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Abstract	
Motivation:	Genome-wide	association	studies	(GWAS)	in	large	biobanks	are	transforming	

genetic	 research	 and	 enable	 the	 detection	 of	 novel	 genotype-phenotype	 relationships.	 In	

the	last	two	decades,	over	60,000	genetic	associations	across	thousands	of	human	diseases	

and	 traits	 have	 been	 discovered	 using	 a	 GWAS	 approach.	 Due	 to	 denser	 genotyping	 and	

increasing	sample	sizes,	researchers	are	increasingly	faced	with	computational	challenges	

when	 executing	 GWAS	 analysis.	 A	 reproducible,	 modular	 and	 extensible	 pipeline	 with	 a	

focus	 on	 parallelization	 is	 essential	 to	 simplify	 data	 analysis	 and	 to	 allow	 researchers	 to	

devote	 their	 time	 to	 other	 essential	 tasks	 such	 as	 result	 interpretation	 and	 downstream	

analysis.	

Results:	Here	we	present	nf-gwas,	a	Nextflow	pipeline	to	run	biobank-scale	GWAS	analysis.	

The	pipeline	automatically	performs	numerous	pre-	and	post-processing	steps,	 integrates	

regression	 modeling	 from	 the	 REGENIE	 package	 and	 currently	 supports	 single-variant,	

gene-based	 and	 interaction	 testing.	 nf-gwas	 also	 includes	 an	 extensive	 reporting	

functionality	 that	 allows	 to	 inspect	 thousands	 of	 phenotypes	 and	 navigate	 interactive	

Manhattan	plots	directly	 in	 the	web	browser.	The	pipeline	 is	extensively	 tested	using	the	

unit-style	testing	framework	nf-test	to	ensure	code	maintainability,	a	crucial	requirement	

in	 clinical	 and	 pharmaceutical	 settings.	 Furthermore,	 we	 validated	 the	 pipeline	 against	

published	GWAS	datasets	and	benchmarked	the	pipeline	on	high-performance	computing	

and	cloud	infrastructures	to	provide	cost	estimations	to	end	users.	

Availability:	nf-gwas	is	free	available	at	https://github.com/genepi/nf-gwas.	

Contact:	lukas.forer@i-med.ac.at	
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Introduction	
Over	 the	 last	 decades,	 genome-wide	 association	 studies	 (GWAS)	 have	 emerged	 as	 a	 key	

technology	 to	 discover	 insights	 into	 the	 genetic	 architecture	 of	 diseases.	 The	 GWAS	

approach	 shows	 remarkable	 success	 and	 identified	 so	 far	 more	 than	 60,000	 genetic	

associations	1.	 Nevertheless,	 increasing	 sample	 sizes	 and	 phenome-wide	 association	

studies	 (PheWAS),	 with	 thousands	 of	 phenotypes	 analyzed	 for	 one	 specific	 genomic	

variant,	require	a	continuous	improvement	of	methods	to	run	GWAS	regression	models	in	a	

computationally	efficient	way.	Over	 the	 last	 few	years,	novel	and	 faster	machine	 learning	

methods	especially	for	the	PheWAS	use-case	have	been	published,	which	are	ideally	suited	

for	 high	 parallelization	2.	While	 the	 availability	 of	 new	 GWAS	methods	 is	 critical	 for	 the	

success	of	large-scale	analyses,	running	a	GWAS	analysis	on	a	computational	infrastructure	

still	 involves	 many	 technical	 and	 workflow-specific	 challenges.	 First,	 GWAS	 analysis	

consists	of	several	necessary	pre-	and	post-processing	steps	to	improve	result	quality.	This	

ranges	from	simple	file-format	checks	to	time-intensive	file	conversions	between	different	

genetic	 formats.	 For	 example,	 the	 REGENIE	 software	 currently	 does	 not	 accept	 input	

datasets	 in	 VCF	 format,	 the	 default	 export	 format	 from	 popular	 imputation	 servers	3.	

Therefore,	 researchers	 are	 forced	 to	 invest	 their	 time	 in	 script	 preparation	 for	 data	

manipulation.	 Second,	 while	 novel	 methods	 such	 as	 REGENIE	 allow	 an	 efficient	

parallelization	on	e.g.,	a	chromosome	level	using	CPU	threads,	researchers	have	to	execute	

a	 higher	 parallelization	 (e.g.	 by	 genomic	 chunks)	 manually.	 This	 requires	 detailed	

documentation	 of	 executed	 steps	 to	 guarantee	 the	 reproducibility	 of	 results	 and	 is	

especially	 challenging	 when	 working	 in	 a	 distributed	 environment	 such	 as	 local	 high-

performance	computing	(HPC)	or	cloud	environments	where	data	needs	to	be	distributed	

to	individual	compute	nodes.	Third,	generated	GWAS	datasets	can	be	large	and	require	the	

visualization	of	millions	of	data	points	or	comparison	of	phenotypes	in	a	user-friendly	and	

scalable	way.	Due	to	all	these	reasons,	researchers	often	have	to	dedicate	a	substantial	part	

of	 their	 time	 to	 technical	 and	 workflow	 issues	 instead	 of	 focusing	 on	 the	 biological	

interpretation	 of	 results.	 Furthermore,	 these	 manual	 processes	 and	 individualized	

solutions	are	error-prone	and	do	not	promote	reproducibility	of	results.	To	overcome	these	

problems,	pipelines	are	a	prominent	way	to	execute	GWAS	4-6.	While	these	pipelines	are	a	
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step	forward,	they	do	not	include	features	for	biobank-scale	datasets,	different	association	

testing	modes,	post-processing	steps	(e.g.	lift-over)	or	scalable	visualizations.	Furthermore,	

workflow	code	 is	often	untested,	which	 complicates	 its	usage	and	extensibility	 in	 critical	

settings.	

