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. Abstract

2 Reliable prediction of T cell specificity against antigenic signatures is a formidable
s task, complicated primarily by the immense diversity of T cell receptor and antigen
4 sequence space and the resulting limited availability of training sets for inferential

s models. Recent modeling efforts have demonstrated the advantage of incorporating
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s structural information to overcome the need for extensive training sequence data, yet
7 disentangling the heterogeneous TCR-antigen structural interface to accurately pre-
s dict the MHC-allele-restricted TCR-peptide binding interactions remained challeng-
s ing. Here, we present RACER-m, a coarse-grained structural template model leverag-
10 ing key biophysical information from the diversity of publicly available TCR-antigen
11 crystal structures. We find explicit inclusion of structural content substantially reduces
12 the required number of training examples for reliable prediction of TCR-recognition
13 specificity and sensitivity across diverse biological contexts. We demonstrate that our
14 structural model capably identifies biophysically meaningful point-mutants that affect
15 overall binding affinity, distinguishing its ability in predicting TCR specificity of point
16 mutants peptides from alternative sequence-based methods. Collectively, our approach
17 combines biophysical and inferential learning-based methods to predict TCR-peptide
1s  binding events using sparse training data. Its application is broadly applicable to stud-

19 ies involving both closely-related and structurally diverse TCR-peptide pairs.

» 1 Introduction

21T cell immunity is determined by the interaction of a T cell receptor (TCR) with anti-
22 genic peptide (p) presented on the cell surface via major histocompatibility molecules
23 (MHCs) [1]]. T cell activation occurs when there is a favorable TCR-pMHC interac-
2« tion and, for the case of CD8+ effector cells, ultimately results in T cell killing of the
s pMHC-presenting cell [2]. T cell-mediated antigen recognition confers broad immu-
26 nity against intracellular pathogens as well as tumor-associated antigenic signatures
27 [3]. Thus, a detailed understanding of the specificity of individual T cells in a reper-
2s  toire comprised of many (~ 108) unique T cell clones is required for understanding and
29 accurately predicting many important clinical phenomena, including infection, cancer
s immunogenicity, and autoimmunity.

st Due to the immense combinatorial complexity of antigen (~ 10'3) and T cell (~
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22 10'®) sequence space, initial conceptual process in the field was made by studying
s simple forms of amino acid interactions, motivated either by protein folding ideas [4}
a 9] or random energy approaches [6l [7]. Recent advances in high-throughput studies
s interrogating T cell specificity [8, 9} [10] together with the development of statistical
s learning approaches have finally enabled data-driven modeling as a tractable approach
a7 to this problem. Consequently, a number of approaches have been developed to predict
ss TCR-antigen specificity [11} [12} [13} [14} [15]. A majority of developed approaches
3 input only TCR and pMHC primary sequence information. The persistent challenge
40 with this lies in limited training data given that any reasonable sampling of antigens
4 and T cells, or indeed even an entire human T cell repertoire, represents a very small
42 fraction of sequence space. As a result, many models under-perform on sequences that
43 are moderately dissimilar from their nearest neighbor in the training set, an issue we
4 refer to as global sparsity.

45 While global sparsity complicates inference extension to moderately dissimilar
4 antigens, another distinct challenge exists for reliably predicting the behavior of closely
47 related systems that differ by a single amino acid substitution, which we refer to as lo-
4 cal resolvability. These ‘point-mutated’ systems require predictive methods capable of
49 quantifying the effects of single amino acid changes on the entire TCR-peptide inter-
so action, a task often limited by lack of sufficient training examples required for reliable
st estimation of the necessary pairwise residues. Instead, a modeling framework aiming
s2  to discern such subtle differences between point-mutants may benefit from learning the
ss  general rules of amino acid interactions at the TCR-peptide interface and their varied
s« contributions to binding affinity. Resolving this very particular problem - discerning
ss relevant point-mutations in self-peptide and viral antigens - promises significant ther-
ss apeutic utility in targeting cancer neoantigens, optimally selecting immune stem cell
s7 transplant donors, and predicting the immunological consequences of viral variants.

ss  Thus local resolvability represents a distinct learning task wherein detailed reliable pre-
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so dictions need to be made on many small variations around a very specific TCR-pMHC
s  system.

o1 Several structure-based approaches have also been used to better understand TCR-
e2 pMHC specificity. Detailed structural models that focus on a comprehensive descrip-
es tion of TCR-pMHC interaction, including all-atom simulation and structural relax-
e« ation, are computationally limited to describing a few realized systems of interest
es [16L117]. Another strategy develops an AlphaFold-based pipeline to generate accurate
es 3-dimensional structures from primary sequence information to improve the accuracy
e7 of TCR-pMHC binding predictions for hundreds of systems [[18]. A previous hybrid
es approach [14] utilized crystal structural data together with known binding sequences to
o train an optimized binding energy model for describing TCR-pMHC interactions. This
70 approach offered several advantages, including the ability to perform repertoire-level
71 predictions within a reasonable time, along with a reduced demand for extensive train-
72 ing data. However, this model largely focused on a restricted set of peptide or TCR
73 systems using a single MHC-II structural template and did best in explaining mouse
7 I-EX-restricted systems. Thus, its ability to make reliable predictions for a structurally
75 diverse collection of TCR and peptide pairs with a conserved human leukocyte antigen
76 (HLA) allele restriction remains unknown.

