

1 Antibody Inhibition of Influenza A Virus Assembly and Release

2 Yuanyuan He^{1,2}, Zijian Guo^{1,2}, Sofie Subiaur^{1,2}, Ananya Benegal^{1,2}, Michael D. Vahey^{1,2,*}

3

4 ¹ Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri,
5 USA

6 ² Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, Missouri,
7 USA

8 *Corresponding author: mvahey@wustl.edu

9

10 ABSTRACT

11 Antibodies are frontline defenders against influenza virus infection, providing protection through
12 multiple complementary mechanisms. Although a subset of monoclonal antibodies (mAbs) have
13 been shown to restrict replication at the level of virus assembly and release, it remains unclear how
14 potent and pervasive this mechanism of protection is, due in part to the challenge of separating this
15 effect from other aspects of antibody function. To address this question, we developed imaging-
16 based assays to determine how effectively a broad range of mAbs against the IAV surface proteins
17 can specifically restrict viral egress. We find that classically neutralizing antibodies against
18 hemagglutinin are broadly multifunctional, inhibiting virus assembly and release at concentrations
19 one- to twenty-fold higher than the concentrations at which they inhibit viral entry. These antibodies
20 are also capable of altering the morphological features of shed virions, reducing the proportion of
21 filamentous particles. We find that antibodies against neuraminidase and M2 also restrict viral
22 egress, and that inhibition by anti-neuraminidase mAbs is only partly attributable to a loss in
23 enzymatic activity. In all cases, antigen crosslinking – either on the surface of the infected cell,
24 between the viral and cell membrane, or both – plays a critical role in inhibition, and we are able to
25 distinguish between these modes experimentally and through a structure-based computational
26 model. Together, these results provide a framework for dissecting antibody multifunctionality that
27 could help guide the development of improved therapeutic antibodies or vaccines, and that can be
28 extended to other viral families and antibody isotypes.

29 **Keywords:** Influenza virus, antibody, virus assembly, virus assembly, cross-linking

30 **INTRODUCTION**

31 Influenza A viruses (IAVs) are segmented, negative-sense RNA viruses that assemble at the
32 plasma membrane of infected cells (1). The assembly and budding of IAVs involves the coordinated
33 action of the viral surface proteins hemagglutinin (HA), neuraminidase (NA), and the proton channel
34 M2, along with the internal matrix protein M1. HA, NA, and M2 are each abundantly expressed on
35 the surface of IAV-infected cells, and they are packaged into virions during budding with relative
36 stoichiometry of approximately 100:25:1 (2, 3). Although IAV assembly and release is not fully
37 understood, the viral membrane proteins are thought to play differentiated yet coordinated roles in
38 the process. The receptor binding and fusion protein HA forms clusters in the membrane of infected
39 cells and potentially induces membrane curvature (4, 5). NA cleaves the glycosidic linkage between
40 virus particles and infected cells, allowing the release of virions for subsequent rounds of infection
41 (6). M2 contributes to membrane scission and incorporation of the viral genome into budding
42 particles (5, 7). The essential roles that these proteins play during IAV assembly and budding
43 represent vulnerabilities that could be exploited in the development of antiviral countermeasures,
44 including vaccines and therapeutic antibodies. While a number of antibodies have been identified
45 that can function in this capacity (8–10), it remains unclear how broadly conserved this functionality
46 may be.

47 Antibodies neutralize influenza viruses through multiple mechanisms, including inhibition of viral
48 attachment, blocking of viral fusion in the late endosome, restricting the assembly process, and
49 activation of cell-mediated effector functions (11). While established assays are available to
50 evaluate some of these functions (e.g., hemagglutination inhibition for antibodies that block
51 attachment; microneutralization assays for antibodies that inhibit entry), other aspects of antibody
52 function, including inhibition of virus assembly and release, are more challenging to measure or
53 predict. As a result, antibody discovery and characterization has traditionally emphasized an
54 important but somewhat narrow subset of protective mechanisms. However, recent work
55 demonstrating the potency of non-neutralizing antibodies in the control of infection highlights the
56 extent to which antibodies can function outside the context of direct neutralization (12), raising the
57 possibility that multi-functionality – the ability to restrict virus replication through multiple,
58 complementary mechanisms – may be common. However, quantitative methods that can
59 independently evaluate the distinct contributions that a broad range of antibodies make towards
60 the restriction of virus replication are needed to determine if this is the case.

61 To begin addressing these questions, we developed a fluorescence-imaging based method to
62 quantify antibody inhibition of IAV assembly and release that is agnostic to both the antibody and
63 the viral protein it targets. Using this method, we observed that a wide range of antibodies targeting
64 different antigenic sites on HA, NA, and M2 are capable of inhibiting virus release. For antibodies

65 targeting HA, we find that inhibition occurs through the crosslinking of antigens - either on the
66 infected cell membrane, or between the viral and cell membrane - in a manner that can be predicted
67 by structure-based models that account for antibody conformational heterogeneity. Inhibition of
68 virus assembly typically occurs at concentrations less than ten-fold higher than the concentrations
69 at which a particular antibody inhibits entry, with some classically neutralizing antibodies that bind
70 to the HA head or the HA stalk inhibiting viral release more effectively than they inhibit viral entry.
71 In addition to reducing the number of viruses released, we find that anti-HA antibodies can also
72 alter the morphology of virions produced during a single replication cycle. Finally, for antibodies
73 that target NA, we find that loss of enzymatic activity accounts for only a portion of their inhibitory
74 effect, and that both the potency and mechanism of these antibodies depends on the HA expressed
75 by the target virus. The framework for understanding antibody function described here may be
76 applied to other viruses that assemble at the plasma membrane of infected cells, and could help
77 guide the development of vaccines that better elicit multifunctional antibodies.

78

79 **RESULTS**

80 ***An imaging-based assay to quantify antibody inhibition of viral release***

81 To determine the potency of antibodies against IAV surface proteins during virus assembly and
82 release, we developed a fluorescence-imaging based approach to directly count virions released
83 into the cell culture media during a single replication cycle (Figure 1A). Following infection at MOI
84 ~ 1, we incubate MDCK cells with monoclonal antibodies starting at 2h post-infection (hpi), and we
85 collect viral supernatants at 8 hpi. Released virions are immobilized onto glass-bottom plates
86 coated with *Erythrina Christagalli* lectin (ECL) for fluorescence imaging. This approach is
87 insensitive to high concentrations of HA-specific antibodies (Figure S1A) and gives linear results
88 across a >100-fold range, from 9 PFU/well (the lowest concentration tested) to 1125 PFU/well
89 (Figure 1B). The upper end of this range can be extended arbitrarily by pre-diluting samples for
90 accurate quantification. In comparison to Western blot analysis, particle counting gave a >10-fold
91 lower limit of quantification (Figure S1B). Collectively, these results establish fluorescent particle
92 counting as a quantitative and sensitive assay to measure viral shedding in cell culture
93 supernatants in the presence of a range of neutralizing antibodies.

94 ***Monoclonal antibodies targeting a variety of antigenic sites on HA inhibit viral release***

95 Using this method, we tested the effect of anti-HA antibodies on viral release. HA is the most
96 abundant viral membrane protein on both virions and infected cells, and antibodies targeting a
97 range of sites across the HA surface have been identified and characterized. We selected seven
98 anti-HA antibodies targeting the receptor binding site (RBS) (S139\1 (13–15) and C05 (16, 17));

99 the central stalk (CR9114 (18), FI6v3 (19), and CR8020 (20)); the trimer interface (FluA-20 (21–
100 23)); and the anchor epitope (FISW84 (24–26)) (Figure 2). These antibodies are broadly reactive,
101 allowing us to compare results against historic strains from different subtypes: A/WSN/1933 (H1N1)
102 and A/HK/1968 (H3N2). We expressed and purified these antibodies as IgG1 isotypes (differing
103 only in their VH and VL domains) and tested their ability to inhibit virion assembly and release. For
104 these experiments, we tested antibody concentrations up to 60 nM, similar to the serum
105 concentration of a dominant clonotype post vaccination (27).

106 Antibodies targeting the HA head (S139\1, C05) or stem (CR9114, FI6v3, CR8020) all showed
107 robust inhibition of viral shedding (Figure 2A–G). Inhibitory profiles of these antibodies against
108 filamentous ('WSN 33 M1Ud') and non-filamentous ('WSN33 WT') strains that differ only in their M
109 segment are largely similar (Figure S2A, Methods). In contrast, these antibodies have greater
110 potency against non-filamentous strains during viral entry (Figure S2B), consistent with previous
111 findings (28). Antibodies that bind to the HA stem have been shown to inhibit NA activity through
112 steric hindrance (29). In testing each HA antibody, we added 0.1 U/ml exogenous sialidase from
113 Clostridium perfringens (CpNA). Although this treatment is sufficient to restore viral shedding in the
114 presence of the potent NA inhibitor oseltamivir carboxylate (Figure S3B) and has previously been
115 used to rescue viruses completely lacking NA (30), it did not restore viral release in the presence
116 of any of the stem-binding antibodies tested, suggesting that these antibodies are able to restrict
117 viral release through mechanisms other than inhibition of NA.

118 While FluA-20 IgG and FISW84 IgG both bound to infected cell surfaces (Figure S4A), they did not
119 reach 50% reduction in virion shedding at the maximum concentration tested (Figure 2E&F). We
120 reasoned that this may be due to limited accessibility of the epitopes these antibodies recognize.
121 The FISW84 epitope likely requires tilting of the HA ectodomain to enable binding (24, 26), and the
122 FluA-20 epitope is occluded in the HA trimer, requiring transient opening of the HA head for this
123 antibody to bind. Consistent with epitope accessibility playing a critical role, we observed significant
124 inhibition of viral shedding by FluA-20 against a virus with HA from A/California/04/2009, which
125 readily dissociates into monomers (Figure S4B) (31). The increased potency of FluA-20 against
126 HA from A/California/04/2009 versus HA from A/WSN/1933 – despite the conservation of the five
127 residues with which FluA-20 primarily interacts (21, 22) – highlights the importance of HA trimer
128 stability and epitope accessibility in determining antibody potency in inhibiting virus release.

129 ***Inhibition of viral egress by anti-HA antibodies affect the morphology of released virions***

130 To examine the effect of antibody inhibition on the characteristics of released viruses, we compared
131 particles from the filamentous strain A/Hong Kong/1968 raised in the presence or absence of
132 CR8020 IgG. At antibody concentrations where particle release is decreased by 75%, we observe
133 a 36% apparent decrease in mean HA abundance per particle, measured using a fluorescent Fab

134 fragment from C05 (Figure S5A). This decrease in HA intensity may result from changes in HA
135 abundance per particle, or from interference of CR8020 IgG with C05 Fab attachment. To compare
136 particle size in a way that is independent of labeling intensity, we measured the percentage of viral
137 filaments greater than 1, 2, or 4 μ m in length, sizes above the diffraction limit of our optical system
138 (~300 nm) which can easily be resolved. We find that the percentage of viral filaments above each
139 length threshold successively decreases in the presence of CR8020 IgG relative to the antibody-
140 free condition, suggesting that antibodies can alter both the number and the morphological features
141 of the viruses that are released over the course of infection (Figure S5B).

142 ***Anti-NA antibodies inhibit viral release via mechanisms beyond direct inhibition of***
143 ***enzymatic activity***

144 We next tested two anti-NA antibodies: 1G01, which binds to the active site (10), and CD6 which
145 binds to the interface of adjacent monomers in the NA tetramer (32). Since both antibodies inhibit
146 NA enzymatic activity, we performed these experiments both in the presence and absence of
147 CpNA, which has been shown by us (Figure S3) and by others to compensate for loss of NA
148 enzymatic activity (30, 33). We found that the extent to which inhibition of viral shedding by 1G01
149 and CD6 IgG could be rescued by CpNA varied depending on the virus's genetic background.
150 Although all viruses tested express the same NA (from A/California/04/2009), particle release could
151 not be rescued by CpNA in a WSN33 background with mismatched HA (Figure 3A), but was
152 partially restored in a PR8 background with matched or mismatched HA (Figure S6). This suggests
153 that anti-NA antibodies inhibit viral release through mechanisms besides enzymatic inhibition, and
154 that this inhibition varies depending on the genetic context.

