

1 **The circadian clock is a pacemaker of the axonal regenerative ability**

2
3 Francesco De Virgiliis^{1,4,‡}, Franziska Mueller^{1,2}, Ilaria Palmisano¹, Jessica S Chadwick^{1,2},
4 Lucía Luengo Gutierrez¹, Angela Giarrizzo¹, Yuyang Yan^{1,2}, Matt Christopher Danzi³, Carmen
5 Picón Muñoz⁴, Luming Zhou¹, Guiping Kong¹, Elisabeth Serger¹, Thomas Haynes Hutson⁵,
6 ines Maldonado¹, Yayue Song¹, Christoph Scheiermann⁴, Marco Brancaccio^{6,7} and Simone Di
7 Giovanni^{1,‡}

8
9 ¹Molecular Neuroregeneration, Division of Neuroscience, Department of Brain Sciences,
10 Imperial College London, London, UK.

11 ²Graduate School for Neuroscience, Division of Neuroscience, Department of Brain Sciences,
12 Imperial College London, London, UK.

13 ³Department of Human Genetics and Hussman Institute for Human Genomics University of
14 Miami, Miami, Florida, USA.

15 ⁴Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland

16 ⁵Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Lausanne,
17 Switzerland.

18 ⁶UK Dementia Research Institute at Imperial College London, London, UK.

19 ⁷Division of Neuroscience, Department of Brain Sciences, Imperial College London, London,
20 UK.

21 [#]correspondence: simone.di-giovanni@imperial.ac.uk
22 francesco.devirgiliis@unige.ch

23
24 **Summary**

25 Peripheral nervous system injuries lead to long-term neurological disability due to limited
26 axonal regenerative ability. Injury-dependent and -independent physiological mechanisms
27 have provided important molecular insight into neuronal regeneration. However, whether
28 common molecular denominators underpin both injury-dependent and independent biological
29 processes remain unclear. Here, we performed a comparative analysis of recently generated
30 transcriptomic datasets associated with the regenerative ability of sciatic dorsal root ganglia
31 (DRG). Surprisingly, circadian rhythms were identified as the most significantly enriched
32 biological process associated with regenerative capability. We demonstrate that DRG neurons
33 possess an endogenous circadian clock with a 24h oscillations of circadian genes and that their
34 regenerative ability displays a diurnal oscillation in a mouse model of sciatic nerve injury.
35 Consistently, transcriptomic analysis of DRG neurons showed a significant time-of-day
36 dependent enrichment for processes associated with axonal regeneration, development and
37 growth, as well as circadian associated genes, including the core clock genes *Bmal1* and *Clock*.
38 Indeed, DRG-specific ablation of the non-redundant clock gene *Bmal1* showed that it is
39 required for regenerative gene expression, neuronal intrinsic circadian regeneration and target
40 reinnervation. Lastly, lithium, a chrono-active compound, enhanced nerve regeneration, in
41 wildtype but not in *Bmal1* and *Cry1/2*-deficient mice. Together, these data demonstrate that
42 daily rhythms and the molecular clock fine-tune the regenerative response of DRG neurons,
43 and that chrono-active drugs, such as lithium, are a novel potential approach to nerve repair.

44
45 **Introduction**

46 Peripheral nervous system (PNS) injury is an increasingly common condition present across
47 all ages, which is due to traumatic and non-traumatic causes. Axonal regeneration upon PNS
48 injury is limited and lack of nerve re-connectivity typically results in permanent neurological
49 disability^{1,2}. Experimental evidence has shown that the regenerative ability is regulated by both

51 injury-dependent mechanisms, such as the well-established conditioning lesion³ and the
52 recently established enriched conditioning⁴ as well as physiological injury-independent
53 mechanisms, such as environmental enrichment⁵ and dietary regimens^{6,7}. While these
54 studies led to the identification of molecular pathways affecting axonal regenerative ability, a
55 unitary and comprehensive molecular understanding of axonal regeneration is lacking. Thus,
56 we explored the intriguing possibility of a common molecular denominator across these
57 different models and conditions, which could expand our fundamental understanding of axonal
58 regeneration beyond the current knowledge. To this end, we performed an
59 unbiased comparative analysis of enriched signalling pathways from our recently generated
60 datasets associated with non-regenerative versus regenerative conditions. These include
61 peripheral injuries, dietary regimens such as intermittent fasting⁷ and environmental
62 enrichment⁵. Unexpectedly, we identified circadian rhythms as potential common biological
63 mechanism regulating axonal regeneration. The circadian clock is a molecular time-keeping
64 mechanism of ~24h, based on transcription and translation feedback loops that drive clock gene
65 expression and circadian outputs⁸. These include cycles of physiological and behavioural
66 changes that anticipate daily, recurring occurrences of environmental stimuli⁹, such as light or
67 food intake. More specifically, circadian rhythms regulate a vast array of physiological
68 phenomena including transcription¹⁰, translation¹¹, epigenetics¹², inflammation^{13,14},
69 metabolism^{12,15} as well as wound healing processes¹⁶, thus possessing the potential to regulate
70 axonal regeneration. Despite the pervasive nature of circadian clocks, their role in axonal
71 regeneration remains elusive. Here, we show that DRG neurons possess an intrinsic molecular
72 clock machinery that is necessary to time and optimize axonal regeneration and target re-
73 innervation in a mouse model of sciatic nerve injury. Mechanistically, circadian axonal
74 regeneration requires the neuronal expression of the core clock protein Bmal1, which regulates
75 the regenerative program of sensory neurons.

76 Finally, we identified the potential of promoting axonal regeneration after injury by a clock-
77 dependent mechanism, by using the chrono-active drug lithium, currently approved for treating
78 neurological disorders¹⁷⁻¹⁹.

79 Together, our findings indicate that circadian rhythms tune the axonal regenerative ability to
80 specific time windows of the day. This new knowledge could pave the way for the design of
81 chrono-active regenerative therapies and neurorehabilitation regimens.

82

83 **Results**

84 **Time-of-day dependent axon regeneration after sciatic nerve injury**

85 We first aimed to determine the presence of a potential common molecular denominator across
86 different regeneration models and conditions affecting the DRG. To this end, we performed a
87 comparative transcriptomic analysis taking advantage of previously generated RNA
88 sequencing datasets from established non-regenerative spinal dorsal column axotomy (DCA)
89 compared to regenerative models^{4,5,20}. Specifically, we included the regenerative injury-
90 dependent conditioning lesion (sciatic nerve axotomy (SNA²⁰) and sciatic nerve crush (SNC)).
91 We further incorporated environmental enrichment and SNA (EE+SNA⁴, also known as
92 enriched conditioning), as well as regenerative injury-independent models such as
93 environmental enrichment (EE⁵) and intermittent fasting (IF)⁷. We investigated gene ontology
94 (GO) functional categories and ranked them by their enrichment in regenerative versus the
95 DCA non-regenerative datasets (**Figure 1A**). Unexpectedly, comparative GO analyses (Fisher
96 test, P-value < 0.05) of these datasets showed that “Circadian rhythms” was the only enriched
97 biological process shared across all the regenerative datasets analysed that was not enriched in
98 non-regenerative DCA (**Figure 1A**). Therefore, we hypothesised that the circadian clock may
99 influence the regenerative capacity of DRG neurons depending on the time of the day at which
100 the injury is performed. First, we assessed whether daily variations of clock gene expression

101 could be detected in unchallenged DRG by monitoring the expression levels of the core
102 clock genes *Bmal1* (encoded by *Arntl*), *Clock*, *Per1*, *Per2*, *Cry1* and *Cry2* across the day in
103 naïve DRG. We performed experiments every 4h at *Zeitgeber* times (ZTs) 0, 4, 8, 12, 16, 20
104 and 24 (i.e. hours after light onset in a 12h light / 12h dark environment), corresponding to
105 7am, 11am, 3pm, 7pm, 11pm and 3am), and found clock gene expression levels display diurnal
106 oscillations (JTK_CYCLE, $p < 0.05$ for all genes; **Figure 1B, Table 1**), in line with previous
107 reports²¹. Next, we assessed whether the DRG response to injury would differ depending on
108 the time of the day at which the injury is performed. We performed a SNC injury at ZT 0, 4, 8,
109 12, 16, 20 and 24 and assessed sciatic nerve regeneration 24 hours and 72 hours post injury
110 by measuring sciatic regeneration index and fluorescence intensity along the nerve of the
111 regenerative marker SGC10 (**Figure 1C**). Importantly, we observed a significant increase in
112 SCG10 positive regenerating fibres and sciatic regeneration index when the injury was
113 performed at ZT20, compared to other time points, both at 24 hours (**Figure 1D-E and**
114 **Supplementary Figure 1A-B**) and 72 hours post-injury (**Figure 1F-G and Supplementary**
115 **Figure 1C-D**). Given the high heterogeneity of sensory fibres that compose the sciatic nerve,
116 we asked whether different neuronal subsets in the DRG would account for the phenotype we
117 observed. For this, we injected the retrograde tracer cholera toxin B (CTB) in the sciatic nerve
118 where we find the fibres originating in the DRG. Given CTB is injected distally to the lesion,
119 only regenerating fibres are capable of uptaking the tracer, allowing for direct and unequivocal
120 measurement of regenerating DRG neurons. Subsequently, DRG neurons were immunostained
121 with neurofilament-200 (NF-200), as a marker of large diameter proprioceptive neurons as well
122 as calcitonin gene-related peptide (CGRP) as marker of small diameter nociceptors. In line with
123 our previous data, we found that the number of CTB+ DRG neurons (i.e. regenerating neurons)
124 was significantly increased at ZT20 compared to ZT8 (**Supplementary Figure 2 A-B**),
125 indicating higher regeneration potential at ZT20. However, the distribution of CTB labelled
126 DRG neurons in the two neuronal subsets remained the same across the conditions
127 (**Supplementary Figure 2A-C**), suggesting that time-of-day differences in the regenerative
128 response affects proprioceptive and nociceptive populations equally.

129 Studies in neuronal and non-neuronal tissues showed that diurnal oscillations of clock genes
130 modulate cells and organ responses, including inflammation, cell proliferation, hormonal
131 levels as well as injury responses^{9,13,14,16}. Thus, we asked whether non-neuronal cells including
132 macrophages and neutrophils as well as nerve-associated Schwann Cells (SCs), known to play
133 a role in sciatic nerve regeneration after injury²²⁻²⁴, were modulated by the time-of-day at
134 which the injury was performed. We found that macrophage (CD68⁺) and neutrophil (Ly6G⁺)
135 infiltration at the injury site 24h or 72h after injury was unchanged (**Supplementary**
136 **Figure 3A-H and Supplementary Figure 5**). Likewise, we did not observe time-of-day-
137 dependent changes in SCs (SOX10⁺) proliferation 72h after injury, when SCs typically
138 proliferate (**Supplementary Figure 4A-B and Supplementary Figure 5**). Additionally, since
139 neurotrophins are important molecules involved in the regenerative response of DRG neurons
140 after peripheral nerve injury^{25,26}, we measured the levels of the neurotrophins NT3, NT4/5,
141 BDNF and NGF in naïve DRG harvested at the times of trough (ZT8) and peak (ZT20)
142 regeneration potential and observed no changes (**Supplementary Figure 6**).

143 Together, these data show that the regenerative ability of DRG neurons displays a time-of-day
144 dependent regulation and suggest the presence of a neuronal intrinsic endogenous clock that
145 governs the injury response of DRG neurons.

146
147 **Transcriptomic analysis of injured DRG neurons shows time-dependent enrichment for**
148 **circadian and developmental growth biological processes associated with high**
149 **regeneration potential**

150 Next, we investigated the time-of-day dependent transcriptional landscape of DRG neurons
151 associated with the peak (ZT20) and trough (ZT8) in regenerative ability, which positively
152 correlates with *Bmial1* expression (**Supplementary Figure 7**). To this end, we carried out
153 RNA-sequencing (RNA-seq) 72h after a nerve injury was performed at the times of
154 regenerative trough (ZT8) or peak (ZT20) (**Figure 2A**). To specifically enrich for neuronal
155 transcripts, the DRG suspension was selectively enriched for neurons using a BSA gradient
156 (**Figure 2A**). Principal component analysis (PCA) and unsupervised clustering showed a clear
157 separation between the two experimental groups ZT8 vs ZT20 (**Figure 2B and**
158 **Supplementary Figure 8A**). Remarkably, gene ontology (GO) analysis showed a significant
159 enrichment for biological processes associated with chromatin organization and transcription,
160 axonogenesis and axon guidance, neuronal development, cytoskeleton, synaptic regulation and
161 cell adhesion (**Figure 2C and Supplementary File 1 and 2**). Circadian rhythms and clock
162 genes were also enriched, with differentially expressed clock genes including *Arntl* (*Bmial1*),
163 *Clock*, *Timeless*, and *Bhlhe40/41* (upregulated), as well as *Nrl1d1*, *Usp1*, and *Dbp*
164 (downregulated) (**Figure 2D, Supplementary File 1 and Table 2**), supporting the robustness
165 of the dataset and suggesting a possible role for the molecular clock in regulating nerve
166 regeneration. Furthermore, developmental growth genes, such as *Notch2/3*, *Ephrin a4/5* and
167 *Robo1/2* family members as well as classical regeneration associated genes (RAGs) were
168 significantly upregulated at ZT20 vs ZT8. They include the transcription factors *c-myc*, several
169 *Klf* family members, *Atf5*, *Stat3*, *Crebl*, *Crebl-bp* (CBP), *Hif1a*, *FOXO3a* and P53 target genes
170 *Tp53inp1/2*; the cytoskeletal and membrane associated factors *Baspl*, *Ncam1*, *Coronin2a*,
171 *Map1a* and *Map2*; the growth factors *Ngf-rec*, *Vgf*, *Tgf-rec*, *Hgf*, *Fgf11*, *Fgf14* and *Egf*; the
172 signalling molecules *Jak1*, *Prkce* and *Prkcg*, as well as molecules belonging to IL6 signalling
173 such as *Il6st*, among others. (**Figure 2D, Supplementary File 1 and Table 2**). Additional
174 downregulated RAGs, whose inhibition promotes axon regeneration, include the histone
175 deacetylases *Hdac1* and *Hdac2*, *Cacna1s* as well as the GSK3- β signalling associated molecule
176 *Gskip* (**Figure 2D, Supplementary File 1 and Table 2**).
177 Importantly, odds ratio analysis, which measures the statistical correlation between datasets,
178 showed that this RNA-seq dataset correlates significantly with RNA-seq datasets associated
179 with regenerative states (SNA, SNC, IF), but not with a non-regenerative state (DCA)
180 (**Supplementary Figure 8B**). Together, these data show a time-of-day change in
181 transcriptional landscape of DRG neurons after injury and support a role for the molecular
182 clock in regulating the regenerative ability of DRG neurons.
183

184 **A *Bmial1* dependent clock regulates the regenerative growth of DRG neurons**

185 Based on the RNAseq dataset, we asked whether DRG neurons possess
186 an endogenous oscillating clock and whether we can perturb its function via genetic deletion
187 of the non-redundant core clock protein BMAL1²⁷. To this aim, we took advantage of Period
188 2-Luciferase (Per2-Luc) mice where Per2 expression is used as proxy of clock gene oscillation
189 and is quantified by a co-expressed Luciferase reporter. To functionally disrupt the circadian
190 clock *in vitro*, dissociated neuronal enriched DRG were transfected with siRNA anti-*Bmial1* to
191 knock down (KD) BMAL1 protein expression (**Supplementary Figure 9**), or scrambled
192 control. 48h after transfection, DRG cultures were synchronised by a 2h 100nM
193 Dexamethasone (Dexa) pulse as previously reported^{28,29}. 24 hours after synchronization
194 (T=24), luciferase luminescence in neuronal enriched cultures was assessed every 4 hours
195 across a 24-hour period (**Figure 3A**). We observed a rhythmic oscillation in Per2-
196 Luciferase expression in control cultures, which was abolished in BMAL1 KD
197 cultures (JTK_CYCLE, p<0.005) (**Figure 3 B-C and Table 3**), demonstrating the presence of
198 an endogenous BMAL1-dependent clock in DRG neurons.

199 In order to selectively analyse neurons where BMAL1 was knocked down *in vitro*, we
200 transfected dissociated neuronal enriched DRG cultures from *Bmal1*^{flox/flox} mice with an AAV-
201 Cre-GFP or control AAV-GFP for 5 days before re-plating them (**Figure 3D**). After 24 hours in
202 culture, we observed that Cre-GFP infected DRG (*Bmal1* cKO) neurons displayed
203 significantly attenuated neurite outgrowth compared to GFP controls (**Figure 3E-F**). Additionally, *Bmal1* expression was significantly reduced in Cre-GFP neurons compared
204 to GFP controls (**Figure 3E-G**). When we re-induced BMAL1 expression in DRG neurons by
205 transfecting AAV-Cre-GFP infected cultured DRG with a *Bmal1* over-expression plasmid
206 (**Figure 3D**), we observed a significant rescue of the neurite outgrowth phenotype correlated
207 with a rescued BMAL1 protein expression. (**Figure 3E-G**). Importantly, the number of neurons
208 did not differ between experimental conditions indicating equal survival rates (**Supplementary**
209 **Figure 10**). Together, these data demonstrate that BMAL1 controls the endogenous clock and
210 the regenerative growth of DRG sensory neurons.
211

212

213 ***Bmal1* deletion abolishes circadian-dependent axon regeneration and target re- 214 innervation of DRG neurons**

215 We next investigated whether a functional clock was required for the time-of-day dependent
216 DRG regeneration *in vivo*. To functionally disrupt the molecular clock *in vivo*, we
217 conditionally deleted *Bmal1* in DRG neurons by injecting an AAV-Cre-GFP or control AAV-
218 GFP in the sciatic nerve of *Bmal1*^{flox/flox} mice (cKO) 4 weeks before performing a SNC at the
219 regeneration peak (ZT20) and trough (ZT8) (**Supplementary Figure 11 and Supplementary**
220 **Figure 12**), and assessed sciatic nerve regeneration 72 hours after injury (**Figure**
221 **4A**). Importantly, similarly to *in cell culture* data, *Bmal1* deletion did not lead to neuronal
222 toxicity, given that the number of neurons and apoptotic nuclei did not differ between
223 conditions (**Supplementary Figure 13**). Additionally, to directly assess regeneration of
224 infected DRG neurons, CTB was injected distally to the lesion site at the time of the injury and
225 CTB positive GFP transduced DRG neurons were analysed, allowing for direct and
226 unequivocal measurement of regenerating DRG neurons. While control virus injected animals
227 reproduced the time-of-day dependent phenotype in neuron regeneration, this was completely
228 abrogated in Cre-virus-injected cKO animals, with the ZT20 regeneration capacity being
229 reduced to ZT8 levels (**Figure 4B-D and Supplementary Figure 11**). To assess whether
230 *Bmal1* deletion in DRG neurons affects sensorimotor behaviour, which might explain the
231 phenotype observed, we quantified locomotor activity using an open field test and
232 sensorimotor function with a grid walk test prior to injury at ZT8 and ZT20 in wild-type (WT)
233 and *Bmal1* cKO animals. We observed increased locomotor activity when mice were tested
234 during their active phase (ZT20) compared to their resting phase (ZT8) (**Supplementary**
235 **Figure 14B**). However, locomotor activity and sensorimotor function were unaltered in *Bmal1*
236 cKO compared to WT animals (**Supplementary Figure 14A-B**). These data indicate that the
237 BMAL1-dependent time-of-day differences in regeneration are not due to *Bmal1* cKO
238 behavioral alterations. Additionally, we investigated whether *Bmal1* was required for the
239 expression of classical RAGs^{30,31} whose expression is induced by a nerve injury versus sham
240 surgery and whose manipulation has previously been found to affect the regenerative ability of
241 DRG neurons^{30,31}. In line with the nerve regeneration and RNA-seq data, we found that
242 expression of *c-myc*, *Creb*, *Stat3*, *Tp53* and *Il6* signalling was also induced at ZT20 vs ZT8
243 (**Supplementary Figure 15**). In addition, we observed reduced expression levels in *Atf3*, *c-*
244 *jun*, *c-myc*, *c-fos*, *Creb*, *Stat3* in *Bmal1* cKO when SNC was performed at ZT20, while no
245 changes were observed in *Tp53*, *Il6*, *Rac1* or the control gene β 3-tubulin expression levels
246 (**Supplementary Figure 15C**). By immunostaining, we observed that the levels of pCREB and
247 pS6 were increased when an injury was performed at ZT20 compared to ZT8 and that this
248 increase was abolished in *Bmal1* cKO DRG compared to controls (**Supplementary Figure**

249 **15).** The regeneration-associated epigenetic mark (RAE) H3K27ac³², which is acetylated by
250 CBP (upregulated in ZT20 vs ZT8 in DRG neurons after injury), was also increased at ZT20
251 vs ZT8 in WT but not in *Bmal1* cKO DRG compared to controls (**Supplementary Figure 16**).
252 Together, these data suggest that *Bmal1* regulates the regenerative transcriptional response of
253 DRG neurons.

