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Abstract 

The human metabolism constantly responds to stimuli such as food intake, fasting, exercise, 

and stress, triggering adaptive biochemical processes across multiple metabolic pathways. To 

understand the role of these processes and disruptions thereof in health and disease, detailed 

documentation of healthy metabolic responses is needed but still scarce on a time-resolved 

metabolome-wide level.  

Here, we present the HuMet Repository, a web-based resource for exploring dynamic metabolic 

responses to six physiological challenges (exercise, 36 h fasting, oral glucose and lipid loads, 

mixed meal, cold stress) in healthy subjects. For building this resource, we integrated existing 

and newly derived metabolomics data measured in blood, urine, and breath samples of 15 young 

healthy men at up to 56 time points during the six highly standardized challenge tests conducted 

over four days. The data comprise 1.1 million data points acquired on multiple platforms with 

temporal profiles of 2,656 metabolites from a broad range of biochemical pathways. By 

embedding the dataset into an interactive web application, we enable users to easily access, 

search, filter, analyze, and visualize the time-resolved metabolomic readouts and derived 

results. Users can put metabolites into their larger context by identifying metabolites with 

similar trajectories or by visualizing metabolites within holistic metabolic networks to pinpoint 

pathways of interest. In three showcases, we outline the value of the repository for gaining 

biological insights and generating hypotheses by analyzing the wash-out of dietary markers, the 

complementarity of metabolomics platforms in dynamic versus cross-sectional data, and 

similarities and differences in systemic metabolic responses across challenges. 

With its comprehensive collection of time-resolved metabolomics data, the HuMet Repository, 

freely accessible at https://humet.org/, is a reference for normal, healthy responses to metabolic 

challenges in young males. It will enable researchers with and without computational expertise, 

to flexibly query the data for their own research into the dynamics of human metabolism.    
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Introduction 

The human body continually adapts and dynamically responds to physiological perturbations 

and challenges, such as dietary intake, physical activity, or stress 1. On a molecular level, this 

response translates to corresponding changes in biochemical processes that produce or consume 

low molecular weight organic compounds (metabolites) like glucose, cortisol, or cholesterol. 

Metabolomics techniques based on mass spectrometry (MS) or nuclear magnetic resonance 

spectroscopy (NMR) can measure the levels of hundreds of these metabolites simultaneously 

in accessible body fluids such as blood or urine. These metabolite profiles provide a snapshot 

of a person's metabolic state at a given time 2. A series of such snapshots taken at multiple time 

points during or immediately after a specific challenge (e.g., extended fasting, exercise, or fat- 

or carbohydrate-rich meals) allows monitoring the systemic metabolic adaptation to the 

challenge in a time-resolved manner, i.e., metabolomics enables us to watch metabolism ‘at 

work’.  

 

An individual’s body is metabolically flexible and reacts to challenges swiftly to restore 

metabolic homeostasis. Impaired metabolic flexibility is a hallmark of many metabolic 

disorders, such as type 2 diabetes (T2D) and cardiovascular diseases 3. It leads to aberrations 

from the ‘normal,’ healthy response to challenges in patients. For example, the efficacy of an 

individual’s insulin-regulated response is compromised in T2D, which leads to delayed 

clearance of excess glucose from the blood after carbohydrate ingestion. The oral glucose 

tolerance test (OGTT) is a standardized challenge test to recognize such abnormalities in 

glucose response for early diagnosis of T2D. This test focuses on the dynamics of a single blood 

metabolite – glucose – as a readout of response, and a single challenge – the ingestion of 75 g 

glucose – to trigger a metabolic response. In principle, this concept of testing resilience to a 

metabolic stressor can be expanded to include a broader spectrum of metabolites using 

metabolomics (e.g., additionally monitoring lipids during an OGTT 4-6), different challenges 
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(e.g., monitoring glucose after different meals 7), and a combination of both, to ultimately 

recognize metabolic aberrations in diseases or even before the onset of clinical symptoms. 

 

As a prerequisite for the practical, clinical use of a broader set of metabolites and challenges, 

atypical responses to these challenges must be identified and differentiated from the normal 

adaptation of metabolism in a healthy state. To this end, detailed knowledge of metabolism’s 

typical, healthy dynamics and its variance across individuals is crucial. However, most 

metabolomics studies involving challenges collect only two samples, one before and one after 

(or under) the challenge. Only few studies collected time-resolved metabolomic profiles more 

precisely describing the ‘normal’ dynamic responses to standardized and all-day metabolic 

stressors, including different nutritional challenges 8-11 or exercise 11-13. The HuMet study 11, 

was specifically designed to capture the normal dynamics of metabolism in a homogenous, 

healthy group (n=15) on a high temporal resolution and across multiple challenges, including 

four highly standardized (i.e., reproducible) nutritional challenges, a physical exercise, and a 

stress test. While sample collection covered many time points, biofluids, and challenges, the 

initially obtained time-resolved metabolomic profiles of the HuMet study participants 

comprised mainly metabolites from amino acid and various lipid classes. In contrast, the studies 

by Moreville et al. and Contrepois et al. investigated only responses on exercise in blood but 

used a non-targeted metabolomics approach, more broadly covering human metabolism 12,13. 

 

Following the open science paradigm, availability of data representing normal metabolic 

dynamics has increased in public repositories such as MetaboLights 14 and Metabolomics 

Workbench 15. Nonetheless, accessing and leveraging time-resolved metabolomics data 

remains challenging, particularly for researchers who are not used to handling big and complex 

longitudinal datasets. Various tools, including the MetaboAnalyst 16 and R packages such as 

MetaboLousie 17, mixOmics 18, and OmicsLonDA 19 can help to process and analyze time-
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resolved metabolomics data.  However, these tools and repositories are primarily designed for 

bioinformatics experts. Thus, usage of available datasets still requires knowledge and additional 

effort on the computational side, which puts a large burden on researchers for answering single 

ad hoc question such as “Do blood levels of a metabolite of interest (e.g., a potential biomarker) 

change postprandially or in response to exercise? If so, when are its levels back to baseline in 

healthy individuals?” based on these data. To lower the burden of data access and usage for the 

broader scientific community, these complex time-resolved data must be embedded into 

intuitively browsable public resources.  

 

We here describe the HuMet Repository, a public online resource that allows intuitive, 

interactive exploration and visualization of a comprehensive time-resolved metabolomics 

dataset capturing the normal dynamics of metabolism in men. For building this resource, we 

re-examined samples from the HuMet study 11 using five complementary non-targeted mass 

spectrometry-based metabolomics and lipidomics methods. As a result, the HuMet Repository 

contains temporal profiles for, in total, 2,656 metabolites (thereof >2,100 from the new 

analyses) measured in blood, urine, and breath samples from 15 healthy young males who 

engaged in the 4-day HuMet trial with six different metabolic challenges and samples collected 

at up to 56 time points for each participant. For each challenge, we identify metabolites and 

groups of metabolites that change using univariate statistics as well as data-derived metabolic 

networks. A dedicated web-based interface enables users to search, browse and visualize this 

complex dataset for further explorative analysis without specific computational expertise. In 

three showcases, we exemplify the use of the HuMet Repository: (i) Applying the implemented 

search functions, we identify metabolites with similar trajectories, e.g., metabolites that show a 

steady decrease over the study phase and presumably stem from exposures before the study.  

(ii) We check the similarity of trajectories of the same metabolites determined on two different 

metabolomics platforms, providing insights into the concordance of these measurements. (iii) 
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Making use of data-derived and knowledge-based metabolic networks, we inspect the dynamic 

changes during extended fasting across the whole metabolism and we compare the responses 

observed in selected pathways between three different meal tests (glucose, mixed, high-fat).  

In summary, the interactive HuMet Repository represents a unique resource of time-resolved 

metabolomics data in response to different physiological challenges within the same healthy 

homogenous population while covering a wide variety of metabolomics approaches. The 

HuMet Repository is freely accessible at (https://humet.org/).  

 

Results 

For building the HuMet Repository as a comprehensive resource of time-resolved metabolomic 

profiles in healthy individuals (Supplementary Table 1), we first analyzed 840 blood and 240 

urine samples of the HuMet study participants on the non-targeted Metabolon HD4 

metabolomic platform (Metabolon Inc., Durham, USA) 20, measuring metabolites from a broad 

spectrum of metabolite classes (Supplementary Table 2). This added time-resolved 

measurements for more than 2,100 metabolites to the previously reported data (limited to 

mainly amino acids and lipids), resulting in a total of 1.1 million data points within the complete 

HuMet dataset.  

 

Based on these data, we identified significant metabolic responses to four nutritional challenges 

(extended fasting, intake of standardized liquid meals with different macronutrient 

compositions (glucose (OGTT), mixed (SLD), lipid-rich (OLTT)), exercise and stress. To 

provide a metabolome-wide overview of triggered responses, we mapped all metabolite 

changes onto metabolic networks which we reconstructed from the time-resolved data.  
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We then embedded the complete data and results into a computational framework, providing a 

web-based graphical user interface for data access and exploration (Figure 1). The web-

interface is split into four modules that are tailored to (i) select individual metabolites or groups 

thereof according to various criteria (Module Selection); (ii) visualize temporal metabolic 

trajectories (Module Time course); (iii) provide an overview of results from statistical tests 

(Module Statistics); and (iv) integrate metabolites into networks to obtain a holistic view on 

pathways altered in response to the challenges (Module Networks).  

 

 

Figure 1. HuMet Respository frontend. The HuMet Repository (https://humet.org) integrates four 
individual modules to help explore the time-resolved metabolomics data of the HuMet study, reflecting 
responses to physiological challenges in healthy individuals. In the module Selection, the user can select 
metabolites from a table, with options for sorting and filtering by metabolite properties, including time 
course similarities. Line plots within the module Time course visualize time-resolved metabolite profiles 
of participants providing multiple options for data transformation and representation. Plots depicting 
statistical results from multiple analyses can be viewed in the module Statistics. The module Networks 
offers a holistic overview of metabolite changes within pre-defined and reconstructed biological 
pathways. 

