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Abstract 
 
Striking the balance between persistence with a goal and flexibility in the face of better 
options is critical for effectively organizing behaviour across time. While people are often 
biased towards completing their current goal (e.g. ‘sunk cost’ biases), it is unclear how these 
biases occur at a mechanistic level, still allowing for some flexibility for goal abandonment. 
We propose that ventromedial prefrontal cortex (vmPFC) plays a critical role in orienting 
attention towards a current goal, prioritising goal completion but allowing for abandonment, 
particularly when the current goal fails. We developed a novel incremental goal pursuit task 
to study goal-directed attention and action in healthy individuals with functional magnetic 
resonance imaging (fMRI), and in an independent group of individuals with brain lesions. 
The task required participants to make sequential decisions between continuing to persist 
with a current goal (commitment), versus abandoning progress for a better alternative goal 
(flexibility). We show that individuals who persist more show greater goal-oriented attention 
outside the decision period. Increasing attentional capture by the current goal is also revealed 
in decision-making: people remain more likely to abandon from ‘frustration’ (collapse of 
value of the current goal) than from ‘temptation’ (attraction from valuable alternative goals). 
Strikingly, we find that our stable inter-individual metrics of persistence and goal-oriented 
attention were both predicted by baseline activity in vmPFC, tracking goal progress. We 
present converging evidence from an independent lesion patient study demonstrating the 
causal involvement of vmPFC in goal persistence: damage to the vmPFC reduces biases to 
over-persist with the current goal, leading to a performance benefit in our task.  
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Introduction 
 
In natural environments, many goals – whether it be pursuing prey, cooking dinner, or 
preparing an article for publication – are only obtained after persevering through a substantial 
period of unrewarded time and effort. In all these cases, optimal behaviour requires balancing 
commitment to the current goal against flexibility to abandon if the goal is no longer worth 
pursuing relative to alternatives. Psychiatry and neuroscience have tended to focus on failures 
of commitment during extended behaviours (LeHeron et al. 2019; Dalley & Robbins, 2017; 
Kouneiher et al. 2009). However, behavioural economics provides us with ample examples of 
people showing too much commitment to a goal, particularly after investing time or money 
(Arkes and Blumer, 1985; McAfee et al. 2010; Ronayne et al. 2021). Recently, it has been 
shown these ‘sunk-cost’ biases are not unique to humans, but exist in rodents too (Sweis et al. 
2018).   
 
Why might animals show biases towards over-persisting with a goal? When behaviour is 
structured by sequential goals, constant re-evaluation can be both expensive and distracting 
(Heckhausen & Gollwitzer, 1987; O’Reilly et al. 2020). In consequence, it has been proposed 
that distinct phases of ‘deliberation’ (evaluation of available options) and ‘implementation’ 
(committing cognitive resources to achieving the chosen goal) are present in both rodents and 
humans (Sweis et al. 2018; Ludwig et al., 2020; Li et al. 2019). However, a picture involving 
entirely discrete decision phases fails to explain how animals remain flexible to goal 
abandonment when the situation requires it. A plausible mechanism would allow for the 
agent both to preferentially allocate processing resources to goal completion, while retaining 
the necessary flexibility.  
 
A candidate mechanism for such flexible focus on a goal is selective attention, specifically 
towards information about the chosen goal. Attentional selection need not be all-or-nothing, 
but can vary in strength as the need to exclude distractors varies (Lavie, 2005), thus allowing 
for flexibility. In ecological scenarios, we are faced with different reasons for abandoning a 
goal: progress might be too gradual or might reverse; alternatively other options might 
become significantly more attractive. These different forms of pressure give rise to different 
emotional responses: frustration (with the current goal) in the former cases (O’Reilly et al. 
2020), and temptation (by alternative goals) in the latter. If selective attention to the chosen 
goal increases over the course of goal pursuit, this leads to a rather specific prediction about 
the interaction of ‘temptation’ and ‘frustration’ with increasing proximity to the goal: namely, 
sensitivity to the value of alternative goals (‘temptation’) should decrease more than 
sensitivity to the value of the chosen goal (‘frustration’). Our first aim was to test whether 
attention and decision-making showed these markers of increasing attentional orientation 
toward the current goal over the course of goal pursuit. To test this, we orthogonally vary the 
value of the current goal and the value of alternative goals at the decision, as well as 
continuously measure goal-oriented attention outside the decision period.  
 
Our second aim was to investigate how goal commitment is achieved on a neural level. 
VmPFC has previously been shown to flexibly represent choice values according to the 
agent’s current goal (Grueschow et al. 2015, Rudorf & Hare, 2014, Castagnetti et al., 2021, 
Juechems et al. 2019, Trudel et al. 2021, Park et al. 2021), through the compression of task-
irrelevant information (Mack et al. 2020). In addition to this body of research implicating 
vmPFC in task-specific cognitive maps, a separate line of research has identified a key role 
for baseline vmPFC activity in carrying state-specific information which biases subsequent 
choices in-line with a prior behavioural strategy (Lopez-Persem et al. 2016, Vinckier et al. 
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2018, Abitbol et al. 2015). While vmPFC represents attributes relevant to the current goal 
across extended time-scales (Korn & Bach, 2018), ACC has been shown to represent 
information about alternative goals and the value of shifting away from the current strategy 
(Blanchard and Hayden, 2014; Fouragnan et al., 2019; Hayden et al., 2011; Kolling et al., 
2012, 2018; Tervo et al., 2021, Kaiser et al. 2021).    
 
Using a novel task in combination with (i) computational modelling of behaviour, (ii) 
functional magnetic resonance imaging (fMRI) and (iii) behavioural analysis of patients with 
brain lesions, we investigated how goal commitment develops during goal pursuit. In our 
sequential choice task, participants advanced incrementally towards completing a chosen goal 
in the face of alternative goal offers. Participants showed a universal ‘goal commitment’ bias 
towards persisting with their current goal, even in circumstances when they would greatly 
benefit from abandoning it. We were able to measure several markers of selective attention to 
the current goal. First, as predicted by the attentional account, we found that decision-making 
reflected attentional goal capture: as participants approached goal completion, their decisions 
remained relatively more sensitive to the value of the current goal, than to the value of 
alternatives. Second, using a separate spatial working-memory task, we found that even 
outside the decision period, attention was increasingly captured by stimuli related to the 
current goal.  
 
Using fMRI, we found that across participants, the degree to which baseline vmPFC tracked 
progress with the current goal predicted both attentional, and decision-based metrics of goal 
capture. To probe the causal role of this signal, we ran the same paradigm in an independent 
sample of patients with brain damage; indeed, damage to the same area of vmPFC identified 
in the fMRI study predicts lower commitment to the current goal.  
 
Results 
 
Participants performed a “fishing net” task with the aim of filling as many nets with seafood 
as possible over the course of the study (Fig.1). Participants accumulated seafood “goods” 
over several trials, and only gained a reward when the net was full. On each trial, participants 
chose between offers for three types of goods (octopus, crab, or fish), where the quantity 
available for each good was shown by a green bar. Once selected, the offered quantity would 
be immediately added to the net. Importantly, only a single type of good could be collected in 
the net at once. This meant that if participants chose a different type of good to the type 
currently in their net, they would forfeit all their previously accumulated goods 
(‘abandonment choice’). Alternatively, participants could choose to continue with the current 
goal by choosing to collect the same good already in the net (‘persistence choice’; see Fig.1a 
for example).   
 
While the quantities offered for each type of good drifted gradually from trial-to-trial 
(random gaussian walk with low variance), sometimes the quantity would drastically change 
for a given a good (10% chance of a large shift up or down in quantity, independent for each 
type of good; see Fig.1b for example offer trajectories across a block). If the quantity 
associated with the current goal good collapsed (causing ‘frustration’) or if an alternative 
good became much more bountiful (causing ‘temptation’), participants often benefitted from 
abandoning their progress and switching to an alternative good (Fig.1b).  
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Attentional capture probe 
 
Participants performed the decision task first inside the fMRI scanner, and then in a separate 
behavioural session outside the scanner. Outside the scanner, in addition to the main decision 
task, participants performed an interleaved spatial attention task before every trial, providing 
a separate measure of attentional capture by the current goal (Fig.1c, left). Participants 
viewed the stimuli associated with the three goods flash on the screen, and were then 
prompted to report the item locations with a mouse click (stimuli were probed in a random 
order). While the spatial attention task involved the same “seafood” stimuli, participants were 
explicitly told that memory performance would not impact subsequent offers in the decision 
task (See supplementary fig.1d,e for full illustration of the decision-only task in the scanner 
session, and the spatial variant of the task in the post-scan session). 
 

 
 
Figure 1. Experimental design.  
(a) Participants performed a “fishing net” task which involved accumulating goods over several trials, in order 
to be rewarded each time a fishing net was full. Top panel: on each trial, participants were offered the current 
available quantities of each type of good (octopus, crab, or fish) as bars on the screen. The length of each bar 
translated to the exact amount added to the net if that good were chosen, and the current contents of the net were 
shown in a separate bar at the bottom of the screen. Since only a single type of good could be accumulated in 
the net at once, switching between goods meant forfeiting the goods already in their net. Bottom left panel: If 
participants chose a good that matched the content of their current net, (‘persist’ trials), the offered quantity was 
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added to the net contents. Bottom right panel: If participants chose a different good ('abandon’ trials), the net 
was first emptied of its accumulated contents before the offered quantity was added. 
(b) An example block where a participant switches twice. Top panel: Coloured lines depict the offers associated 
with each type of good across a block. Black dots depict the participants’ choice on each trial. During a block, 
the offers associated with each good varied across trials with independent random walks. In addition to this 
gradual variation, the offers could also jump to extreme high or low values, from where the random walk would 
continue. Bottom panel: Bars depict the accumulated goods in the net. Goods were accumulated until the net 
was full (shown by the dotted black line), triggering the end of the block and the delivery of a reward. Icons 
show the good currently accumulated in the net on every trial. Participants might switch because the goal good 
becomes worthless (example switch from octopus to fish) or because a different good becomes bountiful 
(example switch from fish to crab).  
(c) Task sequence. Outside the scanner, participants performed the same decision task with the addition of an 
interleaved spatial attention task performed on every trial. Participants viewed the three goods flash on the 
screen in random locations, and were then probed on the location of each good. Participants were made 
explicitly aware that performance in the spatial task had no impact on subsequent offers for the three goods.  
(d) Example experimental timeline. The task always ended after a pre-known number of trials (300 trials in the 
scanner, 100 trials in the post-scan session), incentivising participants to make strategic choices to maximise 
nets completed within the limited number of trials. Red dots indicate trials on which the example participant 
chose to switch between goods. Shade indicates the varying sizes of the nets. Yellow lines indicate when a net 
was completed. When a net was completed, this triggered the end of the block: a reward was delivered (one 
money bag per full net, regardless of net size or type of good), a new net was presented, and the quantities 
associated with each option were re-set.  
 