254 While injured adult PNS fibres can mount a regenerative response, nerve regeneration is slow
255 and often incomplete, resulting in lack of target reinnervation and long-term disability^{1,2,25}.
256 Thus, we asked whether the regenerative gains observed up to 72 hours after SNC would result
257 in improved long-term target re-innervation and whether this effect was due to the presence of
258 a functional *Bmal1*-dependent clock in DRG neurons. Therefore, we conditionally deleted
259 *Bmal1* in DRG neurons by injecting an AAV-Cre-GFP or control AAV-GFP in the sciatic
260 nerve of *Bmal1*^{fl/fl} mice 4 weeks before performing a SNC at ZT20 and ZT8 (**Figure 4E**).
261 Target re-innervation was assessed 3 weeks after SNC by measuring the number of
262 epidermal sensory fibres present in the hind paws and by measuring the number CTB positive
263 GFP infected DRG neurons, where CTB was injected in the gastrocnemius
264 and tibialis anterior muscles 1 week prior to sacrificing the mice (**Figure 4E**). Remarkably,
265 in line with our previous data, we found that 21 days post-SNC, target re-innervation in the
266 skin (**Figure 4F-G**) and in the muscles (**Figure 4H-I**) were augmented when SNC was
267 performed at ZT20 compared to ZT8 and that this effect was abolished in mice lacking
268 functional *Bmal1* in DRG neurons (**Figure 4F-I**).

269 These data indicate that *Bmal1* deletion hinders the ability of DRG neurons to mount a
270 regenerative response in a time-of-day dependent manner as shown by the reduced expression
271 and activation of RAGs as well as reduced levels of regenerative H3K27ac when SNC is
272 performed at ZT20.

273 Together, they suggest a crucial role for *Bmal1* in orchestrating the transcriptional and
274 signalling events underpinning the regenerative response to injury of DRG sensory neurons.
275

276 **Lithium treatment promotes axonal regeneration after sciatic nerve injury via a clock- 277 dependent mechanism**

278 We have thus far demonstrated that DRG neurons require a functional oscillating clock to be
279 able to mount an appropriate regenerative response. Indeed, we found that regeneration is
280 increased at specific times-of-day and that this increase is impaired by disrupting the clock *in*
281 *vivo*, suggesting that manipulating the clock may promote axon regeneration. Interestingly,
282 recent studies showed that chronoactive drugs, such as lithium, are able to interfere with the
283 clock modulating the amplitude of circadian rhythms³³. Lithium is widely used as a treatment
284 of bipolar disorder, a neurological disorder associated with disrupted circadian rhythms¹⁷⁻¹⁹
285 and associated with increased expression of clock genes, including *Bmal1*³⁴⁻³⁶.
286 Mechanistically, lithium has been suggested to act also on glycogen synthase kinase-3β (GSK-
287 3β), which regulates degradation of CRY2, a canonical clock protein determining circadian
288 period^{17,33-36}. Additionally, *Gsk-3β* is a key regeneration-associated gene whose inhibition has
289 been shown to increase axonal regeneration after injury^{37,38}. These observations suggest the
290 hypothesis that lithium could promote axonal regeneration. To test this, we performed SNC at
291 ZT8 (with lower regenerative potential) in WT vs *Bmal1*^{-/-} neurons and *Cry1/2*^{-/-} mice and
292 assessed regeneration 72h later (**Figure 5A**). We first treated mice by injecting lithium chloride
293 i.p. (1 mEq/Kg) right after injury, then lithium carbonate (600 mg/L) was given in drinking
294 water for 3 days from the day of surgery until sacrifice. Remarkably, we found that lithium can
295 promote regeneration in WT (**Figure 5B-E**) but not in *Bmal1*^{-/-} (**Figure 5B-C**) nor in *Cry1/2*^{-/-}
296 mice (**Figure 5D-E**), suggesting that the effect of lithium is due to the presence of an intact
297 clock. No signs of activated cell death pathways by activated caspase 3 immunostaining were
298 detected in the *Bmal1*^{-/-} and *Cry1/2*^{-/-} DRG neurons (**Supplementary Figure 17**). Additionally,

299 we observed that both pCREB and pS6 levels are increased by lithium treatment in WT but not
300 in *Cry1/2*^{-/-} DRG neurons after injury (**Supplementary Figure 18**). Importantly, lithium
301 induced BMAL1 expression (**Supplementary Figure 19**) but not CREB or S6 phosphorylation
302 (**Supplementary Figure 20**) in naïve DRG neurons, supporting the idea that lithium promotes
303 repair by acting via the molecular clock to modulate injury-dependent regenerative pathways.
304 Together, these data show that enhancing the amplitude of the circadian rhythm with lithium
305 promotes nerve regeneration, paving the way to the use of chrono-active compounds for
306 nervous system repair.

307

308 Discussion

309 In this study, we report evidence for a functional role of the circadian clock machinery in DRG
310 neurons that regulates the timing and extent of axonal regeneration following a sciatic nerve
311 injury. This circadian clock relies on the *Bmal1*-dependent neuronal intrinsic regulation of the
312 regenerative ability of DRG sensory neurons. Specifically, we found that a SNC injury
313 performed at ZT20 induces a regenerative transcriptional program dependent upon circadian
314 rhythm, which elicits a long-lasting increase in regeneration and target re-
315 innervation compared to an injury performed at other ZTs. Importantly, this effect was
316 abolished when we disrupted the clock in DRG neurons by conditionally deleting the non-
317 redundant clock core protein BMAL1. Furthermore, we observed an endogenous, oscillating
318 clock in DRG neurons, which was disrupted by the time of the day specific deletion
319 of *Bmal1*. Lastly, we identified lithium, a chrono-active drug widely used to treat bipolar
320 disorder, as a proof of principle that pharmacological manipulation of the circadian clock might
321 be a new avenue to promote repair after injury, although more systematic work will be needed
322 to exploit its full potential.

323 Inflammatory cells and homeostatic processes possess circadian features and previous studies
324 reported circadian oscillation affecting inflammatory cell numbers and activation of
325 homeostatic conditions^{13,14}. However, here we did not observe post-injury diurnal changes in
326 macrophages, neutrophils or Schwann cells infiltration at the sciatic injury site. This is in line
327 with our findings supporting a neuronal intrinsic molecular clock regenerative
328 mechanism priming DRG neurons in a time-of-day dependent manner. In fact, our data indicate
329 a clock-dependent priming of DRG neurons prior to the injury where there is no inflammation
330 or leukocyte infiltration, suggesting that the role of non-neuronal cells in clock-dependent
331 reprogramming of DRG neurons may be of secondary importance in the circadian control of
332 nerve regeneration.

333 Evidence of an interplay between an injury response and circadian system has been reported in
334 a number of tissues and models including skin wound healing¹⁶, intestinal regeneration³⁹, spinal
335 cord injury^{40,41} and pain²¹. However, the specific circadian regulation of the axonal
336 regenerative ability has remained elusive so far. Here we show that *Bmal1* is required for
337 sciatic nerve regeneration and target re-innervation as well as for the activation of the
338 regenerative program of DRG sensory neurons. *Bmal1* neuronal conditional deletion was able
339 to selectively impair the regenerative response of DRG neurons at the regeneration peak (ZT20)
340 while no significant differences in regeneration or activation of RAGs and RAEs were found
341 at the regeneration trough (ZT8). Thus, *Bmal1* acts as time-of-day dependent master regulator
342 of RAGs and RAEs by regulating transcription factors and histone acetylation, ultimately
343 coordinating and synchronising molecular mechanisms for successful axonal regeneration.

344 The evidence that peripheral neuronal *Bmal1* deletion is sufficient to abolish time-of-day-
345 dependent nerve regeneration suggests that the central clock is not required for this regenerative
346 phenotype. Additionally, the *Bmal1*-dependent circadian control of regeneration does not seem
347 to depend upon locomotor activity because neuronal *Bmal1* deletion does not disrupt
348 locomotion.

349 Since manipulation of *Bmal1* expression impairs the physiological oscillation of the circadian
350 clock, *Bmal1* overexpression may not be a feasible approach to enhance regeneration.
351 However, the future identification of the molecular mechanisms controlling the neuronal
352 molecular clock holds the promise to positively affect the regenerative ability after nervous
353 system injuries.

354 Importantly, a recent study reported that burn injury healing time in humans is increased ~60%
355 when burns occurred during the resting phase (night) compared with during the active phase
356 (day) ¹⁶, suggesting that the power of clock-dependent mechanisms may be harnessed via
357 chronotherapeutic approaches, including timed therapies and chrono-active drugs ⁴². In line
358 with this, we successfully used lithium, a chrono-active drug, as a proof of principle approach
359 in a model of sciatic nerve injury. Finally, the circadian influence on axonal regeneration
360 suggests that repair strategies relying on neurorehabilitation or neuronal activity should
361 consider time-tuned approaches during the 24 hours cycle to align with changes in the neuronal
362 intrinsic regenerative ability.

363 Given the pervasive nature of circadian clocks, our findings finally suggest a careful re-
364 evaluation of the data collected thus far in the field that could have been affected by the
365 different time-of-day at which the experiments have been performed. It also calls for caution
366 in designing future experiments, which must hereafter consider clock-dependent mechanisms.
367

368 **Limitations of the study**

369 The study provides a first evidence of a functional clock in DRG sensory neurons that controls
370 time-of-day dependent regenerative ability by regulating the transcriptional landscape of DRG
371 neurons. Additionally, it provides initial evidence of the possibility to exploit clock-dependent
372 mechanisms to implement or develop future clinically suitable strategies. However, it also
373 bears some limitations. i) while we demonstrate that *Bmal1* is required for the gene expression
374 of RAGs supporting nerve regeneration, due to intrinsic technical limitations of the model (low
375 DNA yield from DRG for successful Cut&Run), we were not able to provide direct evidence
376 that BMAL1 occupies gene regulatory elements of these genes; ii) due to current unavailability
377 of specific chrono-active compounds, we used lithium as chrono-active drug, which, while of
378 high translational value, it has pleiotropic effects; (iii) this study was performed in a model of
379 peripheral nerve injury, and we have no evidence of whether enhancing the amplitude of the
380 molecular clock could benefit axon regeneration in a model of central nervous system injury.
381

382 **Acknowledgments**

383 This work was supported by start-up funds from the Department of Brain Sciences, Imperial
384 College London (SDG); The Rosetrees Trust (SDG). The research was supported by the
385 National Institute for Health Research (NIHR), Imperial Biomedical Research Centre (MED,
386 SDG). The research was supported by the National Institute for Health Research (NIHR)
387 Imperial Biomedical Research Centre (SDG). The views expressed are those of the author(s)
388 and not necessarily those of the NHS, the NIHR or the Department of Health.
389

390 **Author contributions**

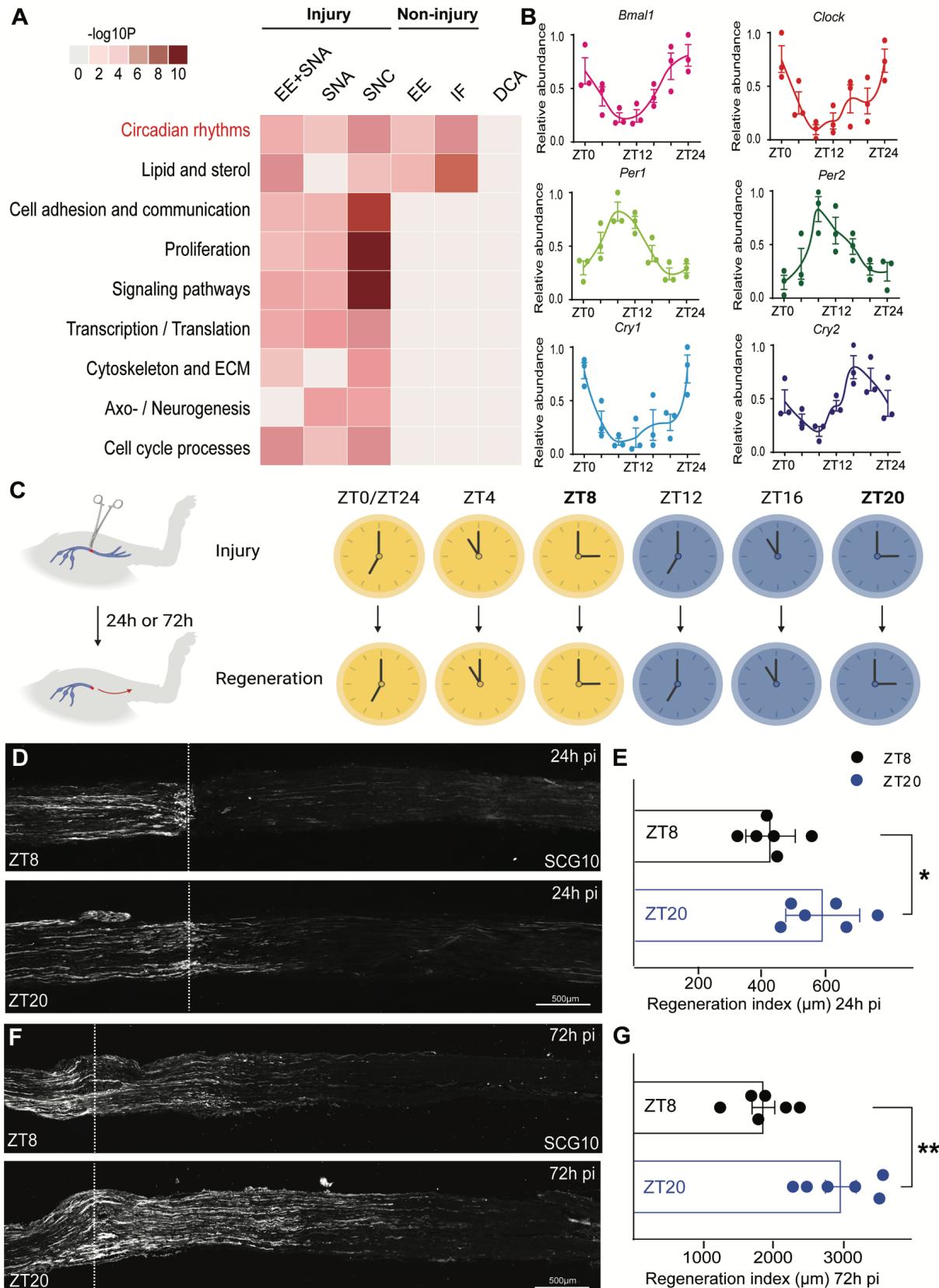
391 F.D.V. designed, performed experiments, data analysis and wrote the manuscript; F.M.
392 performed data analysis; I.P. performed experiments and data analysis, J.S.C. performed
393 experiments; L.L.G. performed experiments and data analysis; A.G. performed experiments
394 and data analysis; Y.Y. performed experiments; M.C.D. performed data analysis; C.P.M.
395 performed experiments; L.Z. performed experiments; G.K. performed experiments; E.S.
396 performed experiments; T.H.H. performed experiments; C.S. designed experiments and edited
397 the manuscript M.B. designed experiments and edited the manuscript; S.D.G. designed
398 experiments, provided funding and edited the manuscript.