Selection Time course NetworksStatistics

M
od
ul
es
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Finally, we present three showcases to exemplify applications of the HuMet Repository for 

exploratory analyses.  

 

Deep metabotyping provides time-resolved profiles for 2,656 metabolites  

Using four non-targeted, mass spectrometry-based [nt-ms] analytical methods (Metabolon HD4 

platform), we re-examined the 840 (15 subjects x 56 time points) plasma and 240 (15 subjects 

x 16 time points) urine samples of HuMet. This resulted in time-resolved relative 

quantifications for 595 and 619 metabolites in plasma and urine, respectively (Table 1). These 

metabolites span eight different metabolite classes called ‘super-pathways’ (amino acids, 

carbohydrates, cofactors and vitamins, energy, lipids, nucleotides, peptides, xenobiotics) and 

more than 83 different metabolic pathways (‘sub-pathways’). In addition, samples of four 

participants were analyzed on the LipidyzerTM platform, yielding quantifications of 965 

molecules that provide structurally detailed information on complex lipids (see Methods). 

 

In the HuMet Repository, we also included the previously published data from the initial 

metabolomics analysis of the HuMet samples 11, which covered mainly amino acids, lipids 

(acylcarnitines, glycerophospholipids, sphingolipids) and lipoproteins. The plasma 

concentrations of these metabolites were measured using the commercially available Biocrates 

p150 kit for targeted MS-based [t-ms] analysis. Levels of plasma lipoproteins were assessed at 

numares AG (formerly LipoFIT, Regensburg, Germany) applying an NMR-based approach. 

Moreover, breath air and breath condensate samples had been analyzed on in-house platforms 

of partners from academia. This first wave of measurements resulted in quantifications for 477 

metabolomic measures for HuMet samples (Table 1). Descriptions of all (newly and previously 

measured) metabolites are provided in Supplementary Table 2. In total, the HuMet 

Repository, thus, provides access to time-resolved data for 2,656 metabolites in plasma, urine, 

and breath, covering a broad spectrum of metabolic pathways.  
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Table 1. Overview of metabolomics data provided within the HuMet Repository. 

Medium  Platform Subjects Time 

points 

Metab

olites 

Main pathways Reference 

Plasma Metabolon 

HD4 [nt-ms] 

15 56 595 Amino acids, Carbohydrates, 

Cofactors and vitamins, 

Energy, Lipids, Nucleotides, 

Peptides, Xenobiotics  

New$ 

Lipidyzer 

[Lipidyzer] 

4 56 965 Lipids New# 

Biocrates 

p150 [t-ms] 

15 56 132 Amino acids, Lipids Krug et al. 

2012 11 

numares 

(LipoFIT) 

[NMR] 

15 54 28 Lipoproteins Krug et al. 

2012 11 

In house 

Biochemistr

y [chem.] 

15 56 4  Krug et al. 

2012 11 

Urine Metabolon 

HD4 [nt-ms] 

15 16 619 Amino acids, Carbohydrates, 

Cofactors and vitamins, 

Energy, Lipids, Nucleotides, 

Peptides, Xenobiotics  

New 

Chenomx 

[NMR] 

15 13 6 

 

Ketone bodies Krug et al. 

2012 11 

Breath air In-house 

PTR-MS 

11 32 106 Features of volatile 

compounds 

Krug et al. 

2012 11 

Breath 

condensate 

In-house 

FTICR-MS 

5 11 201 Features of volatile 

compounds 

Krug et al. 

2012 11 

$Data on selected time points have been part of a previous publication 21. #Data on selected metabolites from this 
platform (69 specific phosphatidylcholines) have been part of a previous publication 22. 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 9, 2023. ; https://doi.org/10.1101/2023.08.08.550079doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.08.550079
http://creativecommons.org/licenses/by-nc-nd/4.0/


Metabolic responses to six physiological challenges 

To characterize the ‘normal’, healthy dynamics in metabolism under all-day physiological 

challenges, we analyzed the concentration changes of each metabolite during/after each of the 

six physiological challenges, to which the participants of the HuMet study were exposed during 

the four days of sample collection (Figure 2): In a first block of two days, participants had to 

fast for 36 h (Fasting) and were allowed to recover from fasting after breakfast and a lunch 

consisting of a standardized drink that represents a mixed meal (SLDr, SLD1). The second block 

of the study, which was conducted after a four-week break, included a physical activity test 

(PAT), a stress test (Stress), and three different nutritional challenges, namely an oral glucose 

tolerance test (OGTT) resembling a diet rich in carbohydrates, an oral lipid tolerance test 

(OLTT) resembling a high-fat diet, and the ingestion of the same liquid diet as used for the 

recovery from fasting (SLD2), resembling a mixed meal (for details see Methods and Krug et 

al. 11).  Throughout the experiment, three different sample types (plasma, urine, and breath) 

were collected at up to 56 time points in variable time intervals (15 min - 2 h, depending on the 

challenge), enabling temporal profiling of metabolite changes during or after the six challenges 

for each participant.   

 

To identify metabolites whose abundances significantly changed in response to a challenge, we 

performed paired t-tests for each metabolite and time point during/after the challenge (within 

the time frames given in Table 2) compared to the challenge-specific baseline. After adjustment 

for multiple testing, this analysis yielded 620, 27, 117, 101, and 21 significant hits, comprising 

220, 15, 66, 64, and 16 metabolites that changed at various time points during/after extended 

fasting, glucose/mixed/high-fat meals, and physical activity, respectively (Supplementary 

Table 3). Stress did not show any significant hit after correction for multiple testing 

(Bonferroni). For each of the challenges, Table 2 lists those significantly altered metabolites 

that showed the lowest p-value and/or largest fold-change (decrease/increase) observed. As an 
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example, the ketone body 3-hydroxybutyrate (BHBA) in urine showed the largest increase after 

36 hours fasting when compared to overnight (12 h) fasting (log2 fold change (log2fc) 7.7). 

Significant increases of BHBA in plasma were observed before those in urine but only after 

prolonged fasting (log2fc 3.0 after 22 hours fasting), indicating the generation of ketone bodies 

for energy supply in this phase. Comparing the observed levels of plasma BHBA during 

extended fasting to those measured after the OLTT, we found similar levels of this ketone body 

6 hours after ingestion of the lipid-rich challenge drink. All statistical results are provided in 

tabular form as well as in interactive volcano plots within the HuMet Repository (module 

Statistics).  

 

 

Figure 2. Metabolite profiles across six physiological challenges. (A) A sequence of metabolic 
challenges was applied over two study blocks, each covering a period of two days. All participants had 
the same chicken meal for dinner at 7 pm on the evening before each block. Five of the six challenge 
tests were applied once, while participants were exposed to the mixed meal challenge three times (SLDr, 

Fasting Extended fasting (36 h)
SLD
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Standard liquid diet
SLD for recovery from fasting

SLD in Block 1

SLD in Block 2 

OGTT Oral glucose tolerance test
OLTT Oral lipid tolerance test
PAT Physical acitivity test
Stress Cold stress test

Dinner Standardized chicken meal

Day 1 Day 2
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PAT
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Day 3 Day 4
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[t]
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nc
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SLD1, SLD2).  Challenge tests along with their abbreviations as used in the scheme are listed in B. 
Plasma, urine, and breath samples were collected at up to 56 time points in variable time intervals (15 
min - 2 h) depending on the challenge. (B) In the repository, various representations of metabolite time 
courses can be visualized. Here, the time course of plasma glucose is shown as an example. The red line 
represents the mean levels over time, i.e., levels for the 15 study participants have been averaged at each 
of the 56 time points. The insert zooms into the 15 individual metabolite time courses for challenges 
SLDr and SLD1 (see legend), colored by study participants.  

 

Table 2. Metabolites with largest changes after each challenge. 

Challenge 

(period 

tested)  

Metabolite with 

min/max fold 

change 

[platform] 

Fluid 

(time 

point) 

Log2 

fold 

change 

P-

value 

Metabolite 

with lowest  

p-value 

[platform] 

Fluid 

(time  

point) 

Log2 

fold 

change 

P-

value 

FASTING 

(12-36 h) 

3-methoxy-

catechol sulfate 

[nt-ms] 

3-hydroxy-

butyrate (BHBA) 

[nt-ms] 

Urine 

(at 36 h) 

 

Urine 

(at 36 h) 

-6.1 

 

 

7.7 

4.6e-8 

 

 

2.8e-8 

catechol sulfate 

[nt-ms] 

Plasma 

(at 36 h) 

-4.5 2.2e-14 

OGTT 

(0-2 h) 

5-dodecenoate 

(12:1n7) [nt-ms] 

insulin [chem.] 

Plasma 

(at 90 min) 

Plasma 

(at 30 min) 

-1.6 

 

3.1 

9.2e-8 

 

1.1e-11 

insulin [chem.] Plasma 

(at 30 min) 

3.1 1.1e-11 

SLD2 

(0-3 h) 

decanoylcarnitine 

[nt-ms)] 

taurochenodeoxy-

cholate [nt-ms]  

Plasma 

(at 2h) 

Plasma 

(at 60 min) 

-1.8 

 

3.5 

6.9e-9 

 

2.1e-7 

3-hydroxy-3-

methylglutarate 

[nt-ms] 

Plasma 

(at 2 h) 

2.0 1.7e-13 

PAT 

(0-30 min) 

palmitoylcholine 

[nt-ms] 

lactate (chem.) 

