

1 **Title:** Whole genome structural predictions reveal hidden diversity in putative oxidative
2 enzymes of the lignocellulose degrading ascomycete *Parascedosporium putredinis* NO1.

3 **Author Names:**

4 Conor JR Scott^a, Daniel R Leadbeater^a, Nicola C Oates^a, Sally R James^b, Katherine Newling^b,
5 Yi Li^b, Nicholas GS McGregor^c, Susannah Bird^a, Neil C Bruce^a

6 **Authors and Affiliations:**

7 ^a Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10
8 5DD, United Kingdom

9 ^b Bioscience Technology Facility, Department of Biology, University of York, York YO10 5DD,
10 United Kingdom

11 ^c York Structural Biology Laboratory, Department of Chemistry, The University of York, York,
12 YO10 5DD, United Kingdom

13 **Corresponding Author:**

14 Conor JR Scott cs1535@york.ac.uk

15

16 **Data Availability**

17 The sequence data generated and analysed during the current study are available in the
18 European Nucleotide Archive, project code PRJEB60285, secondary accession ERP145344
19 (<https://www.ebi.ac.uk/ena/browser/view/PRJEB60285>). The WGS Sequence Set for the
20 genome assembly is available in the European Nucleotide Archive, Accession
21 CASHTG010000000.1 (<https://www.ebi.ac.uk/ena/browser/view/CASHTG010000000>). The
22 assembly is also available through the NCBI database, Accession GCA_949357655.1
23 (https://www.ncbi.nlm.nih.gov/datasets/genome/GCA_949357655.1/).

24

25 **Abstract**

26 Economic valorisation of lignocellulose is paramount to realising a true circular bioeconomy;
27 however, this requires the development of systems and processes to expand the repertoire of
28 bioproducts beyond current renewable fuels, chemicals, and sustainable materials.
29 *Parascedosporium putredinis* NO1 is an ascomycete that thrived at the later stages of a wheat-
30 straw composting community culture, indicating a propensity to degrade recalcitrant lignin-
31 enriched biomass, but exists within an underrepresented and underexplored fungal lineage.
32 This strain has proven an exciting candidate for the identification of new enzymes targeting
33 recalcitrant components of lignocellulose following the recent discovery of a new lignin β -ether
34 linkage cleaving enzyme.

35 The first genome for the genus *Parascedosporium* for *P. putredinis* NO1 genome was
36 sequenced, assembled, and annotated. The genome is 39 Mb in size, consisting of 21 contigs
37 annotated to contain 9,998 protein-coding sequences. The carbohydrate-active enzyme
38 (CAZyme) repertoire was compared to 2570 ascomycete genomes and in detail with
39 *Trichoderma reesei*, *Fusarium oxysporum*, and sister taxa *Scedosporium boydii*. Significant
40 expansion in the oxidative auxiliary activity class of CAZymes was observed in the *P.*
41 *putredinis* NO1 genome resulting from increased sequences encoding putative lytic
42 polysaccharide monooxygenases (LPMOs), oxidative enzymes acting within LPMO redox
43 systems, and lignin-degrading laccases. *P. putredinis* NO1 scored above the 95th percentile
44 for AA gene density across the ascomycete phylum, suggesting a primarily oxidative strategy
45 for lignocellulose breakdown. Novel structure-based searching approaches were employed,
46 revealing 17 new sequences with structural similarity to LPMO, laccase, and peroxidase
47 sequences and which are potentially new lignocellulose-degrading enzymes.

48

49

50

51 **Importance**

52 An annotated reference genome has revealed *P. putredinis* NO1 as a useful resource for the
53 identification of new lignocellulose degrading enzymes for biorefining of woody plant biomass.
54 Utilising a 'structure-omics' based searching strategy, new potentially lignocellulose-active
55 sequences were identified that would have been missed by traditional sequence searching
56 methods. These new identifications, alongside the discovery of novel enzymatic functions from
57 this underexplored lineage with the recent discovery of a new phenol oxidase that cleaves the
58 main structural β-O-4 linkage in lignin from *P. putredinis* NO1 highlights the underexplored
59 and poorly represented family Microascaceae as particularly interesting candidates worthy of
60 further exploration toward the valorisation of high value biorenewable products.

61

62 **Keywords:**

63 *Parascedosporium*, Ascomycete, CAZymes, Auxiliary Activity, Oxidative, Lignocellulose,
64 Lignin, AlphaFold, Structural, Structure-omics

65

66

67

68

69

70

71

72

73

74 **Background**

75 Energy consumption continues to grow rapidly alongside improvements in living standards,
76 and fossil fuels continue to play a major role in industrial and agricultural sectors. With their
77 widely accepted environmentally damaging effects, the need to move away from the use of
78 fossil fuels and towards a net zero carbon fuel source is ever more pressing. Lignocellulosic
79 residues consisting of cellulose, hemicellulose and lignin with minor amounts of pectins and
80 nitrogen compounds offer the largest source of biomass for liquid fuel, chemicals and energy
81 (1). However, biorefining of lignocellulose has so far been limited by the recalcitrant nature of
82 the intricate and insoluble lignin network (2, 3).

83 Fungi are exceptional wood-degraders and are predominantly used to produce an array of
84 bioproducts, including commercial enzyme cocktails used in biological processing of
85 lignocellulosic biomass. Ascomycetes, known as soft-rot fungi, degrade lignocellulose by
86 penetration of plant secondary cell walls with hyphae that secrete complex enzyme cocktails
87 in abundance at the site of attack (4). *Parascedosporium putredinis* NO1 is a soft-rot
88 ascomycete identified previously as dominant in the later stages of a mixed microbial compost
89 community grown on wheat straw (5). This behaviour suggests that the fungus can efficiently
90 deconstruct and potentially metabolise the more recalcitrant carbon sources in the substrate.
91 Indeed, the recent discovery of a new oxidase enzyme that cleaves the major β -ether units in
92 lignin in the *P. putredinis* NO1 secretome, which releases the pharmaceutically valuable
93 compound tricin from wheat straw while simultaneously enhancing digestibility of the biomass
94 (5), promotes a requirement for further exploration of this taxa.

95 Here, an annotated reference genome for *P. putredinis* NO1 reveals a repertoire of
96 carbohydrate-active enzymes (CAZymes) and oxidative enzymes focused on degrading the
97 most recalcitrant components of lignocellulose. Comparisons across the ascomycete tree of
98 life suggest an increased proportion of oxidative enzymes within the CAZyme repertoire of *P.*
99 *putredinis* NO1. Further investigation through CAZyme repertoire comparison with two other
100 industrially relevant wood-degrading ascomycetes; *Trichoderma reesei*, and *Fusarium*

101 *oxysporum*, as well as sister taxa *Scedosporium boydii* reveals expansion in families of
102 enzymes with roles in the oxidative dissolution of lignocellulose and demonstrated this fungus
103 to be an exciting candidate for the identification of new lignocellulose degrading activities.
104 Novel approaches were used to search the *P. putredinis* NO1 genome for potentially
105 unannotated enzyme sequences with relation to three types of classic oxidative lignocellulose
106 degraders: lytic polysaccharide monooxygenases (LPMOs), laccases, and peroxidases.
107 Predicted structures were obtained for >96 % of the protein coding sequences in the genome.
108 Structural searches were found to be effective at identifying multiple sequences for potentially
109 novel proteins involved in lignocellulose breakdown which had low levels of structural similarity
110 to the classic oxidative lignin and crystalline cellulose degrading enzymes. These sequences
111 were also missed by sequence and domain-oriented searches. Further investigation and
112 comparison of structures revealed varying levels of structural overlap despite the lack of
113 sequence similarity. This strategy of combining search approaches can be adopted to identify
114 divergent enzyme sequences which may have alternate lignocellulose degrading activity,
115 variation in substrate-specificity, and different temperature and pH optima.
116 Further investigation and characterisation of such lignocellulose-degrading enzymes adds to
117 the wealth of enzymes which can be incorporated into commercial enzyme cocktails to
118 improve their effectiveness and boost the efficiency at which biomass is converted to
119 renewable liquid fuel and value-added chemicals.
120
121
122
123
124
125

126 **Results and Discussion**

127 **The Genome of *P. putredinis* NO1 Suggests a Strategy to Degrade the Most Recalcitrant**
128 **Components of Lignocellulose**

129 The *P. putredinis* NO1 genome was sequenced using nanopore sequencing with the Oxford
130 Nanopore Technologies' (ONT) MinION system to avoid errors in the assembly and annotation
131 of coding regions resulting from long regions of repetitive DNA in eukaryotic genomes (6). The
132 genome is 39 Mb in size and the assembly consists of 21 contigs, containing 9998 protein
133 coding sequences. To investigate the lignocellulose-degrading enzyme repertoire of the *P.*
134 *putredinis* NO1 genome, all protein coding sequences were annotated for CAZyme domains
135 using the dbCAN server (7). In total, 795 CAZyme domains were predicted in the *P. putredinis*
136 NO1 genome and the distribution of these domains across the CAZyme classes can be seen
137 in **Figure 1A**. Glycoside Hydrolases (GH) are the most abundant CAZyme class with 290
138 identified. While Auxiliary Activities (AA) also make a large contribution with 162 domains.
139 Glycosyl Transferases (GT) contribute 113 domains, and Carbohydrate Esterases (CE)
140 contribute 51. Polysaccharide Lyases (PL) contribute the fewest with only 18 domains. In
141 addition to these catalytic classes, 161 Carbohydrate Binding Modules (CBMs) were also
142 identified.

143 An interesting observation was the seemingly high number of AA class CAZymes observed in
144 the *P. putredinis* NO1 genome. To investigate this further and more broadly within the scope
145 of the ascomycete tree of life, CAZyme profiles of all available ascomycete genomes were
146 elucidated (**Figure 2**). It was clear that *P. putredinis* NO1 has one of the highest proportions
147 of AA class CAZymes within its repertoire among ascomycete fungi. *P. putredinis* NO1
148 (*Hypocreomycetidae*) belonged above the 95th percentile for AA gene density among the
149 highest AA populated genomes (25.59%), behind the genera *Diaporthe* (*Sordariomycetidae*;
150 27.7 ± 2.09%), *Xanthoria* (OSLEUM clade; 25.9 ± 2.14%) and members belonging to the
151 enriched order *Xylariales* (24.08 ± 3.01%) with contributions from densely populated genera
152 *Hypoxyylon* (24.72 ± 2.69%), *Annulohypoxylon* (25.16 ± 1.73%), *Nemania* (25.44 ± 2.92%),

153 *Neopestalotiopsis* ($27.5 \pm 1.08\%$), *Pestalotiopsis* ($27.39 \pm 1.56\%$), *Arthrinium* ($26.12 \pm 3.34\%$),
154 *Apiospora* ($26.42 \pm 2.87\%$) and *Hymenoscyphus* ($24.66 \pm 2.11\%$). Sister taxon *Scedosporium*
155 ($24.59 \pm 1.66\%$) exhibited slightly lower AA density and belonged above the 90th percentile.
156 Interestingly, members of the *Taphrinomycotina* ($7.53 \pm 3.36\%$) and *Saccharomycetales* ($8.95 \pm 4.63\%$), often associated with lignocellulose deconstruction, displayed significantly reduced
157 AA abundance in stark contrast to neighbouring phylogenies such as *Pezizomycotina* ($18.42 \pm 4.29\%$). Members of the order *Helotiales* ($21.04 \pm 3.42\%$) and class *Dothideomycetes* ($20.26 \pm 3.98\%$) displayed a degree of enrichment of AAs whilst members belonging to
161 *Eurotiomycetes* ($16.64 \pm 2.83\%$) displayed lower abundances. Considering how the AA class
162 of enzymes is predominantly associated with the degradation of lignin and crystalline cellulose
163 it highlights a potential strategy of the fungus to target these components. Indeed, in a mixed
164 microbial community grown on wheat straw the fungus was observed to become more
165 dominant in the later stages of the culture, potentially due to its capacity to modify the more
166 difficult to degrade components of lignocellulose for growth (5).