77 Here, we leverage all available protein crystal structures of the most common hu-
78 man MHC-I allele variant - HLA-A*02:01 - to develop a combined sequence-structural
7o model of TCR-pMHC specificity that features biophysical information from a diversity
so of known structural templates. We quantify the structural diversity in available crystal
st structures of TCR-pMHC complexes[[19} 20, 121]], and demonstrate that incorporating a
s2 small subset of available structural information is sufficient to enable reliable predic-
ss tions of favorable interactions across a diverse set of TCR-antigen pairs. Our results
s« further suggest that the availability of structural information having close proximity to

s the true structure of a TCR-pMHC system can ameliorate both global sparsity and local
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ss resolvability in discerning the immunogenicity of diverse and point-mutated antigenic

&7 variants.

s 2 Results

s Model development and identification of TCR-peptide pairs with

o structural templates

ot We build on our previous RACER framework developed primarily on the mouse MHC-
o2 II I-EX system [14]. Our new approach, termed RACER multi-template (RACER-
93 m), represents a comprehensive pipeline that leverages published crystal structures of
9« known human TCR-pMHC systems. The training data include every available HLA-
o5 A*02:01-restricted system with a published structure [PDB/IEDB] of the TCR-pMHC
ss complex along with their corresponding peptide and TCR variable CDR3« and 3 se-
o7 quences. All associated publications linked to each crystal structure were culled for
s known strong and weak binding TCR-peptide sequences. Lastly, we included all
9o unique HLA-A*02:01-restricted reads from the ATLAS database [19] comprised of
1o  TCR-pMHC systems with reported binding affinity data. In total, 163 unique TCR-
101 peptide pairs and 66 structural templates were identified for training and validation
102 (see Supplementary Data).

103 We next assessed the structural diversity of training templates by pairwise evalua-
104 tion of structural similarity using a previously developed method referred to as mutual
105 Q [22}23]]. Mutual Q similarity defines a structural distance metric consisting of a sum
106 of transformed pairwise distances between each residue in two structures normalized
107 within the range of O to 1, which was then used to perform hierarchical clustering. We
we found that the identified structural clusters largely partition TCR-pMHC systems ac-
109 cording to immunological function (for example, systems sharing a conserved antigen)

1o with a few exceptions (Fig. [ZJA). Despite our focus only on a specified HLA-restricted
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1 repertoire, the analysis nonetheless revealed significant clustering heterogeneity across
1z all included systems: In some cases (e.g. MART-1, TAX), substantial heterogeneity
13 was observed and associated with significant pairwise dissimilarity of TCR and pep-
1a  tide sequences. This, together with cross-cluster structural diversity, is a consequence
ns  of global sparsity given limited observed structures. On the other hand, we also identi-
ne fied structurally homogeneous clusters comprised of TCR-pMHC systems possessing
17 near-identical pairwise sequence similarity (e.g. 1E6), yet these systems have substan-
ns tial differences in binding affinity, consistent with earlier predictions [6L[7]. This simul-
119 taneous manifestation of global sparsity and local resolvability amongst TCR-peptide
120 systems with identical HLA restriction represents a dual challenge for the development
121 of robust predictive models of TCR-peptide specificity.

122 Given the inter-cluster structural diversity for TCR-pMHC complexes as well as
123 the intra-cluster variability, it is necessary to suitably select a list of structures with
124 sufficient coverage of the identified structural clusters as training data for the model
125 and structural templates for test cases. In particular, we hypothesized that our hybrid
126 structural and sequence-based methodology could benefit from the inclusion of multi-
127 ple template structures, and the modeling approach presented here was developed with
12s  this motivation in mind.

129 The flow chart in Fig. illustrates the training (top row) and testing (bottom row)
130 algorithm in RACER-m. For training, contact interactions between peptide and TCR
131 were calculated for each of the strong binding systems with available TCR-pMHC crys-
12 tal structures. Here, contact interactions were defined by a switching function based
1s on the distance between structural residues and a characteristic interaction length (see
13a  Methods). For each strong binder, 1000 decoy (weak binder) systems were generated
15 by pairing the original TCR with a randomized version of the peptide. Contact inter-
136 actions derived from the topology of known TCR-pMHC structures, together with a

137 pairwise 20-by-20 symmetric amino acid energy matrix, determine total binding en-
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1w ergy. Each value of the energy matrix corresponds to a particular contribution by an
139 amino acid combination, with negative numbers corresponding to attractive contacts.
10 The training objective aims to select the energy matrix that maximizes separability
141 between the binding energy distributions of strong and weak binders.

142 In the testing phase, a sequence threading methods is employed to construct 3D
143 structures for testing cases that lack a solved crystal structure. Here, constructed struc-
144 tures are based on using a chosen known template with shortest (CDR3«/3 and pep-
s tide) sequence distance to the specific testing case. Using the constructed 3D structure,
146 a contact interface can be similarly calculated for each testing case, and 1000 decoy
1a7 weak binders can be generated by randomizing the peptide sequence. The optimal en-
s ergy model is then applied to assign energies to the testing system and decoy binders,
19 and the testing system is identified as a strong binder if its predicted binding energy is
10 significantly lower than the decoy energy distributions based on a standardized z score.
151 Here, z score calculation was adopted from the statistical z-test applied to the predicted
12 binding energy of test systems and decoy weak binders, the latter of which were used
153 as a null distribution to compare against a given test binder. The z score of binding
154 energies is defined as z = (Egecoy — Etest)/Tdecoys Where Eqecoy is the average pre-
15 dicted binding energy of decoy weak binders, Fi.g is the predicted binding energy of
16 the testing system, and o 4ecoy 1S the standard deviation of the binding energies of de-
157 coy weak binders. Testing systems having z scores exceeding 1 are considered strong

158 binding.

s Structural information enhances recognition specificity of pMHC-
w TCR complexes
11 RACER-m was developed to explicitly leverage the available structural information ob-

12 tained from experimentally determined TCR-pMHC complexes for predictions of test-

13 ing cases. While a prior modeling effort [[14] relied on a single structural template for
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1« both training and testing and achieved reasonable results given reduced training data,
s structural differences became prominent as the testing data expanded to include addi-
s tional TCR and peptide diversity, which resulted in reduced predictive utility. Structural
17 variation has been previously observed and quantified in high molecular detail [24, 25]
e using docking angles [26]] and interface parameters.