Plasma 

(at 30 min) 

Plasma 

(at 30 min) 

-3.4 

 

2.5 

1.3e-7 

 

1.1e-8 

lactate [nt-ms] Plasma 

(at 30 min) 

2.2 1.3e-9 

OLTT phosphate [nt-ms] Urine -5.5 2.9e-10 2-hydroxy- Plasma 1.6 1.7e-12 
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(0-4 h)  

taurocholate [nt-

ms] 

(at 4 h) 

Plasma 

(90 min) 

 

4.2 

 

1.4e-7 

decanoate [nt-

ms] 

(at 4 h) 

 

 

Stress 

(0-30 min) 

 

no significant changes 

 

Data-derived metabolic networks provide molecular context for metabolite changes  

To allow inspection of dynamic metabolic changes in the context of metabolic pathways and 

the overall metabolism, we generated different types of metabolic networks covering the 

metabolites of the targeted and non-targeted MS-based platforms in plasma and urine (Biocrates 

p150, Metabolon HD4), which were applied to samples from all participants and time points: 

(i) Knowledge-based networks: These networks connect metabolites by their pathway 

membership based on existing pathway or metabolite class definitions (e.g.,  KEGG 23) as 

annotated by the providers of the metabolomics data; (ii) Data-derived networks: Here, we built 

on our previous findings that connecting metabolites based on their significant partial 

correlations in blood and urine reconstructs known metabolic networks from cross-sectional 

data, yielding so-called Gaussian graphical models (GGMs) 24-26. Applying a partial correlation 

method that takes the longitudinal design of data into account 27, we constructed GGMs based 

on the HuMet data from blood and urine for each fluid and platform separately (single fluid 

networks) (see Methods). For plasma, we additionally generated GGMs combining data from 

multiple platforms (Metabolon HD4, Biocrates p150, in-house biochemistry). For data from the 

Metabolon HD4 platform, we connected the plasma- and urine-specific GGMs into multi-fluid 

networks by linking the two nodes representing the same metabolite in each fluid by an 

additional edge. For example, the plasma network comprising metabolites from the Metabolon 

HD4 platform contains 339 edges connecting metabolites with partial correlations ≥ 0.12 (see 

Methods for details on cutoffs). Merging the plasma network with the network inferred from 

urine metabolites (Metabolon HD4 platform, partial correlations ≥ 0.09; see Methods), which 
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consists of 227 edges, results in a multi-fluid network, where 333 edges connect the same 

metabolites measured in plasma and urine. 

 

To test whether the GGMs inferred from longitudinal metabolomics data can also reconstruct 

metabolic networks, we assessed the known pathway distances of metabolites that were 

connected via an edge in the plasma GGM using the human pathway maps in KEGG 23. This 

analysis was possible for 74 out of the 339 edges, for which both metabolites were mappable 

to KEGG (n=129), and which were represented in a KEGG pathway of human metabolism. For 

29 out of the 74 edges, the connected metabolites were also directly linked in KEGG (i.e., 

showed a pathway distance of 1); for 22 edges, we observed pathway distances of 2 or 3. A 

summary of results is provided in Supplementary Table 4. In a bootstrapping approach, in 

which we generated 1000 networks with the same topology but randomized node labelling, a 

maximum of 6 edges with pathway distance 1 was found in only one of the 1000 networks; we 

obtained similar results when performing the analogous analysis of the networks reconstructed 

from urine metabolites (Supplementary Table 5), confirming the applicability of GGMs for 

metabolic network reconstruction from the longitudinal HuMet data.  

 

Using these data-derived metabolic networks, we mapped temporal changes in the abundances 

of metabolites by coloring nodes according to the metabolites’ log 2-fold changes during each 

challenge. This mapping allows for a holistic, metabolism-wide overview of time-resolved 

challenge responses (see also showcase Systemic metabolic responses). 

 

A web-based resource for data visualization and exploration  

To facilitate access to data and results from the HuMet study, we set up the HuMet Repository 

as a web-based framework holding the complete HuMet data set and providing four modules 

(Selection, Time course, Statistics, and Network) for interactive data exploration (Figure 1). 
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The user can filter the dataset to form subsets for visualizations and analyses across these 

modules. Filtering includes restrictions on specific time points, challenges, subjects, 

metabolomics platforms, and sample types. The user can also choose between various data 

transformation options, including data scaling, imputation, and data representation as log2-fold 

changes. Plots generated as part of the different modules are interactive and can be downloaded, 

together with the data that have been used to generate the plots. Furthermore, the framework 

allows users to download the complete data as well as selected subsets and transformations 

thereof for further analysis.  

 

The module Selection allows users to select from the complete set of 2,656 metabolites in the 

HuMet dataset. For selecting metabolites of interest, we provide interactive tables where 

metabolites can be sorted or filtered according to various assigned properties including  

metabolite classes, metabolomics platform, biofluid, and KEGG 23 or HMDB 28 identifiers. 

Moreover, metabolites can be selected by specifying pathways of interest using either pathways 

as defined by KEGG or by the metabolomics platform (‘annotated’). In addition, the user can 

search for metabolites that show a similar temporal profile as a specified reference metabolite 

(see also showcases Prior Exposure and Platform Comparison). Thereby, metabolites can be 

ranked by their similarity to the reference using different distance measures (Euclidean, 

Manhattan, Fréchet) or correlation (Pearson). To facilitate the comparison of different sets of 

metabolites, the user can assign metabolites to different groups (“bags”) and can toggle between 

them when using other modules. 

 

In the module Time course, the user can visualize and compare temporal trajectories of selected 

metabolites over the four days of the HuMet study, comprising the six different physiological 

challenges. For each metabolite, the subject-specific temporal profiles are displayed in different 

colors, using the same color coding for participants consistently throughout the repository 
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(Figure 2B). The visualization is adaptive to various data transformations such as z-scoring, 

imputation of missing values, and log2 fold changes related to challenge baseline. Mean time 

courses connecting the mean levels of participants at each time point can be displayed for 

multiple metabolites in one plot to facilitate visual exploration and comparison of temporal 

changes between metabolites.  

 

For identifying metabolites whose abundances significantly changed in response to a challenge 

or between two user-defined time points, the HuMet Repository provides hypothesis testing 

within the Statistics module. Thereby, the user can choose between different approaches for 

multiple testing correction. For amenable exploration, all statistical results are provided in 

tabular form as well as in interactive volcano plots.  

 

The module Networks allows users to inspect metabolites of interest in the context of metabolic 

pathways and reconstructed metabolic networks. To this end, we provide knowledge-based and 

data-derived networks for the metabolites from the two MS-based metabolomics platforms. For 

network generation based on the pre-calculated pairwise partial correlations between metabo-

lites, the user can choose from different cutoffs, above which edges are drawn (using fixed 

partial correlation thresholds 29; at significance threshold corrected for multiple testing of edges 

(FDR, Bonferroni)), leading to various alternatives of single fluid networks for plasma and 

urine. To allow exploring the metabolic response to the different challenges within these net-

works, the user can map the log2 fold changes of metabolites (in relation to their challenge 

baselines) onto the metabolite nodes in the network using red (increase) and blue (decrease) 

color gradients. For the generation of the multi-fluid networks based on the new Metabolon 

HD4 plasma and urine datasets, we merged the corresponding single fluid networks by con-

necting the same metabolites measured in plasma and urine by an additional edge. Using this 

approach, changes in urine and plasma metabolites can be displayed in parallel. 
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Showcase Prior Exposure: Identify metabolites with washout-like temporal profiles  

In the first showcase, we seek to identify metabolites that originate from exposures such as 

foods or drugs, to which participants had no access during the 2 x 2 days of the study, using the 

HuMet Repository. Prior to each of the two blocks in the HuMet study (Figure 2), all 

participants ate the same “chicken with vegetables” meal (prepared from a packaged frozen 

instant meal), containing a complex mixture of dietary ingredients that were not included in any 

of the liquid meals provided during the 4-day study phase (e.g., meat or vegetables).  

Methylhistidines have been suggested as biomarkers that reflect chicken meat intake 30,31. In 

our participants, plasma levels of 3-methylhistidine exhibited a washout-like temporal profile 

with a steady decrease after chicken intake. The profiles showed minimal interference with 

stimuli during the study phase, which is a prerequisite for a true dietary biomarker (Figure 3). 

We therefore chose this metabolite as a starting point for the search of metabolites with similar 

kinetic characteristics, potentially indicating further prior exposures of the participants. We 

used the similarity search option in the module Selection to rank metabolites by the distances 

of their temporal profiles to the reference profile of 3-methylhistidine in plasma.  

 

We found S-allylcysteine in plasma to be the metabolite with the most similar temporal profile, 

showing a distance (Fréchet) of 0.2712 to plasma 3-methylhistidine; 34 additional metabolites 

had distances less than 0.6, with 16 being plasma metabolites. Out of these 16 plasma 

metabolites 12 are metabolites (or direct derivatives of metabolites) listed in FooDB 32 and/or 

are linked to food-related exposures in the Exposome Explorer 33. These 12 metabolites indicate 

putative exposures to meat, garlic, bread, coffee, milk, and soy (Table 3; Supplementary 

Table 6). Most of these metabolites were detectable in almost all participants and at most time 

points. In contrast, equol glucuronide was only detected in two individuals (subjects 1 (6 time 

points of the first block) and 8 (all time points)), respectively. Equol is generated from daidzein, 

an isoflavone that is commonly found in legumes, particularly in soy. Only a fraction of the 
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human population (~50%) is able to convert daidzein into equol (which can then be further 

sulfated and glucuronated) 34,35. The ability to produce equol presumably depends on the 

composition of a person’s microbiome and might be crucial for the health benefits that have 

been linked to soy isoflavones. At least two HuMet participants have this ability but only for 

one of them equol glucuronide was detected in both blocks of the study, suggesting that (out of 

the two) only this person was exposed to soy (or other daidzein-containing food) before each 

of the study blocks.  