399

400 **Competing interests**

401 The authors declare no competing interests.

402

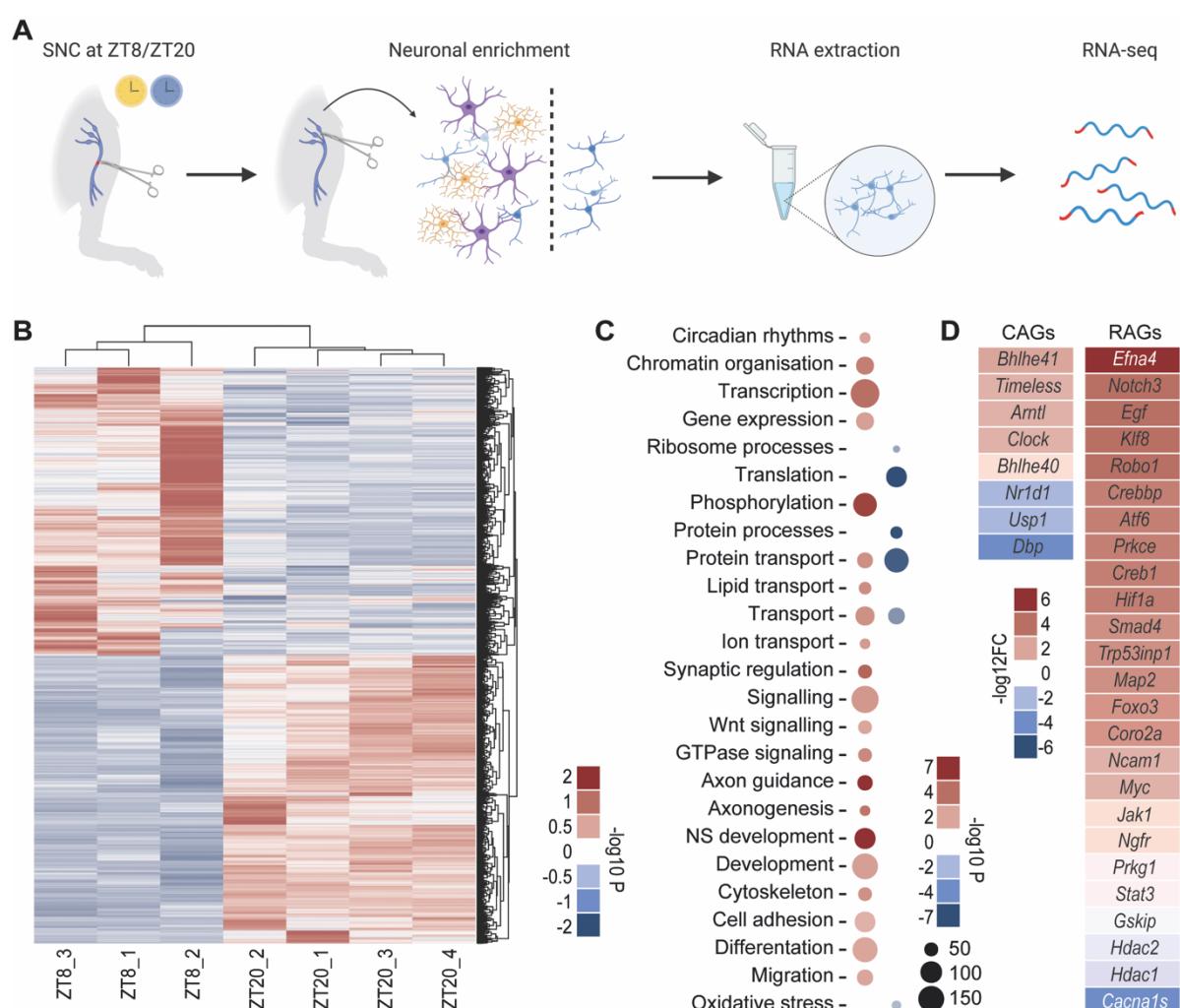

403 **Data availability**

404 The datasets analysed during the current study are available in the following repository:

405 GSE161342; GSE138769; GSE97090; GSE224316; GSE235687.

406

407

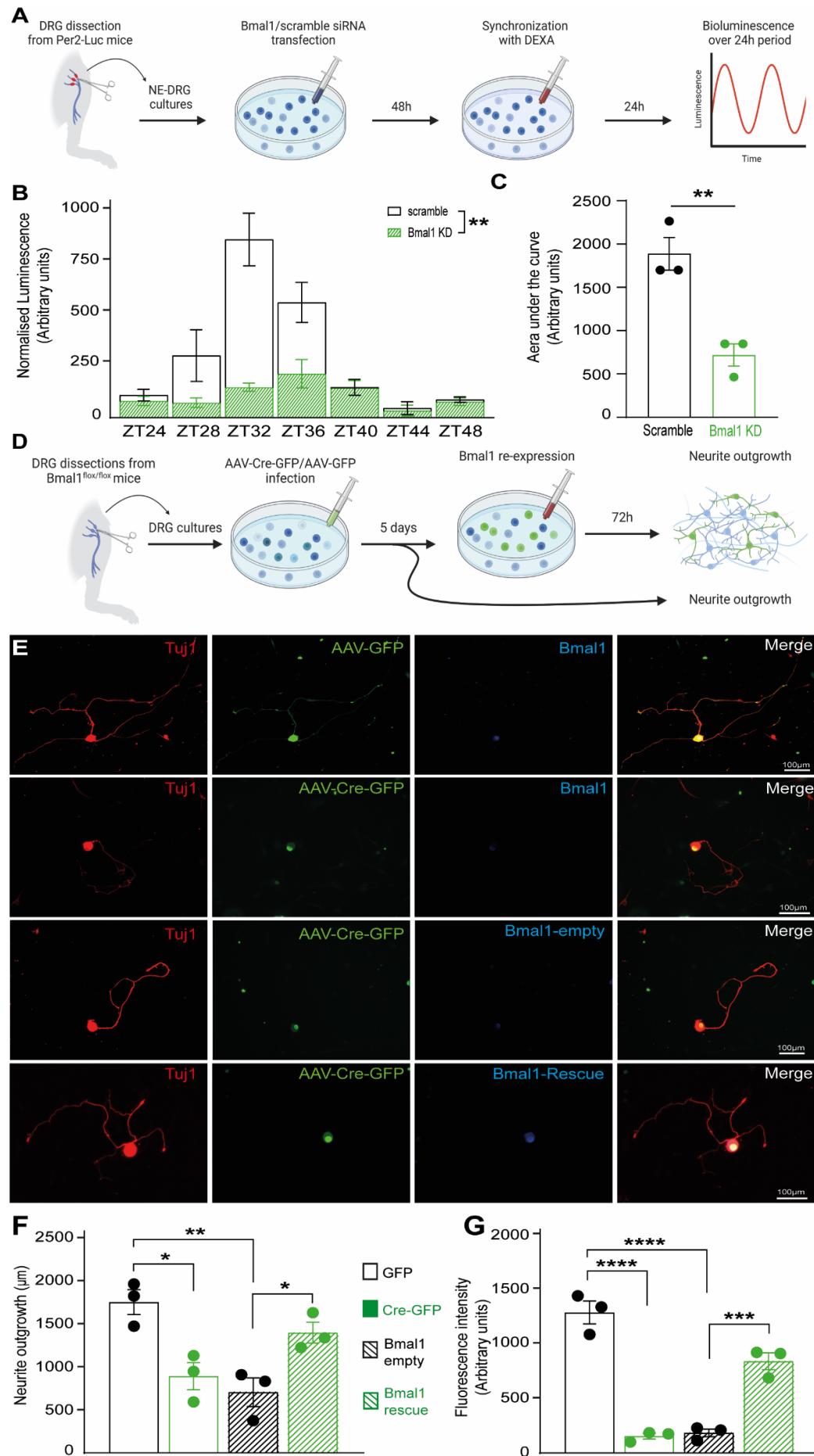


408

409 **Figure 1. Circadian rhythms are common regulators of axonal regeneration.**

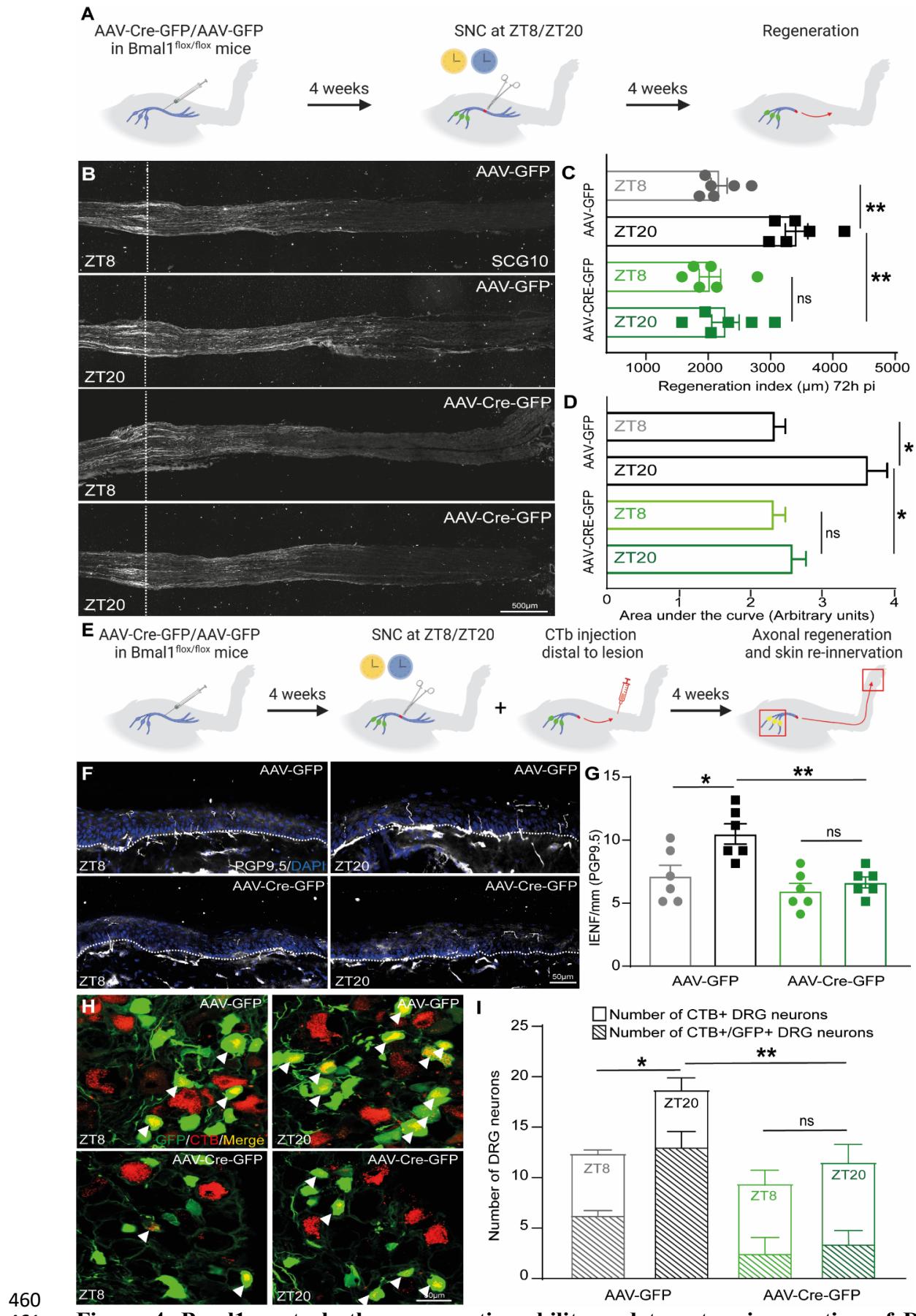
410 A. Heatmap showing the Gene Ontology analysis (molecular function, DAVID) of the DE
 411 genes modulated by injury-dependent, injury-independent regenerative and non-regenerative
 412 (DCA) conditions (modified Fisher's exact, $p < 0.05$), (EE=Enriched environment, SNA=sciatic
 413 nerve axotomy, SNC=Sciatic nerve crush, IF=intermittent fasting, DCA=dorsal column

414 axotomy). **B.** Quantitative RT-PCR analysis of the mRNA levels of the circadian clock genes
 415 *Bmal1*, *CLOCK*, *Per1*, *Per2*, *Cry1* and *Cry2* mRNA levels in DRG at ZT0, ZT4, ZT8, ZT12,
 416 ZT16, ZT20 and ZT24 and normalised over GAPDH (mean \pm SEM, JTK_CYCLE analysis,
 417 $p<0.05$, $n=3$ biologically independent animals/group examined over 3 independent
 418 experiments). **C.** Timeline for the *in vivo* experiment. **D.** Representative images of sciatic
 419 nerves injured at ZT8 or ZT20 stained for SCG10 24h after SNC (pi=post injury). Scale bar,
 420 500 μ m. **E.** Quantification of SCG10 intensity from the lesion site shown as regeneration index
 421 (distance from the injury site (dotted lines) at which 50% of the fluorescence decays) (one-way
 422 ANOVA, Tukey's post-hoc, $p<0.05$, $n=6$ biologically independent animals/group).
 423 Fluorescence intensity was measured in one series of tissue sections for each nerve. **F.** Timeline
 424 for the *in vivo* experiment. **G.** Representative images of sciatic nerves injured at ZT8 or ZT20
 425 stained for SCG10 72h after SNC (pi=post injury). Scale bar, 500 μ m. **H.** Quantification of
 426 SCG10 intensity from the lesion site shown as regeneration index (distance from the injury site
 427 (dotted lines) at which 50% of the fluorescence decays) (one-way ANOVA, Tukey's post-hoc,
 428 $p<0.05$, $n=6$ biologically independent animals/group). Fluorescence intensity was measured
 429 in one series of tissue sections for each nerve.
 430



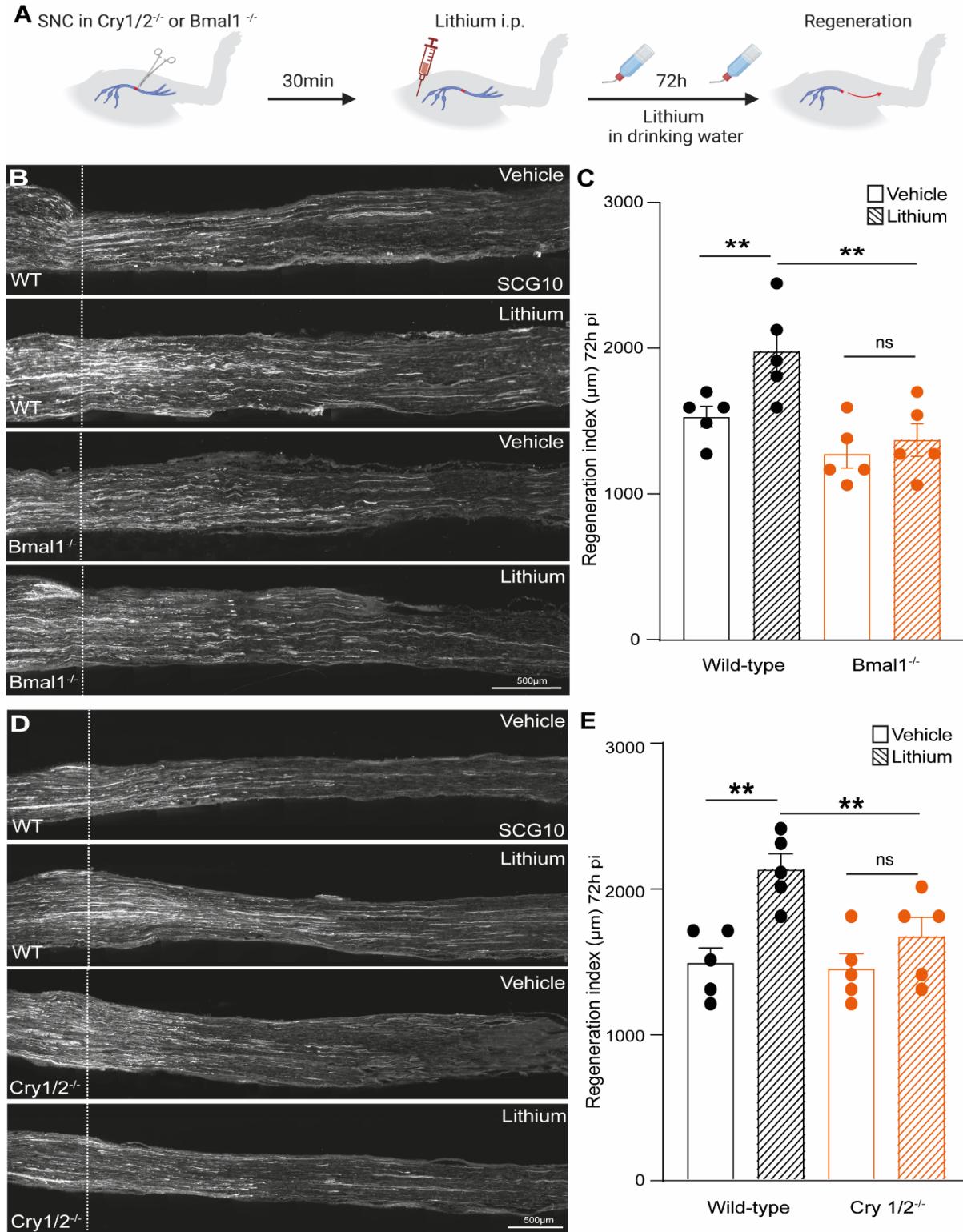
431
 432 **Figure 2. Transcriptional analysis in DRG after injury identifies time-of-day dependent**
 433 **processes associated with axonal regeneration**

434 **A.** Timeline for the transcriptomic experiment. **B.** Heatmap of differentially expressed genes
 435 (FDR<0.01) belonging to DRG neurons injured at ZT20 vs ZT8, analysed 72h after injury. **B.**
 436 Dendrogram of unsupervised clustered DE genes across all experimental conditions (ZT8 vs


437 ZT20, -log10 adjusted p-value<0.05, red=upregulated, blue=downregulated). **C.** Dot-plot
438 showing the Gene Ontology analysis (biological processes, DAVID) of the DE genes
439 modulated by a ZT8 or ZT20 nerve injury in DRG neurons (-log10 adjusted p-value<0.05,
440 red=upregulated, blue=downregulated). **D.** Expression levels of Circadian associated genes
441 (CAGs) and regeneration associated genes (RAGs) (-log2 Fold Change, red=upregulated,
442 blue=downregulated) (EE=Enriched environment, SNA=sciatic nerve axotomy, SNC=Sciatic
443 nerve crush, IF=intermittent fasting, DCA=dorsal column axotomy).

444

446 **Figure 3. Bmal1 controls the molecular clock and regenerative growth of DRG neurons.**
447 **A.** Timeline for the *in vitro* experiment. **B.** Representation of normalised luminescence in DRG
448 neuronal cell cultures from Per-Luc animals transduced with siRNA anti-*Bmal1* vs scramble
449 and analysed at ZT0, ZT4, ZT8, ZT12, ZT16, ZT20 (JTK CYCLE analysis, $p < 0.005$, $n = 3$
450 biologically independent experiments /group). **C.** Histogram quantification of the area under
451 the curve of the experiment in B (Student T-test, $p < 0.05$). **D.** Timeline for the *in vitro*
452 experiment. **E.** Representative images of cultured DRG neurons from *Bmal1*^{fl/fl} infected
453 with GFP vs Cre-GFP and immunostained for Tuj1 (red), GFP (green) and BMAL1 (blue).
454 Scale bar, 100 μ m. **F.** Quantification of neurite outgrowth shown as neurite outgrowth in μ m
455 (one-way ANOVA, Tukey's post-hoc, $p < 0.05$, $n = 3$ biologically independent
456 experiments/group). **G.** Quantification of Bmal1 fluorescence (one-way ANOVA, Tukey's
457 post-hoc, $p < 0.05$, $n = 3$ biologically independent experiments /group).


458
459

460
461 **Figure 4. *Bmal1* controls the regenerative ability and target re-innervation of DRG**
462 **neurons *in vivo*.**

463 **A.** Timeline for the *in vivo* experiment. **B.** Representative images of sciatic nerves from
464 Bmal1^{fl/fl} animals infected with GFP vs Cre-GFP virus injured at ZT8 or ZT20 immunostained
465 for SCG10 72h after SNC. Scale bar, 500 μ m. **C.** Quantification of SCG10 intensity from the
466 lesion site shown as regeneration index (distance from the injury site at which 50% of the
467 fluorescence decays) (two-way ANOVA, Tukey's post-hoc, $p<0.05$, $n=4$ biologically
468 independent animals/group). Fluorescence intensity was measured in one series of tissue
469 sections for each nerve. **D.** Quantification of the SCG10 fluorescence along the nerves starting
470 from the lesion sites (dotted lines) visualised as area under the regeneration curve (two-way
471 ANOVA, Tukey's post-hoc, $p<0.05$, $n=6$ biologically independent animals/group).
472 Fluorescence intensity was measured in one series of tissue sections for each nerve. **E.** Timeline
473 for the *in vivo* experiment. **F.** Representative images of skin sections from Bmal1 animals
474 infected with GFP vs Cre-GFP virus injured at ZT8 or ZT20 stained for PGP9.5 21days after
475 SNC. Scale bar, 50 μ m. **G.** Quantification of PGP9.5 positive nerve endings in the epidermis
476 (above dotted lines) (two-way ANOVA, Tukey's post-hoc, $p<0.05$, $n=4$ biologically
477 independent animals/group). Number of fibres was measured in one series of tissue sections
478 for each skin section. **H.** Representative images of DRGs from Bmal1 animals infected with
479 PGFP vs Cre-GFP (green) virus injured at ZT8 or ZT20, injected with CTB retrograde tracer
480 (red) and analysed 21days after SNC. Arrowheads highlight double positive DRG neurons
481 (yellow). Scale bar, 50 μ m. **I.** Quantification of CTB and GFP double positive DRG neurons
482 (two-way ANOVA, Tukey's post-hoc, $p<0.05$, $n=6$ biologically independent animals/group).
483 Number of cells was measured in one series of tissue sections for each DRG.