169 For HLA-A*02:01 TCR-pMHC systems, the docking angle ranged from 29° to
170 73.1°, while the incident angle varied from 0.3° to 39.5° degrees [24} 25, [27]. The
171 observed structural differences among different TCR-pMHC complexes suggest that a
172 single TCR-pMHC complex structure may not accurately represent the contact inter-
173 faces of other TCR-pMHC complexes, particularly those with substantially different
174 docking orientations. These distinct docking orientations lead to large variations in the
175 contact interfaces between peptide and CDR3a/f loops, which can be observed from
176 the diversity in contact maps as shown in Fig. S1. RACER-m overcomes this limita-
177 tion by the inclusion of 66 TCR-pMHC crystal structures, which are distributed over
178 distinct structural groups, including MART-1, 1E6, TAX, NLV, FLU and serve as both
179 the training dataset and reference template structures for testing cases.

180 In testing TCR-peptide pairs, all corresponding crystal structures were omitted
181 from predictions. Thus, selecting an appropriate template from available structures
1.2 became crucial for accurately reconstructing the TCR-pMHC interface and estimat-
s ing the binding energy. To accomplish this, RACER-m assumed that high sequence
18¢  similarity corresponds to high similarities in the structure space, which is supported
15 by the correlation between mutual Q score and sequence similarity measured from
186 the 66 solved crystal structures of TCR-pMHC complexes (Fig. S2). This assump-
17 tion was implemented by calculating sequence similarity scores of the testing peptide
1s  and TCR CDR3a/f sequences with those of all 66 reference templates. In each case,

189 a position-wise uniform hamming distance on amino acid sequences was calculated

The docking angle is the angle between the peptide binding groove on the MHC and the vector between
the TCR domains, the latter is calculated using the centroids of the conserved disulfide bonds in each domain.
This angle corresponds to the twist of the TCR over the p-MHC.
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190 to quantify the similarity. The sum of CDR3« and (5 similarities generated the TCR
191 similarity score, and a composite score was created by taking the product of peptide
122 and TCR scores (see Methods). The template structure having the highest sequence
1ss similarity was then selected as the template for threading the sequences of the testing
19a  TCR-peptide pair.

195 To evaluate the extent to which the RACER-m approach can address global spar-
16 sity by accurately recapitulating observed specificity in the setting of limited training
197 data, we trained a model using 42.3‘7 of the total experimentally confirmed strong
19e  binders, which sparsely cover all the structural groups involved in the mutual Q analy-
190 sis shown in Fig. [2JA. The remaining 57.7% of TCR-peptide sequences that lack solved
200 structures were utilized as testing cases to validate the sensitivity of the trained energy
201 model. RACER-m effectively recognizes strong binding peptide-TCR pairs and cor-
202 rectly predicts 98.9% of the testing systems using the criteria that z-score is greater
203 than 1. Amongst the 94 testing systems, only one TCR-peptide pair in the TAX struc-
204 tural group was mis-predicted as a weak binders with a binding energy deviating from
205 the average binding energies of decoy weak binders by 0.640, where o is the standard
206 deviation of the decoy energies. These initial results (Fig. |2)) confirm that the model
207 is effectively able to learn the specificity rules from TCR-pMHC systems exhibiting
208 distinct structural representations.

209 While the reliable identification of strong-binding systems is clinically useful and
210 one important measure of model performance, simultaneous evaluation of model speci-
211 ficity is equally crucial for generating useful predictions on the level of a TCR reper-
212 toire. To evaluate the specificity of a global sparsity task, we next tested RACER-
213 m’s ability to discern experimentally confirmed weak-binding systems. We selected
214 peptides or TCRs from the most abundant structural groups (MART-1 and TAX) in

215 the training set to create ‘scrambled’ systems by cross-cluster mismatching of either

2In addition to the 66 crystal structures of HLA-A*02:01 TCR-pMHC systems, 3 strong binders (PDB:
3GSR, 3GSU, and 3GSV) of NLV peptide with solved pMHC structures were also included in the training
set. See Supporting Methods for details.
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26 TCRs or peptides (see Methods for full details). Proceeding in this manner enables
217 a specificity test on biologically realized sequences instead of randomly generated
218 ones. Specifically, every peptide selected from a given structural group (e.g. peptide
219 EAAGIGILTV in the MART-1 group) was mismatched with a list of TCRs specific
20 for peptides belonging to other groups (e.g. TAX, 1E6, FLU, etc.) to form a set of
221 scrambled weak binders.

222 Following our aforementioned testing protocols, we next calculated z-scores for
223 these mismatched interactions, which were then compared to correctly matched sys-
224 tems with the same peptide sequence (e.g. EAAGIGILTV). We also conducted the
225 complementary test on TCRs using scrambled peptides. The primary advantages of
226 this approach include 1) the ability to match amino acid empirical distributions in bind-
227 ing and non-binding pairs, and 2) utilization of realized TCR sequences for specificity
228 assessment instead of random sequences that possess minimal if any overlap with phys-
229 iological sequences.