 

 

Figure 3. Exploration of metabolites from prior exposures. (A) Workflow to identify metabolites 
with similar trajectories as the reference plasma metabolite 3-methylhistidine (3-MH), a dietary marker 
for meat intake, using the similarity search implemented in the module Selection. (B) Time courses of 
3-methylhistidine (3-MH) and the 16 plasma metabolites with most similar trajectories (Fréchet distance 
< 0.6) as visualized within the module Time Course. (C) Out of the 17 metabolites 12 are known 
biomarkers for various food items that have not been provided to participants during the study blocks, 
indicating exposures prior to the study.  
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Inspecting the list of metabolites with similar washout-like trajectories as 3-methylhistidine, we 

found five metabolites that have not been reported as dietary biomarkers. Interestingly, three 

out of these five metabolites are lipids that contain a C14 fatty acid residue (2-myristoyl-GPC 

(14:0), (dFréchet = 0.5415; PC aa C32:2 (mainly consisting of PC (14:0_18:2) 22), dFréchet = 0.5772; 

lysoPC a 14:0, dFréchet = 0.5909). The steady decline of these metabolites over the two blocks, 

when participants were only exposed to the highly standardized challenge drinks, suggests that 

dietary choices (but not acute fasting status or macronutrient composition of the challenge 

drinks) modulate the levels of these complex lipids.  

 

Table 3. Food-related prior exposures linked to metabolites with similar washout-like temporal 
profiles as 3-methylhistidine (dietary marker for (chicken) meat intake 31). 

Metabolite  

(Fluid, platform) 

Fréchet 

distance to 

reference 

metabolite 

Putative  

exposure  

Further metabolites with d<0.6 in plasma or 

urine 

S-allylcysteine (P, nt-ms) 0.2712 Garlic/Onion alliin (P, nt-ms); N-acetylalliin (P, nt-ms); N-acetyl-

S-allyl-L-cysteine (U, nt-ms); alliin (U, nt-ms); 

trans-4-hydroxyproline 

(P, nt-ms) 

0.4568 Meat 3-methylhistidine (P, nt-ms); 1-methylhistidine (P, 

nt-ms); N-acetyl-3-methylhistidine (P, nt-ms); 3-

methylhistidine (U, nt-ms); N-acetyl-3-

methylhistidine (U, nt-ms); 

trigonelline (N’-

methylnicotinate)  

(P, nt-ms) 

0.5522 Coffee hippurate (P, nt-ms); trigonelline (N’-

methylnicotinate) (U, nt-ms); 1-methylxanthine (U, 

nt-ms); 3-hydroxyhippurate (U, nt-ms); 

paraxanthine (U, nt-ms) 

O-acetylhomoserine 

 (P, nt-ms) 

0.5814 Milk glucosaminate (U, nt-ms) 

2-aminophenol sulfate 

(P, nt-ms) 

0.5816 Bread 2-aminophenol sulfate (U, nt-ms) 
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equol glucuronide (P, nt-

ms) 

0.5906 Soy  

 

Taken together, this use case demonstrates the value of the similarity search as implemented in 

the Module Selection to depict metabolites showing the same dynamic behavior.   

 

Showcase Platform comparison: Compare metabolites across metabolomics platforms 

HuMet samples were profiled using a variety of metabolomics platforms, considering that no 

single approach can cover all parts of metabolism in sufficient quality 36.  While their coverage 

of metabolites is mostly complementary, comparable measurements are available from the 

Metabolon HD4 platform and the Biocrates p150 kit for various amino acids, acylcarnitines, 

and glycerophospholipids. In this use case, we were interested to what extent measures for 

matching metabolites correlate between the platforms. This comparison is of particular interest 

for matching metabolite pairs where the platforms do not quantify the exact same analytes due 

to the different measurement techniques. As an example, the 43 matching metabolite pairs listed 

in Yet et al. 37 for Biocrates p150 (t-ms) and a prior version of Metabolon HD4 (nt-ms), include 

the pair H1 (Hexose) (t-ms)/glucose (nt-ms). While the non-targeted technique measures the 

(relative) abundances of glucose, the most abundant hexose in human blood 38, the targeted 

assay measures the concentrations of all hexoses as a sum. 

 

Out of the 43 metabolite pairs, data on 38 pairs are available in the HuMet dataset. Overall, we 

observed a high correlation of measurements for the investigated metabolite pairs across the 

two platforms in HuMet, with a median correlation of 0.75 (Figure 4; Supplementary Table 

7). Also, glucose (nt-ms) and H1 (hexose) (t-ms) measurements were highly correlated (r = 

0.87), which is in line with measured plasma hexose consisting mostly of glucose in humans. 

Only four pairs showed comparably weak correlations (r < 0.5) (Figure 4). In particular, the 
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acylcarnitine measures butyrylcarnitine (nt-ms)/C4 (butyrylcarnitine) (t-ms) (r = 0.18) and 

glutarylcarnitine (nt-ms)/C6-OH (C5-DC) (t-ms) (r = 0.18) showed differences between the 

platforms. In the first case, the reason for this difference could be that the Biocrates p150 

measure labeled as C4 (butyrylcarnitine) includes the isobaric isobutyrylcarnitine, while these 

two metabolites are measured as two separate analytes on the Metabolon HD4 platform. 

Correlation analysis of metabolite isobutyrylcarnitine (nt-ms)/C4 (butyrylcarnitine) (t-ms) (r = 

0.82) indicates that C4 (butyrylcarnitine) (t-ms) and/or its dynamic changes might indeed be 

dominated by isobutyrylcarnitine. This is of particular interest as butyrylcarnitine and 

isobutyrylcarnitine derive from two fundamentally different pathways linked to the degradation 

of fatty acids and to the degradation of branched-chain amino acid, respectively. A similar 

scenario can be assumed to underly the low correlations between glutarylcarnitine measured on 

Metabolon HD4 and the analyte labeled as C6-OH (C5-DC) measuring glutarylcarnitine and 

hydroxyhexanoylcarnitine together using the Biocrates p150 kit. 

 

Taken together, this use case demonstrates the value of the HuMet Repository for comparing 

measurements from different metabolomics platforms. Here, the availability of time-resolved 

metabolomics data from multiple platforms for the same participants combined with the 

exploration tools implemented in the repository (specifically the similarity search (Selection 

module) and aggregation of metabolite time courses plots (Time Course module)) facilitates the 

comparison and demonstrates how measurements from different platforms can inform each 

other. 

 
Showcase Systemic metabolic responses: Reveal and compare systemic responses to 
challenges 

In this use case, we seek to answer the following questions: (i) “Which areas of metabolism 

change after extended fasting compared to standardized overnight fasting in the reconstructed 

metabolic network?” and (ii) “How do metabolic responses in particular pathways compare 
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between three different nutritional challenges?”. Using the inferred metabolic networks within 

the repository’s Networks module, we can visualize and depict time-dependent responses to 

metabolic challenges in a metabolism-wide manner.  

 

 
 
Figure 4. Comparison of measurements from different platforms. (A) Workflow to explore the 
concordance of measurements for 38 pairs of matching metabolites from the non-targeted (Metabolon 
HD4) and targeted (Biocrates p150) platform (pairs taken from Yet et al. 37). Pearson correlations of 
metabolites (across all time points and all subject’s individual metabolite curves) are provided through 
the similarity search implemented in the module Selection. (B) Trajectories of the pair with strongest 
correlation (laurylcarnitine (P, nt-ms)/C12 (dodecanoylcarnitine) (P, t-ms) with r = 0.95 and the pair 
with weakest correlation (butyrylcarnitine (P, nt-ms)/C4 (butyrylcarnitine) (P, t-ms)) with r = 0.18 are 
shown as displayed within the module Time Course. In case of the C4 carnitines, the measurements for 
the isobaric isobutyrylcarnitine (P, nt-ms), which is added to the time course plot, showed a much 
stronger correlation with the C4 measurement from the targeted platform, indicating that C4 
(butyrylcarnitine) (P, t-ms) and/or its dynamic changes might be dominated by the isoform 
isobutyrylcarnitine. (C) Overall, the concordance of measurements from the two platforms is high with 
a median correlation of measurements of r = 0.75 and only four out of 38 pairs with correlations below 
0.5.  
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To get a global view of changes in metabolism after prolonged fasting, we chose the multi-fluid 

network (Metabolon HD4 plasma and urine) with default cutoffs for the underlying partial 

correlation (see Methods). On this backbone, we mapped statistical results comparing 

metabolite levels after extended fasting (36 h; time point (TP) 10) with levels after standardized 

overnight fasting (12 h; TP 1). In the resulting network, we saw widespread metabolic changes 

with prominent increases (indicated by red color with high saturation and large circle sizes of 

metabolite nodes) in various pathways, including a metabolite cluster containing ketone bodies 

(and their precursors from ketogenic amino acid degradation) and a cluster containing 

acylcarnitines (Figure 5). Also, increases in other clusters became apparent (indicated by 

circles in Figure 5B), for example clusters containing (i) sulfated bile acids (and steroids), in 

particular the monohydroxy bile acid derivative taurocholenate sulfate in blood and urine; (ii) 

nucleotides (xanthine, hypoxanthine) and metabolites of the citrate cycle (malate, fumarate), 

which also increased during exercise; and (iii) dicarboxylic fatty acids (mainly C10 – C18). 

Most decreases (blue color) were observed in clusters containing xenobiotic metabolites or 

metabolites that have been linked to the human gut microbiome (Figure 5).  

