

1 Low prevalence of HLA-G antibodies in lung transplant patients detected by MAIPA adapted
2 protocol

3 Pascal Pedini^{1,2}, Lucas Hubert¹, Federico Carlini³, Jean Baptiste Baudey¹, Audrey Tous², Francois
4 Jordier², Agnès Basire¹, Claude Bagnis², Martine Reynaud-Gaubert⁴, Benjamin Coiffard⁴, Jacques
5 Chiaroni², Monique Silvy², Christophe Picard^{1,2}

6 1. Immunogenetics Laboratory, Etablissement Français du Sang, Marseille, France
7 2. ADES UMR 7268, Aix Marseille Univ, Marseille, France
8 3. IRCCS Ospedale Policlinico San Martino, Genova, Italy
9 4. Aix-Marseille University, Lung Transplant Department, APHM, Marseille, France

10

11 **Corresponding author:**

12 P. Pedini, UMR 7268 ADÉS Aix-Marseille Université /EFS /CNRS, Marseille, France, Faculté de
13 Médecine Timone, 27 Bd Jean Moulin 13005 Marseille, France. Tel: +33 4 91 18 93 62, Fax: +33 4 91
14 32 44 95. E-mail: pascal.pedini@efs.sante.fr

15 **Running Title:** HLA-G antibodies in lung transplantation patients.

16

17 **ABBREVIATIONS:** Human Leucocyte Antigen (HLA), Lung Transplantation (LTx), Lung
18 Transplantation recipient (LTR), Antibodies (Abs), Antigen (Ag), Donor Specific Antibodies (DSA),
19 Bronchiolitis Obliterans Syndrome (BOS), Days (D), Month (M), Mean Fluorescence Intensity (MFI),
20 optical density (OD)

21

22 **Ethic statement :** This study was carried out in accordance with the French Public Health Code (art
23 L1221-1), approved by institutional ethics committee and conducted in compliance with the Good
24 Clinical Practice Guidelines, declaration of Helsinki and Istanbul. All Lung Transplant Recipients from
25 the French cohort (COLT, Cohort in Lung Transplantation, l'Institut du Thorax,
26 INSERMUMR1087/CNRS UMR 6291, CNIL 911142

27 Abstract:

28

29 Lung transplantation is often complicated by acute and/or chronic rejection leading to graft function
30 loss. In addition to the HLA donor-specific antibodies (HLA-DSA), a few autoantibodies are correlated
31 with the occurrence of these complications. Recently, antibodies directed against non-classical HLA
32 molecules, HLA-G, -E, and -F have been detected in autoimmune diseases, like systemic lupus
33 erythematosus. Non-classical HLA molecules are crucial in the immunological acceptance of the lung
34 graft, and some of their isoforms, like HLA-G*01:04 and -G*01:06, are associated with a negative
35 clinical outcome. The aim of this study is to determine the frequency of detection of HLA-G antibodies
36 in lung transplant recipients (LTRs) and their impact on the occurrence of clinical complications. After
37 incubating the cell lines SPI-801, with and without 3 different HLA-G isoforms expression, with sera
38 from 90 healthy blood donors and 35 LTRs (before and after transplantation), HLA-G reactivity was
39 revealed by using reagents from commercial monoclonal antibody immobilization of platelet antigen
40 assay (MAIPA ApDIA®). Only one serum from one blood donor had specific reactivity against the
41 HLA-G transduced lines. Non-specific reactivity in many sera from LTRs was observed with transduced
42 and wild type cell lines, which may suggest recognition of an autoantigen expressed by the SPI-801 cell
43 line. In conclusion, this study allowed the development of a specific detection tool for non-denatured
44 HLA-G antibodies. These antibodies seem uncommon, both in healthy subjects and in complicated
45 LTRs. This study should be extended to patients suffering from autoimmune diseases as well as kidney
46 and heart transplant recipients.

47

48 **Keywords:** HLA-G, antibodies, lung transplantation, MAIPA

49

50

51

52

53 INTRODUCTION

54 Lung transplantation (LT) is a therapeutic option for chronic, irreversible respiratory failure. Survival
55 after LT has steadily increased over time, but the incidence of mild and long-term morbidity and lung
56 dysfunction remains very high due to acute or chronic rejection (1). These clinical complications may
57 be linked to immune dysregulation implying humoral and cellular autoimmunity and/or alloimmunity.
58 Recent works have suggested that autoimmune reactivity is a key element in the occurrence of chronic
59 graft rejection (2–4). Antibodies directed against Tubulin K-1, a membrane protein expressed by
60 bronchial epithelial cells, and against collagen type V, an extracellular matrix protein normally
61 sequestered in bronchial tissue, are strongly correlated with the occurrence of bronchiolitis obliterans
62 syndrome (BOS) after LT (5). This production of autoantibodies may be secondary to the exposure of
63 cryptic antigens of the self following tissue remodeling after LT, to the expression of neo-antigens in an
64 inflammatory context, or to the stimulation of cross-reaction by antigenic mimicry between pathogens
65 and self-antigens (6). More recently, it has been shown that the release of graft exosomes in an
66 inflammatory context increases the risk of autoimmunity (7).

