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Abstract

Protein sequence design, the inverse problem of protein structure pre-
diction, plays a crucial role in protein engineering. Although recent deep
learning-based methods have shown promising advancements, achiev-
ing accurate and robust protein sequence design remains an ongoing
challenge. Here, we present CarbonDesign, a new approach that draws
inspiration from successful ingredients of AlphaFold for protein struc-
ture prediction and makes significant and novel developments tailored
specifically for protein sequence design. At its core, CarbonDesign
explores Inverseformer, a novel network architecture adapted from
AlphaFold’s Evoformer, to learn representations from backbone struc-
tures and an amortized Markov Random Fields model for sequence
decoding. Moreover, we incorporate other essential AlphaFold con-
cepts into CarbonDesign: an end-to-end network recycling technique
to leverage evolutionary constraints in protein language models and
a multi-task learning technique to generate side chain structures cor-
responding to the designed sequences. Through rigorous evaluations
on independent testing data sets, including the CAMEO and recent
CASP15 data sets, as well as the predicted structures from AlphaFold,
we show that CarbonDesign outperforms other published methods,
achieving high accuracy in sequence generation. Moreover, it exhibits
superior performance on de novo backbone structures obtained from
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recent diffusion generative models such as RFdiffusion and FrameD-
iff, highlighting its potential for enhancing de novo protein design.
Notably, CarbonDesign also supports zero-shot prediction of the func-
tional effects of sequence variants, indicating its potential application
in directed evolution-based design. In summary, our results illustrate
CarbonDesign’s accurate and robust performance in protein sequence
design, making it a promising tool for applications in bioengineering.

Main

Protein sequence design, also referred to as inverse protein folding, is to iden-
tify amino acid sequences that can fold into a given protein backbone structure
while exhibiting desired functions. It serves as a crucial step in computa-
tional protein design, which has recently made significant advancements in the
engineering of therapeutics [1, 2], enzymes [3, 4], and more applications [5].
Typically in de novo protein design, determining the optimal sequences became
essential once the backbone structures are derived from either energy-based
methods [6] or recent diffusion generative models [7–9].

Recent advancements in deep learning-based sequence design methods
have demonstrated promising results in generating highly accurate candidate
sequences [10–15]. These approaches differ from one another in their strate-
gies for encoding the protein structure and decoding the associated sequences.
Typically, ProteinMPNN [10] and ESM-IF [11] utilize neural networks to
encode the entire backbone structure and subsequently decode the sequences
in an end-to-end autoregressive manner. On the other hand, methods such as
3DCNN [12], ABACUS-R [13], and ProDESIGN-LE [14] individually encode
the structural context of each residue and iteratively refine the designed
sequences, starting from a randomly initialized sequence.

Protein structure prediction and protein sequence design are closely inter-
twined, with advancements in one field benefiting the other. Inspired by the
remarkable success of AlaphFold2 [16] and RosettaFold [17] in addressing the
protein folding problem, we adapt their key concepts to the inverse folding
and propose a novel approach CarbonDeisgn, aiming to improve sequence
design through enhancing the encoder and decoder architecture, leveraging
more efficient features, and refining the training strategy.

At its core, CarbonDesign utilizes a novel network architecture Inverse-
former to transform 3D structural features into single and pair representations
using a series of node updates and triangular edge updates, following a Markov
Random Field (MRF) module for sequence decoding. Intuitively, Inverseformer
inverts the information flow compared to AlphaFold’s Evoformer and primarily
focuses on learning representations from backbone structures.

We also introduce two other crucial concepts. Firstly, we adopt the net-
work recycling strategy [16, 18, 19] to recycle the entire network with shared
weights in an end-to-end manner. During the recycling stages, we incorporate
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sequence embedding from the protein language model EMS2 [20], enabling
CarbonDesign to fuse evolutionary and structural constraints effectively. Sec-
ond, we leverage multi-task learning with several auxiliary losses to guide the
learning of single and pair representations directly and to predict the sequences
and the corresponding side chain structures.

We extensively evaluate CarbonDesign using diverse datasets, including
the CAMEO dataset [21], the recently released CASP15 dataset [22], and the
predicted structures from AlphaFold. Additionally, in the context of de novo
protein design, we further assess the utility of CarbonDesigin in reconstructing
sequence for the de novo structures derived from diffusion generative methods
such as RFdiffusion [7] and FrameDiff [8]. Furthermore, we demonstrate that
CarbonDesgin serves as a reliable zero-shot predictor of mutational effects
on protein function, with its performance evaluated using deep mutational
scanning datasets encompassing millions of missense variants.

Results
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Fig. 1: CarbonDesign architecture. a, The arrows illustrate the flow
of information in the network, designing a 1D protein sequence from a 3D
backbone structure. b, The Inverseformer blocks update the single and pair
representations through node aggregation and triangular edge update layers. c,
CarbonDesign employs multi-task learning with various training losses, includ-
ing single and pair amino acid losses, and losses for side chain structures.
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Methods AlphaFold CarbonDesign

Direction of
information flow from 1D to 3D from 3D to 1D

Architecture
Evoformer and

Structure Module
Inverseformer and

Markov Random Fields-Sequence Module

Additional features
in recycling stage

Distance map

of predicted structures

Embeddings of intermediate sequence

from language model ESM2

Multi-task
learning

Folding head,

distogram head,

confidence head etc.

Site amino acid head,

pair amino acid head,

side chain head.

Table 1: Key concepts of CarbonDesign inspired by AlphaFold.

Model architecture

CarbonDesign improves protein sequence design by incorporating novel neu-
ral network architectures and training procedures based on evolutionary and
structural constraints. To convert protein 3D structure to 1D sequence, we
invert and adapt the network architecture employed in AlphaFold, which was
initially developed for 3D structure prediction from 1D sequence (Figure 1 and
Table 1).

The network comprises two main stages. Firstly, we use an Inverseformer
module to progressively update the single and pair representations, which are
initialized with local orientations and residue-residue distances. Secondly, we
use a Markov Random Fields (MRF)-Sequence Module to decode the sequence,
with its pair coupling terms and site bias terms parameterized based on the
learned pair and single representations, respectively (see Methods).

Inverseformer aims to learn the single and pair representations from which
single-site and pairwise amino acids can be decoded (Figure 1b). Single
and pair representations interact and undergo refinement through a series of
blocks. Specifically, single representations are updated through row aggrega-
tion and column aggregation layers with pair presentations as inputs, enabling
information flows from 2D to 1D representations. Subsequently, pairwise rep-
resentations are revised through an outer product layer and four triangular
attention layers.

In protein structure prediction, triangular edge updates are intuitively
motivated by the need to satisfy the triangle inequality constraints on residue-
residue distances. On the other hand, for sequence design, we establish an
intuitive connection between Inverseformer’s triangular updates and the edge
message updates in the Belief Propagation (BP) algorithm, which is commonly
used for learning and inference in probabilistic graphical models like MRFs
and Bayesian networks [23, 24]. In the BP algorithm, node and edge mes-
sages are updated alternately to aggregate probability mass from neighboring
variable nodes. Each edge message ij is updated through a triangular edge
updates operation, involving all other edge messages jk related to variable node



Protein Sequence Design with CarbonDesign 5

j (Supplementary Figure S1). Based on this intuition, we hypothesize that
the triangular edge updates encourage representations that generate sequences
with higher likelihoods under the MRFs model in the following MRFs-Sequence
Module.