 

For comparison of metabolic responses across challenges, we selected a single fluid GGM 

(Metabolon HD4 Plasma, Biocrates p150 plasma and in-house biochemistry, partial correlation 

(pcor) ≥ 0.12). Here, we mapped metabolic changes obtained for the OGTT (60 min vs. 

baseline), SLD (60 min vs. baseline) and OLTT (60 min vs. baseline) and focused on two 

modules that exhibited consistent and different changes across challenges, respectively (Figure 

5): (i) a cluster containing different bile acids consistently increased after one hour in all three 

challenges and (ii) a cluster containing various amino acids that showed considerably different 

responses between challenges: the majority of metabolites within this cluster decreased 60 min 

after glucose ingestion in the OGTT, while they increased after ingestion of the SLD drink and 
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less extensively also after ingestions of the lipid-rich OLTT challenge drink. More detailed 

inspection of the bile acid time courses using the Statistics module confirmed that, for five 

(glyco- and taurocholate, glyco- and taurochenodeoxycholate, and taurodeoxycholate) of the 

bile acids in the cluster, the observed increases were statistically significant not only one hour 

after ingestion of the lipid-containing SLD and OLTT challenge drinks but also one hour after 

ingestion of glucose in the OGTT with even higher fold changes observed after 15 and 30 min. 

Displaying the individual time courses of these bile acids across challenges in all participants 

using the Time Course module also showed that relative abundances and maximal fold changes 

of these bile acids strongly vary between individuals, challenge drinks, and even between 

different contexts: When the SLD challenge drink was ingested “for lunch” four hours after 

ingestion of the OGTT drink (SLD2), observed maximal log2 fold changes for the five bile 

acids were almost as high as in the OLTT (log2fc ~ 3-4); the same maximal log2 fold changes 

were seen when the SLD drink was ingested in the morning at 8 am after the prolonged fasting 

(SLDr). In contrast, when the SLD drink was provided “for lunch” four hours after the first 

SLD drink in the morning on day two (SLD1), the maximal fold changes were smaller (log2fc 

~ 2; similar as the bile acid fold changes after OGTT), as the bile acid levels had not returned 

to the morning levels after these four hours.  

 

Taken together, this use case demonstrates the usefulness of the HuMet Repository to explore 

and compare metabolic responses in the context of metabolic networks and across challenges 

and pathways.   
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Figure 5. Contextualization of metabolic responses to challenges within reconstructed metabolic 
networks. (A) Workflow to explore metabolite responses to challenges from a holistic, metabolome-
wide perspective. To get an overview of changes after extended fasting (36 h) compared to overnight 
fasting (12 h), we select the multi-fluid metabolic network derived from the non-targeted metabolomics 
data in plasma and urine provided in the module Networks (left). For comparison of metabolite changes 
within particular pathways (here: bile acids and amino acids) 60 min after ingestion of the challenge 
drink, we select the single fluid network generated based on plasma levels of the non-targeted 
(Metabolon HD4) and targeted (Biocrates p150) platform (right). To visualize responses, we map the 
log2 fold changes and p-values resulting from t-tests comparing metabolite levels after the respective 
challenge with the corresponding baseline levels (module Statistics). Color displays the log2 fold change 
between challenge baseline and chosen time point, with red indicating an increase in metabolite 
concentration and blue indicating a decrease in metabolite concentration. Node size depicts the -log10 
p-value of metabolic changes between challenge baseline and chosen time point. Thereby, node size 
increases with lower p-value. (B) Coloring and scaling of metabolite nodes according to changes after 
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extended fasting of 36 h (versus overnight fasting (12 h)) shows that various parts of human metabolism 
are affected by adaptations to this challenge (left). This includes pathways such as beta-oxidation of 
fatty acids (indicated by increasing acylcarnitine levels in blood and urine (see zoom-in for box 1) as 
well as the generation of ketone bodies (indicated by their increased levels in both fluids; see zoom-in 
for box 2). Moreover, increases in metabolite levels are observed in further clusters delineated through 
circles ((i) sulfated bile acids (and steroids); (ii) nucleotides (xanthine, hypoxanthine) and metabolites 
of the citrate cycle (malate, fumarate); (iii) dicarboxylic fatty acids (mainly C10 – C18); no zoom-ins 
provided). Decreases (blue color) are seen for various pathways of xenobiotic metabolites, including 
benzoate metabolites (see zoom-in for box 3). Coloring the network based on plasma metabolites by 
changes 60 min after ingestion of the challenge drinks (right) revealed a cluster of bile acids that 
similarly increased in SLD and OGTT and to a lesser extent also in response to OGTT. In contrast, a 
cluster containing most amino acids, showed decreases in OGTT and increases in SLD and OLTT, with 
less effect observed in the latter case (though 65% of the same protein mix was ingested with the OLTT 
drink as with the SLD drink). (C) Using the reconstructed single- and multi-fluid metabolic networks 
helps to get a metabolome-wide overview over dynamic metabolic changes in response to specific 
challenges and facilitates comparison of effects between different challenges. 

 

Discussion 

The HuMet Repository described herein provides an easily accessible and explorable reference 

for typical metabolic responses to all-day challenges in healthy male individuals. The contained 

time-resolved metabolomics data set is unique regarding its metabolite coverage, with data from 

multiple different platforms, together capturing most areas of human metabolism in blood and 

urine. In particular, the non-targeted metabolomics data (plasma 595; urine 619), which we 

added to the data that already existed from the HuMet study, increased the breadth of metabolic 

pathways and enhanced the granularity of the metabolomic readout for exploring metabolism 

under challenge.  

 

To bring the rich data set to the scientific community, we set up our repository in a way that 

goes beyond the idea of sharing data for re-analysis by experts according to the FAIR (Findable, 

Accessible, Interoperable and Reusable) principles: By offering interactive exploration and 

visualization tools, we enable users to query the data directly and flexibly while taking the 

burden of data handling for these complex, high dimensional data (15 subjects x 56 time/6 



challenges x 2,656 metabolites/8 platforms x 4 biofluids) from them (e.g., by providing 

calculation of fold changes, imputation, biostatistics, mapping of metabolites onto metabolic 

networks). As a consequence, answering ad hoc questions like “How robust is the metabolite 

that I identified as a disease biomarker in fasting versus non-fasting conditions?”, “How do 

dynamic changes in blood compare to those in urine for my metabolite of interest?”, “How 

individual is the metabolic response to physical activity among healthy subjects for my 

metabolite of interest?”, “Which metabolites exhibit the same longitudinal patterns over a 

challenge or the complete study duration as my metabolite of interest?” is only a matter of 

clicks in the HuMet Repository, making the data thus more accessible for researchers with 

various backgrounds. 

 

In addition to serving as a reference for questions regarding specific metabolites of interest, the 

HuMet Repository facilitates systematic explorations into metabolic responses across 

biochemical pathways, physiological challenges, and metabolomics platforms as we 

demonstrated in three showcases. Applying the built-in similarity search for extraction of 

metabolites with similar temporal profiles, we were able to identify metabolites with washout-

like trajectories in our first showcase. In our second showcase, we demonstrated how assessing 

the similarity of metabolite trajectories can be used to compare readouts from different 

metabolomics platforms available for the same samples in the HuMet Repository. In contrast 

to previous work, where we used HuMet data for similar purposes  22,39, we here performed data 

analyses solely using functionality of the HuMet Repository, without any additional effort for 

data processing, analysis, or visualization. In our third showcase, we highlighted the value of 

data-derived metabolic networks as provided within the repository to contextualize statistical 

results from metabolome-wide analyses and to compare them across six different challenges. 

In contrast to metabolic networks taken from knowledge-based maps such as KEGG, which 

typically omit many of the measured metabolites, the entire set of metabolites detected through 



the underlying metabolomics approaches is represented in data-derived networks. In the present 

study, we demonstrated that partial correlations calculated from the HuMet study, 

encompassing time-resolved data from only 15 individuals, yielded networks in which 

functionally related metabolites were grouped similarly as in networks derived from large 

cross-sectional data of more than 1000 individuals 24-26. The networks reconstructed based on 

HuMet data are, thus, adequate to provide metabolic context for the global exploration of 

challenge-induced temporal changes. 

 

Besides demonstrating the general applicability of the HuMet Repository, our showcasing 

analyses also derived concrete new biological hypotheses: In our first case, we identified 

potential new markers of dietary intake by extracting metabolites that indicated exposures of 

our participants prior to the start of the two study blocks. Most of the metabolites that showed 

similar washout-like kinetic patterns as a known marker (3-methylhistidine) of a known prior 

exposure (meat) 31, were dietary biomarkers of further food items which were contained in the 

meal that was served to every participant at the evening prior to the study blocks or otherwise 

consumed before (e.g., metabolites of meat, garlic/onion, coffee, and soy). Interestingly, our 

analysis additionally revealed various phosphatidylcholines containing a C14:0 saturated fatty 

acid residue that showed the typical washout-like kinetic for most participants. These 

metabolites are not listed as dietary biomarkers in FoodDB 32 or Exposome Explorer 33 and are 

typically considered to be endogenous. Nonetheless, our results suggest that dietary choices 

strongly influence the blood levels of these metabolites. As bovine milk fat is rich in C14:0 

40,41, the steady decrease of the C14:0 phosphatidylcholines within each of the two study blocks 

might reflect the “wash-out” of metabolites originating from cream, which was an ingredient 

of the served dinner. On the other hand, considering previous results from Altmaier et al., who 

reported an association of phosphatidylcholines with shorter fatty acid chains (< C20) and 

higher saturation with fiber intake 42, the observed effect of constantly decreasing levels of 



C14:0 phosphatidylcholines could also be related to the lack of fiber in the provided challenge 

drinks.  

 

Results from our second showcase emphasize that the concordance of measurements from 

different metabolomics platforms for the “same” (matching) metabolites can vary depending 

on sampling time and conditions. On average, we saw high correlation of measurements across 

the investigated metabolites from the targeted Biocrates p150 and the non-targeted Metabolon 

platforms despite differences of what exactly is quantified for matching compounds between 

the two platforms by design (e.g., relative abundance of glucose (non-targeted) versus absolute 

concentration of all (isobaric) hexoses (targeted)). We thereby replicated results from previous 

cross-platform studies which indicated that these measures can be used largely interchangeably 

in cross-sectional data 37,43. At a first glance, the measures labeled with ‘butyrylcarnitine’ were 

an exception: In the time-series data of the HuMet study, we only found weak correlation of the 

targeted ‘butyrylcarnitine’ analyte (representing the sum concentrations of isobaric C4 

carnitines) with the non-targeted butyrylcarnitine measure. In contrast, under overnight fasting 

conditions in cross-sectional data of 1001 subjects, the correlation of the two measures was 

strong and the association of measured levels with a genetic variant in the ACADS locus, which 

encodes an enzyme converting butyrylcarnitine, was identified independent of the platform 37. 