67 The HLA-G molecule has been suggested as a prognostic biomarker of LT outcome by two independent
68 studies (8,9). HLA-G has both humoral and cellular anti-inflammatory immunosuppressive properties,
69 in particular by inhibiting NK and cytotoxic T lymphocyte (CTL)-mediated activity as well as B cell
70 activation via their inhibitory receptor (ILT-2, -4, and KIR2DL4) (10). This non-classical HLA class I
71 molecule also acts indirectly on immune control as HLA-E preferentially loads its signal peptide (11,12).
72 HLA-G anti-inflammatory potential is supported by its increased expression through anti-inflammatory
73 cytokines, as IL-10, in a positive feedback mechanism, by its increased expression in autoimmune
74 diseases, and by its involvement in promoting viral or parasitic infections escape (10).

75 Interestingly, HLA-G is expressed at bronchial cells membranes after interferon- β stimulation (13).
76 Moreover, membrane-bound HLA-G expression in lung biopsies and sHLA-G expression in bronchial
77 alveolar fluid, but not in serum, were higher in clinically stable lung transplant recipients (LTRs) than
78 in those developing acute rejection (8,13,14).

79 One hundred and seventeen HLA-G alleles are currently identified, and five protein isoforms (HLA-
80 G*01:01, *01:03, *01:04, *01:05N, 01:06) are found with a frequency > 5% in all populations (15,16).
81 Our team and others have shown that these alleles are associated with differential sHLA-G levels
82 (15,17,18).

83 HLA-G alleles have also been associated with clinical outcomes: the HLA-G*01:06~UTR2 haplotype
84 has been correlated with the pejorative evolution of cystic fibrosis, and the HLA-G*01:04~UTR3
85 haplotype with an increase of chronic rejection, production of HLA antibodies, and a decrease in patient
86 survival (9).

87 Despite its low diversity and because of its epithelial expression, HLA-G may elicit immunization
88 mechanisms like those observed for other HLA class I molecules.

89 Anti-HLA-G antibodies were recently detected in patients with systemic lupus erythematosus (SLE) in
90 a study conducted on 69 German and 29 Mexican SLE patients and 17 German healthy individuals
91 (19,20). Multiplex Luminex®-based flow cytometry was used to screen sera for antibodies directed
92 against non-classical HLA (HLA-G, -E, and -F) and β 2m. Interestingly, anti-HLA-G IgG antibodies
93 were detected in 30% of healthy subjects (6/17) and were more frequent than those directed against
94 HLA-E and HLA-F. In addition, anti-HLA-G antibody levels were stable in 5 subjects over 6 months.

95 Our hypothesis is that HLA-G antibodies produced following LT may interfere with the HLA-G
96 receptors and disinhibit the cellular response directed against the lung graft. Such a mechanism would
97 participate in a persistent inflammatory response and eventually lead to respiratory failure.

98 The main goals of this study are 1) to detect HLA-G antibodies expressed in serum using an
99 adapted MAIPA ApDia® kit and 2) to evaluate their impact on the occurrence of clinical
100 complications in 35 LTRs.

101

102 MATERIALS AND METHODS

103 Samples

104 Two hundred and thirty-four samples were analyzed from healthy donors (N=90) and LTx patients
105 (N=35). Sera from blood donors were collected after the medical interview and before blood donation.
106 Sera from LTRs were collected serially before transplantation and then at 15 days (D15), 1 month (M1),
107 3 months (M3), and 12 months (M12) after transplantation. All LTRs were genotyped for classical HLA
108 (HLA-A, -B, -C, -DRB1, -DQB1, and -DPB1) by NGS Omixon protocol (Omixon Biocomputing Ltd,
109 Hungary) and for HLA-G by NG-MIX (EFS, Saint-Denis, France).
110 Blood donations were collected in the “Etablissement Francais du Sang”, in accordance with BSL-2
111 practices. A medical interview was carried out prior to blood donation to exclude donors with medical
112 contraindications. This study was carried out in accordance with the French Public Health Code (art
113 L1221-1), approved by institutional ethics committee and conducted in compliance with the Good
114 Clinical Practice Guidelines, declaration of Helsinki and Istanbul. All Lung Transplant Recipients from
115 the French cohort (COLT, Cohort in Lung Transplantation, l’Institut du Thorax,
116 INSERMUMR1087/CNRS UMR 6291, CNIL 911142) were recruited in this study and gave their
117 written informed consent to participate to the study in accordance with the Declaration of Helsinki.
118 These are patients sampled between 2009 and 2014, with clinical data collected in 2017.

119

120

121 **HLA-G and HLA-G K562 cell line transduction and expression assessment**

122 In order to cover 81% of HLA-G haplotypes (16), cDNA coding for HLA-G*01:01
123 (IMGT/HLA00939), -G*01:04 (IMGT/HLA00949), -G*01:06 (IMGT/HLA01357) were
124 obtained from Life Technologies (France) and cloned into the pWPXL lentiviral vector. The vector
125 pWPXL-EGFP was carried out as a control. Lentiviral particles were generated using HEK 293T cells
126 at 80% confluence (DSMZ, Brunswick) co-transfected with each lentiviral vector pWPXL, the vesicular
127 stomatitis virus-G-encoding plasmid pMDG and the packaging plasmid pCMVΔR8.91 (21).
128 Lentiviral particles were collected from day 2 (D2) to 4 (D4) and concentrated in 10% polyethylene
129 glycol. SPI-801 cells (5.104) derived from K562 cells (DSMZ ACC-86, Brunswick, Germany) were

130 transduced using each lentiviral particle. The same protocol was used to obtain cells expressing HLA-
131 E*01:01 (IMGT/HLA00934) and HLA-E*01 :03 (IMGT/HLA00936).
132 Non-infected (WT) and transduced SPI-801 cells were screened for HLA-G and HLA-E expression by
133 western blot and flow cytometry (Supplementary Figure 1). Western blot was performed with 4H84
134 antibody (HLA-G, R&D system #MABF2169). Flow cytometry was performed using a Myltenyi VYB
135 cytometer with MEM-G/9 antibody (anti-HLA-G antibody ; Thermo Fisher #MA1-19014), 3D12 (anti-
136 HLA-E antibody ; Thermo Fisher # 4-9953-82) or the isotype-matched control Ab (Supplementary
137 Figure 2).