484
485

486

487

Figure 5. Lithium promotes axonal regeneration after SNC *in vivo*.

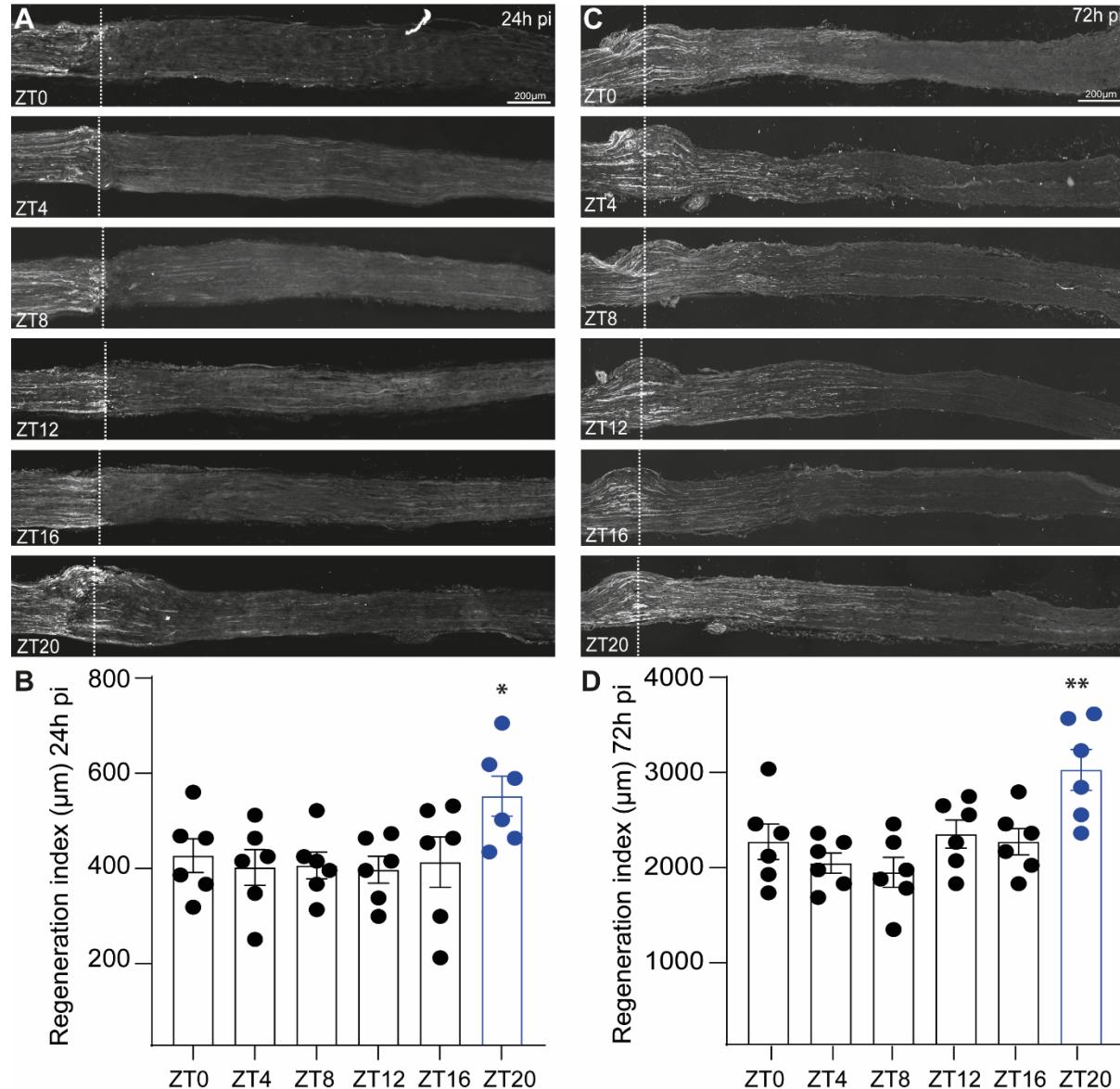
488

489

490

491

492

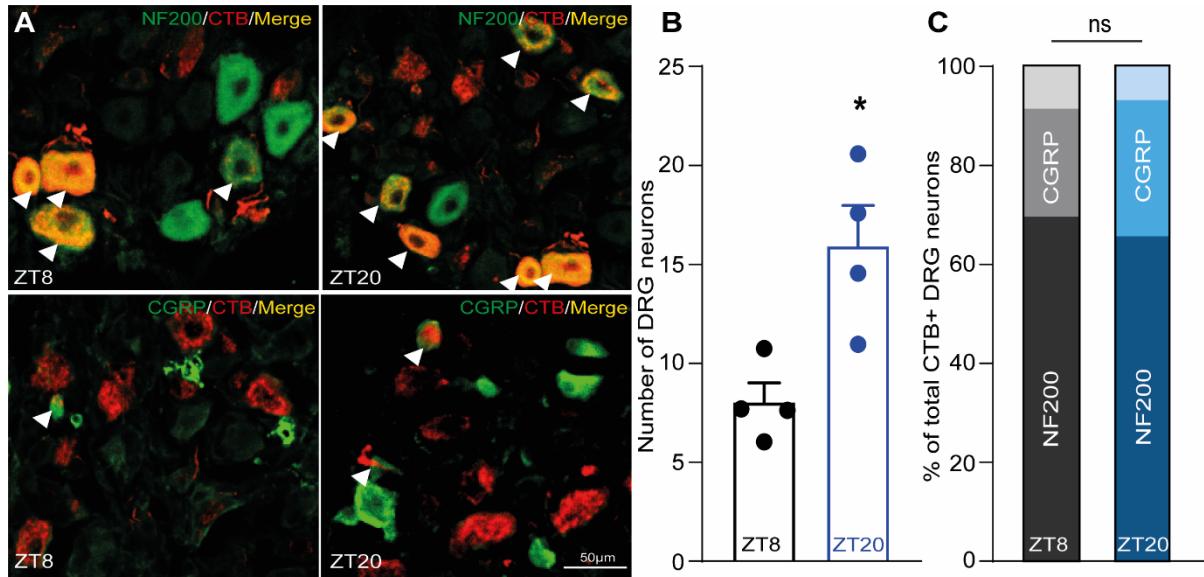

493

494

A. Timeline for the *in vivo* experiment. B. Representative images of sciatic nerves from WT and *Bmal1*^{-/-} DRG neurons treated with lithium or vehicle and stained for SCG10 72h after SNC. Scale bar, 500 μ m. C. Quantification of SCG10 intensity from the lesion site shown as regeneration index (distance from the injury site at which 50% of the fluorescence decays) (two-way ANOVA, Tukey's post-hoc, $p < 0.05$, $n = 5$ biologically independent animals/group). Fluorescence intensity was measured in one series of tissue sections for each nerve. D. Representative images of sciatic nerves from WT and *Cry1/2*^{-/-} animals treated with lithium or

495 vehicle and stained for SCG10 72h after SNC. Scale bar, 500 μ m. **E.** Quantification of SCG10
496 intensity from the lesion site shown as regeneration index (distance from the injury site at which
497 50% of the fluorescence decays) (two-way ANOVA, Tukey's post-hoc, $p<0.05$, $n=5$
498 biologically independent animals/group). Fluorescence intensity was measured in one series of
499 tissue sections for each nerve.

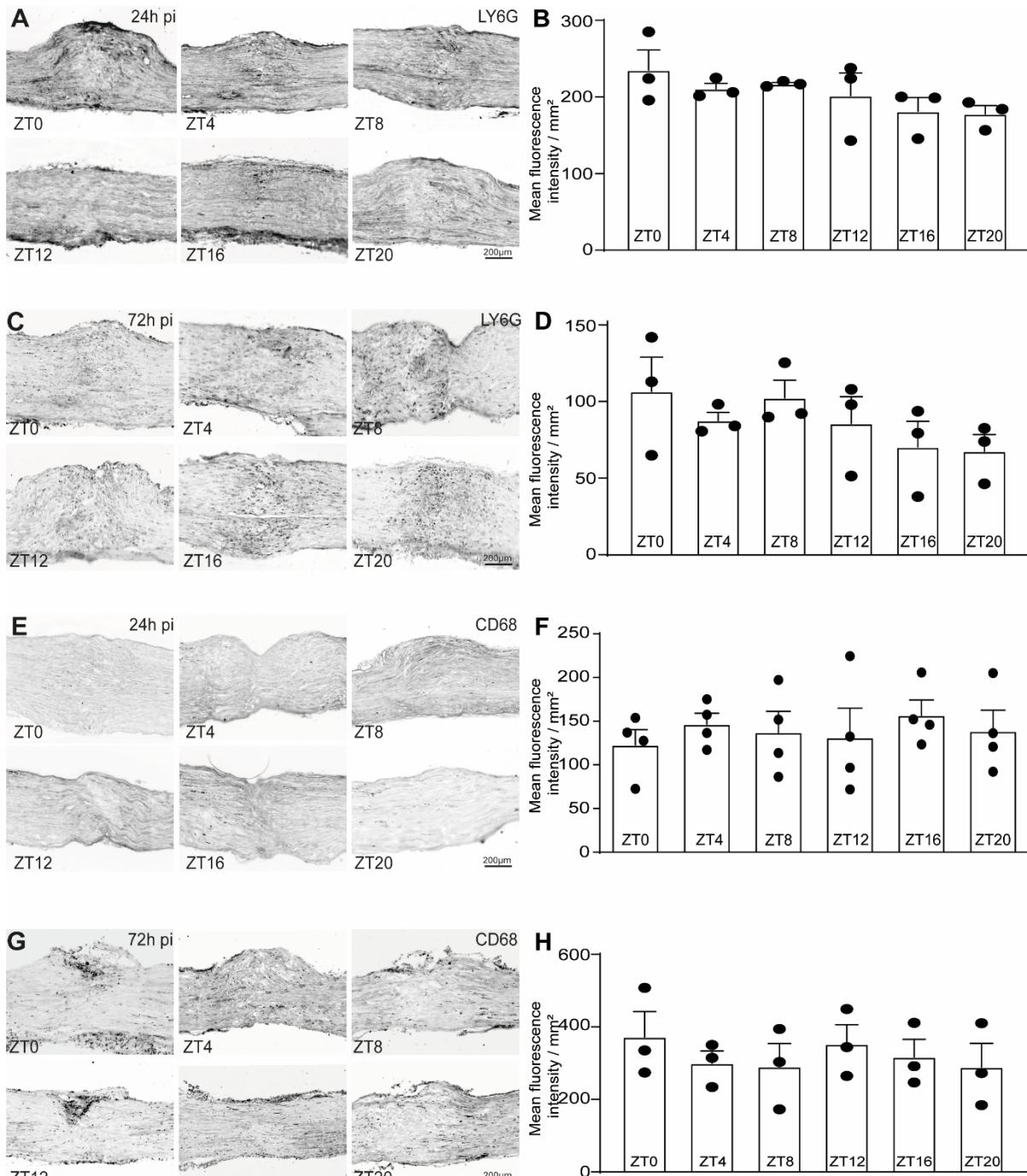
500


501
502 **Supplementary Figure 1. A.** Representative images of sciatic nerves injured at ZT8 or ZT20
503 stained for SCG10 24h after SNC. Scale bar, 500 μ m. **B.** Quantification of SCG intensity from
504 the lesion site shown as regeneration index 24h after injury (distance from the injury site (dotted
505 lines) at which 50% of the fluorescence decays) (mean \pm SEM, one-way ANOVA, Tukey's
506 post-hoc, $p<0.05$, $n=6$ biologically independent animals/group). Fluorescence intensity was
507 measured in one series of tissue sections for each nerve. **C.** Representative images of sciatic
508 nerves injured at ZT8 or ZT20 stained for SCG10 72h after SNC. Scale bar, 500 μ m. **D.**
509 Quantification of SCG intensity from the lesion site shown as regeneration index 72hr after
510 injury (distance from the injury site (dotted lines) at which 50% of the fluorescence decays)
511 (mean \pm SEM, one-way ANOVA, Tukey's post-hoc, $p<0.05$, $n=6$ biologically independent

512 animals/group). Fluorescence intensity was measured in one series of tissue sections for each
513 nerve.

514

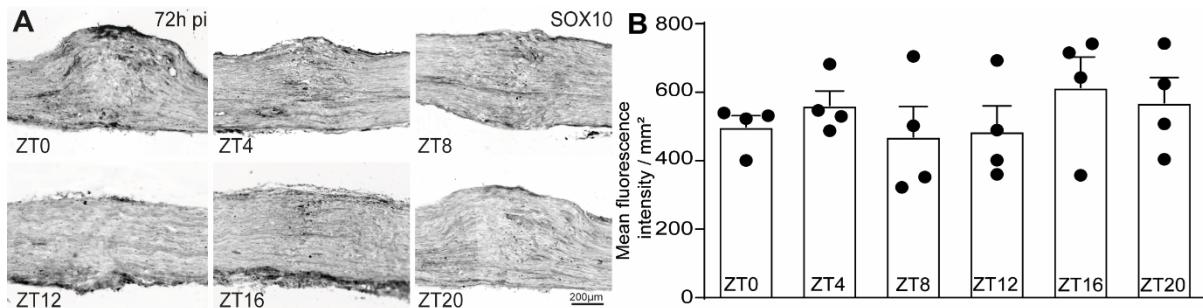
515


516

517

518 **Supplementary Figure 2. A.** Representative images of DRG injured at ZT8 or ZT20, injected
519 with CTB retrograde tracer 429 (red), stained with NF-200 (green, top) or CGRP (green, bottom)
520 and analysed 3 days afterSNC. Arrowheads highlight double positive DRG neurons
521 (yellow). Scale bar, 50 μ m. **B.** Quantification of CTB positive DRG neurons injured at ZT8 or
522 ZT20 (Student T-test, $p<0.05$, $n = 4$ biologically independent animals/group). Number of cells
523 was measured in one series of tissue sections for each DRG. **C.** Quantification of CTB and NF-
524 200 (or CGRP) double positive DRG neurons injured at ZT8 or ZT20 (Student T-test, $p<0.05$,
525 $n = 4$ biologically independent animals/group). Number of cells was measured in one series of
526 tissue sections for each DRG.

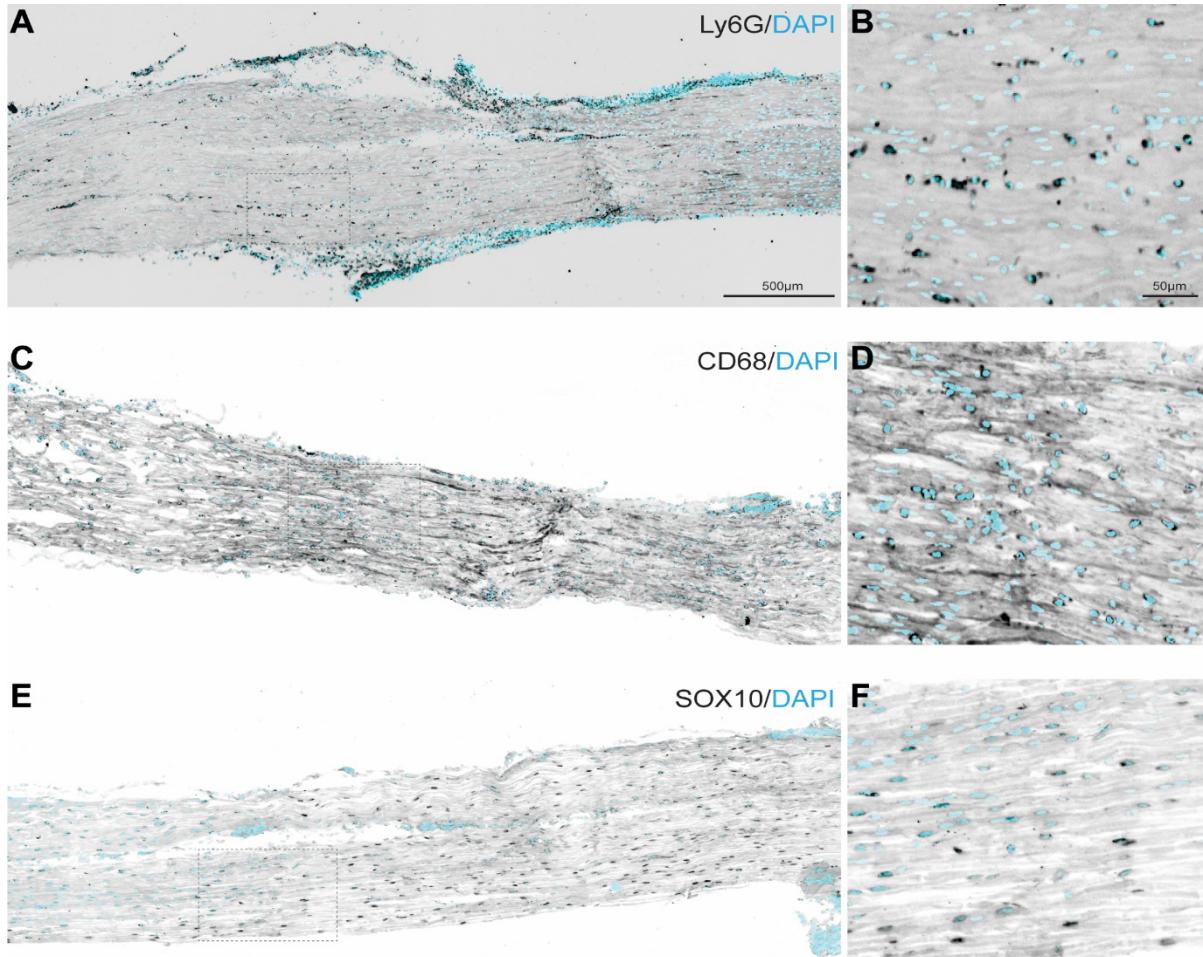
527


528
529 **Supplementary Figure 3. A.** Representative images of sciatic nerves from animals injured at
530 ZT0, ZT4, ZT8, ZT12, ZT16 or ZT20 stained for LY6G 24h after SNC. Scale bar, 200 μm. **B.**
531 Quantification of LY6G fluorescence intensity from the lesion site 24h after SNC (mean ±
532 SEM, one-way ANOVA, Tukey's post-hoc, p<0.05, n=4 biologically independent
533 animals/group). Fluorescence intensity was measured in one series of tissue sections for each
534 nerve. **C.** Representative images of sciatic nerves from animals injured at ZT0, ZT4, ZT8,
535 ZT12, ZT16 or ZT20 stained for LY6G 72h after SNC. Scale bar, 200 μm **D.** Quantification of
536 Lys6G fluorescence intensity from the lesion site 72h after SNC (mean ± SEM, one-way
537 ANOVA, Tukey's post-hoc, p<0.05, n=4 biologically independent animals/group).
538 Fluorescence intensity was measured in one series of tissue sections for each nerve. **E.**
539 Representative images of sciatic nerves from animals injured at ZT0, ZT4, ZT8, ZT12, ZT16
540 or ZT20 stained for CD68 24h after SNC. Scale bar, 200 μm. **F.** Quantification of CD68

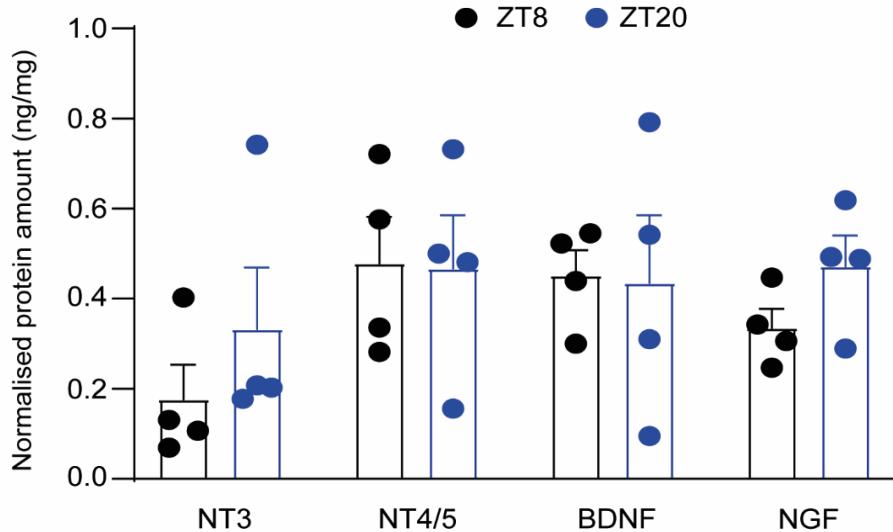
541 fluorescence intensity from the lesion site 24h after SNC (mean \pm SEM, one-way ANOVA,
542 Tukey's post-hoc, $p < 0.05$, $n = 4$ biologically independent animals/group). Fluorescence
543 intensity was measured in one series of tissue sections for each nerve. **G.** Representative images
544 of sciatic nerves from animals injured at ZT0, ZT4, ZT8, ZT12, ZT16 or ZT20 stained for
545 CD68 72h after SNC. Scale bar, 200 μ m **H.** Quantification of CD68 fluorescence intensity from
546 the lesion site 72h after SNC (mean \pm SEM, one-way ANOVA, Tukey's post-hoc, $n = 4$
547 biologically independent animals/group). Fluorescence intensity was measured in one series of
548 tissue sections for each nerve.