MRFs-Sequence Module is to construct a probabilistic model for the
sequences conditioned on learned single and pair representations. MRFs are
widely utilized in direct coupling analysis to model sequence likelihoods [25–
27]. In the context of CarbonDesign, the learned single and pair representations
naturally parameterize the coupling and site bias terms in MRFs. Subse-
quently, a simple ad-hoc algorithm is used to sample the candidate amino acid
sequences from the MRFs model (see Methods).

End-to-end network recycling with a protein language
model

The end-to-end network recycling technique enhances model capacity by stack-
ing and reusing the same model architecture with shared weights. Rather
than making direct predictions in a single step, this technique employs a self-
correcting mode to progressively refine an initial solution by incorporating
feed-backs from error predictions. It has been successfully applied within the
field of computer vision [18, 19], as well as in AlphaFold for protein structure
prediction.

Network recycling enables the model to extract additional features as error
feed-backs from the intermediate predictions. In the case of CarbonDesign,
learned single and pair representations from the previous recycling rounds
serve as features for the next round.

Furthermore, the recycling technique enables CarbonDesign to leverage
evolutionary constraints encoded in protein language models like ESM2 in an
end-to-end manner. Specifically, the intermediate sequence is first predicted
using the single representations, and its embedding is extracted from the lan-
guage model ESM2 as additional recycling features. Protein language models
have the capability to learn efficient representations from millions of sequences
and have been successfully applied in predicting protein functions and struc-
tures [20]. In the context of CarbonDesign, the language model serves as a
prior for the generated sequences.

Multi-task learning with sequence design and side chain
structure prediction

We employ a cross-entropy loss for individual amino acids and an auxiliary
cross-entropy loss for pairwise amino acid identities to directly guide the learn-
ing of the single and pair representations, respectively. To approximate the
exact likelihood of the sequences in the MRFs model [25], we utilize a compos-
ite likelihood during training. Moreover, we incorporate a side chain torsional
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angle loss and a side chain structure loss in training [16], enabling CarbonDe-
sign to predict both the sequences and the corresponding side chain structures
(Figure 1c).

Evaluting CarbonDesign on independent testing sets

(a) (b)

(c)

(d)

(f) (g)

TMscore = 0.99TMscore = 0.97
T1158 (Designed Structure) A0A1Y0TWD8

(e)

Sequence Recovery Rate Sequence Recovery Rate

Sequence Recovery Rate Sequence Recovery Rate

BLOSUM Score BLOSUM Score

BLOSUM Score BLOSUM Score

We extensively evaluated CarbonDesign on two prominent datasets: the
CAMEO test set, consisting of 642 structures used in ongoing CAMEO assess-
ments between February 2022 and February 2023 [21], and the CASP15
test set, comprising 65 publicly released structures [22]. We compared our
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Fig. 2: Evaluation of CarbonDesign with the CAMEO and CASP15
independent testing sets. a-b, Evaluation with sequence recovery rate
and BLOSUM score, respectively. c-d, Head-to-head comparisons with other
representative methods on CAMEO and CASP15 testing sets, respectively,
with color intensity indicating sequence lengths. e, Evaluation of CarbonDe-
sign with various protein language models based on sequence recovery rate.
f, Illustrative case of a long protein T1158 (length: 1340) showing the native
structure (blue) and the predicted structure of the designed sequence (orange).
g, Illustrative case of the novel fold protein dwNTPase mined from AlphaFold
DataBase, with the predicted structure of native sequence (blue) and designed
sequence (orange).

approach with representative methods in protein sequence design, including
ProteinMPNN [10], ESM-IF [28], ABACUS-R [13], and ProDESIGN-LE [14].

We evaluated the performance of CarbonDesign using two key metrics:
sequence recovery rate and the BLOSUM score [29]. The sequence recovery
rate assesses the model’s ability to design sequences that closely match the
target structure, while the BLOSUM score measures the similarity between
the designed sequences and the native sequences.

Compared to the representative methods, CarbonDesign achieves a
sequence recovery rate of 60.1%, outperforming ProDESIGN-LE (42.8%),
ABACUS-R (43.6%), ProteinMPNN 020 (default model, with 0.02Å noise)
(51.3%), ProteinMPNN 020 (with 0.20Å noise) (45.3%), and ESM-IF (54.8%).
Similarly, CarbonDesign outperformed these methods by 1.18, 1.01, 0.95, 0.52,
and 0.33 in BLOSUM score.

CarbonDesign continued to exhibit superior performance with the
CASP15 test set. It acheives a sequence recovery rate of 53.8%, surpassing
ProDESIGN-LE (40.2%), ABACUS-R (38.2%), ProteinMPNN 020 (42.0%),
ProteinMPNN 002 (48.1%), and ESM-IF (50.4%) (Figure 2a). CarbonDesign
also achieves a BLOSUM Score of 2.77, outperforming ProDESIGN-LE (1.80),
ABACUS-R (1.74), ProteinMPNN 020 (1.96), ProteinMPNN 002 (2.41), and
ESM-IF (2.54) (Figure 2b). Remarkably, we have observed that utilizing a
larger language model, ESM-3B, leads to a further improvement in sequence
design accuracy (Figure 2e).

We further evaluated CarbonDesign using a dataset of orphan proteins
characterized by limited or no homologous sequences and a lack of structure
templates. These proteins pose a significant challenge for existing struc-
ture prediction methods due to the scarcity of evolutionary information
[16, 17, 20, 30, 31]. They also serve as a rigorous test set for protein sequence
design, as they lack homologous information in existing sequence and structure
databases. In our evaluation on the orphan proteins from CASP15, CarbonDe-
sign still demonstrated robust performance, achieving a sequence recovery rate
of 49.1% and outperforming all other representative methods (Supplementary
Table S6).
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Recent advancements in diffusion-based methods have enabled the design of
long backbone structures, which pose a challenge for protein sequence design.
We curated a dataset of long proteins (> 800 amino acids) from CASP15
and CAMEO test sets to evaluate CarbonDesign’s performance. Notably,
CarbonDesign achieved a sequence recovery rate of 55.0%, surpassing the
compared methods. As an illustrative example, we evaluated CarbonDesign
on the multidrug-resistant protein T1158 (Bos taurus MRP4) with a length
of 1340 amino acids (Figure 2f) (Supplementary Table S5). CarbonDesign
demonstrated a sequence recovery rate of 58.1% and a TM-score of 0.97 when
comparing the predicted structure via ESMFold with the native structure.

As a case study, we examine the protein Dual-wield NTPase (dwNTPase)
(Figure 2g) [32], which exhibits a highly novel architecture discovered through
data mining of predicted structures in the AlphaFold DataBase [33]. Carbon-
Design successfully generates a sequence with a high sequence recovery rate of
70.2%. Furthermore, the predicted structures of the native and the designed
sequence exhibit a high similarity (TM-score=0.99). This case highlights the
robustness of CarbonDesign with predicted backbone structures and its strong
model generalization, enabling accurate designs for novel fold types.

Improving de novo protein design with CarbonDesign

Recent diffusion-based methods, such as RFdiffusion, have revolutionized de
novo protein design by generating novel backbone structures across diverse fold
types that have never been observed in nature. In light of these advancements,
we evaluate the efficacy of CarbonDesign in enhancing protein de novo design
by generating more accurate sequences for these novel backbone structures.