138

139 **HLA-G antibodies detection**

140 HLA-G antibodies were screened using an adapted MAIPA protocol in accordance with the MAIPA
141 ApDIA® kit. This kit allows the detection and identification of anti-platelet glycoprotein autoantibodies
142 or anti-HPA (human platelet antigen) alloantibodies in serum using a platelet panel and platelet
143 glycoprotein antigen immobilized by a monoclonal antibody. For the purpose of the present study, all
144 MAIPA ApDIA® kit reagents were used, except for the platelet panel and platelet glycoprotein antigen,
145 which were replaced by HLA-G transduced cell lines and WT.

146

147 Briefly, the adapted assay (Figure 1A) consisted of two consecutive incubations: sera with HLA-G
148 transduced cell line and then with MEM-G/9 monoclonal antibody. Cells were lysed and solubilized
149 complexes were immobilized on a plate coated with anti-mouse antibody. Complexes were revealed by
150 immunoassay colorimetry.

151

152 Serum HLA-G antibodies were detected with a pool of the three HLA-G transduced and WT cells and
153 identified with each HLA-G transduced cell and WT cell. Negative control (Contr Neg), positive control
154 (Contr HLA), both supplied with the MAIPA ApDIA® kit, and two blank controls were included in
155 each assay (Figure 1B).

156

157 Detection and identification protocol consisted of incubation (30 ± 5 minutes at 36 ± 1 °C) of transduced
158 or WT cells ($N=1 \times 10^6$) washed and adjusted in each well in PBS / 1% BSA / 0.33% EDTA with
159 positive control (Contr HLA) or negative control (Contr Neg), (50 μ L dilution 1/1000) or with serum
160 (50 μ L dilution 1/5). Microplates were centrifuged (1000g, 3 minutes) and each well was washed three
161 times (ELISA Wash Buffer). MEM-G/9 monoclonal antibody was added (50 μ g) and incubated for 30
162 ± 5 minutes at 36 ± 1 °C.

163

164 Cells were washed as described above and lysed (Platelet Lysis Buffer containing Triton, 130 μ L, 15
165 minutes at 2 - 8 °C). Cell lysis supernatant (100 μ L) containing the solubilized captured-complex (MEM-
166 G9 / HLA-G / sera or control anti-HLA-G) were centrifuged and were incubated in Goat anti-Mouse
167 IgG coated microplate (30 ± 5 minutes at 36 ± 1 °C). Plates were washed as described above, and
168 immobilized complexes were revealed by peroxidase reaction (substrate solution Chrom, 15 minutes at
169 36 ± 1 °C in the dark). The reaction was stopped (Stop Solution, 100 μ L) and read by optical density
170 (OD) using a spectrophotometer (450 nm with reference filter 650 nm).

171

172 The assay was validated when OD values were below 0.1 for the negative control (Contr Neg) and above
173 2 for the positive control (Contr HLA). The cut-off OD value was set at 0.15 (Contr Neg mean OD
174 values adjusted with blank plus 3xStandard Deviation). OD values above the cut-off were considered
175 positive. The signal-to-noise (S/N) ratio was calculated by dividing the OD value of HLA-G or HLA-E
176 wells by that of WT cells. Serum was considered positive for HLA-G antibodies presence when the S/N
177 ratio was >1.5 .

178

179 Screening assays were performed for each serum. Identification was performed for sera with HLA-G
180 screening pool OD values > 0.150 and S/N ratio > 1.5 .

181

182 **RESULTS:**

183 **Population characteristics:**

184 Ninety sera were collected from healthy blood donors (median age = 40 years [18–65]; sex ratio = 0.54)
185 with no history of transfusions, organ transplantation, or recent infections. Thirty out of 41 women
186 (73%) had at least one pregnancy.

187 All lung transplant recipients (median age: 40 years [19-66]; sex ratio = 0.51) underwent LTx at the
188 Marseille Lung Transplant Center. They received a first LT (8 single LTx; 26 bilateral LTx) for cystic
189 fibrosis (49%), emphysema (20%), pulmonary fibrosis (26%), or another diagnosis (5%). One hundred
190 and forty-four sera were collected from 35 lung transplant recipients before and after transplant (at day
191 0 (D0) N=30, at day 15 (D15) N=25, at one month (M1) N=28, at three months (M3) N=32, and at
192 twelve months (M12) N=29). Seven LTRs had acute rejection, and 7 developed chronic rejection in the
193 first year. Seventeen produced Donor Specific Antibody (DSA) after LTx. One recipient had an acute
194 rejection associated with DSA detection. Population characteristics are summarized in Table 1.