549

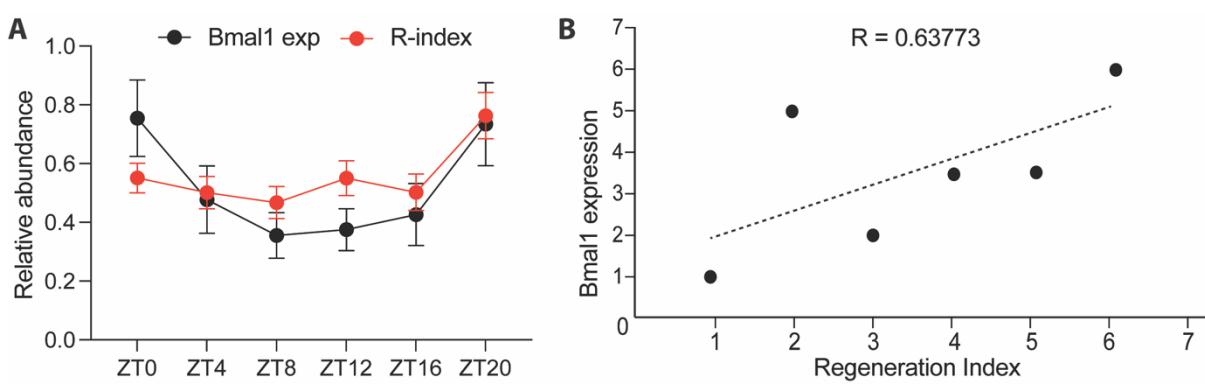
550


551

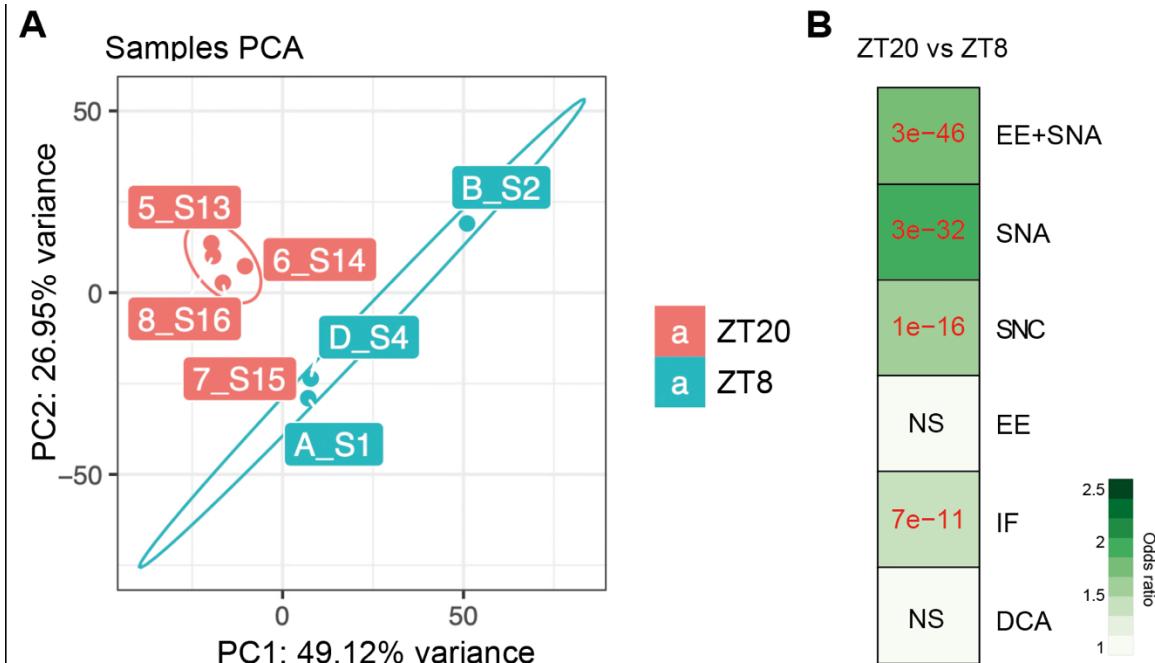
552


553

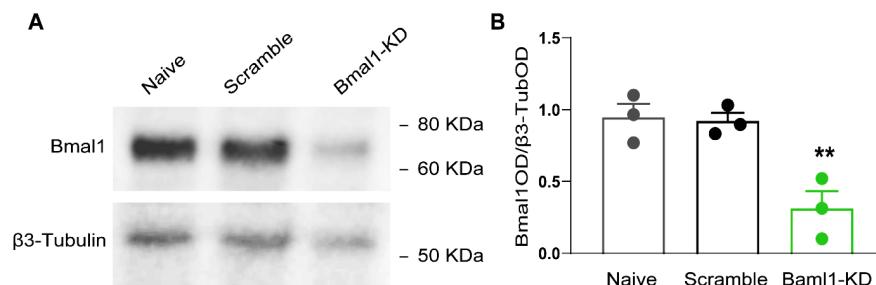
554 **Supplementary Figure 4. A.** Representative images of sciatic nerves from animals injured at
555 ZT0, ZT4, ZT8, ZT12, ZT16 or ZT20 stained for SOX10 72h after SNC. Scale bar, 200 μ m.
556 **B.** Quantification of SOX10 fluorescence intensity from the lesion site 72h after SNC (mean \pm
557 SEM, one-way ANOVA, Tukey's post-hoc, $p < 0.05$, $n = 4$ biologically independent
558 animals/group). Fluorescence intensity was measured in one series of tissue sections for each
559 nerve.



560
561 **Supplementary Figure 5.** A. Representative pictures of the sciatic nerve after injury
562 immunostained for Neutrophils (Ly6G, black) and DAPI (cyan). Scale bar 500 μ m. B. Close-
563 up magnification of the dotted highlighted area in A. Scale bar 50 μ m A. C. Representative
564 pictures of the sciatic nerve after injury immunostained for Macrophages (CD68, black) and
565 DAPI (cyan). Scale bar 500 μ m D. Close-up magnification of the dotted highlighted area in C.
566 Scale bar 50 μ m. E. Representative pictures of the sciatic nerve after injury immunostained for
567 Schwann cells (SOX10, black) and DAPI (cyan). Scale bar 500 μ m F. Close-up magnification
568 of the dotted highlighted area in E. Scale bar 50 μ m.


569

570
571 **Supplementary Figure 6.** Quantification of neurotrophins levels in whole DRG lysate (mean
572 \pm SEM, Two-way ANOVA, Sidak's post-hoc, $p < 0.05$, $n = 4$ biologically independent
573 animals/group).
574



575
576 **Supplementary Figure 7. A.** Overlapped data points of quantitative RT-PCR analysis of the
577 mRNA levels of Bmal1 mRNA levels in DRG at ZT8, ZT12, ZT16, ZT20, ZT24 ZT0 and ZT4,
578 and normalised over GAPDH (Figure 1C, black line) regeneration index (R-index) (Figure
579 1D and Supplementary Figure 1, red line). **B.** Scatter plot representing positive correlation
580 between Bmal1 mRNA expression (Figure 1C) vs Regeneration Index (Figure 1D and
581 Supplementary Figure 1) calculated as Pearson correlation coefficient (R) ($N=5$).
582
583

584
585 **Supplementary Figure 8.** A. PCA analysis of all experimental groups (ZT20 vs ZT8) clustered
586 according to percentage of variance (A, B, D=ZT8; 5, 6, 7, 8=ZT20). B. Odds ratio analysis of
587 the RNA-seq dataset against previously published datasets in DRG (as referred to in **Figure**
588 **1B**) (in red adjusted p-value<0.05, NS=not significant; EE=Enriched environment,
589 SNA=sciatic nerve axotomy, SNC=Sciatic nerve crush, IF=intermittent fasting, DCA=dorsal
590 column axotomy).

591

592
593 **Supplementary Figure 9.** A. Immunoblotting analysis of BMAL1 from protein extracts of
594 neuronal enriched DRG cultures. B. Quantification of immunoblotting, βIII-tubulin was used
595 as a loading control to which protein expression was normalized. (mean ± SEM, one-way
596 ANOVA, Tukey's post hoc, p<0.05, n = 3 biologically independent animals/group examined
597 over three independent experiments).

598

599

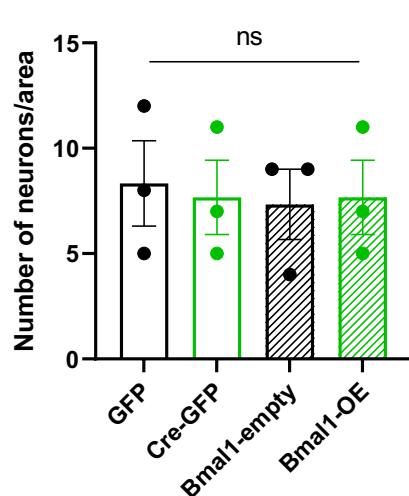
600

601

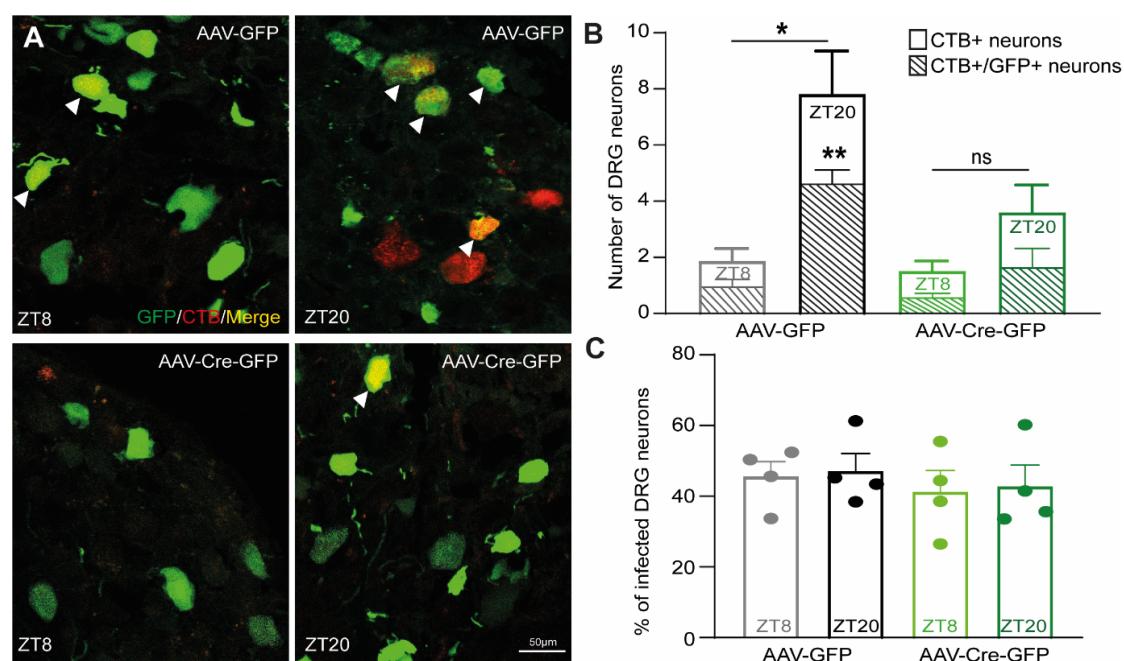
602

603

604


605

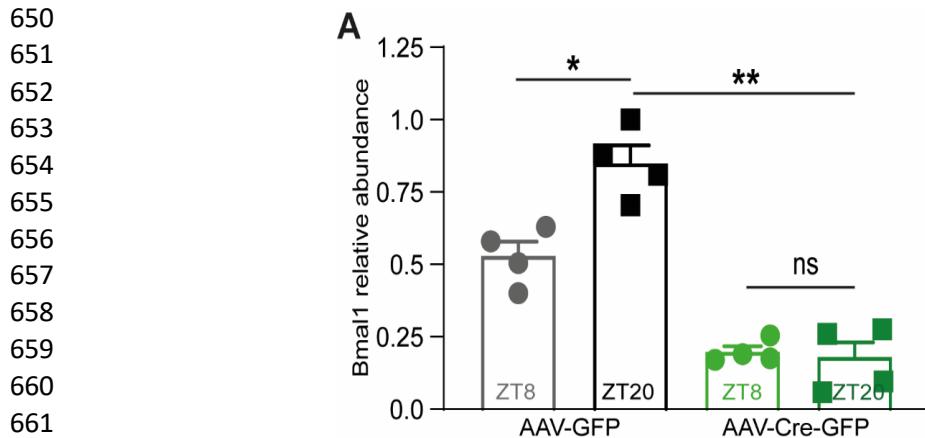
606


607

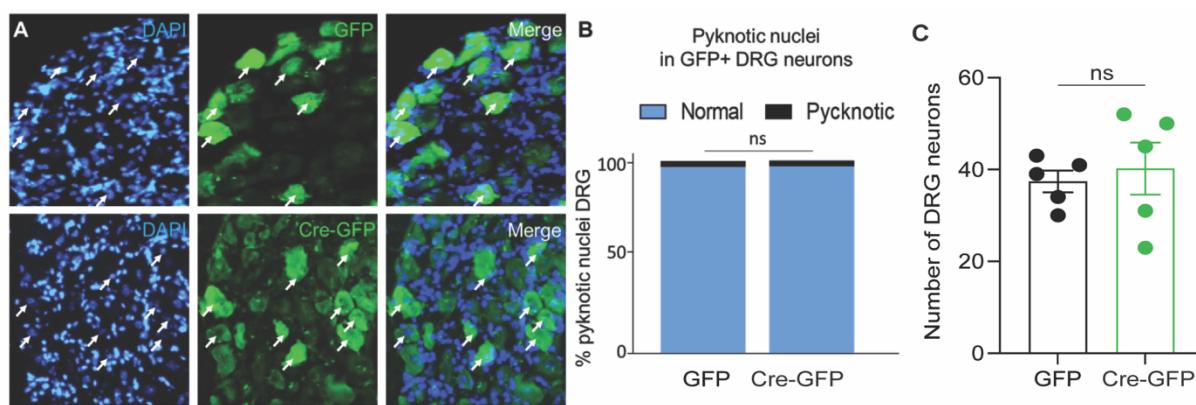
608

609

Supplementary Figure 10. Quantification of neurons/area in cultures quantified by DAPI in control AAV-GFP, AAV-Cre-GFP, AAV-Cre-GFP+Bmal1-empty vector and AAV-Cre-GFP+Bmal1-OE vector groups (as in Figure 3D-G). (One-way ANOVA Tukey's post-hoc, ns=not significant, n = 3).



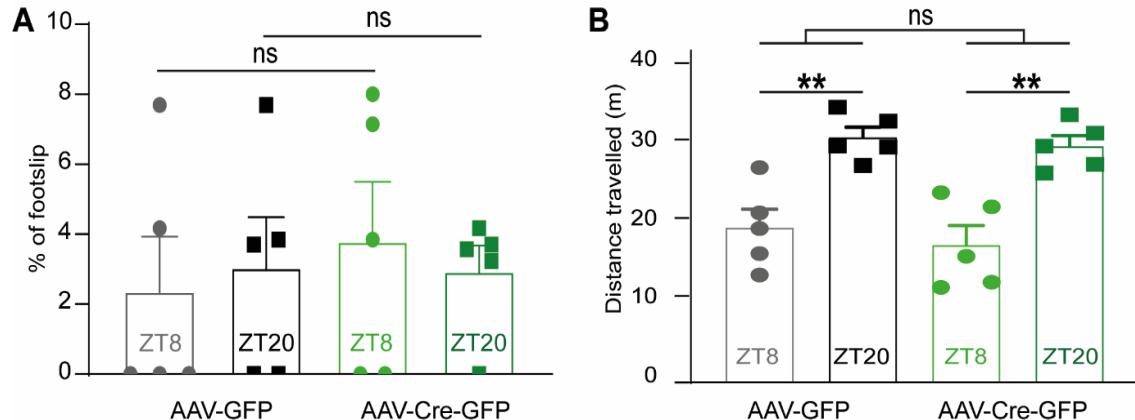
Supplementary Figure 11. A. Representative images of DRGs from *Bmal1*^{fl/fl} animals infected with GFP vs Cre-GFP virus (green) injured at ZT8 or ZT20, injected with CTB retrograde tracer (red) and analysed 3 days after SNC. Arrowheads highlight double positive DRG neurons (yellow). Scale bar, 50 μ m. B. Quantification of CTB and GFP double positive


642 DRG neurons (mean \pm SEM, two-way ANOVA, Tukey's post hoc, $p < 0.05$, $n = 4$ biologically
643 independent animals/group). Number of cells was measured in one series of tissue sections for
644 each DRG. C. Quantification of transduction across samples shown as percentage of infected
645 DRG neurons (mean \pm SEM, two-way ANOVA, Tukey's post hoc, $n = 4$ biologically
646 independent animals/group). Number of cells was measured in one series of tissue sections for
647 each DRG.

