B).	The	five	cuts	included	one	cut	along	
the	calcarine	sulcus	(blue	dotted	line)	and	four	additional	cuts	radiating	outwards	from	the	medial	wall.	The	
surface	enclosed	by	the	circular	cut	was	removed.	Reference	lines	illustrate	the	inner	and	outer	boundaries	
of	 the	 insula	 (Ins)	 as	 well	 as	 along	 the	 central	 sulcus	 (CS).	 Additional	 landmarks	 are	 dorsolateral	 PFC	
(DLPFC),	posterior	parietal	cortex	(PPC),	rostral	lateral	temporal	cortex	(rLTC),	posteromedial	cortex	(PMC),	
parahippocampal	cortex	(PHC),	and	medial	PFC	(MPFC).	The	procedure	was	applied	separately	to	the	two	
hemispheres.		
	

Figures	 23-25.	Higher-order	 networks	 nest	 outwards	 from	 sensory	 and	motor	 cortices.	Networks	
displayed	on	the	flattened	cortical	surface	reveal	orderly	spatial	relations	in	representative	participants	from	
the	novel	discovery	(P2),	replication	(P6)	and	triplication	(P12)	datasets.	The	top	map	displays	all	networks	
estimated	using	the	MS-HBM.	The	maps	below	show	subsets	of	networks	to	highlight	spatial	relations.	(A)	
Somatomotor	networks	SMOT-A	and	SMOT-B,	 in	dark	gray,	are	surrounded	by	spatially	adjacent	second-
order	networks	CG-OP	and	PM-PPr.	The	second-order	networks	are	more	distributed	than	the	first-order	
SMOT-A	and	SMOT-B	networks,	which	are	primarily	locally	organized.	(B)	Visual	networks	VIS-C	and	VIS-P,	
in	dark	gray,	are	surrounded	by	spatially	adjacent	second-order	networks	dATN-A	and	dATN-B,	that	possess	
distributed	organization.	 (C)	The	SAL/PMN	network	has	a	widely	distributed	organization,	 that	 includes	
adjacency	to	DN-A,	shown	in	gray,	especially	along	the	posterior	midline.	(D)	The	distributed	association	
zones	that	fall	outside	of	the	first-	and	second-order	networks	are	illustrated.	These	zones	are	populated	by	
five	 distinct	 networks	 (DN-A,	DN-B,	 LANG,	 FPN-A	 and	FPN-B)	 that	 possess	 repeating	 spatial	 adjacencies	
across	 the	 cortex,	 most	 clearly	 visible	 in	 posterior	 parietal	 association	 cortex	 and	 temporal	 association	
cortex.	FPN-A	and	FPN-B	are	adjacent	to	one	another,	and	together	adjacent	to	the	three	other	juxtaposed	
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networks	 LANG,	 DN-B	 and	 DN-A.	We	 call	 these	 repeating	 clusters	 of	 networks	 Supra-Areal	 Association	
Megaclusters	(SAAMs)	and	explore	them	further	in	later	analyses.	The	network	labels	in	(D)	are	positioned	
around	the	SAAM	in	posterior	parietal	cortex.	The	network	labels	are	defined	in	Fig.	2.	Similar	maps	for	all	
available	participants	are	provided	in	the	Supplementary	Materials.		
	

