

1 **Multiplexed amplicon sequencing reveals the heterogeneous spatial**
2 **distribution of pyrethroid resistance mutations in *Aedes albopictus***
3 **mosquito populations in Southern France.**

4

5 Albin Fontaine^{1,2,3*}, Antoine Mignotte⁴, Guillaume Lacour⁴, Agnès Nguyen⁵, Nicolas
6 Gomez^{1,2,3}, Lionel Chanaud⁶, Grégory L'Amber⁶, Sébastien Briolant^{1,2,3}

7

8 ¹ Unité Parasitologie et Entomologie, Département Microbiologie et maladies infectieuses,
9 Institut de Recherche Biomédicale des Armées (IRBA), Marseille, France.

10 ² Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.

11 ³ IHU Méditerranée Infection, Marseille, France.

12 ⁴ Altopictus, Pérols, France.

13 ⁵ Microsynth France, 170 avenue Gabriel Péri 69120 Vaulx-en-Velin, France.

14 ⁶ Entente interdépartementale pour la démoustication du littoral méditerranéen (EID
15 Méditerranée), Montpellier, France.

16

17 **Keywords: Knock-Down resistance, Pyrethroid resistance, Molecular surveillance,**
18 **Amplicon sequencing, Pool DNA-sequencing.**

19 **Abstract**

20 The risk of mosquito-borne diseases transmission is moving fast toward temperate
21 climates with the colonization and proliferation of the Asian tiger mosquito vector *Aedes*
22 *albopictus* and the rapid and mass transport of passengers returning from tropical regions
23 where the viruses are endemic. The prevention of major *Aedes*-borne viruses heavily relies on
24 the use of insecticides for vector control, mainly pyrethroids In Europe. High-throughput
25 molecular assays can provide a cost-effective surrogate to phenotypic insecticide resistance
26 assays when mutations have been previously linked to a resistance phenotype. Here, we
27 screened for the spatial distribution of *kdr* mutations at a large scale using a two-step
28 approach based on multiplexed amplicon sequencing and an unprecedented collection of
29 field-derived mosquitoes in South of France. We identified the presence of the V1016G allele
30 in 14 sites. The V1016G allele was predominantly found in South-East France close to the
31 Italian border with two additional isolated sites close to Bordeaux and Marmande. All
32 mosquitoes were heterozygous for this mutation and should not be phenotypically resistant to
33 pyrethroid insecticide. Four other mutations were identified in our targeted genomic
34 sequence: I1532T, M1006L, M1586L, M995L. Sequencing a section of maternally inherited
35 mitochondrial genome confirmed that the spread of *Ae. albopictus* in France originated from
36 founders with haplogroup A1. These findings contribute to the broader understanding of
37 resistance dynamics in Europe and can inform targeted approaches to mitigate the impact of
38 resistance on vector control.

39

40

41

42

43

44

45 **Main**

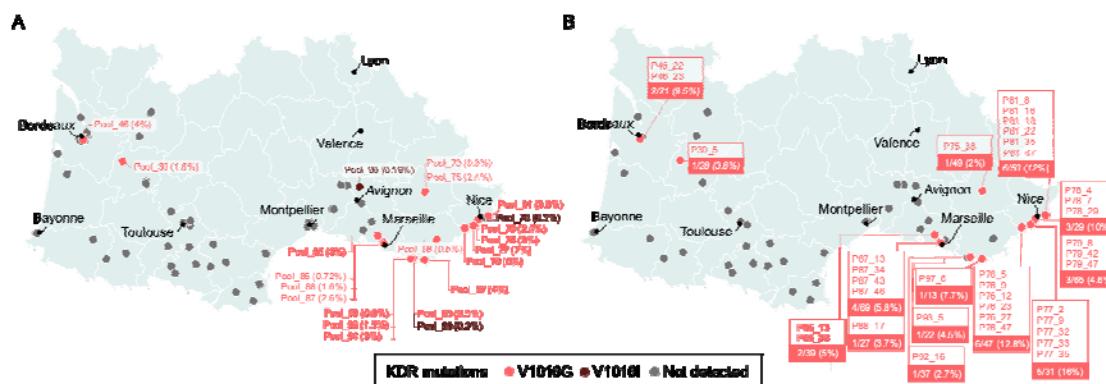
46 Once confined to tropical areas, the risk of mosquito-borne diseases transmission is
47 now moving fast toward temperate climates, fostered by the colonization and proliferation of
48 the Asian tiger mosquito vector *Aedes (Stegomyia) albopictus* and the rapid and mass
49 transport of passengers returning from tropical regions where the viruses are endemic. The
50 unusually high secondary autochthonous cases of dengue virus (DENV) infections in South of
51 France in 2022 illustrates the risk and is sounding the alarm¹. The prevention of major *Aedes*-
52 borne viruses heavily relies on the use of insecticides for vector control. In Europe,
53 deltamethrin (a pyrethroid insecticide) is the only insecticide authorized in space spraying to
54 target flying adult mosquitoes¹⁻³. Resistance toward this insecticide has been described in *Ae.*
55 *albopictus* populations throughout the world, including Europe³⁻⁵, but limited information is
56 yet available for France. Their spread can negatively impact the effectiveness of vector
57 control interventions and put in jeopardy our very limited defense line.

58 Monitoring phenotypic insecticide resistance at a large scale is expensive, time-
59 consuming, and laborious. High-throughput molecular assays can provide a cost-effective
60 surrogate when mutations have been previously linked to a resistance phenotype. In addition,
61 molecular methods can detect resistance alleles before they reach fixation and can thus be
62 used as an early-warning approach⁶. Mutations at 2 codon positions (V1016 and F1534) in the
63 voltage sensitive sodium channel (Vssc) gene were experimentally identified as the main
64 knockdown resistance (*kdr*, the main resistance mechanism to pyrethroids) mechanism in *Ae.*
65 *albopictus*^{4,7}. Here, we report a two-step approach based on multiplexed amplicon sequencing
66 to screen for the spatial distribution of *kdr* mutations at a large scale using an unprecedented
67 collection of field-derived mosquitoes sampled from 95 sites across 61 municipalities
68 alongside a West to East transect in South of France.

69 **Results**

70 *Screening of KDR mutations in pool DNA amplicons sequencing*

71 A total of 547 mosquitoes collected from a West to East transect in South of France
72 from June 2021 to September 2021 at 95 sites in 61 municipalities, either at the egg or adult
73 stage, were grouped by sites into 100 pools. Two non-overlapping genomic DNA fragments
74 covering 4 exons in the *Vssc* gene (exon19-like, exon20-like, exon27-like and exon28-like, as
75 referred to the JAFDOQ010000349.1 annotation file) were amplified using eight different 6
76 bp barcodes incorporated at the 5' end of the forward primers (Supplementary table 2). The
77 combination of barcodes and dual indexing allowed the deep sequencing of 13 *super-pools*
78 instead of the original 100. The sequencing generated an average depth of 12,779 X for
79 amplicon 1 (327 bp, exon19-like and exon20-like) and 3,336 X for amplicon 2 (500 bp,
80 exon27-like and exon28-like), per pool after demultiplexing.


81 A total of 651 mutations were detected on the target region of the *Vssc* gene with allele
82 frequencies ranging from 0.1% to 99.9% (median: 3.7%, 1st quartile: 0.3%, 3rd quartile: 1.4%)
83 (Supplementary figure 1) across pools. A total of 445 mutations were located on exons,
84 among which 131 (29%) were synonymous and 314 (71%) non-synonymous. These non-
85 synonymous mutations were located at 304 unique positions and had an overall low allele
86 frequency with a median of 0.33% (1rst quartile: 0.25%, 3rd quartile: 0.51%) across pools
87 (Supplementary table 3). Seventeen of them (5.4%) had mean allele frequencies > 2% across
88 pools (Supplementary figure 2). Mutations M1006L and I1532T, detected in 98 and 74 pools,
89 respectively, were one of the most prevalent.

90 KDR V1016G and V1016I mutations were detected in 19 and 3 pools, respectively
91 (Figure 1-A). Pools with mutation V1016I had very low allele frequencies (below 0.625%,
92 which is the theoretical frequency threshold if one heterozygote allele is detected in the
93 biggest pools of N=80). KDR V1016G mutation was preferentially detected in the Southeast

94 of France from Marseille to Nice with two exceptions in Bordeaux and Marmande (Figure 1-
95 A).

96

97

98

99

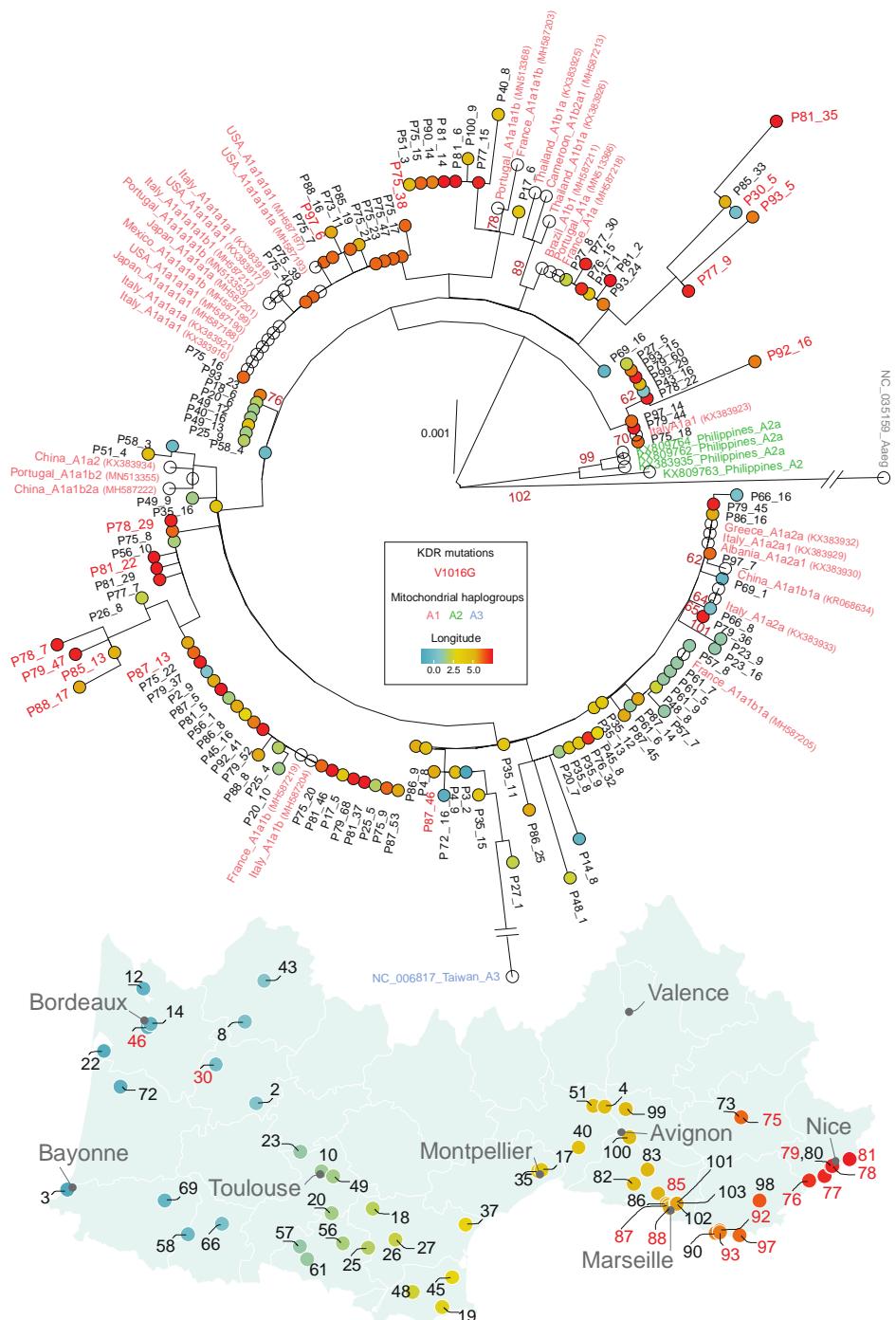
100 **Figure 1: Geographic location of alleles confirmed in knockdown resistance in *Aedes***
101 ***albopictus* in South of France.** A) Location and frequencies of KDR alleles as revealed by
102 amplicon sequencing based on sequencing of DNA from pooled mosquito heads. Allele
103 frequencies are represented into brackets for each locality. B) Location and prevalence of
104 KDR alleles as revealed by amplicon sequencing on single mosquitoes from each locality.
105 The identity and prevalence of mosquitoes carrying the mutations are represented for each
106 locality. Mosquitoes are identified based on their original pool number and a unique number.
107 Grey points represent localities where no confirmed KDR alleles were identified.