 
People are biased towards continuing with the current goal compared to an optimal 
model 
 
Because of the need to commit to a good for many trials in order to realise the reward 
(delivered on the completion of a full net), a good decision is based not only on the current 
offer, but also the quantity already in the net and projections of future offers. To understand 
how participants made such projections, we constructed a series of models reflecting 
increasingly complex possible strategies (See Methods for details of models, model 
validation procedure, and model fitting procedure; see Supplementary fig.3a for graphic 
representation of models). Participants’ behaviour was best described by the most complex 
model we tested (“full task model”; Fig.2a). This model samples possible future trajectories 
for the option offers using the true generative procedure, and selects the option which is 
predicted to fill the net fastest when averaging across the sampled trajectories, providing an 
approximation of the optimal decision (monte-carlo sampling).  
 
While general choice strategy was best described by the optimal model, people tended to 
over-persist with their current goal beyond the model’s predictions (Fig.2b; persistence biases 
were significantly greater than zero: t(29)=11.23, p<0.001 or Wilcoxon T=0.0, n=30, 
p<0.001). Persistence biases were quantified as the optimal model’s value of abandonment 
for which an individual is indifferent to abandoning (see green dots on Fig.2b). While by 
definition the optimal model is indifferent to abandonment at a value of zero, people tended 
to require a higher objective value of abandonment in order to actually abandon their current 
goal. This metric of persistence bias had excellent test-retest reliability within participants 
across sessions (Pearson’s r=0.70, p<0.001, see Supplementary fig.4d). Compared to the 
optimal model, persistence biases increased the more people progressed towards completion 
of the net (main effect of proportion of net completed on top of full-task model switch value: 
X2(1, N=30)=5.27, p=0.022; illustrated by binning in fig.2c; see Supplementary fig.3b,c,d for 
additional information about model confusion and analyses with goal progress).  
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Figure 2. Behavioural results  
Decision task.  
(a) Model fitting: The optimal model (full-task model; ‘f’) captured participant choices best (models compared 
using the Bayesian Information Criterion). See Methods for full details of the models and model-fitting 
procedure.  
(b) Persistence biases: When predicting peoples’ abandonment decisions using the optimal model value of 
abandonment, people showed a bias towards persisting. Bold line shows data fitted across all participants using 
a mixed effects model; Transparent lines show individual participant fits; Green dots show individual participant 
indifference points for abandonment which was used as an index of their ‘persistence bias’. Models fit to 
aggregate data across both sessions.  
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(c) Across individuals, persistence biases increased as a function of goal progress (i.e. the percentage of the net 
which had been completed). Successive purple lines show sigmoid curves fitted using the same mixed-effects 
model procedure shown in (b), but this time binning the data by which quartile of the goal they were in, shown 
here for illustration.  
(d) Over the course of goal pursuit, the impact of temptation disappeared more than the impact of frustration on 
decisions to abandon. Blue and orange lines depict the beta weights associated with the optimal model value for 
the current goal and best alternative goal respectively, when predicting abandonment choices across goal 
pursuit. The dotted blue line is identical to the sign-flipped value of the solid blue line, shown here to illustrate 
the difference in slopes. Error bars depict standard error of the mean (SEM).  
Attention task 
(e) In the interleaved spatial task, both spatial memory error (left) and response reaction times (right) were lower 
for the stimulus associated with the current goal. Dots depict individual participants’ de-meaned error (left) or 
de-meaned reaction time (right), where blue shows the measure for the currently accumulated item, and orange 
shows the mean measure across the two alternative items. Error bars depict SEM. 
(f) As participants invested more trials in a particular goal, spatial error decreased for the current goal stimulus 
(but not for alternative stimuli). Dots show mean spatial error, binned by number of trials pursuing the current 
goal. Lines show the impact of number of trials pursuing the current goal, on spatial error, using the mean 
intercept and mean beta across regression models fit to each participant separately. Shaded regions depict SEM 
of the regression lines across participants.  
Relationship between decision and attention tasks 
(g) Individual tendencies to be more accurate at remembering the location of the goal stimulus than alternative 
stimuli in the spatial attention task (as depicted in Fig.2e, left) correlated with persistence biases in the 
behavioural task (as depicted by the green dots in Fig.2b). In other words, people who show greater attentional 
capture by the current goal tend to be more biased to persist with it. Here, persistence biases and attention biases 
come from data from separate testing sessions inside and outside the scanner respectively. Line depicts linear 
regression model fit. 
 
 
People who persist more also show greater attentional capture by the goal between 
decisions 
  
We predicted that attentional and decision-making biases would be related during goal-
pursuit. To measure attentional biases, we investigated how attention was distributed between 
stimuli associated with the current and alternative goals in a decision-free spatial attention 
task interleaved between decisions. Since the spatial attention task was not possible to 
perform using a button box inside the scanner, we investigated these attentional biases in a 
separate testing session conducted outside the scanner. In the post-scan session, trials of the 
spatial attention task were interleaved with new trials of the main decision task.   
  
In the spatial attention task, participants were asked to report the location of briefly-flashed 
fish, octopus and crab symbols, using a mouse click. Indeed, participants were both more 
accurate and faster at reporting the location of the current goal stimulus compared to the 
alternative goal stimuli (Fig.2e; difference in accuracy for current goal vs alternative: 
t(29)=2.25, p=0.032 or Wilcoxon signed-rank T=130, n=30, p=0.035; difference in RT for 
current goal vs. alternative: t(29)=3.30, p=0.003, or Wilcoxon signed-rank T=85.0, n=30, 
p=0.002). This accuracy difference was primarily driven by progressive memory 
enhancement for the goal stimulus: spatial accuracy for the current goal stimulus increased 
with the number of trials participants had been pursuing the current goal (Fig.2f; effect of 
pursuit time on goal item accuracy: t(29)=-2.65, p=0.013, Wilcoxon T=121.0, n=30, p=0.021; 
there was no significant effect of pursuit time on accuracy for alternative stimuli: t(29)=-
0.033, p=0.974, Wilcoxon T=205.0, n=30, p=0.584, n.s). In a direct comparison, there was a 
significant difference between slopes for the effect of goal pursuit on selected and alternative 
goal items (Fig.2f; t(29)=-2.37, p=0.024, Wilcoxon T=133.0, p=0.040). This effect occurred 
despite the fact that the task occurred outside the decision period, and that participants knew 
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their performance on this interleaved task would not affect subsequent offers, suggesting a 
true attentional bias towards the chosen goal, that increases with goal commitment. 
 
This metric of attentional goal capture directly predicted individual differences in persistence 
biases: people who showed more attentional capture by the current goal demonstrated higher 
persistence biases (Fig.2g; correlation between spatial bias and persistence bias. Note that 
this relationship holds even when attention-biases and decision-biases originate from separate 
behavioural testing sessions: Using persistence biases fit to data from scanner-only session: 
Spearman’s r=0.50, p=0.005; Using persistence biases from data aggregated across both 
scanner and post-scan sessions: Spearman’s r=0.53, p=0.003). This demonstrates that an 
individual’s tendency to over-persist with the current goal is related to their allocation of 
selective attention towards the current goal.  
 
 
Distinguishing two causes for goal abandonment: “temptation” vs “frustration”  
 
How does progress towards a goal affect peoples’ sensitivity to the value of switching away 
to an alternative? We found that in general, people became less sensitive to the value of 
abandonment (defined as the projected value difference between staying with the current goal 
and switching to the best alternative goal) over the course of goal progress (i.e. interaction 
between abandonment value and proportion of net completed, on top of both main effects: 
X2(1, N=30)=42.43, p<0.001). We then asked whether this loss of sensitivity equally affected 
value associated with the current goal versus value associated with the alternative goals.  
 
Pressure to abandon the current goal comes from two directions: an alternative good might 
become more attractive, pulling the agent towards the better option (‘temptation’) or the 
value of the goal good might collapse, pushing the agent away from the current goal 
(“frustration”; see Fig.1b for example). A rational agent should weigh these two forms of 
pressure equally when evaluating the options, since value is simply the estimated time in 
which the target can be completed with each option (i.e. already factoring in accumulated 
value; see supplementary fig.5c for simulation of optimal model on same task). Given that 
participants displayed increasing attentional capture by the current goal, we predicted that as 
a consequence, value associated with alternative goals would impact behaviour less than 
value associated with the current goal over the course of goal progress.  
 
We found that people indeed showed an asymmetry in their use of these value sources which 
developed during goal pursuit. As an individual neared goal completion, abandonment was 
driven less by offers of highly attractive alternatives than by the current goal collapsing, 
compared to the normative model (Fig.2d). To test this, we predicted abandonment choices in 
a regression model using the interaction between goal progress and each source of value 
(alongside the main effects). Both sources of value impact behaviour less over the course of 
goal progress (interaction between alternative value and goal progress: t(29)=-7.97, p<0.001 
or Wilcoxon signed-rank: T=10, n=30, p<0.001; interaction between current goal value and 
goal progress: t(29)=7.08, p<0.001 or Wilcoxon signed-rank: T=16, n=30, p<0.001). 
However, this loss of influence on behaviour affected alternative goal value more than 
current goal value (difference between alternative goal value*progress interaction terms and 
(sign-flipped) current goal value*progress interaction terms: t(29)=-3.39, p=0.002 or 
Wilcoxon signed-rank: T=77, n=30, p<0.001; visualised in Fig.2d by binning the data). In 
other words, over the course of goal pursuit, the impact of temptation from alternatives fades 
more rapidly than the impact of frustration with the current goal.  
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fMRI results 
 
Inter-decision vmPFC activity tracks goal progress  
 
Our behavioural analyses showed pervasive effects of goal pursuit on attention even outside 
the decision-making period. We reasoned that the brain regions involved in these attentional 
biases should similarly show goal-progress-related neural activity that persisted outside the 
decision period. We therefore conducted a whole-brain GLM analysis focussing on the inter-
trial period. We modelled BOLD activity in the inter-trial period using regressors capturing 
an individual’s position in the goal (goal progress: proportion of target completed), the value 
of the current goal and the value of the best alternative in the previous trial (according to the 
full-task model), and the decision itself (binary abandonment vs. persist choice; see 
Supplementary fig.6a for correlation matrix and Methods section for full details of GLM). In 
addition, we controlled for decision-related activity by adding all of these regressors at 
decision time (time-locked to the onset of offers). The peak of activity tracking goal progress 
during the inter-trial period was in ventro-medial prefrontal cortex, vmPFC (Fig 3b). 
 