155 ***Anti-M2 antibodies reduce viral release at high concentrations***

156 Finally, we investigated the ability of two M2-specific IgG antibodies, mAb148 and mAb65, to inhibit
157 virus assembly and release. These antibodies bind to overlapping epitopes in the extracellular
158 domain of M2 (34, 35). While prior work found that an antibody against the M2 ectodomain (14C2)
159 only inhibited the assembly of filamentous strains (9, 36), both anti-M2 antibodies we tested were
160 able to restrict viral shedding of the spherical strain WSN33, but required high concentrations and
161 were generally less potent than HA- and NA-specific antibodies (Figure 3B). Together with our
162 results testing anti-HA and anti-NA antibodies, this establishes inhibition of viral release as a
163 widespread mechanism of protection for antibodies targeting each of the three primary viral surface
164 proteins.

165 ***Crosslinking of HA or NA in cis or in trans contributes to inhibition of viral release***

166 To understand mechanisms that contribute to antibody inhibition of viral release, we compared
167 inhibition profiles of bivalent CR9114 IgG and monovalent CR9114 Fab at concentrations up to

168 ~100-fold higher than the dissociation constant for both Fab and IgG (~0.4 nM) (18). In contrast to
169 CR9114 IgG, the monovalent CR9114 Fab showed no inhibition of viral release, confirming that
170 bivalence is important. Together with our finding that exogenous sialidase has limited ability to
171 reverse inhibition of viral egress by anti-NA antibodies but not oseltamivir, this suggests that antigen
172 crosslinking plays a key role in inhibition of viral shedding. This crosslinking could occur between
173 antigens within the same membrane (*i.e.*, in *cis*, Figure 4A) or between antigens in closely apposed
174 membranes (*i.e.*, in *trans*). Although antigen crosslinking has been observed for some influenza-
175 specific antibodies (16, 18, 37–41), it remains unclear how common this phenomenon is, and how
176 it depends on the specific epitopes which an antibody binds.

177 *Cis* crosslinking of trimeric or tetrameric viral surface proteins by bivalent antibodies could result in
178 extensive networks of proteins with reduced mobility, a scenario that can be readily detected using
179 fluorescence recovery after photobleaching (FRAP) (42). To avoid changes in protein mobility that
180 could arise in the context of productive infection, we performed FRAP on cells transfected with
181 either HA or NA plasmids and treated with bivalent or monovalent targeting antibodies at ~48 hours
182 post transfection (Figure 4B). While HA bound by monovalent CR9114 scFv showed efficient
183 recovery (60% after 75 s), HA bound by bivalent CR9114 or Fl6v3 IgG at concentrations that inhibit
184 75% of viral release did not significantly recover (Figure 4C, left). In comparison, RBS-binding
185 antibodies S139\1 and C05 IgG showed *cis* crosslinking only on cells expressing high levels of HA,
186 with S139\1 having a stronger effect than C05 (Figure 4C, left). Similar experiments evaluating NA
187 mobility in the presence or absence of 1G01 IgG or CD6 IgG demonstrate that both antibodies
188 significantly reduce NA diffusion, consistent with *cis* crosslinking (Figure 4C, right).

189 We next investigated the ability of antibodies to crosslink HA across membranes in *trans* (Figure
190 4D). Previous studies have shown that RBS-specific antibodies can cause virus aggregation on
191 infected cell surfaces or in suspension (16, 18, 37, 39, 40). To compare *trans* crosslinking across
192 the antibodies in our panel, we incubated virus particles overnight with antibodies at concentrations
193 that result in 75% inhibition of virus release and measured particle aggregation using fluorescence
194 microscopy (Figure 4E). While C05 and S139\1 IgG resulted in significant aggregation relative to
195 IgG-free controls, the stem-binding antibodies CR9114 and Fl6v3 did not (Figure 4F). These
196 observations suggest that membrane-distal epitopes support antigen crosslinking across
197 membranes, while membrane-proximal epitopes restrict crosslinking to antigens within the same
198 membrane.

199 **Antibodies have widely varying potencies in inhibiting viral entry and release**

200 Many of the anti-HA antibodies from our panel have established functions in blocking viral entry,
201 by preventing either attachment (S139\1, C05) or membrane fusion (CR9114, Fl6v3, CR8020). We
202 sought to determine how the potency of these antibodies at inhibiting viral entry ('IC50_{entry}',

203 measured using single-round microneutralization assays) compares to their potency at inhibiting
204 viral release ('IC₅₀_{release}'). We find that the ratio of IC₅₀ values varies widely across antibodies
205 (Figure 5A). For example, although S139\1 and C05 both inhibit viral attachment, the two antibodies
206 differ ~10-fold in their IC₅₀ ratio: specifically, C05 is similarly potent in inhibiting viral entry and
207 release while S139\1 is ~10-fold more effective at blocking viral entry than viral release. When we
208 tested these antibodies against HAs towards which they have different affinities (HK68 and
209 WSN33), we found that the ratio between IC₅₀_{entry} and IC₅₀_{release} remained similar for both
210 antibodies (Figure 5B, Table S1). Thus, while the absolute potency of an antibody at inhibiting viral
211 release depends on its affinity, its relative potency at inhibiting entry versus release appears to
212 depend on other factors. Interestingly, inhibition of virus shedding by S139\1 IgG decreases at
213 antibody concentrations above ~5 nM. This is consistent with a transition from bivalent to
214 monovalent binding as antibodies in solution begin to compete with bound antibodies for free HAs,
215 disrupting *cis* or *trans* crosslinking (43). This phenomenon may limit inhibition of viral release for
216 antibodies with exceptional affinity.

217 To investigate how results using monoclonal antibodies compare to polyclonal mixtures, we
218 compared inhibition of entry and release by human convalescent serum against
219 A/California/04/2009 at their respective IC₅₀ values. Across two samples, we observe that one
220 (Serum 1) is ~20-fold more potent at inhibiting viral entry relative to viral release, while the other
221 (Serum 2) is ~6-fold more potent (Figure 5C). This is broadly consistent with our experiments with
222 monoclonal antibodies and indicates that inhibition of viral entry does not necessarily predict
223 potency in inhibiting viral release. Collectively, these data demonstrate that antibody inhibition of
224 viral release plays a supporting role in limiting the spread of infection by a wide variety of antibodies,
225 occasionally rivaling inhibition of viral entry even for antibodies that block receptor binding or
226 membrane fusion.

227 **Antibody-HA structures predict a broad range of *cis* and *trans* crosslinking preferences**

228 We reasoned that the binding orientation of an antibody could influence its geometric preference
229 for crosslinking in *cis* or in *trans*. To investigate this possibility, we developed a geometric model
230 using structures of Fab fragments bound to HAs of different subtypes. Using each structure to
231 constrain the position for one of the antibody's Fab arms, the model randomly samples potential
232 configurations for the second Fab arm and evaluates the compatibility of each sampled
233 configuration with *cis* or *trans* crosslinking (Methods, Figure 6A & B, Figure S7). This model focuses
234 on the effects of antibody binding position and orientation without accounting for affinity, kinetics,
235 or epitope accessibility – factors which are also likely important. Among the antibodies we tested,
236 predictions from this model qualitatively agree with experimental measurements. C05 has a high
237 propensity for *trans* crosslinking, while for the stem-binding antibodies CR9114, FI6v3, and

238 CR8020, *cis* crosslinking is preferred (Figure 6B & C). Also consistent with our crosslinking data
239 (Figure 4), S139\1 is predicted to have a reasonable propensity for both crosslinking modes. Among
240 antibodies that we have not tested, F045-092 (44), L3A-44 (45), and CH65 (46) – antibodies which
241 all bind in or around the RBS - are predicted to have a strong preference for *trans* crosslinking
242 (Table S2). In contrast, antibodies predicted to have a strong preference for *cis* crosslinking bind
243 to a range of antigenic sites, including adjacent to the RBS (S139\1 (47)) the central stalk (31.b.09
244 (48)), and the trimer interface (S8V2-37 (49)) (Figure 6C & D, Table S2). We selected one of these
245 antibodies, 31.b.09, for further testing. Although 31.b.09 binds to an epitope that largely overlaps
246 that of CR9114, the heavy and light chains are rotated ~180° in the structures of these Fabs bound
247 to the HA central stalk (Figure S8A), positioning 31.b.09 in a way that we reasoned would promote
248 *cis* crosslinking and perhaps make it a relatively better inhibitor of virus assembly. While CR9114
249 inhibits viral entry ~20-fold more potently than virus assembly and release, 31.b.09 shows the
250 opposite trend, inhibiting assembly and release more effectively than viral entry (Figure S8B).
251 Collectively, the general agreement between structure-based predictions and our experimental
252 results suggest that antibody binding orientation constrains crosslinking propensity and provides a
253 metric for predicting inhibition of viral assembly and release.

254

255 **DISCUSSION**

256 While antibody inhibition of virus release has been documented in the context of infection by
257 influenza and other enveloped viruses (50, 51), it remains an understudied aspect of antibody
258 function. For the most part, antibodies that inhibit viral release have been identified via a process
259 of elimination, through their inability to block viral attachment or entry despite restricting viral
260 replication *in vitro*. By systematically and quantitatively comparing inhibition of virus release by a
261 variety of neutralizing antibodies targeting distinct antigenic sites on HA, NA, and M2, we establish
262 the generality of this phenomenon and identify distinct mechanisms through which antibodies
263 restrict viral shedding: by crosslinking viral surface proteins in *cis*, to disrupt the diffusion of viral
264 surface proteins; or by crosslinking *in trans*, to induce viral aggregation or sequestration on the cell
265 surface. In addition to reducing the number of virus particles released during infection, we find that
266 antibodies can also alter the size or morphology of released particles, potentially influencing viral
267 replication in other ways. While we have focused specifically on IgG1 antibodies, other isotypes
268 abundant in mucosal environments - especially IgA and IgM - will likely increase *trans*-crosslinking
269 potency and may extend this capability to antibodies that recognize membrane-proximal epitopes.
270 We propose that inhibition of virus assembly may serve as an additional metric to evaluate antibody
271 potency alongside traditional neutralization measurements and assays aimed at evaluating Fc-
272 dependent effector functions.

273 While the neutralizing activities of antibodies during viral entry are often well-correlated with their
274 binding affinity, inhibition of assembly and release appears to depend on additional factors. One
275 factor identified here is the antibody binding geometry. We find that the ability of antibodies to bridge
276 two antigens - either in the same membrane (*cis*) or in opposing membranes (*trans*) – can be
277 predicted with reasonable accuracy using a simplified computational model. This presents an
278 opportunity to identify candidate antibodies that bind to neutralizing epitopes in favorable
279 orientations that maximize crosslinking. We would expect that such antibodies would have dual
280 potency in preventing viral entry as well as egress, given that their affinity is sufficiently high. A
281 second factor that can contribute to inhibition of viral release is functional interactions between the
282 target protein and other viral proteins; in particular, we find that the potency and mechanism with
283 which anti-NA antibodies inhibit viral release depends on the HA and other viral proteins with which
284 NA is paired. This result parallels early observations with anti-M2 antibodies, in which the potency
285 of the ectodomain-specific antibody 14C2 was observed to differ markedly between strains despite
286 complete conservation of the antibody epitope (9, 36). Understanding the polygenic nature of
287 antibody inhibition of IAV release will require a deeper understanding of the mechanisms through
288 which the IAV surface proteins contribute to assembly and budding.

