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Summary 

We examined the distribution of pre-synaptic contacts in axons of mouse neurons and 

constructed whole-brain single-cell neuronal networks using an extensive dataset of 1891 fully 

reconstructed neurons. We found that bouton locations were not homogeneous throughout the 

axon and also among brain regions. As our algorithm was able to generate whole-brain single-

cell connectivity matrices from full morphology reconstruction datasets, we further found that 

non-homogeneous bouton locations have a significant impact on network wiring, including 

degree distribution, triad census and community structure. By perturbing neuronal morphology, 

we further explored the link between anatomical details and network topology. In our in silico 

exploration, we found that dendritic and axonal tree span would have the greatest impact on 

network wiring, followed by synaptic contact deletion. Our results suggest that 

neuroanatomical details must be carefully addressed in studies of whole brain networks at the 

single cell level.   
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Introduction 

Neuronal morphology plays a fundamental role in determining the function of neuronal 

networks. Neurons are polarized cells conformed by the dendritic and axonal trees. Axons send 

connections to dendrites from other neurons through membrane specializations called synapses, 

which are structures that allow transmission of neuronal electrophysiological impulses. The 

architecture of the trees and the distribution of synapses within them determines the 

connectivity of neuronal networks. Changes in the structure of neurons can have a dramatic 

impact on cognition, and changes in dendrite shape and size have been associated with 

intellectual disability (Kulkarni and Firestein, 2012). However, understanding the effect of 

single neuron morphology on whole-brain circuit connectivity is still an open challenge. 

 

Limited by resolution and time cost, current studies on the structural properties of whole-brain 

connectivity are mostly described from the mesoscale and macroscale perspective. Studies of 

human brain networks (Lynn and Bassett, 2019)  using magnetic resonance imaging show there 
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is a functional division in the brain at the anatomical level (Sherrington, 1907), called 

community structure (Hilgetag et al., 2000; Parente and Colosimo, 2020). This structure means 

that brain networks can be divided into sub-networks with specific cognitive functions (Azulay 

et al., 2016; Bassett et al., 2010; Lesicko et al., 2016; Sohn et al., 2011; Suárez et al., 2020; 

Taylor et al., 2017), with high node-density communities  and sparse communities connecting 

them (Hilgetag et al., 2000; Sporns and Betzel, 2016; Sporns and Zwi, 2004; Sporns et al., 

2000). Several experiments have also shown that the average path distance between nodes is 

much smaller in macroscopic brain networks than in random networks (Bullmore and Sporns, 

2012; Liao et al., 2017; Van den Heuvel and Sporns, 2013), reflecting their small-world 

topology and the existence of central hubs (Gong et al., 2009; Sporns, 2022). This is thought 

to improve the segregation and integration of information within the brain (Deco et al., 2015), 

reducing the cost associated with information processing (Kaiser and Hilgetag, 2006; Latora 

and Marchiori, 2001). However, most of the experimental data obtained in these studies 

consists of ~1mm sided voxels, which pool information from thousands of individual neurons. 

 

At the mesoscale, the Allen Institute for Brain Science conducted a comprehensive study of the 

mouse brain connectivity, mapping the whole brain using population-based tracer injections 

(Oh et al., 2014). The study found that the clustering coefficients are close to those expected in 

a small-world network, while the degree distribution is close to a scale-free network (Oh et al., 

2014). A refined connectivity analysis of the same experimental data showed global hubs in 

the mouse brain, including associative cortical areas, dorsal portions of the hippocampus and 

subregional portions of the basolateral and central amygdala (Coletta et al., 2020; Knox et al., 

2018). The results also show highly connected central hub nodes interlinked with each other 

throughout the brain, supporting the efficient integration of otherwise segregated neural circuits. 

Neuromodulatory nuclei work as connector hubs and critical orchestrators of network 

communication at the fine granularity (Coletta et al., 2020). These studies have deepened our 

understanding of brain structure, but they still rely on measurements in large populations of 

tracer-injected neurons, missing the details of single neuron morphologies. Therefore, it is 

necessary to study neuronal morphology on the single-cell level as it is more meaningful in 

terms of finer and more essential brain network structures. 

 

At the single-cell level, limited by the lack of experimental data, only a few studies have 

explored the impact of morphological details on whole-brain connectivity. In a study of the 

hippocampal trisynaptic circuit, a highly specialized topology has been found minimizing 

communication cost through information-processing hubs nested in a two-tier structure that 

manage the network traffic with strong resilience to random perturbations (Rees et al., 2016). 

However, A recent study of  bouton-spine pairs in the rat barrel cortex found that most 

overlapping axons and dendrites were not connected (Udvary et al., 2022), indicating that the 

distribution of synaptic contacts in single neurons must be addressed in detail. However, it did 

not examine the impact of the detailed distribution of presynaptic contacts in full axon 

morphologies and it relies on the underlying assumption that pre-synaptic contacts are 

uniformly distributed. Complementing these results, a recent article has briefly explored the 

impact of perturbations on dendritic morphology on the wiring of the rat somatosensory 

minicolumn wiring. The study found that shortening or deleting the dendrites resulted in 

connection deficits in the neuronal network (Kanari et al., 2022), which is consistent with 

observations in neurological disease (Forrest et al., 2018). However, an exploration of how 

diverse perturbations in axonal trees and presynaptic contact distributions is missing, together 

with a graph-theoretical detailed analysis of the impact of perturbations on network topology. 
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The high-throughput generation of single neuron full morphology reconstructions in the mouse 

brain offers the possibility of exploring a novel approximation to single-cell whole-brain 

networks (Peng et al., 2021). Subsequent work has provided putative bouton locations 

throughout the fully reconstructed axonal trees (Jiang et al., 2022; Peng et al., 2023). The fact 

that neurons reconstructed from diverse brains are spatially registered (Qu et al., 2022) to a 

common coordinate framework (CCFv3) (Wang et al., 2020) allows us to analyze axon-

dendrite potential connections at the whole-brain level with unprecedented anatomical detail. 

In fact, axonal boutons have been shown to be a proxy of structural neuronal connectivity 

(Grillo et al., 2013). However, reconstructing the full morphology of axonal projections and 

measuring the locations of single boutons in the context of the complete axonal tree was not 

possible until recently. For this reason, Peters' rule (Peters and Feldman, 1976), a common 

approximation for quantifying neuronal connectivity at the cellular scale, has been used in the 

field of computational neuroscience. This rule assumes that there is a potential connection 

between a nearby axon and a dendrite, implying that synaptic connections are evenly 

distributed over the axonal and dendritic segments. However, it has been suggested that ground 

truth synaptic connectivity follows a nuanced Peter’s rule instead (Rees et al., 2017). From this 

perspective, the spatial distribution of pre- and post-synaptic sites and synaptic contact 

probabilities vary among diverse neuron types, finely tuning network connectivity.  