167 Within white- and brown- (basidiomycete), and soft-rot (ascomycete) fungi, it has been
168 demonstrated that the CAZyme repertoire can vary greatly from species to species (8). To
169 investigate the repertoire of *P. putredinis* NO1 in more detail, CAZyme domains were
170 compared to that of three other wood-degrading ascomycetes. *Scedosporium boydii* is located
171 within the sister taxon of *Parascedosporium* and has a genome of 43 Mb containing 1029
172 CAZyme domains. The genome and CAZyme complement of the soft-rot *P. putredinis* NO1
173 are larger than that of *Trichoderma reesei* which contains 786 domains in 34 Mb of DNA. *T.*
174 *reesei* is a mesophilic soft-rot fungus known for its ability to produce high titres of
175 polysaccharide-degrading enzymes that are used in biomass-degrading enzyme cocktails (9).
176 The genome of *P. putredinis* NO1 is slightly smaller than that of *Fusarium oxysporum* at 47
177 Mb, a phytopathogenic fungus containing an expanded CAZyme repertoire of 1430 domains
178 (10). The lignocellulose degrading activities of *F. oxysporum* have been well-investigated in

179 part due to its pathogenicity and ability to ferment sugars from lignocellulose breakdown
180 directly into ethanol (11, 12).

181 Examining the distribution of predicted CAZyme domains revealed that despite the similar
182 overall number of CAZyme domains for *P. putredinis* NO1 and *T. reesei*, the proportion of AA
183 class CAZyme domains is much higher in the genome of *P. putredinis* NO1 (**Figure 1A**).
184 Proportionally, AA class CAZymes make the largest contribution to CAZyme repertoire in the
185 genome of *P. putredinis* NO1 compared to the other ascomycetes (**Figure 1**). This again could
186 suggest an oxidative strategy to target to lignin and crystalline cellulose. Although analysis of
187 fungal secretomes would be required to confirm an improved ability of *P. putredinis* NO1 to
188 deconstruct lignocellulosic components, the high potential capacity for degradation of lignin
189 and crystalline cellulose within the genome suggests that this is an important fungus to explore
190 for new lignocellulose-degrading enzymes. Especially considering that this is the first genome
191 assembly of the genus *Parascedosporium*.

192 The increased contribution of AA class CAZymes is mirrored by a reduced proportion of GH
193 class CAZymes in the *P. putredinis* NO1 genome compared to *T. reesei* and *F. oxysporum*.
194 This reduced GH contribution is also visible in the genome of *S. boydii*, a close relative of *P.*
195 *putredinis* NO1. Despite the reduced number of the hydrolytic GH class CAZymes, the
196 repertoires of *P. putredinis* NO1 and *S. boydii* contain the highest proportions of CBMs,
197 domains typically associated with hydrolytic CAZymes such as GHs (13), but which have also
198 been observed in oxidative LPMOs (14, 15). The increased proportion of CBMs in the genome
199 of *P. putredinis* NO1 could aid the catalytic CAZymes in accessing and binding to these
200 substrates. Indeed, examining the CBM domains at the family level shows a high number of
201 crystalline cellulose binding domains (CBM1) in the genome of both *P. putredinis* NO1 and *S.*
202 *boydii*, much higher than the number of domains assigned to any of the other CBM families
203 (**Supplementary Figure 1**).

204

205 Closer Investigation of the AA CAZyme Repertoire Reveals More About the Lignocellulose

206 Degrading Strategy of *P. putredinis* NO1

207 The high number of AA domains, a functional class that notably contains LPMOs, peroxidases,
208 and laccases (2), in the genome of *P. putredinis* NO1 are likely to endow this fungus with the
209 ability to degrade recalcitrant components of the plant cell wall through a primarily oxidative
210 mechanism. LPMOs are copper-containing enzymes that enhance polysaccharide
211 degradation by generating new sites for attack by hydrolytic CAZymes (16). LPMOs have been
212 shown to act on all major polysaccharide components of lignocellulose. Their oxidative action
213 relies on exogenous electron donors provided by other AA family CAZymes, small molecule
214 reductants and even lignin (2, 16). It has recently been demonstrated that LPMOs readily
215 utilise hydrogen peroxide (H_2O_2) as a cosubstrate also (17, 18).

216 Investigating the distribution of AA domains across the AA families revealed AA9 family
217 members to be the most abundant in the *P. putredinis* NO1 genome with 35 domains, the
218 highest in the four ascomycetes investigated here (**Supplementary Figure 2**). This family
219 contains the cellulose, xylan, and glucan-active LPMOs described above (19). AA3 and AA3_2
220 domains are the second and third most abundant families in the *P. putredinis* NO1 genome
221 with 29 and 27 domains, respectively. These are flavoproteins of the Glucose-methanol-
222 choline (GMC) oxidoreductase family which includes activities such as cellobiose
223 dehydrogenase, glucose-1-oxidase, aryl alcohol oxidase, alcohol oxidase and pyranose
224 oxidase (20). It is proposed that flavin binding oxidative enzymes of this family play a central
225 role in spatially and temporally supplying H_2O_2 to LPMOs and peroxidases or to produce
226 radicals that degrade lignocellulose through Fenton chemistry (17). The *P. putredinis* NO1
227 genome also contains 12 AA7 family domains, the family of glucooligosaccharide oxidase
228 enzymes. These have recently been demonstrated to transfer electrons to AA9 LPMOs which
229 boosts cellulose degradation (21). Altogether, the apparent expansion of these LPMO system
230 families suggest a potentially increased capacity for *P. putredinis* NO1 to oxidatively target
231 crystalline cellulose.

232 The genome of *P. putredinis* NO1 also contains 12 AA1 family CAZyme domains. This family
233 includes laccase and multi-copper oxidase enzymes which catalyse the oxidation of various
234 aromatic substrates while simultaneously reducing oxygen to water (22). It has also been
235 demonstrated that laccases can boost LPMO activity through the release of low molecular
236 weight lignin polymers from biomass which can in turn donate electrons to LPMOs (23).
237 Additionally, 7 domains belonging to the AA8 family were identified, a family of iron reductase
238 domains initially identified as the N-terminal domain in cellobiose dehydrogenase enzymes
239 but also found independently and appended to CBMs (2, 24, 25). These domains are believed
240 to be involved in the generation of reactive hydroxyl radicals that can indirectly depolymerize
241 lignin. There are 6 AA4 domains in the genome of *P. putredinis* NO1, the highest number of
242 the four ascomycetes investigated here. These are vanillyl-alcohol oxidase enzymes with the
243 ability to catalyse the conversion of a wide range of phenolic oligomeric compounds (26).
244 These may act downstream of the lignin depolymerisation catalysed by other members of the
245 AA class. There is a clear capacity in the *P. putredinis* NO1 genome for lignin depolymerisation
246 and metabolism through the multiple domains identified belonging to these families. The *P.*
247 *putredinis* NO1 genome also contains two AA16 domains, a recently identified family of LPMO
248 proteins with an atypical product profile compared to the traditional AA9 family LPMOs and a
249 potentially different mode of activation (27).
250 Gene expression of CAZymes in the *P. putredinis* NO1 genome has been explored previously
251 during growth on glucose, compared to growth on wheat straw with samples taken at days 2,
252 4, and 10 (5). This transcriptomic data gives a view of the potential strategy by which *P.*
253 *putredinis* NO1 utilises its expanded repertoire of AA class CAZymes. Up-regulation of AA
254 class CAZymes during growth on wheat straw compared to growth on glucose was observed
255 predominantly at day 4 and then gave way to up-regulation instead of mainly GH class
256 hydrolytic CAZymes at day 10. This could represent a strategy where the recalcitrant lignin
257 and crystalline cellulose are targeted first by LPMOs and lignin degraders such as laccases,
258 making the polysaccharide substrates of hydrolytic GH enzymes more accessible.

259 Searching the *P. putredinis* NO1 Genome for New Oxidative Lignocellulose Degrading
260 Enzymes with Sequence-, Domain-, and Structural-Based Strategies

261 Due to the evidence of a strategy for *P. putredinis* NO1 to target the most recalcitrant
262 components of lignocellulose and the recent discovery of a new oxidase with the ability to
263 cleave the major linkage in lignin from this strain (5), it was hypothesised the genome of this
264 fungus contains additional new enzymes for the breakdown of plant biomass. Particularly this
265 fungus could contain new enzymes with roles in degrading the lignin and crystalline cellulose
266 components and which have not been annotated as CAZymes in this analysis.

267 Traditionally, homologue searching has been performed using a sequence-based approach
268 (28). Using either the primary amino acid sequence of an example protein to search an
269 unknown database for similar sequences, or with the use of Hidden Markov Models (HMMs)
270 to search for domains of interest (29). However, both techniques rely on primary amino acid
271 sequence homology and neglect that proteins with distantly related sequences may have
272 similar three-dimensional structures and therefore activity. The recent emergence of
273 AlphaFold provides a resource for the fast and accurate prediction of unknown protein
274 structures (30). Using this tool, structures were predicted for >96% of the protein-coding
275 regions of the *P. putredinis* NO1 genome. These structures were used to create a database
276 of protein structures into which structures of interesting enzymes such as those for LPMOs,
277 laccases, and peroxidases could be searched. These structural searches for new enzymes
278 were performed alongside sequence- and domain-based searches for comparison of the
279 ability to identify interesting new candidates.

280 LPMO related sequences were searched for in the *P. putredinis* NO1 genome using the
281 sequence of an AA9 family LPMO from *Aspergillus niger* with the default E-value cut off of 1
282 $\times 10^{-5}$, with the AA9 HMM from Pfam and considering domain hits that fell within the default
283 significance inclusion threshold of 0.01 (31), and the structure of the same *A. niger* LPMO with
284 a tailored 'lowest percentage match' parameter. In total, 49 sequences were identified across
285 the three searching strategies and 33 of these sequences were also annotated by dbCAN as

286 AA9 family LPMOs (**Supplementary Table 1**). With the objective of identifying new enzymes,
287 the remaining 16 sequences were investigated further, and the distribution of the identification
288 of these sequences across the three search strategies can be seen in **Table 1**. Two of the
289 sequences, PutMol and PutMoM, were identified by all three search approaches. These
290 sequences both had conserved signal peptides with a conserved N-terminal histidine after the
291 cleavage site, a characteristic feature of LPMOs (32).