Since native sequences are unavailable for evaluating sequence recovery
rate and BLOSUM similarity score, we employ the self-consistency TM-score
(scTM) as an alternative measure. Specifically, we first utilize ESMFold to
predict the structures of the designed sequences corresponding to the backbone
structures generated by RFdiffusion. We then use TM-score to measure the
consistency between predicted and original structures. We also note that while
scTM is commonly used as a surrogate when native sequences and crystal
structures are unavailable, its reliability is contingent upon the accuracy of
protein structure prediction.

Following ProteinMPNN and ESM-IF, we introduced noise into the crystal
structures during training. This approach accounts for the fact that in practi-
cal applications, de novo-generated structures or predicted structures may not
exhibit the same level of precision as crystal structures commonly used in train-
ing. We generated 2560 backbone structures of variable lengths (ranging from
200 to 600) using RFdiffusion and evaluated the performance of CarbonDesign
and ProteinMPNN with different noise levels.

Our results highlight two main findings. Firstly, ProteinMPNN consistently
outperforms ProteinMPNN in terms of scTM at each noise level (Figure 3b).
Secondly, we observed that more significant noise levels improve the perfor-
mance of both CarbonDesign and ProteinMPNN, indicating the beneficial role
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(a)

(b)

scTMscore = 0.98
CarbonDesign

Diffusion (Length: 600)
scTMscore = 0.97

(c)

(d)

scTMscore = 0.69
ProteinMPNN (020)

scTMscore = 0.24
ESM-IF(020)

Diffusion (Length: 200) Diffusion (Length: 300) Diffusion (Length: 400) Diffusion (Length: 500)
scTMscore = 0.98 scTMscore = 0.99 scTMscore = 0.98 scTMscore = 0.99

Fig. 3: Evaluation of CarbonDesign on de novo backbone struc-
tures from RFdiffusion. a, Evaluation on backbone structures with varying
lengths, measured by scTM score. b, Impacts of training noise levels on the
performance of CarbonDesign and ProteinMPNN. c, Illustrative case show-
ing a de novo backbone structure (blue) and predicted structures (orange) of
designed sequences from ESM-IF, ProteinMPNN, and CarbonDesign, respec-
tively. d, Additional illustrative cases of de novo backbone structures (blue)
with varying lengths and predicted structures (orange) of designed sequences
from CarbonDesign.

of noise in generating sequences for de novo structures. More specifically, Car-
bonDesign demonstrates superior performance over the existing representative
methods, including ProteinMPNN and ESM-IF, across all different lengths
(Figure 3a).

To assess the broad applicability of CarbonDesign in enhancing protein de
novo design, we extend our evaluation to include FrameDiff, another recent
diffusion-based method. By replacing ProteinMPNN with CarbonDesign, we
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observe a substantial 0.083 improvement in the scTM score (Supplementary
Figure S3), demonstrating the efficacy of CarbonDesign in enhancing the
performance of FrameDiff.

Moreover, we present a successful example of a generated backbone struc-
ture consisting of 500 residues. CarbonDesign achieves an scTM of 0.98,
which is significantly higher than ESM-IF (scTM=0.24) and ProteinMPNN
(scTM=0.69) (Figure 3c). Furthermore, we demonstrate other successful
examples of designed sequences of variable lengths (Figure 3d).

Predicting functional effects of variants via CarbonDesign

The accurate interpretation of the functional effects of variants is crucial in
directed evolution-based protein engineering [34, 35], as well as in the context
of human genetic studies and clinical testing [36, 37]. Pre-trained language
models have emerged as effective zero-shot predictors, alleviating the issue of
limited labeled data and mitigating potential human biases in variant anno-
tation [38]. We now show that CarbonDesign also supports zero-shot learning
for functional effects prediction, indicating its ability to capture the inherent
sequence-structure-function relations.

We first use AlphaFold to predict the protein structures for the testing
sequences, which serve as inputs of CarbonDesign. Subsequently, to score the
mutational effects of variants on a particular sequence, we calculate the ratio
between the likelihoods of the mutated and wild-type sequences based on the
CarbonDesign model (see Methods).

We evaluate CarbonDesign on deep mutational scanning datasets with
experimentally determined functional scores [39]. CarbonDesign achieves a
Spearman correlation of 0.43, outperforming the purely language model-based
approaches like ESM-1v and ProGen2 (Figure 4a). Furthermore, integrating
the scores of CarbonDesign and the other two methods improves the per-
formance, resulting in a Spearman correlation of 0.47. This highlights that
CarbonDesign, as a structure-based method, can improve the interpretation of
functional effects in combination with purely language model-based methods.

We next assess CarbonDesign in predicting the pathogenicity of human
genetic variants. Specifically, we focus on four well-known disease risk genes
(BRCA1 [40], TP53 [41], PTEN [42], and MSH2 [43]) that have a substantial
number of high-quality clinical labels in ClinVar. CarbonDesign demonstrates
excellent predictive capability for these genes, achieving an average auROC
of 0.93 (Figure 4b). Notably, CarbonDesign achieves near-perfect separation
of benign and pathogenic variants for TP53 and PTEN, with auROC values
exceeding 0.95. Furthermore, our results indicate that CarbonDesign out-
performs pure language model-based approaches on average in this context
(Supplementary S7).

Furthermore, we observed a correlation between the predicted amino acid
distribution and the protein structures. We utilize the entropy of the predicted
amino acid distribution as a metric of conservation, with lower entropy indi-
cating higher conservation. As a proof of concept, we examine two proteins,
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(a)

(b) (c)

(d)

6AGF_A

1IGS_A
MSH2, AUC=0.822PTEN, AUC=0.986

TP53, AUC=0.984BRCA1, AUC=0.933

Fig. 4: Evaluation of CarbonDesgin in interpreting functional effects
of variants. a, Evaluation on variants from 49 deep mutational scanning
essays. The x-axis represents the names of the proteins in the essays, and the
y-axis represents the Spearman correlation coefficient. b, Evaluation on clini-
cal labeled variants in ClinVar for four well-known disease risk genes: BRCA1,
TP53, PTEN, MSH2. The x-axis represents the positions of variants on the
proteins, and the y-axis represents the functional scores predicted by Car-
bonDesign. c, Entropy variation of protein Nav1.4 − β1, with each position,
color-coded based on the level of entropy. Blue regions indicate areas of low
entropy, white regions indicate areas of high entropy, and red indicates other
binding peptides. d, Entropy variation of protein indole-3-glycerol phosphate
synthase, with each position, color-coded based on the level of entropy. Blue
indicates areas of low entropy, red indicates areas of high entropy, and red ions
represent phosphate ions.
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Nav1.4 − β1 [44] (Figure 4c) and indole-3-glycerol phosphate synthase [45]
(Figure 4d). In both cases, regions with lower entropy coincide with hydropho-
bic core regions, associated with functional regions such as the sodium channel
and phosphate binding sites.

Interpreting the CarbonDesign

We trained and evaluated several ablation models to evaluate the relative
contributions of the key architecture to CarbonDesign accuracy. These studies
focused on examining the impact of the side chain prediction head, end-to-end
network recycling technique, and the auxiliary pair head in the MRF model.

CarbonDesign utilizes the side chain head to generate side chain structures
of all possible amino acids at each position. We evaluated the prediction accu-
racy of side chains using the CAMEO and CASP15 datasets and investigated
the contribution of side chain heads for sequence design accuracy.