 
Baseline vmPFC activity predicts the degree of goal-commitment across individuals 
 
Previous studies have found that baseline vmPFC activity (before a decision) predicts biases 
or priors in decision-making (Vinckier et al. 2018, Abitbol et al. 2015, Lopez-Persem et al. 
2016). As vmPFC maintains information about goal-pursuit between decisions, we 
hypothesised that the strength of this baseline vmPFC signal should predict the degree of 
commitment bias (unwillingness to switch goods) across individuals. We used a similar 
approach to previous studies by extracting baseline activity at the time of offer onset, on a 
trial-by-trial basis in our vmPFC region of interest (Vinckier et al. 2018). In all fMRI ROI 
analyses, we used regions of interest defined from orthogonal regressors related to value 
contrasts (see ‘ROI selection procedure’ in Methods).  
 
We quantified the extent to which baseline activity in our vmPFC ROI varied with goal 
progress for each individual (quantified as the beta value within the ROI for goal progress, at 
choice onset). We found this baseline goal-related activity correlated with an individual’s 
overall persistence bias during the decision-making task (Spearman’s r(29)=0.47, p=0.010; 
Fig.3d). 
 
If baseline vmPFC activity also reflects the degree to which the goal stimulus captures 
attention, we reasoned that it should correlate with the degree of attentional capture in the 
second, decision-free task. This was indeed the case – across participants the strength of the 
baseline goal-progress signal in vmPFC predicted greater accuracy for the current goal 
relative to alternative goals in the attentional task (Spearman’s r(29)=0.51, p=0.004; Fig.3e). 
This was particularly striking as the spatial decision-free task was carried out in a separate 
session outside the scanner.  
 
Notably, both the reported relationships between neural activity and behavioural biases is 
specific to baseline activity in the vmPFC; baseline activity in other regions of interest and 
vmPFC activity in response to the decision itself are not predictive of behavioural biases (see 
Supplementary fig.8 for control comparisons).   
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Figure 3. Goal-related baseline vmPFC activity correlates with individual differences in behaviour.  
(a) Cluster-corrected activity representing goal progress from the main analysis (time-locked to the onset of the 
decision period) 
(b) Same regressor as in (b) i.e. goal progress, but in an additional analysis time-locked to the inter-trial fixation 
cross (See Whole-brain ITI analysis in Methods for further detail). While there was widespread activity in in 
occipital and parietal areas representing goal progress at decision-onset (a), the majority of these areas were not 
involved during the ITI itself, where the highest peak was in vmPFC.  
(c) Time course of vmPFC activity in response to the onset of the offers, depicting the impact of the regressors 
of goal progress (purple), current goal value (blue), and best alternative value (orange) at decision time (beta 
weight on BOLD activity). Error bars show standard error of the mean across participants. Note that baseline 
activity tracks individual’s position in the goal (goal progress) before the decision is made.   
(d) Relationship between baseline tracking of goal progress in vmPFC and goal bias in spatial attention task (as 
in Fig.2e, left). Attentional goal bias refers to the accuracy advantage (in units on the screen) for reporting the 
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location of the current goal item over reporting the location of the alternative goal items. Notably, the attention 
task measures come from an entirely separate session which took place outside the fMRI scanner.  
(e) Relationship between baseline tracking of goal progress in vmPFC and persistence biases in the decision 
task (as in Fig.2b, green dots; persistence biases fit across aggregate choice data from both sessions).  
 
 
Influence of goal commitment on brain activity during the decision-process 
 
As attention to the current and alternative goals varies with goal pursuit, we should expect to 
see changes in the representation of these goals at the time of the decision itself. We therefore 
asked how decision-related neural signals change as a function of goal pursuit. In particular, 
in behaviour we observed an intriguing asymmetry, namely that as goal commitment 
increased, sensitivity to alternative goal value (‘temptation’) was reduced more than 
sensitivity to the current goal value (‘frustration’). We therefore hypothesised that the neural 
representation of alternative value should change more with goal pursuit than the neural 
representation of the value of the currently pursued goal. 
 
To identify brain regions involved in the decision process, we investigated neural activity at 
the time of the decision in a whole-brain analysis (regressors time-locked to the onset of the 
offers). This showed a much broader network of areas sensitive to goal-pursuit. Our whole-
brain analyses revealed activity in a wide range of areas increased as an individual progressed 
towards completing the goal, including medial prefrontal cortex, striatum, and cingulate 
areas, as well as large regions of the occipital, and parietal cortices (‘goal progress’ regressor; 
Fig.3a). In addition, we found value-related activity consistent with previous findings related 
to brain networks involved in staying with a default versus switching to an alternative: both 
medial prefrontal cortex and striatum increased their activity as the value of persisting with 
the goal increased (value of current goal–value of best alternative; Fig.4a, blue). In contrast, 
ACC, presupplementary motor area (preSMA), bilateral dorsolateral prefrontal cortex 
(dlPFC), and bilateral insular, all showed the opposite profile: activity increased as the value 
of abandonment increased (value of best alternative–value of current goal; Fig.4a, orange), 
and activity was higher on trials where the participant chose to abandon the current goal 
(Supplementary fig.6b; See Supplementary tab.1 for activity peaks). Note that whilst a large 
number of neural areas tracked an individual’s position relative to goal completion during the 
decision, this activity persisted during the inter-trial period in only a subset of areas, focussed 
on vmPFC (‘goal progress’; Fig.3a,b) as previously described. 
 
We subsequently selected regions-of-interest in three key value-sensitive areas for further 
analysis. VmPFC, ventral striatum, and dorsal anterior cingulate cortex (dACC) all showed 
strong value-related activity at decision time in our whole-brain analysis. This is consistent 
with previous literature showing dACC is involved in value-guided abandonment (Kolling et 
al. 2012, Fouragnan et al. 2019, Tervo et al. 2021), and ventral striatum is a centre of value-
guided choice (Jocham et al. 2011), known to be sensitive to goal proximity (Howe et al. 
2013), and with meaningful projections to vmPFC (Piray et al. 2016). Given the relevance of 
these areas for decision-making during goal pursuit, we created regions of interest at the 
peaks of activity in these areas from our whole-brain analysis. We then investigated whether 
the representations of chosen- and alternative value were stable or changed dynamically over 
the course of goal pursuit. 
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Ventral striatum value signals reflect behavioural asymmetry in sensitivity to current 
versus alternative goals  
 
We first tested for changes in activity reflecting the combined ‘abandonment value’ (the 
difference in value of the currently selected and best alternative goals) over goal pursuit, 
mirroring the initial behavioural analysis. We found that representations of the option value 
difference in the ventral striatum reduced as people progressed through the goal (interaction 
of value difference with goal progress: Wilcoxon signed-rank, T=126, n=30, p=0.028). There 
was no equivalent effect in vmPFC or ACC. 
 
We then broke down ‘abandonment value’ into the value of the current goal and the value of 
the best alternative. Parallel with our behavioural results, we found an asymmetry between 
the impact of alternative and current goal value in the ventral striatum. Specifically, 
representations of alternative value disappeared in the ventral striatum over the course of goal 
pursuit, but activity continued to co-vary with the current goal value (Fig.4b, middle; orange 
line shows reduction in representations of alternative goal value, blue line shows stable 
representations of current goal value; interaction between best alternative value and goal 
progress: Wilcoxon signed rank, T=358, n=30, p=0.010; interaction between current goal 
value and goal progress: not significant; Wilcoxon signed-rank, T=167, n=30, p=0.178). This 
mirrored the behavioural phenomenon whereby people became relatively less sensitive to 
temptation by alternative goods, whilst maintaining sensitivity to the value of the chosen 
goal, over the course of goal pursuit. In contrast, there was no significant change in the 
representation of alternative value over goal pursuit in either vmPFC or ACC.  
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Figure 4. Neural activity related to the value of persistence and abandonment  
(a) Results from the whole brain analysis showing cluster corrected peaks for the contrasts of current goal value 
- best alternative value (blue) and best alternative value - current value (orange).  
(b) Illustration of the modulation of value-related activity in our regions of interest over the course of goal 
pursuit. Here we show the effect of value on the BOLD signal (beta weight) against the proportion of the goal 
completed, binned for illustration. Error bars show standard error across participants, while dots show 
participant mean data points in each bin. Blue corresponds to the value of the current goal, orange corresponds 
to the value of alternative goals.  
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Lesion Patient Study 
 
Damage to vmPFC reduces persistence bias for the current goal 
 
Taken together, the behavioural and fMRI results suggest that vmPFC maintains attention to 
the chosen goal, leading to over-persistence or an unwillingness to switch goals. To test the 
causal nature of this association, we conducted an independent study using the same 
paradigm, with a sample of twenty-three participants with brain lesions in variable locations 
(see Fig.5a for map of lesion overlap across patients). We focussed on persistence bias, 
defined as the tendency to persist with the chosen goal beyond the point at which it would be 
optimal to switch, as the key behavioural marker of goal commitment.  
 