230 A representative example of these tests utilizing the MART-1 epitope and MART-
231 1-specific TCRs is given in Fig. |3| First, 7 sets of weak binders were constructed by
232 mismatching 36 MART-1-specific TCRs each with 7 non-MART-1 peptides sampled
233 from distinct clusters. We applied RACER-m on each weak binder to predict its bind-
23 ing energy, then compared this value to the distribution of decoy binding energies to
235 obtain a binding z score. z scores of mismatched weak binders, together with those of
23 correctly matched MART-1-TCR strong binders, were used to derive the receiver op-
237 erating characteristic (ROC) curve (Fig. , Fig. S3). The area under the curve (AUC)
238 was greater than or equal to 0.98 for 5 out of 7 test sets, while the others had AUCs of
230 0.80 and 0.75, illustrating RACER-m’s ability to successfully distinguish strong bind-
20 ing peptides from mismatched ones in the available MART-1-specific TCR cases.

241 An analogous test was performed on the 5 available peptide variants from the

22 MART-1 structural group by mismatching them with 35 TCR sequences contained

10
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23 in the NLV, FLU, 1E6 or TAX clusters. Relative to the binding energies of correctly
224 matched MART-1-specific TCRs, RACER-m performs well in discerning matched vs
25 mismatched TCRs for 4 out of the 5 tested MART-1 peptides (Fig. 3B, Fig. S4), the
26 one initial exception being peptide ELAGIGILTV. Further inspection of the TCRs in
247 this group revealed that the TAX-specific TCR A6 (triangle sign in Fig. B|C) together
28 with several closely associated point mutants had a z score distribution resembling that
29 of the RDI-MART1High TCR and its associated point mutants (Fig. S4E). This could
250 be explained by the fact that the RD1I-MART1High TCR was engineered from the A6
251 TCR to achieve MART-1 specificity [28]], wherein A6 was selected because of its simi-
22 larity with MART-1 specific TCRs in the V o region and similar docking mode [28},129].
23 However, the engineered (RD1-MART1High) TCR is no longer specific to the TAX
254 peptide (LLFGYPVYV), which is consistent with the z scores predicted from RACER-
255 m. Indeed, when the A6-specific TAX peptide is paired with RD1-MART1High TCR,
25 arelatively lower z score (cross sign in Fig. B[C) is predicted in comparison with the z

257 scores from strong binders (violin shape in Fig. [B[C) of the same peptide.

s Evaluation on extended datasets highlights the added value of struc-

e tural information

20 Given RACER-m’s performance on the ATLAS data, we then applied the model to
261 additional datasets to further validate its ability in the setting of global sparsity. The 10x
22 genomics [30] dataset details many TCR-peptide binders collected from five healthy
263 donors. HLA-A*02:01-restricted samples in this dataset include 23 unique peptides,
264 and the number of TCRs specific for each peptide varied from 8365 (e.g. GILGFVFTL)
265 to 1 (e.g. ILKEPVHGYV). We remark that the diversity of HLA-A*02:01 samples was
266 significantly reduced to 1741 systems having unique CDR3a//3 and peptide sequences
267 after removing redundancies. Importantly, we selected this large dataset as a reasonable

268 test since 89.26% of the 1741 testing systems did not share either the same CDR3« or

11
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260  CDR3f sequence in common with the list of available systems used in the training set,
270 and 99.89% of the testing systems did not have the same CDR3a-CDR3 /5 combination
271 with the training set, although 7 out of the 23 peptides were shared with the training
272 set.

273 Given this relative lack of overlap with our training data, we applied RACER-m to
27+ all unique HLA-A*02:01 pairs. In a majority (88.9%) of these cases across a large im-
275 munological diversity of peptides, RACER-m successfully identifies enriched z scores
276 in the distribution of binding TCRs (Fig. [JA). The distinction of TCRs belonging to
277 testing vs. training sets, together with the striking difference in the size of training and
278 testing systems, suggest that shared structural features were able to augment RACER-
279 m’s predictive power on distinct tests. Thus, the inclusion of structural information
250 in model training enhances RACER-m’s predictive ability across distinct TCR-pMHC
231 tests. There were several cases where RACER-m’s predicted distributions overlapped
252 significantly with low z scores, indicating a failed prediction; in these cases we inves-
253 tigated whether this could be explained by the lack of an appropriate structural tem-
284 plate. A significant positive correlation was observed between a testing case’s optimal
285 structural template similarity and the RACER-m-predicted z scores, consistent with a
286 decline in model applicability whenever the closest available template is inadequate for
257 representing the system in question (Fig. S5). Despite this, the RACER-m approach,
283 trained on 69 cases, was able to predict roughly 90% of strong binders contained in
289 over 1700 distinct testing cases in the 10x genomics dataset.