Here	 we	 present	 a	 versatile	 computational	 pipeline	 to	 perform	 highly	 scalable	 and	

reproducible	 GWAS	 analysis	 in	 distributed	 environments.	 The	 pipeline	 is	 based	 on	 the	

popular	 Nextflow	 workflow	 manager	7	 and	 supports	 researchers	 to	 run	 GWAS	 on	

thousands	 of	 phenotypes	 in	 parallel.	 The	 pipeline	 includes	 all	 necessary	 pre-	 and	 post-

processing	 steps,	 currently	 builds	 on	 the	 REGENIE	 method	 for	 running	 the	 regression	

models	and	has	been	developed	with	a	focus	on	high	parallelization	including	thousands	of	

samples	 and	 phenotypes.	 The	 pipeline	 also	 supports	 various	 association	 testing	 modes	

such	as	classical	 single-variant	but	also	gene-based	and	 interaction	 testing.	This	makes	 it	

suitable	 for	 diverse	 scientific	 questions	 that	 will	 likely	 become	 more	 important	 in	 the	

future,	 as	 not	 only	 imputed	 SNPs	 but	 also	 whole	 exome	 sequencing	 (WES)	 and	 whole	

genome	 sequencing	 (WGS)	 data	 become	 available	 in	 more	 and	 larger	 cohorts	8,	 9.	 To	

validate	our	pipeline,	we	reproduced	published	GWAS	results	showing	excellent	agreement	

between	approaches.	The	pipeline	has	also	been	extensively	used	within	our	 institute	 for	

over	 2	 years	10,	 has	 been	 improved	 by	 many	 contributions	 from	 the	 open-source	

community	 and	 uses	 the	 popular	 nf-test	 testing	 framework	 for	 unit-style	 testing	 (see	

Resources).	 To	 provide	 users	 benchmarks	 and	 cost	 estimations,	 we	 run	 the	 pipeline	 in	

widely	 used	 environments	 (HPC	 Slurm	 cluster,	 AWS	 Batch	 Cloud)	 using	 different	

parallelization	strategies	and	chunking	levels.	Overall,	nf-gwas	is	a	best-practice	and	well-

tested	workflow	for	performing	GWAS	analysis	and	can	be	run	with	the	power	of	Nextflow	

in	any	distributed	environment.	
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Methods	

Design	and	Implementation	

The	 nf-gwas	 pipeline	 is	 implemented	 as	 a	 Nextflow	7	 DSL2	 pipeline.	 The	 implemented	

processes	are	massively	parallelized	on	chromosomes	or	genomic	chunks	with	the	overall	

goal	 to	provide	an	efficient	utilization	of	computational	 resources.	All	dependencies	used	

by	the	pipeline	are	available	in	Docker	or	Singularity	containers	providing	transportability.	

The	 modular	 architecture	 of	 nf-gwas	 enables	 an	 easy	 integration	 of	 future	 updates	 and	

extensions	to	support	emerging	GWAS	methodologies.	nf-gwas	provides	several	Nextflow	

profiles	allowing	users	to	execute	GWAS	on	various	computing	infrastructures.	Moreover,	

we	used	nf-test	to	ensure	that	the	pipeline	code	works	correctly	with	no	errors,	which	also	

improves	its	robustness	and	maintainability	against	updates.		

Parallelization	

nf-gwas	allows	a	high	parallelization	of	both	REGENIE	steps	(see	Figure	1).	Step	1,	which	

fits	the	whole	genome	regression	model	to	the	traits,	has	been	parallelized	using	the	best-

practices	approach	provided	by	the	authors	of	REGENIE.	First,	the	level	0	models	are	run	

on	a	chunk-level	and	are	 then	merged	 in	parallel	by	phenotype.	Step	2,	which	consists	of	

the	regression	model,	runs	by	default	on	a	chromosome	level.	For	HPC	or	cloud	computing,	

splitting	chromosomes	into	smaller	chunks	can	be	beneficial.	This	allows	lowering	the	per-

chunk	 memory	 usage	 and	 enables	 a	 better	 distribution	 across	 a	 large	 number	 of	

computational	 nodes.	 To	 flexibly	 adjust	 the	 type	 of	 parallelization,	 nf-gwas	 provides,	

besides	the	chunk	size	parameter,	also	the	possibility	to	specify	the	applied	chunk	strategy.	

Chromosomes	can	be	split	either	by	a	genomic	range	(default)	or	by	specifying	the	number	

of	 variants	 for	 each	 chunk.	 After	 the	 whole	 genome	 regression	 model	 is	 applied,	 the	

pipeline	operates	on	a	phenotype	 level	 for	better	 runtime	estimations.	We	evaluated	 the	

different	chunk	strategies	and	chunk	size	values	in	the	Results	section.		
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Annotation	and	Interactive	Visualizations	

Summary	 statistics	 are	 annotated	with	 nearest	 genes	 and	 rsIDs	 using	 our	 genomic-utils	

library	 in	parallel	 for	all	genomic	chunks	(see	Resources).	The	 library	uses	an	annotation	

strategy	 similar	 to	 available	 tools	 (e.g.	 LocusZoom,	 PheWeb).	 To	 prepare	 the	 required	

reference	 files,	 we	 downloaded	 the	 gene	 annotations	 (hg19	 and	 hg38)	 from	 GENCODE	

release	 v32	11	 and	 filtered	 them	 for	 common	 gene	 types	 (protein_coding,	 IG_C_gene,	

