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Abstract 

Colorectal cancer (CRC) is highly heterogenous with variable survival outcomes and therapeutic 
vulnerabilities. A commonly used classification system in CRC is the Consensus Molecular Subtypes 
(CMS) based on gene expression patterns. However, how these CMS categories connect to axes of 
phenotypic plasticity and heterogeneity remains unclear. Here, we analyze 101 bulk transcriptomic 
datasets, along with patient tumor samples from TCGA and single-cell RNA sequencing data, to 
evaluate the extent of variation among CMS subtypes across metabolic plasticity and EMT axes. Our 
results show that CMS2 and CMS3 samples were relatively more epithelial as compared to CMS1 and 
CMS4. Single-cell RNA-seq analysis of CMS1 revealed two subpopulations: one close to CMS4 (more 
mesenchymal) and the other closer to CMS2 or CMS3 (more epithelial), indicating a partial EMT-like 
behavior. Further, in our meta-analysis and in TCGA data, epithelial phenotype score was positively 
correlated with scores of glycolysis, OXPHOS and FAO pathways, while mesenchymal scores showed 
CMS subtype-specific associations with metabolic axes. PD-L1 activity scores, however, consistently 
correlated positively with mesenchymal signature ones and negatively with epithelial signature ones, 
across the four CMS categories. Together, our results quantify the patterns of two interconnected axes 
of phenotypic heterogeneity - EMT and metabolic reprogramming - at a CMS subtype level in CRC.   
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Introduction 

Colorectal cancer (CRC) is a multifaceted malignancy that arises from the epithelial lining of the colon 
or rectum (Ferlay et al. 2019). It is the third most prevalent cancer worldwide (de Abreu et al. 2023). 
Although surgical resection is the primary method of treatment for localized tumors, non-resectable 
tumors present substantial clinical challenges (Sun et al. 2019). 5-fluorouracil (5-FU) was the first 
effective chemotherapy for CRC. Targeted treatments such as cetuximab and panitumumab (that 
block EGFR), bevacizumab (that prevents angiogenesis by blocking VEGF), pembrolizumab (that 
blocks the immune checkpoint molecule PD-1) and vemurafenib (that inactivates BRAF V600 kinase) 
are frequently used (Piawah and Venook 2019; El Bali et al. 2021). The inherent diversity in 
molecular and phenotypic heterogeneity of tumors leads to variable responses to targeted therapies 
and survival outcomes (Xie et al. 2020; Chowdhury et al. 2021; Deshmukh et al. 2023).  

To characterize this diversity, the Consensus Molecular Subtypes (CMS) system, a classification of 
CRC tumors based on the transcriptomic profile (Guinney et al. 2015) was proposed. Based on gene 
expression profiles, the 'CMSclassifier' divided the CRC tumors into four subtypes, using a random 
forest algorithm based on gene expression signals from tumor's immune and stromal compartments: 
a) Microsatellite instability-immune, or CMS1 tumors, that show significant immune activation and 
genomic instability, b)  'Canonical' CMS2 tumors that exhibit WNT and MYC signalling pathway 
activation, c) ‘Metabolic’ CMS3 tumors that show Epithelial-mesenchymal transition (EMT) features 
and metabolic dysregulation, and d) ‘Mesenchymal’ CMS4 tumours that display significant stromal 
infiltration, angiogenesis, and mesenchymal characteristics (Fessler and Medema 2016; Menter et 
al. 2019; Eide et al. 2021). However, CMSclassifier algorithm sometimes failed to correctly identify 
CMS4-mesenchymal sub-population in cell lines, patient-derived organoids, and xenografts. Thus, 
CMSCaller, a more robust classifier developed lately, is being increasingly adopted to deliver a more 
accurate subtype classification utilizing multiple sources of transcriptomic data (Eide et al. 2017). 

CMS classification provides valuable therapeutic insights. For instance, clinical studies have found 
that the CMS1 patients who received bevacizumab had significantly higher overall survival and 
progression free survival rates compared to CMS1 patients who received cetuximab (Stintzing et al. 
2019; Rebersek 2020) whereas for CMS4 tumors, irinotecan (IRI)-based chemotherapy outperforms 
oxaliplatin (OX)-based chemotherapy (Okita et al. 2018). Since each subtype responds differently to 
therapies, CMS classification offers more personalized strategies for therapeutic interventions, thus 
improving treatment outcomes. 