289 We expect that many of the considerations that make an antibody a potent inhibitor of IAV assembly
290 will also apply to other viruses that assemble at the plasma membrane of infected cells. Previous
291 studies have reported that broadly neutralizing antibodies against E1 and E2 glycoproteins on
292 alphaviruses are able to inhibit viral egress (52–56) (57). While crosslinking likely plays a role in
293 this process, the ability of some E1-specific Fab fragments to inhibit alphavirus release similar to
294 their IgG counterparts suggests that crosslinking is not a requirement (55). More generally, we
295 speculate that viruses whose membrane proteins directly interact with each other on the viral
296 surface or during assembly (58–60) may be vulnerable to inhibition by non-crosslinking antibodies
297 that disrupt these interactions. Further investigation into the mechanisms through which antibodies
298 restrict the assembly and release of influenza and other viruses may help guide the development
299 of more broadly protective therapies and vaccines.

300

301 MATERIALS AND METHODS

302 Cell Lines and Viruses

303 MDCK-II and HEK-293T cell lines used in the study were purchased as authenticated cell lines
304 (STR profiling) from ATCC and cultured with cell growth medium comprised of Dulbecco's modified
305 Eagle's medium (DMEM; Gibco) supplemented with 10% fetal bovine serum (FBS; Gibco) and 1x
306 antibiotic-antimycotic (Corning) under standard conditions (37 °C and 5% CO₂).

307 Recombinant viruses were rescued using standard reverse genetics techniques (61). In brief, co-
308 cultures of HEK-293T and MDCK-II were transfected with plasmids containing each vRNA segment
309 flanked by bidirectional promoters. Viruses were collected from co-cultures at around two days post
310 transfection and plaque purified. Viral plaques were passaged at an MOI of ~0.001 in MDCK-II cells
311 in virus growth medium comprised of Opti-MEM (Gibco), 2.5 mg/ml bovine serum albumin (Sigma-
312 Aldrich), 1 µg/ml L-(tosylamido-2-phenyl ethyl) chloromethyl ketone (TPCK)-treated trypsin
313 (Thermo Scientific Pierce), and 1x antibiotic-antimycotic (Corning). The viral stocks were further
314 expanded by passaging at low MOI.

315 To obtain A/WSN/1933 viruses with filamentous phenotype, the M1 sequence within the WSN M
316 segment is replaced by that of A/Udorn/1972. Rescue and characterization of these viruses has
317 been described previously (62). To obtain A/California/2009 reassortant viruses, HA and/or NA
318 segments from A/California/2009 are transfected in combination with corresponding genetic
319 segments from A/WSN/1933 or A/Puerto Rico/8/1934.

320 **Antibody Purification and Labeling**

321 Sequences for the variable regions of antibody heavy and light chains were obtained from
322 deposited antibody structures on the PDB and cloned into expression vectors to make full-length
323 human IgG1 antibodies. Sequences for the heavy chain were modified with a C-terminal ybbR tag
324 for enzymatic labeling (63) and, in the case of Fab fragments, a His6 tag for affinity purification
325 using Ni-NTA Agarose Beads (Thermo Scientific Pierce). Full-length antibodies were purified using
326 protein A agarose beads (Thermo Scientific Pierce). Antibodies were expressed in HEK-293T
327 following transfection with heavy and light chains at >70% confluence. Cells were subsequently
328 cultured for seven days in Opti-MEM with 1x Anti-Anti and with or without 2% FBS for Fab and IgG
329 antibodies, respectively. Supernatants from the HEK-293T cells were collected for affinity
330 purification. Full details on antibody purification and enzymatic labeling are described elsewhere
331 (63).

332 Human convalescent sera was obtained through BEI Resources (NR-18964 and NR-18965 for
333 Serum 001 and Serum 002, respectively) and used without further purification in virus counting
334 assays and microneutralization assays. IC₅₀ values for serum neutralization were measured as
335 fold-dilutions from the initial undiluted stock.

336 **Virus Counting Assay**

337 MDCK-II cells were seeded into 96 well plates as a monolayer. Cells were washed twice with PBS
338 and infected at MOI ~ 1 for two hours at 37 °C. At 2hpi, the inoculum was removed, and cells were
339 washed vigorously with PBS twice. Antibodies were serially diluted in virus growth media and added
340 to cells for an additional 6 hours at 37 °C. Unless otherwise indicated, media was supplemented

341 with 0.1 U/ml CpNA (Roche) to minimize steric inhibition of NA by stem binding antibodies. At 8
342 hpi, the supernatant was collected, diluted to the appropriate viral concentration to assure linear
343 quantification (Figure 1B), and mixed with enzymatically-labelled viruses with sulfo-Cy5 site-
344 specifically conjugated to HA (prepared as previously described (62)). Sulfo-Cy5 labeled virus
345 served as a loading control for more consistent quantification. Addition of either CR9114 scFv 488
346 (A/WSN/1933) or Fl6v3 scFv 488 (A/Hongkong/1968 and A/California/2009 reassortant strains)
347 allowed discrimination between sample virus and the enzymatically-labeled loading control.
348 Samples were imaged with a Nikon Ti2 confocal microscopy system using a 40x, 1.3-NA objective.
349 Images containing virus particles were then analyzed using spot detection in each channel to
350 determine the total number of virions immobilized on the glass-bottom well. The ratio between the
351 particle count in the experimental and control samples were calculated for each antibody
352 concentration and normalized to the antibody-free condition to generate the neutralization curve.

353 Imaging plates for virus quantification were prepared by coating coverslip-bottom wells (Cellvis)
354 with 0.18 mg/ml BSA-biotin in PBS overnight at 4 °C. The imaging plate was then washed with PBS
355 twice and incubated with 25 µg/ml streptavidin (Invitrogen) in PBS for 2 h. The imaging plate was
356 then washed twice with PBS and incubated with 25 µg/ml biotinylated Erythrina cristagalli lectin
357 (Vector Laboratories) at room temperature for 2 hours. Finally, the imaging plate was washed twice
358 with NTC buffer (100 mM NaCl, 5 mM CaCl₂; 20 mM Tris pH 7.4) prior to adding virus samples.

359 As a comparison to the virus counting assay, we performed quantitative Western blotting using the
360 same serially diluted input virus stock used to generate the assay validation curve (Figure 1B). The
361 same volume of virus samples was used as input for the imaging assay and for Western blotting.
362 The blot was incubated with a polyclonal anti-HA primary antibody (Invitrogen) overnight at 4 °C,
363 and probed with an IRDye 800CW goat anti-rabbit secondary (Licor) at room temperature for 1
364 hour prior to scanning on a Licor Odyssey imager.

365 **Microneutralization Assay**

366 MDCK-II cells were seeded into 96 well plates as a monolayer. Monoclonal antibodies were serially
367 diluted and mixed with viruses at 4°C for 2 hours. Cells were washed twice with PBS prior to adding
368 the antibody-virus mixture and incubated at 37 °C. At two hours, the antibody-virus mixture was
369 removed, and cells were washed twice with PBS and replenished with virus growth media
370 containing 0.125 U/ml cpNA to prevent delayed primary infection from residual virus. The cells were
371 incubated at 37 °C for 6 hours and imaged using CR9114 scFv 488 or Fl6V3 scFv 488 to label HA
372 on the surface of infected cells. The number of HA-positive cells were counted using the Spot
373 Detection function in the Nikon Elements Analysis software and normalized to the antibody-free
374 condition to generate the neutralization curve.

375 **Virus Aggregation Assay**

376 Freshly expanded A/WSN/1933 viruses were treated with 0.125 units/mL CpNA for 2 hours at 4
377 °C. Viruses were then incubated overnight at 4 °C with antibodies at their respective IC75 values
378 for inhibition of virus release (Figure 2). Virus-antibody complexes were then immobilized via ECL
379 onto glass-bottom imaging chambers and labeled with fluorescent non-competing CR9114 scFv or
380 C05 Fab and imaged using a 40X, 1.3NA objective. Images of virus-antibody complexes were then
381 segmented using Nikon Elements Software and the HA intensity from the fluorescent non-
382 competing Fab or scFv was quantified. Only viruses visualized with the same antibody fragments
383 are directly compared in Figure 4.

384 **Fluorescence Recovery after Photobleaching Assay (FRAP)**

385 An 8-well chambered cover glass (Cellvis) was incubated with 10µg/ml Human Plasma Fibronectin
386 (EMD Millipore) at 4°C for 20 minutes. HEK-293T cells were transfected with HA- or NA- expressing
387 plasmids and split into the imaging chambers. At ~48 hours post transfection, fluorescently labeled
388 antibodies are added to each well at the measured IC75 value (Figures 2 & 3) to perform FRAP.
389 CR9114 scFv and CD6 Fab are used as negative controls to measure the normal diffusion of HA
390 and NA in the absence of bivalent antibodies. An Olympus Fluoview FV1200 laser scanning
391 confocal microscope with a 60x, 1.35 NA objective was used for photobleaching and image
392 acquisition. Photobleaching was performed over a circular region 1.98 µm in diameter using
393 maximum laser power. One frame was taken before bleaching and one frame was taken 1 s after
394 the bleaching event. Fourteen frames in total were collected at 5 s intervals following the
395 photobleaching event.

396 To validate that the FRAP measurement is not complicated by rapid antibody turnover, dissociation
397 kinetics of CR9114 and CD6 Fab fragments to A/WSN/1933 HA or A/CA/2009 NA were measured
398 to verify that the time scale for dissociation far exceeds that of HA or NA diffusion. For these
399 measurements, freshly expanded virus was incubated with CpNA for 30 minutes at 37 °C and
400 immobilized onto a coverslip-based flow chamber via sequential layering of biotinylated BSA,
401 streptavidin, and biotinylated ECL. Fluorescently labeled CR9114 Fab or CD6 Fab was introduced
402 into the channel at ~5 nM and allowed to bind for 30 minutes. The Fab was then washed away
403 with PBS, and the fluorescent signal from remaining bound Fab fragments was measured at 5 s
404 intervals for 75 seconds (the duration of the FRAP experiment). Results from this analysis are
405 shown in Figure S9.

406

407

408

409 **Measuring Virus Particle Size**

410 Images of shed virus particles collected with Nikon TI2 confocal microscopy system using a 60x,
411 1.40NA objective were segmented and quantified to determine the major and minor axis length and
412 HA intensity measured by fluorescent non-competing antibodies as previously described (62).

413 **Modeling Antibody Crosslinking from Structural Information**

414 To model the propensity of different mAbs to crosslink HA in *cis* or in *trans* based on their binding
415 orientation, atomic coordinates for 83 structures of non-duplicate Fab fragments bound to HAs of
416 different subtypes were downloaded from the Protein Data Bank and aligned by the Fab heavy and
417 light chains. Using this first Fab arm ('Fab₁') as a reference, a range of possible configurations for
418 the alternate Fab arm ('Fab₂') were sampled through sequential translation and rotation
419 transformations, including introducing symmetry-breaking 'wobble' in Fab₂, as observed for IgG
420 antibodies (64–66) (Figure 6A). Based on previous estimates from electron microscopy, Fab₂
421 conformations using $\psi = +/- 60^\circ$, $\phi = +/- 30^\circ$, and $\theta = 60^\circ +/- 30^\circ$ were sampled, where '+/-' indicates
422 the standard deviations of the distribution each angle is sampled from. These simplified parameters
423 result in a Fab arm which can twist extensively about its major axis (67), and which can rotate
424 extensively along the other principal axes as well, consistent with previous observations (64–66).