648

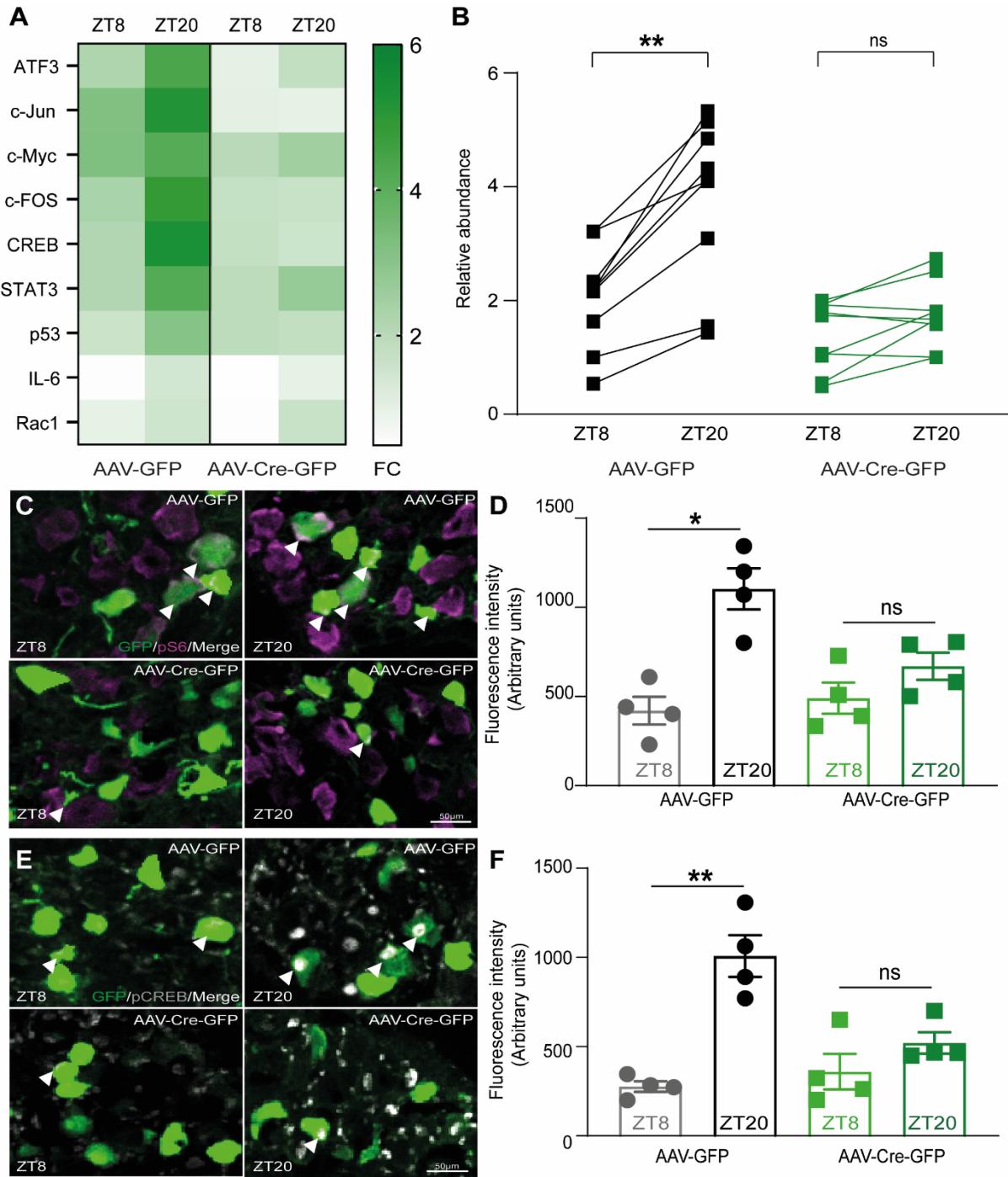
649

Supplementary Figure 12. Quantitative RT-PCR analysis of the mRNA levels of *Bmal1* normalised over *Gapdh* (mean \pm SEM, two-way ANOVA, Tukey's post hoc, $p < 0.05$, $n = 4$ biologically independent animals/group examined over 3 independent experiments).



Supplementary Figure 13. A. Representative images of DRGs from *Bmal1*^{fl/fl} animals infected with GFP vs Cre-GFP (green) virus injured at ZT8 or ZT20. Nuclei are stained with DAPI and analysed 3 days after SNC. B. Quantification of pyknotic nuclei by DAPI staining in DRG (Student t-test, ns=not significant, $n = 3$). Number of nuclei was measured in one series of tissue sections for each DRG. C. Quantification of pyknotic nuclei by DAPI staining in DRG (Student t-test, ns=not significant, $n = 3$). Number of neurons was measured in one series of tissue sections for each DRG.

677


678

679

680
681 **Supplementary Figure 14.** **A.** Quantification of the percentage of footslips per run on a grid
682 walk (mean \pm SEM, two-way ANOVA, Tukey's post hoc, $p < 0.05$, $n = 5$ biologically
683 independent animals/group examined over two independent experiments). **B.** Quantification of
684 the distance travelled (in m) in a 5min open field test (mean \pm SEM, two-way ANOVA,
685 Tukey's post hoc, $p < 0.05$, $n = 5$ biologically independent animals/group examined over two
686 independent experiments).

687

688

689

690

691

692

693

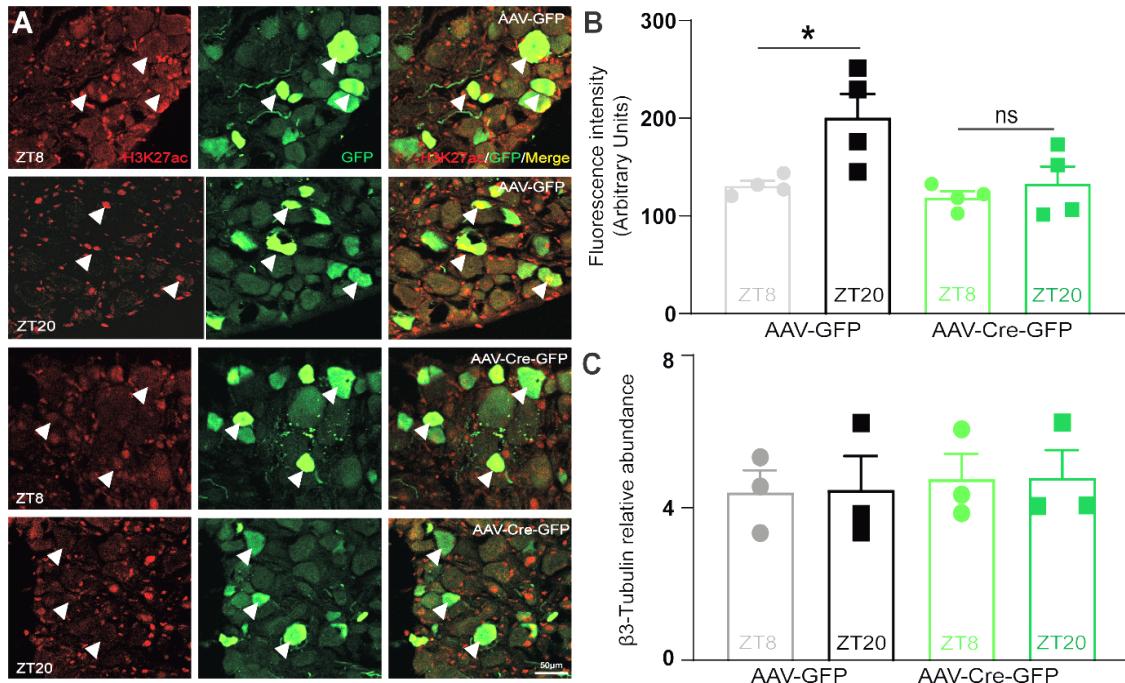
694

695

696

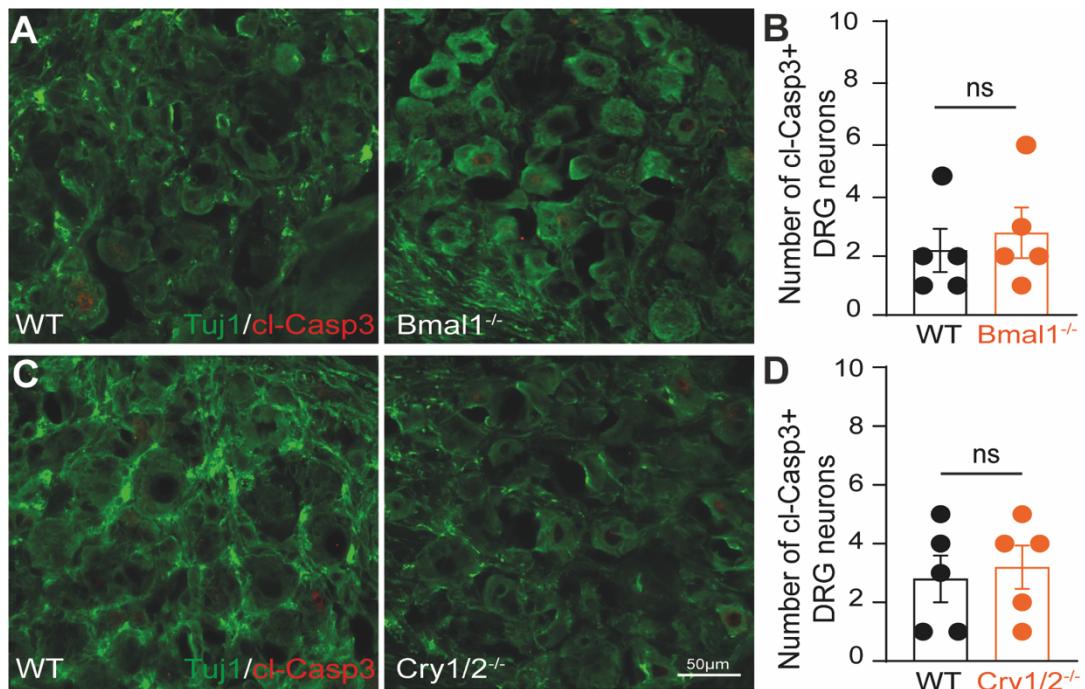
697

698

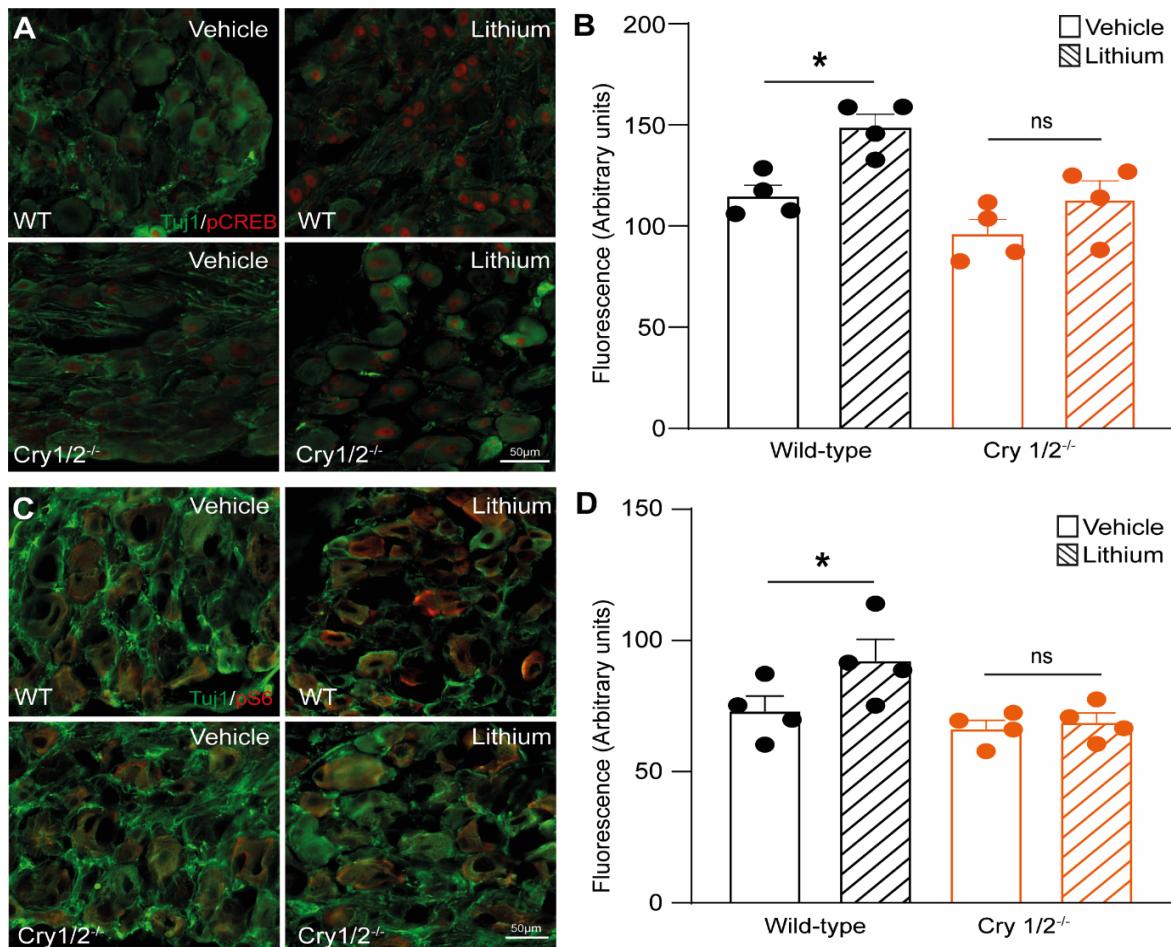

699

700

Supplementary Figure 15. A. Heatmap representation of quantitative RT-PCR analysis of the mRNA levels of *ATF3*, *c-Jun*, *c-Myc*, *c-Fos*, *CREB*, *STAT3*, *p53*, *IL-6*, *Rac1* normalised over GAPDH in DRG after injury at ZT8 and ZT20 in GFP and Cre-GFP injected *Bmal1*^{fl/fl} mice (FC = Fold Change, n=3 biologically independent animals/group examined over 3 independent experiments). **B.** Representation of time-of-day expression levels difference of quantitative RT-PCR analysis in DRG after injury between GFP and Cre-GFP injected *Bmal1*^{fl/fl} mice (mean per gene, lines highlight the dynamics of the expression levels of each gene from ZT8 to ZT10 in GFP and Cre-GFP groups (mean, two-way ANOVA, Tukey's post-hoc, p<0.05, n=3 biologically independent animals/group examined over 3 independent experiments). **C.** Representative images of DRG immunostained for pS6 (purple) and GFP (green) at ZT8 and ZT20 in GFP and Cre-GFP injected *Bmal1*^{fl/fl} mice. Arrowheads highlight double positive DRG neurons (white). Scale bar, 50 μ m. **D.** Quantification of the fluorescence intensity of pS6

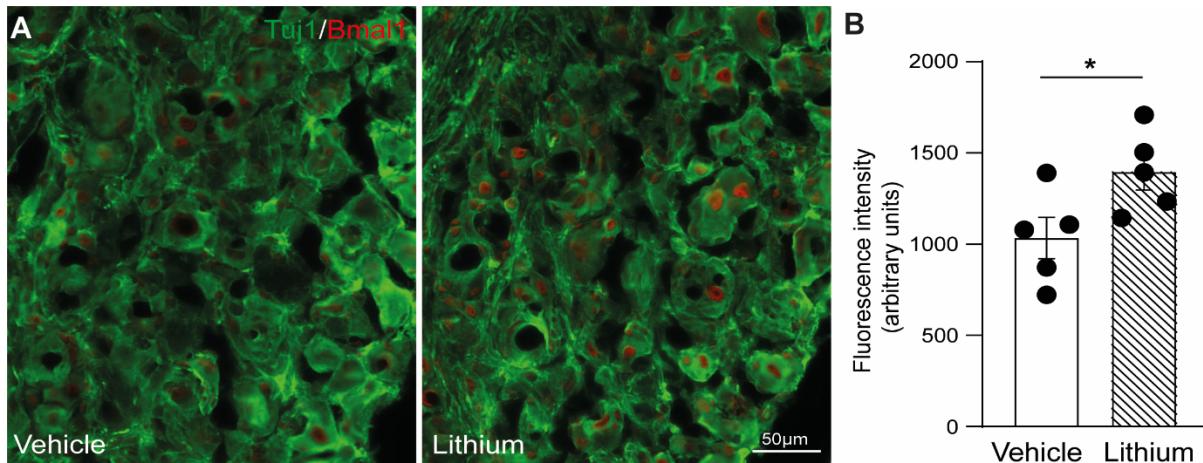

701 (purple) in GFP positive DRG neurons (mean \pm SEM, two-way ANOVA, Tukey's post-hoc,
702 p<0.05, n=4 biologically independent animals/group). Fluorescence intensity was measured in
703 one series of tissue for each DRG). **E.** Representative images of DRG immunostained for
704 pCREB (greys) and GFP (green) at ZT8 and ZT20 in GFP and Cre-GFP injected *Bmal1*^{fl/fl}
705 mice. Arrowheads highlight double positive DRG neurons (white). Scale bar, 50 μ m. **F.**
706 Quantification of the fluorescence intensity of pCREB (grey) in GFP positive DRG neurons
707 (mean \pm SEM, two-way ANOVA, Tukey's post-hoc, p<0.05, n=4 biologically independent
708 animals/group). Fluorescence intensity was measured in one series of tissue for each DRG.