 

We hypothesize that neuron morphology details determine network wiring. Specifically, we 

consider that distribution of axonal boutons throughout the axonal tree is not uniform, and such 

distribution determines network topology. Meanwhile, perturbation of specific morphological 

properties (i.e. neuron tree size, complexity, and density of axonal boutons) have a differential 

significant impact on network structure. To test this hypothesis, we devised an algorithm to 

generate single-cell networks in the whole brain using putative bouton locations and also 

simulated uniformly distributed boutons throughout the axon. First, we illustrate the biological 

relevance of axonal bouton distributions. With the networks we generated, we perform a 

detailed graph-theoretical analysis of the network structure and its dependence on axonal 

bouton distribution. To contextualize this information and explore its relevance in comparison 

to biologically plausible neural morphological alterations, we explored the impact  of 

perturbing specific morphological features.  
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Results 

Axonal bouton distribution is cell-type dependent 

We analyzed putative axonal bouton locations obtained by another team (Peng et al., 2023) 

through automated detection of increased radius and intensity blobs in fully traced axons from 

neurons with somas located mainly in the Thalamic and Cortical regions. See Supplementary 

Table S1 for a summary of the number of neurons (N>20) in each analyzed CCFv3 brain region. 

The spatial distribution of the boutons is mainly determined by the axonal projection pattern of 

each cell type (Fig. 1A, B). To explore the biological relevance of the bouton distributions 

along the axons, we explored them in neurons with similar morphology and soma location in 

the brain (Fig. 1C top; Supplementary Figure 1A). To identify morphologically similar neurons, 

we used the Topological Morphology Descriptor (TMD), a method to encode the spatial 

structure of trees combining morphology and topology (Kanari et al., 2022; Li et al., 2017). 

The default TMD definition by Kanari et al. defines the barcode of a tree as the set of radial 

distances to the soma in the birth and death nodes of each branch of the tree. By measuring the 

distance between barcodes we obtained pairwise distances between all neurons in each brain 

region. To quantify the similarity in axon bouton distributions, we defined TMD bouton 

barcodes as the set of numbers of putative boutons enclosed within spheres with radii defined 

by the birth and death nodes of each branch of the tree. As expected, default TMD and bouton 

TMD distances are correlated, indicating that putative bouton locations are biologically 

meaningful (Figure 1C; Pearson correlation coefficient of 0.595  for default TMD vs. bouton 

TMD distances). Another observation that supports the validity of the data is that bouton 

density in somatosensory areas (obtained as the total length of axon divided by the number of 

boutons in these CCFv3 regions) is 0.0778 boutons per μm which is close to 0.061 boutons per 

μm experimentally measured in adult mice using serial section electron microscopy (SSEM) 

data (Grillo et al., 2013).  

 

To explore whether bouton distributions are non-uniform we defined null uniform distributions 

of bouton locations for each neuron (see methods). Interestingly, the null distribution showed 

a higher correlation with default TMD than the measured distribution of putative boutons (Fig. 

1C bottom and Supplementary Fig. 1A; Pearson correlation coefficients of 0.829 vs. 0.595 for 

random and measured respectively; one-way ANCOVA F(1,3109929)=0.022, p=7.17e-9). 

This is explained by the fact that our bouton TMD definition is highly sensitive to differences 

in the total numbers of boutons of morphologically similar neurons (see Supplementary Figure 

1B). Correlations between TMD distances segregated for neurons with their somas in specific 

brain regions show analogous results (Supplementary Figure 1C). A Sholl analysis of axon 

length, branch points and number of boutons showed (see methods) putative bouton 

distributions significantly differ from an uniform distribution (Fig. 1D; paired-samples t-tests 

random vs. putative bouton number p<0.005). Specifically, the boutons of neurons in the 

thalamus (VPM) are preferentially located at the distal axon and have low bouton density near 

the soma. Conversely, neurons in the somatosensory cortex (SSp-m) show a distribution of 

boutons that is close to uniform for both proximal and distal axonal branches, and significantly 

lower than uniform in the middle section (see other cell types in Supplementary Figure 2A and 

2B). 
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Figure 1. Axonal bouton distribution is cell-type dependent. (A) 2D sagittal, coronal, and horizontal 

projections of putative bouton locations (in red) from two sets of neurons with somas (in blue) located 

in the Ventral posteromedial nucleus of the Thalamus (VPM) and mouth Primary somatosensory area 

of the cortex (SSp-m) based on the CCFv3 parcellation (NVPM=379, NSSp-m=78). See Supplementary 

Table S1 for a complete list of acronyms. (B) Horizontal projection of bouton locations in the top five 

regions most innervated by VPM and SSp-m neurons. Cortical regions are colored in shades of green, 

caudoputamen (CP) in the Striatum, in blue, and VPM in the Thalamus in pink. (C) Top: 

morphologically similar neurons have analogous bouton distributions throughout the axons. Bottom: 

Scatterplot of the Topological Morphology Descriptor (TMD) distances between pairs of neurons with 

somas in the same region using default TMD (x axis) or TMD bouton (y axis; see methods). The plot 

shows pairwise distances for neurons with putative bouton locations (blue) and analogous measures for 

uniformly distributed boutons (red). “r” values specify Pearson correlation coefficients. (D) Sholl 

analysis of the number of boutons, cable length and number of boutons for neurons with their soma in 

VPM (top) or SSp-m (bottom). Statistically significant differences between uniform and observed 

bouton distributions are indicated with a grey shadow; paired-samples t-tests random vs. observed 

bouton number p<0.005. (E) Barplot of the fitted average bouton density (see Methods) for all neurons 

in each of the brain region with more than 20 neurons. Pairwise t-tests between brain areas; *** p<0.001 

(F) Barplot of bouton densities at different Strahler orders for neurons with somas in CP, SSp-m, and 

VPM. Bars indicate mean ± s.e.m. Dashed lines indicate the average bouton density throughout the full 

axonal tree. 
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Obtaining small fragments of axon and quantifying axonal bouton density is a common practice 

in electron microscopy studies (Casas-Torremocha et al., 2019; Grillo et al., 2013; Rodriguez-

Moreno et al., 2020). Our results indicate that those estimates may vary among distal and 

proximal axonal trees. To provide improved estimates based on our detailed data, we fitted an 

uniformly distributed bouton curve to the observed distribution of putative boutons (see 

Methods). Neurons with their somas in different brain regions showed different average bouton 

density values (Fig. 1E; paired samples t-tests Cortex vs. Thalamus p<2e-16, Cortex vs. 

Striatum p<2e-16, Cortex vs. Hippocampus p=0.98, Hippocampus vs. Thalamus p=1.1e-9, 

Hippocampus vs. Striatum p=9.2e-5, Striatum vs. Thalamus p=3.9e-11). The average bouton 

density of the analyzed cell types ranged from 0.029 boutons per μm to 0.104 boutons per μm.  