However, in the time-series data of the HuMet study, we instead observed a strong correlation 

of the targeted C4 carnitine analyte (‘butyrylcarnitine’) with isobutyrylcarnitine measured as a 

separate analyte on the non-targeted Metabolon HD4 platform. Thus, our analysis revealed that, 

when dynamically monitoring targeted C4 carnitine concentrations over challenges, the 

concentrations resemble changes in isobutyrylcarnitine, which is linked to the degradation of 

branched-chain amino acids, rather than butyrylcarnitine, which is derived from the ß-oxidation 

of fatty acids. Hence, while the fasting C4 concentrations in the targeted analysis indeed 



reflected the inter-individual differences in butyrylcarnitine levels, this was not the case under 

non-fasting conditions.  

 

When investigating the effects of prolonged fasting in our third showcase, where we used the 

repository’s network visualization and statistics functionality, we found that most measured 

metabolites in plasma and urine were affected by the fasting challenge to some extent. As 

expected from the lack of other energy sources, largest increases could be seen in metabolite 

clusters containing ketone bodies (and their precursors from degradation of ketogenic amino 

acids) and acylcarnitines, indicating burning of fat 44,45. We also observed large increases in 

metabolite clusters containing dicarboxylic fatty acids (mainly C10 – C18), indicating fat 

degradation through peroxisomal fat oxidation. This process involves microsomal omega-

oxidation and is known to occur during fasting 46, in particular when mitochondrial beta-

oxidation is impaired as, for example, in specific rare monogenic diseases 47. The produced 

dicarboxylic acids have been suggested as regulators of beta-oxidation 48 with a potential role 

in hepatic lipid accumulation induced by fasting 46. Hepatic lipid accumulation and steatosis 

have not only been linked to starvation conditions but also to (chronic) excess of fatty acid 

influx into liver as in many cases of obesity and type 2 diabetes 49. While the HuMet participants 

were healthy and non-obese, we observed increases in these dicarboxylic acids also when there 

was an (acute) excess of fatty acids after ingestion of the high fat challenge drink for the oral 

lipid tolerance test (e.g., octadecanedioate log2fc: 1.45 (fasting), 1.02 (OLTT)), matching the 

hypothesis of dicarboxylic acids being mediators of lipid accumulation. Interestingly, in our 

study, we observed increases in dicarboxylic acid levels also after the physical activity test (e.g., 

octadecanedioate log2fc: 0.90 (PAT)) which might provide an explanation why prolonged 

physical exertion carries the risk of liver damage 50.  

Another class of metabolites increasing during extended fasting comprised sulfated bile acid as 

well as sulfated steroid derivatives (e.g., taurocholenate sulfate, glycochenodeoxycholate 



sulfate, dehydroepiandrosterone sulfate). All these compounds are products of a sulfation 

reaction catalyzed by the enzyme sulfotransferase 2A1; common genetic variants in the 

encoding gene SULT2A1 have been reported to influence the blood levels of these compounds 

29,51. Despite various studies, the role of sulfotransferases in metabolic homeostasis is not fully 

understood yet and warrants further research 52.  

 

While the showcases demonstrate the usefulness of the HuMet Repository, the data and our 

explorative approaches also have their limitations: First, the study was based on the idea to have 

a group of participants as similar as possible. This was realized with only 15 participants, all 

male, young, and normal weight with only minimal variation in BMI. This small sample size, 

however, clearly restricts the statistical power and leads to a lack of diversity in the study group, 

which, in turn, impedes the transferability of results to women or other age groups. On the other 

hand, the homogeneity of the group allows users to see inter-individual variation in metabolite 

levels and metabolic responses to the challenges in the absence of major sources that usually 

cause variation in metabolite levels, such as sex 53,54, age 55-57, and BMI 58. Second, while the 

availability of data on six different challenges for the same participants facilitates comparisons 

across challenges, all participants were exposed to these challenges in the same preset order. 

Therefore, we cannot exclude carry-over effects between challenges. Nonetheless, the specific 

block-wise design of the HuMet study enabled for example the discovery of metabolites of prior 

exposure in the wash-out phase that are much more difficult or impossible to be found in studies 

that have only one time point or that performed only one challenge under standardized 

conditions. Third, the comprehensive coverage of metabolites mainly through non-targeted 

approaches comes with the downside that only relative abundances of metabolites are reported 

as opposed to absolute concentrations derived by the targeted methods. As a consequence, our 

resource cannot provide “normal concentration ranges” for the majority of measured 

metabolites, limiting the repository’s application as a quantitative reference. Also, as most data 



has been acquired from commercially available metabolomics platforms, we do not have access 

to the raw spectra for each measurement to share them publicly. However, for various large 

epidemiological cohorts, cross-sectional datasets are available from the same metabolomics 

platforms, which enables direct cross-links of HuMet results to results from metabolome- and 

genome-wide association studies 29,59-62. Fourth, as we tailored the application to the specific 

HuMet study data, our repository is a standalone resource and not integrated into a larger 

metabolomics repository such as MetaboLights. However, the underlying non-targeted data is 

available via MetaboLights (MTBLS89). Finally, explorative data analysis as supported by our 

repository can only be used for generation of hypothesis, which need to be followed up by more 

specific and sophisticated data analyses and subsequent experiments.    

 

Conclusion 

In conclusion, the HuMet Repository opens avenues for researchers with different backgrounds 

to explore human metabolism under challenge conditions. With its comprehensive coverage of 

the human metabolome in plasma and urine, its time-resolved metabolite profiles after six 

different metabolic challenges, and its interactive analysis and visualization tools, this 

repository allows for addressing numerous questions related to the dynamic changes in 

metabolism. Our showcases exemplify how the project-tailored webtool facilitates explorative 

as well as systematic data analysis e.g., to identify dynamic metabolic responses in a 

metabolome- and “challenge-wide” fashion, or to identify metabolites that exhibit synchronous 

trajectories.  

 

While we here highlighted results from specific analyses and focused on the generated 

hypotheses, leveraging the HuMet Repository, users can tackle further question without the 

need of processing the data by themselves, e.g., How much does the coupling of kinetic behavior 



across metabolites differ when comparing responses between different challenges (e.g., 

extended fasting and exercise)?,  and many more options e.g., for cross-linking metabolite 

measures from different analytical platforms or estimating the stability of metabolite levels 

within individuals. Moreover, as we used highly standardized challenges for testing lipid, 

fasting, or exercise tolerance, they can be repeated in future studies, for instance, in studies 

involving patient cohorts. Derived patient data could be directly compared to data in our 

repository for identifying deviations from the ‘normal’, healthy response. Therefore, the HuMet 

Repository could help unlock the full potential of standardized challenge tests and their 

metabolic readouts to identify metabolic aberrations, when they are not yet visible in the rested, 

unperturbed state, thereby enabling new concepts for disease prevention or early diagnosis.   

 

Methods 

HuMet study population and design  
 
The present work is based on samples of the Human Metabolome (HuMet) study conducted at 

the Human Study Center of the Else-Kröner-Fresenius Center of Nutritional Medicine at the 

Technical University Munich. All details on study design, population, and existing data have 

been described previously 11. Briefly, 15 healthy male participants were recruited for the study. 

Participants were young (mean age of 27.8 years ± 2.9), had normal weight (mean body mass 

index (BMI) of 23.1 kg/m2 ± 1.8), did not take any medication, and did not show any metabolic 

abnormalities (Supplementary Table 1). 

All participants underwent a series of six unique metabolic challenges within two 2-day test 

blocks (Figure 1). Twenty-four hours prior to each test block, participants were asked not to 

consume alcohol or engage in strenuous physical exercise. Participants were provided with the 

same meal (standard size, chicken-based with vegetables (FRoSTA Tiefkühlkost GmbH, 

Hamburg, Germany)) at 7 pm one day prior to each test block. During each study block, 



participants stayed within the study unit to reduce perturbation by environmental influences. 

Samples were collected at up to 56 time points in different intervals (every 15-240 min) over 

the study days depending on the collected biofluid (plasma, spot urine, exhaled breath 

condensate samples, breath air) and the particular challenge (Supplementary Table 8).  

Challenges covered extended fasting, ingestion of three different drinks with unique 

macronutrient compositions, a physical activity, and a stress test: (i) The fasting challenge 

consisted of a 36-hour fasting period (from the dinner before block one until 8 am on day two 

in the first block). During the challenge, participants drank 2.7 liters of mineral water based on 

a defined drinking schedule. (ii) A standard liquid diet (SLD) drink was ingested at three 

occasions: SLDr – for “breakfast” on day two to recover from extended fasting, SLD1 – for 

“lunch” on day two, and SLD2 – for “lunch” on day three in the second block. The SLD drink 

consisted of a defined fiber-free formula drink (Fresubin® Energy Drink Chocolate, Fresenius 

Kabi, Bad Homburg, Germany), providing one-third of the daily energy requirement of each 

participant. (iii) The oral glucose tolerance test (OGTT) on day three (block two) consisted of 

a 300 ml solution with mono- and oligosaccharides, equivalent to 75 g glucose after enzymatic 

cleavage (Dextro O.G.T., Roche Diagnostics, Mannheim, Germany). (iv) The oral lipid 

tolerance test (OLTT) on day four combined two parts of the SLD and one part of a fat emulsion 

containing predefined long-chain triglycerides (Calogen®, Nutricia, Zoetemeer, Netherlands), 

while adjusting volumes per participant to provide 35 g fat/m2 body surface area. All challenge 

drinks were served at room temperature for ingestion within 5 minutes. (v) For the physical 

activity test (PAT) participants performed a 30 min bicycle ergometer training at a power level 

corresponding to their individual anaerobic threshold. (vi) In the cold stress test, participants 

were triggered by immersing one hand, up to wrist level for a maximum of 3 min in ice water. 