Figure	26.	Strategy	 for	exploring	somatomotor	and	visual	 task	responses	 in	relation	to	networks.	
Steps	employed	to	generate	a	combined	motor	movement	and	visual	stimulation	map	for	a	representative	
participant	(P6)	are	illustrated.	(A)	The	within-individual	a	priori-defined	somatomotor	networks	SMOT-A	
and	SMOT-B	(blue	colors)	and	visual	networks	VIS-C	and	VIS-P	(purple	colors)	are	displayed	on	the	flattened	
cortical	surface.	Thin	colored	outlines	mark	the	boundaries	of	all	other	networks.	(B)	The	borders	of	SMOT-
A,	SMOT-B,	VIS-C	and	VIS-P	are	 isolated	as	black	outlines.	 (C)	The	 task	contrasts	of	right	versus	 left	 foot	
movements	 (red)	 and	 right	 versus	 left	 hand	movements	 (blue)	 are	 mapped	 in	 relation	 to	 the	 network	
boundaries.	 Presentation	 of	 the	 hand	 and	 foot	 representations	 in	 isolation	 allows	 visualization	 of	 three	
separate	candidate	body	maps	(labelled	I,	II,	and	III).	The	thresholds	are	z	>	2.31	in	all	cases.	(D)	Binarized	
motor	task	contrast	maps	combine	the	foot	(red),	hand	(blue),	tongue	(yellow)	and	glute	(green)	movements.	
Note	how	adding	body	parts	fills	in	much	of	the	remaining	cortical	regions	within	the	somatomotor	networks.	
The	thresholds	are	z	>	2.13	in	all	cases.	(E)	The	task	contrast	of	horizontal	versus	vertical	meridian	visual	
stimulation	is	mapped	in	relation	to	the	network	boundaries	to	illustrate	that	multiple	areas	fall	within	the	
VIS-C	and	VIS-P	networks.	The	thresholds	are	z	<	-2.86	and	z	>	3.16.	(F)	Binarized	visual	task	contrast	maps	
combine	the	center	versus	the	other	apertures	(red),	middle	versus	other	apertures	(green),	and	peripheral	
versus	other	apertures	(blue).	The	threshold	is	z	>	4.15.	For	display	purposes,	the	binarized	maps	from	D	
and	F	were	combined	to	yield	a	combined	map	of	somatomotor	topography	along	the	body	axis	and	visual	
topography	along	the	eccentricity	gradient.	
	

Figure	 27.	 First-order	 somatomotor	 and	 visual	 networks	 respond	 to	 task	 stimulation	 in	 a	
topographically	specific	manner.	A	detailed	view	of	the	inflated	(A)	and	flattened	(B)	surfaces	display	the	
somatomotor	body	axis	and	visual	eccentricity	maps	for	P6.	The	visualization	combines	panels	D	and	F	of	
Fig.	26,	including	binarized	contrast	maps	targeting	foot	(red),	hand	(blue),	tongue	(yellow)	and	glute	(green)	
movements,	 as	well	 as	 central	 (red),	middle	 (green),	 and	peripheral	 (blue)	 visual	 stimulation.	The	black	
labeled	 outlines	 highlight	 networks	 SMOT-A,	 SMOT-B,	 VIS-C,	 and	 VIS-P.	 Thin	 colored	 outlines	mark	 the	
boundaries	of	all	other	networks.	At	least	three	representations	of	body	topography	can	be	observed	within	
the	somatomotor	networks	SMOT-A	and	SMOT-B	(labeled	I,	II,	and	III).	The	orientation	of	the	main	body	
map	(I)	along	the	central	sulcus	is	shown	by	a	stick	figure.	The	second	body	map	(II)	is	partially	buried	in	the	
Sylvian	fissure,	and	the	third	map	(III)	falls	along	the	frontal	midline.	The	visual	gradient	from	central	to	
peripheral	 eccentricity	 is	 mapped	 expanding	 from	 VIS-C	 to	 VIS-P	 subsuming	 the	 V1/V2/V3	 cluster	 (as	
verified	 from	 the	 task	 contrast	 of	 meridian	 visual	 stimulation;	 see	 Fig.	 26E).	 One	 exception	 is	 that	 the	
eccentricity	map	spares	portions	of	VIS-P	(marked	by	asterisks)	likely	due	to	the	limited	extent	of	peripheral	
stimulation	(see	methods).	A	second	exception	is	the	gap	in	the	body	topography	(marked	by	a	diamond)	
that	may	be	an	inter-effector	region.		
	