195 **HLA-G cell lines transduction:**

196 The specific expression of the HLA-G isoform for each transduced cell line was assessed by western
197 blot using 4H84 antibody and by flow cytometry using MEM/G9 antibody (Figure 2). Flow cytometry
198 showed specific HLA-G membrane expression in HLA-G transduced cells, and no signal was detected
199 with the MEM/G9 in transduced WT cells.

200 **HLA-G antibody detection in healthy donors:**

201 Sera from 90 healthy donors were tested (Table 2). The screening pool ODs mean was 0.07 +/- 0.012
202 for donors, with no statistical difference between men and women (0.071 +/- 0.021 vs. 0.074 +/- 0.023;
203 p = 0.45). The reactivity of the sera against the WT cell line was on average 0.066 +/- 0.02,
204 corresponding to an OD ratio mean between the HLA-G pool screening and the WT cell line of 1.02.
205 One serum was positive for HLA-G antibody detection: a 22-year-old woman with A+ blood group. A
206 30-year-old man, with A+ blood group, displayed a pool reactivity OD > 150 with a ratio close to 1
207 between the pool and the WT cell line (Table 2).

208 **HLA-G antibody detection in Lung Transplantation Recipients:**

209 The pre-transplant sera (D0) and the post-transplant sera (from D15 to M12) from 35 LTRs were
210 analyzed (Table 3). One LTR serum (ID=9) displayed positive results from the screening test at D15
211 and M1. However, these results could not be replicated for the two sera in the screening test, and no
212 positive result could be obtained in the identification assay. HLA-G antibody detection was negative for
213 all LTR sera.

214 Sera from 11 LTRs had reactivity with an OD>150 for the HLA-G transduced lines pool, but with a
215 ratio close to 1 between the HLA-G transduced and wild cell lines, signifying the detection of antibodies
216 against an unidentified cell antigen expressed by the SPI-6 cell line. These cases were reproducible,
217 either in the screening assay, identification assay, or both. This non-specific reactivity was detected in
218 7 sera before transplantation, in 1 serum at D15 after transplantation, in 5 sera at M1, and in 2 sera at
219 M3. This non-specific reactivity was reproducible at different times in 3 LTRs (ID=23 at D0 and M1;
220 ID=25 at M1 and M3; ID=9 at D15 and M1). This latter patient was transplanted for emphysema and
221 produced DSA before LT, which persisted until M3 with a Mean Fluorescence Intensity (MFI) varying
222 from 13,000 to 7,000. Patient ID=23 was transplanted for bronchial dysplasia. No humoral event was
223 detected until M12. Patient ID=25 was transplanted for pulmonary fibrosis and produced DQ7 DSA
224 with a stable MFI at 7,000 from D15 to M12. None of these 3 patients displayed acute rejection in the
225 first year. Patient ID=23 reported chronic rejection. The blood groups of the three patients were different
226 (data not shown). The data are summarized in Table 3 and in Supplementary table.

227

228 **DISCUSSION**

229 Detection of HLA-G antibodies is poorly studied, although they may interfere with the immune
230 regulation mechanisms that occur during and after organ transplant. In this study, we aimed to validate
231 a protocol for detecting HLA-G antibodies in serum and to explore their impact on LTx outcomes. We
232 used an adaptation assay from the MAIPA ApDIA® kit to analyze 234 sera from healthy donors and
233 lung transplantation recipients. Surprisingly, the HLA control from MAIPA ApDIA ® kit was HLA-G
234 reactive. This control is produced from plasma of HLA hyperimmunized donors, which origin is

235 unknown. Interestingly, it is not reactive for HLA-E (data not shown), suggesting a HLA-G
236 specificdetection. However, a cross-reactivity with epitopes from classical HLA should not be excluded.

237 Only 1 out of 234 sera was found to be reactive against all HLA-G molecules isoforms, suggesting the
238 presence of HLA-G autoantibodies rather than alloantibodies. HLA-G antibodies were detected in one
239 healthy donor, a 22-year-old woman (A+ blood group), without any risk factors for HLA
240 alloimmunization, notably pregnancy. However, HLA-G antibodies were not detected in the 30 female
241 healthy donors who had at least one pregnancy. Like classical HLA class I antibodies, HLA-G antibodies
242 may gradually disappear only one month after delivery in first pregnancy and increase with the number
243 of pregnancies. However, considering the crucial role of HLA-G in pregnancy success, HLA-G antibody
244 may be more frequent in women who underwent pregnancy complications such as pre-eclampsia or
245 unexplained fetal loss in the second and third trimester. Sera collected from pregnant women at the onset
246 of complications and away from childbirth should be tested.

247 Thus, we could not confirm previous results, from Jucaud et al., that detected HLA-G antibodies in 6
248 out of 17 healthy subjects using Luminex method (19). Of note, our cohort size was greater. The adapted
249 MAIPA assay used in the present study may be less sensitive than Luminex. However, classical HLA
250 class I alloantibodies detection from platelet lysis by the MAIPA technique (ApDIA®) is as sensitive as
251 the Luminex technique (data not shown). HLA-G antibody calibrated standard would allow sensitivity
252 comparison.

253 Luminex is a very sensitive assay for HLA antibodies detection, as illustrated by HLA antibodies
254 identification in non-alloimmunized healthy males (22). HLA cryptic epitopes may be exposed
255 following antigens denaturation by β 2m loss during the experiment process (23), as reported for HLA
256 (24). The main assumption concerning the detection of these HLA antibodies without an immunizing
257 phenomenon is a cross-reactivity with epitopes other molecules as bacterial or animal proteins or with
258 non-classical HLA molecules (25).