290 We then compared RACER-m’s performance to NetTCR-2.0 [[11], a well-established
201 convolutional neural network model for predictions of TCR-peptide binding that is
202 trained on over 16000 combinations of peptide/CDR3a/3 sequences. This compari-
203 son was performed on a publicly available list of TCR-pMHC repertoires curated by
204 Zhang et al. [[12] which were mutually independent of RACER-m or NetTCR-2.0 train-

205 ing data, wherein we included known strong binders and mismatched weak binders for

12
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206 8 unique peptides of HLA-A*02:01. Since NetTCR-2.0 has a restricted length for
207 antigen peptide (no longer than 9-mer), it cannot be applied on testing systems with
208 10-mer peptides such as KLVALGINAV and ELAGIGILTYV, which are absent from the
200 NetTCR-2.0 evaluation in Fig. @B. The area under the ROC curve (AUROC) was used
a0 as a standard measure of classification success. In the majority of cases, RACER-
s1  m outperformed NetTCR-2.0 in diagnostic accuracy with higher ROC values (Fig.
32 [AB). Lastly, RACER-m was further evaluated using an unrelated set of TCR-pMHC
a3 data comprised of 400 samples made up of the strong binders and mismatched weak
s« binders with 4 peptides and 100 TCRs [31]], which also gives us good distributional
s performance (Fig. FC). In one of the 4 peptides included in this dataset, RACER-m
as  seems to have difficulty providing correct classification about strong and weak binders
a7 for peptide CVNGSCFTYV, which could again be explained by the lack of appropriate
as  structure templates for this pMHC and related strong binding TCRs (Fig. S6).

w0  RACER-m specificity of point-mutated variants and preservation of

s local resolvability

a1 Encouraged by model handling of global sparsity in tests of disparate binding systems
sz having high sequence diversity, we next evaluated RACER-m’s ability in maintaining
a3 local resolvability of point-mutated peptides with near-identical sequence similarity to
a4 a known strong binder, which represents a distinct and usually more difficult compu-
a5 tational problem. Understanding in detail which available point mutants enhance or
sie  break immunogenicity is directly relevant for assessing the efficacy of tumor neoanti-
a7 gens and T cell responses to viral evolution. Additionally, the performance of structural
s models in accomplishing this task are a direct readout on their utility over sequence-
a9 based methods, since the latter case will struggle to accurately cluster, and therefore
a0 resolve, systems having single amino acid differences. To evaluate RACER-m’s ability

321 to recognize point mutants, we performed an additional test on an independent compre-
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322 hensive dataset of TCR 1E6 containing a point mutagenic screening of the peptide dis-
323 played on MHC. This testing set includes 20 strong binders and 73 weak binders [21]],
324 wherein strong binding to the 1E6 TCR was confirmed by TNF« activity. RACER-m
35 demonstrates enrichment of the distribution of binding energies for strong binders vs.
226 confirmed weak cases (Fig. [5]A). ROC analysis of the RACER-m’s ability to resolve
a7 these groups gives an AUC of 0.78. It is important to note that only 2 strong binders of
a8 this system were included in the training of RACER-m’s energy model.

329 Inspired by these initial results on the 1E6 mutagenic screen, we extended this
a0 analysis to all point-mutated weak binding systems in the ATLAS dataset, specifically
a1 those with K p values greater than 200 M. Our results, presented template-wise for
a2 each structure in the point-mutant data, demonstrate that RACER-m improves in this
s recognition task when compared to NetTCR-2.0 (Fig. [5C). Lastly, to explicitly explore
s« the strength of structural modeling in predicting the impact of small but immunologi-
a5 cally significant single amino acid differences, we quantified the predicted z scores for
ass  both strong and weak binders as a function of sequence similarity (Fig. S7). The re-
a7 sults demonstrate that the inclusion of information from correctly identified structural
ss  templates enhances RACER-m’s predictive power. Collectively, our results suggest
s that RACER-m offers a unique computational advantage over traditional, sequence-
a0 only methods of prediction by leveraging significantly fewer training sequences with
st key structural information to efficiently identify the contribution of each amino acid

a2 change.

« 3 Discussion

s« Reliable and efficient estimation of TCR-pMHC interactions is of central importance
a5 in understanding, and thus optimizing, the adaptive immune response. Decoding the
as  predictive rules of TCR-pMHC specificity is a formidable challenge, largely owing to

a7 the extreme sparsity of available training data relative to the diversity of sequences that

14
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as  need to be interrogated in meaningful investigation. We developed RACER-m to aug-
as  ment the predictive power of a relatively small number of TCR and epitope sequences
ss0 by leveraging the structural information contained in solved TCR-pMHC crystal struc-
a5t tures. Our analysis focused on the most common human MHC allele variant, due to
352 the abundance of sequence and structural data. Despite this restriction, we observed
sss  structural heterogeneity underpinning the specificity of various TCR-pMHC systems
s« in distinct immunological contexts. Enhancement in predictive accuracy was largely
355 driven by the availability of a small list of structural templates, which included 66
ass  crystal structures of TCR-pMHC complexes from the Protein Data Bank.

357 Using our minimal list, together with mutually independent testing systems for
sss  RACER-m and NetTCR-2.0, we find that our model is able to outperform on both
sse  detection of strong binders as well as avoidance of weak binders - both representing
a0 distinct but equally important tasks. We advocate for the inclusion of such mixed
st performative tests for rigorous validation as a necessary and standardized component
sz in model evaluation, in addition to model comparisons using testing data that is equally
sss  dissimilar from the training data included in competing models.