IG_D_gene,	 IG_J_gene,	 IG_V_gene,	TR_C_gene,	TR_D_gene,	TR_J_gene,	TR_V_gene;	 for	details	

on	gene/transcript	biotypes).	Variants	 are	 annotated	with	 the	nearest	gene,	 its	 start	 and	

end	position	and	the	distance	to	the	respective	gene.	 If	a	variant	 is	 located	within	two	or	

more	overlapping	genes,	all	genes	are	reported.	For	annotation	with	rsIDs,	a	reference	file	

based	on	dbSNP	v154	was	created	and	an	index	was	built	to	enable	a	fast	lookup.	To	avoid	

numerous	downloads	of	the	file,	a	local	tabix-indexed	reference	file	can	be	specified	in	the	

Nextflow	configuration.	

Both	 an	 interactive	 and	 static	 report	 are	 generated	 in	 parallel	 for	 each	 phenotype.	 All	

reports	 are	 collected	 in	 an	 HTML	 overview	 report	 which	 simplifies	 navigation	 between	

phenotypes.	The	interactive	Manhattan	plot	is	created	based	on	a	binning	algorithm	similar	

to	LocusZoom	12	that	supports	millions	of	variants.	By	default,	top	loci	are	defined	+/-200	

kb	 around	 the	 most	 significant	 SNPs	 that	 reach	 by	 default	 at	 least	 a	 genome-wide	

significance	of	-log10(p)>-log10(5*10-8).	The	detailed	report	is	generated	using	R	v4.1.0	and	

RMarkdown.	

Validation	

REGENIE	 has	 already	 been	 successfully	 validated	 against	 other	 GWAS	 software	

elsewhere	2.	However,	to	ensure	that	our	parallelized	implementation	works	correctly,	we	

validated	 our	 pipeline	 with	 UK	 Biobank	 data	 against	 (a)	 publicly	 available	 summary	

statistics	 for	 apolipoprotein	B	 (apoB;	 data	 field:	 30640)	 and	 total	 cholesterol	 (data	 field:	

30690)	 for	 European	 ancestry	 by	 Pan-UK	 Biobank	 and	 (b)	 selected	 SNPs	 per	 locus	

associated	with	lipoprotein(a)	[Lp(a)]	(data	field:	30790)	from	a	GWAS	by	Said	et	al.	13.	
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We	downloaded	available	summary	statistics	from	Pan-UK	Biobank	and	compared	p-values	

using	Miami	plots.	Briefly,	the	downloaded	summary	statistics	were	generated	using	SAIGE	

implemented	 in	Hail	 Batch	 on	 rank	 inverse	 normally	 transformed	 (RINTed)	 phenotypes,	

using	 ancestry	 defined	 based	 on	 genetic	 data	 (European	 n=399,003	 for	 apoB	 and	

n=400,963	 for	 cholesterol).	 The	 Pan-UK	 Biobank	 GWAS	 was	 performed	 for	 23,861,713	

SNPs	 for	 apoB	 and	 23,861,710	 SNPs	 for	 cholesterol,	 adjusted	 for	 age,	 sex,	 age*sex,	 age2,	

age2*sex	 and	 the	 first	 10	 principal	 components	 (PCs).	 Our	 GWAS	was	 based	 on	 nf-gwas	

v1.0.0	using	REGENIE	on	RINTed	phenotypes,	European	ancestry	was	defined	by	data	field	

21000	 (European	 n=375,278	 for	 apoB	 and	 n=377,097	 for	 cholesterol)	 and	 GWAS	 was	

adjusted	for	age,	age2,	sex,	genotyping	batch	and	the	first	30	PCs.	For	step	1	of	REGENIE	we	

used	directly	 genotyped	variants	 that	were	 filtered	 for	 a	minor	allele	 frequency	 (MAF)	≥	

0.01,	 minor	 allele	 count	 (MAC)	 ≥	 100,	 genotype	 missingness<0.1,	 Hardy-Weinberg	

equilibrium	test	p	≥	10-15	and	sample	missingness	<	0.1	within	the	pipeline.	For	step	2	of	

REGENIE	we	 included	 variants	 imputed	 to	 a	 custom	 reference-panel	 (hg19)	with	MAC	>	

100	 and	 an	 imputation	 info	 score	 >	 0.3	 (apoB	 33,390,477	 and	 cholesterol	 33,439,525	

SNPs).	

For	validation	against	the	Lp(a)	GWAS	by	Said	et	al.,	we	compared	effect	estimates	and	p-

values	using	correlation	and	Bland	Altman	plots	and	calculated	the	correlation	of	selected	

SNPs	since	full	summary	statistics	are	not	publicly	available.	Data	were	available	from	Said	

et	al.	Supplemental	Table	II	13.	Briefly,	Said	et	al.	performed	GWAS	(19,000,000	SNPs)	in	all	

ancestries	 in	 UK	 Biobank	 (n=	 371,212)	 using	 BOLT-LMM	 v2.3.1,	 RINTed	 serum	 Lp(a)	

concentrations	and	the	analysis	was	adjusted	for	age,	age2,	genotyping	array,	lipid-lowering	

drug	usage	and	 the	 first	30	PCs.	We	performed	 the	GWAS	based	on	nf-gwas	v1.0.0	using	