292 When creating the structure database it was tempting to filter predicted structures by pLDDT
293 score, the AlphaFold metric for prediction confidence, to create a database solely of 'high
294 confidence' structures (30). However, pLDDT scores reflect local confidence and should
295 instead be used for assessment of individual domains (33). The majority of the structures
296 generated here had pLDDT score of over 60%, however pLDDT scores lower than 70% are
297 considered low confidence (**Supplementary Figure 3**). Extracellular enzymes are of particular
298 interest here, but these often have disordered N-terminal signal peptides which can reduce
299 the overall pLDDT scores. Therefore, for secreted enzyme identification from AlphaFold
300 structures it is inappropriate to filter by pLDDT score. Indeed, the PutMol structure mentioned
301 above had a pLDDT score of 62%, considered to be low confidence (30), but which had
302 characteristic features of LPMOs and which demonstrated structural similarity to the *A. niger*
303 AA9 LPMO used for structural searches (**Figure 3A and 3B**). The central beta-sheet
304 structures align well to the *A. niger* AA9 LPMO for both PutMol and PutMoM, but both also
305 have additional loops of disordered protein which likely explains the relatively low PDBfold
306 alignment confidence scores (Q-scores) of 0.23 and 0.34 for PutMol and PutMoM,
307 respectively. This again highlights the unreliability of structural confidence scores alone and
308 demonstrates how manual inspection of structural alignments may prove more useful. Despite
309 not being annotated as AA9 LPMOs by the dbCAN server for CAZyme annotation (7), both
310 sequences were identified using the Pfam AA9 HMM and appear to be conserved AA9 LPMOs
311 and, therefore, are not of interest in the discovery of new enzymes.

312 **Table 1. Identifying LPMO related proteins encoded in the *P. putredinis* NO1 genome.**

313 Coding regions of proteins related to LPMOs identified through genome searching approaches
314 with the sequence of an *A. niger* AA9 LPMO (E-value cut-off = 1×10^{-5}), the Pfam AA9 HMM
315 (Significance threshold = 0.01), and the structure of the *A. niger* AA9 LPMO (Lowest
316 percentage match = 50%) and which were not annotated as AA9 CAZymes by dbCAN.
317 InterPro annotations were retrieved where possible.

Coding Region	GenBank Accession	Protein ID	Identified by Searching Approach			Interpro Annotation
			Sequence	Domain	Structure	
FUN_000653-T1	CAI7987917.1	PutMoA			✓	AA16 LPMO
FUN_000713-T1	CAI7987978.1	PutMoB			✓	Rho factor associated
FUN_002573-T1	CAI7991617.1	PutMoC		✓		-
FUN_002890-T1	CAI7992277.1	PutMoD			✓	AA16 LPMO
FUN_002962-T1	CAI7992399.1	PutMoE			✓	-
FUN_003190-T1	CAI7992922.1	PutMoF			✓	Ferritin-like
FUN_003535-T1	CAI7993628.1	PutMoG		✓		AA13 LPMO
FUN_003783-T1	CAI7994168.1	PutMoH			✓	-
FUN_006366-T1	CAI7999797.1	PutMoI	✓	✓	✓	AA9 LPMO
FUN_006413-T1	CAI7999893.1	PutMoJ		✓		AA9 LPMO
FUN_006553-T1	CAI8000144.1	PutMoK			✓	-
FUN_007242-T1	CAI8001774.1	PutMoL		✓		AA9 LPMO
FUN_007666-T1	CAI8002525.1	PutMoM	✓	✓	✓	AA9 LPMO
FUN_008106-T1	CAI8003467.1	PutMoN	✓	✓		AA9 LPMO
FUN_009239-T1	CAI7992001.1	PutMoO			✓	-
FUN_010012-T1	CAI8003342.1	PutMoP			✓	-

318

319 By utilising multiple searching approaches, potentially new sequences with LPMO related
320 activities can be identified. When searching for LPMO related sequences, domain-based
321 approaches identified all coding regions also identified by sequence-based searching as well
322 as additional coding regions (**Supplementary Table 1**). This pattern of domain-based
323 searching identifying more coding regions than sequence-based searching was also observed

324 for the other activities investigated (**Supplementary Tables 2 and 3**). For structure-based
325 searching, parameters of the searches could be tailored to identify additional coding regions
326 with lower overall structural similarity, but which may still be interesting. For example,
327 searching the against the *P. putredinis* NO1 genome structure database with the structure of
328 the *A. niger* AA9 LPMO, and with the 'lowest acceptable match' parameter which is the cutoff
329 at which secondary structures must overlap between a query and a target set at 50 %, yielded
330 30 coding regions (**Supplementary Table 1**). Of these sequences, 9 were not identified by
331 the sequence or domain-based searching approaches and were investigated in more detail
332 (**Table 1**). To investigate these further, sequences were searched against the NCBI non-
333 redundant protein database to identify related sequences (34), conserved domains were
334 predicted with InterPro any CAZyme domains were annotated with dbCAN (7), the predicted
335 structures were compared with structures in the PDB database (35), and secretion signal
336 peptides were predicted with SignalP (36) in an attempt to elucidate the potential functions.
337 Two of the sequences, PutMoA and PutMoD, are the two predicted AA16 LPMOs identified in
338 the *P. putredinis* NO1 CAZyme repertoire earlier (**Supplementary Figure 2**). Another two
339 sequences, PutMoH and PutMoK, were not annotated as CAZymes but had conserved BIM1-
340 like domains. BIM1-like proteins are LPMO_auxilliary-like proteins, function in fungal copper
341 homeostasis, and share a similar copper coordination method to the LPMOs which they are
342 related to (37). Although not likely to be involved in lignocellulose breakdown, this highlights
343 how structurally related proteins in terms of active site or co-factor coordination structures can
344 be identified with structural approaches where sequence- and domain-based approaches fail.
345 Three of the nine sequences were also identified as being upregulated when *P. putredinis*
346 NO1 was previously grown on wheat straw and compared to growth on glucose
347 (**Supplementary File 1**) (5). Although this does not confirm the role of these proteins in
348 lignocellulose breakdown, it provided another layer of information for the selection of
349 interesting candidate sequences to investigate further. PutMoP was the most interesting
350 sequence identified solely by the structural searching and showing upregulation during growth
351 on wheat straw compared to glucose. It was not annotated as a CAZyme, no conserved

352 domains were identified, and sequence homology was only observed to hypothetical proteins
353 in the NCBI non-redundant protein database (34). Comparing the AlphaFold predicted
354 structure of PutMoP to the *A. niger* AA9 LPMO revealed similarity at the central beta-sheet
355 structure despite a very low Q-score of 0.05 (**Figure 3C and 3D**). A secretion signal peptide
356 was also predicted for this protein, suggesting an extracellular role. This immunoglobulin-like
357 distorted β -sandwich fold is a characteristic structural feature of LPMOs and is shared across
358 the LPMO CAZyme families (38). The similarity of this central structure is likely the reason for
359 identification of this sequence by structural comparison. This structural similarity at the protein
360 centre, the lack of amino acid sequence similarity, and the conserved secretion signal makes
361 this protein an interesting candidate for further investigation. Searching the PutMoP structure
362 against the whole PDB structure database returned many diverse proteins not linked to
363 lignocellulose breakdown, however the Q-score was very low for all the structures and did not
364 help to discern the potential activity of this protein. The sequence lacks the N-terminal histidine
365 after the signal peptide cleavage site which is conserved in LPMOs so this protein is unlikely
366 to be an LPMO. However, a secreted unknown protein with some central structural similarity
367 to an important class of oxidative proteins that degrade crystalline cellulose is of definite
368 interest.

369 In addition to searching for LPMO related sequences, classes of enzymes involved in the
370 breakdown of lignin are important targets for the biorefining of plant biomass. The recalcitrance
371 of lignin is a limiting factor hindering the industrial use of lignocellulose as a feedstock to
372 produce biofuels. Lignin itself is also a historically underutilised feedstock for valuable
373 chemicals (39). Laccases are multicopper oxidase family enzymes that catalyse oxidation of
374 phenolic compounds through an electron transfer reaction that simultaneously reduces
375 molecular oxygen to water (23). They modify lignin by depolymerisation and repolymerisation,
376 C α oxidation, and demethylation and are particularly efficient due to their use of readily
377 available molecular oxygen as the final electron acceptor (40, 41).

378 Laccase related sequences were searched for in the *P. putredinis* NO1 genome using the
379 sequence of an AA1 family laccase from *A. niger*, a bespoke HMM constructed from
380 ascomycete laccase and basidiomycete multi-copper oxidase sequences downloaded from
381 the laccase engineering database (42), and with the structure of the *A. niger* AA1 laccase. In
382 total, 32 sequences were identified across the three searching strategies and only 9 of these
383 were annotated by dbCAN as AA1 family CAZymes (**Supplementary Table 2**). The bespoke
384 HMM allowed for more divergent sequences for these enzymes to be incorporated into the
385 model's construction. The result was the identification of sequences that when explored further
386 looked like laccase enzymes but were missed by traditional CAZyme annotation, highlighting
387 how searching for CAZymes alone is a limited method for identifying lignocellulose degrading
388 enzymes. However, for the identification of new lignocellulose degrading enzymes, more
389 divergent sequences are of interest. A single coding sequence, PutLacJ was identified by the
390 structural searching approach with a 30% 'lowest acceptable match' parameter that was not
391 identified by sequence or domain-based searching (**Table 2**).

392 **Table 2. Identifying laccase related proteins encoded in the *P. putredinis* NO1 genome.**
393 Coding regions of proteins related to laccases identified through genome searching
394 approaches with the sequence of an *A. niger* AA1 laccase (E-value cut-off = 1×10^{-5}), the
395 bespoke laccase and multicopper oxidase HMM constructed from sequences from the laccase
396 engineering database (Significance threshold = 0.01), and the structure of the *A. niger* AA1
397 laccase (Lowest percentage match = 30%) and which were not annotated as AA1 CAZymes
398 by dbCAN. InterPro annotations were retrieved where possible.

Coding Region	GenBank Accession	Protein ID	Identified by Searching Approach			Interpro Annotation
			Sequence	Domain	Structure	
FUN_000263-T1	CAI7987524.1	PutLacA		✓		-
FUN_000580-T1	CAI7987844.1	PutLacB		✓		Phospodiesterase
FUN_000646-T1	CAI7987911.1	PutLacC		✓		-
FUN_000759-T1	CAI7988026.1	PutLacD	✓	✓		Multi-copper oxidase

FUN_000832-T1	CAI7988099.1	PutLacE		✓		-
FUN_001183-T1	CAI7988671.1	PutLacF		✓		-
FUN_001583-T1	CAI7989479.1	PutLacG		✓		Salt tolerance regulator
FUN_002249-T1	CAI7990863.1	PutLacH	✓	✓	✓	AA1 Multi-copper oxidase
FUN_002874-T1	CAI7992258.1	PutLacI		✓		-
FUN_003732-T1	CAI7994085.1	PutLacJ			✓	-
FUN_003828-T1	CAI7994234.1	PutLacK		✓		-
FUN_004259-T1	CAI7995254.1	PutLacL		✓		Nucleoside hydrolase
FUN_004616-T1	CAI7995870.1	PutLacM		✓		-
FUN_004739-T1	CAI7996089.1	PutLacN		✓		Fumarylacetoacetate hydrolase family
FUN_005132-T1	CAI7997298.1	PutLacO		✓	✓	AA1 Multi-copper oxidase
FUN_005520-T1	CAI7998008.1	PutLacP		✓		Diacylglycerol acyltransferase
FUN_006244-T1	CAI7999594.1	PutLacQ		✓		-
FUN_006620-T1	CAI8000270.1	PutLacR		✓		Fumarylacetoacetate hydrolase family
FUN_006720-T1	CAI8000684.1	PutLacS		✓		Glycosyltransferase 90
FUN_007228-T1	CAI8001746.1	PutLacT		✓		-
FUN_007508-T1	CAI8002246.1	PutLaU		✓		Pex2
FUN_008329-T1	CAI8004041.1	PutLacV		✓		ATPase-related
FUN_009491-T1	CAI7995256.1	PutLacW		✓		Helicase

399

400 PutLacJ was not annotated as a CAZyme by dbCAN but does have a predicted cupredoxin
401 domain, a feature of laccase enzymes (43). Structural comparisons against the PDB structure
402 database revealed alignments with moderate confidence scores to copper-containing nitrite
403 reductases from *Neisseria gonorrhoeae* which are suggested to play a role in pathogenesis
404 (44). In fungi, it is more likely that these are playing a role in denitrification (45). The lack of a
405 signal peptide make it unlikely that this protein is involved in lignin depolymerisation, despite
406 the structural similarity to the beta-sheet regions of the *A. niger* laccase (**Figure 4**).