108

109 *Confirmation of KDR mutations in single mosquito DNA amplicons sequencing*

110 Single mosquito DNA sequencing was implemented to confirm mutations revealed by
111 pool DNA sequencing and to determine their prevalences and genotypes (heterozygote /
112 homozygote). Genetic variations were detected at 135 positions over the target regions of the
113 Vssc gene. A total of 32 mutations were located on exon-like regions, among which 27 (84%)

114 were synonymous and 5 (16%) non-synonymous: M1006L, M995L, V1016G, I1532T, and
115 M1586L (Supplementary table 3). Importantly, all these mutations were previously identified
116 in the top 20 most frequent mutations in pool DNA sequencing (Supplementary figure 2).
117 However, some mutations identified in pool DNA sequencing were not confirmed when
118 sequencing individual mosquito DNA.


119 The M1006L mutation was the most prevalent (detected in 215 mosquitoes from 45
120 sites), followed by the I1532T mutation that was detected in 54 mosquitoes from 16 sites.
121 KDR V1016G mutation was detected in 37 mosquitoes from 14 different sites. This mutation
122 was detected in the same sites than pool DNA sequencing except for pool_73, pool_86,
123 pool_98, pool_90, and pool_94. Allele frequencies for these pools were mainly < 1% and
124 might be attributed to DNA contamination during the DNA extraction procedure. KDR
125 V1016G mutation in single mosquito DNA was not detected in sites where the mutation was
126 not reported by pool DNA sequencing. All mosquitoes were heterozygotes for this mutation.
127 The prevalence of mosquitoes carrying the V1016G mutation ranged from 2% to 16% across
128 sites (Figure 1-B). Single DNA sequencing confirmed the presence of KDR V1016G mutation
129 in Southeast France, close to the Italian border where it has already been described since
130 2019^{3,4} and in a cluster located in the West in Bordeaux and Marmande.

131
132 *Geographical dispersion of mosquitoes carrying KDR mutations as revealed by their*
133 *mitochondrial DNA.*

134 The amplicon-based library targeting the *Vssc* gene was complemented with ligase-
135 based tiling amplicons that amplified a region of the mitochondrial genome in each *Ae.*
136 *albopictus* mosquitoes. Genomic regions aligning to the targeted mitochondrial genome had a
137 low depth (mean \pm SD: 5.8X \pm 33), as compared to the *Vssc* gene. A total number of 126
138 samples out of 1,167 (11%) could be however selected to be included in the phylogenetic

139 analysis with background reference sequences that represented the worldwide diversity of *Ae.*
140 *albopictus* mitogenomes haplogroups^{8,9}. The phylogenetic analysis revealed that all collected
141 *Ae. albopictus* mosquitoes originated from founders with haplogroup A1 (Figure 2). The KDR
142 V1016G allele was found in mosquitoes from different maternal lines. One mosquito from the
143 West (P30_5) carrying the KDR V1016G mutation had a mitochondrial DNA genetically
144 close to mosquitoes from the East (Figure 2), suggesting long-range dissemination of the
145 resistance allele through transports.

146

147

148

149 **Figure 2: Phylogenetic relationships among a subset of *Aedes albopictus* mosquitoes**
 150 **analyzed in this study based on a curated alignment of 3,243 bp nucleotides region of the**
 151 **mitochondrial genome.** The mitochondrial genome of *Ae. aegypti* (NC_035159) was used as

152 an outgroup in the phylogenetic tree. The best-scoring maximum-likelihood (ML) tree was
153 generated with 120 bootstrap replicates. Only bootstrap scores > 60 are represented in dark
154 red on the figure. Mosquitoes are identified based on their original pool number and a unique
155 identifier. Pool localities are represented on a map with a color code representing the
156 longitude (West to East transect gradient is represented with a blue to red color gradient).
157 Localities with at least one mosquito carrying a KDR allele are represented in red on both the
158 map and the phylogenetic tree.

159

160 **Discussion**

161 Pyrethroid insecticides are nowadays widely used in agriculture or as indoor/outdoor
162 residual or space spraying for adult mosquito control throughout the world because of their
163 low acute toxicity on mammals and high and fast activity in insects. Mutations in the *Vssc*
164 gene were experimentally identified as one of the major knockdown resistances (*ie. kdr*)
165 mechanisms in insects, together with metabolic resistance mainly mediated by P450
166 monooxygenases^{10,11}. KDR mutations were originally discovered on the model organism
167 *Musca domestica*¹², and mutations found in other insects were named based on the codon
168 position of this house fly reference genome. Several mutations were documented on the *Vssc*
169 gene in *Ae. aegypti* (*ie. V410L, S989P, I1011M/V, V1016G/I, I1532T, F1534S/L/C, and*
170 *D1763Y*), but a few of them have been confirmed to be functionally associated with
171 pyrethroids resistant phenotypes (*i.e., V410L, S989P, I1011M, V1016G and F1534C*)¹³.
172 Some mutation combinations can engender extreme resistance in *Ae. aegypti*, such as the
173 triple mutant 989P/1016G/1534C haplotype¹⁴. The KDR F1534C mutation was the first to be
174 reported in *Ae. albopictus* in Singapore⁷ in 2011, followed by mutations V1016G/I, and
175 F1534S/L in different parts of the world alone or in combination. The KDR V1016G allele
176 was recently found in *Aedes albopictus* populations from Italie, Vietnam⁴ and China¹⁵. At the

177 homozygous state, this mutation was shown to confer a higher level of pyrethroid resistance
178 than the previously known alleles, F1534C and F1534S⁴. The KDR V1016G mutation was
179 recently revealed in France in two populations of *Ae. albopictus* from Nice and Perpignan³.

180 Here, the spatial distribution of pyrethroid resistance mutations in *Ae. albopictus*
181 populations in southern France was screened in the most exhaustive sampling work to date in
182 France (95 sampling sites across 61 municipalities), using a two-step multiplexed amplicon
183 sequencing approach. We first implemented a sequencing approach using pooled mosquito
184 DNA per site to reduce the overall sequencing costs. This initial step was able to screen for
185 the presence of KDR mutations in many sites across a wide study area, faster, and with less
186 samples size as compared to a single mosquito DNA screening approach. Several mutations
187 with high allele frequencies and prevalence across sites were detected, including KDR
188 V1016G mutations. Importantly, all mutations subsequently confirmed by single mosquito
189 DNA sequencing were previously identified in pool DNA sequencing. However, some
190 mutations identified in pool DNA sequencing were not confirmed when sequencing individual
191 mosquito DNA (eg. V1016I). This can be partially explained by the allele calling program
192 (LoFreq) applied to pool DNA sequencing that is more sensitive to distinguish rare variants
193 than the pipeline applied to single mosquito DNA sequencing. This can create difficulties to
194 distinguish rare variants from sequencing errors^{16,17}. The presence of KDR V1016I mutation
195 was not ultimately confirmed by single mosquito DNA sequencing, this can be due to a low
196 allele frequency < 1% in the three pools where it was detected. Pool DNA sequencing allows
197 to identify the sites with the presence of KDR V1016G allele with a perfect sensitivity
198 (100%), albeit not good specificity with 5 sites out of 19 being not confirmed by single DNA
199 sequencing. We suspect that contaminations across samples might had occurred during the
200 grinding step prior the extraction procedure for pool DNA library preparation. This issue can
201 be easily improved in the future. This two steps approach can save time and resources,

202 especially when the presence of the target mutations is anticipated to be scarce, by excluding
203 samples from sites in which the targeted mutations was not detected in a preliminary
204 screening. Efforts and money can then be dedicated in a more efficient way to analyze
205 prevalences and genotypes using single mosquito DNA in selected sites. This method can be
206 readily integrated into routine surveillance programs, allowing for the early detection of
207 resistance before the fixation of mutations and the timely implementation of appropriate
208 control measures.

209 The V1016G allele was predominantly found in South-East France close to the Italian
210 border with two additional isolated occurrences close to Bordeaux and Marmande. While
211 previous study already reported the presence of the KDR V1016G allele mutation in Nice and
212 Perpignan, our sampling effort across the South of France did not identify any resistance
213 genes in Perpignan. Importantly, genetic resistance to insecticides can be highly clustered
214 even at the small geographic scale. *Vssc* harbouring the V1016G allele was not detected from
215 *Ae. albopictus* collected outside of Hanoi City in Vietnam while it was found in the city⁴. In
216 our study, this mutation was found in population collected in harbor areas in Marseille but not
217 in those collected more inland from the same city. A genome-wide analysis with a high
218 density of nucleic DNA markers revealed a weak genetic structure and high levels of genetic
219 admixture in *Aedes albopictus* populations from Switzerland, supporting a scenario of rapid
220 and human-aided dispersal along transportation routes, with frequent re-introductions into
221 Switzerland from Italian sources¹⁸.