CarbonDesign achieves an average Root Mean Squared Distance (RMSD)
of 0.805 (Figure 5a). Moreover, the side chain prediction accuracy strongly cor-
relates with the structural context constraints, measured by the number of Cβ

atoms within an 8Å radius around each residue. Higher side chain prediction
accuracy was observed for more constrained residues. For instance, the side
chain head of CarbonDesign demonstrated higher prediction accuracy with an
RMSD of 0.683 for the protein T1159 (PDB ID: 7PTZ [46]) (Figure 5c).

There also exhibits a strong correlation between the side chain prediction
accuracy and sequence design accuracy, with a Pearson correlation of 0.73
(Figure 5b). The more constrained structural context leads to improved pre-
diction accuracy for both side chain prediction and sequence design tasks,
consistent with prior studies [8, 10]. Additionally, training a modified model
with the side chain head removed demonstrates the beneficial effect of the side
chain head in enhancing the accuracy of designed sequences (Supplementary
Table S1).

Network recycling allows the model to incorporate the protein language
model in an end-to-end manner. We further assess the contribution of network
recycling and the additional sequence embedding from the language mod-
els during the recycling stages. Increasing the number of recycling iterations
results in an improved sequence recovery rate of designed sequences (Figure
5d). We note that when the number of recycling iterations is set to zero, the
sequence embedding from the protein language model is not utilized, and the
increase in prediction accuracy from no recycling to just one recycling iteration
demonstrates the contribution of the protein language model to the predic-
tions. Additionally, network recycling and the protein language model enhance
de novo protein design evaluated on the backbone structures from the diffusion
generative model (Figure 5e).

We next explore the accuracy of sequence design at protein core and sur-
face regions. CarbonDesign demonstrates notably higher accuracy at core
regions compared to surface regions (Supplementary Figure S4), in line with
prior research [10]. Furthermore, we investigate the effects of recycling and
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T1159 (PDB:7PTZ)

(a) (b) (c)

(d) (e)

(g)

LEU3, GLY7, THR8, ALA11, TYR47, TYR50,

 PHE58, LEU61, and THR62  

(h) (i)

(f)

Fig. 5: Evaluation of ablation models of CarbonDesign. a, Correla-
tion between RMSD error of side chain structure prediction and the number
of Cβ atoms within an 8Å radius around each residue. b, Correlation between
sequence design accuracy and side chain structure prediction accuracy on
CAMEO and CASP15 datasets. The x-axis represents the sequence recov-
ery rate, and the y-axis represents the RMSD between predicted and native
side-chain structures. c, Illustrative case of protein T1159 with predicted side
chain structures. Positions of LEU3, GLY7, THR8, ALA11, TYR47, TYR50,
PHE58, LEU61, and THR62 are shown, with predicted structures in orange
and native structures in blue. d, Evaluation of CarbonDesign with varying
recycling times, measured by sequence recovery rate on CAMEO and CASP15
testing sets. e, Evaluation of CarbonDesign with varying recycling times, mea-
sured by scTM score on the backbone structures from RFdiffusion. f, KL
divergence of the amino acid distribution between designed sequences and the
sequences from CAMEO and CASP15 datasets. g-i, Evaluation of the effects of
pair head in MRFs modeling on performance in deep mutational scanning test-
ing set, CAMEO and CASP15 testing sets, and de novo backbone structures
from RFdiffusion, respectively. The blue represents the default CarbonDesign
model, and the red represents the model with the pair head in MRFs model
excluded.
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the language model on distinct protein regions. We observe a higher relative
improvement at surface regions (19.1%) than at core regions (10.3%) (Supple-
mentary Figure S4). These results suggest that the evolutionary constraints
embedded in the language model can effectively complement the structural
constraints, particularly when the structural context is flexibly constrained.

The pair amino acid head in CarbonDesign directly guides the learning of
pair representations in Inverseformer and the pair couplings term in the MRF-
Sequence Module. We trained a modified model excluding the pair head to
evaluate its contribution. Notably, the pair head significantly improves perfor-
mance for both crystal structures (Figure 5h) and de novo structures (Figure
5i). Furthermore, we investigated the differences between the amino acid dis-
tribution in the designed sequences and the native sequences, measured as
Kullback-Leibler (KL) divergence. The model with the pair head can gener-
ate sequences with a closer amino acid distribution to the native sequences
(Figure 5f, Supplementary Figure S5). We also observed a slight improve-
ment in predicting the functional effects of the variants with the DMS testing
dataset (Figure 5g). These findings underscore the efficacy of the pair head in
CarbonDesign.

Discussion

We present CarbonDesign, a novel approach for protein sequence design that
incorporates key concepts from recent successful methods in protein structure
prediction. Specifically, CarbonDesign utilizes the Inverseformer architecture,
network recycling technique, and multi-task learning strategy to enhance
sequence design. Our results demonstrate that CarbonDesign outperforms
existing methods in generating candidate sequences for crystal structures, pre-
dicted structures, and de novo structures derived from diffusion generative
models, showing its utility in the de novo protein design scenario. More-
over, CarbonDesign supports zero-shot learning for predicting the functional
effects of sequence variants, highlighting its ability to capture the intrinsic
relationships between protein sequences and their functions.

Notably, CarbonDesign can leverage large-scale pre-trained protein lan-
guage models, improving sequence design performance. Several previous
studies have also demonstrated the utility of language models in various
computational protein design scenarios. For instance, ProGen2 employs a
generative pre-trained transformer (GPT) model to generate sequences with
control tags specifying protein properties [47]. Hie et al. utilize general protein
language models to efficiently evolve human antibodies, leading to a substan-
tial improvement in antibody binding affinity [48]. Our CarbonDesign uses the
network recycling technique for integrating language models in an end-to-end
manner into structure-based protein design.

While CarbonDesign primarily focuses on generating sequences for single
chains, it can be readily extended to address a broader range of sequence
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design tasks, such as designs for hetero multimers, oligo multimers, and target-
binding proteins. To achieve this, two key adaptations can be implemented.
First, the Inverseformer can be modified to incorporate chain identities as input
features, enabling the learning of chain-aware representations. This approach
aligns with the adaptation made in AlphaFold-multimer for protein complex
structure prediction [49]. Second, by managing the decoding order and con-
straints, MRF-Sequence Module can produce consistent sequences for each
chain within the multimeric structure.

In addition to evolutionary and structural constraints that have been
encoded in CarbonDesign, the selection coefficient correlating with allele fre-
quency is another information source that is widely used in interpreting
variants in human genetics [50–52]. By integrating both sources, we expect
CarbonDesign to have the potential for a broader application in identifying
risk genes and prioritizing the damaging variants. Further research is needed
to explore this potential.

Our work is limited in focusing solely on the in silico evaluation of the
designed sequences. While in silico metrics provide empirical evidence of
whether the designed sequences can fold correctly and exhibit the desired
function and are commonly used in the existing methods [10, 11, 15], wet-lab
experimental validation is crucial for a comprehensive evaluation of Carbon-
Design. It could offer valuable insights and opportunities for improvement and
remains our main future work.

Code and Data Availablility

We plan to release our software and the data after the peer-review process is
completed.
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Methods

Evaluation data sets

CAMEO testing set. We compiled a test set of 728 proteins from the
recent CAMEO campaign (between 2022-02 to 2023-02). After excluding short
proteins with fewer than 80 amino acids, the final test set consisted of 642
proteins.