Recently, another method is being increasingly used to quantify the extent of heterogeneity in tumor 
cells using single-cell transcriptomic data (scRNA-seq) - Shannon Entropy.  Entropy is derived from 
information theory and is helpful in providing a quantitative measure of the diversity and distribution of 
gene expression within cell populations (Gandrillon et al. 2021; García-Nieto et al. 2022). Moreover, 
Shannon entropy can be used to identify key genes driving cellular heterogeneity. Genes with high 
entropy are often associated with the dynamics of lineage specification and cell-fate decisions. Their 
expression patterns indicate transcriptional plasticity and cell-state transitions, providing valuable 
insights into underlying cellular dynamics driven by regulatory networks (Kharchenko, 2021; Berretta 
& Moscato, 2010). Thus, investigating the entropy of tumor cells, along with their functional attributes, 
is important to fully understand the underlying biological variability and vulnerabilities in CRC.  

Here, we analyze 101 bulk transcriptomic datasets, along with patient tumor samples in colorectal 
cancer from The Cancer Genome Atlas (TCGA) and single-cell RNA sequencing data, to evaluate the 
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degree of variation among CMS subtypes across metabolic reprogramming and EMT axes. Further, 
we analyzed the consequences of associations between these axes for disease prognosis. Our results 
show that the epithelial phenotype score was positively correlated with scores of glycolysis, OXPHOS 
and FAO pathways, while mesenchymal scores showed CMS subtype-specific associations with 
metabolic axes. PD-L1 activity scores consistently correlated positively with mesenchymal signature 
ones and negatively with epithelial signature ones, across CMS categories. Finally, we observed that 
CMS2 and CMS3 were more epithelial as compared to CMS1 and CMS4. Interestingly, single-cell 
RNA-seq data revealed two subpopulations in CMS1: one close to CMS4 (more mesenchymal) and 
the other closer to CMS2 or CMS3 (more epithelial), indicating a partial EMT-like behavior. Together, 
our results quantify the patterns of epithelial-mesenchymal heterogeneity and interplay between EMT 
and metabolic plasticity at CMS subtype level in CRC.   

 

Methods 

Software and Datasets 

Computational and statistical analyses were conducted using R (version 4.3.0) and Python (version 
3.9). Microarray datasets were retrieved from National Center for Biotechnology Information’s Gene 
expression omnibus (NCBI GEO) using the ‘GEOquery’ R package. Processed RNA sequencing and 
single-cell RNA sequencing data were also obtained directly from individual datasets from the NCBI 
GEO database (Table S1).  TCGA datasets were obtained using UCSC Xena tools for COAD_READ.  

Pre-processing of datasets 

Pre-processing of microarray datasets was conducted to obtain the gene-wise expression from the 
probe-wise expression matrix using respective annotation files for the mapping of probes to genes. In 
case multiple probes were mapped to a single gene, the mean expression of all mapped probes was 
utilized to obtain the final values for those genes. 

Raw counts obtained for RNA and single-cell RNA sequencing data were normalized for gene length 
and transformed to transcripts per million (TPM) values. They were then log2 normalized to acquire 
the final expression data. 

For single-cell RNA sequencing (scRNA-seq) datasets, MAGIC (version 2.0.3) (van Dijk et al. 2018). 
imputation algorithm was utilized to recover noisy and sparse single-cell data using diffusion geometry. 
To map individual reads to corresponding genes, relevant platform annotation files were utilized.  

CMS Classification 

CMS classification for colorectal cancer samples and tumor cells was carried out using ‘CMScaller’ 
(Eide et al. 2017). ‘CMScaller’ uses the nearest template prediction algorithm to assign the CMS 
(CMS1-CMS4) to each sample with a prediction distance with a corresponding p-value. The 
predictions with insignificant p-values (p > 0.05) are not assigned any subtype. The CMS template 
genes were also used as signatures for ssGSEA scoring to identify the enrichment of the CMS-specific 
signatures in the sample. 

Gene signature scoring 
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To quantify the enrichment of epithelial and mesenchymal signatures independently, ssGSEA (single 
sample gene set enrichment analysis) was performed on epithelial (for Epi scores) and mesenchymal 
(for Mes scores) gene signatures (Tan et al. 2014) separately using GSEAPY python library for bulk 
RNA sequencing and microarray datasets. Normalized enrichment score (NES) for these genesets 
was obtained for further analysis. A higher NES score corresponds to enrichment of that particular 
phenotype for the given sample. Similarly, the gene signatures for hallmark EMT, hallmark Fatty Acid 
Oxidation, and hallmark Glycolysis were obtained from molecular signatures database MSigDB and 
the respective scores were calculated (Liberzon et al. 2011). PD-L1 signature was curated as reported 
earlier (Sahoo et al. 2021), wherein the top correlated genes (Spearman correlation coefficient > 0.5 
and p < 0.01) with PD-L1 levels in at least any 13 out of 27 cancer types were considered (Table S2). 

The activity scores for metabolic pathways, PD-L1, and E/M signatures for single-cell RNA sequencing 
datasets were computed using AUCell (version 1.18.1) (Aibar et al. 2017) from the ‘Bioconductor’ 
package  (Gentleman et al. 2004) in R package with default parameters. 