222 The use of pyrethroid is strictly regulated in France when there are applied for curative
223 vector control around human cases of dengue, chikungunya or Zika – imported or
224 autochthonous – to reduce the risk of local arbovirus transmission³. Paradoxically, there is
225 neither formal prohibition nor any surveillance of the use of pyrethroids by pest control
226 companies for as part of nuisance reduction. The use of insecticides by pest control companies

227 or private individuals might maintain a significant selection pressure on local insect
228 populations. Resistance genes carrying *Ae. albopictus* populations in Nouvelle-Aquitaine sites
229 were not exposed to curative vector control treatment within 150 meters since at least 2020. In
230 contrast, resistance genes were not revealed in mosquitoes from sites which had undergone
231 six repetitions of treatments since 2020. The *de novo* appearance of mutations is a rare event
232 and resistance in a population commonly arises from selection of resistant alleles that are
233 present in a population or from the arrival of individuals with resistance alleles through
234 transport by humans^{19,6}. Here, we revealed close genetic relationships between mosquitoes
235 collected in West and East of France that were carrying the V1016G allele using a section of
236 the maternally inherited mitochondrial genome. Altogether, these data suggest that the
237 presence of KDR mutations in France originated from fast transportation between distant
238 populations rather than from *de novo* due to a strong selection pressure.

239 Although the French Agency for Food, Environmental and Occupational Health Safety
240 (ANSES) established recommendations in 2020 regarding the use of insecticides and the
241 surveillance of resistance in French populations, there is currently no national surveillance
242 program in place²⁰. While resistance of vector mosquitoes has been well-documented in
243 overseas territories^{11,21,22}, it remains poorly studied in metropolitan France. The presence of
244 insecticide resistance alleles in *Ae. albopictus* populations from different sites in France
245 highlights the need for a continued monitoring of insecticide susceptibility at a wide
246 geographic scale, together with the development of alternative vector control strategies to
247 alleviate the selection pressure. All mosquitoes carrying the V1016G mutation in France
248 displayed a heterozygous genotype. Fixation of KDR V1016G allele, and thereby the
249 occurrence of phenotypic insecticide resistance, can arise rapidly in the presence of a strong
250 selection pressure in areas where the allele is detected even at a low prevalence. There is thus
251 a critical need for the implementation of a comprehensive national surveillance program to

252 monitor resistance spatially and temporally in *Ae. albopictus* populations. Such a program
253 would provide valuable insights into the prevalence and spread of resistance, allowing for
254 timely and targeted interventions to maintain the efficacy of vector control measures. This
255 may include reducing treatments, alternating authorized insecticides over space and time,
256 employing complementary methods such as trapping and innovative control strategies^{23,24} to
257 proactively respond to changes and mitigate the spread of resistance, thereby safeguarding the
258 effectiveness of vector control interventions and protecting public health.

259 Four other mutations (*ie.* I1532T, M1006L, M1586L, M995L) were identified in our
260 targeted *Vssc* gene sections in this study. Among these 4 mutations, the I1532T was reported
261 in different *Ae. albopictus* populations from Asia^{15,15,25}, Italy²⁶ and Greece^{27,28}. This mutation
262 was found in mosquito populations from Rome with a high frequency (19.7%) but not in
263 populations collected 570 km away from this city²⁶, which further highlight the patchy
264 distribution of *Ae. albopictus* throughout the territory, even at a small geographic scale.
265 Further work is needed to functionally validate or invalidate the impact of M1006L, M1586L
266 and M995L on insecticide resistance.

267

268 Conclusion

269 Our study provides insights into the spatial distribution of pyrethroid resistance
270 mutations in *Ae. albopictus* populations in the South of France. Here, we demonstrated that
271 pooled-DNA amplicon sequencing can help to reduce the surveillance costs by detecting the
272 presence of known mutations when they are expected to occur at a low prevalence, prior to
273 screen mosquitoes individually. The use of multiplexed amplicon sequencing, with its ability
274 to screen pooled samples and subsequently confirm findings through individual mosquito
275 DNA sequencing, is a valuable tool for monitoring the spatial distribution of resistance
276 mutations. The detection of the KDR V1016G allele in different French localities emphasizes

277 the need for ongoing monitoring and proactive resistance management strategies. These
278 findings contribute to the broader understanding of resistance dynamics and can inform
279 targeted approaches to mitigate the impact of resistance on vector control efforts.

280

281 **Materials and methods**

282 *Field-collected mosquitoes*

283 *Aedes albopictus* mosquitoes were collected from the field either at the egg stage using
284 egg-laying traps or at the adult stage using BG sentinel (BGS, Biogents AG) traps at 95 sites
285 in 61 municipalities alongside a West to East transect in South of France from June to
286 September 2021. Adult mosquitoes were captured over one week with carbon dioxide
287 provided as a mosquito attractant and identified morphologically. Mosquito's eggs from 181
288 ovitraps were hatched and reared in laboratory until the fourth instar larvae; 2833 larvae were
289 transferred by sites and sampling date into 90% ethanol. All samples were stored at -20°C
290 until the DNA extraction procedure. Traps were mainly placed at hospital, airport, or seaport
291 sites.

292

293 *Mosquito DNA extraction*

294 A two-steps approach was implemented to screen for KDR alleles in *Ae. albopictus*
295 mosquitoes: *i*) an initial screening by sequencing pooled mosquito DNA in each site followed
296 by *ii*) sequencing individual mosquito DNA to determine KDR allele prevalence and
297 genotype. A total of 3 to 80 (mean=24.5, SD=15) mosquitoes were selected by site and
298 grouped into 100 different pools. Heads from larvae or adult mosquitoes were dissected under
299 magnifying glasses. Each pool was made up of mosquito heads sampled at the beginning and
300 the end of the sampling period for each site when possible. All mosquitoes from sites in which
301 KDR alleles were detected in step *i* were selected for single mosquito DNA sequencing,

302 excluding damaged mosquitoes. This second selection also included sites without detection of
303 KDR alleles in step *i*, with a total of 56 sites throughout 50 municipalities. Mosquito heads or
304 bodies were grinded in a 96 wells plate using a TissueLyser (Qiagen) for 2 min at 30
305 oscillation/s. Genomic DNA was then extracted from homogenates using the NucleoSpin 96
306 Tissue Core Kit (Macherey-Nagel) and stored at -20°C until use.

307

308 ***Amplicon-based sequencing***

309 We devised an amplicon-based approach that captured 3 main mutations previously
310 reported to be associated with pyrethroid resistance in *Aedes* spp. mosquitoes: S989P,
311 V1016I/G and F1534C/L/S^{13,29}. Two non-overlapping amplicons of 327 bp and 500 bp were
312 used to amplify two sections of the voltage sensitive sodium channel (vssc) gene that was
313 mapped on the *Aedes albopictus* isolate FPA chromosome 3 chr3.142 whole genome shotgun
314 sequence (AalbF3 genome assembly, GenBank: JAFDOQ010000349.1). This sequence was
315 identified in the AalbF3 genome assembly based on its genetic homology with *Ae. aegypti*
316 LOC5567355 vssc gene sequence. The first and second amplicon mapped to
317 JAFDOQ010000349.1 reference sequence at positions 1,806,101 to 1,806,578 bp and
318 1,851,149 to 1,851,765 bp, respectively. Both amplicons covered four exons in the vssc gene:
319 exon19-like, exon20-like, exon27-like and exon28-like. Both targeted genomic regions were
320 amplified in a single reaction to generate sufficient templates for subsequent high-throughput
321 sequencing. Multiplex PCR reactions were performed with 5 µl of purified DNA in a 20 µl
322 reaction mixture made of 5 µl of Hot START 5X Hot Firepol DNA Polymerase mix
323 (Dutscher, France), 1 µl of forward and reverse primers mix at 10 µM (4 µl for 4 primers)
324 (Supplementary table 1), and 11 µl of water. The thermal program was: 10 min of polymerase
325 activation at 96°C followed by 35 cycles of (i) 30 sec denaturing at 96°C, (ii) 30 sec annealing
326 at 62°C and (iii) 1 min extension at 72°C, followed by a final incubation step at 72°C for 7

327 min to complete synthesis of all PCR products. Illumina Nextera® universal tails sequences
328 were added to the 5' end of each of these primers to facilitate the library preparation by a two-
329 step PCR approach. Our multiplexing design involves a same barcode inserted in both
330 forward primer's sequences on each row of a 96 well plates, so that 10 μ l of amplified
331 products could be pooled per column (i.e., 8 samples were pooled into a single tube with a
332 final volume of 80 μ l). This multiplexing scheme allow a 8-x sample reduction with 96
333 samples from one plate being grouped into 12 different tubes, or one plate row
334 (Supplementary figure 3).

335 The individual mosquito KDR library was complemented with a ligase-based tiling
336 amplicon sequencing method to amplify a 4,438 nucleotides region of the mitochondrial
337 genome in each *Ae. albopictus* mosquitoes. The method generates overlapping amplicons of
338 ~500 base pairs from two multiplexed PCR reactions with 6 primers pairs in each reaction
339 (Supplementary table 1) to generate sufficient templates for subsequent high-throughput
340 sequencing^{30,31}. The Hot START 5X Hot Firepol DNA Polymerase (Dutscher, France) add an
341 adenosine nucleotide extension to the 3' ends of each replicated DNA strands to create an A
342 overhang, which make the product suitable for ligation with T-tailed DNA adaptors. Eight
343 universal barcoded T-tailed DNA adaptors were made by annealing upper and lower
344 oligonucleotides (Supplementary table 1) at 25M in 1X TE and 3M NaCl buffer, starting with
345 1 min step at 95°C and a constant temperature reduction of -0,1 °C/sec until to reach 12°C.
346 Each T-tailed DNA adaptors integrated one of the 8 barcodes used in the KDR library
347 preparation. One microliter of T-tailed DNA adaptors diluted to 1.5 μ M in water was added to
348 5 μ l of amplicons diluted to 1/10 in water and 5 μ l of 2X Blunt/TA Ligase Master Mix (New
349 England Biolabs, Herts, UK) and incubated 30 min at 25°C for ligation. No DNA purification
350 was done purposely prior the ligation step to reduce library costs. Ten microliters of adapter
351 ligated amplicons were mixed to 1 μ L of KDR library previously diluted 1/10 in water to

352 obtain a KDR/mitochondrion (primer pool 1 and 2) library ratio of 2, based on DNA
353 concentration determined by Qubit fluorometer and Quant-iT dsDNA Assay kit (Life
354 technologies, Paisley, UK) from a random subset of samples. Same barcodes were used to
355 identify one individual across KDR and mitochondrial libraries so that the three libraries
356 could be ultimately merged by sample. Amplicons tailed with Illumina Nextera® universal
357 sequences were then pooled by column into a single tube and purified using a 0.8-x magnetic
358 beads (SPRIselect, Beckman Coulter) ratio before to perform 15 PCR cycles using Nextera®
359 Index Kit – PCR primers, that adds the P5 and P7 termini that bind to the flow cell and the
360 dual 8 bp index tags. Indexed samples were pooled and quantified by fluorometric
361 quantification (QuantiFluor® dsDNA System, Promega) and visualized on QIAxcel Capillary
362 Electrophoresis System (Qiagen). Libraries were sequenced on a MiSeq run (Illumina) using
363 MiSeq v3 chemistry with 300bp paired-end sequencing.