259 Conversely, the adapted MAIPA assay detects the complete form of HLA-G associated with $\beta 2m$.
260 However, the lack of reactivity in our adapted MAIPA assay could be due to binding competition
261 between the MEM-G/9 antibody and those present in the sera.

262 No HLA-G antibody was detected in sera collected at different times before and after transplantation
263 from 35 LTRs, strongly suggesting that anti-HLA-G antibodies are not involved in the occurrence of
264 lung transplant complications. Our hypothesis was to detect more HLA-G autoantibodies than HLA-G
265 alloantibodies, although DSA detection was frequent in LTRs. Indeed, the occurrence of anti-HLA-G
266 antibodies could be secondary to the increase in expression of HLA-G by the lung graft during an
267 inflammatory syndrome. In our LTR cohort, only three patients had HLA-G phenotyping corresponding
268 to low HLA-G expression. The UTR2, UTR5, and UTR7 haplotypes are associated with a decrease in
269 cellular and soluble HLA-G expression (18). This weak expression can limit the production of anti-
270 HLA-G antibodies directed against the graft. Similarly, only six donors had the haplotype of poor
271 prognosis for the occurrence of chronic rejection. Furthermore, the HLA-G variability is low, and HLA-
272 G antibodies have been detected in autoimmune diseases. However, in the latter cases, it cannot be
273 completely excluded that this detection may rely on cross-reactivity with some epitopes expressed on
274 HLA-E molecules or another non-classical and classical HLA. Finally, since data on the donor HLA-G
275 status were missing, the confirmation of the alloimmunization process could also not have been
276 considered.

277 Twelve LTRs (and one healthy donor) had non-specific reactivity against the non-transduced HLA-G
278 cell lines following the MEM-G9 immunocapture. These results were accurate for three patients. One
279 possibility is that the MEM-G9 monoclonal antibody can cross-reactivate with epitopes carried by
280 classical HLA. However, this detection was not correlated with DSA detection, and the selected line
281 did not express any HLA molecule. Whatever the reason for this increase in non-specific reactivity, the
282 non-transfected line control is necessary.

283 Notwithstanding the limits of the adapted MAIPA assay, our results supported that the production of
284 antibodies against the various non-denatured isoforms of HLA-G is rare in non-exposed individuals

285 (healthy donors) and in alloimmunized patients (LTRs). Such results need to be confirmed by immuno-
286 capture performed with other HLA-G monoclonal antibodies and with other multicentric cohorts.

287

288

289 **AUTHOR CONTRIBUTIONS**

290 PP, LH supervised the study. JBB, AT performed the technical analyses. FJ, CB and AB participated in
291 the technical expertise. FC, JC, MS and CP assisted in the interpretation of the results. M-RG and BC
292 collected the clinical data from the patients. All authors contributed to the article and approved the
293 submitted version.

294 **ACKNOWLEDGEMENTS**

295 We thank Yasmina Denhadji and Ludovic Choucha, two technicians of Platelet Immunology department
296 from EFS PACC, for their assistance and Dr Claude Bagnis for assisting in the construction of HLA-G
297 cell lines.

298 **CONFLICTS OF INTEREST**

299 The authors declare that the research was conducted in the absence of any commercial or financial
300 relationships that could be construed as a potential conflict of interest.

301 References :

- 302 1. Tabarelli W, Bonatti H, Tabarelli D, Eller M, Müller L, Ruttman E, et al. Long term complications
303 following 54 consecutive lung transplants. *J Thorac Dis.* 2016 Jun;8(6):1234–44.
- 304 2. Moreau A, Varey E, Anegon I, Cuturi MC. Effector Mechanisms of Rejection. *Cold Spring Harb
305 Perspect Med.* 2013 Nov 1;3(11):a015461–a015461.
- 306 3. Banan B, Xu Z, Gunasekaran M, Mohanakumar T. Role of alloimmunity and autoimmunity in
307 allograft rejection. *Clin Transpl.* 2013;325–32.
- 308 4. Bharat A, Saini D, Steward N, Hachem R, Trulock EP, Patterson GA, et al. Antibodies to Self-
309 Antigens Predispose to Primary Lung Allograft Dysfunction and Chronic Rejection. *Ann Thorac
310 Surg.* 2010 Oct;90(4):1094–101.
- 311 5. Rao U, Sharma M, Mohanakumar T, Ahn C, Gao A, Kaza V. Prevalence of antibodies to lung self-
312 antigens (K α 1 tubulin and collagen V) and donor specific antibodies to HLA in lung transplant
313 recipients and implications for lung transplant outcomes: Single center experience. *Transpl
314 Immunol.* 2019 Jun;54:65–72.

315 6. Dragun D, Catar R, Philippe A. Non-HLA antibodies in solid organ transplantation: recent
316 concepts and clinical relevance. *Curr Opin Organ Transplant.* 2013 Aug;18(4):430–5.

317 7. Ravichandran R, Bansal S, Rahman M, Sharma M, Liu W, Bharat A, et al. The role of donor-
318 derived exosomes in lung allograft rejection. *Hum Immunol.* 2019 Aug;80(8):588–94.

319 8. Brugiére O, Thabut G, Krawice-Radanne I, Rizzo R, Dauriat G, Danel C, et al. Role of HLA-G as a
320 Predictive Marker of Low Risk of Chronic Rejection in Lung Transplant Recipients: A Clinical
321 Prospective Study. *Am J Transplant.* 2015 Feb;15(2):461–71.