We began by investigating whether damage to particular areas reduced persistence in the 
lesion patient group, independent from any priors from our fMRI study. We asked at what 
locations damage predicted a reduction in persistence bias by running a voxel-wise regression 
analysis using damage in each voxel (binary regressor) to predict persistence bias. 
Independently corroborating the findings of our fMRI study, the only region where damage 
predicted a reduction in persistence bias was in vmPFC (Fig.5b green cluster; cluster 
threshold t>2.3 (p<0.01, one-sided), cluster size=269 voxels, threshold cluster correction 
size=255 voxels, cluster peak=[0,42,-14], t-statistic at cluster peak=2.74, n=5 patients with 
damage within cluster). 
 
We then asked how much the region identified in our lesion patient study aligned with the 
findings of our fMRI study. Our fMRI study had identified a subset of areas carrying signals 
relating to goal-pursuit even between decisions, focussed on vmPFC. We split all patients 
into two groups on the basis of whether they were damaged within a region of interest at the 
peak of this fMRI activity, found in vmPFC (region of interest centred on the peak of the 
activity tracking goal progress during the inter-trial interval in our fMRI study; shown in 
supplementary fig.9d). There were four lesion patients with damage to this region of interest, 
and this group had reduced persistence biases compared to both patients with damage 
elsewhere, and to age-matched healthy controls (Fig.5c, persistence biases among patients 
damaged within fMRI ROI: n=4, mean=2.33, std=2.31; persistence bias among other 
patients: n=19, mean=6.12, std=2.88; persistence bias among age-matched controls: n=27, 
mean=5.29, std=2.74; difference between vmPFC group and other patients: permutation test, 
difference in means=3.79, p=0.012, one-sided; difference between vmPFC patients and age-
matched controls: permutation test, difference in means=2.97,  p=0.023, one-sided). 
Strikingly, we found these four patients who had damage within the region pre-defined by 
our fMRI study corresponded to four (out of the five total) patients identified from our 
independent voxel-wise patient analysis. Therefore our fMRI study and lesion patient study 
independently converge to identify the same vmPFC region as being relevant for goal 
commitment. 
 
Next, we ruled out the possibility that the vmPFC damaged group were simply performing 
worse in some general way, for example by making random choices or forgetting the goal. 
An important point to note is that, because participants in general over-persist, a reduction in 
persistence biases should actually lead to an improvement in task performance, if participants 
switch goals at points at which it is beneficial to do so (rather than making random switches 
due to, for example, task disengagement). This is exactly what we find: the five vmPFC-
damaged patients identified in our voxel-wise analysis in fact perform significantly better 
than patients with damage elsewhere, and no worse than age-matched healthy controls 
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(Fig.5d; performance is quantified as mean trials to fill a net, i.e. smaller values indicate goals 
are completed faster: average goal-completion time in vmPFC patients: n=5, mean=7.71, 
std=0.46; completion time in other patients: n=18, mean=8.47, std=0.70; completion time in 
age-matched controls: n=27, mean=8.03, std=0.73; difference between vmPFC group and 
other patients: permutation test (one-sided), difference in means=0.76, p=0.015; difference 
between vmPFC patients and age-matched controls: permutation test (one-sided), difference 
in means=0.32, p=0.190, n.s.). 
 
Finally, we used further post-hoc analyses to verify that a) vmPFC patients were not 
responding more stochastically b) vmPFC patients were not using a different normative 
model to solve the task. We formally quantified stochasticity as inverse temperature, and 
found the vmPFC group showed no difference in inverse temperature compared to other 
patients or age-matched controls (Supplementary fig.9b; see recoverability of inverse 
temperature parameter in Supplementary fig.4c; inverse temperature in vmPFC patients: n=5, 
mean=0.57, std=0.04; inverse temperature in other patients: n=18, mean=0.51, std=0.22; 
inverse temperature in age-matched controls: n=27, mean=0.61, std=0.19; difference between 
vmPFC group and other patients: permutation test, difference in means=0.06, p=0.572, n.s.; 
difference between vmPFC patients and age-matched controls: permutation test, difference in 
means=0.04, p=0.633, n.s.). We also found that, like for the MRI participants, decisions for 
all three groups in our lesion study are best described by the full-task (optimal) model 
(Supplementary fig.9a), suggesting vmPFC patients were not using a simpler response 
strategy. 
 
Taken together, these results suggest that patients with damage to this region of vmPFC are 
not simply using a different task strategy or responding more randomly, but instead are 
less biased toward over-persisting with a goal.  
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Figure 5. Lower persistence bias in patients with vmPFC lesions.   
(a) Lesion overlap maps of the twenty-three patients who took part in the study (maximum overlap in a voxel 
was 10 participants).  
(b) Green shows areas where damage predicts lower persistence biases in the patient study using a voxel-wise 
analysis approach. Here we show the map of t-statistics above threshold before cluster-correction for illustrative 
purposes. Only the vmPFC cluster survived whole-brain cluster correction as an area where damage leads to 
reduced persistence biases. The vmPFC region identified in the whole-brain voxel-wise analysis contains 
damaged voxels from n=5 patients (out of a total of n=23 patients who took part in the study).  
(c) After independently identifying the relationship between vmPFC damage and reduced persistence in our 
patient study (see b), we asked how much this result corresponded to the findings of our fMRI study. We split 
patients into two groups depending on whether they were damaged in the same voxels carrying activity related 
to goal pursuit between trials (region of interest centred on the peak of activity representing ‘goal progress’ at 
the inter-trial interval from the fMRI whole brain analysis; see Methods). Note that this ROI contained four 
patients, corresponding to four out of the five patients independently identified in (b). Patients with damage to 
this region were less persistent than both patients with lesions elsewhere and age-matched controls. Error bars 
show standard error of the mean in each group, green dots depict individual biases. 
(d) Post-hoc analysis comparing performance between patients with damage in the vmPFC cluster (from b, n=5) 
damage external to the cluster, and age-matched healthy controls. Performance is quantified as the average 
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number of trials taken to complete a net, so lower scores correspond to faster goal completion. These results 
show vmPFC lesion patients are not simply responding more stochastically since their performance is enhanced 
compared to other patients, and no worse than age-matched controls. These results show the reduced bias to 
persist results in a performance enhancement relative to other lesion patients.  
 
 
Discussion 
 
Many rewards are only obtained after a period of persistent effort. Therefore a key challenge 
for agents is to maintain a balance between commitment with the current goal and flexibility 
if it ceases to be worthwhile. The current study presents evidence that this challenge it met 
via an attentional mechanism. It is well known that people tend to over-persist with chosen 
goals (the ‘sunk cost’ fallacy). Rather than representing persistence biases as a (perhaps 
irrational) factor in the decision process itself, we argue that it is better understood in terms of 
a more pervasive attentional effect: Mechanisms of selective attention, mediated by vmPFC, 
prioritise processing of the current goal over alternative goals, resulting in reduced sensitivity 
to attractive alternatives (‘temptation’). This attentional bias is sustained in time and 
generalizes outside the decision context, as participants showed reduced sensitivity to sensory 
features of goal-irrelevant stimuli (such as their location in space), particularly as the goal 
state is neared.  
 
We developed a pair of complementary tasks to measure how attentional and decision-
making biases develop together during goal pursuit. In the decision-making task, 
commitment to a goal is required in order to realise rewards, but participants also need to 
remain sensitive to changes in the value of goods associated with the current and alternative 
goals. Participants tended to persist with goals longer than was optimal. As people progressed 
towards the goal, they became less sensitive to the value of alternative goods compared to the 
value of the goal good, suggesting an increasing focus of attention on the current goal as they 
neared goal completion. We further probed this attentional account by interleaving the 
decision-task with an unrelated and decision-free spatial working memory task. We found 
that participants were better able to recall the location of stimuli associated with the goal, and 
this tendency increased as they continued longer with the goal. Furthermore, there were 
stable individual differences in persistence with a goal, which were predicted by individuals’ 
sustained attentional capture by goal stimuli outside the decision period. Individuals who 
were more biased to persist with a goal showed higher goal-oriented selective attention, even 
when these metrics were captured in separate testing sessions and an unrelated, decision-free 
task.  
 
We present multiple converging lines of evidence demonstrating vmPFC plays a key role in 
this process. First, our fMRI study found that vmPFC carries sustained goal-related 
information between decisions in our task, and baseline activity before the decision predicts 
the two independent behavioural metrics of goal capture: both an individual’s bias to persist 
with the current goal, and their bias to prioritise goal-related stimuli in attention. This was the 
case despite the fact that attention was measured during a separate task outside of the 
scanner. Second, we show that vmPFC is causally involved in goal commitment: patients 
with damage to the same region have reduced biases to persist with the current goal.   
 
We find that across healthy individuals, baseline vmPFC activity (activity before a decision is 
made) predicts both decision and attention biases in our task. This builds on a growing area 
of study in both monkeys and humans finding that baseline vmPFC activity plays a role in 
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influencing how options are processed and subsequently which choice is made (Vinckier et 
al. 2018, Abitbol et al. 2015, Lopez-Persem et al. 2016). Baseline vmPFC activity has been 
argued to bias upcoming choices in line with prior contextual factors, including both stable 
preferences (such as tastes for music or food genres; Lopez-Persem et al. 2016), and dynamic 
states (such as satiety or mood; Abitbol et al. 2015, Vinckier et al. 2018). Our results provide 
evidence that another dynamic state, namely goal pursuit, modulates behaviour through 
baseline vmPFC activity. We argue that our results also offer a possible mechanism for these 
effects: sustained vmPFC activity drives global changes in selective attention, affecting how 
options are processed and which decision is subsequently made.  
 
In various contexts, medial prefrontal cortex has been shown to support the selection of goal-
relevant information through the compression of irrelevant dimensions (Mack et al. 2020, 
Wilson et al. 2014, Mante et al. 2013), flexibly adapting to changes in the current goal 
(Grueschow et al. 2015, Rudorf & Hare, 2014, Castagnetti et al., 2021, Trudel et al. 2021), 
through the creation of task-specific ‘cognitive maps’ (Schuck et al. 2016, Park et al. 2021). 
Other studies have also linked vmPFC activity to visual attention, both responding to 
exogenous manipulations of attention (Lim et al. 2011; Hare et al. 2011), and in mediating 
visual attention (Wolf et al. 2014). Here we present results bringing together these distinct 
bodies of research, suggesting that the role vmPFC plays in selecting goal-relevant 
information can also be directly linked to visual attention. Our proposal that attention 
supports persistence by filtering goal-relevant information is consistent with reports that 
visual attention modulates goal-relevant information when de-coupled from value (Sepulveda 
et al. 2020, Glickman et al. 2018).  
 