425 Each sampled configuration of Fab₁ and Fab₂ results in a relative position and orientation for the
426 bound HAs which was evaluated for its compatibility with *cis* or *trans* crosslinking. Configurations
427 where the stem-to-stem or head-to-head distances are less than 5nm are eliminated, and head-to-
428 stem distances less than 10 nm are eliminated as well (Figure S7A). For *trans* crosslinking, the
429 head of the second (inverted) HA was required to be above the head of the first (upright) HA, while
430 for *cis* crosslinking, the head of the second HA was required to be above the base of the first HA.
431 For each allowable configuration, the dot product of axial vectors that extend from the bottom to
432 top of the two HAs was evaluated. This produced a distribution of values ranging from -1 (for anti-
433 parallel HAs) to +1 (for parallel HAs) which was used to score the geometric propensity of a given
434 mAb to crosslink HAs in *cis* and in *trans*; antibodies whose distribution of vector products is
435 clustered at +1 are highly compatible with *cis* crosslinking, while antibodies where the distribution
436 clusters around -1 are highly compatible with *trans* crosslinking (Figure 6B). Changing the range of
437 angular distributions sampled to determine possible configurations for bound HAs influences the
438 predictions quantitatively but not qualitatively. Figure S7B shows how the predicted *cis* and *trans*
439 crosslinking propensities for each mAb change under different implicit flexibilities; the dominant
440 effect is to increase the ability of most antibodies to crosslink in *cis*, with little predicted effect on
441 their ability to crosslink in *trans*.

442

443 **Statistics and Replicates**

444 Statistical analysis was performed using GraphPad Prism 9, MATLAB, and Python. No statistical
445 methods were applied to predetermine sample size. Statistical tests used are indicated in each
446 respective figure legend. Box plots may omit outliers that are beyond the limit of the y-axes for clear
447 visualization, but these are included in statistical analyses. Biological replicates are defined as cells
448 separately infected/transfected/treated and assayed as indicated.

449 **Data Availability**

450 Analyzed data is available through the manuscript. Raw images will be uploaded to Image Data
451 Resource (<https://idr.openmicroscopy.org/>) upon publication. Analysis code and code used for
452 Figure 6 and Figure S7 will be uploaded to GitHub.

453

454 **ACKNOWLEDGEMENTS**

455 This work was supported by institutional funds from Washington University in St. Louis; National
456 Institutes of Health grants R21 AI163985 and R01 AI171445; National Science Foundation
457 CAREER Award 2238165; and Burroughs Wellcome Fund CASI Award 1013923. The following
458 reagent was obtained through BEI Resources, NIAID, NIH: Human Convalescent Serum 001 to
459 2009 H1N1 Influenza A Virus, NR-18964 and Human Convalescent Serum 002 to 2009 H1N1
460 Influenza A Virus, NR-18965.

461

462 **AUTHOR CONTRIBUTIONS**

463 Y.H. and M.D.V. designed research; Y.H., Z.G., and M.D.V. performed research; Y.H., Z.G., A.N.B.,
464 and M.D.V. contributed new reagents; Y.H., Z.G., S.S., and M.D.V. analyzed data; Y.H. and M.D.V.
465 wrote the paper.

466

467 **COMPETING INTEREST STATEMENT**

468 The authors declare no competing interest.

469

470

471

472

473

474 REFERENCES

475 1. N. M. Bouvier, P. Palese, The Biology of Influenza Viruses. *Vaccine* **26**, D49–D53 (2008).

476 2. D. P. Nayak, R. A. Balogun, H. Yamada, Z. H. Zhou, S. Barman, Influenza virus
477 morphogenesis and budding. *Virus Res* **143**, 147–161 (2009).

478 3. R. A. Lamb, S. L. Zebedee, C. D. Richardson, Influenza virus M2 protein is an integral
479 membrane protein expressed on the infected-cell surface. *Cell* **40**, 627–633 (1985).

480 4. G. P. Leser, R. A. Lamb, Influenza virus assembly and budding in raft-derived
481 microdomains: a quantitative analysis of the surface distribution of HA, NA and M2 proteins.
482 *Virology* **342**, 215–227 (2005).

483 5. P. Chlanda, *et al.*, Palmitoylation Contributes to Membrane Curvature in Influenza A Virus
484 Assembly and Hemagglutinin-Mediated Membrane Fusion. *J Virol* **91**, e00947-17 (2017).

485 6. F. Krammer, *et al.*, NAction! How Can Neuraminidase-Based Immunity Contribute to Better
486 Influenza Virus Vaccines? *mBio* **9**, e02332-17 (2018).

487 7. M. F. McCown, A. Pekosz, The Influenza A Virus M2 Cytoplasmic Tail Is Required for
488 Infectious Virus Production and Efficient Genome Packaging. *Journal of Virology* **79**, 3595–
489 3605 (2005).

490 8. S. Bangaru, *et al.*, A multifunctional human monoclonal neutralizing antibody that targets a
491 unique conserved epitope on influenza HA. *Nat Commun* **9**, 2669 (2018).

492 9. P. G. Hughey, *et al.*, Effects of Antibody to the Influenza A Virus M2 Protein on M2 Surface
493 Expression and Virus Assembly. *Virology* **212**, 411–421 (1995).

494 10. D. Stadlbauer, *et al.*, Broadly protective human antibodies that target the active site of
495 influenza virus neuraminidase. *Science* **366**, 499–504 (2019).

496 11. F. Krammer, The human antibody response to influenza A virus infection and vaccination.
497 *Nat Rev Immunol* **19**, 383–397 (2019).

498 12. W. He, *et al.*, Alveolar macrophages are critical for broadly-reactive antibody-mediated
499 protection against influenza A virus in mice. *Nat Commun* **8**, 846 (2017).

500 13. P. S. Lee, *et al.*, Heterosubtypic antibody recognition of the influenza virus hemagglutinin
501 receptor binding site enhanced by avidity. *Proceedings of the National Academy of Sciences*
502 **109**, 17040–17045 (2012).

503 14. J. C. Krause, J. E. Crowe, Committing the Oldest Sins in the Newest Kind of Ways-
504 Antibodies Targeting the Influenza Virus Type A Hemagglutinin Globular Head. *Microbiol*
505 *Spectr* **2** (2014).

506 15. R. Yoshida, *et al.*, Cross-Protective Potential of a Novel Monoclonal Antibody Directed
507 against Antigenic Site B of the Hemagglutinin of Influenza A Viruses. *PLOS Pathogens* **5**,
508 e1000350 (2009).

509 16. D. C. Ekiert, *et al.*, Cross-neutralization of influenza A viruses mediated by a single antibody
510 loop. *Nature* **489**, 526–532 (2012).

511 17. S. M. Ghafoori, *et al.*, Structural characterisation of hemagglutinin from seven Influenza A
512 H1N1 strains reveal diversity in the C05 antibody recognition site. *Sci Rep* **13**, 6940 (2023).

513 18. C. Dreyfus, *et al.*, Highly Conserved Protective Epitopes on Influenza B Viruses. *Science*
514 **337**, 1343–1348 (2012).

515 19. D. Corti, *et al.*, A neutralizing antibody selected from plasma cells that binds to group 1 and
516 group 2 influenza A hemagglutinins. *Science* **333**, 850–856 (2011).

517 20. D. C. Ekiert, *et al.*, A highly conserved neutralizing epitope on group 2 influenza A viruses.
518 *Science* **333**, 843–850 (2011).

519 21. S. Bangaru, *et al.*, A Site of Vulnerability on the Influenza Virus Hemagglutinin Head Domain
520 Trimer Interface. *Cell* **177**, 1136-1152.e18 (2019).

521 22. X. Zhu, *et al.*, Influenza chimeric hemagglutinin structures in complex with broadly protective
522 antibodies to the stem and trimer interface. *Proceedings of the National Academy of
523 Sciences* **119**, e2200821119 (2022).

524 23. A. Watanabe, *et al.*, Antibodies to a Conserved Influenza Head Interface Epitope Protect by
525 an IgG Subtype-Dependent Mechanism. *Cell* **177**, 1124-1135.e16 (2019).

526 24. D. J. Benton, *et al.*, Influenza hemagglutinin membrane anchor. *Proceedings of the National
527 Academy of Sciences* **115**, 10112–10117 (2018).

528 25. L. Morris, *et al.*, Isolation of a Human Anti-HIV gp41 Membrane Proximal Region
529 Neutralizing Antibody by Antigen-Specific Single B Cell Sorting. *PLoS One* **6**, e23532
530 (2011).

531 26. J. J. Guthmiller, *et al.*, Broadly neutralizing antibodies target a haemagglutinin anchor
532 epitope. *Nature* **602**, 314–320 (2022).

533 27. J. J. Lavinder, *et al.*, Identification and characterization of the constituent human serum
534 antibodies elicited by vaccination. *Proceedings of the National Academy of Sciences* **111**,
535 2259–2264 (2014).

536 28. T. Li, *et al.*, The shape of pleomorphic virions determines resistance to cell-entry pressure.
537 *Nat Microbiol* **6**, 617–629 (2021).

538 29. I. Kosik, *et al.*, Neuraminidase inhibition contributes to influenza A virus neutralization by
539 anti-hemagglutinin stem antibodies. *J Exp Med* **216**, 304–316 (2019).

540 30. M. T. Hughes, M. Matrosovich, M. E. Rodgers, M. McGregor, Y. Kawaoka, Influenza A
541 Viruses Lacking Sialidase Activity Can Undergo Multiple Cycles of Replication in Cell
542 Culture, Eggs, or Mice. *Journal of Virology* **74**, 5206–5212 (2000).

543 31. H. Yang, *et al.*, Structural Stability of Influenza A(H1N1)pdm09 Virus Hemagglutinins.
544 *Journal of Virology* **88**, 4828–4838 (2014).

545 32. H. Wan, *et al.*, Structural characterization of a protective epitope spanning A(H1N1)pdm09
546 influenza virus neuraminidase monomers. *Nat Commun* **6**, 6114 (2015).

547 33. B. J. Chen, G. P. Leser, E. Morita, R. A. Lamb, Influenza virus hemagglutinin and
548 neuraminidase, but not the matrix protein, are required for assembly and budding of
549 plasmid-derived virus-like particles. *J Virol* **81**, 7111–7123 (2007).

550 34. K. J. Cho, *et al.*, Crystal Structure of the Conserved Amino Terminus of the Extracellular
551 Domain of Matrix Protein 2 of Influenza A Virus Gripped by an Antibody. *Journal of Virology*
552 **90**, 611–615 (2015).

553 35. K. J. Cho, *et al.*, Structure of the Extracellular Domain of Matrix Protein 2 of Influenza A
554 Virus in Complex with a Protective Monoclonal Antibody. *Journal of Virology* **89**, 3700–3711
555 (2015).

556 36. S. L. Zebedee, R. A. Lamb, Influenza A virus M2 protein: monoclonal antibody restriction of
557 virus growth and detection of M2 in virions. *Journal of Virology* **62**, 2762–2772 (1988).

558 37. J. A. Williams, L. Gui, N. Hom, A. Mileant, K. K. Lee, Dissection of Epitope-Specific
559 Mechanisms of Neutralization of Influenza Virus by Intact IgG and Fab Fragments. *J Virol*
560 **92**, e02006-17 (2018).

561 38. N. S. Laursen, *et al.*, Universal protection against influenza infection by a multidomain
562 antibody to influenza hemagglutinin. *Science* **362**, 598–602 (2018).

563 39. M. Muramatsu, *et al.*, Comparison of Antiviral Activity between IgA and IgG Specific to
564 Influenza Virus Hemagglutinin: Increased Potential of IgA for Heterosubtypic Immunity.
565 *PLOS ONE* **9**, e85582 (2014).

566 40. B. Brandenburg, *et al.*, Mechanisms of Hemagglutinin Targeted Influenza Virus
567 Neutralization. *PLOS ONE* **8**, e80034 (2013).

568 41. X. Xiong, *et al.*, Structures of complexes formed by H5 influenza hemagglutinin with a potent
569 broadly neutralizing human monoclonal antibody. *Proc Natl Acad Sci U S A* **112**, 9430–9435
570 (2015).

571 42. N. W. Goehring, D. Chowdhury, A. A. Hyman, S. W. Grill, FRAP Analysis of Membrane-
572 Associated Proteins: Lateral Diffusion and Membrane-Cytoplasmic Exchange. *Biophys J*
573 **99**, 2443–2452 (2010).

574 43. K. J. Lafferty, S. Oertelis, The interaction between virus and antibody: III. Examination of
575 virus-antibody complexes with the electron microscope. *Virology* **21**, 91–99 (1963).