407 Peroxidases (PODs) also play a major role in lignin deconstruction by white-rot fungi. PODs
408 are lacking in brown-rot species, presumably due to their non-ligninolytic specialisation of
409 substrate degradation (46). The identification of new putative peroxidases in *P. putredinis* NO1
410 is of interest. Fungal class II peroxidases are divided into three lignolytic forms; lignin
411 peroxidase (LiP), manganese peroxidase (MnP), and versatile peroxidase (VP) (47).

412 Sequence searches into the *P. putredinis* NO1 genome using sequences of MnP from
413 *Aureobasidium subglaciale*, LiP from *F. oxysporum*, and VP from *Pyronema confluens* only
414 yielded 2 sequences (**Supplementary Table 3**). Both peroxidase related sequences were
415 also identified by domain searching using a bespoke HMM constructed from sequences of
416 MnPs, LiPs, and VPs downloaded from the fPoxDB database of peroxidase sequences (48).
417 This domain-based approach only identified 3 sequences in total, all of which were annotated
418 as AA2 family CAZymes also (**Supplementary Table 3**). However, structural-based searching
419 using the structures of the same three peroxidases, and with a 'lowest acceptable match'
420 parameter of 30% used in sequence-based searches identified 9 coding regions in total
421 (**Supplementary Table 3**), 7 of which were not identified by sequence- or domain-based
422 searching approaches and were not annotated as AA2 CAZymes (**Table 3**), but were all found
423 to be upregulated previously when *P. putredinis* NO1 was grown on wheat straw compared to
424 growth on glucose (**Supplementary File 1**) (5).

425

426

427

428

429

430

431 **Table 3. Identifying peroxidase related proteins encoded in the *P. putredinis* NO1**
432 **genome.** Coding regions of proteins related to peroxidases identified through genome
433 searching approaches with the sequences of an MnP from *A. subglaciale*, LiP from *F.*
434 *oxysporum*, and VP from *P. confluens* (E-value cut-off = 1×10^{-5}), the bespoke peroxidase
435 HMM contricted from MnP, LiP, and VP seqeunces in the fPoxDB database (Significance
436 threshold = 0.01), and the structure of the same three peroxidases used for seqeunce
437 searches (Lowest percentage match = 30%) and which were not annotated as AA2 CAZymes
438 by dbCAN. InterPro annotations were retrieved where possible.

Coding Region	GenBank Accession	Protein ID	Identified by Searching Approach			Interpro Annotation
			Sequence	Domain	Structure	
FUN_002995-T1	CAI7992466.1	PutPoxA			✓	DUF3632
FUN_003542-T1	CAI7993642.1	PutPoxB			✓	Arabinofuranosidase
FUN_003618-T1	CAI7993895.1	PutPoxC			✓	-
FUN_004484-T1	CAI7995643.1	PutPoxD			✓	Cell division control
FUN_008413-T1	CAI8004205.1	PutPoxE			✓	SIT4 phosphatase-associated
FUN_008923-T1	CAI7988420.1	PutPoxF			✓	-
FUN_009329-T1	CAI7993214.1	PutPoxG			✓	-

439
440 Investigating these sequences further revealed two sequences to be the most interesting,
441 PutPoxA and PutPoxG, both with low Q-scores of 0.01 and 0.04, respectively. PutPoxA was
442 not annotated as a CAZyme but does have a predicted domain of unknown function family
443 3632 (DUF3632). Genes encoding DUF3632 domains were previously found to be
444 upregulated in the filamentous ascomycete *Neurospora crassa* when the CLR-2 transcription
445 factor, important for growth on cellulose, was constitutively expressed (49). The protein does
446 however lack a signal peptide and structural comparison to the *A. subglaciale* MnP shows
447 similar helical structures, but these secondary structures do not appear to overlap very well
448 (Figure 5A). PutPoxG was not annotated as a CAZyme and no conserved domains were
449 identified, although the helical structures do seem to align better with the *A. subglaciale* MnP

450 than PutPoxA (**Figure 5B**). Furthermore, searching of both structures against the PDB
451 database was performed, but all alignments had very low Q-scores of less than 0.1.

452 As with the candidates identified by LPMO and laccase searching approaches, it is hard to be
453 confident on sequence and structural investigation alone that these proteins are involved in
454 lignocellulose breakdown. Although by utilising multiple searching approaches, more
455 divergent and varied sequences with potential relation to industrially important enzymes have
456 been identified here. This strategy of searching for new enzymes involved in the breakdown
457 of the most recalcitrant components of lignocellulose would work well when combined with
458 additional layers of biological data e.g., transcriptomic, or proteomic data. Many of the coding
459 regions investigated here show structural similarity to the interesting classes of enzymes with
460 which they were identified but lack the sequence similarity and therefore the functional
461 annotation. Transcriptomic data showing upregulation of these genes or proteomic data
462 showing increased abundances of these proteins when the organism in question is grown on
463 lignocellulosic substrates would inspire more confidence in the role of these proteins in the
464 degradation of plant-biomass. Therefore, we used sequence similarity to identify the
465 corresponding transcripts for these coding regions in the transcriptomic time course dataset
466 of *P. putredinis* NO1 grown for 10 days in cultures containing wheat straw published previously
467 (5). The transcriptomic data was explored for all sequences which were identified solely by
468 structural searches and therefore considered interesting (**Supplementary File 1**). For the four
469 sequences explored in more detail, we found that three of the four: PutMoP, PutPoxA, and
470 PutPoxG, were found to be significantly upregulated on at least one timepoint when grown on
471 wheat straw compared to growth on glucose (**Figure 6**). The remaining sequence, PutLacJ,
472 expression was found to be significantly higher during growth on glucose compared to growth
473 on wheat straw. However structural investigation revealed that PutLacJ had similarity to
474 copper-containing nitrite reductase proteins and it was concluded that it is unlikely to be
475 involved in lignocellulose breakdown. Characterisation would be required to confirm the role
476 of these candidates in lignocellulose breakdown and to understand whether these activities

477 are new. However, the implication in lignocellulose degrading processes through the analysis
478 of transcriptomic data provides another source of information by which candidates identified
479 through the described strategy can be investigated. It is hoped that adoption of a similar
480 strategy for analysis of the wealth of sequence data now publicly available will allow
481 identification of novel enzyme sequences for many important processes to be made simpler.

482

483 **Conclusions**

484 *P. putredinis* NO1 was revealed here to contain a diverse repertoire of lignocellulose
485 degrading enzymes in its genome. The newly annotated reference genome is a potentially
486 useful resource, considering the potential of *P. putredinis* NO1 for the identification of
487 industrially valuable enzymes (5). Among ascomycetes, *P. putredinis* NO1 exists within the
488 95th percentile for abundant auxiliary activity gene density, implying potential specialism
489 regarding mechanisms of lignocellulose degradation and belongs to a substantially
490 underrepresented and underexplored lineage. Investigating CAZyme families in more detail
491 revealed an increased capacity to target the most recalcitrant components of lignocellulose
492 when compared to three other biomass-degrading ascomycetes. For crystalline cellulose
493 degradation, expansions were observed in families of LPMOs and in families associated with
494 LPMO systems. Multiple domains encoding lignin-degrading laccase proteins were also
495 identified. Considering the context in which *P. putredinis* NO1 was identified, thriving at the
496 late stages of a mixed microbial community grown on wheat straw, it is feasible that the
497 genome of this fungus contains new ligninolytic activities. By utilising a strategy of searching
498 genomic data for new enzymes with simultaneous sequence-, domain-, and structural-based
499 approaches, multiple interesting sequences were identified.

500

501

502

503 **Experimental Methods**

504 **Strain Isolation**

505 *P. putredinis* NO1 was isolated from a wheat straw enrichment culture and maintained as
506 reported previously (5).

507 **Genomic DNA Extraction and Sequencing**

508 For DNA extraction, *P. putredinis* NO1 was grown in optimised media containing 10% (w/v)
509 sucrose at 30 °C with shaking at 140 rpm for 14 days. Wet fungal biomass was washed in
510 deionised water before pelleting in 50 mL falcon tubes at 4500 rpm for 15 minutes, and ten
511 technical replicates of 100 mg of biomass were then prepared in 1.5 mL tubes. Fungal biomass
512 was then digested by adding 100 µL of 1 mg mL⁻¹ Chitinase from *Streptomyces griseus*
513 (Merck) and 200 µL of 50 mM EDTA and incubating at 37 °C for 3 hours. DNA extraction was
514 then performed with the Wizard® Genomic DNA Purification Kit (Promega). Digested samples
515 were centrifuged at 18,000 x g at 4 °C for 2 minutes and the supernatant discarded. Pellets
516 were resuspended with 300 µL of Nuclei Lysis solution and 100 µL of Protein Precipitation
517 solution and rotated for 5 minutes before a 5-minute incubation on ice. Samples were then
518 centrifuged at 18,000 x g at 4 °C for 3 minutes and the supernatant transferred to fresh tubes
519 containing 300 µL of cold isopropanol, gently mixed by inversion, and centrifuged again. The
520 supernatant was discarded, and the pellet was washed in 70% ice cold ethanol before
521 centrifugation followed by air drying the DNA pellet. The pellet was then resuspended in 50
522 µL of DNA rehydration solution with the addition of 1.5 µL of RNase solution. Samples were
523 then incubated at 37 °C for 15 minutes followed by rehydration at 4 °C overnight. Replicate
524 DNA samples were run on 0.75% agarose TAE gel alongside GeneRuler 1 kb Plus DNA
525 Ladder (Thermo Scientific) at 120V for 40 minutes. The gel was then visualised in the Uvitec
526 Gel-Documentation System to confirm the presence of long strand DNA.

527 Genomic DNA was subject to an additional clean up step using a 0.6:1 ratio of AMPure XP
528 beads:sample prior to long read sequencing using the Oxford Nanopore Technologies' (ONT)

529 MinION system. The sequencing library was prepared using ONT's ligation sequencing kit
530 SQK-LSK109, as per the manufacturer's guidelines with modifications as follows: Incubation
531 times for end repair steps were increased from 5 minutes to 30 minutes; ligation reactions
532 were performed at room temperature for 1 hour, and elution steps were performed at 37 °C
533 for 15 minutes. The resulting DNA libraries were sequenced on MinION R9.4.1 flow cells with
534 a 48-hour run time. Basecalling was performed using Guppy V 3.5.2 software.

535 Genome Assembly and Annotation

536 Oxford Nanopore Technologies reads were filtered to those of length over 5kb with SeqKit
537 0.11.0 (50) before being assembled with Canu 2.0 (51). The resulting genome assembly was
538 filtered with Tapestry 1.0.0 (52) to 39Mb, 21 contigs, before being polished with Medaka
539 0.11.3. Previously obtained Illumina reads were used to polish the assembly. Short read
540 Illumina sequencing libraries were prepared using the NEBNext Ultra DNA library prep kit for
541 Illumina (New England Biolabs), and sequenced on an Illumina HiSeq 2500, with paired end
542 100 bp reads, by the University of Leeds Next Generation Sequencing Facility. The Illumina
543 reads were quality-checked with FastQC 0.11.7 (53) and adapter trimmed with Cutadapt 2.10
544 (54) and used for three rounds of Pilon 1.23 (55) polishing of the genome assembly. A
545 previously obtained transcriptome assembly from NO1 grown on six lignocellulosic substrates
546 (wheat straw, empty fruit bunches from palm oil, wheat bran, sugar cane bagasse, rice straw
547 and kraft lignin) was used for genome annotation with FunAnnotate 1.8.1 and InterproScan
548 5.46 (56, 57).