Survival analysis 

Survival data were obtained from the TCGA cohort of patients for colorectal cancer. The samples were 
categorized into CMS high, and CMS low groups based on median of the respective CMS scores for 
each CMS subtype. Kaplan-Meier analysis was performed using the R package ‘survival.’ A log-rank 
test was used to compute the p-values. The reported hazard ratio (HR) and confidence interval (95% 
CI) were determined using Cox regression using the ‘coxph’ function.  

Additionally, colorectal cancer samples were also split into High (+) and Low (-) expression subgroups 
based on the median for different gene signatures (Epi, Mes, FAO, glycolysis, OXPHOS, and PD-L1) 
scores. The effect of the simultaneous enrichment on survival was calculated for all gene signatures 
in a pairwise manner. HR and p-values were depicted in forest plots created using the ‘ggforest’ 
function from the ‘survminer’ package. 

Entropy Calculation 

Cell-wise entropy values were calculated for each geneset using the following formula (Kannan et al. 
2021):  

!"#$$%$&'$()%*+&,&-./0𝑓)ln(P(𝑓))  
 

Where P(𝑓) is the ratio of the normalized expression value of a particular gene to the sum of all gene 
expression values for a cell. The entropy values were normalized for the number of genes in each 
gene set to maintain comparability.   
 

Code availability 

Codes used in this study are available at https://github.com/Soundharya-R/CRC 

Data availability 

Publicly available transcriptomics datasets from NCBI GEO (Table S1), TCGA cohorts from UCSC 
Xena and single-cell RNA sequencing data (GSE132465, GSE144375) were analyzed in this study.  
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Results 

3.1 Associations between EMT, metabolism axes and immune evasion and their associations 
with patient survival  

To assess the associations between multiple axes of plasticity governing CRC heterogeneity, we 
began by investigating three important aspects - cancer cell metabolism, immune evasion, and EMT. 
We investigated the associations among these three axes in 101 bulk transcriptomic datasets with 
CRC samples (Table S1) by calculating ssGSEA scores of associated gene signatures. We observed 
that among the 43 cases where the epithelial phenotype correlated significantly (p < 0.05) with the 
PD-L1 pathway, the correlation coefficient was negative in 36 cases, indicating that epithelial 
phenotype is largely negatively correlated with immune evasion (Fig 1A).  Conversely, mesenchymal 
phenotype predominantly correlated positively with the PD-L1 signature (60 out of 61 cases). Epithelial 
and mesenchymal signatures showed a dominantly negative correlation with each other (53 out of 58 
datasets), as expected (Fig S1). Similar antagonistic trends were seen for epithelial vs. mesenchymal 
signatures with the metabolic axes - while the epithelial phenotype correlated positively with oxidative 
phosphorylation (OXPHOS) (47 out 51 datasets), and fatty acid oxidation (FAO) (65 out of 67 
datasets), mesenchymal phenotype enrichment was negatively correlated with OXPHOS (42 out of 
48 datasets) and FAO axes (25 out of 31 datasets) (Fig 1B). The trend with the glycolysis signatures 
was not as strong, yet antagonistic for the epithelial vs. mesenchymal signature ssGSEA scores. 
These trends are reminiscent of our pan-cancer analysis showing that FAO and OXPHOS were 
negatively correlated with EMT (Muralidharan et al., 2022). However, we had noticed an association 
between glycolysis with partial or full EMT, which is not as strongly recapitulated in CRC data.  Such 
context-specific differences may emerge from the heterogeneity in CRC samples from a CMS context. 