364

365 ***Data processing and variant calling***

366 The DDemux program³² was used for demultiplexing fastq files according to the P1
367 barcodes inserted at the 5'-end of each sequence. After demultiplexing, trimmomatic v0.33
368 was used to discard reads shorter than 32 nucleotides, filter out Illumina adaptor sequences,
369 remove leading and trailing low-quality bases and trim reads when the average quality per
370 base dropped below 15 on a 4-base-wide sliding window. Reads were aligned to two sections
371 of the JAFDOQ010000349 whole genome shotgun sequence with bowtie2 v.2.1.018³³. The
372 alignment file was converted, sorted, and indexed using Samtools v1.6 and BCFtools v1.8³⁴.
373 Coverage and sequencing depth were assessed using bedtools v2.17.0³⁵. DNA variants were
374 called using Lofreq 2.1.5³⁶ for pooled-mosquito sequencing and Bcftools mpileup callers for
375 single mosquito DNA sequencing, respectively. The bioinformatic pipeline that was used in
376 this work is provided in Supplementary file 2.

377

378 ***Phylogenetic analyses***

379 Consensus mitochondrial sequences were obtained from aligned bam files using the
380 SAMtools/BCFtools package and seqtk v1.0-r31 (Supplementary file 2). Samples were
381 included in the phylogenetic analysis only if at least 30% of their targeted mitochondrial
382 genome section was covered with a base quality score >20. A background set of 37 full-length
383 mitochondrial genomes were obtained from GenBank^{8,9} to represent the worldwide diversity
384 of *Ae. albopictus* mitogenomes haplogroups. The mitochondrial genome of *Ae. aegypti*
385 (NC_035159) was used as an outgroup in the phylogenetic tree. Consensus sequences were
386 aligned using muscle 5.1³⁷ and curated by gblocks software implemented in the seaview
387 version 5.0.4 interface³⁸ without option for stringent selection. The curated alignment
388 represented 3,243 nucleotides out of the targeted 4,438 nucleotides (0.73%). It was expanded
389 with eight additional samples harboring a KDR mutations that has between 20% and 30% of
390 their targeted mitochondrial genome section covered with a base quality score >20. The best-
391 scoring maximum-likelihood (ML) tree was generated using this curated alignment with 120
392 bootstrap replicates with phym³⁹. The GTR nucleotide substitution model was chosen based
393 on the lowest Akaike information criterion (AIC) value using the Smart Model Selection
394 (SMS) in Phym software⁴⁰. Phylogenetic trees were visualized using the ggtree R package⁴¹.

395

396 ***Statistic and data visualization***

397 Descriptive statistics and data visualization were performed in the statistical environment R
398 v4.2.2⁴². Figures were made using the package ggplot2⁴³, leaflet⁴⁴, wesanderson color
399 palette⁴⁵, ggtree⁴¹ and the Tidyverse environment⁴⁶ (Supplementary file 3).

400

401 **Acknowledgements**

402 We are deeply grateful to the agents of Altopictus (Flavien Thiers, Renaud Chevalier, Hugo
403 Peyret, *et al.*) and EID Méditerranée (Yves-Marie Kervella and Pascal Eberhart) for their
404 contributions to the field collection and rearing of *Aedes albopictus* samples. We also thanks
405 Igor Filipović for its help with the multiplexing scheme and the creation of the *ddmux*
406 program.

407

408 **Author contributions**

409 Albin Fontaine, and Sébastien Briolant designed research. Antoine Mignotte, Guillaume
410 Lacour, Lionel Chanaud and Grégory L'Ambert contributed to the sample collection on the
411 field. Albin Fontaine, Sébastien Briolant, and Nicolas Gomez performed research with the
412 help and supervision of Agnès Nguyen concerning the DNA sequencing. Albin Fontaine and
413 Nicolas Gomez analyzed data. Albin Fontaine and Antoine Mignotte wrote the manuscript
414 with input from all authors.

415

416 **Funding information**

417 This study received funding from the Direction Générale de l'Armement (grant no.
418 PDH□2□NRBC□2□B□2113). The contents of this publication are the sole responsibility of
419 the authors. The funders had no role in study design, data collection, and interpretation, or the
420 decision to submit the work for publication.

421

422 **Conflict of interest**

423 The authors declare that there is no conflict of interest regarding the publication of this article.

424

425 **References**

426

427 1. Bellini, R., Zeller, H. & Van Bortel, W. A review of the vector management methods to
428 prevent and control outbreaks of West Nile virus infection and the challenge for Europe.
429 *Parasit Vectors* **7**, 323 (2014).

430 2. Hemingway, J., Beaty, B. J., Rowland, M., Scott, T. W. & Sharp, B. L. The Innovative
431 Vector Control Consortium: improved control of mosquito-borne diseases. *Trends
432 Parasitol* **22**, 308–312 (2006).

433 3. Pichler, V. *et al.* Geographic distribution of the V1016G knockdown resistance mutation in
434 *Aedes albopictus*: a warning bell for Europe. *Parasit Vectors* **15**, 280 (2022).

435 4. Kasai, S. *et al.* First detection of a Vssc allele V1016G conferring a high level of
436 insecticide resistance in *Aedes albopictus* collected from Europe (Italy) and Asia
437 (Vietnam), 2016: a new emerging threat to controlling arboviral diseases. *Euro Surveill.*
438 **24**, (2019).

439 5. Smith, L. B., Kasai, S. & Scott, J. G. Pyrethroid resistance in *Aedes aegypti* and *Aedes*
440 *albopictus*: Important mosquito vectors of human diseases. *Pestic Biochem Physiol* **133**, 1–
441 12 (2016).

442 6. Dusfour, I. *et al.* Management of insecticide resistance in the major *Aedes* vectors of
443 arboviruses: Advances and challenges. *PLoS Negl Trop Dis* **13**, e0007615 (2019).

444 7. Kasai, S. *et al.* First detection of a putative knockdown resistance gene in major mosquito
445 vector, *Aedes albopictus*. *Jpn. J. Infect. Dis.* **64**, 217–221 (2011).

446 8. Battaglia, V. *et al.* The Worldwide Spread of the Tiger Mosquito as Revealed by
447 Mitogenome Haplotype Diversity. *Front Genet* **7**, 208 (2016).

448 9. Zé-Zé, L. *et al.* Mitogenome diversity of *Aedes* (Stegomyia) *albopictus*: Detection of
449 multiple introduction events in Portugal. *PLoS Negl Trop Dis* **14**, e0008657 (2020).

450 10. Ishak, I. H. *et al.* The Cytochrome P450 gene CYP6P12 confers pyrethroid resistance
451 in kdr-free Malaysian populations of the dengue vector *Aedes albopictus*. *Sci Rep* **6**, 24707
452 (2016).

453 11. Dusfour, I. *et al.* Deltamethrin Resistance Mechanisms in *Aedes aegypti* Populations
454 from Three French Overseas Territories Worldwide. *PLoS Negl Trop Dis* **9**, e0004226
455 (2015).

456 12. Williamson, M. S., Denholm, I., Bell, C. A. & Devonshire, A. L. Knockdown
457 resistance (kdr) to DDT and pyrethroid insecticides maps to a sodium channel gene locus
458 in the housefly (*Musca domestica*). *Mol Gen Genet* **240**, 17–22 (1993).

459 13. Moyes, C. L. *et al.* Contemporary status of insecticide resistance in the major *Aedes*
460 vectors of arboviruses infecting humans. *PLoS Negl Trop Dis* **11**, e0005625 (2017).

461 14. Hirata, K. *et al.* A single crossing-over event in voltage-sensitive Na⁺ channel genes
462 may cause critical failure of dengue mosquito control by insecticides. *PLoS Negl Trop Dis*
463 **8**, e3085 (2014).

464 15. Zhou, X. *et al.* Knockdown resistance (kdr) mutations within seventeen field
465 populations of *Aedes albopictus* from Beijing China: first report of a novel V1016G
466 mutation and evolutionary origins of kdr haplotypes. *Parasit Vectors* **12**, 180 (2019).

467 16. Guirao-Rico, S. & González, J. Benchmarking the performance of Pool-seq SNP
468 callers using simulated and real sequencing data. *Mol Ecol Resour* **21**, 1216–1229 (2021).

469 17. Anand, S. *et al.* Next Generation Sequencing of Pooled Samples: Guideline for
470 Variants' Filtering. *Sci Rep* **6**, 33735 (2016).

471 18. Vavassori, L., Honnen, A.-C., Saarman, N., Caccone, A. & Müller, P. Multiple
472 introductions and overwintering shape the progressive invasion of *Aedes albopictus*
473 beyond the Alps. *Ecol Evol* **12**, e9138 (2022).

474 19. Raymond, M., Berticat, C., Weill, M., Pasteur, N. & Chevillon, C. Insecticide
475 resistance in the mosquito *culex pipiens*: what have we learned about adaptation? *Genetica*
476 **112–113**, 287–296 (2001).

477 20. *Résistance des moustiques vecteurs aux insecticides. Avis de l'Anses Rapport*
478 *d'expertise collective.* <https://www.anses.fr/fr/system/files/BIOCIDES2020SA0029Ra.pdf>
479 (2021).

480 21. Cattel, J. *et al.* Impact of selection regime and introgression on deltamethrin resistance
481 in the arbovirus vector *Aedes aegypti* - a comparative study between contrasted situations
482 in New Caledonia and French Guiana. *Pest Manag Sci* **77**, 5589–5598 (2021).

483 22. Goindin, D. *et al.* Levels of insecticide resistance to deltamethrin, malathion, and
484 temephos, and associated mechanisms in *Aedes aegypti* mosquitoes from the Guadeloupe
485 and Saint Martin islands (French West Indies). *Infect Dis Poverty* **6**, 38 (2017).

486 23. Lutrat, C. *et al.* Combining two genetic sexing strains allows sorting of non-transgenic
487 males for *Aedes* genetic control. *Commun Biol* **6**, 646 (2023).

488 24. Douchet, L. *et al.* Comparing sterile male releases and other methods for integrated
489 control of the tiger mosquito in temperate and tropical climates. *Sci Rep* **11**, 7354 (2021).

490 25. Yuan, H. *et al.* High frequency of Voltage-gated sodium channel (VGSC) gene
491 mutations in *Aedes albopictus* (Diptera: Culicidae) suggest rapid insecticide resistance
492 evolution in Shanghai, China. *PLoS Negl Trop Dis* **17**, e0011399 (2023).

493 26. Xu, J. *et al.* Multi-country Survey Revealed Prevalent and Novel F1534S Mutation in
494 Voltage-Gated Sodium Channel (VGSC) Gene in *Aedes albopictus*. *PLoS Negl Trop Dis*
495 **10**, e0004696 (2016).