364 Intriguingly, incorporation of structural information into the training approach en-
a5 ables the development of a model that maintains predictive accuracy while dealing with
sss  both global sparsity and local resolvability, all while requiring substantially reduced
37 training sequence data. Our results suggest that a wealth of information is contained in
ses  the structural templates pertaining to key contributors of a favorable TCR-peptide inter-
a9 action, wherein conserved features across distinct systems can be learned to mitigate
a0 global sparsity. Conversely, structural encoding of information pertinent to residues
snn whose amino acid substitutions either preserve or break immunogenicity also assists
sz RACER-m trained on only a small subset of all possible point-mutagens by identifying
a3 key contributing positions and residues, thereby preserving local resolvability.

a74 Moreover, model accuracy correlated directly with the availability of a template

15


https://doi.org/10.1101/2023.08.06.552190
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.06.552190; this version posted August 7, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

a7 having sufficient proximity to the sequences of testing systems. As a result, we an-
are  ticipate that RACER-m will improve as more structures become readily available for
a7 inclusion. Existing computational methods for identifying structural models from pri-
a7s  mary sequence data [18] may provide an efficient method of adding highly informa-
are  tive structures into the candidate pool for testing. This, together with identifying the
a0 minimal sufficient number of distinct structural classes within a given MHC allele re-
ss1  striction remain tasks for subsequent investigation. Our current results suggest this is
a2 doable given the small number of structures available for explaining the diverse systems
sss  studied herein. Significantly, the inclusion of only 66 template structure augmented
s«  RACER-m’s ability to accurately differentiate strong and weak binders when evalu-
sss  ated with hundreds and even thousands of testing systems. This structural advantage
ass  was enhanced both by the approach of hybridizing sequence and structural information
sz into the training and testing protocols and the availability of templates that shared suffi-
a8 cient sequence-based similarity to testing cases so that an adequate threading template

s was available.

« 4 Methods

s RACER-m Model.

s2 To predict the binding affinity between a given TCR-peptide pair, we employed a
a3  pairwise energy model to assess the TCR-peptide binding energy [14]. The CDR3«
ss & CDR3/ regions were used to differentiate between different TCRs because CDR3
a5 loops primarily interact with the antigen peptides while CDR1 and CDR?2 interact with
ss  MHC [32]. However, the binding energy was evaluated based on the entire binding
a7 interface between TCR and peptide. As illustrated in Fig. |1} we included 66 experi-
sss  mentally determined TCR-p-MHC complex structures and 3 additional TCR-p-MHC

sss complex structures composed of experimentally determined p-MHC complexes with
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Figure 1: Model architecture of RACER-m. Schematic representation of the training
(top row) and testing (bottom row) processes in RACER-m. 66 Crystal structures of
known strong binders were used as both training set and template structures for the
testing processes, which covers several major clusters of TCR repertoires (MART-1,
TAX, 1E6, NLV, FLU) and other clusters with smaller size.

a0 corresponding TCR structures as strong binders for training an energy model (details
a1 in Supporting Methods), which was subsequently used to evaluate binding energies of
a2 other TCR-peptide pairs based on their CDR3 and peptide sequences. Additionally,
a3 for each strong binder, we generated 1000 decoy binders by randomizing the peptide
a4 sequence. These 69,000 decoys constitute an ensemble of weak binders within our
405 training set.

406 To parameterize this energy model, we optimized the parameters by maximizing the
207 gap of binding energies between the strong and weak TCR-peptide binders, represented
ws by 0F in Fig. I} The resulting optimized energy model will be used for predicting the
w09 binding specificity of a peptide towards a given TCR based on their sequences. Further

410 details regarding the calculation of binding energy are provided below.
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Figure 2: Performance on ATLAS dataset (A) Mutual Q calculation results between
all crystal structures in training set of RACER-m, which measures the structural simi-
larity between every pair of structures from the training set. The linkage map shows the
hierarchical clustering result based on the pairwise mutual Q values. Color blocks next
to the linkage map indicates the corresponding cluster of the crystal structure in the
row. (B) Predicted binding energies for ATLAS dataset (open circles and closed dots)
in comparison with the binding energies for corresponding weak binders (box plots).
Each open circle represents the predicted binding energy for a structure in the training
set, while each closed dot represents the predicted binding energy for a testing case
from ATLAS dataset. Each training or testing case is associated with 1000 decoy weak
binders generated by randomizing the peptide sequence and pairing with the TCR in
the corresponding training/testing structure. Box plots represents the distribution of the
predicted energies of the decoy weak bindggs with the box representing the lower (Q1)
to upper (Q3) quartiles and a horizontal line representing the median. The whiskers
extended from the box by 1.5IQR, where IQR indicates the interquartile range.


https://doi.org/10.1101/2023.08.06.552190
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.06.552190; this version posted August 7, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A mismatch MART-1TCRswith B mismatch MART-1 peptide ~ C

different peptides with different TCRs
1.0 1= > 1.0 6
o 9]
= 0.8 5 0.8
o o 4
2 0.6 1 Los6 o ¢ <>
= —— (NLV)NLVPMVATV:0.99 = S i
A wn
§ 0.4 1 — }Sfj{gf;“ﬁﬁﬁ;ﬁ“ L 04 —— EAAGIGILTV:0.99 | K 2 %
o —— (TAX)LLFGYPVYV:0.98 9] ELAGIGILTV:0.53 i
2 0.2 - —— (FLU)GILGFVFTL:0.75 2 0.2 —— AAGIGILTV-:0.94 A A6
= —— (1E6)AAWGPDPAAA:1.00 = —— ELAGIAILTV:0.99 04 # RD1-MART1High
0.0 (NLV)NLVGMVATV:0.98 0.0 —— ELAAIGILTV:0.96
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0 ELAGIGILTV LLFGYPVYV-
False Positive Rate False Positive Rate Peptide