Next, to test the clinical outcomes of simultaneous enrichment of these metabolic pathways and PD-
L1 with epithelial and mesenchymal phenotypes, we performed survival analysis on the colorectal 
cancer patient data in TCGA database. Our evaluation of these pairwise comparisons revealed that 
upregulation of epithelial signature along with higher expression of FAO and OXPHOS genes (E+F+ 
and E+O+) had significantly better overall survival probability compared to Epi-Low/FAO low group (E-
F-) and Epi-Low/OXPHOS-low group (E-O-) respectively. No such trend was observed for glycolysis 
signature, though (Fig 1C). In contrast, the combination of high expression of glycolysis pathway 
genes with the mesenchymal phenotype (G+M+) has significantly worse implications for survival 
probability with reference (G-M-) (Fig1D), but no trend was noticed for co-enrichment of mesenchymal 
with FAO or OXPHOS. Additionally, the PD-L1 signature, despite being positively correlated with 
mesenchymal signatures, is associated with better survival probability in CRC (Fig S1). This analysis 
emphasizes the strong association of epithelial phenotype with a better survival response, whereas 
the presence of mesenchymal phenotype is generally associated with a worse prognosis. Further, the 
metabolic pathways, such as FAO and OXPHOS, that correlated positively with epithelial phenotype, 
had a similar effect on the hazard ratio (HR). On the contrary, the glycolysis signature and PD-L1 
signature, although more strongly positively associated with epithelial phenotype and mesenchymal 
phenotype respectively, tend to affect the hazard ratios in opposite directions. Together, these results 
suggest an interplay between the different interconnected axes of cellular plasticity (EMT, metabolic 
switching) in mediating patient survival (Jia et al. 2021). 
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Figure 1: Relationship between EMT, metabolism, and PD-L1 signatures in CRC bulk-level 
transcriptomes and differences in survival probabilities for their pairwise concurrent 
enrichment. A) Volcano plots depicting Spearman correlation coefficient (x-axis) and -log10(p-values) 
(y-axis) for PD-L1 vs. Epi scores (left), Epi vs. OXPHOS (middle-left), Epi vs. FAO (middle-right) and 
Epi vs Glycolysis scores (right). Boundaries for significant correlation are set at R > ± 0.3 and p < 0.05. 
Red data points indicate datasets for which the association is significantly positive, blue for negative, 
and gray for insignificant correlation. B) Same as A) but for PD-L1 vs. Mes (left), OXPHOS vs. Mes 
(middle-left), FAO vs. Mes (middle-right), and Glycolysis vs. Mes scores (right). C) Forest plots 
depicting mean hazard ratios (HR) ± 95% confidence intervals and corresponding p-values (‘*’ for p 
<0.05) for overall survival associated with simultaneous enrichment of epithelial and OXPHOS (left), 
epithelial and FAO (middle) and epithelial and Glycolysis signatures (right). (+) and (-) subgroups are 
based on median values. Mean HR values > 1 are shown in blue, while those < 1 are shown in red. 
D) same as C) but for mesenchymal and OXPHOS (left), mesenchymal and FAO (middle), and 
mesenchymal and Glycolysis signatures (right). 
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3.2 Heterogeneity among Consensus Molecular Subtypes (CMS) and their associations with 
EMT and different axes of metabolism and immune evasion 

The intra-tumor heterogeneity in CRC patients can be better studied by subdividing cancer samples 
into subtypes based on their shared features and differences at the molecular and cellular levels. The 
subtypes differ widely in their transcriptomic and genomic profiles while also showing differences in 
prevalence in parts of the colon (Chowdhury et al. 2021).  

To begin, we performed Kaplan Meier survival analysis to determine the clinical outcome for the 
enrichment of different CMS using patient data from TCGA database. The CMS scores were 
calculated with ssGSEA using the subtype-specific template signatures used by ‘CMSCaller’ function. 
We hypothesized that the samples with higher CMS2 and CMS3 scores would have better survival 
probabilities than those with higher CMS4 scores since the latter has upregulation of  EMT pathway, 
correlating to poor patient outcomes (Matsuyama et al. 2019). 

The Kaplan Meier plots compared CMS-high versus CMS-low expression for the four subtypes, and 
we observed the hazard ratios for samples with high CMS1 and 4 scores were lower than 1 (i.e. 
enrichment of CMS1 or CMS4 associated with worse survival), and hazard ratios for samples with 
higher CMS2 and 3 scores were lower than 1. (i.e., enrichment of CMS2 or CMS3 associated with 
better survival) (Fig 2A). However, the trend was statistically significant only for CMS2 and CMS4. 