496 27. Fotakis, E. A. *et al.* Mosquito population structure, pathogen surveillance and
497 insecticide resistance monitoring in urban regions of Crete, Greece. *PLoS Negl Trop Dis*
498 **16**, e0010186 (2022).

499 28. Balaska, S. *et al.* Bioassay and molecular monitoring of insecticide resistance status in
500 Aedes albopictus populations from Greece, to support evidence-based vector control.
501 *Parasit Vectors* **13**, 328 (2020).

502 29. Chen, M., Du, Y., Nomura, Y., Zhorov, B. S. & Dong, K. Chronology of sodium
503 channel mutations associated with pyrethroid resistance in Aedes aegypti. *Arch Insect
504 Biochem Physiol* **104**, e21686 (2020).

505 30. Quick, J. *et al.* Multiplex PCR method for MinION and Illumina sequencing of Zika
506 and other virus genomes directly from clinical samples. *Nat Protoc* **12**, 1261–1276 (2017).

507 31. Grubaugh, N. D. *et al.* An amplicon-based sequencing framework for accurately
508 measuring intrahost virus diversity using PrimalSeq and iVar. *Genome Biol* **20**, 8 (2019).

509 32. Rašić, G., Filipović, I., Weeks, A. R. & Hoffmann, A. A. Genome-wide SNPs lead to
510 strong signals of geographic structure and relatedness patterns in the major arbovirus
511 vector, Aedes aegypti. *BMC Genomics* **15**, 275 (2014).

512 33. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nat
513 Methods* **9**, 357–359 (2012).

514 34. Danecek, P. *et al.* Twelve years of SAMtools and BCFtools. *Gigascience* **10**, giab008
515 (2021).

516 35. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing
517 genomic features. *Bioinformatics* **26**, 841–842 (2010).

518 36. Wilm, A. *et al.* LoFreq: a sequence-quality aware, ultra-sensitive variant caller for
519 uncovering cell-population heterogeneity from high-throughput sequencing datasets.
520 *Nucleic Acids Res* **40**, 11189–11201 (2012).

521 37. Edgar, R. C. MUSCLE: a multiple sequence alignment method with reduced time and
522 space complexity. *BMC Bioinformatics* **5**, 113 (2004).

523 38. Gouy, M., Tannier, E., Comte, N. & Parsons, D. P. Seaview Version 5: A
524 Multiplatform Software for Multiple Sequence Alignment, Molecular Phylogenetic
525 Analyses, and Tree Reconciliation. *Methods Mol Biol* **2231**, 241–260 (2021).

526 39. Guindon, S., Lethiec, F., Dureux, P. & Gascuel, O. PHYML Online--a web server for
527 fast maximum likelihood-based phylogenetic inference. *Nucleic Acids Res* **33**, W557-559
528 (2005).

529 40. Lefort, V., Longueville, J.-E. & Gascuel, O. SMS: Smart Model Selection in PhyML.
530 *Mol Biol Evol* **34**, 2422–2424 (2017).

531 41. Yu, G. Using ggtree to Visualize Data on Tree-Like Structures. *Curr Protoc*
532 *Bioinformatics* **69**, e96 (2020).

533 42. R Core Team. R: A Language and Environment for Statistical Computing. (2019).

534 43. Wickham, H. *ggplot2: elegant graphics for data analysis*. (Springer, 2016).

535 44. Cheng, J., Karambelkar, B. & Xie, Y. leaflet: Create Interactive Web Maps with the
536 JavaScript ‘Leaflet’ Library. (2023).

537 45. Ram, K. & Wickham, H. wesanderson: A Wes Anderson Palette Generator. (2018).

538 46. Wickham, H. *et al.* Welcome to the Tidyverse. *JOSS* **4**, 1686 (2019).

539

540 **Supplementary table 1: Amplicon-based sequencing systems used in this study to**
541 **amplify nuclear genomic regions associated with pyrethroid resistance and a 4,438**
542 **nucleotides region of the mitochondrial genome of *Ae. albopictus* using ligase-based**
543 **tiling amplicon sequencing.** Primers are presented with their gene targets and amplicon
544 sizes. Illumina Nextera® universal tails sequences are represented in green, and the 6 bp
545 barcodes in blue. An adenine or thymine nucleotides were added to separate barcoded tails
546 from primer sequences. These sequences were directly anchored to primer sequences for KDR
547 amplicons and were added by ligation after amplification for the 12 mitochondrial targets
548 (ligase-based tiling amplicon sequencing).

549

Targeted genomic region	Primer names	Forward/Reverse	[Illumina Nextera® universal tails sequences] Tag sequence (5'-3')	Amplon size (bp)
Exon 19-20 like on JAFDOO010000349 chr3	Ae_exon19_20_tag1	Forward	TCGTCGGCAGCGTCAGATGTATAAGAGACAGCATGAC ^A CTGCCACGGTGGAACTTC ^A	59
	Ae_exon19_20_tag2	Forward	TCGTCGGCAGCGTCAGATGTATAAGAGACAGTCAGT ^A CTGCCACGGTGGAACTTC ^A	59
	Ae_exon19_20_tag3	Forward	TCGTCGGCAGCGTCAGATGTATAAGAGACAGACGT ^A CTGCCACGGTGGAACTTC ^A	59
	Ae_exon19_20_tag4	Forward	TCGTCGGCAGCGTCAGATGTATAAGAGACAGTGT ^A CTGCCACGGTGGAACTTC ^A	59
	Ae_exon19_20_tag5	Forward	TCGTCGGCAGCGTCAGATGTATAAGAGACAGTAGT ^A CTGCCACGGTGGAACTTC ^A	59
	Ae_exon19_20_tag6	Forward	TCGTCGGCAGCGTCAGATGTATAAGAGACAGAGCT ^A CTGCCACGGTGGAACTTC ^A	59
	Ae_exon19_20_tag7	Forward	TCGTCGGCAGCGTCAGATGTATAAGAGACAGTCAGT ^A CTGCCACGGTGGAACTTC ^A	59
	Ae_exon19_20_tag8	Forward	TCGTCGGCAGCGTCAGATGTATAAGAGACAGGAT ^A CTGCCACGGTGGAACTTC ^A	59
	Ae_exon19_20_R	Reverse	GTCTCGTGGGCTCGGAGATGTATAAGAGACAGACTATGCTGTGGCCCA	54
Exon 28 like on JAFDOO010000349 chr3	Ae_exon28_tag1	Forward	TCGTCGGCAGCGTCAGATGTATAAGAGACAGCATGAC ^A GGTACCTGTGTCGTTC ^A	60
	Ae_exon28_tag2	Forward	TCGTCGGCAGCGTCAGATGTATAAGAGACAGTCAGT ^A GGTACCTGTGTCGTTC ^A	60
	Ae_exon28_tag3	Forward	TCGTCGGCAGCGTCAGATGTATAAGAGACAGACGT ^A GGTACCTGTGTCGTTC ^A	60
	Ae_exon28_tag4	Forward	TCGTCGGCAGCGTCAGATGTATAAGAGACAGGTA ^A GGTACCTGTGTCGTTC ^A	60
	Ae_exon28_tag5	Forward	TCGTCGGCAGCGTCAGATGTATAAGAGACAGTCAG ^A GGTACCTGTGTCGTTC ^A	60
	Ae_exon28_tag6	Forward	TCGTCGGCAGCGTCAGATGTATAAGAGACAGGCT ^A GGTACCTGTGTCGTTC ^A	60
	Ae_exon28_tag7	Forward	TCGTCGGCAGCGTCAGATGTATAAGAGACAGTCAG ^A GGTACCTGTGTCGTTC ^A	60
	Ae_exon28_tag8	Forward	TCGTCGGCAGCGTCAGATGTATAAGAGACAGATC ^A GGTACCTGTGTCGTTC ^A	60
	Ae_exon28_R	Reverse	GTCTCGTGGGCTCGGAGATGTATAAGAGACAGACTATGCTGTGGCCCA	54
Mitochondrion	Primer pool 1			
	Alb_mito_1_LEFT	Forward	CTAATAGCCCTAAAGCTGAAAAATTATTGT	30
	Alb_mito_1_RIGHT	Reverse	AAGCAGCAGTGTAAAGAGGGG	22
	Alb_mito_3_LEFT	Forward	GCCGGAGCTTAACTATATTAAACAGA	29
	Alb_mito_3_RIGHT	Reverse	TGGGTAACATAATAATGATCGTA	27
	Alb_mito_5_LEFT	Forward	AGAAAGAAATAATTACACACGAACTCT	28
	Alb_mito_5_RIGHT	Reverse	GATGGCCAATAACTTTAAAGTAATTAAAGGAG	33
	Alb_mito_7_LEFT	Forward	AAATITGATGCTACTCCCGAGC	22
	Alb_mito_7_RIGHT	Reverse	TGAAGGGTCAATACAGAAAATAAGTTGT	30
	Alb_mito_9_LEFT	Forward	AAACTCTTTAGGGCCAATGGAC	24
	Alb_mito_9_RIGHT	Reverse	TCACTTGAATAAAAGGTCTTAAACAGCA	30
	Alb_mito_11_LEFT	Forward	AGGATTAGGATGGGAATAATTATTCA	29
	Alb_mito_11_RIGHT	Reverse	TCATCACAAATAATGTCATAACAGCT	28
	Primer pool 2			
	Alb_mito_2_LEFT	Forward	CCCCTTAATACTAGGAGCCCT	22
	Alb_mito_2_RIGHT	Reverse	TCCCTGGCAGAATTAAAATATAACTCTGG	30
	Alb_mito_4_LEFT	Forward	CCCTGCACTTTATGATCTTGTAGAT	26
	Alb_mito_4_RIGHT	Reverse	GGTATGTTCTCAGGAGGTAAGT	24
	Alb_mito_6_LEFT	Forward	TCTAGGACTTCAAAAATAGTACTCTCT	28
	Alb_mito_6_RIGHT	Reverse	CGTCGGGAGTAGCATCAATT	22
	Alb_mito_8_LEFT	Forward	ACTGAAAGCAAGTAATGAACTCTTAATTCA	30
	Alb_mito_8_RIGHT	Reverse	TCCATTATGTCATTGGCCCT	22
	Alb_mito_10_LEFT	Forward	ACCGGGCTTATACAACTCTTAT	24
	Alb_mito_10_RIGHT	Reverse	AATCCCAATAGGAGGTCAAAATTCTCT	28
	Alb_mito_12_LEFT	Forward	AAAGTAATCATCTCAAACTACTCAAGGA	29
	Alb_mito_12_RIGHT	Reverse	TCAAAGGGGAAAGATTTCCTGA	24
Universal adaptors	Universal_upper_tag1	NA	TCGTCGGCAGCGTCAGATGTATAAGAGACAGCATGACT ^A	40
	Universal_upper_tag2	NA	TCGTCGGCAGCGTCAGATGTATAAGAGACAGTCAGT ^A	40
	Universal_upper_tag3	NA	TCGTCGGCAGCGTCAGATGTATAAGAGACAGACGT ^A	40
	Universal_upper_tag4	NA	TCGTCGGCAGCGTCAGATGTATAAGAGACAGTGT ^A	40
	Universal_upper_tag5	NA	TCGTCGGCAGCGTCAGATGTATAAGAGACAGCTAGT ^A	40
	Universal_upper_tag6	NA	TCGTCGGCAGCGTCAGATGTATAAGAGACAGAGCTGA ^A	40
	Universal_upper_tag7	NA	TCGTCGGCAGCGTCAGATGTATAAGAGACAGTCAGT ^A	40
	Universal_upper_tag8	NA	TCGTCGGCAGCGTCAGATGTATAAGAGACAGGATCAG ^A	40
	Universal_lower_tag1	NA	GTCATGCTCTTATACACATCTCGAGCCCACGAGAC	40
	Universal_lower_tag2	NA	ACTGCACTGCTCTTATACACATCTCGAGGCCACGAGAC	40
	Universal_lower_tag3	NA	TGACGTCTGCTCTTATACACATCTCGAGCCCACGAGAC	40
	Universal_lower_tag4	NA	CACTACCTGCTCTTATACACATCTCGAGCCCACGAGAC	40
	Universal_lower_tag5	NA	GACTAGCTGCTCTTATACACATCTCGAGCCCACGAGAC	40
	Universal_lower_tag6	NA	TCAGCTCTGCTCTTATACACATCTCGAGCCCACGAGAC	40
	Universal_lower_tag7	NA	AGTCGACTGCTCTTATACACATCTCGAGCCCACGAGAC	40
	Universal_lower_tag8	NA	CTGATCCTGCTCTTATACACATCTCGAGCCCACGAGAC	40