REGENIE	on	RINTed	Lp(a)	including	all	ancestries	(n=371,458)	and	GWAS	was	adjusted	for	

age,	age2,	genotyping	batch,	statin	treatment	and	the	first	30	PCs.	For	step	1	of	REGENIE	we	

used	directly	genotyped	variants	that	were	filtered	for	a	MAF	≥	0.01,	MAC	≥	100,	genotype	

missingness	<	0.1,	Hardy-Weinberg	equilibrium	test	p	≥	10-15	and	sample	missingness	<	0.1	

within	 the	 pipeline.	 For	 step	 2	 of	 REGENIE	 we	 included	 variants	 imputed	 to	 a	 custom	

reference-panel	 (hg19)	with	MAC	>	 100	 and	 an	 imputation	 info	 score	 >	 0.3	 (42,188,331	

SNPs).	
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8	

Evaluation	and	Compute	Infrastructure	

Experiments	 were	 performed	 on	 two	 different	 computing	 environments.	 All	 validation	

experiments	 and	 benchmarks	 for	 different	 chunk	 sizes	 and	 chunking	 strategies,	 were	

executed	on	an	in-house	HPC	cluster.	The	in-house	HPC	cluster	is	based	on	Slurm	with	60	

CPU	 nodes	 (AMD	 EPYS	 7713P)	 consisting	 of	 64	 cores	 and	 1TB	 RAM	 each.	 Local	

experiments	were	executed	with	 the	appropriate	Nextflow	profile	 (--profile	 slurm)	using	

Nextflow	 version	 22.10.4	 in	 combination	 with	 Singularity.	 To	 provide	 cloud	 cost	

estimations,	we	 ran	 experiments	 on	 AWS	Batch	with	 450	 vCPUS	 and	 different	 instances	

types	(on	demand,	spot)	executed	with	nf-tower	(see	Resources).	As	a	dataset	we	used	data	

from	 the	 UK	 Biobank	 under	 application	 number	 62905	with	 ~460K	 samples	 and	 >90M	

variants	and	100	copies	of	 the	Lp(a)	phenotype	to	mimic	running	the	pipeline	on	several	

phenotypes	in	parallel.		

Results	

Pipeline	Overview	

The	 nf-gwas	 pipeline	 automatically	 performs	 three	 main	 steps	 including	 (a)	 data	 pre-

processing	 steps	 such	 as	 quality	 control,	 phenotype	 validations	 or	 file	 conversions,	 (b)	

alternative	association	analyses	using	REGENIE	2	(currently	single-variant,	interaction	and	

gene-based	 mode)	 and	 (c)	 data	 post-processing	 steps	 such	 as	 annotation,	 interactive	

visualization,	indexing	and	optional	lift-over	to	allow	efficient	data	exploration	and	further	

processing	of	results	(Figure	2).	Parameters	 for	 the	mandatory	and	optional	steps	can	be	

defined	 in	 a	 Nextflow	 configuration	 file.	 The	 pipeline	 supports	 typical	 file	 formats	 for	

association	 testing	 (VCF,	bgen)	 and	different	 genome	builds	 (hg19/hg38)	 to	 avoid	 error-

prone	and	 time	or	 resource	 intensive	 conversions.	To	 reduce	 costs	 and	 to	 efficiently	use	

computational	 resources,	 processes	 are	massively	 parallelized	 (see	Methods).	Optionally,	

lift-over	of	results	to	other	genome	builds	(hg19/hg38)	is	performed	to	e.g.	allow	out	of	the	

box	 meta-GWAS	 with	 studies	 imputed	 to	 other	 reference	 panels.	 An	 overview	 of	 all	

required	 and	 optional	 parameters	 can	 be	 found	 in	 our	 online	 documentation	 (see	
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9	

Resources).	 The	 documentation	 also	 provides	 instructions	 on	 executing	 the	 pipeline	 for	

advanced	 users	 (see	 “Getting	 started”)	 and	 for	 users	 without	 prior	 command	 line	

knowledge	(see	“Beginners	guide”).	

Pre-processing:	Input	Validation	and	Quality	Control	

In	the	pre-processing	step,	the	file	format	of	the	phenotypes	and	the	optional	covariates	is	

validated.	 If	 phenotypes	 are	 not	 normally	 distributed,	 nf-gwas	 provides	 a	 parameter	 to	

rank	inverse	normally	transform	(RINT)	phenotypes	and	it	displays	the	distribution	of	the	

RINTed	phenotype	 in	 the	 final	 report.	 If	 the	 genetic	 data	 is	 provided	 in	VCF	 format,	 it	 is	

converted	to	plink2	to	be	compliant	with	REGENIE	input	format.	To	account	for	relatedness	

and	population	structure,	REGENIE	first	uses	a	subset	of	genetic	markers	in	step	1	to	fit	a	

whole	genome	regression	model	that	is	then	used	as	covariates	according	to	the	leave	one	

chromosome	 out	 scheme	 in	 step	 2	 (i.e.	 tests	 the	 association	 of	 a	 larger	 set	 of	 genetic	

variants,	e.g.	imputed	SNPs,	with	the	phenotypes)	2.	For	step	1,	REGENIE	requires	directly	

genotyped	 SNPs	with	 a	 good	 quality	 that	 should	 optimally	 be	 around	500,000	 SNPs	 and	

should	not	exceed	1,000,000	SNPs	to	avoid	a	high	computational	burden.	Therefore,	a	set	of	

filters	are	automatically	applied	using	plink2	14	with	default	values	currently	set	to:	MAF	≥	

0.01,	MAC	≥	100,	genotype	missingness	<	0.1,	Hardy-Weinberg	equilibrium	test	p	≥	10e-15	

and	sample	missingness	<	0.1	(adjustable	in	the	Nextflow	configuration	file).	Optionally,	the	

variants	can	further	be	pruned	using	plink2	with	adjustable	thresholds	and	filters.		