 

As previously described for neocortical inhibitory neurons  (Budd et al., 2010), we found that 

lower Strahler order  (Nebel, 2000; Strahler, 1957) segments (tip or close-to-tip segments) have 

the highest density of boutons, decreasing towards higher Strahler order segments, especially 

above 2 (Fig. 1F). Interestingly, the Strahler order distribution of bouton densities varied 

among neurons with somas in different brain regions (Fig. 1F; all pairwise t-tests p<0.05 except 

for SSp-m vs. VPM in Strahler orders 3 and 4). The low variance in the bouton density within 

each Strahler order indicates that those can be considered homogeneous.  
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Generation of connectivity matrices based on full neuron 

reconstructions 

 
Figure 2. Generation of connectivity matrices based on full neuron reconstructions. (A) 3D 

rendering of the division of the whole brain into cubes of 30 μm units (top left) and full neuron 

reconstruction registered to CCFv3 (bottom left). Close-up rendering of a pair of neurons (dendrites in 

blue and axons in red and orange; middle). Rendering of a region of interest where axons and dendrites 

are close-by in CCFv3 space (top right) where the length of dendrite and The number of axonal boutons 

(green dots) can be obtained within each cube (bottom right). (B) Schematic visualization of the co-

existence of axon and dendrite within each cube, which define connectivity together with axonal 

boutons. (C) Schematic visualization of our procedure to obtain the connection strength between each 

pair of neurons in a cube according to the number of boutons and the dendrite length of each post-

synaptic neuron found in the cube. (D) Visualization of a subset (304 and 306 pre- and post-synaptic 

neurons respectively) of the whole brain single-cell connectivity matrix. 

 

To investigate the details of single-cell morphology, including the size and complexity of axons 

and dendrites, and the specific effects of the number and distribution of boutons on the network, 

we devised a method for constructing single-cell networks based on full neuron tracings. We 

argue that if there are axon boutons and dendrites in close spatial proximity, then they have a 

high probability of producing synaptic contact (Rees et al., 2017).  To generate connectivity 

matrices, we divided the whole brain into 30*30 μm cubes and measured the axon length, 

dendrite length, and bouton number of each neuron within each cube (Figure 2A). We consider 

that when both axons and dendrites are present in a cube containing boutons, there is a potential 

connection (Figure 2B). Then we defined the connection strength (Figure 2C) as follows. 

Considering that an axon may connect to many dendrites in the same cubic volume, we set the 

strength of the connection proportional to the number of boutons and to the proportion of the 

length of each dendritic tree.  Specifically, the connection strength of the presynaptic neuron 𝑛 

with the postsynaptic neuron 𝑚 in a single cube is defined as: 

 𝐶𝑛𝑚  = 𝑁_𝑏𝑛  ∗  𝑃_𝑑𝑚       (1) 

 Where the number of boutons of neuron 𝑛 is 𝑁_𝑏𝑛  and the proportion of dendrite length of 

neuron 𝑚 is 𝑃_𝑑𝑚. We obtained the full brain single-cell connectivity matrix by adding the 

results obtained on all cubes covering the mouse brain in CCFv3 (Figure 2D).  

 

We applied this network generation method to our single-cell data with observed bouton 

locations (observed network). To explore the relevance of the bouton distribution on the 

network topology, we also generated an uniform network setting boutons throughout the axon 

using the average bouton density for each cell type we obtained previously (Figure 1E).   
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Bouton distribution tunes network topology and influences 

community structure 

 
Figure 3. Bouton distribution tunes network topology and influences community structure. (A) 

Circular plot visualization of the single-cell networks constructed based on observed (left) and uniform 

(right) bouton data. We assigned the colors in the outer circle by the soma location of each neuron in 

the network. The middle circle indicates the largest three communities obtained using the Leiden 

algorithm (Traag et al., 2019), and the inner circle indicates broad brain regions Thalamus (TH), 

Striatum (STR), hippocampal formation (HPF), cortical subplate (CTXsp), and Isocortex. The lines 

crossing the center of the circle indicate potential connections between individual neurons. We colored 

them according to the soma location of the pre-synaptic neuron. (B) Scatter plot of the degree 

distributions of observed (blue), uniform (orange), Erdös-Rényi (ER; green), small-world (red), and 

scale-free (purple). (C) Barplot of connector hub scores for the soma regions with at least 50 neurons 

for observed (blue) and uniform (orange) networks. The gray line indicates connector hub score 1, which 

indicates the same proportion of edges within and across regions. Pairwise t-tests * p<0.05, **** 

p<0.0001. (D) Barplot of triad occurrence is relative to ER networks with the same number of nodes 

and edges (left) of observed (blue), uniform (orange), small-world (red), and scale-free (purple)  

networks. Bars indicate mean values ± standard deviation. Barplot of triad occurrence in the uniform 

network relative to observed (right). The dashed lines indicate no difference (ratio=1). The bottom row 

shows schematic visualizations of the network motifs identified with each index from simple to complex.  
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A comparison between our observed connectivity matrix and the mesoscale connectome 

obtained previously with tracer injections (Oh et al., 2014) shows similar connectivity clusters 

(Supplementary Figure 3A), suggesting that even though our single neuron data accounts for a 

very small percentage of the network, it can recapitulate the mesoscopic structure. The uniform 

network shows a bias towards increased connectivity, with 1847 nodes and 22882 edges 

compared to the observed network with 1781 nodes and 14056 edges. The small difference in 

the number of nodes is due to the removal of neurons with 0 potential connections. Circular 

plots of the network structure show that there is a large number of potential connections 

between the cortex, thalamus, and striatum, as well as local potential connectivity (Figure 3A).  

 

To explore the community structure, we used the Leiden community detection algorithm 

(Traag et al., 2019) (see methods) on the two networks. Remarkably, the circular plots show 

that the bouton distribution tunes the community structure in the network. In particular, we 

assessed the number of neurons in each community and found that, in the observed network, 

the largest community of neurons (N=206) belongs to the thalamo-cortical loop in the left 

hemisphere (mainly from VPM to SSp-bfd in cortex; Figure 3A and Supplementary Figure 4A). 

However, this loop is under-represented in proportion in the uniform network, being the third 

largest community (N=215) (Supplementary Figure 4B). The second largest community in the 

observed network is defined by the right hemisphere thalamo-cortical loop with a higher 

representation of VPL and MG in the thalamus and other cortical areas such as SSs and RSPv 

(N=179). The most similar community in the uniform network is larger in proportion (N=256), 

having an over-representation of VISp neurons. The third largest community in the observed 

network is the cortex-thalamus-striatum loop of cortical neurons with CP and VPM (N=172). 

This community is the second largest in the uniform network (N=234), where motor cortex, CP 

and AId areas are over-represented. Conversely, for this community, SSp neurons are under-

represented in the uniform network. 

 

Previous studies show that there are some simple organizational patterns such as the degree 

distributions  (Barabási and Albert, 1999) in brain networks that can be explained using 

network models (Lynn and Bassett, 2019). To explore this, we generated three artificial 

networks: random, small-world, and scale-free with the same number of nodes and edges as 

the observed network for comparison. Given that Oh et al.  (Oh et al., 2014) showed that the 

mouse brain network has Small-World topology traits (namely large clustering coefficienc and 

short average path length (Watts and Strogatz, 1998)), we tested whether the observed and 

uniform networks follow this trend. In the random network, the average path length is 3.852 

and the clustering coefficient is 8.96e-3,  compared to the observed average path length of 

4.828 (uniform: 4.257) and clustering coefficient of 0.184 (uniform: 0.195) in the observed 

network (Supplementary Table S4). These resultsis are consistent with previous data ( (Oh et 

al., 2014)). However, the model that best approximates the degree distribution of the observed 

and uniform networks is the scale-free network (Figure 3B; Spearman correlation observed vs. 