VmPFC could be varying with goal-relevant information without playing any causal role in 
the decision process. To test the causality of vmPFC activity in goal persistence we carried 
out an independent study using the same paradigm with twenty-three lesion patients. Through 
a voxel-wise analysis of damage in our patient sample, we identified a large vmPFC cluster 
in which damage predicted reduced persistence biases. The area identified in patients closely 
corresponded to the area involved in persistence among healthy individuals, providing 
striking evidence that vmPFC plays a causal role in goal commitment. Our results expand on 
previous reports that lesions to this area in both humans and primates interfere with the 
ability to prioritise the relevant decision variables, for example in cases when a distracting 
alternative is introduced (Noonan et al. 2010, Noonan et al. 2017), or an option has been de-
valued (Reber et al. 2017).  
 
While previous lesion studies have found this patient population to behave more 
stochastically (Noonan et al. 2017, Camille et al. 2011), notably, lower persistence biases 
among vmPFC lesion patients in our task cannot be explained purely by an increase in 
stochasticity. In fact we find patients with vmPFC damage performed better than other lesion 
patients and no worse than age-matched controls. In a goal pursuit context, healthy 
individuals may have a tendency to over-constrain the decision space by focussing only on 
the current goal and ignoring alternatives. In contrast, a lesion to this area of vmPFC may 
reduce selective attention to the goal, allowing alternatives to maintain their relevance 
throughout goal pursuit. We note that, while this is beneficial in our task, it is likely to be 
advantageous to constrain the task space in ecological goal pursuit settings, both in terms of 
optimal neural resource allocation (i.e. attending to goal implementation and avoiding 
cognitive switch costs), and in structuring behaviour over time.   
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Our results also reveal how neural value representations change dynamically across goal 
pursuit. We found that late in goal progress and compared to our normative model, people 
showed an asymmetry in how they weighed up value related to the current goal versus to 
alternative goals. Specifically, as goal completion was neared, participants were less sensitive 
to ‘temptation’ from attractive alternatives (compared to retaining sensitivity to ‘frustration’ 
should the value of the selected good suddenly fall). When the value of alternatives lost 
influence over behaviour, this was mirrored by a reduction in the representation of alternative 
value in the ventral striatum over goal pursuit. Striatal dopamine has been shown to ramp up 
during goal approach (Hamid et al. 2016; Howe et al. 2013), but also to trigger exploratory 
behaviours (Costa et al. 2014; Costa et al. 2019). It is possible these diverging functions 
could explain why we see representations of alternative options earlier in the goal, while 
striatal BOLD is saturated by representations relating to goal approach later on. Possibly, this 
asymmetry in striatal value representations could also reflect the increasing dominance of 
vmPFC during goal pursuit, reflected in striatal activity at a subsequent stage.  
 
In contrast to the striatal effects, we found relatively sustained representations of alternative 
value throughout the goal in the ACC, supporting previous studies showing ACC drives 
flexibility. We found both ACC and dlPFC positively co-varied with the value of 
abandonment, as well as being more active when participants choose to abandon. This is 
consistent with previous work showing that activation in these areas, and in ACC in 
particular, represents the value of alternative options (Fouragnan et al. 2019), and is more 
active when an individual disengages from the present action (Stoll et al. 2016, Kaiser et al. 
2021) or explores the environment (Tervo et al. 2021, Trudel et al. 2021). In fact, when 
people switch out of an exploitative state towards exploration, ACC activity predicts changes 
in task representation in vmPFC (Muller et al., 2019). While vmPFC represents the current 
goal and enables goal commitment, ACC is likely to underpin behavioural flexibility during 
goal pursuit by consistently tracking other options. The fact that people show increasing 
biases to persist rather than remain flexible could be explained by increasing dominance of 
regions such as vmPFC over ACC. We note that the vmPFC lesioned patients in this study 
made effective abandonment choices that allowed them to perform well in the task. While 
vmPFC contributes to persistence biases, it does not seem necessary for making good 
abandonment choices, which are likely to depend on areas such as ACC.  
 
Our study suggests that goal pursuit involves the gradual shift of focus towards the current 
goal, rather than distinct modes of behaviour (“deliberation” and “implementation”) 
(Heckhausen & Gollwitzer, 1987, O’Reilly et al. 2020, Sweis et al. 2018). Selective attention 
provides a mechanism by which animals can prioritise goal completion while remaining 
sensitive to highly attractive alternatives, since attentional selection itself can be graded 
(Lavie, 2005). These persistence mechanisms which develop during goal pursuit and drive 
global changes in processing seem to be implemented through alterations in vmPFC activity 
across goal pursuit. While goal persistence may manifest in seemingly irrational tendencies to 
persist with a previous decision (as seen in classic “sunk-cost” effects), the ability to filter 
information to complete a chosen task is likely to be essential for adaptive behaviour in 
ecological settings.  
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Methods 
 
MRI study 
 
Participants 
 
A total of 30 participants (19 female; mean age 25 years, normal or corrected-to-normal 
vision) were recruited via email circulation on Oxford University mailing lists and social 
media. No participants were excluded from the recruited sample. Ethical approval for the 
study was obtained by the Oxford Central University Research Ethics Committee (Ref: 
R72921/RE001). All participants gave written informed consent before the experiment. 
Participants were paid £15/hour plus a performance-dependent bonus between £8-12.  
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Experimental procedure 
 
The training, scan and post-scan task were all carried out in a single session lasting 2.5-3 
hours total. Before the fMRI scan, participants were trained on the task for approximately 
twenty minutes. Participants practiced on three full example blocks (on average approx. 25 
trials, dependent on performance) with the interleaved spatial attention task included, and one 
additional example block without the spatial attention task (scanner version). Comprehension 
questions were included at the end of training to ensure that participants had understood the 
task structure. Once this had been verified, participants entered the scanner and completed 
300 trials of the decision task only (since the spatial task could not be performed with the 
button box inside the scanner) lasting 50-60 minutes (scanner session). Participants then 
completed the spatial variant of the task for an additional 100 trials outside of the scanner, 
lasting 20 minutes (post-scan session). Once the post-scan session was complete, participants 
filled out a short debrief questionnaire.  
 
Primary decision task 
 
Participants were told their aim was to fill as many nets with seafood as possible across the 
study, limited only by the number of choice trials in the study. The number of trials 
remaining in which the participants could continue to fill nets was shown in the top right 
corner of the screen throughout the study (Supplementary fig.1a). Above the indication of 
trials remaining was shown the number of points earned (nets completed so far), where each 
completed net was converted to a 25p bonus payment at the end of the study.   
 
At the start of each block, participants were shown the size of the net to be filled as an empty 
grey bar at the bottom of the screen (Supplementary fig.1b). Blocks ended when a net was 
complete, and a point was won (Supplementary fig.1c). On each trial, participants were 
presented with three offers associated with the three sea creatures (always crab, octopus, and 
fish). Offers were shown as horizontal coloured bars on the screen next to their respective 
creature, where the size of the bar translated exactly to the quantity which would be added to 
the net if that creature was chosen. Offers were mostly positive (indicated by green bars), but 
could occasionally become negative (indicated by a red bar). If a negative offer was selected, 
the quantity of the bar would be subtracted from the net. Once a net was empty, nothing more 
could be lost so choosing a negative offer would lead to no change.   
 
In the scanner, participants indicated which creature they wanted to accumulate using a 
button box where the first three buttons corresponded to the top, middle and bottom creatures 
on the screen. Outside the scanner, participants selected the creature by clicking with the 
mouse. Note that across all versions of the task, the horizontal order of the three creatures on 
the screen was randomised on every trial to avoid confounding persistence with motor 
perseverance. Once the creature was selected, the participant viewed the net being updated 
according to their choice.  
 
Spatial variant  
 
After completing the task for 300 trials inside the scanner, participants performed 100 trials 
of a spatial variant of the task outside the scanner. The spatial variant included an interleaved 
spatial attention task before every decision (Supplementary Fig.1e). Participants viewed the 
three creatures flash up simultaneously for 500ms in randomised locations across the screen. 
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Participants were then probed in a random order on the location of each creature. When the 
icon of each creature appeared in the top right corner of the screen, participants responded by 
using their mouse to click on the location at which they remembered it appearing. While it 
was not possible for participants to perform the spatial attention task inside the scanner (due 
to the impracticality of reporting three spatial locations on every trial with a button box), the 
scanner variant matched the basic structure of the spatial variant whereby participants 
passively viewed the three creatures flash on the screen at a random time during an inter-trial 
interval of between 2.5 to 8 seconds (Supplementary Fig.1d).  
 
Schedules 
 
Schedule generation procedure 
For each block, the size of the net and the option offers differed. The net sizes were drawn 
from a uniform distribution (min=12, max=72). The initial values for the three options were 
drawn independently from a normal distribution at the start of each block (mean=6, σ2=1). 
From trial to trial, the offers for each option changed according to independent gaussian 
random walks (σ2=0.8). In addition, on each trial there was an independent probability of any 
option changing more drastically in its associated offer (with probability of 0.1 jumping up 
and 0.1 jumping down), corresponding to an option becoming significantly more ‘bountiful’ 
or ‘scarce’ for fishing opportunities. The jump function consisted of drawing a random value 
between 3 to 9 points higher or lower than the option’s starting offer, which corresponded to 
the new offer for that item. After a jump, the subsequent offers for that option would continue 
to change according to a random gaussian walk from the new starting location (see Fig.1b for 
example trajectories created using this procedure). In order to select pairs of net sizes and 
option offers for which completing the net was non-trivial yet feasible, we chose 
combinations where goals were completed in more than 3 trials and less than 15 trials when 
choice behaviour was simulated using the full-task model.  
 
Schedule variants 
To minimise schedule-specific artefacts, we generated 5 different schedules which each 
consisted of 45 blocks of 100 trials. A block ended when the net was filled so participants on 
average viewed only 7 trials per block before completing the net. For each MRI participant, 
separate schedules were randomly selected for the within-scanner and post-scanner sessions. 
In the lesion patient study, the same schedule was used across all individuals (including age-
matched controls) due to the limited sample size for lesion patients. Each session ended after 
a pre-determined number of trials (300 in the MRI scanner, 100 in the post-scan session, and 
250 for all participants in the patient study), so no participant was able to complete all 45 
blocks of a schedule within the available experimental trials.  
 