Association	testing	

The	pipeline	currently	supports	three	analysis	modes	including	(a)	single-variant	(default),	

(b)	 gene-based	 and	 (c)	 interaction	 testing	with	 genetic	 and	 environmental	 variables.	 All	

three	modes	can	be	run	on	thousands	of	phenotypes	 in	parallel.	Further,	all	 three	modes	

support	adjustment	for	a	set	of	covariates	directly	within	the	pipeline	and	conditioning	on	

a	set	of	genetic	variants	that	are	also	added	as	covariates	in	step	1	and	step	2	of	REGENIE.	

The	pipeline	works	for	quantitative	and	binary	traits	and	additive,	as	well	as	dominant	and	

recessive	 association	 testing.	 Exemplary	 data	 input	 files	 can	 be	 found	 in	 the	 GitHub	

repository.	
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Post-processing:	Annotation,	Reporting	and	Data	Manipulation	

The	pipeline	automatically	performs	post-processing	of	data	 including	(a)	annotation,	(b)	

visualization	of	 results	 in	 an	 interactive	 report	 and	 (c)	data	preparation	 for	downstream	

analyses.		

For	annotation,	results	are	automatically	linked	with	rsIDs,	the	name	of	the	nearest	genes	

and	the	distance	to	those	genes.	Top	gene	loci	are	displayed	with	links	to	the	GWAS	catalog.	

For	 visualization	 of	 results,	 an	 interactive	 report	 is	 automatically	 generated	 that	 allows	

exploration	of	results.	The	overview	report	provides	a	summary	on	the	number	of	top	loci	

and	 allows	 the	 navigation	 of	 phenotype-specific	 reports	 (Figure	 3	 left	 side).	 For	 the	

selected	 phenotype,	 the	 overview	 report	 allows	 the	 navigation	 to	 “Interactive	 Plots”	 and	

“Details	and	Phenotype”	(Figure	3	tabs	above	phenotype	name).	The	tab	“Interactive	Plots”	

can	be	used	to	interactively	explore	the	GWAS	results.	Hovering	the	mouse	over	a	variant	

will	depict	more	details	in	a	blue	box.	The	report	also	contains	a	table	of	the	top	loci	with	

the	most	important	information	and	links	of	(a)	the	lead	SNP	and	(b)	the	annotated	nearest	

gene	to	the	GWAS	catalog	to	quickly	look	up	important	details	and	published	findings.	The	

tab	 “Details	 and	 Phenotype”	 contains	 a	 static	 Manhattan	 plot	 and	 q-q	 plot	 suitable	 for	

publications,	 a	 more	 detailed	 top	 loci	 table	 (e.g.	 also	 including	 allele	 frequencies,	

imputation	 info	 score	 and	 distance	 to	 the	 nearest	 gene),	 summary	 statistics	 on	 the	

phenotype	and	project	summary	including	pipeline	version.		

For	 downstream	 analyses,	 summary	 statistics	 are	 automatically	 tabix-indexed	 and	 are	

compatible	 with	 LocusZoom	 and	 LocalZoom	12.	 Optionally,	 the	 pipeline	 can	 perform	

automatic	 conversion	 of	 GWAS	 results	 into	 a	 target	 build,	 if	 required	 for	 further	

downstream	analyses	(e.g.	meta-GWAS	with	studies	on	another	genome	build).	

Output	files	and	structure	

Our	pipeline	produces	 several	 output	 files.	 The	overview	HTML	 report	 (or	 index	 report)	

summarizes	 all	 main	 results	 (e.g.	 interactive	 Manhattan/q-q	 plot,	 phenotype	 statistics)	

from	 the	 different	 traits	 in	 a	 browsable	way.	 Individual	 phenotype	 reports	 are	 provided	

(folder	index_report)	including	publication-ready	plots.	Summary	statistics	are	included	in	
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the	results	folder	and	consist	of	an	unfiltered	REGENIE	file	and	a	p-value	filtered	file	(folder	

tophits)	 for	 each	 phenotype.	 Importantly,	 all	 pipeline	 executions	 are	 logged	 for	

reproducibility	and	log	information	and	the	validated	input	file	are	also	provided	within	an	

output	folder.		

Validation	of	GWAS	results	

We	validated	and	benchmarked	GWAS	results	of	our	parallelized	pipeline	against	published	

data	generated	using	(a)	a	pipeline	with	SAIGE	implemented	in	Hail	Batch	by	the	Pan-UK	

Biobank	project	and	(b)	BOLT-LMM	v2.3.1	applied	by	Said	et	al.	13.	For	the	Pan-UK	Biobank	

dataset,	Miami	plots	show	an	excellent	agreement	between	the	publicly	available	summary	

statistics	and	the	output	of	our	pipeline	(Figure	4).	A	complete	comparison	with	Said	et	al.	

was	 not	 possible	 based	 on	 Miami	 plots	 since	 statistics	 were	 only	 publicly	 available	 for	

selected	 SNPs	 of	 the	 significant	 loci.	 Of	 the	 39	 selected	 SNPs,	 37	 were	 available	 in	 our	

summary	statistics	(Supplement	Table	S1).	Correlation	is	high	between	both	beta	estimates	