322 9. Di Cristofaro J, Reynaud-Gaubert M, Carlini F, Roubertoux P, Loundou A, Basire A, et al. HLA-
323 G*01:04~UTR3 Recipient Correlates With Lower Survival and Higher Frequency of Chronic
324 Rejection After Lung Transplantation: HLA-G and LTx Outcome. *Am J Transplant.* 2015
325 Sep;15(9):2413–20.

326 10. Rizzo R, Bortolotti D, Bolzani S, Fainardi E. HLA-G Molecules in Autoimmune Diseases and
327 Infections. *Front Immunol [Internet].* 2014 Nov 18 [cited 2023 Apr 4];5. Available from:
328 <http://journal.frontiersin.org/article/10.3389/fimmu.2014.00592/abstract>

329 11. Morandi F, Pistoia V. Interactions between HLA-G and HLA-E in Physiological and Pathological
330 Conditions. *Front Immunol [Internet].* 2014 Aug 22 [cited 2023 Apr 4];5. Available from:
331 <http://journal.frontiersin.org/article/10.3389/fimmu.2014.00394/abstract>

332 12. Grant EJ, Nguyen AT, Lobos CA, Szeto C, Chatzileontiadou DSM, Gras S. The unconventional role
333 of HLA-E: The road less traveled. *Mol Immunol.* 2020 Apr;120:101–12.

334 13. Brugiére O, Thabut G, Pretolani M, Krawice-Radanne I, Dill C, Herbreteau A, et al.
335 Immunohistochemical Study of HLA-G Expression in Lung Transplant Recipients. *Am J Transplant.*
336 2009 Jun;9(6):1427–38.

337 14. White SR, Floreth T, Liao C, Bhorade SM. Association of Soluble HLA-G with Acute Rejection
338 Episodes and Early Development of Bronchiolitis Obliterans in Lung Transplantation. Chen P,
339 editor. *PLoS ONE.* 2014 Jul 28;9(7):e103643.

340 15. Carlini F, Traore K, Cherouat N, Roubertoux P, Buhler S, Cortey M, et al. HLA-G UTR Haplotype
341 Conservation in the Malian Population: Association with Soluble HLA-G. Caramelli D, editor. *PLoS*
342 *ONE.* 2013 Dec 23;8(12):e82517.

343 16. Castelli EC, Ramalho J, Porto IOP, Lima THA, Felício LP, Sabbagh A, et al. Insights into HLA-G
344 Genetics Provided by Worldwide Haplotype Diversity. *Front Immunol [Internet].* 2014 Oct 6
345 [cited 2023 Apr 4];5. Available from:
346 <http://journal.frontiersin.org/article/10.3389/fimmu.2014.00476/abstract>

347 17. Rousseau P, Le Discorde M, Mouillot G, Marcou C, Carosella ED, Moreau P. The 14 bp Deletion-
348 Insertion polymorphism in the 3' UT region of the HLA-G gene influences HLA-G mRNA stability.
349 *Hum Immunol.* 2003 Nov;64(11):1005–10.

350 18. Di Cristofaro J, El Moujally D, Agnel A, Mazières S, Cortey M, Basire A, et al. HLA-G haplotype
351 structure shows good conservation between different populations and good correlation with
352 high, normal and low soluble HLA-G expression. *Hum Immunol.* 2013 Feb;74(2):203–6.

353 19. Jucaud V, Ravindranath MH, Terasaki PI, Morales-Buenrostro LE, Hiepe F, Rose T, et al. Serum
354 antibodies to human leucocyte antigen (HLA)-E, HLA-F and HLA-G in patients with systemic lupus

355 erythematosus (SLE) during disease flares: Clinical relevance of HLA-F autoantibodies. *Clin Exp*
356 *Immunol.* 2016 Mar;183(3):326–40.

357 20. Negrini S, Contini P, Pupo F, Greco M, Murdaca G, Puppo F. Expression of membrane-bound
358 human leucocyte antigen-G in systemic sclerosis and systemic lupus erythematosus. *Hum*
359 *Immunol.* 2020 Apr;81(4):162–7.

360 21. Naldini L, Blömer U, Gage FH, Trono D, Verma IM. Efficient transfer, integration, and sustained
361 long-term expression of the transgene in adult rat brains injected with a lentiviral vector. *Proc*
362 *Natl Acad Sci U S A.* 1996 Oct 15;93(21):11382–8.

363 22. Morales-Buenrostro LE, Terasaki PI, Marino-Vázquez LA, Lee JH, El-Awar N, Alberú J. “Natural”
364 Human Leukocyte Antigen Antibodies Found in Nonalloimmunized Healthy Males.
365 *Transplantation.* 2008 Oct 27;86(8):1111–5.

366 23. Ravindranath MH, Kaneku H, El-Awar N, Morales-Buenrostro LE, Terasaki PI. Antibodies to HLA-E
367 in nonalloimmunized males: pattern of HLA-Ia reactivity of anti-HLA-E-positive sera. *J Immunol*
368 *Baltim Md 1950.* 2010 Aug 1;185(3):1935–48.

369 24. Grenzi PC, de Marco R, Silva RZR, Campos EF, Gerbase-DeLima M. Antibodies against denatured
370 HLA class II molecules detected in luminex-single antigen assay. *Hum Immunol.* 2013
371 Oct;74(10):1300–3.