CASP15 testing set. We included all available proteins from CASP15 that
were not canceled and then excluded proteins with lengths less than 80,
resulting in a test set of 65 proteins (Supplementary Table S2).

Testing set of long proteins. To benchmark the performance of long pro-
teins, we collected proteins with more than 800 amino acids from the CAMEO
and CASP15 testing sets. We then used MMseqs to filter overlaps between
the two sets with a sequence identity of 40% and selected the representative
protein from each cluster. The final test set comprises 13 proteins, with an
average length of 1239 (Supplementary S3).

Testing set of orphan proteins.We curated a testing set of 9 orphan proteins
from the CASP15 set (Supplementary Table S6). Following the criteria of
orphan proteins in previous work [20], we first perform the standard AlphFold
MSA search process against UniRef [53], MGnify [54], and BFD [55] databases
using HHBlits [56] and jackhmmer [57]. Our selection was ultimately narrowed
down to proteins that have fewer than 100 homologous sequences and failed to
produce a template with a TM-score surpassing 0.5. (Supplementary Table S4)

De novo backbone structures. We employ RFdiffusion to generate de novo
backbone structures with variable lengths (200, 300, 400, 500, and 600), pro-
ducing 512 structures for each length. We also utilize FrameDiff to generate
another set of de novo backbone structures.

Deep mutational scanning dataset. To evaluate CarbonDesign’s efficacy in
predicting the functional effects of variants, we compiled the experimentally
validated variants from deep mutational scanning (DMS) essays. For the pro-
teins lacking solved crystal structures or with incomplete structures, we use
AlphaFold to predict their structures as inputs for CarbonDesign. Due to the
limited prediction accuracy of AlaphaFold and other prediction methods for
long protein sequences, and the substantial computational resources required,
we restrict our analysis to proteins with fewer than 600 amino acids from the
ProteinGym DMS dataset. The final testing dataset consists of 179023 variants
on 49 genes.

Genetic variants on disease genes. To access CarbonDesign’s performance
in prioritizing human disease-related variants, we collected the clinically
labeled variants from the ClinVar database for four well-studied disease risk
genes: TP53, PTEN, BRCA, and MSH2. Each variant in this dataset is
annotated as either pathogenic or benign. This data includes 118 pathogenic
(positives) and 175 benign (negatives) variants for BRCA1, 111 positives and 2
negatives for PTEN, 130 positives and 33 negatives for TP53, and 69 positives
and 31 negatives for MSH2, respectively.
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Training data set

We trained CarbonDesign on protein chains in the Protein Data Bank (PDB)
released before Jan. 1st, 2020, determined by X-ray crystallography or cryoEM.
We only include the structures with a resolution better than 5.0Å and with
more than 50 amino acids. Sequences were clustered at 40% sequence identity
cutoff using MMseqs2, resulting in 30,828 clusters.

Input features

CarbonDesgin incorporates inter-residue distances as edge features and local
orientations of 4 consecutive Cα atoms as node features.

Edge features. Following ProteinMPNN [10], we calculate the distances
between N , Cα, C, O atoms, and virtual Cβ atoms for each residue pair. We
then divide the distances from 0Å to 15Å into 20 bins. The bin indices are
then one-hot encoded and mapped through a feed-forward layer to initialize
the pair representations. We note that we mask all the edges whose dis-
tance exceeds 15Å. Additionally, following AlphaFold, we incorporate relative
positional encoding for edge features.

Node features. For each residue at position i, we employ the Gram-Schmidt
process to calculate the local frame defined by the Ci−2

α , Ci−1
α , and Ci

α atoms.
In this frame, Ci

α serves as the origin, the direction of Ci−1
α as the x-axis, and

Ci−2
α determines the x-y plane. Specifically, its basis [a, b, c] is obtained as

follows:

a =
Ci−1

α − Ci
α

∥Ci−1
α − Ci

α∥

b =
a× (Ci−2

α − Ci
α)

∥a× (Ci−2
α − Ci

α)∥
c = a× b

(1)

Subsequently, the orientation of Ci+1
α is represented using its local coordinate

with respect to this frame (Supplementary Figure S2). Similarly, we calculate
the local orientation of Ci−1

α with respect to the Ci
α, C

i+1
α , and Ci+2

α atoms.

Inverseformer achitecture

We utilize a series of Inverseformer blocks to learn representations from the
input backbone structures (Algorithm 1). Each block has a single representa-
tion si of nodes and a pair representation zij of edges as its input and output
and processes them through several layers.

We leverage row and column aggregation layers to update the single rep-
resentations from the pair representations (Equation 2). We note that the
aggregation layers are specifically tailored to incorporate edge information
directly. The original row and column attention layers in the AlaphaFold
Evformer architecture are unsuitable for our purpose, as they primarily focus
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on aggregating information on nodes, with only a bias on edges.

si ← si + (

L∑
i=0

Transition(zij))
T

si ← si + (

L∑
j=0

Transition(zij))

(2)

We adopt a similar approach as AlphaFold for updating pair representa-
tions. We use an “Outer product mean” block to integrate the single repre-
sentations, followed by triangular update blocks. Furthermore, we introduce
residual connections and dropout layers to prevent overfitting.

The final Inverseformer block produces a highly processed single represen-
tation si for individual residues and a pair representation zij for residue-residue
pairs, which contain the necessary information for the MRF-sequence mod-
ule to decode the sequences. These representations are crucial for accurately
predicting the protein sequences.

Algorithm 1 Inverseformer

function Inverseformer(si, zij)
si ← si + Dropout(RowAgreggation(zij)) ▷ Node update
si ← si + Dropout(ColumnAgreggation(zij))
zij ← zij + OuterProductMean(si) ▷ Communication
zij ← zij + Dropout(TriangularMultiplicativeOutgoing(zij)) ▷ Edge

update
zij ← zij + Dropout(TriangularMultiplicativeIncoming(zij))
zij ← zij + Dropout(TriangleAttentionStartingNode(zij))
zij ← zij + Dropout(TriangleAttentionEndingNode(zij))
zij ← zij + Dropout(PairTransition(zij))
return si, zij

end function

MRF-Sequence Modeule

We employ an MRF(Markov Random Field)-Sequence Module to decode the
sequence from the learned representations. We denote a protein sequence of
length L as x and the type of the i-th amino acid as xi. And we use the random
variable X to denote the predicted amino acid sequence.

MRFs have proven to be effective in modeling the distributions of sequences
within a protein family [26, 27]. In CarbonDesign, we adopt an amortized
Markov Random Field (MRF) model to describe the distribution of the
designed sequences (Equation 3), which is conditioned on the learned single
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representations s and pair representations z:

P(X = x | s, z) = 1

Z
exp

[
L∑

i=1

hi(xi | si) +
L∑

i=1

L∑
j=i+1

eij(xi, xj | zij)

]
(3)

Here, hi and eij are the conversation bias term and pairwise coupling term,
respectively, in the vanilla MRF model, and Z is the partition function. For
CarbonDesign, we employ a feed-forward layer to project the learned sin-
gle representation si and pair representation zij to hi and eij , respectively.
The training and inference of the MRF model are interconnected with other
modules in CarbonDesign and will be elaborated in the subsequent sections.