(rho	=	0.99,	p<2.2*10-15)	and	-log10(p)	values	(rho	0.94,	p<2.2*10-15;	Supplement	Figure	S1	

A,	C,	E).	Bland	Altman	plots	also	show	a	good	agreement	between	the	GWAS	of	Said	et	al.	

and	our	pipeline	(Supplement	Figure	1	B,	D,	E)	except	for	slightly	larger	differences	for	LPA	

(Said	et	al.	versus	nf-gwas:	beta	=	-1.02	versus	-1.42	and	-log10(p)	=	19379	versus	19594,	

respectively;	 Supplement	 Table	 S1).	 Both	 experiments	 show	 that	 our	 pipeline	 gives	 out	

highly	 reliable	 results	 even	 across	 GWAS	models	 independently	 of	 the	 applied	 chunking	

strategy,	 which	 resulted	 in	 a	 much	 faster	 wall-time	 compared	 to	 chromosome-wise	

execution.		

Parallelization	Benchmark		

We	performed	a	GWAS	analysis	using	the	UK	Biobank	imputed	dataset	(90M	input	variants,	

10	phenotypes)	on	our	local	HPC	infrastructure	(see	Methods).	We	executed	7	experiments	

consisting	 of	 different	 chunk	 strategies	 and	 chunk	 sizes.	 Each	 experiment	 has	 been	

executed	3	times,	whereas	the	mean	time	is	reported	in	Table	1.	We	show	how	the	different	

parallelization	 strategies	 affect	 the	 overall	 runtime.	While	 a	 chromsome-based	 execution	

can	 be	 achieved	 easily	 by	 user-specific	 scripts,	 the	 chunk-based	 execution	 and	 therefore	
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high	 parallelization	 has	 been	 implemented	 directly	 within	 nf-gwas	 and	 results	 in	 better	

utilization	 of	 large	 cluster	 architectures.	 Our	 chunksize	 experiments	 show	 that	 for	 both	

strategies	(variants,	range)	a	value	which	results	in	567	chunks	(chunksize	of	5M	for	range,	

chunksize	of	168,200	for	variants)	results	in	the	best	overall	performance	(4h	35	min	for	

the	variants	strategy,	4h	48	min	for	the	range	strategy).	Our	results	further	show,	that	an	

execution	using	the	variants	strategy	results	in	a	more	uniform	execution	time	for	all	567	

chunks	 (median/maximum:	 28	 min	 /	 36	 min)	 compared	 to	 the	 range	 strategy	

(median/maximum:	28	min	/	58	min).	

Portability	to	AWS	Batch	

To	 show	 the	 biobank-scale	 possibilities	 of	 nf-gwas,	 we	 performed	 a	 full	 GWAS	 analysis	

using	the	UK	Biobank	imputed	dataset	(460,000	samples,	90M	input	variants,	3TB	of	data)	

with	100	phenotypes	with	AWS	Batch.	Overall,	nf-gwas	performed	the	GWAS	analyses	in	15	

hours	using	4,600	CPU	hours	with	estimated	costs	of	~$130	using	AWS	spot	instances.	This	

corresponds	 to	 a	 cost	 of	 1	 US	 Dollar	 for	 more	 than	 3,000	 samples	 running	 on	 100	

phenotypes	 in	 parallel	 and	 includes	 all	 pre-	 and	 post-processing	 steps.	 We	 further	

investigated	 the	effect	of	using	on-demand	versus	spot	 instances.	While	AWS	on-demand	

instances	have	a	fixed	price	per	hour	and	up-time	is	therefore	assured,	spot	instances	are	

cheaper	but	can	be	 interrupted	depending	on	the	current	availability	of	 the	 instances.	To	

support	spot	instances,	we	implemented	an	interruption	strategy	to	avoid	that	an	analysis	

fails	 in	 case	 a	 single	 spot	 instance	 is	 interrupted.	 Table	 2	 shows	 the	 price	 of	 a	 GWAS	

analysis	 running	 on	 5.76M	 variants	 (chromosome	 6),	 ~460,000	 samples	 and	 100	

phenotypes.	It	can	be	seen	that	by	using	spot-instances	~80%	of	overall	costs	can	be	saved.		

Overall,	 usage	 of	 spot	 instances	 can	 result	 in	 a	 longer	 overall	 runtime,	 but	 with	 the	

advantage	of	reduced	costs.	

Portability	to	the	UKB	Research	Analysis	Platform	(RAP)	

The	REGENIE	method	 is	also	available	on	RAP	as	an	application	(within	the	tool	 library),	

which	 allows	 users	 to	 specify	 inputs	 and	 output	 parameters	 graphically.	 The	 application	
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only	 includes	 the	 GWAS	method	 itself	 and	 does	 not	 include	 any	 pre-	 or	 post-processing	

steps,	 which	 are	 available	 in	 nf-gwas.	 Since	 RAP	 does	 not	 allow	 to	 execute	 Nextflow	

workflows	natively,	users	can	still	benefit	 from	the	nf-gwas	pipeline	on	RAP	by	starting	a	

single	cloud	workstation,	downloading	the	data	into	the	cloud	workstation	and	running	the	

pipeline.	This	setup	will	allow	to	use	our	well-test	GWAS	workflow	without	downloading	

any	data.		