549 Ascomycete Genome Annotation and CAZyme Prediction

550 All available genome assemblies (n= 2635) of ascomycota origin were retrieved from the NCBI
551 genome assembly database. Genome assemblies with N50 values > 1000 were retained and
552 gene prediction was performed with FunAnnotate v1.8.1 (60), BUSCO (61), and
553 AUGUSTUS (62), generating a final dataset of 2570 genomes. Predicted genes for each
554 genome were annotated with the CAZyme database (v.09242921) and mean gene densities

555 were then calculated for each taxonomic level for comparative analysis. Unique taxonomy
556 identifiers (taxid) for each genome were retrieved from the NCBI taxonomy database using
557 the Entrez NCBI API (58). No filtering was undertaken and a phylogenetic tree was
558 reconstructed using ETE3 to retrieve the tree topology (get_topology) without intermediate
559 nodes at a rank limit of genus (63) (**Figure 2**). Gene densities from annotations were mapped
560 to the corresponding genomes on the tree. Genome metadata and annotations are available
561 in **Supplementary File 2**.

562 The number and proportion of CAZyme domains in the genomes of *P. putredinis* NO1
563 (GCA_938049765.1), *S. boydii* (GCA_002221725.1), *T. reesei* (GCA_016806875.1), and *F.*
564 *oxysporum* (GCA_023628715.1) were plotted using the 'ggplot2' package of R studio 3.6.3
565 (59, 60).

566 Sequence-Based Searches for LPMOs, Laccases, and Peroxidases

567 The sequences for an ascomycete AA9 family LPMO and for an AA1 family laccase were
568 obtained from the CAZy database (61). An AA9 LPMO from *Aspergillus niger* (GenBank:
569 CAK97151.1) and an AA1 Laccase from *A. niger* (GenBank: CAK37372.1) were used. For
570 peroxidase sequences, individual sequences for three types of reported lignin degrading
571 peroxidases were obtained from the fPoxDB database (48). A manganese peroxidase from
572 *Aureobasidium subglaciale* (GenBank: EJD50148.1), a lignin peroxidase from *F. oxysporum*
573 f. sp. *lycopersici* (NCBI RefSeq: XP_018248194.1), and a versatile peroxidase from *Pyronema*
574 *confluens* (Locus: PCON_11254m.01) only available from the fPoxDB database were used.

575 These sequences were searched against the *P. putredinis* NO1 genome protein sequences
576 through command line BLAST with an E-value cut off of 1×10^{-5} (62). Results were compiled
577 for the three classes of peroxidase.

578 Domain-Based Searches for LPMOs, Laccases, and Peroxidases

579 Due to the lack of online databases for LPMO sequences, the genome was searched for
580 LPMO related sequences using the Pfam AA9 HMM (31).

581 Sequences for basidiomycete laccases and ascomycete Multicopper oxidases were
582 downloaded from the Laccase Engineering Database 7.1.11 (42). These were aligned using
583 Kalign 3.0 and this alignment subsequently used to generate a bespoke Hidden Markov Model
584 (HMM) using the HMMER 3.2.1 programme (63, 64).

585 Sequences for Manganese peroxidases, Lignin peroxidases and Versatile peroxidases were
586 downloaded from the fPoxDB database (48). These were aligned and used to construct a
587 bespoke HMM model as before.

588 These models were used to search the *P. putredinis* NO1 genome using HMMER 3.2.1 (64)
589 and domain hits falling within the default significance inclusion threshold of 0.01.

590 Structure-Based Searches for LPMOs, Laccases, and Peroxidases

591 Predicted structure for >96 % (n=9611) of coding regions in the *P. putredinis* NO1 genome
592 were modelled using AlphaFold v2.0.0 on the VIKING computer cluster (30).

593 The 9611 models of coding sequences were compiled into ‘tarball’ databases and compressed
594 into ‘.tar.gz’ files on the VIKING cluster. These files were uploaded to the PDBefold online
595 server to search against (65). Structures for the same sequences used in sequence based
596 searching were obtained from UniProt database if available (66), or modelled using AlphaFold
597 v.2.00 on the VIKING computing cluster. These structures were searched against the *P.*
598 *putredinis* NO1 structure database using PDBefold to identify similar structures in the *P.*
599 *putredinis* NO1 genome. The ‘lowest acceptable match’ parameter was adjusted depending
600 on the activity being searched with until coding regions not identified using sequence- or
601 domain-based searching strategies were identified.

602 *In silico* Investigation of Candidate Sequences

603 Sequences which were identified by structural searching solely were considered potentially
604 interesting and warranted further investigation to attempt to elucidate function. Sequences
605 were searched against the NCBI non-redundant protein database with default search

606 parameters and an E-value cut off of 1×10^{-5} to investigate proteins with similar sequence
607 (34). Domains were predicted using the primary amino acid sequence with the InterPro tool
608 for domain prediction with default parameters (67). CAZyme domains were predicted with the
609 online dbCAN prediction tool with default search parameters (7). Interesting candidate
610 structures were further investigated with PDBeFold by searching the structures against the
611 whole PDB database to identify structurally similar proteins using a 'lowest acceptable match'
612 parameter of 70% (35, 65). Secretion signals were predicted using SignalP 6.0 with default
613 parameters (36). Altogether, this annotation information was used to investigate the potential
614 functions of interesting sequences.

615 Transcriptomic Data for Interesting Sequences

616 A previously published transcriptomic dataset for *P. putredinis* NO1 was used to validate
617 expression of sequences of interest identified here during growth on lignocellulosic substrates
618 (5). Gene expression data in transcripts per million (TPM) for all sequences identified solely
619 by structural approaches and not by sequence- or domain-based searching and therefore
620 considered to be interesting for all three activities explored here: LPMO, laccase, and
621 peroxidase. Gene expression data is available in **Supplementary File 1**.