Figure	 28.	 Somatomotor	 and	 visual	 topographic	maps	 are	 aligned	 to	 first-order	 networks	 across	
multiple	participants.	Flattened	surfaces	display	the	somatomotor	body	axis	and	visual	eccentricity	maps	
in	representative	participants	from	the	discovery	(P2,	P3),	replication	(P6,	P7)	and	triplication	(P12,	P13)	
datasets.	A	body	axis	 topography	 is	evident	 in	each	 individual	by	 the	ordering	of	 tongue-hand-glute-foot	
along	 the	 central	 sulcus.	 A	 visual	 eccentricity	 gradient	 is	 evident	 along	 the	 calcarine	 sulcus.	 While	 the	
idiosyncratic	spatial	details	vary	between	individuals,	the	somatomotor	and	visual	maps	show	substantial	
overlap	in	each	instance	with	the	first-order	networks	SMOT-A,	SMOT-B,	VIS-C,	and	VIS-P.	Similar	maps	from	
all	available	participants	are	included	in	the	Supplementary	Materials.		
	

Figure	 29.	 Strategy	 for	 exploring	 responses	 to	 oddball	 detection	 in	 relation	 to	 networks.	 Steps	
employed	to	generate	a	map	of	the	Oddball	Effect	for	a	representative	participant	(P6)	are	illustrated.	(A)	
The	within-individual	a	priori-defined	networks	CG-OP	and	SAL	/	PMN	are	displayed	on	the	flattened	cortical	
surface.	Thin	colored	outlines	mark	the	boundaries	of	all	other	networks.	(B)	The	borders	of	CG-OP	and	SAL	
/	PMN	are	isolated	as	black	outlines.	(C)	The	task	contrast	of	oddball	event	detection	versus	non-targets,	
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labeled	the	Oddball	Effect,	is	mapped	in	relation	to	the	network	boundaries.	(D)	The	binarized	Oddball	Effect	
task	contrast	map	is	shown	in	pink.	The	threshold	is	z	>	1.00.	
		
	

Figure	 30.	 Second-order	 networks	 CG-OP	 and	 SAL	 /	 PMN	 respond	 to	 transients	 associated	 with	
oddball	detection.	A	detailed	view	of	the	inflated	(A)	and	flattened	(B)	surfaces	display	the	Oddball	Effect	
task	contrast	map	for	P6.	The	black	labelled	outlines	highlight	networks	CG-OP	and	SAL	/	PMN.	Thin	colored	
outlines	mark	 the	 boundaries	 of	 all	 other	 networks.	 The	Oddball	 Effect	 is	 a	 distributed	with	 prominent	
response	in	the	frontal	insula,	as	well	as	along	the	posterior	and	anterior	midline.	The	full	response	pattern	
involves	many	distributed	regions	of	the	CG-OP	and	SAL	/	PMN	networks	including	posterior	midline	zones.	
The	 effect	 is	 not	 selective	 to	 these	 two	 networks	 with	 a	 robust	 response	 in	 the	 hand	 region	 of	 left	
somatomotor	cortex	along	the	central	sulcus	(marked	by	asterisk)	and	the	foveal	region	of	visual	cortex	along	
the	 calcarine	 sulcus	 (marked	 by	 a	 double	 asterisk),	 presumably	 due	 to	 the	 oddball	 target	 response	
demanding	a	key	press	and	enhanced	attention	to	the	visual	cue.	The	response	in	the	motor	region	is	strongly	
lateralized	(not	shown)	as	expected	given	the	right-handed	response.	
	

Figure	 31.	 The	 Oddball	 Effect	 is	 aligned	 to	 CG-OP	 and	 SAL	 /	 PMN	 across	 multiple	 participants.	
Flattened	 surfaces	 display	maps	 of	 the	 binarized	 Oddball	 Effect	 in	 representative	 participants	 from	 the	
discovery	(P2,	P3),	replication	(P6,	P7)	and	triplication	(P12,	P13)	datasets.	While	the	spatial	details	vary	
between	individuals,	the	Oddball	Effect	is	broadly	localized	to	the	CG-OP	and	SAL	/	PMN	networks	and	less	
so	in	regions	of	adjacent	association	networks,	a	qualitative	impression	that	is	formally	quantified	in	the	next	
figure.	Similar	maps	from	all	available	participants	are	included	in	the	Supplementary	Materials.		
	