To further understand the variability among the CMS subtypes, we looked at the correlation between 
well-studied signatures pertaining to metabolism, immune evasion, and EMT, in TCGA data available 
for CRC, in a CMS-specific manner (Fig 2). We observed that when CRC samples are not segregated 
by CMS, the common trends seen for the bulk dataset meta-analysis (Fig 1) hold true, i.e., a positive 
correlation between epithelial scores with FAO, OXPHOS and glycolysis scores, a positive correlation 
between mesenchymal and PD-L1 scores, and a negative correlation for Epi scores vs. Mes scores, 
and a negative correlation of Epi scores with PD-L1 scores (Fig S2). However, as we delved into 
examining these trends at the CMS subtype level, we saw CMS subtype-specific differences. For 
instance, in the case of glycolysis scores versus epithelial and mesenchymal scores (Fig 2E), the 
variability in the correlation coefficient values seen (both positive and negative values across 4 CMS 
subtypes) seem to explain their seemingly counterintuitive association with respect to epithelial and 
mesenchymal scores seen in the bulk data analysis noted earlier (Fig 1A-B). We further noticed that 
epithelial and mesenchymal programs were negatively correlated even at individual subtype-level and 
PD-L1 signature scores associated positively with mesenchymal ones across the CMS subtypes. 
While, in CMS3 samples, the PD-L1 and Epi scores did not show any association, in the rest of the 
subtypes they were negatively correlated (Fig 2B). OXPHOS was shown to be positively linked with 
Epi and negatively associated with Mes in CMS1, CMS2 and CMS4 but these associations were found 
to be in the reverse direction in the CMS3 samples (Fig 2C). Similarly, in CMS3 and CMS4, FAO and 
Mes are correlated positively while in CMS1 and CMS2, they are negatively associated. However, 
FAO was associated positively with epithelial phenotype in all four subtypes to a similar extent (Fig 
2D). Such differences in the relationship between these two key axes of plasticity (EMT, metabolic 
switching) at subtype level could serve as a distinguishing functional role of different CMS categories.  
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Figure 2: CMS-specific differences in survival probabilities and associations between EMT, 
metabolism, and PD-L1 in TCGA colorectal cancer samples. A) Kaplan-Meier curves showing 
differences in survival probabilities for CMS1-high (red) and CMS1-low (blue) (left), CMS2-high and 
low (middle-left), CMS3-high and low (middle-right) and CMS4-high and low (right). Reported p-values 
are based on a log-rank test and indicate differences in survival between the subgroups. Mean hazard 
ratios (HR) ± 95% confidence intervals (95% CI) are shown. B) Scatter plot illustrating subtype-wise 
Epi (x-axis) and Mes (y-axis) scores (top), Epi and PD-L1 scores (middle), and Mes and PD-L1 scores 
(bottom) for TCGA colorectal cancer patient samples. Pearson’s correlation coefficient ‘ρ’ and p-values 
for subtype-wise correlation are shown. Blue data points are for cells classified as CMS1, red for 
CMS2, green for CMS3, purple for CMS4. C) same as B) but for Epi and OXPHOS scores (left) and 
Mes and OXPHOS scores (right), D) Epi and FAO scores (left) and Mes and FAO scores (right), and 
E) Epi and Glycolysis scores (left) and Mes and Glycolysis scores (right). 
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3.3 Different CMS subtype samples have varied status of epithelial-mesenchymal plasticity  

Given the observed role of epithelial vs. mesenchymal phenotypes in determining patient survival, we 
assessed the extent of epithelial and mesenchymal enrichment across CMS subtypes. We chose five 
datasets with samples corresponding to each subtype (GSE196576, GSE161158, GSE96528, 
GSE14333, GSE14095). The samples in each dataset were classified into the respective subtypes 
using the ‘CMSCaller’ package. Here, we consistently observed that the Epi score was the highest in 
CMS3 subtype, followed by CMS2, whereas the Mes scores were comparable for these two subtypes. 
Further, we saw that CMS4 samples had the highest Mes score and lowest Epi score among all and 
was followed by CMS1 samples (Fig 3A).  

 

Figure 3: Relationship between CMS and EMT induction in bulk datasets. A) Boxplots showing 
differences in epithelial and mesenchymal scores in a subtype-specific manner. *, **, ***, **** denote 
p < 0.05, 0.01, 0.001, 0.0001, respectively. ‘ns’ indicates p>0.05 for student’s two-tailed t-test with 
unequal variance. Plot titles denote NCBI-GEO dataset IDs. B) Barplots showing ssGSEA scores of 
CMS3, CMS4 genes, FAO, hallmark EMT, OXPHOS, and PD-L1 gene sets in control (blue) vs. TGFβ-
treated samples (red). C) Scatterplot with Epi (y-axis) and Mes (x-axis) scores (left) and CMS3 (y-axis) 
and CMS4 (x-axis) scores of control and TGFβ-treated samples of GSE137779. D) Same as C) but 
for control samples and samples with SNA1 overexpression (GSE115716). 
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Next, we obtained two datasets, one with TGFβ treated samples (GSE137779) and the other having 
samples with overexpression of EMT-inducing transcription factor SNAI1 over time (GSE115716) to 
gauge the extent of influence of EMT on the CMS sub-classification score. We compared the changes 
in CMS3 and CMS4 when samples were treated with TGFβ or SNAI1. Expectedly, we observed that 
SNAI1 overexpression causes a decrease in Epi scores and an increase in Mes scores. Intriguingly, 
we observed that SNAI1 overexpression led to higher CMS4 enrichment scores but reduced CMS3 
scores (Fig 3D), indicating that SNAI1, a potent EMT inducer, possibly plays a role in controlling CMS 
plasticity. On the other hand, while TGFβ treatment reduced the Epi scores, Mes scores do not show 
the expected increase. While projecting the same set of samples on the CMS3/CMS4 axes, we saw 
that TGFβ seemed to increase both CMS3 as well as CMS4 scores (Fig 3C). Apart from this, we also 
saw that TGFβ significantly decreases FAO and OXPHOS and increases PD-L1 activity (Fig 3B). 
These examples illustrate that the mode of EMT induction dictates the extent of EMT observed as well 
as corresponding changes in their molecular subtyping. Another reason for this difference can be non-
EMT associated changes driven by TGFβ in cellular response.  