Model inference

CarbonDesign consists of two main components: Inverseformer blocks and
the MRF-Sequence Module. The Inverseformer blocks take input backbone
features as initial representations to compute updated representations. Subse-
quently, the MRF-Sequence Module utilizes these representations to generate
intermediate sequences, final designed sequences, and corresponding side chain
structures.

For inference, the whole network is executed sequentially Ncycle times,
where the output single and pair representations of the former execution are
recycled as inputs for the next execution (Algorithm 2). During the recycling
phase, the intermediate sequence is inferred using the MRF model, and addi-
tional recycling features are extracted from the protein language model ESM2
by obtaining embeddings of the sequence.

In the MRF-Sequence Module, we employ both an efficient local inference
mode and a more accurate global inference mode for generating intermediate
and final designed sequences, respectively. The local inference mode utilizes
only the conservation bias term to infer the intermediate designed sequence:

x∗
i = argmax

xi

1

Zi
exp(hi(xi| si)) (4)

Here, Zi represents the local partition function involving only the conserva-
tion bias terms at position i. In contrast, the global inference mode optimizes
the sequence by maximizing the sequence probability under the MRF model,
considering both the conservation bias term and the pairwise coupling term
(Equation 4). The efficient local inference mode allows obtaining the embed-
dings of intermediate sequences in a computationally feasible manner. Since
exact optimization is challenging for the global mode, we initialize the infer-
ence using the sequence from the local inference mode and update sequences
using a fast greedy algorithm (Supplementary Note 3).

During the inference stage, when the types of amino acids are unknown,
we first utilize the single presentation si to predict the side chain structures
xsidechain
i,a ∈ Rb×3 for all possible amino acids, where b represents the number
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of side chain atoms and a covers 20 amino acid types. The final side chain
structures are materialized from xsidechain

i,a once the final designed sequence is
determined by the global inference mode of the MRFs model.

Training losses

The network is trained end-to-end, with gradients coming from the losses for
reconstructing native sequences and predicting side chain atomic coordinates.
The total per-example loss can be defined as follows:

L = Lsingle + Lpair + 0.2Lsidechain (5)

To restore native sequences, we utilize single cross-entropy loss Lsingle and
pairwise cross-entropy loss Lpair as direct supervision for the conservation bias
term hi(xi | si) and the pairwise coupling term eij(xi, xj | zij), respectively.
To calculate Lsingle, we linearly project the single representations si to obtain
logits and then compute the cross-entropy loss using the native sequence as
labels. For Lpair, we use a pairwise pseudo-likelihood (Equation 6) to approx-
imate the full likelihood of the sequence under the MRF model, following our
previous work on residue-residue contacts prediction [25]. For each pair of
amino acids in the sequence, its pseudo-likelihood conditioned on other amino
acids is given by:

Lpseudo(xi, xj) = log P(Xi = xi, Xj = xj | X⌝{i,j} = x⌝{i,j}; s, z)

= log
1

Zij
exp

{
hi(xi| si) + hj(xj | sj) + eij(xi, xj | zij)

+
∑

k/∈{i,j}

[eik(xi, xk | zik) + ejk(xj , xk | zjk)]
} (6)

Here, Zij is the local partial function. This pseudo-likelihood produces the
predicted distribution of amino acid pairs, and Lpair is computed with pairwise
amino acid identities as the labels. We note that Lpair can directly supervise eij
in the MRF-Sequence Module and pair representation zij in the Inverseformer.
Additionally, we added a 0.01 factor of L1 and L2 regularization terms into
Lpair.

The side chain loss consists of three components:

Lsidechain = Lmse + Ltorsion + 0.01Langlenorm (7)

Lmse is the Mean Squared Error (MSE) for predicted side chain atomic coordi-
nates. Additionally, following AlphaFold, we incorporate the loss terms Ltorsion

and Langlenorm to evaluate the error of side chain torsion angles [16].
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Algorithm 2 CarbonDesign Model Inference

1: function DesignSequence({xbackbone
i }, Nrecycle = 3, Nblocks = 12)

#compute input node and edge features (see Input features in Methods)
2: dij ← ∥xbackbone

i − xbackbone
j ∥2

3: dij ← oneHotEncoding(dij , vbins = [ 34 Å, 3
2 Å, ..., 15Å] )

4: ti ← computeLocalOrientations({xbackbone
i })

#initialize recycling features as 0
5: sprevi , zprevij = 0

6: for m = 1, 2, ..., Nrecycle do # shared weights during recycling
7: si ← Linear(Relu(Linear(ti)))
8: zij ← Linear(Relu(Linear(dij)))

9: zij ← zij + PariwiseRelativePositionEmbedding(i, j)

10: si ← si + Linear(Relu(Linear(sprevi )))
11: zij ← zij + Linear(Relu(Linear(zprevij )))

12: for n = 1, 2, 3, ..., Nblocks do
13: si, zij ← Inverseformer(si, zij)
14: end for

#generate intermediate sequence using local inference mode
(Equation 4)

15: xintermediate = MRFLocalInference(si)

#extract embedding of intermediate sequence using ESM2
16: {ei} = EmbeddingFromESM2(xintermediate)

#update initial single and pair representations for next cycle
17: sprevi ← si + Linear(ei)
18: zprevij ← zij
19: end for

#predict side chain angle χ1,χ2,χ3,χ4 for all possible amino acid types
20:

−→α f
i,a = Linear(ReLU(si)) # −→α f

i,a ∈ R2, f ∈ Storsion names, a ∈
20 amino acid types

#calculate atom coordinates from torsion angles following AlphaFold
21: xsidechain

i,a = computeSC(xbackbone
i ,−→α f

i,a) # xsidechain
i,a ∈ Rb×3

#generate final sequence using global inference mode (Algorithm 3)
22: xfinal ← MRFGlobalInference(xintermediate, {si}, {zij})

23: xsidechain*
i ← extractSC(xsidechain

i,a ,xfinal
i )

24: return xfinal,xsidechain*

25: end function
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Additional training details

For training, we utilize the Adam [58] optimizer with a β1 value of 0.9 and a
β2 value of 0.99. The base learning rate is set to 3e-4 with a warm-up period
of 1000 steps, starting from 1e-5, and the training proceeds for an additional
20000 steps. We randomly crop very long proteins during training with a crop
size of 400. The network architecture and training pipeline is implemented in
PyTorch [59], and training is performed on 16 NVIDIA A40 GPUs.

We trained several ablation models to assess the contributions of different
mechanisms utilized in CarbonDesign. Following ProteinMPNN [10] and ESM-
IF [15], we add noises to structures during training to deal with noises in
de novo and predicted backbone structures in practical applications. In the
default CarbonDesin model, we added a 0.2Å noise to half of the training
samples (referred to as small noise). To further investigate the effects of noise
levels on the performance with de novo backbone structures, we trained two
additional models: one without any noise (referred to as no noise), and another
with a 0.2Å noise applied to all training samples (referred to as large noise).
For more details on other ablation studies, please refer to Supplementary Table
S9.

CarbonDesign score for predicting functional effects of
variants

In CarbonDesign, each variant is scored using the log odds ratio between the
mutated and wild-type sequences. The variant score is defined as:

variant score =
P(X = xmt |s, z)
P(X = xwt |s, z)

(8)

Here, P(X = xmt|s, z) and P(X = xwt|s, z) represents likelihood of the
mutated and wild-type sequence, respectively, under the amortized MRFs
model (Equation 3).
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iterative protein sequence searching by HMM-HMM alignment. Nature
Methods 9 (2), 173–175 (2012). https://doi.org/10.1038/nmeth.1818 .