scale-free r(1779)=0.242, p<0.001; observed vs. random network r(1779)=0.029, p>.1; 

observed vs. small-world network r(1779)=0.0136, p>0.1). However, degree distributions 

strongly differ among all cases (see Supplementary Table S3 for pairwise two-sample 

Komogorov-Smirnov tests; p<1e-83). When comparing observed with uniform, the degree 

distribution shows an increased proportion of high-degree nodes (two sample Kolmogorov-

Smirnov D(1779)=0.297, p<.001). To better understand this difference, we tested whether 

high-degree nodes are different among the two networks. We obtained hub and authority scores 

for anatomically defined brain regions (Kleinberg, 1999). The brain regions with the highest 

hub scores are SSp-m and VPM in both networks (Supplementary Table S4). Authority nodes 

are mainly cortical regions (including SSp-n, SSs, SSp-un, SSp-m, and SSp-bdf) for the 
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observed network, but also include CP, VPL, and VPM in the uniform network. Those can be 

linked to the integration and segregation of the networks (Lord et al., 2017) by measuring the 

ratio between local and inter-region potential connections, which identify provincial and 

connector hubs. We found that the uniform network tends to have higher connector hub scores 

except for VPM (Figure 3C; pairwise t-test observed vs. uniform VPL p=0.017, VPM p=8.1e-

7, CP p=1.3e-5). This also suggests that the specific distribution of axonal boutons can have 

functional implications, and is relevant to understand the contribution of each brain region in 

information transmission and processing throughout the brain. 

The pattern of potential connections between triads is the most basic motif forming the 

networks  (Holland and Leinhardt, 1977), and its distribution reflects the rules of neuronal 

connectivity (Udvary et al., 2022). We found that observed and uniform networks have similar 

triad distributions (Supplementary Figure 4C; two-sample Kolmogorov-Smirnov 

D(14)=0.3125, p=0.42), and both strongly differ from random, small-world and scale-free 

networks (Figure 3D top and Supplementary Table S4), showing more prominent feedback and 

complex potential connections compared to the expected occurrence in random networks 

(Figure 3D and Supplementary Table S4). This result is consistent with previous observation 

in cortical microcircuits ( (Udvary et al., 2022)). However, the uniform network overestimates 

all network motifs in comparison to observed, with an average ratio of 2.1 (Figure 3D bottom), 

highlighting a methodological artifact in studies assuming homogeneous axonal bouton 

distributions. 

 

Overall, our results suggest that the detailed distribution of axonal boutons is a relevant 

determinant of the network topology. Taking into account that the basic function of brain 

networks is to transfer and store information, we measured cost (defined as the total number of 

boutons in the network), routing efficiency (Goñi et al., 2014), and storage capacity (Poirazi 

and Mel, 2001) which are topological correlates of the network functional performance 

(Avena-Koenigsberger et al., 2014) (see methods). Since the uniform network has more edges 

and stronger potential connections, its cost, routing efficiency, and storage capacity are 1.563, 

1.561, and 1.595 times higher than the observed network respectively (Supplementary Figure 

4D). But the average routing efficiency and storage capacity per bouton, which is the value 

divided by cost and is representative of the Pareto optimality of the network (Avena-

Koenigsberger et al., 2014), did not change (normalized routing efficiency and storage capacity 

are 9.6e-3 A.U. and 0.38 A.U. respectively for both networks). Thus, it remains an open 

question whether non-random distributions of axonal boutons imply any functional advantage 

from an energy optimization perspective. 
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Dendritic and axonal tree span are main determinants of network 

topology 

 
Figure 4. Dendritic and axonal tree spans are the main determinants of network topology. (A) 

Representative example of a full morphology neuron (top) with magnifications of dendritic (blue) and 

axonal (red) arbors. The axonal arbor magnification shows axonal boutons as green dots. The circular 

plot of the observed unperturbed network (bottom). Colors in the outer circle indicate the soma location 

of each neuron. The inner circle indicates broad brain regions Thalamus (TH), Striatum (STR), 

hippocampal formation (HPF), cortical subplate (CTXsp), and Isocortex. The lines crossing the center 

of the circle indicate potential connections between individual neurons, colored according to the soma 

location of the pre-synaptic neuron. (B) Representative visualizations of single neuron perturbations in 

both dendritic and axonal arbors of the neurons (top row), only in axonal arbors (middle row), and only 

in dendritic arbors (bottom row). The perturbations include scaling of the tree span (left row), pruning 

of branches (middle column), and deletion of boutons (right column).  Scale bars=100 um. (C) Line 

plot of the degree distributions (top) for the unperturbed observed network (blue) and for scale (orange), 

prune (green), and bouton deletion (purple) perturbations in both dendritic and axonal arbors. The 
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colored shadows indicate the range in which degree distributions vary with each perturbation with ratios 

between 0.5 and 1. Bar plot (bottom) of triad occurrence relative to the observed unperturbed network 

for scale (orange), prune (green), and bouton deletion (purple) perturbations. The bottom row shows 

schematic visualizations of the network motifs identified with each index from simple to complex.  (D)  

Bar plots of routing efficiency (left) and storage capacity (right) divided by the cost (number of potential 

contacts) for  the unperturbed observed and uniform networks (blue) and after scale (red), prune (green), 

and bouton deletion (purple) perturbations. Bars indicate mean values  ± standard deviation.  

 

To analyze the impact of putative morphological alterations relevant to cognitive impairments 

(Baloyannis, 2009; Emoto, 2011; Huang and Rasband, 2018; Koleske, 2013; Kweon et al., 

2017; O’Keeffe and Sullivan, 2018), we  perturbed the networks as follows: scaling neuron 

size, pruning neuron branches, and removing axonal boutons (see methods). Tree span has the 

greatest impact on the network, implying a marked shift towards lower degree potential 

connections (Figure 4C left, Supplementary Figure 5A; Kolmogorov-Smirnov unperturbed vs. 

scale all 0.5 D(86)=0.477, p=6.5e-9) and orders of magnitude lower occurrence of complex 

network motifs (Figure 4C right; Kolmogorov-Smirnov unperturbed vs. scale all 0.5 

D(14)=.438, p=.0933). Conversely, pruning and bouton deletion, even when reducing the 

number of branches or boutons to half, had a modest impact on degree distribution (Figure 4C 

left; Kolmogorov-Smirnov unperturbed vs. prune all 0.5 D(86)=0.198, p=0.07; Kolmogorov-

Smirnov unperturbed vs. bouton delete all 0.5 D(86)=0.093, p=0.85) and the triad census 

(Figure 4C right; Kolmogorov-Smirnov unperturbed vs. prune all 0.5 D(14)=.25, p=.716; 

Kolmogorov-Smirnov unperturbed vs. bouton delete all 0.5 D(14)=.125, p=.999). 

 

Similarly, we investigated the community structure of different networks after perturbation.  

Pruning of axonal and dendritic branches, or bouton removal does not imply marked 

differences in the community structure (Supplementary Figure 6A, 6B, and 6C). The top two 

communities are still the cortico-thalamic loop of both hemispheres and the third is a cortico-

thalamic-striatal loop. However, the scaling of dendritic and axonal trees sharply reduced the 

number of potential connections (having 3955 edges compared to 14056 in the observed 

network), strongly impacting the community structure (Supplementary Figure 6D). While 

dendritic scaling strongly reduced the number of potential connections (average of 373 

potential connections per community) in comparison to axonal scaling (average of 760 

potential connections per community), the change in the community structure for axonal 

scaling implied losing the thalamic connection in the thalamo-cortical-striatal circuit 

(Supplementary Figure 6C). 