 

3.4 Single-cell RNA-sequencing analysis reveals CMS subtype-specific patterns of epithelial-
mesenchymal heterogeneity  

Our bulk-level CMS-specific investigation highlighted associations between CMS subtyping and EMT. 
We examined these associations at individual cell level through single-cell RNA-sequencing (scRNA-
seq) datasets GSE132465 and GSE144375 (Lee et al. 2020). The scRNA-seq data were filtered for 
tumor cells, and ‘CMSCaller’ was used to assign the appropriate CMS subtype. Only the statistically 
significant predictions in the context of CMS assignment were used for further analysis. We noticed 
all the four CMS subtypes to be well-represented in these two scRNA-seq datasets (Fig 4A, i-ii). First, 
we observed that the antagonism between epithelial and mesenchymal axes is maintained even at 
the single-cell level (Fig 4B, ii-ii) across cells belonging to all four CMS subtypes. Interestingly, we 
also noticed a spectrum of epithelial-mesenchymal states in this two-dimensional projection: while 
cells classified to belong to CMS4 cells localized in (high mesenchymal, low epithelial) area, the ones 
classified as CMS2 and CMS3 were centered around (low mesenchymal, high epithelial) area. The 
cells categorized as CMS1 occupied intermediary position, indicating a hybrid E/M phenotype with  the 
simultaneous enrichment of both epithelial and mesenchymal characteristics.  

To assess how the epithelial and mesenchymal scores are distributed across the cells, we plotted the 
kernel density estimates of AUCell scores in a CMS subtype-wise manner. We noticed that the Epi 
density distribution for CMS4 shows a narrow peak centered around low Epi scores, whereas the 
CMS2 and CMS3 scores have wider distributions centered around higher Epi scores (Fig 4C, i-ii, left). 
On the other hand, the CMS2 and CMS3 samples have low Mes scores with less variability (narrower 
peaks centered at low Mes scores), while CMS4 scores show higher average Mes scores as well as 
more heterogeneity in them (Fig 4C, i-ii, right). Interestingly, in both these datasets, CMS1 subtype 
distinctly showed two subpopulations in terms of their epithelial and mesenchymal scores (Fig 4C, i-
ii). This bimodality was also seen in metabolic axes for the CMS1 subtype (Fig S3, S4). Together, our 
results support that CMS subtype comprises highly variable cells in terms of their E/M phenotype.  

In both the scRNA-seq datasets, CMS specific associations of epithelial and mesenchymal programs 
with metabolic axes and PD-L1 were largely consistent with our earlier subtype-specific trend seen in 
bulk (TCGA) data. Simultaneously considering the associations between these axes of plasticity help 
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in distinguishing similar CMS groups such as CMS1 and CMS4 (Fig S3-S4). For instance, In CMS1 
cells, PDL1 and Epi scores are strongly negatively correlated, but not in other subtypes (Fig S4D, i). 

Figure 4: Heterogeneity among CMS subtypes along the epithelial-mesenchymal axis. A) i) Pie 
chart illustrating the percentage of cells classified as CMS1 (blue), CMS2 (red), CMS3 (green), and 
CMS4 (purple) in GSE132465. B) i) Scatter plot depicting the subtype-wise association between Epi 
(x-axis) and Mes scores (y-axis). Pearson’s correlation coefficient ‘ρ’ and p-values for subtype-wise 
correlation are shown. C) i) Subtype-wise kernel density estimate plots for ssGSEA scores of Epi (left) 
and Mes (right) signatures across cells in GSE132465. A ii), B ii), and C ii) are the same as A i), B i), 
C i) respectively, but for GSE144735.  

 

Next, we wanted to quantify the amount of heterogeneity seen across these signatures in a subtype-
specific manner. We used Shannon Entropy to calculate the variability among certain genes involved 
in a particular pathway across different sub-populations of CRC tumor cells (Conforte et al. 2019; 
Karolak et al. 2021). Higher entropy scores correspond to more variability in that axis for a particular 
cell. Cell-wise entropy values and ssGSEA scores largely showed a negative association with each 
other for all gene sets (Fig 5, S5). A possible explanation for this trend can be that once a cell acquires 
a particular phenotype, the genes involved in that pathway are coordinately being upregulated (or 
downregulated) and therefore have uniform high (or low) expression levels, reducing the underlying 
variability. Thus, it was unsurprising to notice the entropy for epithelial signature in CMS2 and CMS3 
subtypes decreased with an increase in epithelial scores (Fig 5A, i-ii), potentially because those two 
subtypes are more epithelial relative to CMS1 and CMS4. Similarly, for CMS4, the most mesenchymal 
subtype, the increase in Mes scores associated with a decrease in entropy for mesenchymal signature 
in a cell (Fig 5B, i-ii). Further, in CMS1, the subtype enriched in immune activation, an increase in 
PD-L1 signature scores correlated with a consistent decrease in entropy of corresponding signature 
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(Fig 5C, i-ii). However, the entropy of metabolic signatures did not show any CMS-specific trend, while 
they were also negatively correlated consistently with the corresponding signature scores (Fig S5).  