For a complete protocol of the challenge procedure and the collection of samples, see Krug et 

al. 11.  

 



The ethical committee of the Technische Universität München approved the HuMet study 

protocol (#2087/08), which is in correspondence with the Declaration of Helsinki. 

 

Existing HuMet metabolomics data 

The HuMet study samples were previously profiled on three different “in-house” and three 

different vendor-based platforms. Resulting metabolomics data were used as published and 

provided in Krug et al. 11 for integration into our HuMet Repository. 

Measured metabolites from these six platforms and the analytical methods used were described 

in detail in Krug et al. 11 and are only briefly summarized here: (i) “In-house biochemistry”: 

Standard biochemistry assays were used to assess blood levels of glucose, lactate, insulin, and 

non-esterified fatty acids (NEFA) in 840 plasma samples (15 subjects x 56 time points). Venous 

plasma glucose and lactate concentrations were profiled using an enzymatic amperometric 

technique, insulin was measured by ELISA, NEFA were quantified in plasma by an enzymatic 

colorimetric method. All assays were performed at the Technische Universität München. (ii) 

“In-house FTICR-MS”: Flow injection electrospray ionization ion cyclotron resonance Fourier 

transform mass spectrometry (FTICR-MS) measurements were performed at Helmholtz 

Zentrum München. A total of 201 mass spectral features from volatile compounds were 

reported in 55 breath condensates samples (5 subjects x 11 time points of the first block). (iii) 

“In-house PTR-MS”: Proton transfer reaction mass spectrometry (PTR-MS) was used to profile 

341 breath air samples (11 subjects x 31 time points). Analyses were performed by researchers 

from Helmholtz Zentrum München and yielded 106 mass spectral features of volatile 

compounds. (iv) “Biocrates p150”: AbsoluteIDQ p150 kits from Biocrates Life sciences AG, 

Innsbruck, were used to perform flow injection analysis mass spectrometry (FIA-MS) of 840 

plasma samples (15 subjects x 56 time points), yielding quantities for 132 blood metabolites 

after quality control. (v) “numares”/ “Chenomx”: NMR spectra of 810 plasma samples (15 

subjects x 54 time points) and 195 urine samples (15 subjects x 13 time points) were determined 



by numares (formerly LipoFit Analytic GmbH, Regensburg, Germany). For plasma samples, a 

total of 28 metabolites were identified by the company based on these spectra. For urine 

samples, only the levels of six metabolites were extracted from the spectra (at Helmholtz 

Zentrum München) using the software Chenomx NMR suite 7.0.  

All data were used as preprocessed and provided in Krug et al. 11, unless stated otherwise in the 

following. 

 

Non-targeted metabolomic profiling (Metabolon HD4) 

In addition to the previously published metabolomics data, we acquired new data by profiling 

plasma and urine samples of the HuMet study on the non-targeted platform Metabolon HD4 

using liquid chromatography coupled to mass spectrometry (LC-MS) at Metabolon, Inc. 

(Durham, NC, USA). This platform applies four different analytical methods optimized for 

measuring metabolites with different physicochemical properties: (i) a reverse phase (RP)/ultra-

high-performance liquid chromatography (UPLC)-MS/MS method with electrospray ionization 

(ESI) in positive mode optimized for hydrophilic compounds, (ii) a RP/UPLC-MS/MS with 

ESI in positive mode optimized for more hydrophobic compounds (iii) a RP/UPLC-MS/MS 

with ESI in negative mode, and (iv) a hydrophilic interaction liquid chromatography 

(HILIC)/UPLC-MS/MS with ESI in negative mode. All methods utilized a Waters ACQUITY 

UPLC and a Thermo Scientific Q-Exactive high resolution/accurate mass spectrometer 

(operating at a mass resolution (m/Dm) 35,000) interfaced with a heated electrospray ionization 

(HESI-II) source. For methods i – iii, a C18 column from Waters (UPLC BEH C18-2.1x100 

mm, 1.7 µm) was used, method iv utilized a HILIC column (Waters UPLC BEH Amide 2.1x150 

mm, 1.7 µm).  

Sample processing for and analytical procedures of the Metabolon HD4 platform have been 

described in detail previously 20. Briefly, EDTA-plasma and spot urine samples, which were 

kept at -80°C until analysis, were first thawed. Then, several recovery standards, which were 



carefully chosen not to interfere with the measurement of endogenous compounds, were spiked 

into 100 μl of every sample to allow chromatographic alignment and to monitor instrument 

performance. For protein precipitation and metabolite extraction, samples were mixed with 

methanol under vigorous shaking for 2 min (Glen Mills GenoGrinder 2000).  After 

centrifugation, the resulting extracts were split into five portions for each sample: four aliquots 

for analysis by the different LC-MS methods and one aliquot for backup. The extracts were 

placed briefly on a TurboVap® (Zymark) to remove the organic solvent and then stored 

overnight under nitrogen. Before LC-MS analysis, the extracts were reconstituted in solvents 

compatible for the MS methods (with each reconstitution solvent containing a series of 

standards at fixed concentrations to ensure injection and chromatographic consistency). All 

described sample processing steps were automated using a MicroLab STAR® system from 

Hamilton Company (Reno, NV, USA).  

For LC-MS analysis by method i (acidic positive ion conditions), the extracts were gradient 

eluted from a C18 column (see above) using water and methanol, containing 0.05% 

perfluoropentanoic acid (PFPA) and 0.1% formic acid (FA). For analysis by method ii (acidic 

positive ion conditions), the extracts were gradient eluted from the same C18 column using 

methanol, acetonitrile, and water, containing 0.05% PFPA and 0.01% FA.  For analysis by 

method iii (basic negative ion conditions), the extracts were gradient eluted from a separate C18 

column using methanol and water with 6.5 mM ammonium bicarbonate at pH 8. For analysis 

by method iv (basic negative ion conditions), the extracts were gradient eluted from a HILIC 

column using a gradient consisting of water and acetonitrile with 10 mM ammonium formate 

at pH 10.8. The MS analysis alternated between full scans (covering 70-1000 m/z) and data-

dependent MSn scans using dynamic exclusion.  

Peak identification and alignment from the recorded spectra, were performed using 

Metabolon’s in-house hardware and software.  Metabolites were identified by comparison of 



the experimental spectra to entries in Metabolon’s in-house library, which was collected from 

the measurement of commercially available purified standards (~3,300 at time of analysis) or 

recurrent spectra from either named compounds (or classes), for which no authenticated 

standard was available (marked by a tag next to the metabolite name in Supplementary Table 

2), or from structurally unnamed biochemicals. Note that, for the present study, only the results 

from measuring named metabolites were purchased from Metabolon. The area-under-the-curve 

(AUC) of the peaks indicated as the quantification ions in the library entries were used to 

quantify metabolites. To account for differences in solute concentrations, raw peak AUC values 

of metabolite in urine were normalized by osmolality. Raw peak AUC values (plasma) and 

osmolality-normalized peak AUC values (urine) of each metabolite were additionally 

normalized to account for instrument inter-day tuning differences by dividing the values of each 

metabolite at each run day by the median of values for the metabolite on this day (i.e., setting 

the run day medians to one).  Before data release, a series of manual curation procedures were 

carried out at Metabolon to remove metabolite signals representing system artifacts, mis-

assignments, and background noise and to confirm the consistency of peak identification and 

quantification among the various samples. This work was based on proprietary visualization 

and interpretation software.  

As the focus of the HuMet study was on the dynamic changes of metabolite levels within 

individuals, samples from the same individual were measured on the same run day (plate) to 

the extent possible, leading to a run day design where the plasma samples of two participants 

were analyzed on three different run days while assigning samples of block 1 (days 1 and 2), 

samples of day 3 (block 2), and samples of day 4 (block 2) to the same run day, respectively. 

Within run days the order of samples was randomized. Due to the lower number of urine 

samples, the samples from all time points of two participants were measured on the same run 

day. Plasma and urine samples of subject 4 were measured in duplicates; for this subject, we 



used the mean of both measurements. Several quality control (QC) samples, which underwent 

the same sample processing as the HuMet samples, were measured spaced evenly among the 

experimental samples: Ultra-pure water samples served as process blanks; pooled matrix 

samples (CMTRX) generated from all HuMet samples (only for urine samples) and aliquots of 

a pool of well-characterized human plasma (MTRX4) (both for plasma and urine runs) served 

as technical replicates to assess process variability across run days of the analysis. Relative 

standard deviation of CMTRX (urine) and MTRX4 (plasma) measurements are provided in 

Supplementary Table 2.  

As a result of the analyses of 833 plasma and 240 urine samples on the Metabolon HD4 

platform, relative abundances (normalized peak AUCs) are available for in total of 595 plasma 

and 619 urine metabolites. These metabolites were assigned to eight chemical classes termed 

super-pathways (amino acids, carbohydrates, cofactors and vitamins, energy, lipids, 

nucleotides, peptides, xenobiotics), each being divided into two or more sub-pathways, 

resulting in a total of 78 and 68 sub-pathways for the plasma and urine metabolites, respectively 

(Supplementary Table 2). 