550

551

552 **Supplementary table 2: List of nonsynonymous mutations revealed by pool DNA**
553 **amplicon sequencing in *Ae. albopictus* on 4 exons (exon19-like, exon20-like, exon27-like**
554 **and exon28-like) from the vssc gene.** Mean sequencing quality (QUAL), sequencing depth
555 (DP) and allele frequencies (AF) across samples are indicated for each mutation, with their
556 nucleotide position on our reference and codon position as referred to *Musca domestica*
557 reference genome.

558

559 **Supplementary table 3: List of nonsynonymous mutations confirmed by single mosquito**
560 **DNA amplicon sequencing on 4 exons from the vssc gene.** Sequencing quality (QUAL),
561 sequencing depth (DP) allele frequencies/genotypes (AF, homozygous or heterozygous), and
562 geographic coordinates are represented for each sample with their nucleotide position on our
563 reference and codon position as referred to *Musca domestica* reference genome.

564

565 **Supplementary file 1: Interactive map of V1016G/I mutations detected by pool DNA**
566 **amplicon sequencing.** The map was created with the R leaflet package.

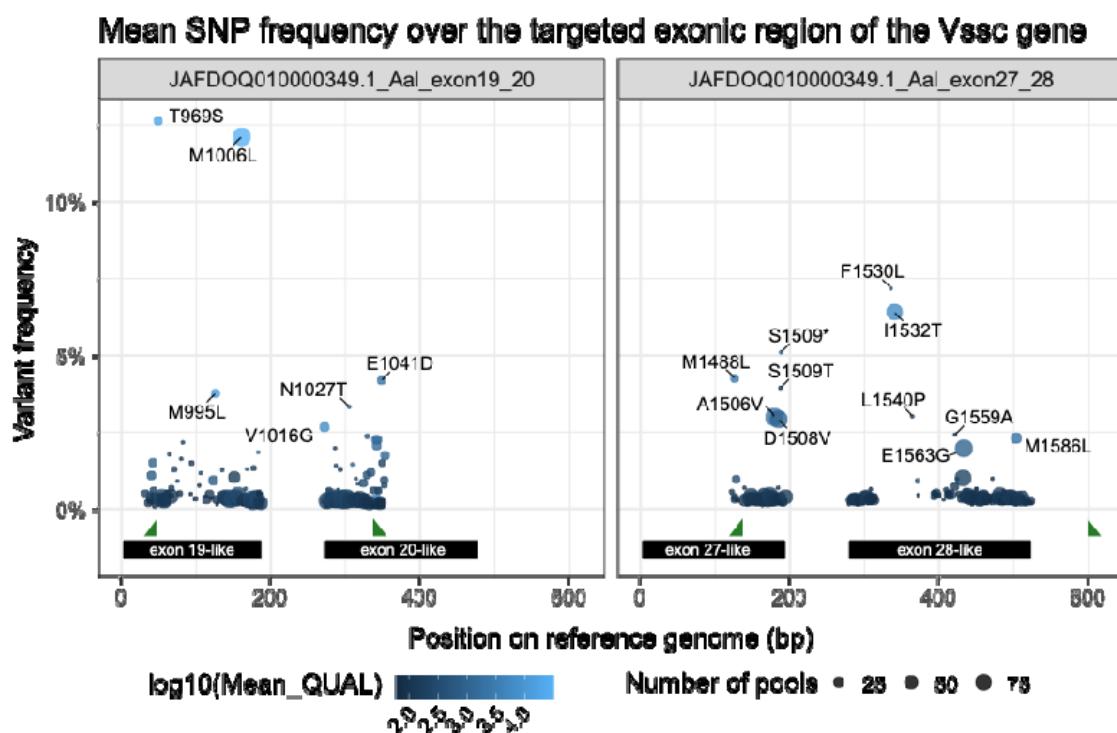
567

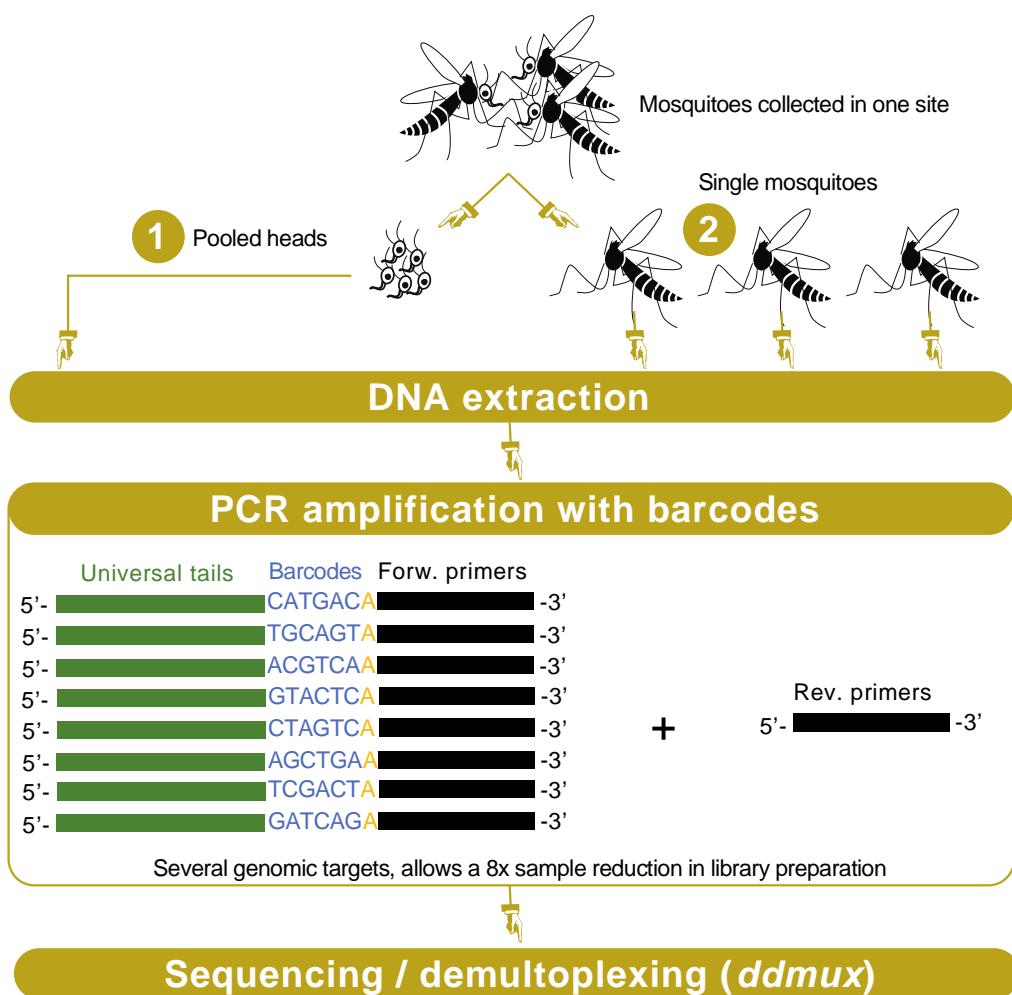
568 **Supplementary file 2: Bioinformatic pipeline used in data processing and variant calling.**