Behavioural models 
 
We investigated participants’ choice strategy by fitting their behaviour to a set of possible 
models capturing different strategies. Four models with increasing complexity were tested as 
candidates for describing peoples’ subjective evaluation of the offers (see Supplementary 
fig.3a for a graphic depiction of the strategies):  
 
1. Offer-max model: The agent chooses the largest offer on screen, regardless of the 

accumulated contents in the net. The values of the three items according to the model 
are equivalent to the current offers for each item.  
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2. Myopic model: The agent maximises accumulated value on the current trial. This 
means they will only switch if an alternative offer is greater than the combined 
contents of the net and the offer for the current goal item. The value of the goal item 
is equal to the accumulated value plus the goal item offer, while the value of the 
alternatives is simply equivalent to their current offers.   

 
3. Simple prospective model: The agent calculates how much progress towards the goal 

each offer will entail, where progress is the proportion of the remaining unfilled net 
that will be completed after choice. Mathematically, the value of an option according 
to this model is the current offer for each option, divided by the quantity of net left to 
fill (when choosing that option). Intuitively, this model values each option based on 
the number of trials needed to fill the whole net, if the option values stay constant 
throughout. 

 
 

𝑔𝑜𝑎𝑙	𝑔𝑜𝑜𝑑	𝑣𝑎𝑙𝑢𝑒 = 	 +	
𝑜𝑝𝑡𝑖𝑜𝑛	𝑜𝑓𝑓𝑒𝑟

𝑛𝑒𝑡	𝑠𝑖𝑧𝑒 − 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑	𝑣𝑎𝑙𝑢𝑒	7	 
 

𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒	𝑔𝑜𝑜𝑑	𝑣𝑎𝑙𝑢𝑒 = +	
𝑜𝑝𝑡𝑖𝑜𝑛	𝑜𝑓𝑓𝑒𝑟
𝑛𝑒𝑡	𝑠𝑖𝑧𝑒 	7 

 
 

A central difficulty for a model which estimates value in this way is dealing with 
negative offers. Negative offers would reverse the respective values, meaning that 
implausibly, negative offers associated with the goal good are valued less than 
negative offers associated with alternative goods. To address this problem, we set the 
value of negative offers associated with alternatives to their raw (negative) offer, and 
the value of negative offers associated with the goal option to the proportion of 
progress they would be losing i.e. the offer divided by the accumulated value.  

 
4. Full task model: This agent uses information about offer trajectories to simulate 

possible futures for the different candidate options, choosing the option which is 
forecasted to complete the net fastest. Specifically, it samples possible future 
trajectories for the three options and calculates each option’s value as the (negative) 
average number of trials until net completion across the iterations (if it were chosen 
on this trial).  

 
The same statistics used for creating the experimental offers were used when the 
model simulates the future trajectories of the options (procedure described in ‘Block 
Generation’). In other words, this model possesses task knowledge of how offers are 
likely to change over time, and leverages that to compute a better estimate of how 
long each option will take to fill the net.   

 
 
Model fitting 
 
Participant data was aggregated across the scanner session (300 trials) and post-scanner 
session (100 trials) before model fitting. In each case, the model value of switching was 
calculated as the model’s value for the current goal subtracted from the model’s value for the 
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best alternative goal. To determine the best fitting normative model, we fit the following 
models to behaviour: 
 
1. 𝑆𝑉!"!#$%# 	= 	𝛽& +	𝛽' ∗ (𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒	𝑣𝑎𝑙𝑢𝑒%(()*+,!-	–	𝑔𝑜𝑎𝑙	𝑣𝑎𝑙𝑢𝑒%(()*+,!-) 
 
2. 	𝑆𝑉!"!#$%# 	= 	𝛽& +	𝛽' ∗ (𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒	𝑣𝑎𝑙𝑢𝑒,.%/01	–	𝑔𝑜𝑎𝑙	𝑣𝑎𝑙𝑢𝑒,.%/01) 
 
3. 𝑆𝑉!"!#$%# 	= 	𝛽& +	𝛽' ∗ (𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒	𝑣𝑎𝑙𝑢𝑒/*%2/)1304)	–	𝑔𝑜𝑎𝑙	𝑣𝑎𝑙𝑢𝑒/*%2/)1304)) 
 
4. 𝑆𝑉!"!#$%# 	= 	𝛽& +	𝛽' ∗ (𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒	𝑣𝑎𝑙𝑢𝑒(566+3!27	–	𝑔𝑜𝑎𝑙	𝑣𝑎𝑙𝑢𝑒(566+3!27) 
 
We fit these models in a mixed effects logistic regression analysis predicting abandonment 
choices, where intercept and slope were also modelled as random effects across participants. 
The Bayesian Information Criterion (BIC) was used to evaluate between models.  
 
Model validation process 
 
To validate the model selection procedure, we performed a model recovery analysis to 
confirm that the competing models were distinguishable within the empirical parameter range 
(Palmenteri et al. 2017). In addition to fitting the four basic normative models described 
above (see ‘Fitting Normative Model’), we also tested the recoverability of the basic models 
plus goal progress (See ‘Goal Progress’ section in Methods), which we found to have an 
additional impact on behaviour:    
 
 
5. 𝑆𝑉!"!#$%# 	= 	𝛽& +	𝛽' ∗ (𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒	𝑣𝑎𝑙𝑢𝑒%(()*+,!-	–	𝑔𝑜𝑎𝑙	𝑣𝑎𝑙𝑢𝑒%(()*+,!-) 	+	𝛽8 ∗

𝑔𝑜𝑎𝑙	𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠	 
 
6. 𝑆𝑉!"!#$%# 	= 	𝛽& +	𝛽' ∗ (𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒	𝑣𝑎𝑙𝑢𝑒,.%/01	–	𝑔𝑜𝑎𝑙	𝑣𝑎𝑙𝑢𝑒,.%/01) 	+	𝛽8 ∗ 𝑔𝑜𝑎𝑙	𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠 
 
7. 𝑆𝑉!"!#$%# 	= 	𝛽& +	𝛽' ∗ (𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒	𝑣𝑎𝑙𝑢𝑒/*%2/)1304)	–	𝑔𝑜𝑎𝑙	𝑣𝑎𝑙𝑢𝑒/*%2/)1304)) 	+	𝛽8 ∗

𝑔𝑜𝑎𝑙	𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠 
 
8. 𝑆𝑉!"!#$%# 	= 	𝛽& +	𝛽' ∗ (𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒	𝑣𝑎𝑙𝑢𝑒(566+3!27	–	𝑔𝑜𝑎𝑙	𝑣𝑎𝑙𝑢𝑒(566+3!27) 	+	𝛽8 ∗ 𝑔𝑜𝑎𝑙	𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠 
 
 
 
We used the empirical parameters from logistic regression models which were fit separately 
to each participant to simulate choices for each model. A soft-max function was then used to 
simulate choices from the subjective value: 
 

𝑃!"!#$%# =	
1

1 + 𝑒&'9:9;<=; 
 
 
Subsequently, all models were fitted to all simulated datasets, and the empirical selection 
procedure applied to the simulated data (BIC comparison). To account for stochasticity 
resulting from the soft-max function, we repeated the simulation process 100 times for each 
of the 30 participants (resulting in 3000 simulated datasets per model). The averaged 
confusion matrix is displayed in Supplementary fig.3c, showing that each simulated model 
can be correctly identified during model recovery. Importantly, we find that in the empirical 
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parameter range and across 100 repetitions, there are no cases of more simple models being 
confused for the empirically best-fitting model (full-task model).  
 
Persistence bias  
 
Once we established that the full-task model was the best fitting normative model of 
participant behaviour, we used this model to further investigate individual differences in 
persistence deviating from the model. We fit the logistic regression model defined in (4) of 
‘fitting normative models’ to each participant separately. A participant’s indifference point 
(IP) is the model value of abandonment at which a participant is equally likely to persist or 
abandon (the ‘shift’ on the sigmoid function). Mathematically, this is equal to:   
 

	𝐼𝑃 =
−𝛽(
𝛽)

 

 
Where 𝛽( and 𝛽) refer to the intercept and slope respectively from the logistic regression 
predicting participant abandonment choices from the model value of abandonment. 
Throughout subsequent analyses, the IP parameter fitted to each participant is referred to as 
their ‘persistence bias’, since all individuals had IP parameters above the value of 0 (i.e. they 
were biased to persist compared to the full-task model). See Supplementary fig.4a showing 
persistence biases can be accurately recovered after simulating behaviour within the 
empirical parameter range.  
 
Persistence bias parameter recovery and test-retest reliability  
 
We investigated the reliability of the persistence bias parameter, and the two sub-parameters 
from which persistence bias is derived (intercept and slope) using both simulated parameter 
recoveries and test-retest correlation across the two behavioural testing sessions (inside and 
outside the scanner). All three parameters show robust recovery in simulated data, as well as 
significant test-retest reliability in empirical data across the two behavioural sessions, as 
shown in Supplementary fig.4 (note that persistence biases have higher recoverability and 
test-retest reliability than either of its subcomponents on their own).  
 
Goal progress  
 
We define goal progress as the proportion of the current goal completed (i.e. current net 
contents / net size; Supplementary fig.3b). To quantify the additional impact of goal progress 
on peoples’ choices, we used chi-squared tests to determine whether each additional regressor 
improved our basic mixed-effects model across participants. For each model, the intercept 
and slopes for every regressor in the models were also included as random effects across 
participants.  
 