Figure	 32.	 CG-OP	 and	 SAL	 /	 PMN	 respond	 preferentially	 to	 transients	 associated	 with	 oddball	
detection.	Bar	graphs	quantify	the	Oddball	Effect	as	mean	z-values	(N	=	14)	across	the	multiple	a	priori-
defined	networks.	A	strong	positive	response	was	observed	 in	 the	CG-OP	and	SAL/PMN	networks,	while	
adjacent	networks	displayed	 lesser	 (and	most	often	significantly	negative)	response.	Asterisks	 indicate	a	
value	is	significantly	different	from	zero	(*	=	p	<	0.05,	**	=	p	<	0.001).	Error	bars	are	the	standard	error	of	the	
mean.	Note	that	the	CG-OP	and	SAL	/	PMN	networks	are	each	more	active	than	the	other	five	networks	(10	
of	10	tests	significant	p	<	0.05).		
	

Figure	33.	The	Oddball	Effect	robustly	dissociates	CG-OP	and	SAL	/	PMN	from	regions	traditionally	
associated	with	 the	default	network.	 Inflated	surfaces	display	maps	of	 the	 increases	 (red/yellow)	and	
decreases	 (blue)	 in	 response	 for	 the	 Oddball	 Effect	 task	 contrast.	 No	 threshold	 is	 applied	 to	 allow	 full	
visualization	 of	 the	 effect	 in	 both	 directions.	 Images	 in	 the	 first	 three	 rows	 are	 from	 representative	
participants	from	the	discovery	(P2),	replication	(P7)	and	triplication	(P12)	datasets,	and	the	bottom	row	
displays	the	group	average	(N	=	14).	The	white	outlines	for	the	individual	participants	are	the	outline	for	the	
a	 priori-defined	 CG-OP	 and	 SAL	 /	 PMN	 networks.	 Notice	 that	 the	 Oddball	 Effect	 task	 contrast	 increases	
response	broadly	across	the	CG-OP	and	SAL	/	PMN	networks,	while	there	are	simultaneously	distributed	
decreases	that	span	multiple	networks	including	DN-A	and	DN-B.	In	the	top	and	bottom	images,	arrowheads	
highlight	 the	 increases	 in	 response	 along	 the	 posterior	 midline	 (black	 arrowheads)	 that	 surround	 the	
canonical	Default	Network	regional	decreases	(noted	by	a	white	asterisk),	as	well	as	increases	in	the	anterior	
insula	(white	arrowhead).	Similar	maps	from	all	available	participants	are	included	in	the	Supplementary	
Materials.	
	

Figure	 34.	 Supra-Areal	 Association	 Megaclusters	 (SAAMs).	 A	 detailed	 view	 of	 the	 inflated	 (A)	 and	
flattened	(B)	surfaces	display	the	full	set	of	networks	for	P4	to	visualize	an	interesting	topographic	feature	
of	association	cortex:	a	cluster	of	networks	repeats	across	multiple	zones,	including	within	posterior	parietal	
cortex	(PPC,	I),	 lateral	temporal	cortex	(LTC,	II),	and	multiple	times	throughout	PFC	(III,	IV).	We	refer	to	
these	repeating	clusters	as	Supra-Areal	Association	Megaclusters	or	SAAMs.	Within	each	SAAM,	FPN-A	and	
FPN-B	are	adjacent	to	one	another,	and	together	are	adjacent	to	DN-A,	DN-B,	and	LANG.	Thick	red	outlines	
mark	 four	SAAMs.	The	repeating	motif	 is	most	clear	 for	PPC	(I)	where	the	cluster	has	a	“north-to-south”	
orientation	and	LTC	(II)	where	a	similar	set	of	juxtapositions	display	an	“east-to-west”	orientation.	Within	
PFC,	the	pattern	is	present	but	more	ambiguous.	Two	candidate	SAAMs	in	ventrolateral	PFC	(VLPFC,	III)	and	
dorsolateral	PFC	(DLPFC,	IV)	are	highlighted.	Reference	landmarks	include	the	insula	(Ins),	central	sulcus	
(CS),	posteromedial	cortex	(PMC),	parahippocampal	cortex	(PHC),	and	medial	PFC	(MPFC).	Regions	of	poor	
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SNR	that	do	not	allow	for	confident	network	assignment	are	noted	by	a	double	asterisk.	The	rectangle	in	B	
indicates	the	portion	of	the	surface	that	is	extracted	and	displayed	for	all	participants	in	Fig.	35.		
	