576 44. P. S. Lee, *et al.*, Receptor mimicry by antibody F045–092 facilitates universal binding to the
577 H3 subtype of influenza virus. *Nat Commun* **5**, 3614 (2014).

578 45. K.-Y. A. Huang, *et al.*, Structure–function analysis of neutralizing antibodies to H7N9
579 influenza from naturally infected humans. *Nat Microbiol* **4**, 306–315 (2019).

580 46. J. R. R. Whittle, *et al.*, Broadly neutralizing human antibody that recognizes the receptor-
581 binding pocket of influenza virus hemagglutinin. *Proc Natl Acad Sci U S A* **108**, 14216–
582 14221 (2011).

583 47. R. Xu, *et al.*, A recurring motif for antibody recognition of the receptor-binding site of
584 influenza hemagglutinin. *Nat Struct Mol Biol* **20**, 363–370 (2013).

585 48. M. G. Joyce, A. K. Wheatley, P. V. Thomas, Vaccine-Induced Antibodies that Neutralize
586 Group 1 and Group 2 Influenza A Viruses - ScienceDirect (2016) (July 6, 2023).

587 49. K. R. McCarthy, *et al.*, A Prevalent Focused Human Antibody Response to the Influenza
588 Virus Hemagglutinin Head Interface. *mBio* **12**, e0114421 (2021).

589 50. I. M. Gilchuk, *et al.*, Influenza H7N9 Virus Neuraminidase-Specific Human Monoclonal
590 Antibodies Inhibit Viral Egress and Protect from Lethal Influenza Infection in Mice. *Cell Host
591 & Microbe* **26**, 715-728.e8 (2019).

592 51. J. Dufloo, *et al.*, Broadly neutralizing anti-HIV-1 antibodies tether viral particles at the surface
593 of infected cells. *Nat Commun* **13**, 630 (2022).

594 52. J. M. Fox, *et al.*, Broadly neutralizing alphavirus antibodies bind an epitope on E2 and inhibit
595 entry and egress. *Cell* **163**, 1095–1107 (2015).

596 53. L. E. Williamson, *et al.*, Therapeutic alphavirus cross-reactive E1 human antibodies inhibit
597 viral egress. *Cell* **184**, 4430-4446.e22 (2021).

598 54. J. Porta, *et al.*, Locking and Blocking the Viral Landscape of an Alphavirus with Neutralizing
599 Antibodies. *J Virol* **88**, 9616–9623 (2014).

600 55. A. S. Kim, *et al.*, Pan-protective anti-alphavirus human antibodies target a conserved E1
601 protein epitope. *Cell* **184**, 4414-4429.e19 (2021).

602 56. J. Jin, *et al.*, Neutralizing Antibodies Inhibit Chikungunya Virus Budding at the Plasma
603 Membrane. *Cell Host Microbe* **24**, 417-428.e5 (2018).

604 57. L. E. Williamson, *et al.*, Human antibodies protect against aerosolized Eastern equine
605 encephalitis virus infection. *Cell* **183**, 1884-1900.e23 (2020).

606 58. L. Chen, *et al.*, Implication for alphavirus host-cell entry and assembly indicated by a 3.5Å
607 resolution cryo-EM structure. *Nat Commun* **9**, 5326 (2018).

608 59. S. Halldorsson, K. Sader, J. Turner, L. J. Calder, P. B. Rosenthal, In situ structure and
609 organization of the influenza C virus surface glycoprotein. *Nat Commun* **12**, 1694 (2021).

610 60. B. S. Sibert, *et al.*, Respiratory syncytial virus matrix protein assembles as a lattice with local
611 and extended order that coordinates the position of the fusion glycoprotein.
2021.10.13.464285 (2021).

613 61. G. Neumann, *et al.*, Generation of influenza A viruses entirely from cloned cDNAs.
614 *Proceedings of the National Academy of Sciences* **96**, 9345–9350 (1999).

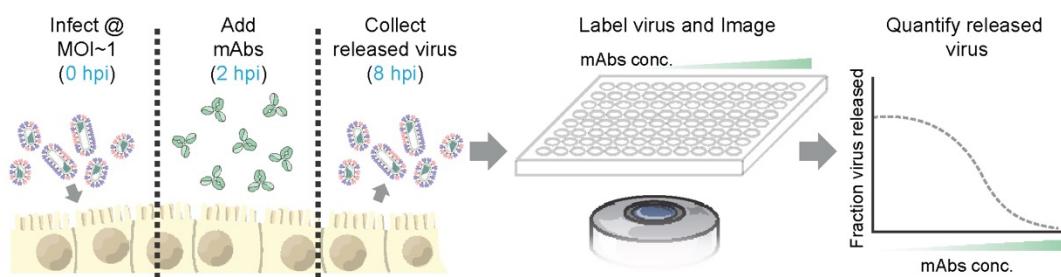
615 62. M. D. Vahey, D. A. Fletcher, Low fidelity assembly of influenza A virus promotes escape
616 from host cells. *Cell* **176**, 281-294.e19 (2019).

617 63. Z. Guo, *et al.*, Neuraminidase Activity Modulates Cellular Coinfection during Influenza A
618 Virus Multicycle Growth. *mBio* **14**, e03591-22 (2023).

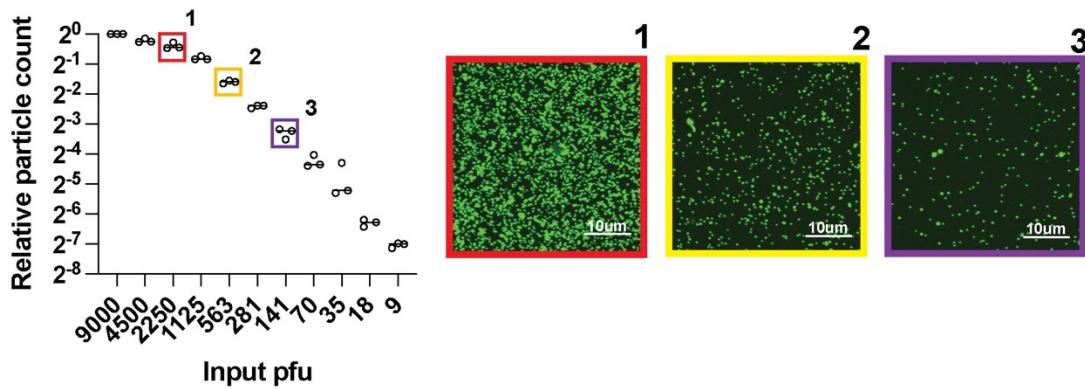
619 64. E. O. Saphire, *et al.*, Contrasting IgG structures reveal extreme asymmetry and flexibility. *J
620 Mol Biol* **319**, 9–18 (2002).

621 65. K. H. Roux, L. Strelets, T. E. Michaelsen, Flexibility of human IgG subclasses. *J Immunol*
622 **159**, 3372–3382 (1997).

623 66. X. Zhang, *et al.*, 3D Structural Fluctuation of IgG1 Antibody Revealed by Individual Particle
624 Electron Tomography. *Sci Rep* **5**, 9803 (2015).

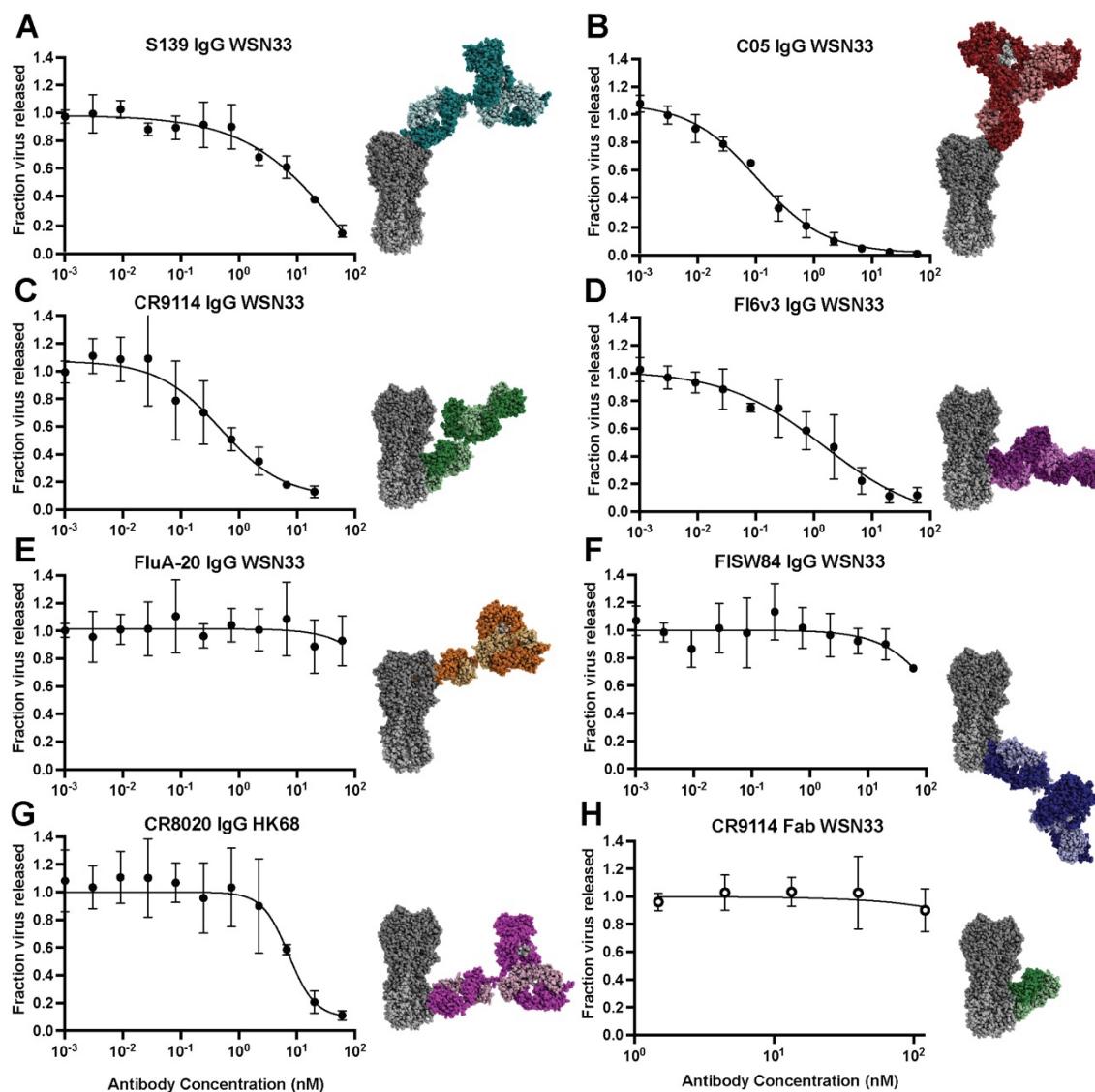

625 67. N. G. Wrigley, E. B. Brown, J. J. Skehel, Electron microscopic evidence for the axial rotation
626 and inter-domain flexibility of the fab regions of immunoglobulin G. *Journal of Molecular*
627 *Biology* **169**, 771–774 (1983).