 
1. 𝑆𝑉!"!#$%# 	= 	𝛽& +	𝛽' ∗𝑉𝑎𝑏𝑎𝑛𝑑𝑜𝑛 
 
2. 𝑆𝑉!"!#$%# 	= 	𝛽& +	𝛽' ∗𝑉𝑎𝑏𝑎𝑛𝑑𝑜𝑛 +	𝛽> ∗ 𝑔𝑜𝑎𝑙	𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠	 
 
3. 𝑆𝑉!"!#$%# 	= 	𝛽& +	𝛽' ∗𝑉𝑎𝑏𝑎𝑛𝑑𝑜𝑛 	+	𝛽> ∗ 𝑔𝑜𝑎𝑙	𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠	 +	𝛽> ∗ 𝑔𝑜𝑎𝑙	𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠	 ∗𝑉𝑎𝑏𝑎𝑛𝑑𝑜𝑛 
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4. 𝑆𝑉!"!#$%# 	= 	𝛽& +	𝛽' ∗ 𝑔𝑜𝑎𝑙	𝑣𝑎𝑙𝑢𝑒(566+3!27 +	𝛽> ∗ 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒	𝑣𝑎𝑙𝑢𝑒(566+3!27 		+	𝛽8 ∗
𝑔𝑜𝑎𝑙	𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠	 +	𝛽? ∗ 𝑔𝑜𝑎𝑙	𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠	 ∗ 𝑔𝑜𝑎𝑙	𝑣𝑎𝑙𝑢𝑒(566+3!27 	+ 𝛽@ ∗ 𝑔𝑜𝑎𝑙	𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠	 ∗
𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒	𝑣𝑎𝑙𝑢𝑒(566+3!27	 

 
 

After finding that value is used less over goal progress (model 3 above), we quantified the 
relative decrease in use of “current goal value” as opposed to “alternative goal value” by 
separating the value of abandonment into its two components. For each participant, we fit a 
logistic regression model which included the interaction between each source of value and 
goal progress (alongside all fixed effects; model 4 above). To determine whether there was a 
difference in how goal progress impacts the use of the best alternative versus the current goal, 
we used a Wilcoxon signed-rank test to determine whether there was a significant difference 
between the interaction coefficients for best-alt*goal-progress and for (sign-flipped) current-
goal*goal-progress across individuals. We tested against the sign-flipped coefficients for 
current-goal*goal-progress because the value of the current goal and the value of the best 
alternative have opposing impact on the likelihood of switching (see Fig.2d).  
 
Spatial task analyses 
 
The spatial task results come from a separate behavioural testing session after the fMRI 
session, where participants performed the same decision task with the addition of an 
interleaved spatial attention task before making each decision (the ‘spatial variant’ described 
above). We used this task to measure the relative distribution of attention between stimuli 
associated with the current goal, and stimuli associated with alternative goals, across goal 
pursuit. We quantified spatial error as the Euclidian distance between the location of the 
participant’s click and the true location at which the stimulus appeared, in normalised screen 
units. We quantified reaction times (RT) as the time in milliseconds (ms) between when a 
stimulus was probed (appearing in the top left corner of the screen), and when the participant 
indicated their response. To remove differences in baseline error and reaction time between 
participants, we subtracted each participant’s mean error and mean reaction time from all 
their responses.  
 
We then categorised responses according to whether the probed stimulus was the current goal 
good or one of the alternatives. We excluded the first trial of every block from analyses, 
where no goods had yet been accumulated. To quantify goal biases within participants, we 
took the difference between their mean behavioural response measure (normalised error and 
normalised RT) for the current goal stimulus, and their mean for the two alternative stimuli 
(Fig.2e).  
 
We then investigated whether the spatial error bias developed as a function of goal pursuit 
(Fig.2f). We fit two linear models for each participant predicting (a) current-goal stimulus 
error and (b) alternative stimuli error using the number of trials participants had been 
pursuing the goal: 
 

error = B0 + 𝛽1 * trials-invested 
 
Using one-sample Wilcoxon signed-rank tests we investigated whether the 𝛽1 coefficients 
across participants were significantly different to zero for either the current-goal stimulus or 
the alternative goal stimuli. We then used the Wilcoxon signed-rank test to determine 
whether the coefficients were significantly different to each other.  
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Finally, we investigated whether goal biases in the spatial task were related to persistence 
biases in the decision task. We tested for a relationship between an individual’s mean 
accuracy advantage for the goal item, and their persistence, using Spearman’s correlation.  
 
fMRI acquisition  
 
The fMRI data were collected at the Oxford Centre for Human Brain Activity using a 3T 
Siemens scanner with a multiband accelerated echoplanar imaging sequence with the 
following parameters: voxel resolution 2.4 x 2.4 x 2.4 mm3, repetition time=1230 ms, echo 
time=30 ms, flip angle=60 °, field of view=240 mm, multiband acceleration factor=3, PAT 
factor=2, encoding direction=PA. A tilt angle of 30° was used to minimize signal drop out in 
the orbitofrontal cortex (Deichmann et al., 2003). Data was collected in two consecutive runs 
of approximately 25 minutes, where participants stayed in the scanner between runs.  
 
Pre-processing and analysis structure  
 
Data were pre-processed using FMRIB’s Software Library (FSL), using the FEAT software 
tool (Woolrich et al. 2001). Functional data were motion corrected using rigid body 
registration to the central volume (Jenkinson et al., 2001, 2002). Gaussian spatial smoothing 
was applied with a full-width half-maximum of 5mm, and high pass temporal filtering was 
applied with a cut-off of 60s. Cardiac and respiratory data were processed using FSL’s 
Physiological Noise Modelling (PNM) tool to model the effects of physiological noise in the 
MRI data (Brooks et al. 2008). Since participants completed the MRI session in two runs, 
parameter estimates were first estimated at the level of run (first level), then combined within 
individuals as Fixed Effects (second level), and finally combined across subjects using 
FMRIB’s Local Analysis of Mixed Effects (FLAME1+2; third level; Woolrich et al. 2004). 
Multiple comparisons were corrected for using a Z statistic threshold of 3.1, and a cluster 
probability threshold of p=0.05.  
 
Univariate fMRI analyses 
 
Decision-time analysis 
 
A general linear model (GLM) was used to model BOLD activity in pre-whitened data space. 
Seven regressors of interest were included in the main GLM, predicting BOLD activity at the 
onset of the decision period (all modelled as stick functions). These regressors included 
whether the choice on this trial was to persist or abandon (coded as 1/-1), the full-task value 
of the current goal, the full-task value of the two alternatives, goal progress, goal size, and 
reaction time. Since goal progress is both correlated with full-task value, and our behavioural 
analyses shows it is an additional predictor of abandonment beyond full-task value 
(illustrated in Fig.2c), we disentangled the goal progress component from value in the MRI 
analysis. To do this, we residualised all forms of value to goal progress, and used goal 
progress as an independent regressor allowing us to identify where goal progress is separately 
tracked in the brain. In addition, since the full-task value of an option is an approximation of 
its ‘time to completion’, it is highly dependent on the size of the net across different blocks. 
To account for this, we also residualised full-task value to net size, and included net size as a 
separate regressor. In other words, for each value component (current goal, best alternative, 
worst alternative), we removed the components related to goal progress and goal size, and 
added these components as unique regressors. All regressors were z-scored at the level of 
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individual runs before fitting the GLM. Supplementary fig.6a displays the final correlations 
between the regressors.  
 
In addition to the parametric regressors, five types of events were included in the final GLM 
as main effects: onset of the decision period, onset of the block, spatial presentation of the 
three stimuli (substituting the spatial task), the update of the net, and the end of the block. 
The following confound regressors were also included in the design matrix: Six motion 
regressors produced during realignment, the physiological explanatory variables (processed 
by PNM) and motion outliers detected using FEAT’s fsl_motion_outliers tool.  
 
Whole-brain inter-trial analysis  
 
Given that behavioural biases accompanying goal pursuit lasted even outside of the decision 
period (in our spatial task), we asked whether goal-related neural activity persisted between 
decisions too. Of the regressors listed under Univariate fMRI analyses, goal progress is the 
one dynamic variable which can be tracked between trials (rather than depending on 
information presented at the decision; i.e. the offers which feed into the option values). We 
therefore specifically investigated whether information about goal progress was carried 
between trials. 
 
To do this, we ran a whole brain analysis where we included all the same regressors listed in 
Decision-time Analysis, both time-locked to the decision onset and time-locked to the 
presentation of the first fixation (ITI 1; see Supplementary fig.1d for ITI timing during task; 
see Supplementary fig.6d for regressor correlation matrix). We asked whether the activity 
tracking goal progress was present during the inter-trial interval (see Fig.3b for results of this 
analysis; See Supplementary tab.2 for results relating to inter-trial goal progress activity).  
 
Region of interest analyses  
 
ROI selection and extraction procedure 
 
We selected ROIs in vmPFC, ventral striatum, and ACC on the basis of value-related activity 
peaks at the decision time. This involved selecting peaks either for activity related to the 
contrast capturing the value persisting (current goal value–best alternative value; peaks in 
vmPFC and ventral striatum), or capturing the value of abandonment (best alternative value–
current goal value; dACC), following cluster correction (Illustration of ROIs in 
Supplementary fig.7a,b,c; all activity peaks listed in Supplementary tab.1). Since our whole-
brain analysis did not reveal any activation for the value of the third alternative in these areas, 
we did not include the third alternative in subsequent analyses. Regions of interest consisted 
of spheres with a 3 voxel radius (7.2mm3). In time-course analyses, activity in these spheres 
was up-sampled by a factor of 10, and cut into epochs which were aligned to the onset of the 
decision phase (see plots of activity time-courses in Supplementary fig.d,e,f).  
 
Activity in these value-related ROIs was then used to investigate a) the modulation of value 
signals over the course of goal progress and b) correlations with individual differences in 
persistence biases. Any time courses displaying non-orthogonal contrasts are for illustration 
purposes only and no statistical tests were performed. 
Baseline activity analysis  
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Our previous whole-brain analysis found that activity relating to goal progress was present in 
the inter-trial interval, with the peak of this activity located in vmPFC. Previous research has 
shown that baseline representations of long-term task variables influence subsequent choice 
behaviour through vmPFC (Vinckier et al. 2018, Abitbol et al. 2015, Lopez-Persem et al. 
2016). We therefore asked whether this baseline goal-related activity at the onset of decisions 
was relevant for the behavioural differences in choices and attention we observed.  
 