372 25. Ravindranath MH, Pham T, Ozawa M, Terasaki PI. Antibodies to HLA-E may account for the non-
373 donor-specific anti-HLA class-Ia antibodies in renal and liver transplant recipients. *Int Immunol.*
374 2012 Jan;24(1):43–57.

375

376

377

378

379 **Figures:**

380 Figure 1 (A) Illustration of the different technical steps, adaptations and compounds for MAIPA
381 Adapted. (B) Characteristics of MAIPA Adapted quality controls.

382 Figure 2: Expression of HLA-G isoform on SPI801 cell lines. (A) Western Blot analysis of HLA-G in
383 the transduced cells in comparison with non-transduced cells line (WT). (B) Flow cytometry results
384 showing stable expression levels of HLA-G isoforms in transduced cells lines (black) and non-
385 transduced cells line (gray).

386

387 Supplementary Figure 1: Expression of HLA-E isoform on SPI801 cell lines. (A) Western Blot
388 analysis of HLA-E in the transduced cells in comparison with non-transduced cells (WT = wild type).
389 (B) Stable expression levels of HLA-E isoform in transduced cells (black) versus non-transduced cells
390 (gray) by flow cytometry.

391 Supplementary figure 2 : Specificity of detection of HLA-G and HLA-E by MEMG/9 and 3D12,
392 respectively. Histograms show flow cytometry analysis of cells stained with MEM-G/9 (anti HLA-G
393 antibody) in black or 3D12 (anti HLA-E antibody) in grey. Left histogram shows absence of detection
394 of HLA-E on HLA-G*01:01 cells. Right histogram shows absence of detection of HLA-G on HLA-
395 E*01:03 cells. Same analysis was performed on HLA-G*01:04, HLA-G*01:06 and HLA-E*01:01 cells
396 line (Data not shown).

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

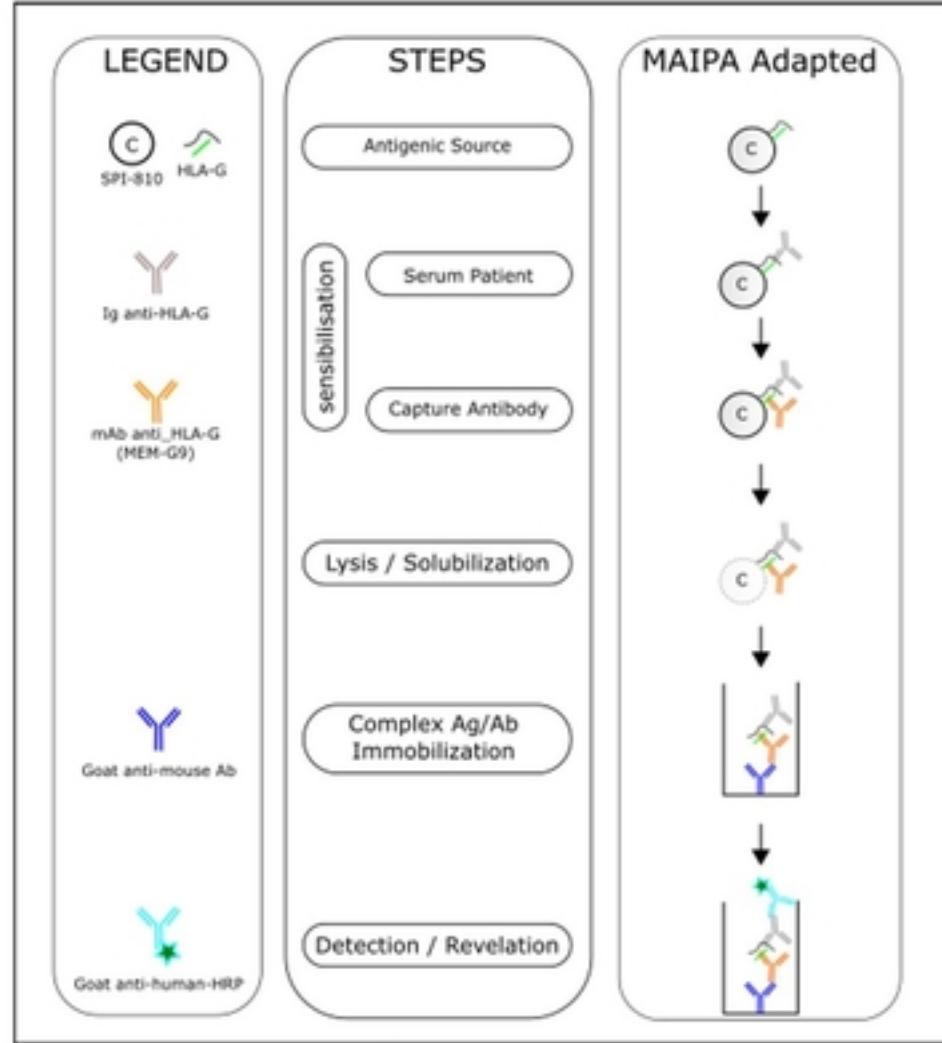
418

Table 1 : Clinical and biological characteristics of all cohort LTRs, LTRs with at least one positive serum detected on transduced and non-transduced cell lines, and Healthy subjects (LTR : lung transplant recipient, DSA : donor specific antibody).