628

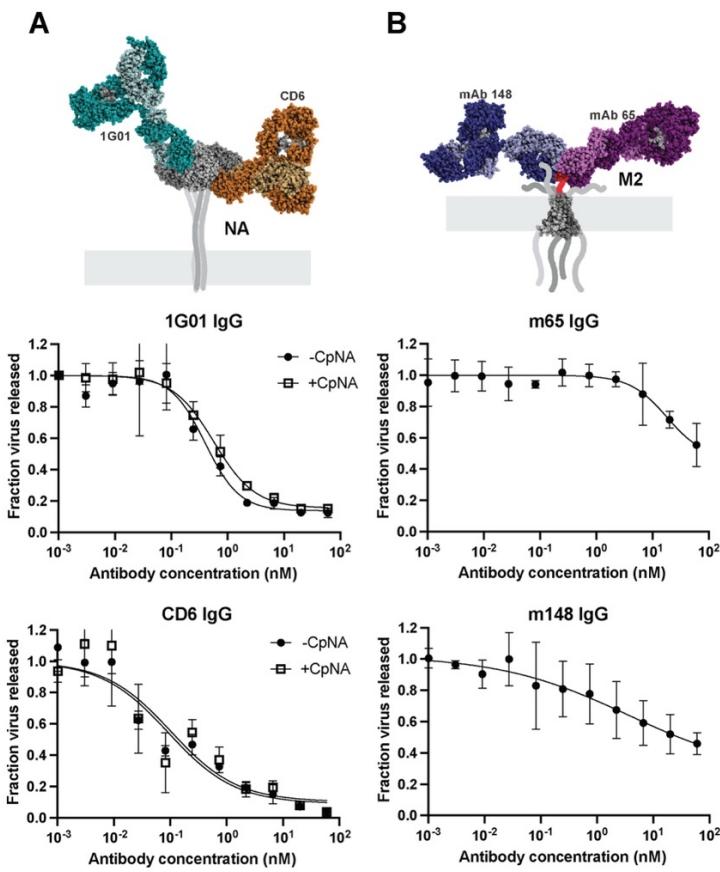

629 **FIGURES AND TABLES**

630

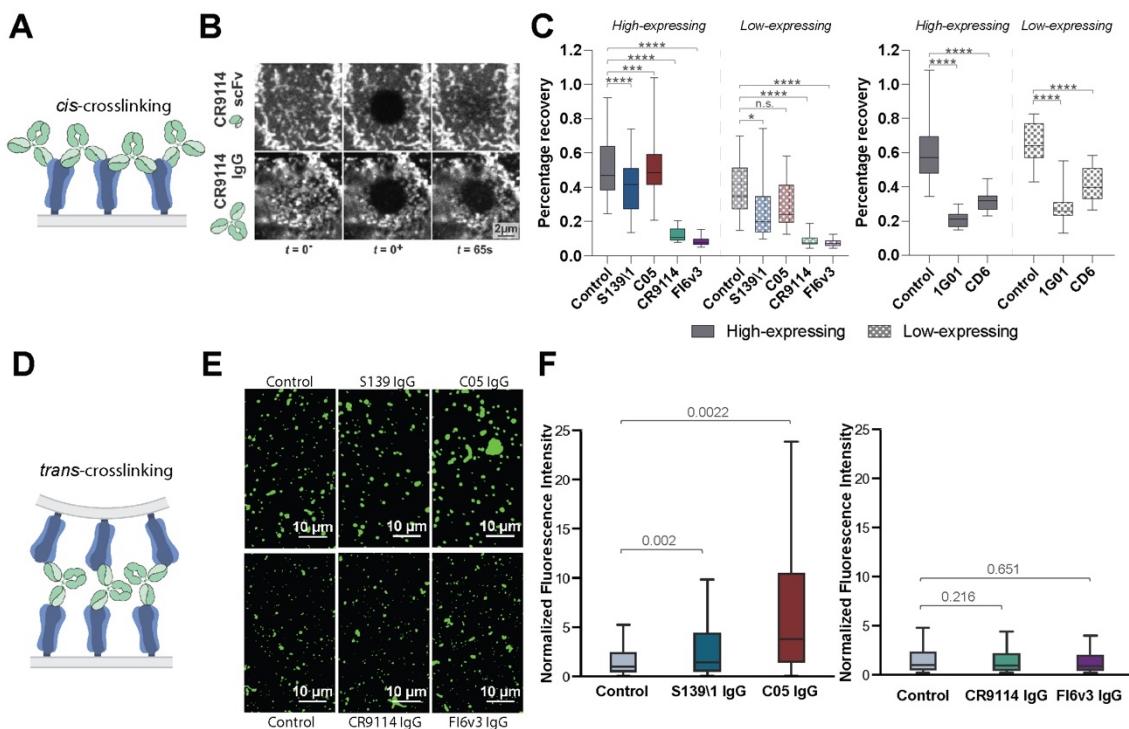
A



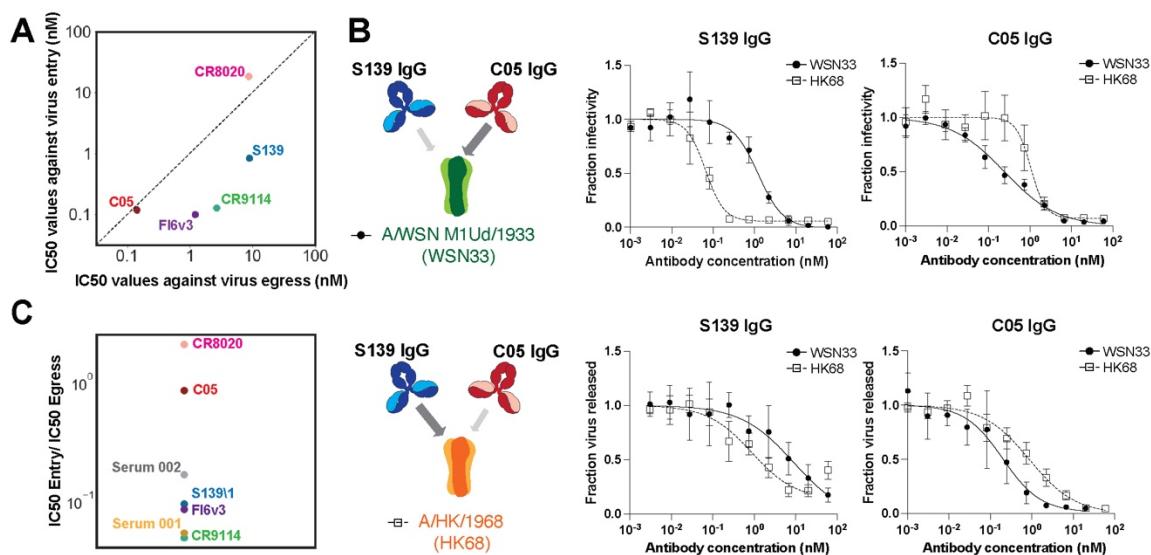
B


631

632 **Figure 1. Measuring antibody inhibition of virus release by counting virions.** (A) Overview of
633 the image-based assay to measure antibody inhibition of virus release. Cells are infected with
634 influenza viruses at MOI~1 and incubated with monoclonal antibodies (mAbs) for 2h. Released
635 virions are collected from the supernatant at 8 hpi, labeled, and immobilized for imaging.
636 Segmentation of the resulting images enables quantification of released virions. (B) Sensitivity and
637 linearity of virus particle counting compared to quantification from plaque assays. Individual data
638 points are from three separate serial dilutions of A/WSN/1933 virus starting from 3x10⁵ pfu/ml.
639 Images to the right are from the indicated conditions in B. Virus particles are visualized using
640 CR9114 scFv labeled with AF488. Contrast in the sample images is exaggerated to show individual
641 virions.


642

643 **Figure 2. Anti-HA antibodies inhibit influenza virus release from infected cells. (A-H)**
644 Neutralization curves showing the fraction of viral particles released from cells infected with
645 A/WSN/1933 ('WSN33') or A/Hong Kong/1968 ('HK68') as a function of antibody concentration.
646 Each curve is generated from three biological replicates. Error bars show standard deviations and
647 the fit curves are generated by the least squares method using GraphPad prism. Images to the
648 right of each plot show HA (PDB ID 3LZG) in gray with models of full-length IgG1 antibodies bound.
649 Models are obtained by aligning an IgG1 structure (PDB ID 1HZH) to HA:Fab structures (PDB IDs
650 4GMS, 4FQR, 4FQI, 3ZTJ, 6OC3, 6HJP, and 3SDY). Antibody heavy chains are shown in darker
651 shades with light chains shown in lighter shades.


652

653 **Figure 3. Anti-NA and anti-M2 antibodies inhibit influenza virus release.** (A) Neutralization
654 curves for the anti-NA antibodies 1G01 and CD6 IgG against A/WSN/1933 with NA from
655 A/California/04/2009. Experiments are performed with or without 0.1 U/ml exogenous sialidase
656 ('CpNA'). The model of antibodies bound to NA is obtained from PDB IDs 6Q23 and 4QNP. Curves
657 are generated from three biological replicates. (B) Measurement of anti-M2 antibodies mAb148 and
658 mAb65 against A/WSN/1933. The model of antibodies bound to the M2 ectodomain is obtained
659 from PDB IDs 2L0J, 4N8C and 5DLM. For both *A* and *B*, error bars show standard deviations and
660 fit curves are generated by the least squares method using GraphPad prism.