Figure	 35.	 Supra-Areal	 Association	 Megaclusters	 (SAAMs)	 are	 reliably	 observed	 across	 multiple	
participants.	Panels	display	a	rotated	portion	of	the	flattened	surface	for	15	individuals	(P1	to	P15).	The	
displayed	portion	includes	the	two	SAAMS	within	PPC	(I)	and	LTC	(II)	as	illustrated	in	Fig.	34B.	Black	outlines	
illustrate	the	boundaries	of	the	five	networks	in	each	SAAM,	including	FPN-A,	FPN-B,	DN-A,	DN-B,	and	LANG.	
While	the	idiosyncratic	spatial	details	vary,	in	most	individuals,	the	separate	SAAMs	are	clear	and	distinct.	
Within	each	SAAM,	FPN-A	falls	at	one	end	juxtaposed	with	FPN-B.	The	three	side-by-side	networks	DN-A,	
DN-B,	and	LANG	fall	at	the	other	end	of	the	SAAM	with	the	LANG	network	most	closely	juxtaposed	to	DN-B.		
	

Figure	36.	Strategy	for	exploring	responses	to	high	working	memory	load	in	relation	to	networks.	
Steps	 employed	 to	 generate	 a	 map	 of	 the	 N-Back	 Load	 Effect	 for	 a	 representative	 participant	 (P6)	 are	
illustrated.	(A)	The	within-individual	a	priori-defined	networks	FPN-A	and	FPN-B	(orange	and	yellow	colors)	
are	 displayed	 on	 the	 flattened	 cortical	 surface.	 Thin	 colored	 outlines	 mark	 the	 boundaries	 of	 all	 other	
networks.	(B)	The	borders	of	FPN-A	and	FPN-B	are	isolated	as	black	outlines.	(C)	The	task	contrast	of	2-Back	
(High	Load)	versus	0-Back	(0-Back),	labeled	the	N-Back	Load	Effect	(red/yellow),	is	mapped	in	relation	to	
the	network	boundaries.	(D)	The	binarized	N-Back	Load	Effect	task	contrast	map	is	shown	in	yellow.	The	
threshold	is	z	>	3.00.	
	

Figure	37.	Networks	FPN-A	and	FPN-B	respond	to	high	working	memory	load.	A	detailed	view	of	the	
inflated	(A)	and	flattened	(B)	surfaces	display	the	N-Back	Load	Effect	task	contrast	map	for	P6.	The	black	
labeled	outlines	highlight	the	FPN-A	and	FPN-B	networks.	Thin	colored	outlines	mark	the	boundaries	of	all	
other	 networks.	 The	 N-Back	 Load	 Effect	 shows	 prominent	 response	 across	 the	 multiple,	 distributed	
association	zones	preferentially	within	the	FPN-A	/	FPN-B	networks,	including	the	relevant	portions	of	the	
SAAMs.	The	zones	are	labeled	I	to	IV	to	orient	to	the	corresponding	labels	of	the	SAAMs	as	displayed	in	Fig.	
34.	The	response	also	consistently	includes	a	small	subregion	of	the	anterior	insula	that	is	associated	with	
FPN-A	(labeled	with	an	asterisk).		
	