Figure 3: Prediction performance on weak binders generated by mismatching pep-
tides with TCRs. (A) ROC curves for RACER-m classification performance on dif-
ferentiating weak binders generated by mismatching peptides from NLV, TAX, FLU
and 1EG6 clusters with MART-1 TCRs from MART-1 strong binders with the same set
of TCRs. (B) ROC curves for RACER-m classification performance on distinguishing
MART-1 strong binders from mismatched weak binders generated by pairing MART-1
specific peptides with TCRs from NLV, TAX, FLU and 1E6 clusters. (C) When TAX
A6 TCR is paired with MART-1 peptide ELAGIGILTY, the Z-score of the mismatched
system (triangle) resembles the values from the strong binders (violin shape) formed by
the same peptide and TCR RD1-MART1High and its point mutants, which was engi-
neered from A6. In the reverse scenario, TCR RD1-MART1High shows lower Z-score
(cross) than TAX strong binders (violin shape) when paired with TAX specific peptide
LLFVYPVYV.
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Figure 4: Validate the predictive power of RACER-m with external datasets. (A)
Prediction results of RACER-m on the HLA-A*02:01 restricted systems from 10x Ge-
nomics dataset collected from 5 healthy donors. 1741 unique pairs of TCR-peptide
sequences were tested and the prediction results of z score were grouped by the im-
munological profile of the test systems and depicted as box plots. (B) Comparison of
classification performance between RACER-m and NetTCR-2.0 on a curated list of
public TCR-pMHC repertoires [12] comprised by both strong binders and mismatched
weak binder. Due to the restriction of NetTCR-2.0 on the peptide length (9-mer),
there is no data from NetTCR-2.0 for the two 10-mer peptides (KLVALGINAV and
ELAGIGILTV), (C) The classification performance of RACER-m on another set of
TCR-pMHC test systems [31]].
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Figure 5: RACER-m’s performance on differentiating strong binders from point-
mutant weak binders(A) Distribution of z scores from strong binders of 1E6 TCR
and weak binders from point mutagenic screen. (B) ROC curve for RACER-m clas-
sification performance using the strong and point-mutant weak binders for 1E6 TCR.
(C) Comparison of RACER-m and NetTCR-2.0 in classification of strong and point-
mutant weak binders from ATLAS dataset.

«1  Detailed calculation of TCR-peptide binding energies

412 To evaluate the binding affinity between a TCR and a peptide, RACER-m utilized
a3 the framework of the AWSEM force field [33l], which is a residue-resolution protein
sa force field widely used for studying protein folding and binding [33|[34]. To adapt the
415 AWSEM force field for predicting TCR-peptide binding energy, we utilized its direct
416 protein-protein interaction component to calculate the inter-residue contacting interac-
si7 tions at the TCR-peptide interface. Specifically, we utilized the C3 atoms (except for
a8 glycine, where Ca atom was used instead) of each residue to calculate the contacting

419 energy using the following expression:

I
Vidireet = > Vi g (@i, a;)0; M
i€ TCR,j€Epeptide

s20 In Eq. |I|, ©; ; represents a switching function that defines the effective range of inter-

a1 actions between each amino acid from the peptide and the TCR:

min

e, = i(l + tanh[5.0 x (r;; — rha)) (14 tanh[5.0 x (rh. —ri)]) ()
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22 whererl, =6.5Aandr], = 8.5A. The coefficients ; ;(a;, a;) define the strength

max
23 of interactions based on the types of amino acids (a;, a;). The 7; ;(a;, a;) coefficients
«24 are also the parameters that are trained in the optimization protocols described as fol-

425 lows.

s Optimization of energy model for predicting the TCR-peptide bind-
7 Ing specificity.

428 To predict the binding specificity between a given TCR and peptide, the energy model
a0 is trained using interactions gathered from the known strong binders and their corre-
a0 sponding randomly generated decoy binders. Following the protocol specified in our
a1 previous paper [14], the energy model of RACER-m was trained to maximize the gap
a2 between the binding energies of strong and weak binders. In addition, a larger training
a3 set was used to achieve a more comprehensive coverage of the structural and sequence
a3« space. Specifically, the binding energies were calculated from individual strong binders
a5 (Estrong) and their corresponding decoy weak binders (Egecoy) as described in Eq.
16 We then calculated the average binding energy of the strong ((Estrong)), the average
7 binding energy of the decoy weak binders ((Eqecoy)), and the standard deviation of the
s energies of the decoy weak binders (AF).

439 To train the model, the parameters +; ; (a;, a;) were optimized to maximize § E/AE,
a0 where 0F = (Egecoy) — (Fstrong). resulting in the maximal separation between strong

a1 and weak binders. Mathematically, d ' can be represented as AT+, where

A= <¢decoy> - <¢strong>- (3)

w2 Furthermore, the standard deviation of the decoy binding energies AFE can be calcu-

ws lated as AE? = vT B, where

B = <¢decoy¢£ccoy> - <¢dec0y><¢decoy>T7 (4)
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a4 here, ¢ takes the functional form of Vy;,..; and summarizes interactions between differ-
w5 ent types of amino acids. Therefore, the vector A specifies the difference in interaction
ws  strengths for each pair of amino acid types between the strong and decoy binders, with
47 a dimension of (1,210), while the matrix B is a covariance matrix with a dimension of
ws (210, 210).