 

Figure 5: CMS-specific associations between cell-wise ssGSEA scores and entropy values of 
Epi and Mes genesets at a single-cell resolution. A) i) Scatter plot depicting the association 
between Epi scores (x-axis) and Epi entropy values (y-axis) for GSE132465. Same as A i) but for B) 
i) Mes score and entropy, C) i) PD-L1 score and entropy.  A ii), B ii), and C ii) are the same as A i), 
B i), and C i) respectively, but for GSE144735. Pearson’s correlation coefficient ‘ρ’ and p-values for 
subtype-wise correlation are shown. Blue data points are for cells classified as CMS1, red for CMS2, 
green for CMS3, purple for CMS4.  

 

Discussion 

Colorectal cancer is one of the most heterogeneous cancers characterized by intra and inter-tumoral 
heterogeneity. Thus, the classification of CRC into four CMS sub-types – while a helpful metric – does 
not entirely depict the heterogeneity in CRC. Here, we evaluated how some key axes that drive tumor 
progression and metastasis in carcinomas (immune evasion, metabolic reprogramming, and EMT) to 
understand their heterogeneity within CMS subtypes. Consistent with previous work in other cancer 
types, including ours, we observed a positive correlation between PD-L1 signature and mesenchymal 
state (Dongre et al. 2017; Muralidharan et al. 2022). However, across the CMS subtypes, PD-L1 
signature score was not always negatively associated with epithelial scores, thus indicating that partial 
EMT state can also possess high immune-evasive traits (Dongre et al. 2021; Sahoo et al. 2021).  
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EMT is not binary switch but a spectrum of states including many epithelial/mesenchymal ones (Jolly 
et al. 2022; Subbalakshmi et al. 2022). This spectrum provides cancer cells stem-like traits, thereby 
facilitating aggressive tumor progression (Mani et al. 2008). Cell populations with higher plasticity 
along the E/M axis tend to be more metastatic and pose significant hurdles for treatment (Jolly et al. 
2015, 2019). In this context, our analysis of CRC samples treated with EMT-inducers, SNAI1 and 
TGFβ revealed context-specific changes in the CMS state of samples with a concurrent alteration in 
their E/M state. While SNAI1, a highly specific EMT-TF reduces the epithelial and CMS3 enrichment 
and increases Mes and CMS4 scores, while TGFβ downregulates genes driving epithelial phenotype 
and increases enrichment of both CMS3 and CMS4 genes, possibly due to its role in mediating other 
axes of plasticity such as metabolic state (Shi et al. 2022). Our results showing CMS4 to be most 
mesenchymal are consistent with earlier observations about higher methylation of miR-200 family in 
CMS4 cell lines and tumors (Fessler et al. 2016). Further, transcriptomes of TGFβ treatment of CRC 
organoids resemble the CMS4 signature seen in human tumors (Flum et al. 2022).  

Our results for scRNA-seq and bulk RNA-seq analysis are largely self-consistent across the CMS 
subtypes, such as antagonism between epithelial and mesenchymal programs, or the association of 
those programs with metabolic axes and PD-L1 signature enrichment scores. The different modalities 
of associations observed between these axes may explain the CMS subtype-specific observations of 
patient survival and/or sensitivity to various therapeutics and remains a key focus for our future work.  

A key point that our scRNA-seq analysis reveals is that CMS2 and CMS3 are relatively most epithelial, 
while CMS4 and CMS1 being more mesenchymal. This categorization is reminiscent of previous 
observations such as the multi-omics profiling of CRC cell lines suggesting that CMS2 and CMS3 ones 
are more colon-like, while CMS and CMS4 ones are more undifferentiated and had higher expression 
of genes associated with EMT and TGFβ signaling (Berg et al. 2017). Similarly, in TCGA CRC data, 
most patients from ZEB1hi group belonged to CMS4 subtype, while the ZEB1lo group was mainly 
composed of CMS2 and CMS3 tumors (Xu et al. 2022). CMS4 subtype expression also correlates well 
with the signature of EpCAMlo sub-population in HCT116 and SW480 cells (Sacchetti et al. 2021).  