Figure	 38.	 The	 N-Back	 Load	 Effect	 is	 aligned	 to	 FPN-A	 and	 FPN-B	 across	 multiple	 participants.	
Flattened	 surfaces	 display	 the	 binarized	 N-Back	 Load	 Effect	 maps	 for	 multiple	 participants	 from	 the	
discovery	 (P2,	 P3),	 replication	 (P6,	 P7)	 and	 triplication	 (P12,	 P13)	 datasets.	 While	 individuals	 vary	 in	
anatomical	details,	the	N-Back	Load	Effect	is	generally	localized	to	the	FPN-A	and	FPN-B	networks.	Similar	
maps	from	all	available	participants	are	included	in	the	Supplementary	Materials.		
	

Figure	39.	FPN-A	and	FPN-B	respond	preferentially	to	high	working	memory	load	in	a	domain-flexible	
manner.	Bar	graphs	quantify	the	N-Back	Load	Effect	as	mean	z-values	(N	=	15)	across	the	multiple	a	priori-
defined	networks.	(Top)	A	strong	positive	response	was	observed	in	the	FPN-A	and	FPN-B	networks,	while	
other	association	networks	displayed	minimal	or	no	response,	with	the	exception	of	the	SAL	/	PMN	network	
which	also	displayed	a	significant,	positive	response.	Error	bars	are	the	standard	error	of	the	mean.	Note	that	
FPN-A	and	FPN-B	are	each	more	active	than	all	five	of	the	other	networks	(10	of	10	tests	were	significant	p	
<	 0.05).	 (Bottom	Left)	 The	N-Back	 Load	Effect	 is	 quantified	 separately	 for	 each	 stimulus	 domain	 (Face,	
Letter,	Word,	and	Scene)	within	FPN-A.	Note	that	the	effect	is	robust	and	significant	across	domains.	(Bottom	
Right)	The	N-Back	Load	Effect	is	quantified	separately	for	each	stimulus	domain	within	FPN-B.	Note	again	
that	the	effect	is	positive	and	significant	across	domains.	Asterisks	indicate	a	value	is	significantly	different	
from	zero	(*	=	p	<	0.05,	**	=	p	<	0.001).		
	

Figure	 40.	 Strategy	 for	 exploring	 domain-preferential	 higher-order	 responses	 in	 relation	 to	
networks.	 Steps	 employed	 to	 generate	 a	 combined	 map	 revealing	 domain-selective	 responses	 for	 a	
representative	participant	 (P6)	are	 illustrated.	 (A)	The	within-individual	a	priori-defined	networks	DN-A	
(dark	red),	DN-B	(light	red)	and	LANG	(blue)	are	displayed	on	the	flattened	cortical	surface.	Thin	colored	
outlines	mark	the	boundaries	of	all	other	networks.	(B)	The	borders	of	DN-A,	BN-B	and	LANG	are	isolated	as	
black	outlines.	(C)	The	Episodic	Projection	task	contrast	(red/yellow)	is	mapped	on	its	own	in	relation	to	the	
DN-A	 network	 boundary.	 (D)	 The	 Theory-of-Mind	 task	 contrast	 (red/yellow)	 is	 mapped	 on	 its	 own	 in	
relation	to	the	DN-B	network	boundary.	(E)	The	Sentence	Processing	task	contrast	(red/yellow)	is	mapped	
on	its	own	in	relation	to	the	LANG	network	boundary.	(F)	Binarized	task	contrast	maps	are	shown	together	
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(dark	red,	Episodic	Projection;	light	red,	Theory-of-Mind;	blue,	Sentence	Processing).	The	threshold	is	z	>	
1.80.	The	combined,	binarized	map	allows	visualization	of	the	multiple	functional	domains	in	the	same	view.		
	