569

570 **Supplementary file 3: R pipeline used in data visualization.**

571




572

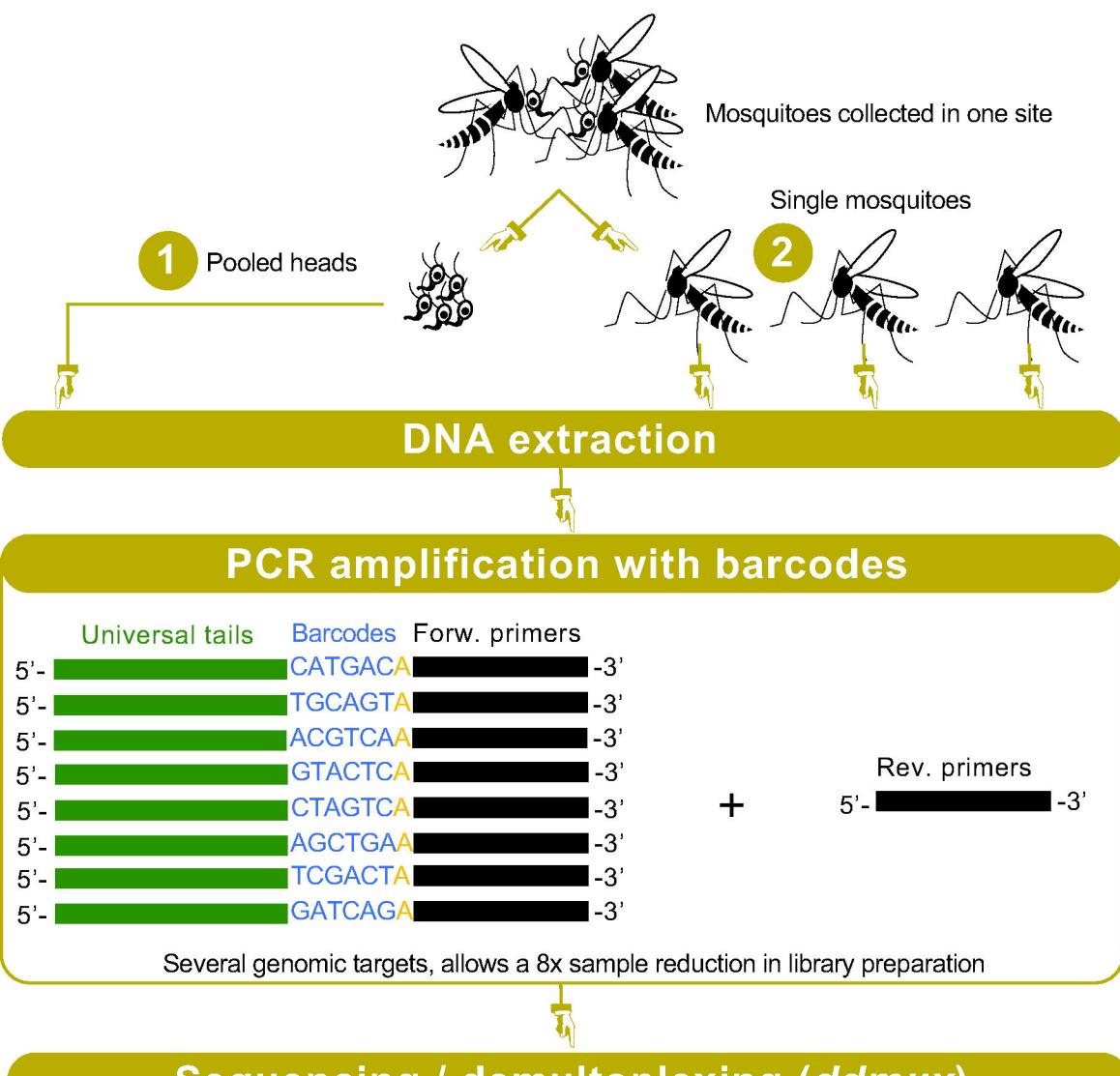
573 **Supplementary figure 1: Genetic variant frequencies on two amplified sections of the**
574 **Vssc gene.** Genetic variants are represented with a point colored based on the sequencing
575 quality on a log 10 scale. Exons and primers are represented with black rectangles and green
576 triangles, respectively.

577

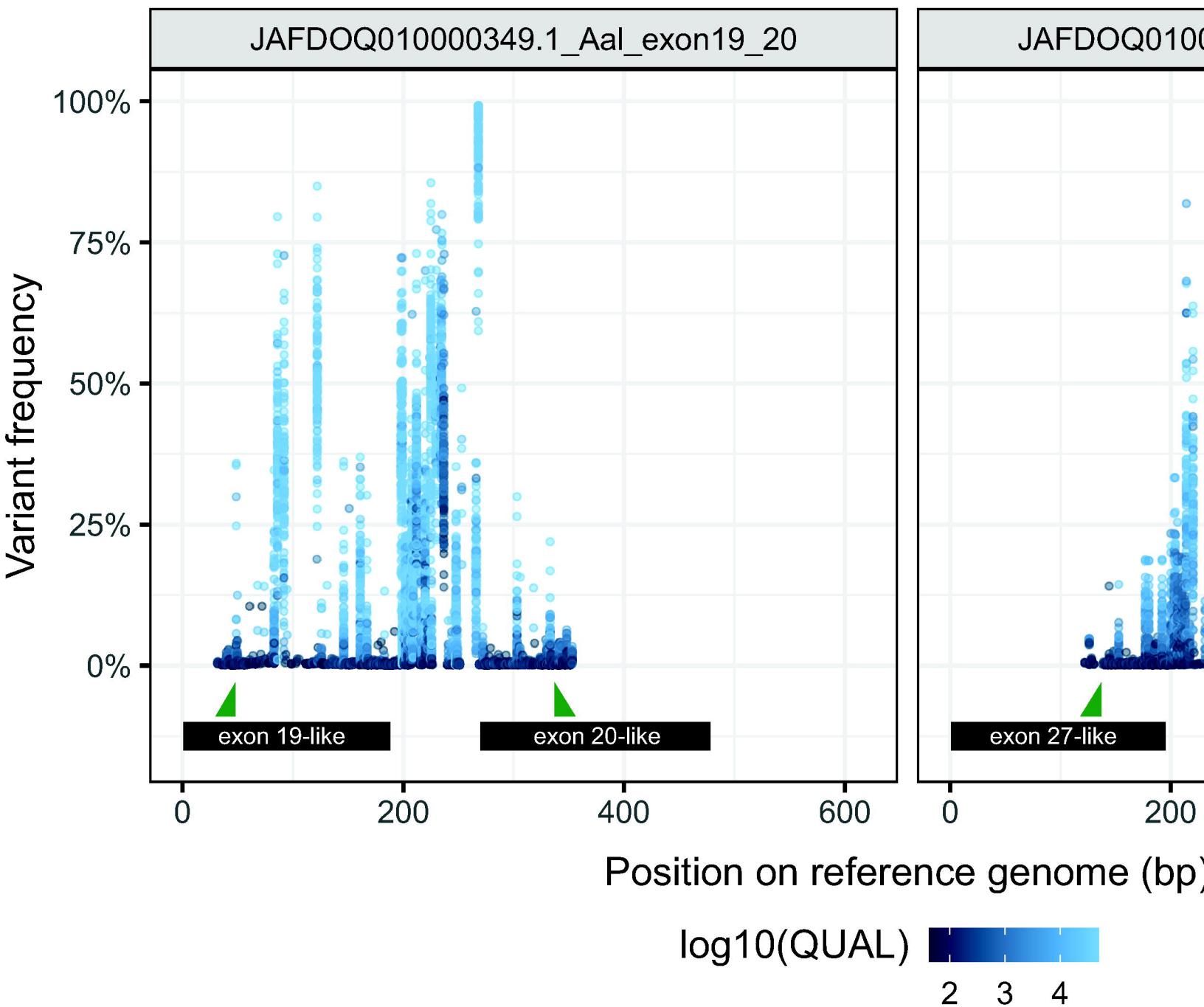
578

588

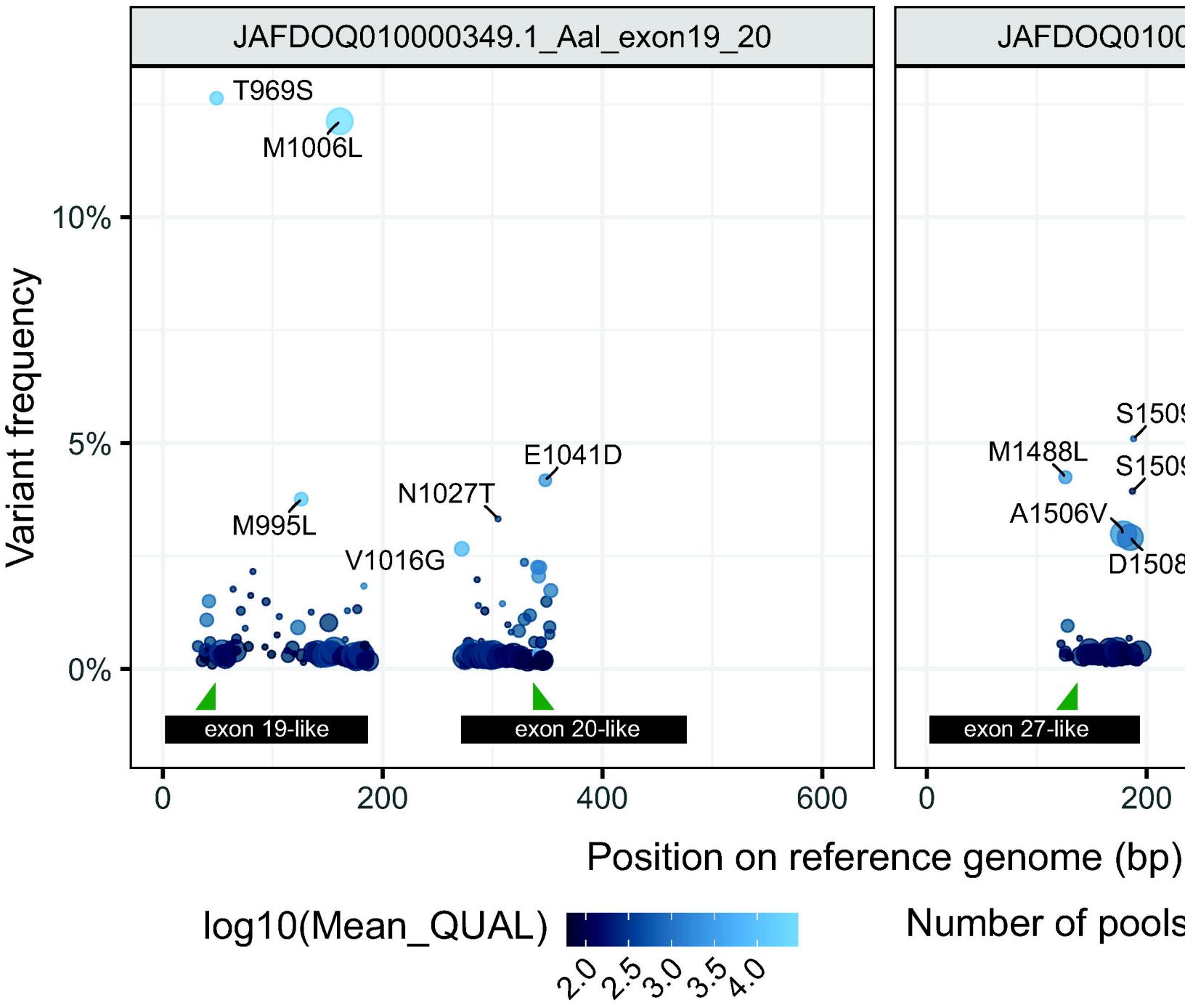
589 **Supplementary figure 3: Schematic representation of the multiplexed amplicon-based**
590 **design.** The design allows 8-x sample reduction with 96 samples from one plate being
591 grouped into 12 different tubes, or one plate row, based on eight 6 bp tags integrated in the 5'
592 end of each amplicon.