622

623

624

625

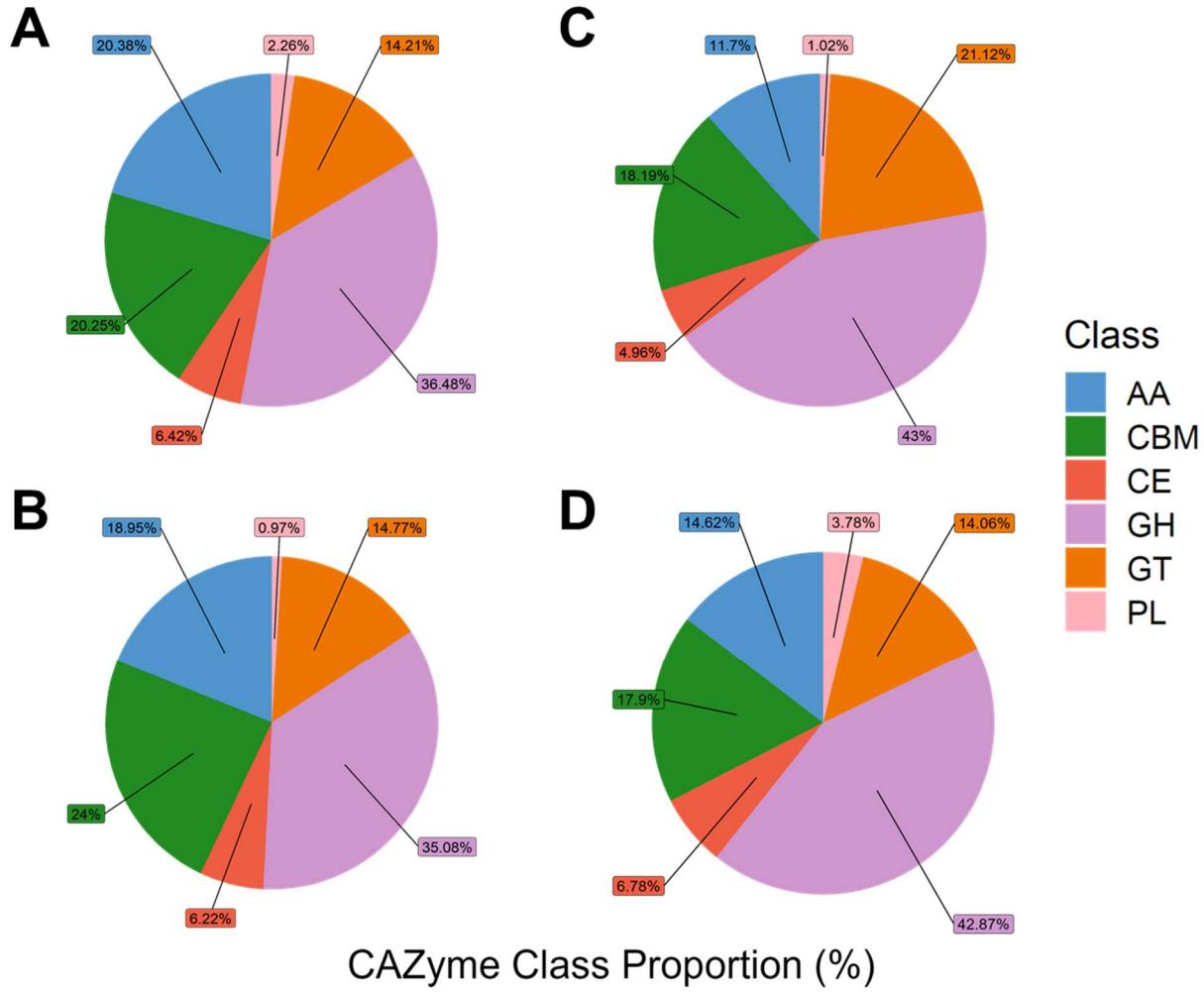
626

627

628

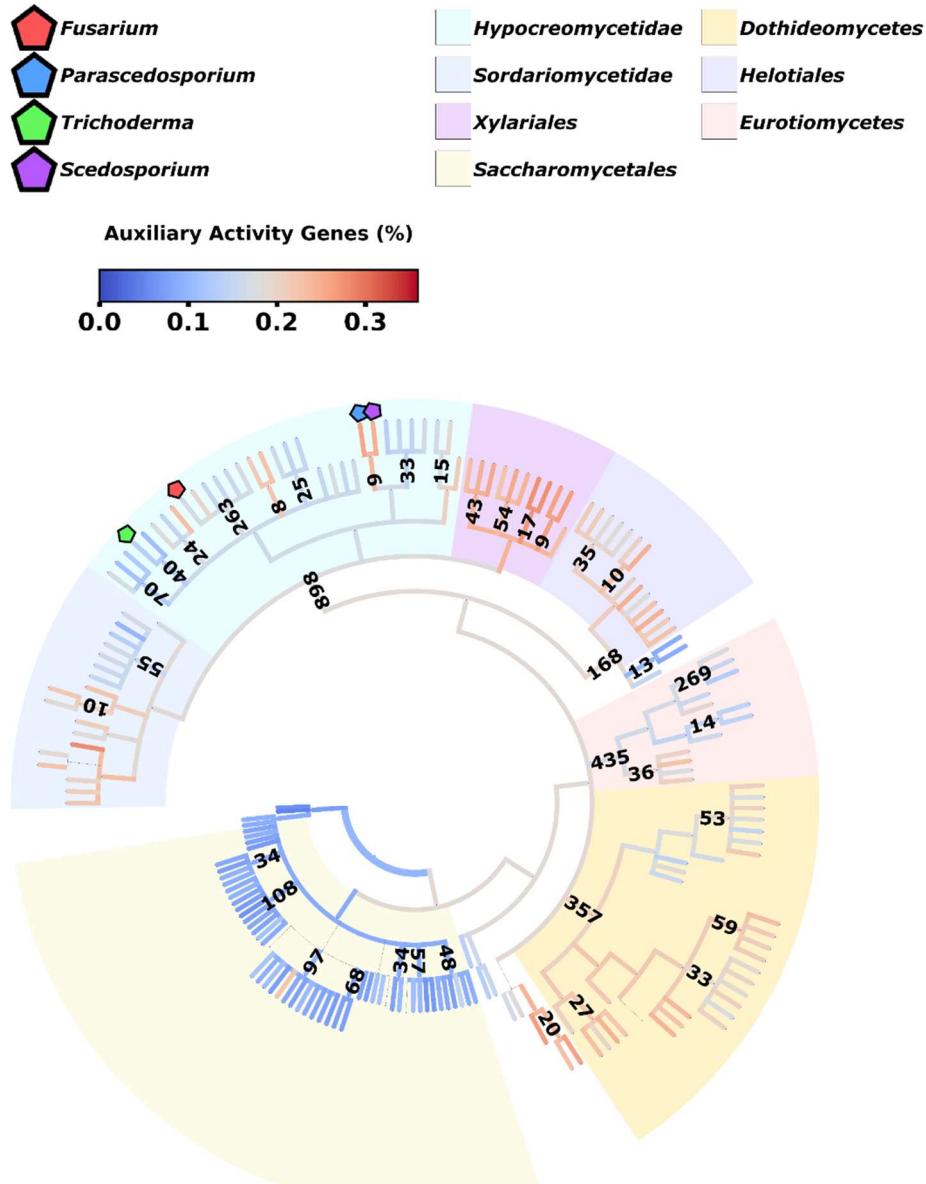
629

630 **Acknowledgements**


631 This work was funded by the Biotechnology and Biological Sciences Research Council
632 (BBSRC), UK (Grant BB/1018492/1, BB/P027717/1, and BB/W000695/1). CS was supported
633 by a CASE studentship from the BBSRC Doctoral Training Programme (BB/M011151/1) with
634 Prozomix Ltd.

635 This project was undertaken on the Viking Cluster, which is a high-performance compute
636 facility provided by the University of York. We are grateful for computational support from the
637 University of York High Performance Computing service, Viking and the Research Computing
638 team.

639 Special thanks to Sally James for performing the Nanopore sequencing in her kitchen in the
640 first weeks of the COVID-19 pandemic, and to Katherine Newling for her immense help with
641 all bioinformatic work and my endless questions.


642 CJRS conceptualised the investigation carried out in this paper, extracted the genomic DNA
643 from *P. putredinis* NO1, performed CAZyme repertoire comparison analysis, structurally
644 modelled the *P. putredinis* NO1 genome, performed sequence-, domain-, and structure-based
645 searches of the genome, analysed the search strategy results and was the major contributor
646 in writing the manuscript. DRL carried out annotation of ascomycete genomes and CAZyme
647 repertoire comparison analysis and was a major contributor to the writing of the manuscript.
648 NCO was involved in maintaining *P. putredinis* NO1 and extraction of genomic DNA. SRJ
649 library prepped and sequenced the *P. putredinis* NO1 genomic DNA. KN assembled the *P.*
650 *putredinis* NO1 genome, performed initial annotation and aided deposition of sequence data.
651 YL assembled the transcriptome that was used for annotation of the *P. putredinis* NO1
652 genome. NGSM was a contributor to the writing of the paper. SB carried out the Illumina
653 sequencing which was used to polish the *P. putredinis* NO1 genome assembly. NCB was a
654 major contributor to the conceptualisation and supervision of the study in addition to making a
655 major contribution to the writing of the manuscript.

656 **Figures**

657

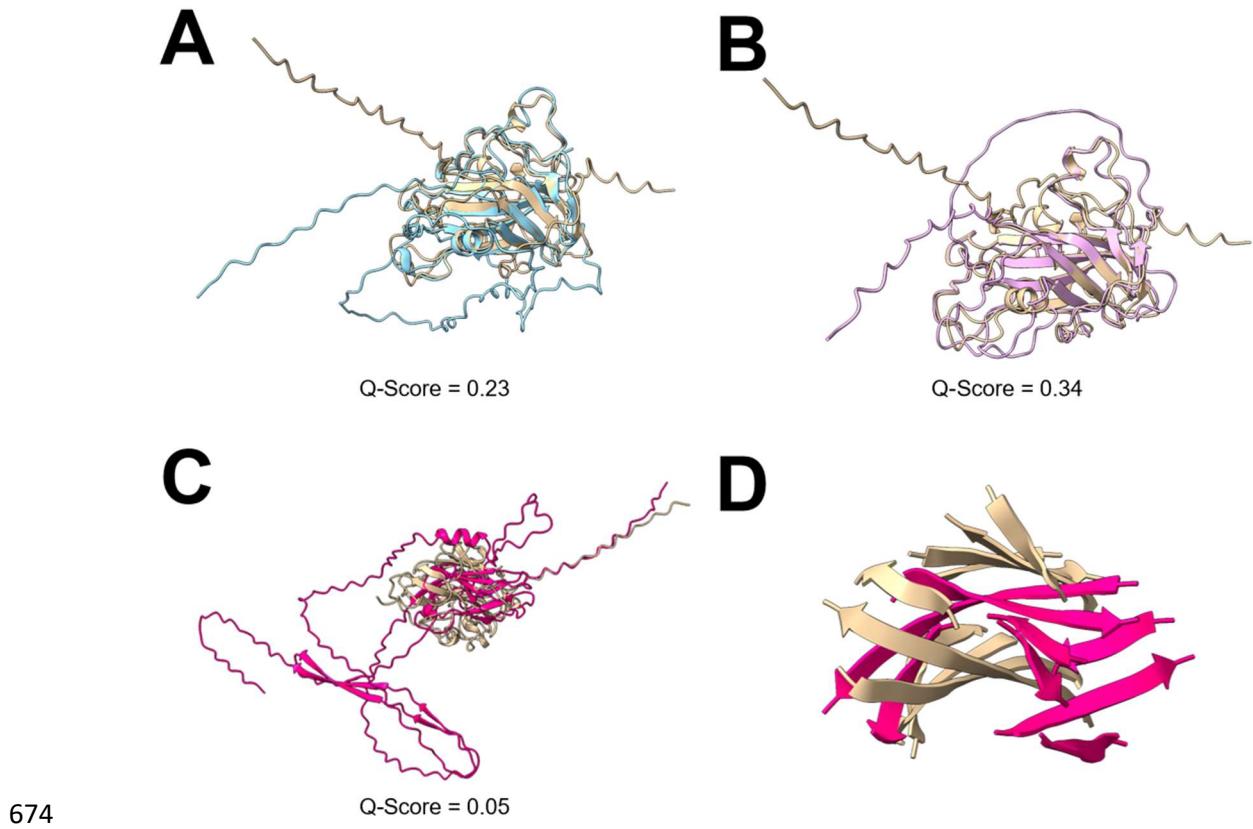
658 **Figure 1. Comparison of CAZyme class repertoire.** The number of CAZyme domains of
659 each class for four lignocellulose degrading ascomycetes (A). The proportions of each class
660 of CAZyme contributing to CAZyme repertoire for *P. putredinis* NO1 (B), *S. boydii* (C), *T.*
661 *reesei* (D), and *F. oxysporum* (E). Auxiliary Activity (AA), Carbohydrate Binding Module
662 (CBM), Carbohydrate Esterase (CE), Glycoside Hydrolase (GH), Glycosyl Transferase (GT),
663 Polysaccharide Lyase (PL).

665 **Figure 2. Auxiliary activity distribution and density across the ascomycete tree of life.**

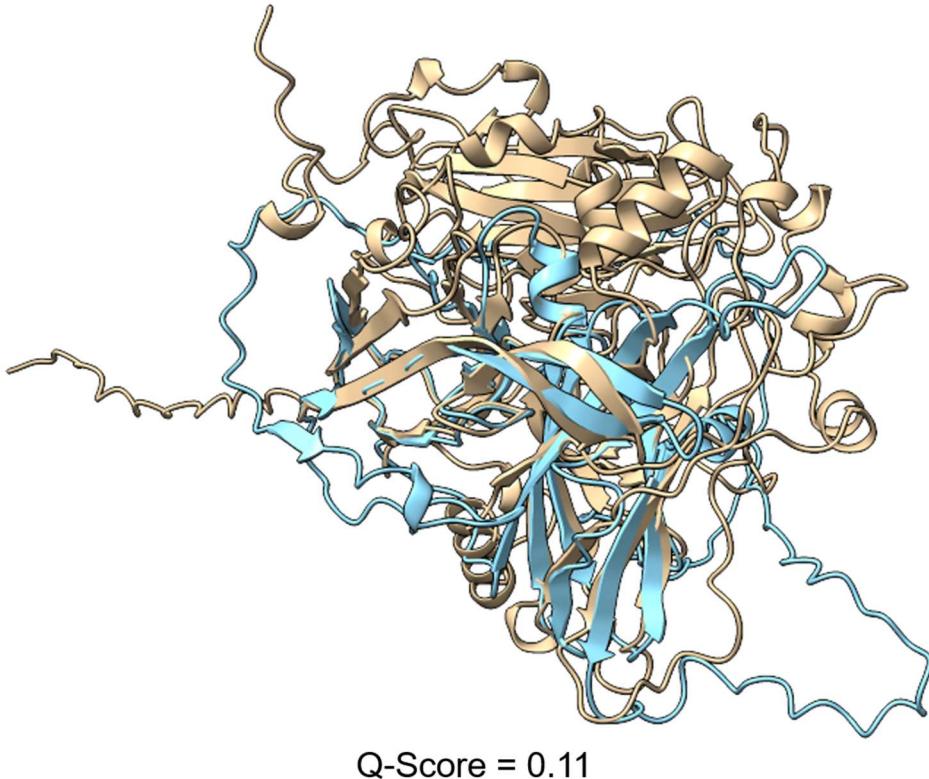
666 Genes predicted for ascomycete genome assemblies were annotated for CAZymes to explore

667 patterns in the distribution and density of auxiliary activities (n=2570) within the ascomycete

668 phylogenetic tree. Branch colors indicate the mean proportion of auxiliary activities within all