449 With the definition above, maximizing the objective function of E/AFE can be
40 reformulated as maximization of AT~ /,/yTB~. This maximization can be effectively
st achieved through maximizing the functional objective R(y) = ATy — A1/ B~. By
w2 setting OR(7)/0~T to 0, the optimization process leads to v o« B~ A, where v is a
a3 (210, 1) vector encoding the trained strength of each type of amino acid-amino acid
s« interactions. For visualization purposes, the vector -y is reshaped into a symmetric 20-
455 by-20 matrix, as shown in Fig[l] Additionally, a filter is applied to reduce the noise
a6 caused by the finite sampling of decoy binders. In this filter, the first 50 eigenvalues
ss7  of the B matrix are retained, and the remaining eigenvalues are replaced with the 50th

a8 eigenvalue.

s Construction of target TCR-p-MHC complex structures from se-

40 uences.

w1 Since RACER-m calculates the binding energy based on the interaction contacts be-
w2 tween a given peptide and a TCR, it relies on the 3D structure of the TCR-p-MHC
w3 complex for contact calculation. Although the training data include a 3D structure for
s« each of the TCR-peptide strong binders, we usually lack 3D structures for most of the
a5 testing cases. To address this limitation, we used the software Modeller [35] to con-
a6 struct a structure based on the target peptide/CDR3 sequences in the test system and a
w7 template crystal structure selected from the training set.

468 Specifically, for each testing system, a position-wise uniform Hamming distance

w0 was computed between the target sequence and each of the sequences from the 66

23


https://doi.org/10.1101/2023.08.06.552190
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.06.552190; this version posted August 7, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

470 training strong binders with complete TCR-p-MHC complex structures, separately for
s peptide, CDR3«, and CDR3 regions. Then, sequence similarity scores were assigned
a2 to peptide, CDR3«, and CDR3p, respectively with the number of amino acids that
a3 remain the same between target and template sequences. To calculate a composite
a7+ similarity score for the target TCR-peptide complex, we summed the similarity scores
a5 of the CDR3« and $3 regions and multiplied this sum by the peptide similarity score.
a7e  The template structure with the highest similarity score was selected as the template
a7 for the subsequent sequence replacement using Modeller (Fig. [T|bottom).

478 To perform the sequence replacement, the peptide, CDR3«, and CDR3 3 sequences
479 in the template structure were replaced with the corresponding target sequences in the
a0 testing TCR-peptide system. The location of the target sequence in the template struc-
431 ture was determined by aligning the first amino acid of the target sequence with the
sz original template sequence. If the two sequences had different lengths, the remaining
a3 locations were patched with gaps. This sequence alignment and the selected template
ss4  structure were then used as input for Modeller to generate a new structure. The con-
a5 structed structure was then used for the estimation of the binding energy of the testing

486 System.

w7 Generation of weak binders by mismatching sequences of known
ws TCR-peptide pairs

a9 To test the performance of RACER-m in distinguishing strongly bound TCR-peptide
a0 pairs from weak binders, we generated a set of weak binders by introducing sequence
a1 mismatches between the peptides and TCRs from the known strongly bound TCR-
a2 peptide pairs. As shown in Fig. 2] the strong binders were grouped based on their
a3  immunological systems, such as MART-1 and TAX. It is important to note that pairs
a9« within the same group also share similar TCR-peptide structural interfaces.

495 To generate the weak binders, we mismatched the sequences of peptides and the
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ss  CDR3a/f pairs from different groups. For example, 36 pairs of MART-1 specific
w7 CDR3a/f sequences were mismatched with 7 non-MART-1 peptides to form weak
ses  binders for Fig. [3JA, while 5 MART-1 specific peptides were mismatched with 35
a0 pairs of non-MART-1 CDR3a/f3 sequences to form weak binders in Fig. [3B. The
s0 newly generated combinations of sequences were then used to create 3D structures of
s the TCR-p-MHC complexes, following the protocol specified in Section Constructing

s2  TCR-p-MHC complex structure from sequence.

ss  Mutual Q calculation.

s« To quantify the structural distances between the 66 crystal structures of TCR-p-MHC
s0s complexes, a pairwise mutual Q score was used to calculate the structural similarity
s between every pair of the 66 structures. Since our focus is on the contact interface be-
so7  tween the peptide and the CDR3a/CDR30 loops of the TCR, the mutual Q score was
ss computed between these regions. We adopted a similar protocol used in [22] and cal-

so0 culated the mutual Q score between structures A and B with the following expression:

AB (i — Tsz)z

CARRLP DR ®
i€peptide,j€CDR3

sio  where ¢ and j are indices of atoms from the peptide and CDR3 loops, respectively.

st 2 and r?j denote the contact distances between atom ¢ and j in structure A and B

j
sz respectively. For simplicity, o was set as 1 A instead of using the sequence distance
513 between ¢ and j as done in [22]. The coefficient ¢ normalizes the value of @ to fall

si4  within the range of 0 and 1. This definition ensures that a larger value of () indicates a

515 greater structural similarity between the two systems.
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s Prediction protocols with NetTCR-2.0.

517 To test the predictive performance of RACER-m, we compared the prediction accuracy
sis of RACER-m with NetTCR-2.0, another widely used computational tool trained with
st9  a convolutional neural network model, as described by Montemurro et al. [11]. To en-
s20 sure a fair comparison, we retrained the NetTCR-2.0 model with the paired alpha beta
s21  dataset with a 95% partitioning threshold (file train_ab_95_alphabeta.csv, provided in
522 https://github.com/mnielLab/NetTCR-2.0). The trained model was then used to clas-
s2s  sify the strong and weak binders, as shown in Fig. [JIC. Due to the peptide length re-
s2+  striction in the application of NetTCR-2.0, we excluded peptides longer than 9 residues

s from our testing prediction.
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