Lipidyzer 

Lipid concentrations in HuMet plasma samples of four participants were analyzed on the 

LipidyzerTM platform of AB Sciex Pte. Ltd. (Framingham, MA, USA) by Metabolon Inc., 

Durham, NC, USA. Samples were kept at -80°C until analysis. The protocol of lipid 

quantification using this platform has been described in detail elsewhere 22. In brief, after 

thawing, lipids were extracted from the plasma samples with dichloromethane and methanol 

following a modified Bligh-Dyer extraction. For analysis, the lower, organic phase, which 

included internal standards, was used and concentrated under nitrogen. Extracts were 

reconstituted with 0.25 ml of dichloromethane:methanol (50:50) containing 10 mM ammonium 

acetate and placed in vials for infusion-MS analysis on a Sciex 5500 QTRAP equipped with a 



SelexIONTM differential ion mobility spectrometry (DMS) cell, which allows separation of 

different (lyso)phospholipids [(lyso)phosphatidylcholines ((L)PCs), -ethanolamines ((L)PEs), 

-inositols (PIs)] and sphingomyelins (SMs). Extracts were analyzed using multiple reaction 

monitoring (MRM) in two sequential flow injection analysis (FIA) runs, alternating between 

positive and negative polarity. Free fatty acids (FFAs), tri- and diacyglycerols (TAGs, DAGs), 

ceramides (CERs), lactosyl-, hexosyl-, and dihydroceramides (LCERs, HCERs, DCERs), and 

cholesterylesters (CEs) were measured using separation through the DMS cell. Lipids were 

quantified relative to appropriate stable isotope labeled internal standards. Concentrations are 

provided in µmol/l. The Lipidyzer platform allowed for absolute quantification of 965 lipids 

distributed over 14 lipid classes: (CE, TAG, DAG, FFA, PC, PE, PI, LPC, LPE, SM, CER, 

HCER, LCER, DCER).  

Data preprocessing and transformations 

Quality controlled and normalized existing and new metabolomics data were forwarded to 

integration into the HuMet Repository. Thereby, metabolite names and abbreviations were kept 

as provided by the specific platforms. Metabolite identifiers within the repository contain the 

platform specific name, information on the fluid, in which they were measured (P: plasma; U: 

urine; BA: breath air; BC: breath condensate), and information on the platform (nt-ms: 

Metabolon HD4; t-ms: Biocrates p150; Lipidyzer: LipidyzerTM; NMR: numares/Chenomx; 

PTRMS: In-house PTR-MS; ICR: In-house FTICR-MS; chem.: In-house biochemistry). 

Named metabolites were assigned to the eight different metabolite classes (“super-pathways”) 

as used for the Metabolon HD4 platform and to “sub-pathways” according to the categories 

given by the platforms. We manually annotated metabolites with links to compounds in 

knowledge-based platforms, including KEGG, PubChem, and HMDB.  

For samples, information on the fluid, the subject (1-15), and the time point (1-56) 

(Supplementary Table 8) are used for identification (some breath air measurement were 



between two time points as defined for plasma/urine; they are denoted by 10.5, 11.5, 27.5, 39.5; 

for the six NMR urine metabolites (ChenomX), a sample from an additional time point (57; day 

4: 7 pm) was measured).  

The following preprocessing steps and transformations were applied to all metabolomics data: 

Manual curation. To identify and remove outliers/implausible values, we systematically 

filtered single data points whose log2-transformed values were outside the mean ± 4 times the 

standard deviation window for the particular metabolite and time point, while omitting data 

points from measurements within the first 30 minutes of a study challenge (to avoid deletion of 

biologically meaningful challenged-induced concentration peaks of subjects). As a result, we 

identified 163 outlier data points, of which 92 data points were excluded after manual 

inspection. This cleaned data set is integrated into our repository and can be downloaded from 

the website. 

Data transformations. In addition to the original concentration or relative abundance values, 

we provide the data after further transformations for display in the Time Course module: (i) z-

scores based on the log2-transformed concentrations/relative abundances to facilitate 

comparisons across metabolites and platforms, (ii) log2 fold changes (block) calculated 

between the time points within each block relative to the first time point of the respective block, 

and (iii) log2 fold changes (challenge) calculated between the time points in a specific challenge 

and the challenge baseline (see Supplementary Table 8).  

Imputation. Some of the downstream statistical analyses used in the HuMet Repository, such 

as network inference with GGM, require a full dataset without missing values. Before 

imputation, the manually curated dataset was filtered for metabolites with less than 30% 

missingness (n=493) across all samples measured on the particular platform (Supplementary 

Table 2). Based on the filtered data set, we imputed missing values using the machine learning 



algorithm missForest (ntree=1500, mtry=22), which is implemented in the R package 

missForest (version 1.4). The algorithm is based on a random forest approach and imputes 

missing values by iteratively (maximum iterations = 10) predicting missing values using the 

available data 63. This allows for accurate imputation of missing data while preserving the 

underlying non-linear data structure 64. 

Statistical analysis/functionality 
 
Metabolite time course similarity. We provide several distance measures (Fréchet, Euclidean, 

Manhattan) and Pearson correlation to rank metabolites according to their similarity in temporal 

profiles. All measures are calculated based on z-scored data and depend on user-selected 

settings such as the choices of subjects and time-range. The distance/correlation between the 

temporal curves of two metabolites is calculated within each subject first; subsequently, we 

calculate the average distance/correlation across all chosen subjects. We additionally provide 

Fréchet distance and Pearson correlation calculated based on the mean metabolite trajectories 

(mean z-score over all participants at each time point). The Fréchet distance (on average 

trajectories) is set to default within the similarity tool. It uses a window approach to search for 

the smallest distance between curves in a defined timeframe. This time frame is defined as 

follows: Maximum of +/- 30 minutes within all challenges except the extended fasting. Within 

the extended fasting challenge, we allow for comparison of time-points within a range of +/- 

120 minutes. 

We used the dist function implemented within the R package proxy (version 0.4-23) to calculate 

the Euclidean and Manhattan distances. The R package stats (version 3.6.2.) was used to 

calculate the Pearson correlation. To calculate the Fréchet distance we used the distFrechet 

function implemented within the R package longitudinalData (version 2.4.1.).  

Paired t-tests. We use paired t-tests to test for significant changes in metabolite levels between 

two time points based on the log2-transformed imputed or non-imputed (selectable by the user) 



concentrations/relative abundances, using the function t.test implemented in the R package stats 

(version 4.2.3). To adjust for multiple testing, we offer corrections based on the false discovery 

rate (FDR) (q < 0.05) or Bonferroni (p < 0.05/(n metabolites * n time points)). The levels of adjustment 

are reactive to the number of metabolites and time points submitted to statistical analysis. The 

user can select the time range and the option whether only the last time point or all time points 

within the range are compared to the first time point.  Results are visualized within a volcano 

plot by using the function plot_ly of the R package plotly (version 4.9.1). Each data point within 

the volcano plot can be colored by super-pathway or metabolomics platforms. 

Network generation 
 
Knowledge-based networks were constructed based on the annotated super- and sub-pathway 

structure of metabolites. This structure provides a quick overview of available metabolites from 

different platforms. 

Network inference of Gaussian Graphical Models (GGMs) is based on partial correlations of 

metabolite concentrations/abundances (single fluid, imputed and log2-transformed data). These 

models have previously demonstrated to reconstruct biological pathways from cross-sectional 

metabolomics data derived from Biocrates and Metabolon platforms 24. To calculate partial 

correlations for the HuMet data sets we used the shrinkage estimator approach “GeneNet”, 

which is available within the R package GeneNet (version 1.2.14), choosing the “dynamic” 

method for estimation. This method relies on the function dyn.pcor implemented within the R 

package longitudinal (version 1.1.12), which takes the longitudinal data structure with repeated 

measurements from the same participant into account 27. If both dynamic partial correlation and 

Pearson correlation between two metabolites were statistically significant at a 5% significance 

threshold, pairwise metabolite connections were integrated into the network. Thereby, the user 

can choose between Bonferroni or FDR correction for multiple testing or restrict edges in the 

displayed network to those greater than several pre-defined dynamic partial correlation values.  



Using this approach, we inferred and provide multiple single fluid networks based on one or 

more plasma or urine datasets from different platforms. For the generation of the multi-fluid 

network based on the plasma and urine datasets from the Metabolon HD4 platform, we merged 

the corresponding single fluid networks by connecting the same metabolites measured in 

plasma and urine by an additional edge, closely following the procedures reported in Do et al. 

for creating an overlaid network 25.  

Implementation of the web-based repository 
 
The HuMet Repository is written in R 65 using shiny, an R package that enables setting up web-

based graphical user interfaces (GUIs) while allowing to execute R code on the backend. All R 

Packages used for building the interactive HuMet Repository are listed in Table 4 and are 

categorized into general packages for GUI implementation, statistical analysis, data 

visualization and performance.  

Table 4. R Packages used within the HuMet Repository. 

Functionality Description Package name (version) 
Basic shiny Shiny repository app 

structure 
Shiny (1.7.4) 

Graphical user 
interface 
extension 
packages 

General shiny 
extensions 

shinydashboard (0.7.2) 
shinydashboardPlus (2.0.3) 
shinyWidgets (0.5.0) 

CSS extensions shinyBS (0.61) 
shinycssloaders (0.3) 

Shiny JS extensions shinyjs (1.1) 

Statistical 
analysis 

Metabolite rankings Stats (3.6.2) 
longitudinalData (2.4.1.) 

Data visualization Table visualization DT (0.27) 
tableHTML (2.0.0) 

Temporal plots 
visualization 

Highcharter (0.7.0) 

Network 
visualization 

visNetwork (2.0.9) 
igraph (1.4.1) 
colorRamps (2.3) 

Statistical plots plotly (4.10.1) 
Data processing  doParallel (1.9.15) 

readxl (1.4.2) 
writexl (1.4.2) 

Individualization Individual scripts Collected with tag: rep_ … 



The repository loads the preprocessed data, metabolite information, sample information upon 

session start. Thereafter, the repository is reactive to the user’s choices of options. These include 

exclusion of data points due to selected time points, subjects, and platforms. The repository 

visualizes the chosen data in interactive plots that, e.g., provide additional information via 

hover-over functionality, allow for zooming, and data-dependent coloring of data points. 
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