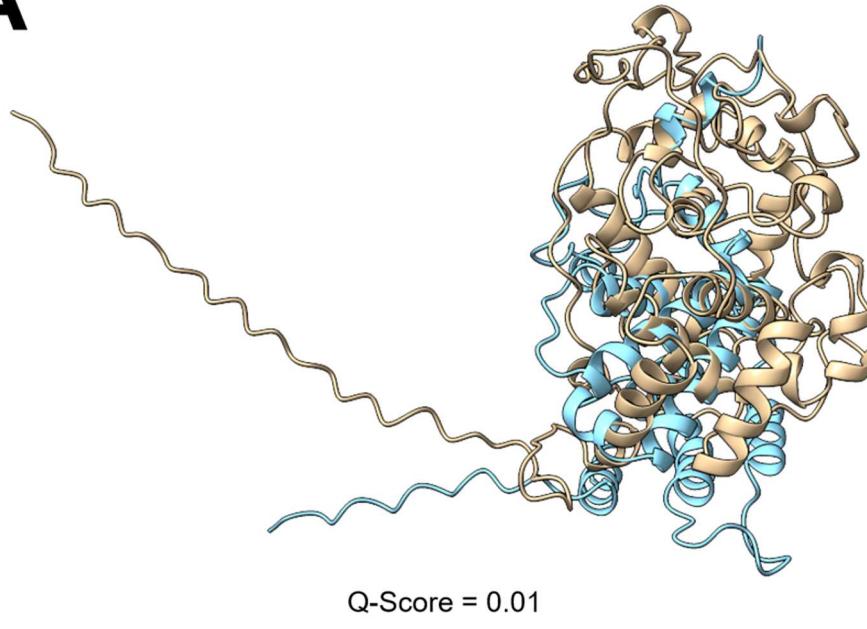

669 CAZyme annotations accounted for by all descendant taxa. Yellow bubbles and annotations

670 represent number of sequenced genomes available. Key taxa have been highlighted. Genera

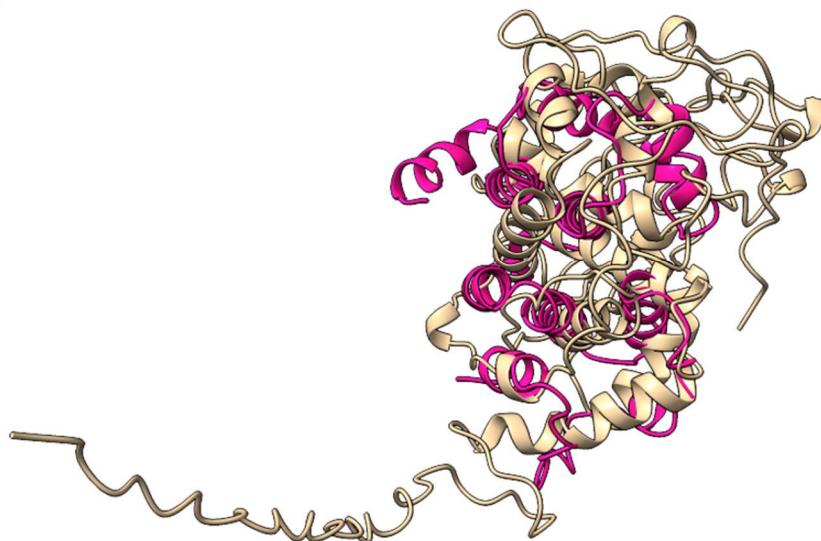

671 and families with less than 3 and 8 species level representatives, respectively, have been

672 pruned for clarity (n=462 taxa). Nodes of taxonomic ranks below genus have been pruned

673 (n=93 taxa).

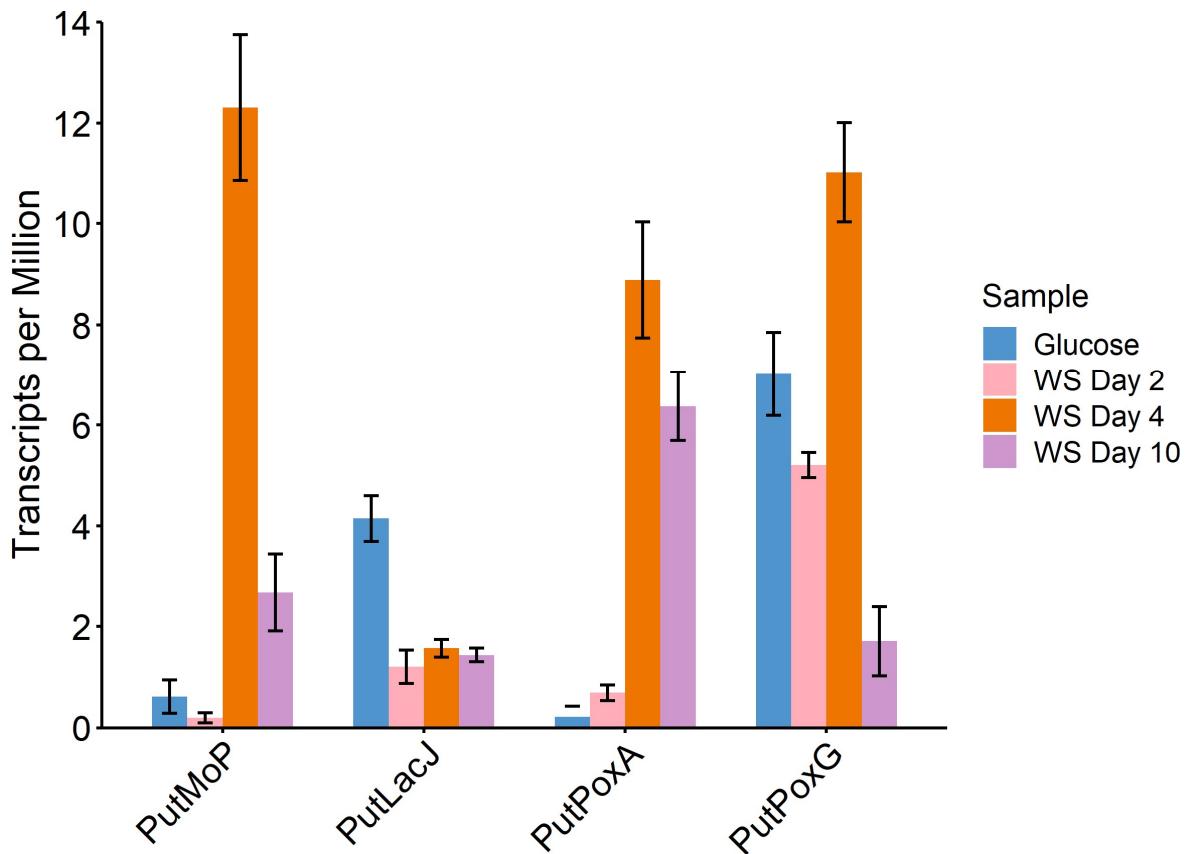

675 **Figure 3. Structural comparison of LPMO related proteins.** The AlphaFold predicted
676 structures of three sequences, PutMol (**A**), PutMoM (**B**), and PutMoP (**C** and **D**) from the *P.*
677 *putredinis* NO1 genome structurally aligned to the *A. niger* AA9 LPMO used in sequence and
678 structure-based searching (UniProt ID: A2QZE1). *A. niger* AA9 LPMO (Beige), PutMol (Blue),
679 PutMoM (Pink), PutMoP (Hot Pink). Q-score is a quality function of C α alignment from
680 PDBeFold.

681


682 **Figure 4. Structural comparison of PutLacJ laccase related protein.** The AlphaFold
683 predicted structures of the sequence PutLacJ from the *P. putredinis* NO1 genome structurally
684 aligned to the *A. niger* laccase used in sequence and structure-based searching (UniProt ID:
685 A2QB28). *A. niger* laccase (Beige), PutLacJ (Blue). Q-score is a quality function of Ca
686 alignment from PDBefold.

A

Q-Score = 0.01


B

Q-Score = 0.04

687

688 **Figure 5. Structural comparison of peroxidase related proteins.** The AlphaFold predicted
689 structures of two sequences, PutPoxA (**A**) and PutPoxG (**B**), from the *P. putredinis* NO1
690 genome structurally aligned to the *A. subglaciale* MnP used in sequence and structure-based
691 searching. A predicted structure was unavailable and so a predicted structure was generated
692 with AlphaFold. *A. subglaciale* MnP (Beige), PutPoxA (Blue), PutPoxG (Hot Pink). Q-score is
693 a quality function of C_α alignment from PDBefold.

694

695 **Figure 6. Gene Expression of Interesting Candidates.** Transcripts per Million (TPM) values
696 for each of the four candidates explored, during growth on glucose, or on day 2, 4, and 10 of
697 growth in liquid cultures containing wheat straw (WS).

698

699

700

701

702

703

704

705

706 **References**

707 1. Andlar M, Rezić T, Marđetko N, Kracher D, Ludwig R, Šantek B. Lignocellulose
708 degradation: An overview of fungi and fungal enzymes involved in lignocellulose degradation.
709 *Eng Life Sci.* 2018;18(11):768-78.

710 2. Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B. Expansion of the
711 enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. *Biotechnol
712 Biofuels.* 2013;6(1):41.

713 3. Yamamoto M, Tomiyama H, Koyama A, Okuzumi H, Liu S, Vanholme R, et al. A
714 century-old mystery unveiled: Sekizaisou is a natural lignin mutant. *Plant Physiol.* 2020.

715 4. Kameshwar AKS, Qin W. Molecular Networks of *Postia* placenta Involved in
716 Degradation of Lignocellulosic Biomass Revealed from Metadata Analysis of Open Access
717 Gene Expression Data. *Int J Biol Sci.* 2018;14(3):237-52.

718 5. Oates NC, Abood A, Schirmacher AM, Alessi AM, Bird SM, Bennett JP, et al. A multi-
719 omics approach to lignocellulolytic enzyme discovery reveals a new ligninase activity from
720 *Parascedosporium putredinis* NO1. *Proc Natl Acad Sci U S A.* 2021;118(18).

721 6. Tørresen OK, Star B, Mier P, Andrade-Navarro MA, Bateman A, Jarnot P, et al. Tandem
722 repeats lead to sequence assembly errors and impose multi-level challenges for
723 genome and protein databases. *Nucleic Acids Res.* 2019;47(21):10994-1006.

724 7. Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server
725 for automated carbohydrate-active enzyme annotation. *Nucleic Acids Res.* 2018;46(W1):W95-
726 W101.

727 8. Sista Kameshwar AK, Qin W. Comparative study of genome-wide plant biomass-
728 degrading CAZymes in white rot, brown rot and soft rot fungi. *Mycology.* 2018;9(2):93-105.

729 9. Qian Y, Zhong L, Sun Y, Sun N, Zhang L, Liu W, et al. Enhancement of Cellulase
730 Production in *Trichoderma reesei* via Disruption of Multiple Protease Genes Identified by
731 Comparative Secretomics. *Front Microbiol.* 2019;10:2784.

732 10. Demers JE, Gugino BK, Jimenez-Gasco MD. Highly Diverse Endophytic and Soil
733 *Fusarium oxysporum* Populations Associated with Field-Grown Tomato Plants. *Appl Environ
734 Microb.* 2015;81(1):81-90.

735 11. Anasontzis GE, Kourtoglou E, Villas-Boas SG, Hatzinikolaou DG, Christakopoulos P.
736 Metabolic Engineering of *Fusarium oxysporum* to Improve Its Ethanol-Producing Capability.
737 *Front Microbiol.* 2016;7.

738 12. Nirmaladevi D, Venkataramana M, Srivastava RK, Uppalapati SR, Gupta VK, Yli-
739 Mattila T, et al. Molecular phylogeny, pathogenicity and toxigenicity of *Fusarium oxysporum* f.
740 sp *lycopersici*. *Sci Rep-Uk.* 2016;6.

741 13. Zhao ZT, Liu HQ, Wang CF, Xu JR. Comparative analysis of fungal genomes reveals
742 different plant cell wall degrading capacity in fungi. *Bmc Genomics.* 2013;14.