 

When we measured routing efficiency in the networks perturbed with pruning and bouton 

deletion, we found that the reduction in routing efficiency provoked by the perturbations is 

compensated by the reduction in cost (Figure 4D left, absolute value in Supplementary Figure 

5B). Interestingly, the impact of both axonal and dendritic tree downscaling implied a marked 

reduction (43.35%) of the routing efficiency per unit of cost in the observed network, but had 

only a subtle impact (13.74%) in the uniform network  (Figure 4D left, Supplementary Figure 

5C). This indicates that the impact of tree span perturbations may be underestimated in 

generative models not taking into account precise pre-synaptic connection distributions in the 

axon. Morphological perturbations showed a subtle increase in storage capacity per unit of cost 

(Figure 4D right, Supplementary Figure 5C). This is explained by the fact that the 

approximation we used for storage capacity is mainly dependent on the combinatorics of 

diverse afferents on the same post-synaptic neurons (Poirazi and Mel, 2001). Interestingly, the 

observed network showed a  storage capacity per unit of cost markedly higher than in the 

uniform network (60.99%) when only dendritic trees are downscaled (Figure 4D right). This is 

the only case in which the observed distribution of putative boutons appears to have a strong 
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impact on network topology. This result suggests that the synaptic targeting of diverse axonal 

arbors is precisely matched with postsynaptic dendrites, implying that even when strongly 

reducing dendritic tree size, post-synaptic neurons can still keep receiving inputs from a diverse 

set of incoming axons. 

 

To assess the robustness of our results taking into account that the experimental data is highly 

sparse, we removed half of the neurons in the observed network (Supplementary Figure 7A). 

We found that both the degree distribution and triad census did not vary in comparison to the 

observed network (Supplementary Figure 7B and 7D), while the community structure and 

routing efficiency and storage capacity per unit of cost markedly increased (by a factor of 2.02 

and 1.71 respectively; Supplementary Figure 7C). This suggests that increasing the numbers of 

neurons used to generate whole-brain connectivity  networks is necessary to accurately assess 

circuit architecture.  
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Discussion 

Quantifying the precise distribution of pre-synaptic contacts in full axons of mammal neurons 

has been addressed in some studies that require arduous manual effort for their annotation 

(Casas-Torremocha et al., 2019; Grillo et al., 2013; Rodriguez-Moreno et al., 2018, 2020). In 

this work, we leverage automatically identified putative axonal bouton locations obtained by 

our team (Peng et al., 2023). In accordance with previous studies, our analysis shows that pre-

synaptic contact locations are not homogeneous throughout the axon (Brown et al., 2012; De 

Paola et al., 2006) and that they vary among brain regions (Karube et al., 2004; Rodriguez-

Moreno et al., 2020). The consistency we found in morphologically similar neurons suggests 

that the putative bouton connection data we used is sufficient as a first approximation. Similarly, 

the low variance we found in our quantification of increased axonal bouton density in terminal 

branches is supported by previous evidence in local axonal trees, which has been suggested to 

enhance temporal economy and precision in neocortical inhibitory axonal trees (Budd et al., 

2010). The fact that this phenomenon is found for all the neurons we analyzed, indicates it is a 

fundamental principle determining pre-synaptic contact distribution. Still, further refining the 

methods to take into account multiple synapses in single boutons and pre-synaptic sites in the 

absence of boutons will be necessary in the future. It is worth noting that the aim of this work 

is not to generate accurate and complete connectivity matrices but to explore the relevance of 

non-homogeneous pre-synaptic contact distributions on the network structure. 

 

The fact that simple dendrite-axon colocalization and averaged synapse densities obtained from 

Electron Microscopy experiments are not sufficient to approximate network connectivity has 

already been addressed by previous publications (Rees et al., 2017). One relevant aspect of our 

work is its special focus on long-range projections, together with the development of the 

method to generate whole-brain single cell connectivity matrices. Our algorithm for generation 

of connectivity matrices based on full morphology neuronal reconstructions is open-source and 

our scripts conform to a pipeline to generate full-brain networks with datasets that are expected 

to grow exponentially in the future. Our comparison between observed and uniform bouton 

distributions and their impact on network structure supports the claim that Peters’ rule is an 

over-simplified model, which can not truly reflect the differences in connections between brain 

regions and between neurons. It overestimates the possibility of the existence of connections, 

which leads to an overall bias in the properties of the network and significant differences in its 

community structure and provincial vs. connector hub score, which is relevant for functional 

integration and segregation (Lynn and Bassett, 2019). These results are consistent with 

previous findings in the cortical network architecture, where most overlapping axons and 

dendrites are not connected, and the more dendrites from different neurons the axon is exposed 

to, the less probability of connection exists (Udvary et al., 2022).   

 

The network properties we found in single-cell networks also complement our understanding 

of neuronal wiring rules. The observed bouton network we analyzed shows increased 

occurrence of feedback, and complex network motifs than what would be expected in random 

networks, which is consistent with the result found in the barrel cortex (Udvary et al., 2022). 

Our results indicate that such a pattern in the distribution of network motifs is not unique to 

cortical networks but is also present in the thalamo-cortical loop. Also in this study, the network 

was found to have small-world properties, which was also confirmed in our single-cell network. 

The degree distribution is close to scale-free and the clustering coefficient is small (Oh et al., 

2014). 
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Existing studies suggest that neurological diseases such as intellectual disability, autism 

spectrum disorder, epilepsy, schizophrenia, and bipolar disorder, are accompanied by a 

decrease in dendrite branches and spines with atrophy of the dendrite morphology (Baloyannis, 

2009; Emoto, 2011; Koleske, 2013; Kulkarni and Firestein, 2012; Kweon et al., 2017). The 

most influential of these changes is the decrease in the spine and the change in morphology 

(Forrest et al., 2018). Deformation and damage of axons can also lead to various neurological 

diseases (Huang and Rasband, 2018; O’Keeffe and Sullivan, 2018). This phenomenon can be 

seen in our perturbations. The biggest impact on the network properties is the dendritic and 

axonal tree span scaling. And the studied network is more robust to bouton removal and pruning 

of branches, which is also supported by previous literature (Aerts et al., 2016). All operations 

on dendrites have a greater impact than on axons for degree and network motif distributions. 

However, it is interesting to note that dendrite downscaling shows increased storage capacity 

per number of connections for the observed network, while the same quantity does not change 

for the uniform network. This is an unexpected result suggesting that the precise location of 

axonal boutons in diverse axonal arbors allows to keep high input combinatorics in single 

dendritic trees even with marked downscaling of the dendritic span.  

 

Limitations of the study 

Because of the limited neuron and bouton data, the connectivity is very sparse on a whole-brain 

scale. Thus, the total number of putative detected boutons was 3,825,227, of which 181,691 

(4.7%) were identified as potential connections with dendrites in our dataset. 