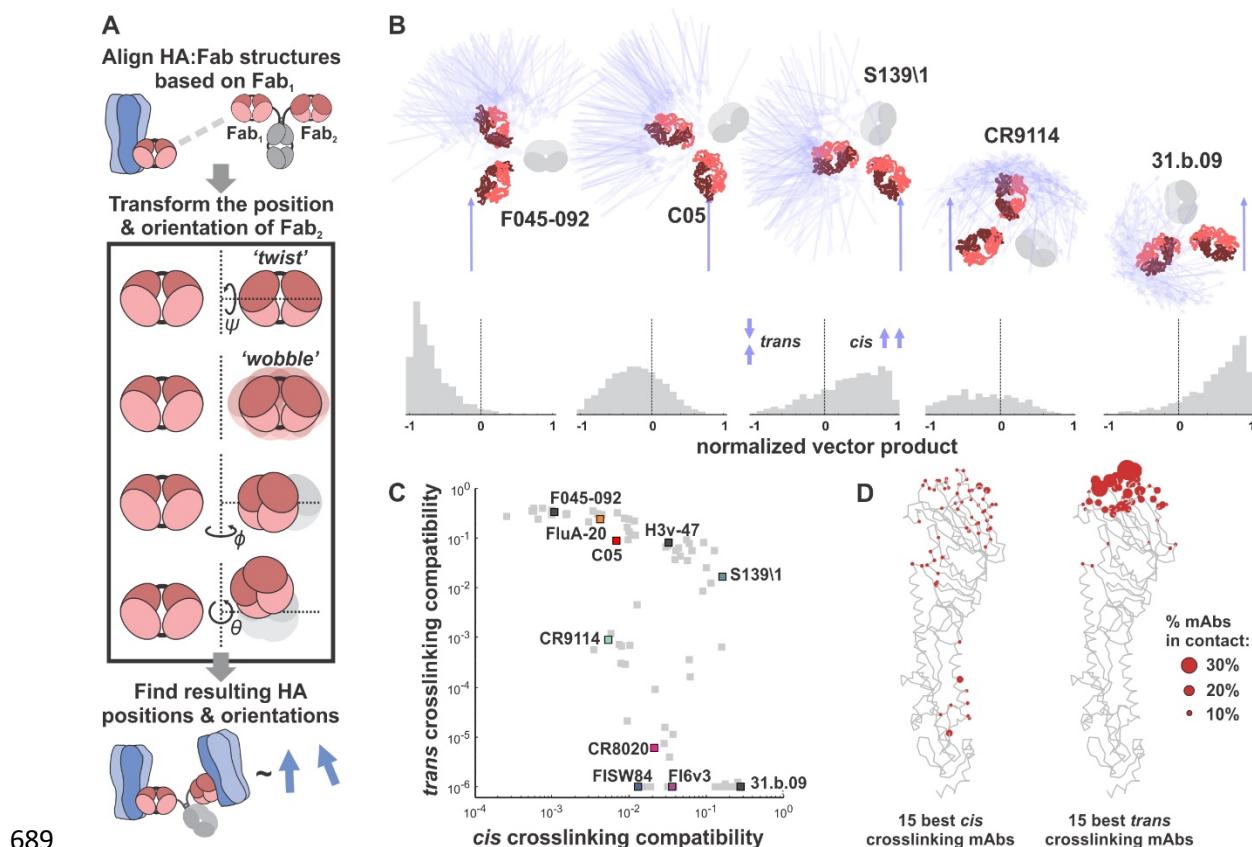
661

662 **Figure 4. Antibodies inhibit virus assembly and release through distinct mechanisms.** (A)
663 Cartoon illustration of *cis* crosslinking of hemagglutinin (HA) by bivalent IgG antibodies. (B) Sample
664 images of the apical cell surface immediately before and after photobleaching (*t* = 0⁻ and 0⁺) and
665 at 65 s afterwards. (C, left) Percentage recovery of photobleached HA at 65 seconds post-
666 photobleaching. Antibodies are tested at their respective IC₇₅_{release} values. Data is combined from
667 at least 50 photobleached cells per condition. Analyzed cells are split into high- and low-expressing
668 groups based on the intensity of HA staining on the cell surface. (C, right) Percentage recovery of
669 photobleached neuraminidase (NA) at 65 seconds post photobleaching. Data is combined from 30
670 photobleached cells per condition. *P* values are determined by Mann-Whitney tests. (*) indicates
671 p<0.05, (**) indicates p<0.01, (***) indicates p<0.001, (****) indicates p<0.0001, ns indicates not
672 significant.) (D) Cartoon illustration of *trans* crosslinking of HA by bivalent antibodies. (E) Sample
673 images of virus particles/aggregates. (F) Distributions of particle/aggregate size, measured via
674 fluorescence intensity. Antibodies are tested at their respective IC₇₅_{release} values. Fluorescence
675 intensities are normalized to the median value of their respective control groups. Results from RBS-
676 binding and stem-binding antibodies are plotted separately because different non-competing
677 fluorescent Fabs are used to measure particle/aggregate size. Data is combined from 3 biological
678 replicates using stocks of A/WSN/1933 expanded separately. *P* values are determined using the
679 mean of individual biological replicates by paired t-tests.

680

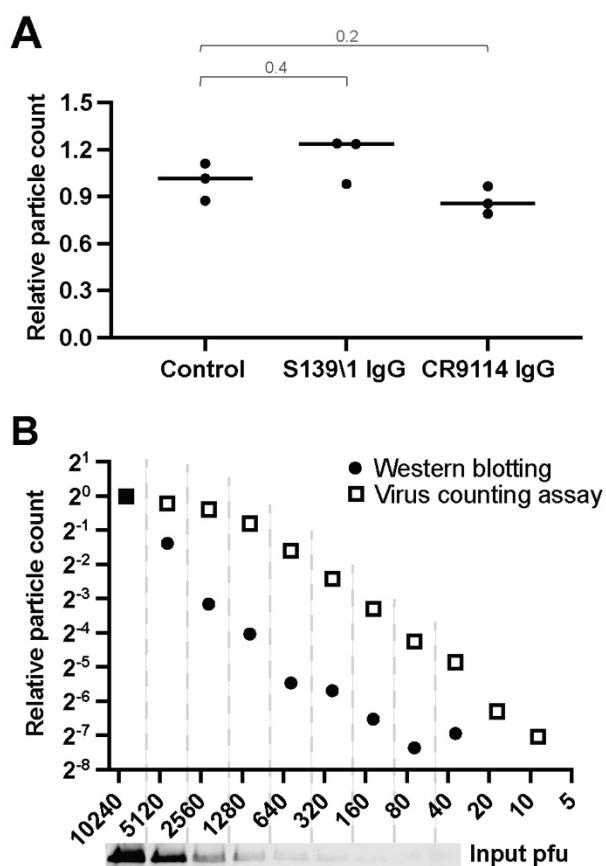
681

682 **Figure 5. Antibodies and human sera differ widely in their ability to inhibit viral entry and**
683 **viral egress.** (A) Plot showing IC₅₀ values for antibody inhibition of viral release and entry for the


684 classically neutralizing antibodies from Figure 2. (B, Left) Illustration of binding preferences of

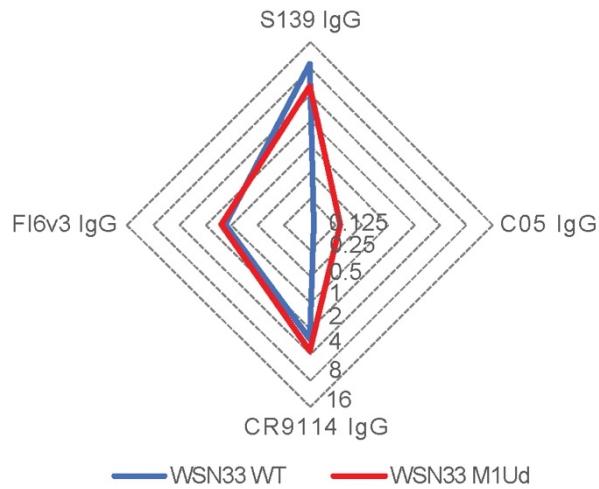
685 S139\1 and C05 for different HAs. Wider arrows indicate stronger binding. (B, top right)

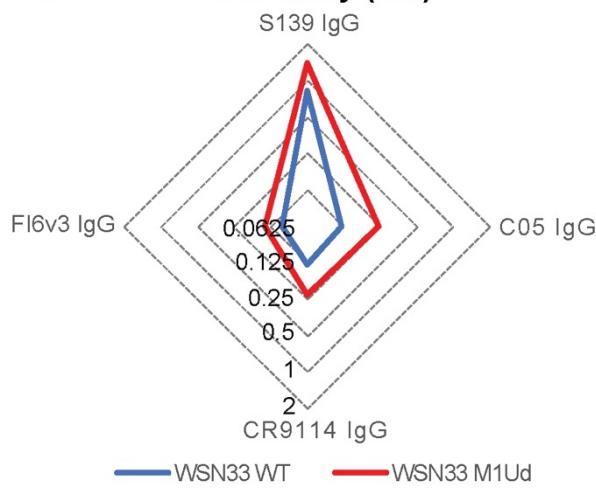
686 Neutralization curves for S139\1 and C05 against viral entry. (B, bottom right) Neutralization curves


687 for S139\1 and C05 against viral release. (C) Ratio of IC₅₀_{entry} to IC₅₀_{release} for antibodies and

688 human convalescent serum. Data in panels B and C is from three biological replicates.

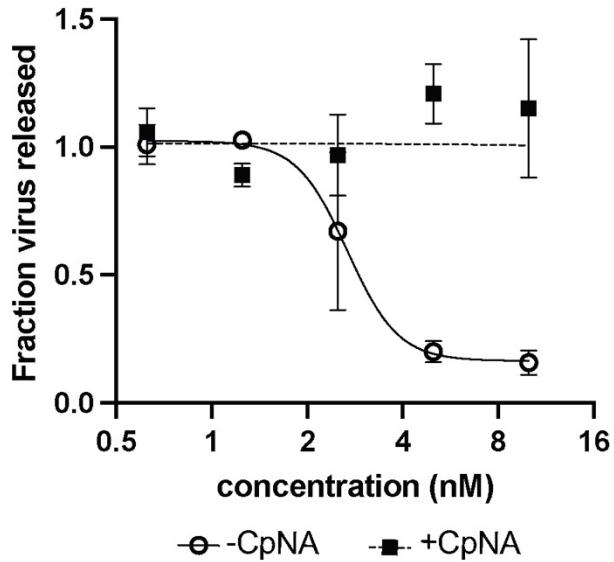
691 **Figure 6. A structure-based model predicts *cis* and *trans* crosslinking for anti-HA antibodies.**


692 (A) Schematic overview of the modeling approach illustrating the transformations used to sample
 693 potential configurations of the two antibody Fab fragments (Fab₁ and Fab₂) and the resulting
 694 positions and orientations of the bound HAs. (B) Simulation results for selected antibodies. Top:
 695 Bound HAs are represented as blue vectors, Fab fragments are shown in red, and the antibody Fc
 696 (not included in the simulation) is shown in grey. Bottom: Distributions of relative HA orientations
 697 for the depicted antibodies. *Trans* crosslinking corresponds to anti-parallel HA orientation while *cis*
 698 crosslinking corresponds to parallel HA orientation. The resulting HA distributions are subsequently
 699 filtered to remove sterically forbidden configurations (Figure S7). (C) Predicted *cis* and *trans*
 700 crosslinking compatibilities for Fab:HA structures. Select antibodies characterized in this work or
 701 otherwise of note (F045-092, H3v-47) are highlighted. (D) Distribution of contact sites for the 15
 702 best *cis* crosslinking (left) and *trans* crosslinking (right) antibodies based on the analysis shown in
 703 panel C. The backbone of an HA monomer is shown in grey. The size of the red spheres indicates
 704 the percentage of top antibodies that contact particular residues.

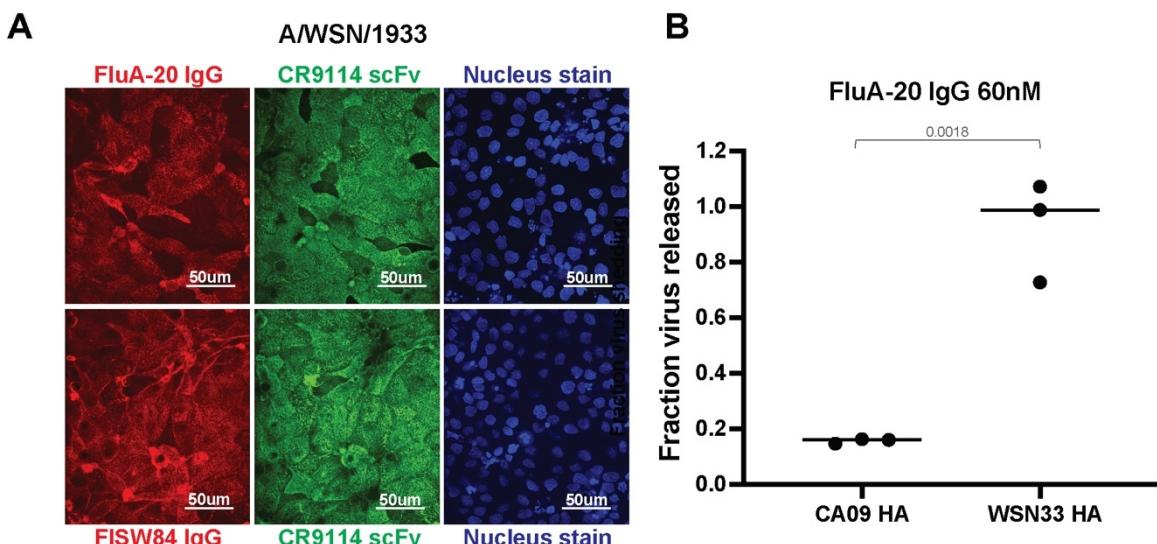

705

706 **Figure S1. Evaluating robustness and sensitivity of image-based virus quantification.** (A) A
707 comparison of virus immobilization on ECL coverslips in the presence or absence of high
708 concentrations of neutralizing antibodies. Antibodies are incubated with virus at a concentration of
709 60nM for 30 mins at 4°C before immobilization onto glass-bottom imaging chamber. Data is
710 combined from 3 biological replicates and normalized to the mean of the control conditions. P
711 values are determined by Mann-Whitney tests. (B) Comparison of particle counting results to
712 Western blot analysis using an anti-HA antibody to quantify released virus. Results from western
713 blot are collected from one serial dilution; results from the imaging-based assay are collected from
714 three sets of serial dilution and the mean is shown. Contrast in the western blot scan is exaggerated
715 to show the HA bands.