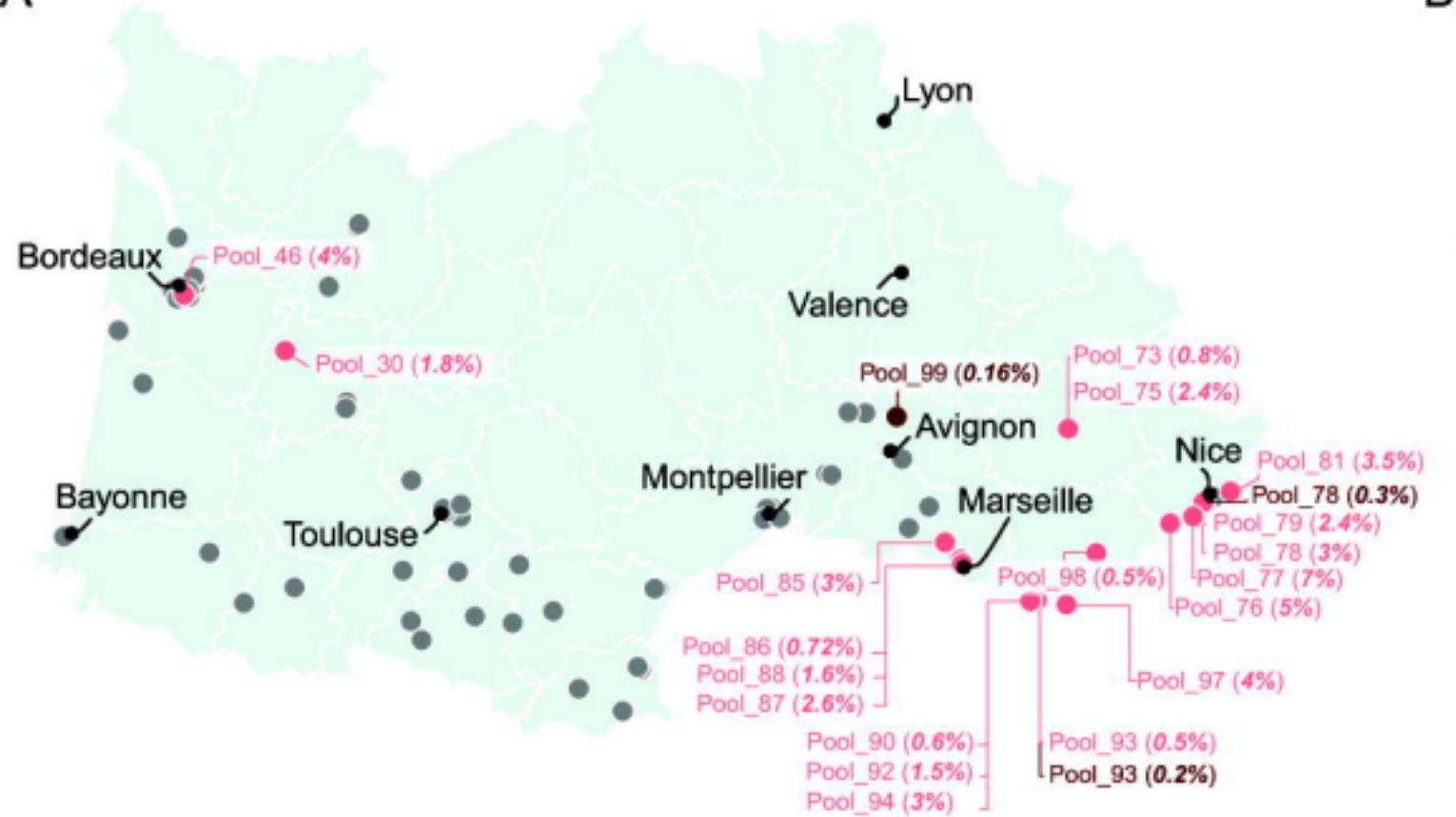

593

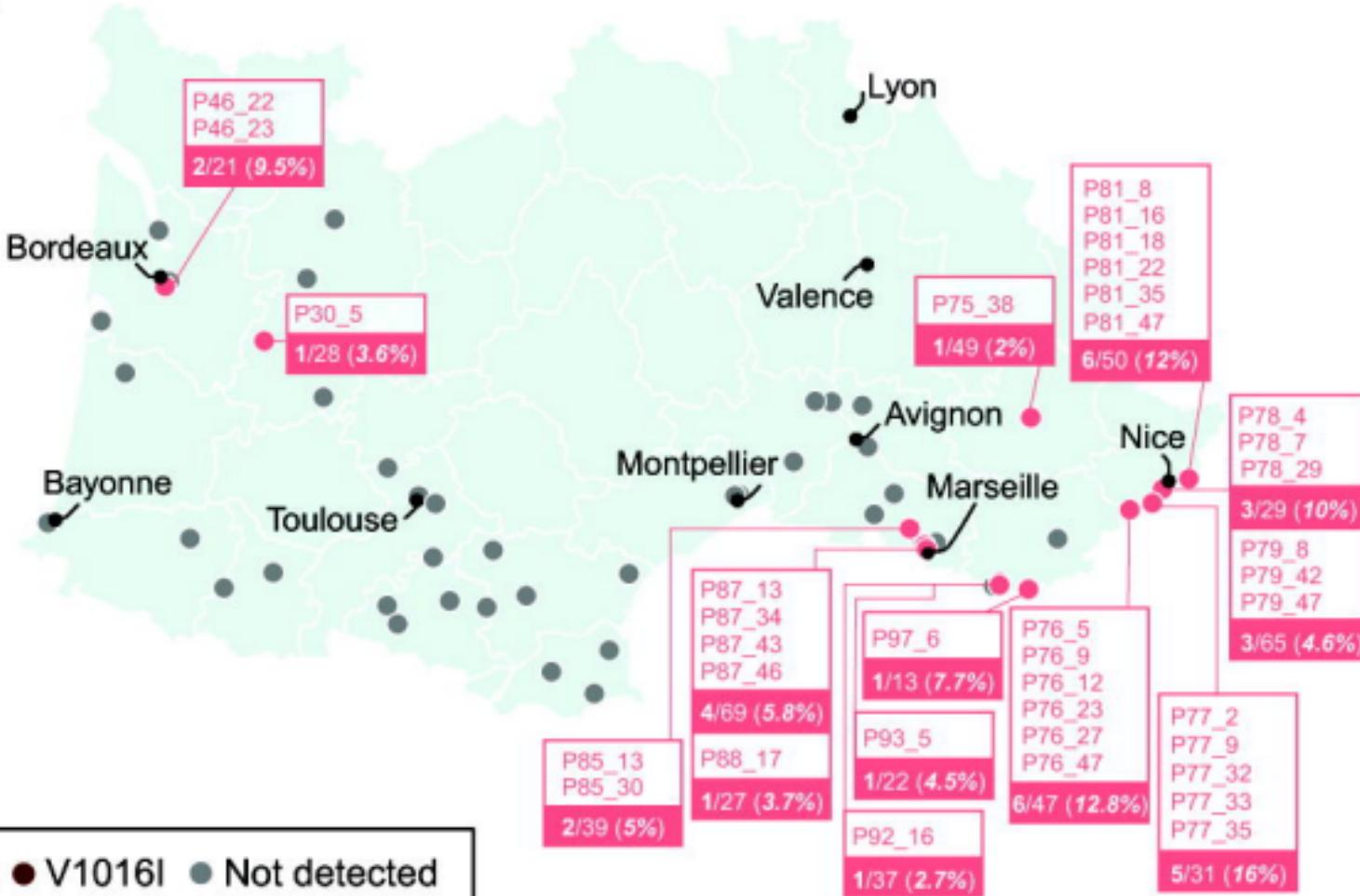
594

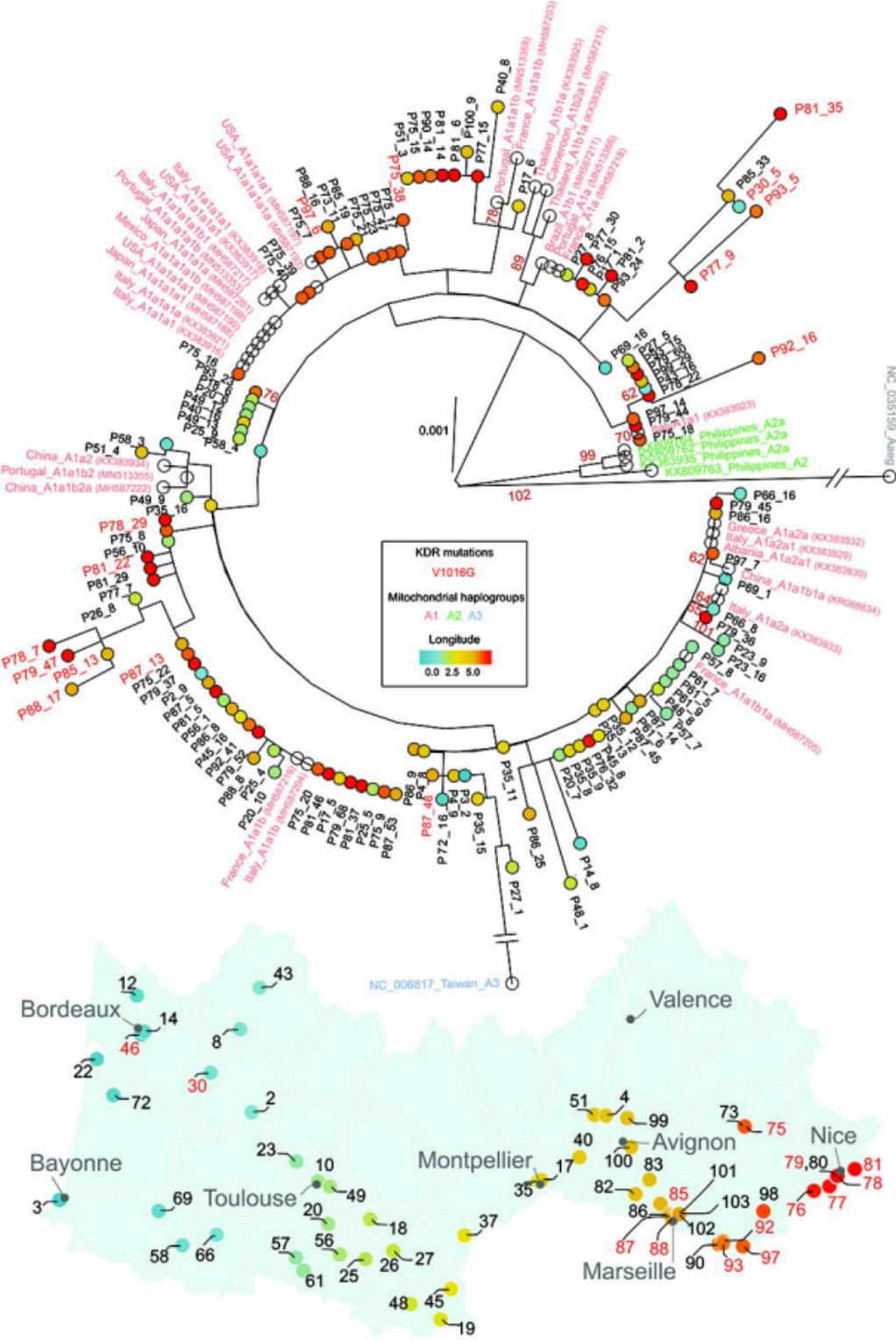

595

596


597


SNP frequency over the targeted Vssc gene section


Mean SNP frequency over the targeted exonic region



A

B