 

There is a bias in the number of neurons on cell type. Only three types of neurons, VPM (385), 

CP (325), and SSp (253), had numbers above 100 and these three cell types accounted for one-

half of the total data (1891). This leads to a specific description of the thalamo-cortical-striatal 

circuit. 

 

The great variation in the size of the original brain leads to some stretching and shifting of the 

neuron in the registration. Some of the neurons, especially the neurons near the surface of the 

cortex, had some axons beyond the atlas volume. According to our statistics, there are 738 

neurons with data points beyond the CCFv3 boundary. Among these neurons, the number of 

out-of-bounds points is 7.46% of all points. There is no better registration solution currently 

unless mass manual proofreading is used. Still, soma locations all lay within the atlas volume, 

and our connectivity generation method only requires axons and dendrites colocalization 

regardless of their location in space.  

 

Due to data limitations, we can only get the bouton location on the presynaptic axon and do 

not have information about the spine on the postsynaptic dendrite.   

  

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 8, 2023. ; https://doi.org/10.1101/2023.08.07.552361doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?oZbz99
https://www.zotero.org/google-docs/?oZbz99
https://www.zotero.org/google-docs/?eUMMNA
https://www.zotero.org/google-docs/?eUMMNA
https://www.zotero.org/google-docs/?sl6gld
https://www.zotero.org/google-docs/?mdbmTa
https://doi.org/10.1101/2023.08.07.552361
http://creativecommons.org/licenses/by-nc/4.0/


Acknowledgments 

We thank Zhixi Yun, Feng Xiong and Lijun Wang for comments on the figures. This  work  

was  mainly  supported  by  a  Southeast  University  (SEU)  initiative  of neuroscience 

awarded to H.P.. H.P. was also supported by a Zhejiang Lab BioBit Program visiting grant 

(2022BCF07). 

Author contributions  

H.P. and L.MG. conceived and designed the study. S.J. generated and provided the full 

morphology bouton data. P.Q. and L.MG. achieved all analysis results and wrote the paper 

with help from all authors. 

Declaration of interests 

The authors declare no competing interests. 

 

  

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 8, 2023. ; https://doi.org/10.1101/2023.08.07.552361doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.07.552361
http://creativecommons.org/licenses/by-nc/4.0/


STAR★Methods 

Key resources table 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Deposited data 

Bouton data Peng et al., 2023 https://drive.google.com/file/d/1DcTCliW1KSA1zW

yXS3vhOOTRl2mW97Oc/view?pli=1 

Software and algorithms 

Topological Morphology 

Descriptor (TMD) 

Kanari et al., 2018 https://github.com/BlueBrain/TMD 

NAVis 1.3.0 navis-org https://github.com/navis-org/navis 

igraph 0.9.9 igraph development team https://github.com/igraph/python-igraph 

Circos 0.6.9 Krzywinski, M. et al https://doi.org/10.1101/gr.092759.109 

Leidenalg 0.8.9 Traag, V. A. et al https://github.com/vtraag/leidenalg 

Network analysis Manubens-Gil, L. http://hdl.handle.net/10803/664511 

Python 3.9.7 Python Software Foundation https://www.python.org 

Scripts for analysis This paper https://github.com/MorphoNeuralNetworks/Full_mor

phology_networks_Qian 

Others 

Neuron related information Peng, H. et al https://doi.org/10.1038/s41586-021-03941-1 

Additional Data This paper https://doi.org/10.5281/zenodo.8216366 

 

Resource availability 

Lead Contact 

Further information and requests for resources and code should be directed to and will be 

fulfilled by the lead contact, Linus Manubens-Gil (linusmg@seu.edu.cn). 

Materials availability 

This study did not generate new unique reagents. 

Data and code availability 

All original data including full neuron reconstructions, together with observed bouton 

locations can be found at: 

https://drive.google.com/file/d/1DcTCliW1KSA1zWyXS3vhOOTRl2mW97Oc/view?pli=1 .  

The additional data like average bouton density, generated connectivity 

matrices,pertubation results can be found at https://doi.org/10.5281/zenodo.8216366 . 
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All original code is publicly available at GitHub,  

https://github.com/MorphoNeuralNetworks/Full_morphology_networks_Qian.  

 

Method details 

Sources of experimental data 

Recent advances in light microscopy allowed the generation of complete neuronal 

reconstructions at micrometric resolution. Here, we used 1891 full neuron reconstructions data 

with axonal bouton locations from a dataset obtained at SEU-Allen (Peng et al., 2021). The 

data was generated using the MorphoHub platform (Jiang et al., 2022; Peng et al., 2023), which 

follows a multi-level annotation protocol that we describe briefly: First, the neuronal 

reconstruction is delineated using Vaa3D Terafly (Bria et al., 2016) and TeraVR (Wang et al., 

2019), being cross-checked by at least two annotators. Axonal bouton data was obtained as 

described in (Liu et al., 2023). Finally, we remove any possible duplicates by deleting boutons 

at a distance closer than 5 voxels. Putative bouton locations are stored as an extra column in 

extended Stockley-Wheal-Cole (ESWC) files describing the neuron morphology (Ascoli et al., 

2023). 

 

The SEU-ALLEN dataset has a total of 1891 neurons suitable for predicting bouton locations. 

The dataset includes 97 cell types defined by the brain region where their soma is located (s-

types; see glossary in Supplementary Material). The reconstructions have been obtained from 

39 brains and are equally distributed between the left and right hemispheres. After annotation 

of the full neuronal structure, the trees have been spatially registered to CCFv3 as described in 

Qu et al. (Qu et al., 2022).  

 

Calculation of bouton distribution 

Since downsampling was used to reduce the file size after the boutons were identified, we 

resampled the ESWC files at an interval of 10 µm. We measured the distribution of bouton and 

axon length through the full axonal tree using the Sholl analysis on the neuron reconstructions 

before registration to CCFv3. The Sholl Analysis is the process of measuring neuron properties 

in concentric circles around the soma, and it provides a quantitative description of 

morphological features for the analyzed neurons (Sholl, 1953). We measured the number of 

branches intersecting each circle and both cable length and number of axon boutons between 

consecutive circles at 100 μm intervals. To do so, we used the “sholl_analysis” function of the 

Navis package (version 1.3.0) (Costa et al., 2016) in Python (version 3.9.7). 

 

To validate the observed densities of boutons and to be able to compare to experimental 

measurements obtained with electron microscopy, we obtained average bouton densities 

(number of boutons per micrometer of axon length) for all axons located in specific CCFv3 

regions. We obtained the total number of observed boutons and divided by the total axon length 

in each region. 

 

To test the impact of the inhomogeneous observed bouton distributions on the network 

structure, we generated model neurons with homogeneous bouton densities as would be 

expected from using electron microscopy data to generate the connectivity. Given that different 

s-types showed diverse observed bouton distributions, we obtained the average bouton density 
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for each s-type. To do so, we scaled the average axon length distribution of each s-type within 

a scaling factor representing bouton density in a range between 0 and 1 with steps of 0.001. 0 

would imply no boutons at all throughout the tree, and 1 would imply one bouton for every 

micron of axonal length. We chose the scaling factor value that minimized the squared 

difference to the observed bouton distribution based on our experimental data. Given that these 

average bouton densities could be useful for generating connectivity in models of cortico-

thalamic circuits the obtained values can be found in the Supplementary Material. 