Figure	41.	DN-A,	DN-B,	and	LANG	respond	in	a	domain-selective	manner.	A	detailed	view	of	the	inflated	
(A)	and	flattened	(B)	surfaces	display	the	Episodic	Projection	(dark	red),	Theory-of-Mind	(light	red),	and	
Sentence	Processing	(blue)	task	contrast	maps	for	P6.	The	black	labeled	outlines	highlight	the	DN-A,	DN-B,	
and	LANG	networks.	Thin	colored	outlines	mark	the	boundaries	of	all	other	networks.	The	task	contrasts	
reveal	clear	spatial	separation	across	the	multiple,	distributed	association	zones	preferentially	within	the	
DN-A,	DN-B,	and	LANG	networks,	including	the	relevant	portions	of	the	SAAMs.	The	zones	are	labeled	I	to	IV	
to	orient	to	the	corresponding	labels	of	the	SAAMs	as	displayed	in	Figs.	34	and	37.	The	parahippocampal	
cortex	(labeled	with	an	asterisk)	responds	preferentially	to	the	Episodic	Projection	task	contrast	without	
juxtaposed	 response	 from	other	domains,	unlike	 the	SAAMs	which	each	have	 representation	of	 all	 three	
domains,	separate	from	(but	adjacent	to)	zones	responding	in	a	domain-flexible	manner	to	working	memory	
load	(see	Fig.	38).		
	

Figure	 42.	 Domain-selective	 responses	 are	 aligned	 to	 DN-A,	 DN-B,	 and	 LANG	 across	 multiple	
participants.	Flattened	 surfaces	display	maps	of	 the	binarized	Episodic	Projection,	Theory-of-Mind,	 and	
Sentence	Processing	task	contrast	maps	for	multiple	participants	from	the	discovery	(P2,	P3),	replication	
(P6,	 P7)	 and	 triplication	 (P12,	 P13)	 datasets.	 The	 domain-preferential	 effects	 are	 generally	 localized	 to	
corresponding	 DN-A,	 DN-B,	 and	 LANG	 networks	 and	 separate	 from	 the	 adjacent	 zones	 that	 respond	 to	
working	memory	 load	(contrast	 the	present	maps	with	 those	of	Fig.	38).	Similar	maps	 from	all	available	
participants	are	included	in	the	Supplementary	Materials.		
	

Figure	 43.	 DN-A,	 DN-B,	 and	 LANG	 respond	 in	 a	 domain-selective	manner.	Bar	 graphs	 quantify	 the	
Episodic	 Projection,	 Theory-of-Mind,	 and	 Sentence	 Processing	 task	 contrasts	 as	mean	 z-values	 (N	 =	 13)	
across	the	multiple	a	priori-defined	networks.	Each	plot	displays	data	from	a	distinct	task	contrast;	each	bar	
represents	a	distinct	network.	The	full	3x3	interaction	(network	by	task	contrast)	is	significant	(p	<	0.001).	
DN-A	is	robustly	and	preferentially	activated	for	the	Episodic	Projection	task	contrast;	DN-B	is	robustly	and	
preferentially	 activated	 for	 the	 Theory-of-Mind	 task	 contrast;	 and	 LANG	 is	 robustly	 and	 preferentially	
activated	 for	 the	 Sentence	 Processing	 task	 contrast.	 All	 planned	 pairwise	 comparisons	 are	 significant	
confirming	the	full	triple	dissociation.	Asterisks	indicate	a	value	is	significantly	different	from	zero	(**	=	p	<	
0.001).	
	

Figure	44.	Hierarchical	development	might	give	rise	to	network	patterning.	(Top)	The	panel	displays	
a	combined	rendition	of	Paul	Flechsig’s	maps	of	sequential	myelination.	Dark	areas	receive	projections	that	
myelinate	first	(before	birth),	gray	striped	areas	next	(during	the	first	months	of	after	birth),	and	the	white	
areas	last	(starting	several	months	after	birth).	Adapted	from	Bailey	and	von	Bonin	(1951).	(Bottom)	The	
present	 network	 estimates	 from	a	 representative	 participant	 (P1)	 are	 recolored	 and	 grouped	 into	 first-,	
second-,	and	third-order	networks	to	align	to	Flechsig’s	maps.	Note	the	similarity	between	the	global	spatial	
patterns	and	the	locations	of	the	distributed	association	third-order	network	zones	and	Flechsig’s	zones	of	
late	myelinating,	terminal	fibers.	
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