709
710
711

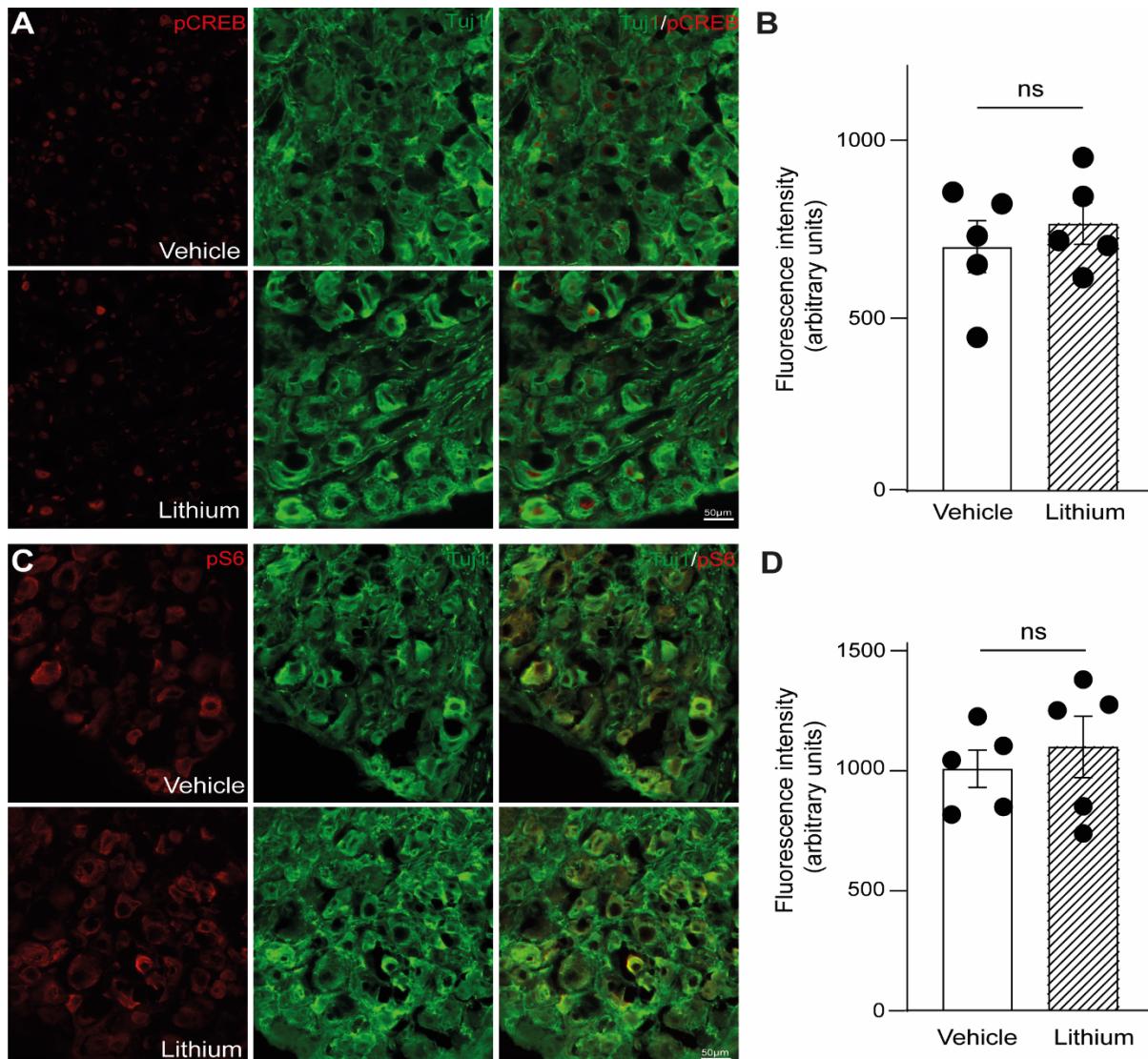


712
713 **Supplementary Figure 16.** **A.** Representative images of DRG immunostained for H3K27ac
714 (red) and GFP (green) at ZT8 and ZT20 in GFP and Cre-GFP injected *Bmal1*^{fl/fl} mice.
715 Arrowheads highlight double positive DRG neurons (yellow). Scale bar, 50 μ m. Scale bar, 50
716 μ m. **B.** Quantification of the fluorescence intensity of H3K27ac (red) in GFP positive (green)
717 DRG neurons (mean \pm SEM, two-way ANOVA, Tukey's post-hoc, p<0.05, n=4 biologically
718 independent animals/group. Fluorescence intensity was measured in one series of tissue for
719 each DRG). **C.** Quantitative RT-PCR analysis of the mRNA levels of β III-tubulin normalised
720 over *Gapdh* (mean \pm SEM, two-way ANOVA, Tukey's post hoc, p<0.05, n=3 biologically
721 independent animals/group examined over 3 independent experiments).

722



723
724 **Supplementary Figure 17.** **A.** Representative images of DRGs from Bmal1^{-/-} animals
725 immunostained for cleaved-Caspase-3 (red) and Tuj1 (green). Scale bar, 50 μ m. **B.**
726 Quantification of cleaved-Caspase-3 positive in WT vs Bmal1^{-/-} DRG neurons (Student T-test,
727 ns=not significant, n = 5 biologically independent animals/group). **C.** Representative images
728 of DRGs from Cry1/2^{-/-} animals immunostained for cleaved-Caspase-3 (red) and Tuj1 (green).
729 Scale bar, 50 μ m. **D.** Quantification of cleaved-Caspase-3 positive WT vs Cry1/2^{-/-} DRG
730 neurons (Student T-test, ns=not significant, n = 5 biologically independent animals/group).



731
732 **Supplementary Figure 18. A.** Representative images of DRG from WT and *Cry1/2*^{-/-} mice
733 treated with lithium or vehicle after SNC immunostained for pCREB (red) and Tuj1 (green).
734 Scale bar, 50 μm. **B.** Quantification of the fluorescence intensity of pCREB (red) in Tuj1
735 positive DRG neurons (mean ± SEM, two-way ANOVA, Tukey's post-hoc, p<0.05, n=4
736 biologically independent animals/group). Fluorescence intensity was measured in one series of
737 tissue for each DRG). **C.** Representative images of DRG from WT and *Cry1/2*^{-/-} mice treated
738 with lithium or vehicle after SNC immunostained for pS6 (red) and Tuj1 (green). Scale bar, 50
739 μm. **D.** Quantification of the fluorescence intensity of pS6 (grey) in Tuj1 positive DRG
740 neurons (mean ± SEM, two-way ANOVA, Tukey's post-hoc, p<0.05, n=4 biologically
741 independent animals/group). Fluorescence intensity was measured in one series of tissue for
742 each DRG.

743
744

745
746
747
748
749
750
751
752
753

754
755 **Supplementary Figure 20. A.** Representative images of DRG from WT mice treated with
756 lithium or vehicle immunostained for pCREB (red) and Tuj1 (green). Scale bar, 50 μm. **B.**
757 Quantification of the fluorescence intensity of pCREB (red) in Tuj1 positive DRG neurons
758 (mean ± SEM, Student T-test, p<0.05, n=5 biologically independent animals/group).
759 Fluorescence intensity was measured in one series of tissue for each DRG. **C.** Representative
760 images of DRG from WT mice treated with lithium or vehicle immunostained for pS6 (red)
761 and Tuj1 (green). Scale bar, 50 μm. **D.** Quantification of the fluorescence intensity of pS6
762 (red) in Tuj1 positive DRG neurons (mean ± SEM, Student T-test, p<0.05, n=5 biologically
763 independent animals/group). Fluorescence intensity was measured in one series of tissue for
764 each DRG.

765

766

767

768

769

770

771

772

773

774

Gene name	Rhythmic	p-value	Tau
Bmal1	true	0.00216	0.9
CLOCK	true	0.02544	0.62
Cry1	true	0.02544	0.62
Cry2	true	0.04926	0.52
Per1	true	0.00534	0.81
Per2	true	0.01214	0.71

775

776

777

778

779 **Table 1.** Analysis of rhythmicity of clock genes qPCR data represented in Figure 1B.
780 JTK_CYCLE on mean values, with dataset compared to a 24h cosine wave with a 4h phase
781 spread, p-value<0.05.

782

CAGs	Fold Change	p-value
Bhlhe41	1.801257	2.30E-05
Timeless	0.91587	0.02544
Arntl	0.812613577	0.02544
Clock	0.801852	0.04926
Bhlhe40	0.609778679	0.00534
Nr1d1	-1.273298213	0.01214
Usp1	-1.26362	0.047242
Dbp	-2.70571	2.08E-05
RAGs	Fold Change	p-value
Efna4	5.792264	0.019385
Notch3	2.568564	0.012489
Egf	2.230509	0.029209
Klf8	2.22704	0.023871
Fgf14	2.148082	6.60E-12

Notch2	2.028718	1.18E-05
Klf1	1.837033	0.017693
Robo1	1.534673	0.000704
Klf13	1.527326	4.67E-05
Crebl2	1.105803	0.016278
Efnb2	1.043021	5.72E-07
Crebbp	1.031487	0.000416
Fgf11	1.000311	0.012039
Robo2	0.970628	5.21E-05
Klf5	0.93096	0.037397
Atf6	0.929285	0.002073
Klf16	0.924909	0.000936
Prkce	0.916592	0.001676
Creb1	0.903214	1.39E-09
Hif1a	0.890155	0.000877
Hgf	0.868469	0.036293
Efna5	0.853414	0.01086
Smad4	0.837186	0.003453
Trp53inp1	0.821017	0.000381
Map2	0.812847	0.000776
Basp1	0.792412	0.009105
Vgf	0.77967	0.039477
Atf5	0.7454	0.000188
Foxo3	0.708334	0.019678

Klf12	0.696557	0.019584
Il6st	0.686253	0.008956
Fosl2	0.680117	0.005823
Trp53inp2	0.670738	0.009432
Map1a	0.661544	0.03181
Tgfb1r1	0.631607	0.039091
Coro2a	0.618138	0.001622
Ncam1	0.594811	0.011897
Myc	0.560053	0.002388
Ntrk3	0.540458	0.001776
Prkcd	0.514291	0.005399
Jak1	0.501427	0.000182
Itgb1	0.482534	0.000292
Ngfr	0.465999	0.023534
Prkg1	0.449758	0.044489
Trp53bp1	0.443054	0.023916
Klf7	0.425923	0.000199
Stat3	0.349548	0.024309
Gskip	-0.3778	0.002197
Hdac2	-0.54748	0.034359
Hdac1	-0.76848	1.08E-05
Cacna1s	-2.70701	0.023011

783 **Table 2.** Extended table reporting gene expression data (gene name, fold change, p-value) of
784 DE Clock associated genes (CAGs) and Regeneration associated genes (RAGs) found in the
785 RNA-seq of DRG after an injury performed at ZT20 vs ZT8 (see also **Figure 2**).
786
787

788
789
790
791

Group	Rhythmic	p-value	Tau
Scramble 1	false	0.0414	0.55
Scramble 2	true	0.00367	0.85
Scramble 3	true	0.0028	0.88
Bmal1 KD 1	false	0.0574	0.5
Bmal1 KD 2	false	0.0414	0.55
Bmal1 KD 3	false	0.06191	0.49
Scramble mean	true	0.0028	0.88
Bmal1 KD mean	false	0.06191	0.49

792 **Table 3.** Analysis of rhythmicity of Per2-Luciferase data represented in Figure 3B.
793 JTK_CYCLE on mean values, with dataset compared to a 24h cosine wave with a 4h phase
794 spread, p-value<0.005.

795

796 Methods

797

798 Animals and Animal Husbandry

799 All animal experiments were carried out according to UK Home Office regulations in line with
800 the Animals (Scientific Procedures) Act of 1986 under personal and project licenses registered
801 with the UK Home Office. Mice were maintained in-house under standard housing conditions
802 (12-h light/dark cycles). All mice were on a C57BL6 background (male, 20-30 g, 6-8 weeks of
803 age). Bmal1^{f/f} (B6.129S4(Cg)-Arntlm1Weit/J; <https://www.jax.org/strain/007668>) and Per2-
804 Luc mice (B6.129S6-Per2tm1Jt/J; <https://www.jax.org/strain/006852>) were purchased from
805 Jackson's laboratory, Cry1/2^{-/-} mice were gently provided by Dr. Marco Brancaccio.
806 Experimenters were blind to experimental groups during analysis. Sample sizes were chosen
807 in accordance with power analysis and with similar previously published experiments. The
808 animals were housed in a controlled light dark cycle and housed individually. The animals were
809 kept in constant conditions the day before the lesion.

810

811 Sciatic nerve crush (SNC) surgery

812 Mice were anesthetized with isoflurane (5% induction, 2% maintenance), shaved on the hind
813 limbs and lower back, cleaned with iodine, and an ophthalmic solution was put on the eyes to
814 prevent drying. An incision was made on the skin and the biceps femoris and the gluteus
815 superficialis were opened by blunt dissection and the sciatic nerve was exposed using a surgical
816 hook. Sciatic nerve crush was performed orthogonally for 20 seconds (45 seconds for
817 reinnervation experiment) using a 5 mm surgery forceps (91150-20 Inox-Electronic). The crush
818 was performed at approximately 20 mm distally from the L4-L6 sciatic DRG.

819

820 Sciatic nerve regeneration

821 24 hours or 72 hours following the surgery, sciatic nerves were dissected and post-fixed in 4%
822 PFA, incubated at 4°C for 1h and transferred into 30 % sucrose for at least 3 days.
823 Subsequently, the tissue was embedded and frozen in Tissue-Tek OCT and maintained at -
824 80°C until cut into 11 µm sagittal sections. Tissue sections were immunostained for SCG10
825 (1:1000, Rabbit, Novus) a marker for regenerating axons. The crush side was identified by
826 deformation of the nerve and disruption of axon coinciding with highest SCG-10 intensity. The
827 SCG-10 intensity was measured in 500 µm intervals along the length of the nerve distal to
828 sciatic nerve crush side. The intensity was normalised to the SCG-10 intensity before the crush
829 side and plotted as fold-change. 4-6 sections per animal were analysed and imaged with a
830 HWF1 - Zeiss Axio Observer with a Hamamatsu Flash 4.0 fast camera using 10x
831 magnification. The Regeneration index (RI) was calculated as the distance from the crush site
832 at which the SCG-10 mean intensity equals 50% of the SCG-10 mean intensity at the crush
833 site.

834

835 **Neurotrophin ELISA**

836 Levels of neurotrophins were analysed in homogenised L4-6 DRG samples. DRGs were lysed
837 in RIPA buffer and diluted 1:6. 100 µl of lysate (corresponding to 80 mg of proteins) were
838 analysed with the Multi-Neurotrophin Rapid Screening ELISA kit (Biosensis), according to
839 manufacturer's instructions. The absorbance at 450 nm of the samples, obtained using GLoMax
840 plate reader (Promega), was interpolated against the standard curve to calculate the
841 neurotrophin concentration, and referred to mg of proteins.

842

843 **RT-qPCR**

844 All RT-qPCR were performed using SYBR Green I (2×) from Platinum SYBR Green qPCR
845 SuperMix-UDG kit (Thermo Fisher Scientific). Reactions were performed in triplicates on a
846 96-well plate with a final reaction volume of 20 µL by using 7900HT Fast Real-Time PCR
847 System (Applied Biosystems, Foster City, CA USA). The thermal cycle profile consisted of 45
848 cycles divided in 4 stages (5 min at 95 °C, 20 s at 95 °C, 20 s at 56 °C, 20 s at 72 °C) and a final
849 dissociation stage. The threshold cycle (Ct) data after each run was exported from SDS v2.4.
850 The Ct data derived from the RT-qPCR were analysed using the $\Delta\Delta Ct$ method, normalised
851 against the endogenous reference gene GAPDH and expressed as fold change relative to the
852 time point with highest expression or to control condition.

853

854 **Virus and CTB tracer delivery to DRG neurons**

855 To transduce DRG neurons *in vivo*, 2 µl of AAV8-Cre-GFP or AAV8-GFP (Duke Viral Vector
856 Core <https://sites.duke.edu/dvvc/>) were injected into the sciatic nerve of Bmal1flox mice
857 (<https://www.jax.org/strain/007668>) 4 weeks prior to sciatic injury or collection using a 10 µl
858 Hamilton syringe and Hamilton needle (NDL small RN ga34/15mm/pst45o) (Hamilton). For
859 retrograde CTB tracing of regenerating sciatic fibres, 1 µl of CTB (List Biological
860 Laboratories) diluted in saline were injected in the sciatic nerve distal to the lesion site using a
861 10 µl Hamilton syringe and Hamilton needle (NDL small RN ga34/15mm/pst45o) (Hamilton),
862 3 days before sacrificing the mice.

863

864 **RNA-sequencing**

865 DRG samples were collected from animals that had undergone nerve injury at ZT8 and ZT20.
866 Sciatic DRGs were extracted 72 h after injury (surgeries were performed as described above)
867 and placed into RNAlater solution. The DRGs were crushed with an RNase-free micro-pestle,
868 and neuronal enrichment was performed using a 15% BSA cushion prepared in a falcon tube:
869 dissociated cells were carefully pipetted on top and then spun down at 80 x g for 8 min before
870 being resuspended in culture media containing 1x B27 and Penicillin/Streptomycin in

871 F12:DMEM. RNA was then immediately extracted using an RNAeasy Kit (Qiagen) according
872 to the manufacturer's guidelines. Residual DNA contamination was removed by treating the
873 spin column with 40 units of RNase-free DNase I (Qiagen) for 15 min at 23 °C before RNA
874 elution. RNA concentrations and purity were verified for each sample following elution with
875 the Agilent 2100 Bioanalyzer. RNA with integrity number (RIN) factors above 8.5 were used
876 for library preparation. cDNA libraries for each sample were generated by the Imperial BRC
877 Genomics Facility using the TruSeq Sample Preparation Kit A (Illumina) and were sequenced
878 using Illumina HiSeq 4000 (PE 2 × 75 bp) sequencing. GO analysis was performed on
879 differentially expressed genes using DAVID 2021 (<http://david.abcc.ncifcrf.gov/>) and the
880 dendrogram (heat map), PCA and odds ration were created and analysed using R. Differentially
881 expressed genes were selected using a threshold of FDR < 0.01 and |1.5| < FC (fold change) or
882 no FC cutoff.

883

884 **Intramuscular injection**

885 Fourteen days post sciatic nerve crush sensory axons that had re-innervated the muscle were
886 traced by injecting 5 µl of 1% CTB (List Biological Laboratories) diluted in saline into the
887 tibialis anterior and medial gastrocnemius muscles using a 10 µl Hamilton syringe and
888 Hamilton needle (NDL small RN ga34/15mm/pst45o) (Hamilton). 4 days post-tracing, mice
889 were terminally anaesthetised and transcardially perfused with 20 ml PBS (pH 7.4) (Sigma)
890 followed by 20 ml 4% paraformaldehyde in PBS (Sigma).

891

892

893 **Neuronal enriched Dorsal Root Ganglia (DRG) culture**

894 Glass coverslips were coated with 0.1 mg/ml PDL, washed and coated with mouse Laminin
895 2ug/ml (Millipore) for 1-2 hours each previous to the start of the experiment. Sciatic DRG from
896 adult animals were dissected and collected in Hanks balanced salt solution (HBSS) on ice. The
897 DRG were transferred into a digest solution (5mg/ml Dispase II (Sigma), 2.5 mg/ml
898 Collagenase Type II (Worthington) and incubated in a 37 °C water bath for 45 min, which
899 occasional mixing. Thereafter, the DRG were washed and manually dissociated with a 1ml
900 pipette in media containing 10 % heat inactivated FBS (Invitrogen) and 1x B27 (Invitrogen) in
901 F12:DMEM (Invitrogen). Pipetting was continued until DRG were fully dissociated and no
902 clumps could be observed. Next, the cell suspension was spun down at 1000 rpm for 4 min and
903 resuspended in culture media containing 1x B27 and Penicillin/Streptomycin in F12:DMEM.
904 For neuronal enriched cultures, a 15% BSA cushion was prepared in a falcon tube, dissociated
905 cells were carefully pipetted on top and then spun down at 80 x g for 8 min before being
906 resuspended in culture media containing 1x B27 and Penicillin/Streptomycin in F12:DMEM.
907 3500 cells were plated on each coverslip (laminin and PDL coated) and maintained in a
908 humidified culture chamber with 5% CO₂ at 37 °C, 24 hours before fixed with 4% PFA and
909 immunostained or analysed for luminescence.

910 For in vitro luciferase assay, neuronal enriched DRG culture were synchronized with 100 nM
911 of Dexamethasone for 2 h. The hormone was washed out and cultures were harvested at
912 different time points for subsequent analyses.

913

914 **Lithium treatment after injury**

915 An injection of lithium chloride i.p. (1 mEq/Kg) was given immediately after injury, then
916 lithium carbonate (600 mg/L) was given in drinking water for 3 days from the day of surgery
917 until sacrifice.