Discussion	
While	biobank	scale	datasets	with	millions	of	samples	enable	the	discovery	of	novel	genetic	

associations	 for	 diseases	 and	 traits,	 researchers	 are	 faced	 with	 new	 bioinformatic	

challenges	at	the	same	time.	In	the	field	of	GWAS	analysis,	new	methods	such	as	REGENIE	

have	been	developed	over	 the	 last	 years,	 offering	memory	 efficient	 solutions	 for	 parallel	

execution	 of	 thousands	 of	 phenotypes	2.	 Still,	 the	 execution	 over	 multiple	 machines	

involves	detailed	and	field-specific	knowledge	on	distributed	environments	and	can	take	a	

considerable	 amount	 of	 time.	 Different	 computational	 pipelines	 exist	 to	 simplify	 the	

execution	 over	 machines,	 nowadays	 often	 based	 on	 the	 Nextflow	 workflow	 system	

(Supplement	Table	S2)	4-6.	These	pipelines	encapsulate	necessary	parallelization	steps	and	

provide	 users	 with	 a	 ready-to-use	 pipeline	 with	 the	 advantages	 of	 reproducibility	 and	

portability	to	other	systems.	Nevertheless,	no	pipeline	currently	exists	solving	the	use	cases	

many	institutes	like	ours	face.	These	include	the	highest	possible	parallelization	of	all	data-

intensive	steps,	visualization	of	millions	of	data	points	(e.g.	Manhattan	plot)	directly	in	the	

browser,	out-of-the-box	support	 for	different	genetic	 formats	 (e.g.	 coming	 from	Michigan	

Imputation	 Server	 and	UK	Biobank),	 or	 post-processing	 steps	 (e.g.	 lift-over)	 for	 usage	 in	

meta-GWAS	 analysis.	 Furthermore,	 no	 benchmarks	 for	 different	 environments	 or	 cost	

estimations	for	public	clouds	are	currently	available	on	how	the	pipelines	perform	e.g.	on	

different	parallelization	levels.	

Here	we	present	nf-gwas,	which	includes	a	rich	feature	set	and	can	be	used	for	different	use	

cases	 (such	 as	 single	 variant	 association	 testing,	 gene-based	 testing	 for	 rare	 variants	 or	

interaction-testing).	 Since	 rare	 variants	 are	 available	 in	 an	 increasing	 number	 of	
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populations	and	large	datasets	also	reach	the	statistical	power	to	investigate	interactions,	

gene-based	 testing	and	 interaction	analysis	may	become	more	relevant	 in	 the	 future	and	

have	 already	 proven	 as	 important	 tools	 for	 novel	 findings	8,	 9.	 Our	 pipeline	 is	 based	 on	

Nextflow	 and	 benefits	 from	 all	 its	 advantages	7.	 First,	 collaborators	 can	 use	 the	 pipeline	

locally	 to	 calculate	 summary	 statistics	 with	 a	 clearly	 defined	 workflow	 excluding	 the	

possibility	to	introduce	artifacts	or	errors.	Second,	reproducibility	of	results	is	given	at	any	

time	 and	 collaborators	 can	 re-run	 experiments	 at	 a	 later	 point	 using	 the	 same	 software	

stack.	Third,	users	get	a	clean	and	standardized	project	structure	allowing	them	to	navigate	

quickly	 between	 projects.	 Fourth,	 its	 modular	 structure	 allows	 it	 to	 add	 new	 GWAS	

methods	 in	 the	 future	or	 execute	 optional	 steps	 for	 specific	 scenarios.	 For	 example,	 new	

imputation	reference	panels	are	built	on	different	builds	(currently	hg19	or	hg38)	and	an	

optional	 lift-over	 step	 allows	 the	 migration	 between	 builds.	 Finally,	 the	 pipeline	 also	

benefits	 from	high	quality	 code	due	 to	 inclusion	of	unit-style	 testing	provided	by	nf-test.	

This	motivates	collaborators	to	add	new	functionality	without	breaking	existing	ones.	Our	

pipeline	 has	 been	 extensively	 validated	 and	 benchmarked.	 Validation	 ensures	 that	 our	

parallelized	 pipeline	 does	 not	 introduce	 artefacts	 or	 errors	 compared	 to	 published	 and	

already	validated	non-parallelized	GWAS	models.	The	benchmarks	on	AWS	provides	cost	

estimates	on	typical	biobank-scale	datasets	to	users.	We	show	that	a	large	GWAS	including	

460,000	samples,	>90M	variants	and	100	phenotypes	can	be	run	in	~15	hours,	allowing	to	

analyze	more	than	3,000	samples	for	1	US	Dollar.		

The	 pipeline	 currently	 has	 some	 minor	 limitations.	 While	 REGENIE	 is	 currently	 the	

computationally	 most	 efficient	 method,	 it	 is	 also	 the	 only	 supported	 one	 in	 nf-gwas.	

Nevertheless,	our	modular	structure	will	allow	us	or	others	to	integrate	new	methods	(e.g.	

fastGWA-GLMM	15)	 as	 a	 new	 process	 without	 re-writing	 the	 overall	 workflow.	 Future	

developments	 of	 the	 pipeline	 include	 forming	 a	 community	 behind	 nf-gwas	 e.g.	 by	

discussing	 the	 possibility	 to	 transform	 it	 into	 an	 nf-core	 pipeline	 or	 improving	 the	

functionality	 by	 adding	 additional	 steps	 for	 pre-	 or	 post-processing.	 Overall,	 nf-gwas	 is	

built	 on	 our	 knowledge	 of	 executing	 GWAS	 for	 many	 years,	 designed	 for	 thousands	 of	

phenotypes	 with	 scalable	 reporting	 features,	 is	 well	 tested	 and	 already	 attracted	 many	

other	GWAS	users.	
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Conclusion	