A IC50 egress (nM)



B IC50 entry (nM)



716

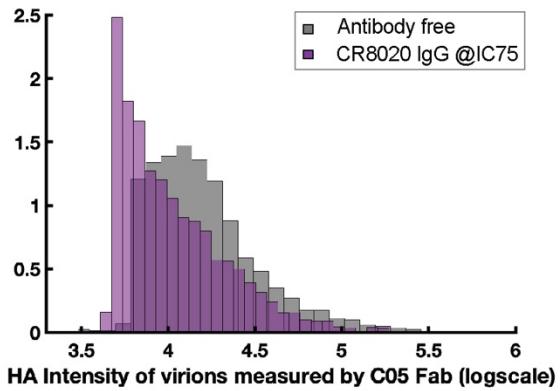
717 **Figure S2. Inhibition of viral entry and egress differs between spherical and filamentous**
718 **strains.** (A) Radar plot showing the IC50 values for viral egress for spherical (WSN33 WT) and
719 **filamentous (WSN33 M1Ud) IAV strains with the same HA. (B) Radar plot showing IC50 values for**
720 **viral entry (determined from microneutralization assays) for the same viral strains as in A. IC50**
721 **values for viral egress and viral entry are obtained from 3 biological replicates.**

722 **Figure S3. Exogeneous sialidase supplements NA activity.** Inhibition of viral egress by
723 oseltamivir carboxylate, with or without supplementation of exogeneous sialidase. Data is
724 combined from 3 biological replicates. Dashed line is added as a guide to the eye. Error bars show
725 standard deviations and the fit curve is obtained using the least squares method in GraphPad
726 prism.

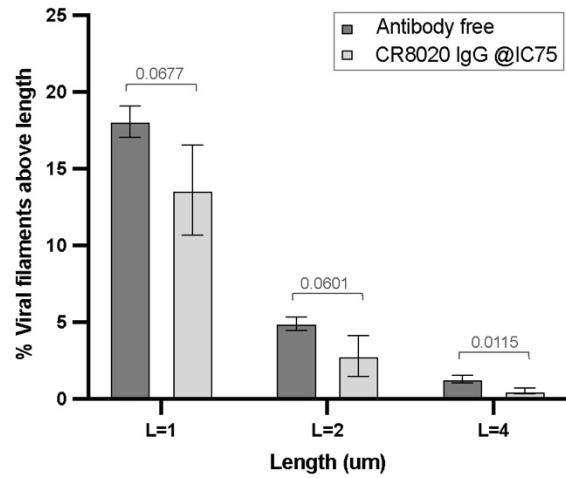
727

728 **Figure S4. Binding and neutralization for antibodies with limited access to their epitopes.**

729 (A) Representative images of cells infected by A/WSN/1933 and treated with FluA-20 (top) or

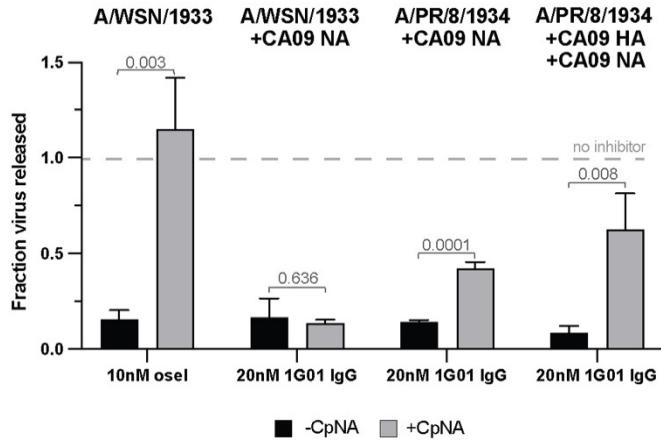

730 FISW84 (bottom) at 60nM for 6 hours post infection. Cell nuclei are stained for cell visualization.

731 (B) Inhibition of viral shedding by FluA-20 for cells infected by IAV with HA from CA09 or WSN33.

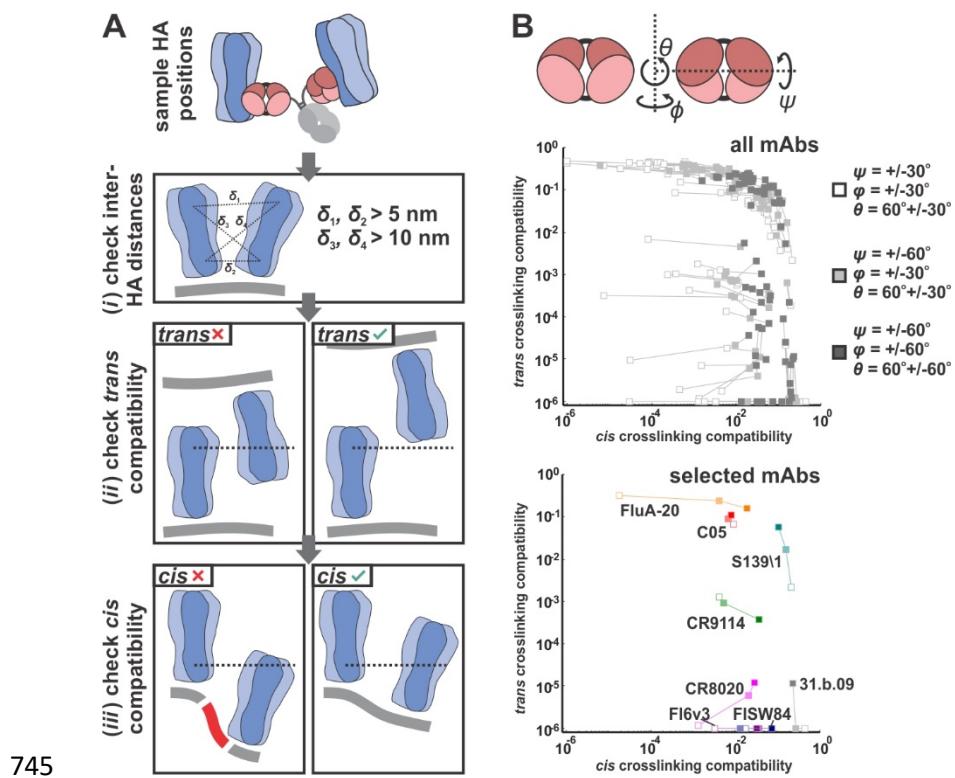

732 Data is normalized to the antibody-free condition. *P* values are determined by independent t-test.

733

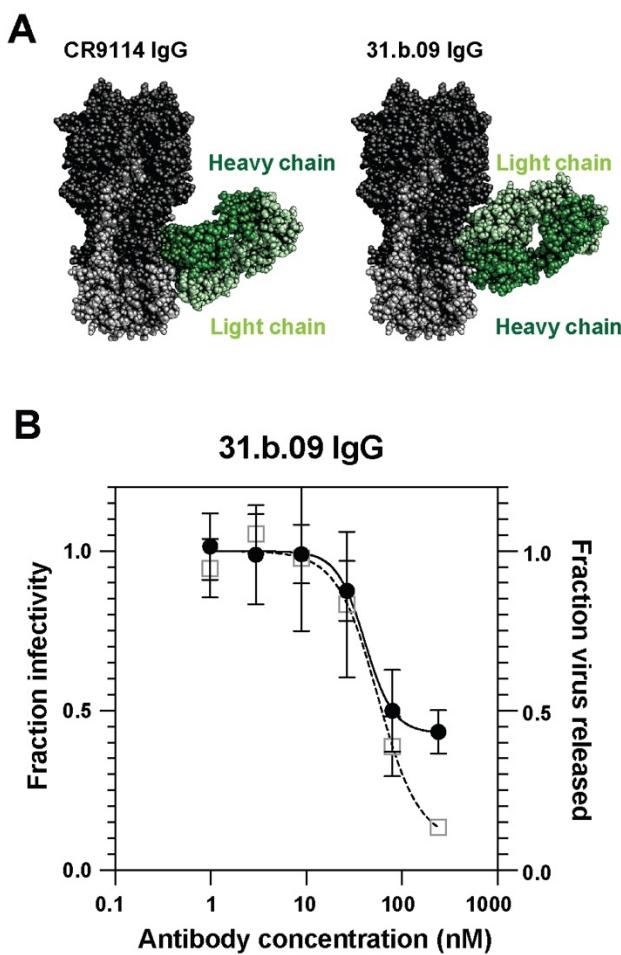
A



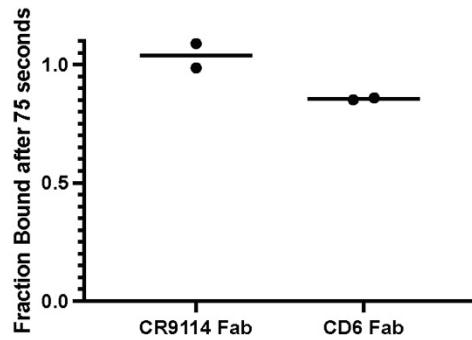
B



734


735 **Figure S5. Effects of antibodies on the morphology of released virions.** (A) Distribution of
736 fluorescence intensities for individual viral particles shed in the presence or absence of CR8020
737 IgG. Fluorescence is measured using labeled C05 Fab. (B) Prevalence of viral filaments above
738 different length thresholds released in the presence or absence of CR8020 IgG. Data is combined
739 from 3 biological replicates. *P* values are determined by independent t-tests.

740 **Figure S6. Inhibition of viral release by the anti-NA antibody 1G01 and oseltamivir.** The plot
741 shows the effect of NA inhibition by oseltamivir or 1G01 in the presence or absence of exogenous
742 sialidase (CpNA) in different genetic backgrounds. Data for oseltamivir with or without CpNA, is
743 repeated from Figure S3 using the A/WSN/1933 strain. Data is from 3 biological replicates. *P* values
744 are determined by independent t-tests.


746 **Figure S7. Evaluating *cis* and *trans* crosslinking with a structure-based model.** (A) Schematic
747 illustrating criteria for *cis* or *trans* crosslinking based on sampled positions and orientations of HAs.
748 Candidate positions and orientations are sampled as shown in Figure 6A and described in Methods.
749 (B) Predicted changes in *cis* and *trans* crosslinking propensities for antibodies modeled with
750 different implicit flexibilities. Top: results for three models of flexibility across all 83 mAbs. Bottom:
751 results for selected antibodies tested in this work.

752 ● Inhibition of virus entry □ Inhibition of virus egress

753 **Figure S8. 31.b.09 has similar inhibition potency against viral entry and egress.** (A) Structure
754 of CR9114 Fab (PDB ID 4FQ1) and 31.b.09 Fab (PDB ID 5K9O) bound to HA. (B) Neutralization
755 curves showing inhibition of viral entry and egress by 31.b.09 IgG against virus with CA09 HA and
756 NA (PR8 reassortant). Curves are obtained from 3 biological replicates and normalized to the
757 plateau of the fitted line for direct comparison. Error bars show standard deviations and the fit curve
758 is obtained using the least squares method in GraphPad prism.

759

760 **Figure S9. CR9114 Fab and CD6 Fab show minimal dissociation over the timescale of FRAP**
761 **measurements.** Measurement of CR9114 Fab and CD6 Fab dissociation from HA (WSN33) or NA
762 (CA09) on the surface of virions. Data are from two biological replicates.

	HK68 entry [nM]	HK68 release [nM]	IC50 ratio (HK68)	WSN33 entry [nM]	WSN33 release [nM]	IC50 ratio (WSN33)
S139\1 IgG	0.066	0.868	0.076	1.221	8.961	0.136
C05 IgG	1.050	0.870	1.207	0.245	0.199	1.231

763

764 **Table S1. Inhibition of viral entry and release for S139\1 and C05 against different viral**
765 **strains.** IC50_{entry} and IC50_{release} values against A/WSN/1933 (M1Ud) and A/HK/1968 are
766 determined by least squares fit (GraphPad Prism) from data in Figure 5B. Both WSN33 M1Ud
767 (labelled here as WSN33) and HK68 viral strains exhibit filamentous phenotype to facilitate
768 comparison.

769 **Table S2. Predicted cis and trans crosslinking propensities from HA-Fab structures.** Data is
770 plotted in Figure 6C and in Figure S7B. Scores less than 10^{-6} are set to 10^{-6} for visualization on a
771 log scale. Please see *supplemental_table_2.xlsx* for complete data.