We quantified individuals’ baseline representation of goal progress in the vmPFC ROI (see 
ROI selection and extraction procedure). As in (Lopez-Persem et al. 2016, Vinckier et al. 
2018), we define baseline activity as the activity present at the onset of the choice offers, 
before the new offers or decision itself influence the dynamics (i.e. t=0 of the time course 
shown in Supplementary fig.7d,e,f). We predicted vmPFC baseline activity in a model with 
all the identical regressors to those listed in the whole brain analysis (see Decision Time 
analysis). Then we specifically tested for a relationship between the beta-weight for goal 
progress (proportion of goal completed) and our behavioural measures (persistence bias and 
attentional goal capture).  
 
To test the specificity of our vmPFC baseline effect we did two additional control analyses. 
First, we tested whether baseline representations of goal progress in the other two ROIs 
(ventral striatum and ACC) significantly predicted our persistence biases (Supplementary 
fig.8b). Second, we tested whether the effect was specifically driven by baseline rather than 
decision-related activity, by investigating whether goal-related activity time-locked to the 
decision itself predicted individual behavioural measures (Supplementary fig.8c). To quantify 
the decision-related activity, we multiplied the fitted beta coefficients for goal progress at 
each time-point by the double gamma HRF function, and summing the products to produce a 
coefficient for each participant (same procedure described in Value modulation analyses). 
 
Value modulation analyses 
 
We found an asymmetry in the use of value in behaviour, where the influence of value related 
to alternative goals disappeared more than the influence of value related to the current goal, 
over the course of goal pursuit. Therefore, we asked whether neural representations of value 
also changed over the course of goal pursuit.   
 
We began by investigating whether any of our ROIs displayed decreasing impact of value-
difference over the course of goal progress. As for behaviour, we predicted neural activity 
using the interaction between goal progress and abandonment value (value of best 
alternative–value of current goal). We included regressors for the main effects as well as 
additional regressors controlling for switch choices and reaction times (log RT). All 
regressors were normalised before fitting the GLM. To test for statistical significance, we 
multiplied the fitted beta coefficients for the interaction term (goal progress* alue) at each 
time-point by the double gamma HRF function (also used in the whole brain analysis) and 
summed the products to produce a coefficient for each participant. These were then tested 
against 0 using the Wilcoxon signed-rank test.  
 
We then investigated whether a modulation in value representation was driven more by one 
value component over the other. We split abandonment value into its two components, 
namely the value of the current goal, and the value of the best alternative, and modelled their 
interaction with goal progress separately. As with the previous analysis, we included reaction 
time and abandonment trials as additional regressors, as well as including all the main effects 
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of the interaction terms. The same Wilcoxon test described above was performed to 
determine whether there was a significant change across individuals in value representations 
for alternatives (goal progress*best alternative value) or for the current goal (goal 
progress*current goal value).  
 
 
Lesion Patient Study 
 
Participants and experimental procedure  
 
Twenty-six patients with brain lesions (mean age=58) and twenty-seven age-matched control 
participants (mean age=59) took part in the study. Of the lesion patients, one was excluded 
because they failed to pass the initial comprehension questions, and two were excluded 
because they were unable to complete the task. Of the remaining twenty-three individuals in 
the study, sixteen had damage within the frontal cortex and the remaining seven had damage 
to other areas (See Fig.5a for maps of lesion overlap). The patient population was recruited 
from a database of individuals who had previously visited the John Radcliffe Hospital and 
consented to be contacted for research studies. Data collection took place online, over a 
single session where the participant completed an online version of the task (hosted on 
Pavlovia), while the researcher remained on the telephone throughout the session. Before 
beginning the task, the participant received 12 trials of training, and was required to pass 
three comprehension questions before proceeding to the main task, which consisted of 250 
trials total. The same schedule was used across all participants. The age-matched controls 
completed the same schedule and training procedure online, and were recruited through 
Prolific.co.  
 
Voxel-wise lesion analysis 
 
We began by investigating the relationship between brain damage and persistence biases 
independently from the fMRI study. To investigate areas causally relevant for persistence in 
the task, we performed a voxel-wise whole-brain analysis predicting behaviour from maps of 
the patients’ neural damage (Fig.5b). For each voxel, we predicted individual persistence 
biases using a binary regressor capturing whether the voxel was damaged in that individual: 
 

persistence bias ~ voxel damage (binary) 
 
We used a threshold of t>2.3 where damage predicted lower persistence biases (p<0.01, one-
sided test because we were interested in where damage will reduce persistence biases).   
 
Permutation-based cluster correction  
 
We controlled for multiple comparisons by performing cluster correction using the False 
Discovery Rate method (FDR; Genovese et al. 2002). Using a permutation-based approach, 
we asked what the maximum cluster size we would expect from our lesion dataset due to 
chance was, at the same significance threshold. On each permutation (total 1000 iterations), 
we shuffled individual persistence biases and performed the same voxel-wise regression 
analysis with the shuffled biases. We created a distribution of clusters found across all 
permutations, and defined the minimum cluster size for significance at the 95% cut-off of all 
clusters found by chance, resulting in a minimum cluster size of 255 voxels.  
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ROI-based lesion analysis  
 
Next, we performed a group-wise comparison where we split lesion patients based on 
whether they were damaged in a region pre-defined by our fMRI study. Our fMRI study had 
identified a subset of areas carrying signals relating to goal-pursuit even between decisions, 
focussed on vmPFC. We split all patients into two groups on the basis of whether they were 
damaged at an ROI centred on the peak of this inter-decision fMRI activity. Following the 
same procedure described in ROI selection and extraction procedure, we extracted a region of 
interest with a 3 voxel radius (7.2mm3 ) centred on the peak of activity tracking goal progress 
during the inter-trial interval in our fMRI study. We then tested for a difference in persistence 
biases between the two groups of patients, and against the age-matched controls. We used a 
one-sided permutation test to test for difference in means between groups, due to the small 
sample sizes and non-normally distributed biases (Fig.5c, we used a one-sided test based on 
our hypothesis that damage to vmPFC would reduce persistence although note the difference 
remains significant if we were to perform a two-sided test).  
 
Patient control analyses  
 
Our voxel-wise regression analysis identified a region of vmPFC which included damaged 
voxels from five different patients. Our ROI-based lesion analysis independently identified 
four out of the five same patients when selecting on the basis of a pre-defined fMRI region. 
For the subsequent control analyses, we verified that the initial five patients were truly less 
biased to persist, rather than persisting less for other reasons (such as using a drastically 
different strategy, or responding more randomly). We note that if these control analyses are 
limited to the four patients identified in the ROI-based analysis (excluding the additional 
vmPFC patient identified in the voxel-wise analysis), the same conclusions hold.  
 
First, we compared performance across groups. If vmPFC patients are truly less biased to 
persist than other patients, rather than just being more random in their switch behaviour, we 
should expect to see a performance enhancement. We quantified performance as the mean 
number of trials taken to complete a goal, where a lower value means goals were completed 
faster. Since all participants in the patient task completed the identical schedule, this measure 
is not vulnerable to schedule-specific artefacts. We then tested whether vmPFC patients 
performed better than patients with damage elsewhere, using a one-sided parametric test 
(Fig.5d; we used a one-sided test based on our hypothesis that reduced bias should improve 
performance but note the difference remains significant if we were to perform a two-sided 
test).  
 
Second, we confirmed that behaviour among patients with damage to this region was still 
best explained by the same behavioural model as healthy individuals (the optimal ‘full-task 
model’), and not by a more simple strategy, by fitting the four behavioural models in the 
same way as described in Fitting Normative Models (Supplementary fig.9a). 
 
Finally, we verified that the vmPFC patients were not more stochastic in their decision 
process. We quantified stochasticity as inverse temperature, which is the beta weight 
associated with the optimal value in our logistic regression predicting abandonment from 
optimal value. We used two-tailed permutation tests to verify there was no difference in 
stochasticity between the vmPFC lesion group and other patients, and between the vmPFC 
lesion group and age-matched controls (Supplementary fig.9b).  
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Spatial task in lesion patients 
 
Our patient group also performed the interleaved spatial task. We quantified spatial attention 
bias as the accuracy advantage for the current goal item over the alternative item, as 
described in Spatial task analyses. We predicted the vmPFC group would show a lower 
accuracy advantage for the goal item over the alternative items in the interleaved task, since 
attention would not be captured by the goal.  
 
While as predicted, the vmPFC group did not show a significant accuracy or reaction time 
advantage for stimuli related to the current goal (goal item accuracy advantage: mean=0.026, 
std=0.031, Wilcoxon signed-rank for difference against zero: n=5, T=2.0, p=0.188; goal item 
reaction time advantage: mean=-0.017 , std=0.116, Wilcoxon signed-rank for difference 
against zero: n=5, T=5.0, p=0.625), we cannot interpret this result since we also did not 
detect goal-oriented spatial attention effects among patients with lesions elsewhere either 
(goal item accuracy advantage: mean=0.031 , std=0.130, Wilcoxon signed-rank for difference 
against zero: n=18, T=80.0, p=0.832; goal item reaction time advantage: mean=0.041 , 
std=0.104, Wilcoxon signed-rank for difference against zero: n=18, T=5.0, p=0.054). Since 
we were unable to detect goal-oriented attentional biases in either group, there was also no 
difference in attentional biases between groups (permutation test for difference in goal item 
accuracy advantage across groups: mean difference=0.004, p=0.464, n.s.; permutation test for 
difference in goal item reaction time advantage across groups: mean difference=0.058, 
p=0.297, n.s.).  
 
A likely explanation for the difficulty detecting attentional biases in the patient cohort 
compared to the MRI cohort is simply that the fast-paced spatial attention task was too 
difficult for the older brain-damaged population. In general, this is reflected in accuracy: 
accuracy among the patient group was considerably worse compared to our MRI participants 
(mean error in fMRI sample: n=30, mean=0.210 screen units, std=0.026, mean error in 
patient sample: n=23, mean=0.316, std=0.182; permutation test for difference in means: 
mean difference=0.106, p=0.002; see Supplementary fig.9e for raw error in each group). In 
addition, unlike with the MRI cohort, this task was performed remotely with the patients, 
with likely variation in computer and mouse set-up and internet speed hampering the ability 
to detect subtle differences in responses in the spatial task. Given we could not detect goal-
oriented attentional effects in the lesion patient population for the reasons discussed, we 
cannot determine whether lesion location affects spatial attention in this study.   
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