918

919 **Per2-Luciferase Detection and siRNA transfection of DRG cultures**

920 DRG form Per2-Luc mice (<https://www.jax.org/strain/006852>) were cultured as previously
921 described. siRNA transfection was performed 12 hours after plating according to manufacturer
922 instructions. 72 hours after transfection, DRG cultures were lysated in 200ul of GloLysis buffer
923 and an equal amount of GloMax luciferin reagent was added to the solution. Luciferase
924 luminescence was assessed 24 hours after plating, every 4 hours across a 24 hours period using
925 GloMax® Explorer Multimode Microplate Reader (GM3500) plate reader.

926

927 **Immunohistochemistry**

928 Immunohistochemistry on tissue sections was performed according to standard procedures.
929 Tissue sections were rehydrated with PBS for 5 minutes before blocking and permeabilization
930 for 1 hour with 10% normal goat serum (Abcam) containing 0.3% PBS-TritonX-100. The
931 sections were then incubated with anti-SCG10 (1:1000, Rabbit, Novus), anti-SOX10 (1:1000,
932 Rabbit, Abcam), anti-CD68 (1:1000, Rabbit, Abcam), anti-Ly6G (1:500, mouse, BioxCell,
933 clone 1A8), anti-Bmal1 (1:500, Rabbit Invitrogen, PA5-118391), anti-Tuj1 (1:500, Mouse,
934 Novus NB100-1612) anti-CD68 (1:200, Rabbit, Abcam, ab125212), anti-NH200 (1:1000,
935 Mouse, NovusBio, NB500-416), anti-PGP9.5 (1:200, Rabbit, Proteintech, 14730-1-AP), anti-
936 CTb (1:1000, Goat, List biological 703), anti-GFP (1:1000, Chicken, Abcam ab6556),
937 H3K27ac (1:2000, Rabbit, Abcam, Abcam ab4729), anti-CGRP
938 (mouse, abcam ab81887, 1:100), anti-pCREB (1:500, Rabbit, CST, #9198), anti-pS6 (1:1000,
939 Rabbit, CSR, #35708) at room temperature over-night. The sections were washed three times
940 with PBS, followed by incubation with Alexa Fluor conjugated goat secondary antibodies for
941 1 hour. All tissue sections were counterstained with DAPI (Molecular Probes) and cover
942 slipped using mowiol.

943

944 **Immunocytochemistry (ICC)**

945 Plated cells were fixed by incubation with cold 4 % PFA for 15 min. Thereafter, they were
946 blocked and permeabilized for 1 hour with 0.3 % TX100 in PBS containing 2 % BSA. The
947 primary antibody staining was performed using anti-Bmal1 (1:500, Rabbit Invitrogen, PA5-
948 118391), anti- anti- β III tubulin (1:1000, Mouse, Novus NB100-1612), anti-GFP (1:1000,
949 Chicken, Abcam ab6556) in 0.1 % TX100 in PBS containing 2 % BSA, which O/N incubation
950 at RT. The goat secondary antibody (Alexa) was diluted in 0.1 % TX100 in PBS containing 2
951 % BSA and cells were incubated for 1 hour. All cells were counterstained with DAPI.

952

953 **Microscopy**

954 Photomicrographs were taken with a Nikon Eclipse TE2000 microscope with an optiMOS
955 scMOS camera using 10x or 20x magnification - Zeiss Axio Observer with a Hamamatsu Flash
956 4.0 fast camera using 10x or 20x magnification. Confocal images were taken with a Leica TCS
957 SP8 II confocal microscope at 20X magnification and processed with the LAS-AM Leica
958 software (Leica).

959

960 **Image Analysis for IHC and ICC**

961 Image analysis was conducted using ImageJ (Fiji) software. All analysis was performed in
962 blind to the experimental groups.

963 DRG images were taken using a Nikon Eclipse TE2000 microscope with an optiMOS scMOS
964 camera at either 10x or 20x magnification. Images were analysed by calculating the percentage
965 of cells with positive staining.

966 For neurite length analysis between 15 and 20 images were taken per coverslip and analysed
967 using NeuronJ plugin for Image J software (Image J). All analyses were performed in blind.
968 Approximately 45-60 cells were analysed per animal and condition.

969

970 **Statistical analysis**

971 Results are charted as mean \pm SEM. Statistical analysis was performed using GraphPad Prism
972 8. Normally distributed data were evaluated using a two-tailed unpaired Student's t-test or a
973 one-way ANOVA when experiments contained more than two groups. Tukey's or Sidak's test
974 or multiple comparison testing corrected by FDR with Benjamini and Hochberg were applied
975 when appropriate. The two-way ANOVA, Tukey's or Sidak's test, was applied when two
976 independent variables on one dependent variable were assessed. A threshold level of
977 significance was set at $P<0.05$. Significance levels were defined as follows: * $P<0.05$; **
978 $P<0.01$; *** $P<0.001$; **** $p<0.0001$. All data analysis was performed blind to the
979 experimental group.

980 Rhythmicity of RT-PCR data (Figure 1, $p<0.05$) and Per2 Luciferase oscillation upon Bmal1
981 deletion in vitro (Figure 2, $p<0.005$) was assessed in Biodare2⁴³ by using JTK_CYCLE⁴⁴ on
982 mean values, with dataset compared to a 24h cosine wave with a 4h phase spread.

983

984 **References**

- 985 1. Jaggi A., Dean R.B., Johnson K., and S., T. (2009). Peripheral nerve injuries. Physical
986 Management in Neurological Rehabilitation (Second Edition) *Chapter 9*, 153-175.
<https://doi.org/10.1016/B978-072343285-2.50013-9>.
- 988 2. Scheib, J., and Höke, A. (2013). Advances in peripheral nerve regeneration. *Nat Rev
989 Neurol*, 668-676. doi:doi:10.1038/nrneurol.2013.227.
- 990 3. Senger J.B., Verge V.M.K., Chan K.M., and C.A., W. (2018). The nerve conditioning
991 lesion: A strategy to enhance nerve regeneration. *Ann Neurol* 83, 691-702. doi:
992 10.1002/ana.25209.
- 993 4. De Virgiliis F., Hutson T.H., Palmisano I., Amachree S., Miao J., Zhou L., Todorova
994 R., Thompson R., Danzi M.C., Lemmon V.P., et al. (2020). Enriched conditioning
995 expands the regenerative ability of sensory neurons after spinal cord injury via neuronal
996 intrinsic redox signaling. *Nat Commun* 11. doi: 10.1038/s41467-020-20179-z. .
- 997 5. Hutson T.H., Kathe C., Palmisano I., Bartholdi K., Hervera A., De Virgiliis F.,
998 McLachlan E., Zhou L., Kong G., Barraud Q., et al. (2019). Cbp-dependent histone
999 acetylation mediates axon regeneration induced by environmental enrichment in rodent
1000 spinal cord injury models. *Sci Transl Med* 11, eaaw2064. doi:
1001 10.1126/scitranslmed.aaw2064.
- 1002 6. Jeong M.A., Plunet W., Streijger F., Lee J.H., Plemel J.R., Park S., Lam C.K., Liu J.,
1003 and W., T. (2011). Intermittent fasting improves functional recovery after rat thoracic
1004 contusion spinal cord injury. *J Neurotrauma* 28, 479-492. doi: 10.1089/neu.2010.1609.
- 1005 7. Serger E., Luengo-Gutierrez L., Chadwick J.S., Kong G., Zhou L., Crawford G., Danzi
1006 M.C., Myridakis A., Brandis A., Bello A.T., et al. (2022). The gut metabolite indole-3
1007 propionate promotes nerve regeneration and repair. *Nature* 607, 585-592. doi:
1008 10.1038/s41586-022-04884-x. .
- 1009 8. Hastings M.H., Maywood E.S., and M., B. (2018). Generation of circadian rhythms in
1010 the suprachiasmatic nucleus. *Nat Rev Neurosci* 19, 453-469. doi: 10.1038/s41583-018-
1011 0026-z. .
- 1012 9. Patke A., Young M.W., and S., A. (2020). Molecular mechanisms and physiological
1013 importance of circadian rhythms. *Nat Rev Mol Cell Biol*. doi: 10.1038/s41580-019-
1014 0179-2.
- 1015 10. Takahashi, J. (2017). Transcriptional architecture of the mammalian circadian clock.
1016 *Nat Rev Genet* 18, 164–179. <https://doi.org/10.1038/nrg.2016.150>
- 1017 11. Lipton J.O., Yuan E.D., Boyle L.M., Ebrahimi-Fakhari D., Kwiatkowski E., Nathan A.,
1018 Güttsler T., Davis F., Asara J.M., and M., S. (2015). The Circadian Protein BMAL1

- 1019 Regulates Translation in Response to S6K1-Mediated Phosphorylation. *Cell* **161**, 1138-
1020 1151. doi: 10.1016/j.cell.2015.04.002.

1021 12. Masri, S., and Sassone-Corsi, P. (2013). The circadian clock: a framework linking
1022 metabolism, epigenetics and neuronal function. *Nat Rev Neurosci* **14**, 69-75. doi:
1023 10.1038/nrn3393.

1024 13. Druzd D., Matveeva O., Ince L., Harrison U., He W., Schmal C., Herzl H., Tsang
1025 A.H., Kawakami N., Leliavski A., et al. (2017). Lymphocyte Circadian Clocks Control
1026 Lymph Node Trafficking and Adaptive Immune Responses. *Immunity* **46**, 120-132.
1027 doi:10.1016/j.immuni.2016.12.011.

1028 14. Scheiermann C., Gibbs J., Ince L., and A., L. (2018). Clocking in to immunity. *Nat Rev
1029 Immunol* **18**, 423-437. doi:10.1038/s41577-018-0008-4

1030 15. Asher, G., and Sassone-Corsi, P. (2015). Time for food: the intimate interplay between
1031 nutrition, metabolism, and the circadian clock. *Cell* **161**, 84-92. doi:
1032 10.1016/j.cell.2015.03.015.

1033 16. Hoyle N.P., Seinkmane E., Putker M., Feeney K.A., Krogager T.P., Chesham J.E., Bray
1034 L.K., Thomas J.M., Dunn K., Blaikley J., and J.S., O.N. (2017). Circadian actin
1035 dynamics drive rhythmic fibroblast mobilization during wound healing. *Sci Transl Med*
1036 **9**, eaal2774. doi: 10.1126/scitranslmed.aal2774. .

1037 17. Xu N., Shinohara K., Saunders K.E.A., Geddes J.R., and A., C. (2021). Effect of
1038 lithium on circadian rhythm in bipolar disorder: A systematic review and meta-analysis.
1039 *Bipolar Disord* **23**, 445-453. doi: 10.1111/bdi.13070.

1040 18. Volkmann C., Bschor T., and S., K. (2020). Lithium Treatment Over the Lifespan in
1041 Bipolar Disorders. *Front Psychiatry* **7**, 377. doi: 10.3389/fpsyg.2020.00377.

1042 19. Machado-Vieira R., Manji H.K., and Jr., Z.C.A. (2009). The role of lithium in the
1043 treatment of bipolar disorder: convergent evidence for neurotrophic effects as a
1044 unifying hypothesis. *Bipolar Disord* **11** (2), 92-109. doi: 10.1111/j.1399-
1045 5618.2009.00714.x. .

1046 20. Hervera A., De Virgiliis F., Palmisano I., Zhou L., Tantardini E., Kong G., Hutson T.,
1047 Danzi M.C., Perry R.B., Santos C.X.C., et al. (2018). Reactive oxygen species regulate
1048 axonal regeneration through the release of exosomal NADPH oxidase 2 complexes into
1049 injured axons. *Nat Cell Biol* **20**, 307-319. doi: 10.1038/s41556-018-0039-x.

1050 21. Zhang J., Li H., Teng H., Zhang T., Luo Y., Zhao M., Li Y.Q., and Z.S., S. (2012).
1051 Regulation of peripheral clock to oscillation of substance P contributes to circadian
1052 inflammatory pain. *Anesthesiology* **117**, 149-160. doi:
1053 10.1097/ALN.0b013e31825b4fc1.

1054 22. Liu P., Peng J., Han G.H., Ding X., Wei S., Gao G., Huang K., Chang F., and Y., W.
1055 (2019). Role of macrophages in peripheral nerve injury and repair. *Neural Regen Res*
1056 **14**, 1335-1342. doi: 10.4103/1673-5374.253510. .

1057 23. Lindborg J.A., Mack M., and R.E., Z. (2017). Neutrophils Are Critical for Myelin
1058 Removal in a Peripheral Nerve Injury Model of Wallerian Degeneration. *J Neurosci* **37**,
1059 10258-10277. doi: 10.1523/JNEUROSCI.2085-17.

1060 24. Jessen, K.R., and Mirsky, R. (2019). The Success and Failure of the Schwann Cell
1061 Response to Nerve Injury. *Front Cell Neurosci* **11**, 33. doi: 10.3389/fncel.2019.00033.

1062 25. Li R., Li D.H., Zhang H.Y., Wang J., Li X.K., and J., X. (2020). Growth factors-based
1063 therapeutic strategies and their underlying signaling mechanisms for peripheral nerve
1064 regeneration. *Acta Pharmacol Sin* **41**, 1289-1300. doi: 10.1038/s41401-019-0338-1.

1065 26. Gordon, T. (2009). The role of neurotrophic factors in nerve regeneration. *Neurosurg
1066 Focus* **26**, E3. doi: 10.3171/FOC.2009.26.2.E3.

1067 27. Partch C.L., Green C.B., and J.S., T. (2014). Molecular architecture of the mammalian
1068 circadian clock. *Trends Cell Biol* **24**, 90-99. doi:10.1016/j.tcb.2013.07.002

- 1069 28. Gagliano O., Luni C., Li Y., Angiolillo S., Qin W., Panariello F., Cacchiarelli D.,
1070 Takahashi J.S., and N., E. (2021). Synchronization between peripheral circadian clock
1071 and feeding-fasting cycles in microfluidic device sustains oscillatory pattern of
1072 transcriptome. *Nat Commun* *12*, 6185. doi: 10.1038/s41467-021-26294-9. .
- 1073 29. Barca-Mayo O., Pons-Espinal M., Follert P., Armirotti A., Berdondini L., and D.,
1074 D.P.T. (2017). Astrocyte deletion of Bmal1 alters daily locomotor activity and
1075 cognitive functions via GABA signalling. *Nat Commun* *8*, 14336. doi:
1076 10.1038/ncomms14336. .
- 1077 30. Tedeschi, A. (2012). Tuning the orchestra: transcriptional pathways controlling axon
1078 regeneration. *Front Mol Neurosci* *4*, 60. doi: 10.3389/fnmol.2011.00060.
- 1079 31. van Kesteren R.E., Mason M.R., Macgillavry H.D., Smit A.B., and J., V. (2011). A
1080 gene network perspective on axonal regeneration. *Front Mol Neurosci* *4*, 46. doi:
1081 10.3389/fnmol.2011.00046. .
- 1082 32. Palmisano I., Danzi M.C., Hutson T.H., Zhou L., McLachlan E., Serger E., Shkura K.,
1083 Srivastava P.K., Hervera A., Neill N.O., et al. (2019). Epigenomic signatures underpin
1084 the axonal regenerative ability of dorsal root ganglia sensory neurons. *Nat Neurosci* *22*,
1085 1913-1924. doi: 10.1038/s41593-019-0490-4.
- 1086 33. Noguchi T., Lo K., Diemer T., and D.K., W. (2016). Lithium effects on circadian
1087 rhythms in fibroblasts and suprachiasmatic nucleus slices from Cry knockout mice.
1088 *Neurosci Lett* *619*, 49-53. doi: 10.1016/j.neulet.2016.02.030.
- 1089 34. Mishra, H.K., Ying, N.M., Luis, A., Wei, H., Nguyen, M., Nakhla, T., Vandenburgh,
1090 S., Alda, M., Berrettini, W.H., Brennand, K.J., et al. (2021). Circadian rhythms in
1091 bipolar disorder patient-derived neurons predict lithium response: preliminary studies.
1092 *Mol Psychiatry* *26*, 3383-3394. doi: 10.1038/s41380-021-01048-7.
- 1093 35. Osland, T.M., Fernø, J., Håvik, B., Heuch, I., Ruoff, P., Lærum, O.D., and Steen, V.M.
1094 (2011). Lithium differentially affects clock gene expression in serum-shocked NIH-
1095 3T3 cells. *J Psychopharmacol* *25*, 924-933. doi: 10.1177/0269881110379508.
- 1096 36. Li, J., Lu, W.Q., Beesley, S., Loudon, A.S., and Meng, Q.J. (2012). Lithium impacts
1097 on the amplitude and period of the molecular circadian clockwork. *PLoS One* *7*,
1098 e33292. doi: 10.1371/journal.pone.0033292.
- 1099 37. Leibinger M., Andreadaki A., Golla R., Levin E., Hilla A.M., Diekmann H., and D., F.
1100 (2017). Boosting CNS axon regeneration by harnessing antagonistic effects of GSK3
1101 activity. *Proc Natl Acad Sci U S A* *114*, E5454-E5463. doi: 10.1073/pnas.1621225114.
- 1102 38. Liz, M.A., Mar, F.M., Santos, T.E., Pimentel H.I., Marques A.M., Morgado M.M.,
1103 Vieira S., Sousa V.F., Pemble H., Wittmann T., et al. (2014). Neuronal deletion of
1104 GSK3 β increases microtubule speed in the growth cone and enhances axon
1105 regeneration via CRMP-2 and independently of MAP1B and CLASP2. *BMC Biol* *12*,
1106 47. <https://doi.org/10.1186/1741-7007-12-47>.
- 1107 39. Stokes K., Cooke A., Chang H., Weaver D.R., Breault D.T., and P., K. (2017). The
1108 Circadian Clock Gene BMAL1 Coordinates Intestinal Regeneration. *Cell Mol*
1109 *Gastroenterol Hepatol* *4*, 95-114. doi: 10.1016/j.jcmgh.2017.03.011. .
- 1110 40. Gaudet A.D., Fonken L.K., Ayala M.T., Bateman E.M., Schleicher W.E., Smith E.J.,
1111 D'Angelo H.M., Maier S.F., and L.R., W. (2018). Spinal Cord Injury in Rats Disrupts
1112 the Circadian System. *eNeuro* *5*, ENEURO.0328-0318.2018. . doi:
1113 10.1523/ENEURO.0328-18.2018. .
- 1114 41. Slomnicki L.P., Wei G., Burke D.A., Hodges E.R., Myers S.A., Yarberry C.D.,
1115 Morehouse J.R., Whittemore S.R., Saraswat Ohri S., and M., H. (2021). Limited
1116 changes in locomotor recovery and unaffected white matter sparing after spinal cord
1117 contusion at different times of day. . *PLoS One* *16*, e0249981. doi:
1118 10.1371/journal.pone.0249981. .

- 1119 42. Cuesta M., Cermakian N., and D.B., B. (2015). Glucocorticoids entrain molecular
1120 clock components in human peripheral cells. *FASEB J* 29, 1360-1370. doi:
1121 10.1096/fj.14-265686.
- 1122 43. Zielinski T., Moore A.M., Troup E., Halliday K.J., and A.J., M. (2014). Strengths and
1123 limitations of period estimation methods for circadian data. *PLoS One* 9, e96462. doi:
1124 10.1371/journal.pone.0096462.
- 1125 44. Hughes M.E., Hogenesch J.B., and K., K. (2010). JTK_CYCLE: an efficient
1126 nonparametric algorithm for detecting rhythmic components in genome-scale data sets.
1127 *J Biol Rhythms* 25, 372-380. doi: 10.1177/0748730410379711. .

1128