In	 the	work	at	hand,	we	presented	nf-gwas,	a	scalable	pipeline	based	on	Nextflow	to	run	

GWAS	analysis	in	a	distributed	environment.	The	pipeline	consists	of	several	pre-	and	post-

processing	 steps	 and	 currently	 uses	 REGENIE	 as	 a	 regression	 model	 for	 association	

analysis.	The	pipeline	 is	built	on	our	experience	 in	the	 field	of	GWAS	analysis	 from	many	

years	 and	helped	our	 institute	 to	 focus	more	on	data	 interpretation	 instead	of	workflow	

implementation	 details.	 We	 especially	 focused	 on	 high	 parallelization	 of	 data-intensive	

steps,	whereas	the	overall	parallelization	level	can	be	managed	by	the	end-user	enabling	a	

maximum	of	 flexibility.	The	pipeline	 is	well-documented,	outputs	 interactive	web	reports	

including	millions	of	data	points,	provides	 tutorials	 for	new	users	and	 is	 tested	using	 the	

unit-style	 testing	 framework	 nf-test.	 Our	HPC	 benchmarks	 and	 cost	 estimations	 on	 AWS	

show	that	the	pipeline	scales	well	and	will	simplify	the	executions	of	GWAS	for	the	years	to	

come.	
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Figures	

	

	

Figure	1:	Overview	of	the	REGENIE	parallelization.	Prediction	genotypes	(Step	1	Level	

0)	are	first	run	on	a	user-defined	chunk	level	and	calculated	predictions	are	then	merged	

by	phenotype	in	parallel.	Step	2	(association	of	genotypes	with	phenotypes)	and	annotation	

is	performed	in	parallel	for	all	association	genotype	chunks	in	combination	with	the	LOCO	

predictions.	Afterwards,	 annotated	 association	 results	 are	merged	per	phenotype	 and	 all	

post-processing	steps	within	the	pipeline	are	performed	in	parallel	for	all	phenotypes	(not	

shown).	
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Figure	2:	Overview	of	 the	nf-gwas	pipeline.	 Input	 files	 are	on	 the	 left	 side	 and	output	

files	 on	 the	 right	 side.	 The	 color	 defines	 the	 type	 of	mode.	Optional	 steps	 are	marked	 in	

gray.	
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Figure	3:	Example	of	a	nf-gwas	report.	The	 index	gives	an	overview	on	all	phenotypes	

included	 into	 the	 run	and	 the	number	of	 top	 loci	 found	 (left	 side).	 In	 the	 tabs	 at	 the	 top	

users	 can	 navigate	 between	 the	 interactive	 plots	 and	 more	 details	 on	 the	 respective	

phenotype	 (e.g.	 phenotype	 summary	 statistics,	 high	 resolution	Manhattan	 and	 QQ	 plots,	

summary	 statistics	 on	 the	 phenotype	 and	 log	 files).	 By	 hovering	 over	 the	 interactive	

Manhattan	 plot,	 more	 details	 about	 the	 variants	 are	 depicted	 in	 a	 box	 (e.g.	 here	 for	

rs10455872).	The	top	loci	table	below	is	searchable	and	rsIDs	and	gene	names	are	linked	

to	the	GWAS	catalog.		
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Figure	4:	Miami	plots	of	benchmarking	to	Pan-UK	Biobank	summary	statistics.	The	red	

dashed	 line	 marks	 genome-wide	 significance.	 Plots	 C	 and	 D	 are	 cut	 at	 -log10(p)	 =	 250	

excluding	SNPs	with	higher	values.	 	
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Tables	
Table	1:	GWAS	Runtime	and	CPU	hours	on	a	 local	HPC	Slurm	cluster.	We	executed	a	

GWAS	 using	 a	 UK	 Biobank	 consisting	 of	 ~460K	 samples,	 >	 90M	 variants	 and	 10	

quantitative	 phenotypes.	 Each	 experiment	 consists	 of	 a	 different	 chunking	 strategy	 and	

chunk	size.	Each	experiment	was	performed	three	times	and	the	mean	is	reported.		

	 	 	 Local	HPC	

Chunks		 Chunksize	 Type	 Runtime	 CPU	hours	

5432		 500K	 region	 5h	56	min	 2,196	

5432	 17,170	 variant	 5h	27	min	 1,491	

567	 5M	 region	 4h	48	min	 2,163	

567		 168,200	 variant	 4h	35	min	 2,195	

293	 10M	 region	 5h	14	min	 2,184	

293	 330,500	 variant	 5h	19	min	 2,180	
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Table	2:	GWAS	runtime	and	costs	on	AWS	Batch.	We	executed	a	UK	Biobank	GWAS	on	

~460K	 samples,	 5.76M	 variants	 and	 100	 quantitative	 phenotypes.	 We	 executed	 the	

experiment	using	on	demand	and	spot	instances	and	show	that	up	to	80%	of	the	costs	can	

be	saved	when	using	spot	instances.	We	executed	the	experiments	three	times,	since	spot	

instance	prices	depend	on	available	resources.		

Variants	 	 Max.	vCPUs	 Instance	Types	 Costs	(US	Dollar)	 CPUS	hours	 Runtime	 Saving	

5.76M	 450		 on	demand	 34.331	 553	 2h	43	min	 -	

5.76M		 450	 spot	 7.5	 311	 1h	59	min	 78	%	

5.76M	 450	 spot	 7.4	 308	 1	h	55	min	 78	%	

5.76M	 450	 spot	 7.6	 311	 1h	58	min	 78%	
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