743 14. Hansson H, Karkehabadi S, Mikkelsen N, Douglas NR, Kim S, Lam A, et al. High-
744 resolution structure of a lytic polysaccharide monooxygenase from *Hypocrea jecorina* reveals
745 a predicted linker as an integral part of the catalytic domain. *J Biol Chem.* 2017;292(46):19099-
746 109.

747 15. Bennati-Granier C, Garajova S, Champion C, Grisel S, Haon M, Zhou S, et al.
748 Substrate specificity and regioselectivity of fungal AA9 lytic polysaccharide monooxygenases
749 secreted by *Podospora anserina*. *Biotechnol Biofuels.* 2015;8.

750 16. Kracher D, Scheiblbrandner S, Felice AKG, Breslmayr E, Preims M, Ludwicka K, et al.
751 Extracellular electron transfer systems fuel cellulose oxidative degradation. *Science.*
752 2016;352(6289):1098-101.

753 17. Bissaro B, Varnai A, Rohr AK, Eijsink VGH. Oxidoreductases and Reactive Oxygen
754 Species in Conversion of Lignocellulosic Biomass. *Microbiol Mol Biol R.* 2018;82(4).

755 18. Wang BJ, Walton PH, Rovira C. Molecular Mechanisms of Oxygen Activation and
756 Hydrogen Peroxide Formation in Lytic Polysaccharide Monooxygenases. *Acs Catal.*
757 2019;9(6):4958-69.

758 19. Monclaro AV, Petrovic DM, Alves GSC, Costa MMC, Midorikawa GEO, Miller RNG, et
759 al. Characterization of two family AA9 LPMOs from *Aspergillus tamarii* with distinct activities on
760 xyloglucan reveals structural differences linked to cleavage specificity. *Plos One.* 2020;15(7).

761 20. Sutzl L, Laurent CVFP, Abrera AT, Schutz G, Ludwig R, Haltrich D. Multiplicity of
762 enzymatic functions in the CAZy AA3 family. *Appl Microbiol Biot.* 2018;102(6):2477-92.

763 21. Momeni MH, Fredslund F, Bissaro B, Raji O, Vuong TV, Meier S, et al. Discovery of
764 fungal oligosaccharide-oxidising flavo-enzymes with previously unknown substrates, redox-
765 activity profiles and interplay with LPMOs. *Nat Commun.* 2021;12(1).

766 22. Ferraroni M, Westphal AH, Borsari M, Tamayo-Ramos JA, Briganti F, de Graaff LH, et
767 al. Structure and function of *Aspergillus niger* laccase McoG. *Biocatalysis.* 2017;3(1):1-21.

768 23. Brenelli L, Squina FM, Felby C, Cannella D. Laccase-derived lignin compounds boost
769 cellulose oxidative enzymes AA9. *Biotechnol Biofuels.* 2018;11.

770 24. Eastwood DC, Floudas D, Binder M, Majcherczyk A, Schneider P, Aerts A, et al. The
771 Plant Cell Wall-Decomposing Machinery Underlies the Functional Diversity of Forest Fungi.
772 *Science.* 2011;333(6043):762-5.

773 25. Henriksson G, Johansson G, Pettersson G. Is Cellobiose Oxidase from
774 *Phanerochaete-Chrysosporium* a One-Electron Reductase. *Biochim Biophys Acta.*
775 1993;1144(2):184-90.

776 26. Xu CF, Su X, Wang JH, Zhang FZ, Shen GN, Yuan Y, et al. Characteristics and
777 functional bacteria in a microbial consortium for rice straw lignin-degrading. *Bioresource
778 Technol.* 2021;331.

779 27. Filiatrault-Chastel C, Navarro D, Haon M, Grisel S, Herpoel-Gimbert I, Chevret D, et
780 al. AA16, a new lytic polysaccharide monooxygenase family identified in fungal secretomes.
781 *Biotechnol Biofuels.* 2019;12.

782 28. Pearson WR. An introduction to sequence similarity ("homology") searching. *Curr
783 Protoc Bioinformatics.* 2013;Chapter 3:3.1.-3.1.8.

784 29. Johnson LS, Eddy SR, Portugaly E. Hidden Markov model speed heuristic and iterative
785 HMM search procedure. *Bmc Bioinformatics.* 2010;11.

786 30. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly
787 accurate protein structure prediction with AlphaFold. *Nature.* 2021.

788 31. El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. The Pfam
789 protein families database in 2019. *Nucleic Acids Res.* 2019;47(D1):D427-D32.

790 32. Petrovic DM, Bissaro B, Chylenski P, Skaugen M, Sorlie M, Jensen MS, et al. Methylation
791 of the N-terminal histidine protects a lytic polysaccharide monooxygenase from
792 auto-oxidative inactivation. *Protein Sci.* 2018;27(9):1636-50.

793 33. Varadi M, Velankar S. The impact of AlphaFold Protein Structure Database on the
794 fields of life sciences. *Proteomics*. 2022.

795 34. Pruitt KD, Tatusova T, Maglott DR. NCBI Reference Sequence (RefSeq): a curated
796 non-redundant sequence database of genomes, transcripts and proteins. *Nucleic Acids Res.*
797 2005;33(Database issue):D501-4.

798 35. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein
799 Data Bank. *Nucleic Acids Res.* 2000;28(1):235-42.

800 36. Teufel F, Armenteros JJA, Johansen AR, Gislason MH, Pihl SI, Tsirigos KD, et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. *Nat*
801 *Biotechnol.* 2022;40(7):1023-+.

803 37. Garcia-Santamarina S, Probst C, Festa RA, Ding C, Smith AD, Conklin SE, et al. A
804 lytic polysaccharide monooxygenase-like protein functions in fungal copper import and
805 meningitis. *Nat Chem Biol.* 2020;16(3):337-+.

806 38. Arora R, Bharval P, Sarswati S, Sen TZ, Yennamalli RM. Structural dynamics of lytic
807 polysaccharide monooxygenases reveals a highly flexible substrate binding region. *J Mol*
808 *Graph Model.* 2019;88:1-10.

809 39. Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, et al. Lignin
810 Valorization: Improving Lignin Processing in the Biorefinery. *Science*. 2014;344(6185):709-+.

811 40. Lassouane F, Ait-Amar H, Amrani S, Rodriguez-Couto S. A promising laccase
812 immobilization approach for Bisphenol A removal from aqueous solutions. *Bioresource*
813 *Technol.* 2019;271:360-7.

814 41. Hilgers R, Vincken JP, Gruppen H, Kabel MA. Laccase/Mediator Systems: Their
815 Reactivity toward Phenolic Lignin Structures. *Acs Sustain Chem Eng.* 2018;6(2):2037-46.

816 42. Sirim D, Wagner F, Wang L, Schmid RD, Pleiss J. The Laccase Engineering Database:
817 a classification and analysis system for laccases and related multicopper oxidases. *Database*.
818 2011;2011:bar006.

819 43. Pardo I, Rodriguez-Escribano D, Aza P, de Salas F, Martinez AT, Camarero S. A highly
820 stable laccase obtained by swapping the second cupredoxin domain. *Sci Rep-Uk.* 2018;8.

821 44. Boulanger MJ, Murphy MEP. Crystal structure of the soluble domain of the major
822 anaerobically induced outer membrane protein (AniA) from pathogenic Neisseria: A new class
823 of copper-containing nitrite reductases. *J Mol Biol.* 2002;315(5):1111-27.

824 45. Matsuoka M, Kumar A, Muddassar M, Matsuyama A, Yoshida M, Zhang KYJ. Discovery of Fungal Denitrification Inhibitors by Targeting Copper Nitrite Reductase from
825 Fusarium oxysporum. *J Chem Inf Model.* 2017;57(2):203-13.

827 46. Zhu Y, Plaza N, Kojima Y, Yoshida M, Zhang JW, Jellison J, et al. Nanostructural
828 Analysis of Enzymatic and Non-enzymatic Brown Rot Fungal Deconstruction of the
829 Lignocellulose Cell Wall(dagger). *Front Microbiol.* 2020;11.

830 47. Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, et al. The Paleozoic
831 Origin of Enzymatic Lignin Decomposition Reconstructed from 31 Fungal Genomes. *Science.*
832 2012;336(6089):1715-9.

833 48. Choi J, Detry N, Kim KT, Asiegbu FO, Valkonen JPT, Lee YH. fPoxDB: fungal
834 peroxidase database for comparative genomics. *Bmc Microbiol.* 2014;14.

835 49. Craig JP, Coradetti ST, Starr TL, Glass NL. Direct Target Network of the *Neurospora*
836 *crassa* Plant Cell Wall Deconstruction Regulators CLR-1, CLR-2, and XLR-1. *Mbio.* 2015;6(5).

837 50. Shen W, Le S, Li Y, Hu F. SeqKit: A Cross-Platform and Ultrafast Toolkit for FASTA/Q
838 File Manipulation. *PLoS One.* 2016;11(10):e0163962.

839 51. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable
840 and accurate long-read assembly via adaptive k-mer weighting and repeat separation.
841 *Genome Res.* 2017;27(5):722-36.

842 52. Davey JW, Catta-Preta CMC, James S, Forrester S, Motta MCM, Ashton PD, et al. Chromosomal assembly of the nuclear genome of the endosymbiont-bearing trypanosomatid
843 *Angomonas deanei*. *G3.* 2021;11(1).

845 53. Andrews S. *FastQC: a quality control tool for high throughput sequence data.* Cambridge, UK: Babraham Institute. 2011.

847 54. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing
848 reads. *EMBnetjournal.* 2011;17(1):10-2.

849 55. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an
850 integrated tool for comprehensive microbial variant detection and genome assembly
851 improvement. *PLoS One*. 2014;9(11):e112963.

852 56. Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, et al. InterProScan 5:
853 genome-scale protein function classification. *Bioinformatics*. 2014;30(9):1236-40.

854 57. Palmer JMS, Jason. Funannotate v.1.8.1: Eukaryotic genome annotation. 2020.

855 58. Sayers EW, Bolton EE, Brister JR, Canese K, Chan J, Comeau DC, et al. Database
856 resources of the National Center for Biotechnology Information in 2023. *Nucleic Acids Res*.
857 2022.

858 59. R Development Core Team. R: A language and environment for statistical computing.
859 Vienna, Austria: R Foundation for Statistical Computing; 2022.

860 60. Villanueva RAM, Chen ZJ. ggplot2: Elegant Graphics for Data Analysis, 2nd edition.
861 *Meas-Interdiscip Res*. 2019;17(3):160-7.

862 61. Drula E, Garron ML, Dogan S, Lombard V, Henrissat B, Terrapon N. The carbohydrate-
863 active enzyme database: functions and literature. *Nucleic Acids Res*. 2022;50(D1):D571-D7.

864 62. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST
865 plus : architecture and applications. *Bmc Bioinformatics*. 2009;10.

866 63. Lassmann T. Kalign 3: multiple sequence alignment of large data sets. *Bioinformatics*.
867 2019.

868 64. Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, Finn RD. HMMER web server: 2018
869 update. *Nucleic Acids Res*. 2018;46(W1):W200-W4.

870 65. Krissinel E, Henrick K. Secondary-structure matching (SSM), a new tool for fast protein
871 structure alignment in three dimensions. *Acta Crystallogr D*. 2004;60:2256-68.

872 66. UniProt C. UniProt: a worldwide hub of protein knowledge. *Nucleic Acids Res*.
873 2019;47(D1):D506-D15.

874 67. Paysan-Lafosse T, Blum M, Chuguransky S, Grego T, Pinto BL, Salazar GA, et al.
875 InterPro in 2022. *Nucleic Acids Res*. 2022.

876