 

To simulate a uniform distribution of axonal boutons in the individual reconstructions 

according to the average density of each s-type, we devised an algorithm to define axon bouton 

locations synthetically. Specifically, first, we found all end nodes of all branches, which are 

leaf nodes and backtracked from these leaf nodes sequentially. In the process of backtracking, 

boutons were set at equal intervals defined by the inter-bouton distance determined by the 

inverse of the average bouton density. To prevent repeated assignment of boutons in low-order 

branches, paths that had already been traversed were not visited again. 

 

In order to compare with the bouton density in previous experimental studies, we counted the 

total axon length and the bouton number from neurons with specific soma regions within any 

brain region in the CCFv3 model. The number of boutons per unit distance was obtained by 

dividing the two values. But such a result tends to underestimate the bouton density because 

boutons are not evenly distributed over the axon. 

Generation of networks 

Given that our full neuron reconstructions and bouton data are spatially registered to the mouse 

CCFv3, the neuronal morphologies can be explored in the same coordinate space, allowing us 

to explore the colocalization of axonal boutons and dendritic trees. We developed an algorithm 

to obtain a whole brain connectivity matrix at the single-cell level based on our dataset. In the 

resulting network, nodes are single neurons and edges are the connection strength between a 

pair of neurons i and j. According to Peters' rule (Peters and Feldman, 1976), whether two 

neurons are connected can be determined by the presence of a nearby axon and dendrite. Here, 

we used a nuanced Peter’s rule (Rees et al., 2017) given that the potential connectivity is 

weighted by the number of boutons on such an axon-dendrite connection pair. 

 

Specifically, first, we divided the whole brain into 30*30 μm cubes and calculated the axon 

length, dendrite length, and bouton number of each neuron within each cube. We considered 

that when both axons and dendrites are present in a cube with existing boutons, there is a 

potential connection. We defined the connection strength based on the number of boutons in 

each cube (Equation 1). Given that multiple pre- and postsynaptic neuron segments may coexist 

in each cube, we distributed the total number of observed boutons to all dendrites in the cube 

according to the proportion of dendrite length contributed by each neuron. This provides all 

pairwise connection strengths between pre- and postsynaptic neurons in each cube. By iterating 

this process through the whole brain, a full single-cell connectivity matrix is obtained. 

 

The three networks used for comparison: the random network, the small-world network and 

the scale-free network, can be generated directly by the functions in Igraph: “Erdos_Renyi()” 

(Erdős and Rényi, 1960), “Watts_Strogatz()” (Watts and Strogatz, 1998), “Barabasi()” 

(Barabási and Albert, 1999). For the random network, we keep the number of nodes and edges 

the same as for the observed network. For the small-world network, we set the dimension of 

the lattice to 1 and choose the rewiring probability to be 0.02. The size is the number of nodes 
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in observed network. And the number of edges is adjusted by giving the distance (number of 

steps) within which two vertices will be connected to make that as close as possible to the 

observed network. Finally the extra edges are removed randomly. Similarly, for the scale-free 

network, we adjust the number of outgoing edges generated for each vertex to approximate the 

observed network while keeping the number of nodes the same, and finally remove the excess 

edges randomly as well. 

Network analysis 

To quantify network structural properties, we obtained the degree distribution, triad census, 

hubs, and authorities using the “igraph” package (version 0.9.9) in Python (version 3.9.7). 

Correspondingly, this toolkit provides these functions: “degree_distribution()”, 

“triad_census()”, “authority_score()”, “hub_score()”, which we used with default parameters. 

We generated circular plots to visualize the networks using Circos (Krzywinski et al., 2009) 

(version 0.6.9).  

Community detection 

To explore the community structure of the networks, we used the Leiden algorithm (Traag et 

al., 2019), which is an optimization of Louvain’s clustering method (Blondel et al., 2008) that 

ensures detected communities are connected and have faster computation. Specifically, the 

Leiden algorithm divides the graph nodes into communities while optimizing modularity in 

three phases: (1) local assignment of nodes into communities, (2) refinement of the partition, 

and (3) aggregation of the network reducing the number of nodes to represent communities. 

Here we used the “leidenalg” package (Traag et al., 2019) (version 0.8.9) in Python (version 

3.9.7), and to ensure that the analyzed communities had a sufficient number of nodes, we 

arbitrarily selected the largest six groups for subsequent analysis and especially to generate the 

simple plots accounting for the major communities in each network. 

Multi-objective optimality metrics 

Considering that the basic function of a neural network is the transmission and storage of 

information and that building a network has a material and metabolic cost, we use three 

quantities to explore putative functional constraints of the network: cost, storage capacity, and 

routing efficiency (Manubens-Gil and others, 2018). 

Cost 

Cost is defined as the number of boutons in the network. 

𝐶 = ∑𝑁
𝑖,𝑗=1 𝑛𝑏𝑖,𝑗         (Equation 2) 

where nbi,j is the number of boutons connecting a pair of neurons i and j, and N is the total 

number of neurons in the network.  

 

Storage Capacity 

We estimated the storage capacity of a network as the sum of the total number of non-redundant 

possible states for each neuron receiving 𝑠 connections provided by 𝑑 pre-synaptic neurons as 

previously defined by Poirazi and Mel for linear neurons (Poirazi and Mel, 2001). Briefly, the 

combinatorial “n choose k” quantification of possible states for a post-synaptic neuron 

expressed in bits (basic unit of information) is given by: 

𝑏𝐿 = 2𝑙𝑜𝑔2
𝑠+𝑑−1

𝑠
       (Equation 3) 

and total storage capacity of the network by: 

𝐵𝐿 = ∑𝑁
𝑖=1 2𝑙𝑜𝑔2

𝑠𝑖+𝑑𝑖−1

𝑠𝑖
       (Equation 4) 
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Where 𝑁 is the number of nodes in the network.  

 

Routing Efficiency 

Routing efficiency is inversely proportional to the weighted shortest path length 𝜑𝑖𝑗  in the 

network between any pair of nodes (neurons) 𝑖 and 𝑗. When two neurons in the network are 

closely connected or have more synapses, the path length between them is reduced, and the 

routing efficiency increases. We obtained the shortest path length matrices using an in-house 

implementation of the Floyd-Warshall algorithm (Floyd, 1962; Roy, 1959; Warshall, 1962). 

The formal definition for the routing efficiency is as follows: 

𝐸𝑟𝑜𝑢𝑡 = ∑𝑖𝑗
1/𝜑𝑖𝑗

𝑁(𝑁−1)
, 𝑖 ≠ 𝑗       (Equation 5) 

Where 𝜑𝑖𝑗 is the graph shortest path length between the nodes 𝑖 and 𝑗, and 𝑁 is the total number 

of nodes in the graph. 

Perturbation 

To study the effect of putative biologically realistic (Kulkarni and Firestein, 2012) 

morphological perturbations on the network, we designed three perturbation operations: scaling 

of neuron size, pruning of neuron branches, and removal of synaptic boutons. We used those 

to perturb morphological details of the neurons, including their size, complexity of the neurites, 

and number of boutons.  