[57] Johnson, L. S., Eddy, S. R. & Portugaly, E. Hidden Markov model speed
heuristic and iterative HMM search procedure. BMC Bioinformatics
11 (1), 431 (2010). https://doi.org/10.1186/1471-2105-11-431 .

[58] Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization,
International Conference on Learning Representations (2015). URL https:
//doi.org/10.48550/arXiv.1412.6980.

[59] Paszke, A. et al. Wallach, H. et al. (eds) PyTorch: An Impera-
tive Style, High-Performance Deep Learning Library. (eds Wallach,
H. et al.) Advances in Neural Information Processing Systems, Vol. 32
(2019). URL https://proceedings.neurips.cc/paper files/paper/2019/file/
bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.

[60] Jing, B., Eismann, S., Suriana, P., Townshend, R. J. L. & Dror, R. Learn-
ing from Protein Structure with Geometric Vector Perceptrons (2021).
URL https://openreview.net/forum?id=1YLJDvSx6J4.

https://doi.org/10.1038/nmeth.1818
https://doi.org/10.1186/1471-2105-11-431
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://openreview.net/forum?id=1YLJDvSx6J4


Protein Sequence Design with CarbonDesign 29

1 Supplementary Materials

Supplementary Notes

1.1 Details on running the compared methods . . . . . . . . . . . . 30
1.2 Additional details on ablation models . . . . . . . . . . . . . . 30
1.3 Intuitive connections between Inverseformer and Belief Propa-

gation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.4 Global inference mode for the amortized MRF model . . . . . . 32

List of Supplementary Figures

S1 Edge update in ProteinMPNN, Inverseformer, and Belief Prop-
agation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 32

S2 Computing local orientations of Cα atoms in backbone structures 34
S3 Evaluation of CarbonDesgin on de novo backbone structures

from FrameDiff . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
S4 Evaluation on protein core and surface regions. . . . . . . . . . 35
S5 Distributions of amino acid types in designed and native

sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

List of Supplementary Tables

S1 Evaluation of ablation models on CAMEO and CASP15 testing
sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

S2 List of protein names in the CASP15 testing set. . . . . . . . . 37
S3 List of protein names in the testing set of long proteins. . . . . 37
S4 List of protein names in the testing set of orphan proteins. . . . 37
S5 Evaluation on the testing set of long proteins. . . . . . . . . . . 37
S6 Evaluation on the testing set of orphan proteins. . . . . . . . . 38
S7 Evaluation of CarbonDesign in predicting pathogenicity of

variants in human . . . . . . . . . . . . . . . . . . . . . . . . . 38
S8 Evaluation on de novo backbone structures from RFDiffusion

at varying noise levels. . . . . . . . . . . . . . . . . . . . . . . . 38
S9 Hyperparameters of CarbonDesgin architecture . . . . . . . . . 38



Protein Sequence Design with CarbonDesign 30

1.1 Details on running the compared methods

ESM-IF. We utlize the test script provided in the ESM GitHub
repository (https://github.com/facebookresearch/esm/tree/main/examples/
inverse folding), with the model esm if1 gvp4 t16 142M UR50 and all other
default settings.

ProteinMPNN. ProteinMPNN offers multiple models based on varying
noise levels. For a more comprehensive comparison, we use the Protein-
MPNN (default) model with 0.2Å noise and the ProteinMPNN (v 48 002)
model with 0.02Å noise. We use the testing scripts of ProteinMPNN
from the ProteinMPNN GitHub repository (https://github.com/dauparas/
ProteinMPNN). Except for our selection of different models for testing, all
parameter settings employ the default options provided by GitHub.

ProDESIGN-LE.We utilized all sequences designed by the ProDESIGN-LE
provided server (http://falcon.ictbda.cn:89/serving2/submit/aFGjrWnGyA/
?app=prodesign). All parameters were selected according to the default
settings of this method.

ABACUS-R. We utilized the test script provided on the GitHub (https://
github.com/liuyf020419/ABACUS-R/tree/main/demo) for protein sequence
design through ABACUS-R. All parameters were selected from the default
options provided in the config file on the website.

ESM-1v. In predicting functional effects of variants, we employed ESM-
1v as the benchmark criterion. We use the testing script of ESM-1v in
the ESM GitHub repository (https://github.com/facebookresearch/esm/tree/
main/examples/variant-prediction). All the hyper-parameters are default.

ProGen2. We use the model ProGen2-xLarge (6.4B). The GitHub reposi-
tory is (https://github.com/salesforce/progen/tree/main/progen2). All hyper-
parameters are default.

1.2 Additional details on ablation models

The ablation models we trained include:

1. Based on CarbonDesign (default), we removed the network recycling, and
this model will also disable the language model added during the recycling
stages.

2. Based on CarbonDesign (default), we removed the pairwise amino acid
head during training.

3. Based on CarbonDesign (default), we removed the side-chain head during
training.

https://github.com/facebookresearch/esm/tree/main/examples/inverse_folding
https://github.com/facebookresearch/esm/tree/main/examples/inverse_folding
https://github.com/dauparas/ProteinMPNN
https://github.com/dauparas/ProteinMPNN
http://falcon.ictbda.cn:89/serving2/submit/aFGjrWnGyA/?app=prodesign
http://falcon.ictbda.cn:89/serving2/submit/aFGjrWnGyA/?app=prodesign
https://github.com/liuyf020419/ABACUS-R/tree/main/demo
https://github.com/liuyf020419/ABACUS-R/tree/main/demo
https://github.com/facebookresearch/esm/tree/main/examples/variant-prediction
https://github.com/facebookresearch/esm/tree/main/examples/variant-prediction
https://github.com/salesforce/progen/tree/main/progen2
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CAMEO CASP15

CarbonDesign (default) 0.60 0.54

no network recycling and language model 0.52 0.48

no pairwise amino acid head 0.51 0.47

no side chain head 0.59 0.52

Table S1: Evaluation of ablation models on CAMEO and CASP15 testing
sets.

1.3 Intuitive connections between Inverseformer and
Belief Propagation Algorithm

During the encoding of backbone structures, the direct operation on nodes
and edges plays a crucial role in determining the information flow and learning
of their representations.

ProteinMPNN and ESM-IF utilize different approaches for node and edge
encoding. In ProteinMPNN, a graph neural network is used, while ESM-IF
employs a Geometric Vector Perceptron (GVP) [60] for this task. Information
on each edge in these models is updated based on the edge itself and its related
edges (Figure S1a).

In contrast, CarbonDesign’s Inverseformer uses triangular attention
updates on edges, where the representation of each edge is updated by
considering the representations of edges sharing a node (Figure S1b). This
approach is inspired by AlphaFold’s Evoformer, where triangular edge updates
are motivated by the need to satisfy the triangle inequality constraints on
residue-residue distances. In CarbonDesign, we establish an intuitive con-
nection between triangular edge updates in sequence design and the Belief
Propagation algorithm used in probabilistic graphical models.