Besides EMT, metabolic reprogramming is another key axis of cancer cell plasticity. Recent studies 
have shown that along with classical Warburg effect observed in cancer cells, some cancers, including 
cervical and breast cancer, predominantly use OXPHOS as a primary energy source (Rodríguez-
Enríquez et al. 2010; Hernández-Reséndiz et al. 2015). CRC cells have been reported to have a higher 
OXPHOS rate compared to normal colon cells (Kaldma et al. 2014). Through a mechanism known as 
Reverse Warburg effect, elements of tumor microenvironment, such as cancer-associated fibroblasts 
(CAF), can regulate the OXPHOS-glycolysis metabolic switch in cancers (Bonuccelli et al. 2010). 
Thus, varying microenvironments may possibly explain our counterintuitive association of glycolysis 
with epithelial and mesenchymal scores. Metabolism-based characterization of CRC samples has also 
been attempted recently (Zhang et al. 2020). Future efforts enabling more accurate classification of 
CRC patients into different subgroups with specified vulnerability can integrate such efforts being 
made to unravel phenotypic heterogeneity among multiple interconnected axes of plasticity. 
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Supplementary Figures 
 

 
Figure S1: A) Volcano plot depicting Spearman correlation coefficient (x-axis) and -log10(p-values) (y-axis) 
for Epi vs. Mes scores. Boundaries for significant correlation are set at R > ± 0.3 and p < 0.05. Red data 
points indicate datasets for which the association is significantly positive, blue for negative, and gray for 
insignificant correlation. B) Forest plots depicting mean hazard ratios (HR) ± 95% confidence intervals and 
corresponding p-values (‘*’ for p <0.05) for overall survival associated with concurrent enrichment of 
epithelial and mesenchymal (left), epithelial and PD-L1 (middle) and mesenchymal and PD-L1 signatures 
(right). Mean HR values > 1 are shown in blue while those < 1 are shown in red. (+) and (-) subgroups are 
based on median values. 
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Figure S2: Scatter plots illustrating associations between Epi vs. OXPHOS, FAO, glycolysis and PD-
L1 scores and for Mes vs. OXPHOS, FAO, glycolysis and PD-L1 scores for TCGA colorectal cancer 
patient samples.  

 

Figure S3: CMS-specific associations of epithelial and mesenchymal programs with metabolic axes 
and PD-L1 in GSE132465. A (i) Scatter plot depicting association between Epi (x-axis) and OXPHOS 
scores (y-axis). A (ii) Same as A (i) but for Mes and OXPHOS scores, B (i) Epi and FAO, B (ii) Mes and 
FAO, C (i) Epi and Glycolysis, C (ii) Mes and Glycolysis, D (i) Epi and PD-L1, and D (ii) Mes and PD-L1 
scores. Pearson’s correlation coefficient ‘ρ’ and p-values for subtype-wise correlation are shown. Blue data 
points are for cells classified as CMS1, red for CMS2, green for CMS3, purple for CMS4.  
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Figure S4: CMS-specific associations of epithelial and mesenchymal programs with metabolic axes 
and PD-L1 in GSE144735. A (i) Scatter plot depicting association between Epi (x-axis) and OXPHOS 
scores (y-axis). A (ii) Same as A (i) but for Mes and OXPHOS scores, B (i) Epi and FAO, B (ii) Mes and 
FAO, C (i) Epi and Glycolysis, C (ii) Mes and Glycolysis, D (i) Epi and PD-L1, and D (ii) Mes and PD-L1 
scores. Pearson’s correlation coefficient ‘ρ’ and p-values for subtype-wise correlation are shown. Blue data 
points are for cells classified as CMS1, red for CMS2, green for CMS3, purple for CMS4.  

 

 

Figure S5: CMS-specific associations between cell-wise ssGSEA scores and entropy values of 
metabolic and PD-L1 gene sets at a single cell resolution. A (i) Scatter plot depicting association 
between FAO scores (x-axis) and FAO entropy values (y-axis) for GSE132465. Same as A (i) but for B (i) 
Glycolysis and C (i) OXPHOS.  A (ii), B (ii) and C (ii) are the same as A (i), B (i) and C (i) respectively, but 
for GSE144735. Pearson’s correlation coefficient ‘ρ’ and p-values for subtype-wise correlation are shown. 
Blue data points are for cells classified as CMS1, red for CMS2, green for CMS3, purple for CMS4.  

 

Supplementary Tables 

Table S1 

Description of 101 bulk transcriptomic datasets used in this study along with Spearman’s Correlation 
coefficient ‘R’ and corresponding p-values for correlation of Epithelial and Mesenchymal signature with PD-
L1 gene signature and metabolic signatures (glycolysis, FAO and OXPHOS). 

Table S2 

Gene sets used for scoring the CMS subtypes, EMT, metabolism and PD-L1 gene signatures. 
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