 

Scaling of neuron size 

This operation involves reducing the size of the axonal, dendritic tree, or entire neuron by a 

factor ranging from 0.5 to 0.9 in intervals of 0.1. For dendrite scaling, we select dendritic 

branches and scale the 3D spatial coordinates of all points forming the branches relative to the 

coordinates of the soma. Since all dendritic branches in our data are connected to the soma, we 

can accurately scale their coordinates. For axon scaling, we identify the longest axon branch as 

the projection branch and keep it unmodified. Then, we scale the coordinates of the axon 

subtrees relative to the point of connection to the projection branch. 

 

To separately study the impact of bouton distribution and axonal tree complexity, we adjust the 

number of boutons when scaling axons. Bouton locations are assigned to specific nodes in the 

neuron tracings. In the case of uniform distribution, we reset the position of the boutons in the 

scaled axon according to the bouton density per unit of axon length. In the case of observed 

boutons, we first calculate the distance between each consecutive pair of boutons and sort them 

from smallest to largest. The number of boutons to be deleted is determined based on the 

scaling ratio, and the boutons are uniformly deleted from the distance-ordered list. This 

procedure ensures that the distribution of boutons per unit of length remains unchanged after 

scaling the axonal tree size. 

 

Pruning of neurites 

Neurite pruning refers to the process of deleting a certain percentage of dendritic or axonal 

branches to modify the neuron morphology. In our study, we performed various types of 

perturbations by removing only the axonal, dendritic branches, or both. First, we identified the 

number of leaf nodes (termination points) in a given neuron. We then selected a set of leaf 

nodes based on a pruning ratio ranging from 0.5 to 0.9 in 0.1 intervals. The pruning of single 

branches began from one of the selected leaf nodes and proceeded through parent nodes until 

the first branch node was encountered, and all nodes in the path were deleted. 
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Removal of boutons  

The process of removing boutons randomly does not alter the neuron morphology but only 

deletes a fixed percentage of boutons. We start by identifying the total number of boutons in a 

neuron, after which we select boutons randomly at a fixed proportion range between 0.5 and 

0.9 in ten percent intervals. We label the selected points as axonal continuation points, which 

signifies that the reassigned nodes are not considered while generating connectivity matrices 

to establish connections. 
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Supplementary Materials 

Table S1 

Full names of all cell types involved, acronyms, number of neurons, and average bouton density. 

Table S2 

Comparison between the bouton density calculated from our data and other articles. 

Table S3 

Statistical tests in Figure 3, including correlation and independence statistical test of degree 

distribution and triad census among different networks. 

Table S4 

Network analysis results: average path length+clustering coefficient; hubs and authorities 

scores and triad census. 
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Supplementary Figure 1 

 
 

Supplementary Figure 1; Related to Fig. 1: TMD results for other cell types and two examples 

(A, B) One pair of neurons (red vs blue) with similar morphology and bouton distribution (yellow vs 

green, top) and one pair of neurons with similar morphology but non-similar bouton distribution 

(bottom). On the left is the persistence diagram for axon and bouton. (C) Scatterplot of the Topological 

Morphology Descriptor (TMD) distances between pairs of neurons with somas in the same region. We 

calculated distances by defining the persistence histogram as the number of boutons within the radius 

(TMD bouton; x axis) or the distance to soma (TMD default; y axis) at birth and death points of neuron 

segments. The plot shows pairwise distances for neurons with the measured (observed) bouton locations 

(in blue) and analogous measures for uniform distributions of boutons randomly located throughout the 

axonal tree (in red). And this phenomenon exists in different cell types.  
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Supplementary Figure 2 

 
 

Supplementary Figure 2; Related to Fig. 1: Visualization of bouton distribution and sholl analysis 

of other cell types 

 (A) 2D horizontal projection of bouton locations in the top five regions most innervated by different 

cell types. Cortical regions are colored in shades of green, caudoputamen (CP) in the Striatum, in blue, 

and VPM in the Thalamus in pink. (B) Sholl analysis of the difference between a uniform bouton 

distribution (blue) and the observed bouton distribution (orange) for neurons with their soma in different 

regions. Statistically significant differences between the two distributions are indicated with a grey 

shadow; paired-samples t-tests random vs. observed bouton number test p<0.005. Green lines indicate 

the number of branch points between Sholl concentric circles. Red lines show the Sholl analysis of axon 

length.  
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Supplementary Figure 3 

 
 

Supplementary Figure 4; Related to Fig. 3: Comparison of mesoscale networks 

(A) Heatmap of region connectivity consisting of single cell connections (left) and experimental 

mesoscale connections (right).. 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 8, 2023. ; https://doi.org/10.1101/2023.08.07.552361doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.07.552361
http://creativecommons.org/licenses/by-nc/4.0/


Supplementary Figure 4 

 
 

Supplementary Figure 4; Related to Fig. 3: Supplementary results for observed and uniform 

network analysis 

(A, B) Visualization of the first three communities of the observed and uniform networks. Cortical 

regions/connections are colored in green, caudoputamen (CP) in the Striatum, in blue, and VPM in the 

Thalamus in pink. The location of each community in the mouse brain is also shown. (C) Barplot of the 

number of triad occurrences with the same number of nodes and edges of observed (blue), uniform 

(orange), random (green), small-world (red), and scale-free (purple)  networks. (D) Radar plot of the 

cost (number of potential connections), routing efficiency, and storage capacity of the observed (blue) 

and uniform (orange) networks. 
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Supplementary Figure 5 

 
 

Supplementary Figure 5; Related to Fig. 4: Additional results for perturbation network analysis 

(A) The variation of the degree distribution and traid census of the observed (blue) and uniform (orange) 

network after scale. The shading is distributed at a scale varying from 0.5 to 1 at intervals of 0.1. (B) 

Bar plots of true value of routing efficiency (left) and storage capacity (right) for  the unperturbed 

observed and uniform networks (blue) and after scale (red), prune (green) and bouton deletion (purple) 

perturbations. (C) Bar plots of routing efficiency (left) and storage capacity (right) divided by the cost 

(number of potential contacts) for  the unperturbed observed and uniform networks (blue) and after 

scale (red), prune (green) and bouton deletion (purple) perturbations varying from 0.5 to 0.9 at intervals 

of 0.1. Bars indicate mean values  ± standard deviation.   
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Supplementary Figure 6 

 
 
Supplementary Figure 6; Related to Fig. 4: Community detection results for different 

perturbation network 

(A) Circular plot visualization of the single-cell network based on the observed bouton data with its top 

3 biggest communities. (B, C, D) Circular plot visualization of the single-cell network based on bouton 

data after three perturbations operations: scale, prune, delete bouton, which targeted on axon, dendrite, 

or complete neuron, with their top 3 biggest communities. 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 8, 2023. ; https://doi.org/10.1101/2023.08.07.552361doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.07.552361
http://creativecommons.org/licenses/by-nc/4.0/


Supplementary Figure 7 

 
 

Supplementary Figure 7; Related to Fig. 4: Results of constructing networks using half of the data 

(A) Circular plot visualization of the single-cell networks constructed based on randomly selected half 

of neuron data (left). The left side is the top 3 communities in the network. (B) Results of network 

analysis, including degree distribution, triad census, cost, routing efficiency, and storage capacity, 

where the brown is the half data case. The trend is basically the same as the observed network. 
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