In probabilistic models like Bayesian networks and Markov Random
Fields, a graph G = (V,E) is employed to describe the joint distribution of
P (X1, X2, ..., Xn) for n random variables (Figure S1c). Each variable xi is rep-
resented as a node, and edges between variables represent direct correlations.
The Belief Propagation algorithm aims to calculate the marginal distribu-
tion of a specific variable or a subset of variables by iteratively aggregating
probability mass from neighboring nodes. Specifically, mji(xj) represents the
“belief” of variable xi based on variable xj , and it is updated by aggregating
information from all edges jk (k ̸= i) connected to node j (Equation 9).

mji(xi) =
∑
xj

ϕ(xj)ϕ(xi, xj)
∏

k∈N(j),k ̸=i

mkj(xj)

 (9)
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Fig. S1: Edge update in ProteinMPNN, Inverseformer, and Belief
Propagation algorithm. a, ProteinMPNN updates representation of edge
ij using the edge itself and the nodes i and j. b, Inverserformer updates
representation of edge ij using the information from all related edges ik and
jk (i, j ̸= k). c, BP algorithm updates the belief on edge ij using beliefs from
all edges jk connected to j (k ̸= j).

1.4 Global inference mode for the amortized MRF model

In the MRF-sequence module, we leverage both a local inference mode to
generate intermediate sequences (see Methods in the main text) and a global
inference mode to produce the final designed sequences (Algorithm 3). Since it
is computationally infeasible to determine the sequences that exactly maximize
the full likelihood under the MRF model (Equation 3), we use an efficient and
straightforward greedy approach for approximation.

We initialize the sequence with the local inference mode, denoted as xold.
Subsequently, we update each amino acid by maximizing its conditional
likelihood given the identities of other amino acids:

xnew
i = argmax

xi

P(Xi = xi| Xi = xold
⌝i ; s, z), i = 1, 2, 3, ..., L; (10)

The conditional likelihood involves both the conservation bias term
hi(xi | si) and the pairwise coupling term eij(xi, xj | zij), and it can be
calculated efficiently as follows:

P(Xi = xi| Xi = xold
⌝i ; s, z)

=
1

Zi
exp

{
hi(Xi = xi | si) + hj(Xj = xold

j | sj) + eij(xi, Xj = xold
j | zij)

}
(11)

Here, Zi is the local partition function that sums over all 20 possible amino
acid types at position i. For both training and inference, we only include edges
for neighboring residues within a Cβ − Cβ distance of 8Å.

We alternately update each amino acid, and after completing updates for
the entire sequence, we proceed to the next round of updates until the sequence
converges. Typically, sequences converge within 2 rounds of updating, and we
set the maximum number of rounds as 3. We note that during the inference
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of the MRF model, both si and zij are held constant and treated as static
inputs, and there is no need to run Inverformer to update them in the process.

Algorithm 3 Global inference mode of the MRFs model

1: function GlobalInference(xinit, {hi(xi|sij)}, {eij(xi, xj |zij)},
Nmax=3)

#hi(xi| si) ∈ R20, eij(xi, xj | zij) ∈ R20×20

2: xold ← xinit

3: Indices ← randomOrderIndices({0, 1, · · · , L− 1})
4: for m = 1, 2,..., Nmax do
5: for i in Indices do

#Update xi using equation 10
6: xnew

i ← argmaxxi P(Xi = xi| Xi = xold
⌝i ; s, z)

7: end for
8: xold ← xnew

9: end for
10: return xnew

11: end function
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Supplementary Figures
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Fig. S2:Computing local orientations of Cα atoms in backbone struc-
tures . We utilize the Gram-Schmidt process to calculate the local frame
formed by the Ci−2

α , Ci−1
α , and Ci

α atoms. Subsequently, we represent the local
orientation of Ci+1

α as its local coordinate in the frame. Similarly, we calculate
the local orientation of the Ci−1

α with respect to the Ci
α, C

i+1
α , and Ci+2

α atoms.
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Fig. S3: Evaluation of CarbonDesgin on de novo backbone structures
from FrameDiff.

Fig. S4: Evaluation of CarbonDesign on protein core and surface
regions. The relative solvent-accessible surface area (RSA) for each residue
is calculated and categorized into Core (< 0.25), Boundary (0.25-0.75), and
Surface (> 0.75) regions. Sequence recovery rates are evaluated for both the
CarbonDesign default model and the model with the recycling and protein
language model excluded.
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(a)

(b)
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Fig. S5: Distributions of amino acid types in designed and native
sequences.a, A comparison between the distributions of amino acid types
in sequences designed by ProteinMPNN and native sequences. b, A compar-
ison between the distributions of amino acid types in sequences designed by
CarbonDesign without MRF modeling and native sequences. c, A comparison
between the distributions of amino acid types in sequences designed by Car-
bonDesign and native sequences.
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Supplementary Tables

T1104 T1106s2 T1109 T1110 T1112 T1113
T1114s1 T1114s2 T1114s3 T1120 T1121 T1122
T1123 T1124 T1125 T1127 T1129s2 T1130
T1131 T1132 T1133 T1134s1 T1134s2 T1137s1
T1137s2 T1137s3 T1137s4 T1137s5 T1137s6 T1137s7
T1137s8 T1137s9 T1139 T1145 T1146 T1147
T1150 T1151s2 T1153 T1154 T1155 T1157s1
T1157s2 T1158 T1159 T1162 T1163 T1169
T1170 T1173 T1174 T1175 T1176 T1177
T1178 T1179 T1180 T1181 T1182 T1183
T1184 T1186 T1187 T1188 T1194

Table S2: List of protein names in the CASP15 testing set.

8g4u A 7y4i A 7rcw A 7bi4 A 7v53 A 7pyv B
7vyx A 7nsn A T1125 T1157s1 T1154 T1158
T1169

Table S3: List of protein names in the testing set of long proteins.

T1122 T1130 T1131 T1125 T1113 T1178
T1184 T1155 T1129s2

Table S4: List of protein names in the testing set of orphan proteins.

ProDESIGN-LE ABACUS-R
Protein

MPNN 002
Protein

MPNN 020 ESM-IF CarbonDesign

36.4% 36.3% 46.9% 41.8% 32.6% 55.1%

Table S5: Evaluation on the testing set of long proteins measured
with sequence recovery rate. The table presents the results for 13 proteins
with more than 800 amino acids collected from both the CASP15 and CAMEO
datasets. The average protein length in this set is 1239 amino acids.
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ProDESIGN-LE ABACUS-R
Protein

MPNN 002
Protein

MPNN 020 ESM-IF CarbonDesign

38.9% 32.6% 38.5% 44.3% 46.2% 49.1%

Table S6: Evaluation on the testing set of orphan proteins measured
with sequence recovery rate.

Methods BRCA1 PTEN TP53 MSH2 average

ESM-1v 0.896 1.000 0.994 0.812 0.926

ProGen2 0.876 1.000 0.952 0.844 0.918

CarbonDesign 0.933 0.986 0.984 0.822 0.931

Table S7: Evaluation of CarbonDesign in predicting pathogenicity of
variants with the testing set of clinically curated variants in ClinVar.

Methods
Length
200

Length
300

Length
400

Length
500

Length
600

CarbonDesign(small noise) 0.84 0.69 0.58 0.58 0.48

CarbonDesign(high noise) 0.89 0.80 0.74 0.64 0.54

Table S8: Evaluation on de novo backbone structures from RFDif-
fusion at varying noise levels, measured using scTM score.

Single representation dimension 384

Pair representation dimension 128

Number of heads 8

Number of Inversformer blocks 12

Protein crop size during training 400

Dropout rate during training 0.1

Table S9: Hyperparameters of CarbonDesgin architecture
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