	Cohort LTRs	LTRs with positive serum	Healthy blood
Recipient/donor			
Number	35	12	90
Age			
mean	40	36,5	39,5
min-max	19-66	21-66	18-69
< 40 years	18	7	53
≥ 40 years	17	5	37
Gender			
M	17	5	41
F	18	7	49
Pregnancy	ND	ND	30
First pregnancy	ND	ND	
≥4 pregnancies	ND	ND	
Blood Group			
A	12	4	35
B	7	3	7
AB	2	2	8
O	14	3	40
Pathology			
Emphysema	7	3	
Cystic Fibrosis	17	5	
Fibrosis	9	3	
Bronchial dysplasia	1	1	
Histiocytosis	1	0	
Type of LTx			
Single LTx	9	3	
Bilateral LTx	26	9	
Mismatch HLA			
0	5	2	
1-4	2	1	
5-8	28	9	
CMV Status			
Absence mismatch	25	8	
D+ et R- without seroconversion	1	0	
D+ et R- with seroconversion	4	1	
D- et R+	5	3	
Type of rejection			
Acute (DSA)	7 (7)	2 (2)	
Chronic (DSA)	7 (6)	1 (1)	
HLA antibodies			
DSA after LTx	26	8	
Ab No DSA after LTx	11	5	
D0	2	1	
M1	5	2	
M3	6	2	
M12	2	0	
HLA-G genotyping			
G*01:01,*--	21	6	
G*01:01,G*01:06	4	3	
G*01:01,G*01:04	6	2	
G*01:01,G*01:05N	2	0	
G*01:01,G*01:03	1	0	
G*01:03,G*01:06	1	1	

Table 2 : Results of adapted MAIPA on healthy subjects.

	Women	Men	Total
Effective	49	41	90
Serum reactivity vs Pool HLA-G cells			
Negative	48	40	88
Positive	1	1	2
Serum reactivity (screening OD>0.150 and S/N ratio > 1.5) vs Identification			
Negative	0	1	1
Positive	1	0	1


Table 3 : Results of adapted MAIPA in LTRs cohort at D0, D15, M1, M3 and M12 after LTx. Positive threshold: OD>0,150 (OD : optical density, WT : wild type, ND : not determined).

Recipients	Collection Dates (D : Day ; M: Month)										Characteristic of Pathology							HLA-G typing		
	D0		D15		M1		M3		M12		Disease	Acute rejection	Chronic rejection	DSA	CMV Status 0: absence mismatch; 1:D+ et R- without seroconversion; 2:D+ et R- with seroconversion; 3:D- et R+	Type of LTx	HLA mismatch	HLA-G genotype	UTR haplotype	
	OD WT cells	OD Pool HLA-G cells	OD WT cells	OD Pool HLA-G cells	OD WT cells	OD Pool HLA-G cells	OD WT cells	OD Pool HLA-G cells	OD WT cells	OD Pool HLA-G cells										
1	ND	ND	0,055	0,066	0,054	0,058	0,052	0,073	0,055	0,056	Histiocytosis	M12	Yes	D15	0	bilateral	8	G*01:01,*--	UTR2,UTR4	
2	0,099	0,082	0,059	0,071	0,071	0,061	0,085	0,058	0,07	0,06	Cystic fibrosis				0	bilateral	7	G*01:01,*--	UTR1,UTR1	
3	0,062	0,058	0,051	0,063	ND	ND	0,074	0,06	0,059	0,058	Fibrosis				0	bilateral	8	G*01:01,*--	UTR1,UTR1	
4	0,115	0,136	0,154	0,127	0,115	0,106	0,06	0,063	0,084	0,092	Fibrosis				3	bilateral	0	G*01:01,*--	UTR1,UTR1	
5	0,149	0,182	0,064	0,08	0,09	0,108	0,076	0,082	0,071	0,107	Emphysema				0	single	3	G*01:01,*--	UTR1,UTR4	
6	0,078	0,077	ND	ND	0,058	0,061	0,052	0,059	0,051	0,056	Cystic fibrosis				3	bilateral	8	G*01:01,*--	UTR1,UTR2	
7	0,06	0,065	0,056	0,058	0,051	0,051	0,061	0,067	0,061	0,067	Emphysema				2	bilateral	6	G*01:01,G*01:06	UTR2,UTR6	
8	ND	ND	ND	ND	ND	ND	0,068	0,072	ND	ND	Cystic fibrosis				0	bilateral	6	G*01:01,G*01:04	UTR1,UTR3	
9	0,062	0,105	0,096	0,090	0,262	0,325	0,058	0,076	0,057	0,088	Emphysema				0	bilateral	6	G*01:01,G*01:06	UTR2,UTR2	
10	0,645	0,349	0,064	0,057	0,167	0,081	0,074	0,077	0,072	0,068	Cystic fibrosis				0	bilateral	6	G*01:01,G*01:04	UTR3,UTR6	
11	0,385	0,394	0,065	0,074	ND	ND	ND	ND	ND	ND	Emphysema				0	bilateral	0	G*01:01,G*01:06	UTR2,UTR2	
12	0,05	0,063	0,061	0,066	0,059	0,07	0,061	0,06	0,052	0,059	Cystic fibrosis	M1	D15	0	single	8	G*01:01,G*01:05N	UTR4,UTR3		
13	0,102	0,103	0,064	0,062	0,088	0,084	0,07	0,057	0,066	0,072	Cystic fibrosis				0	single	6	G*01:01,*--	UTR1,UTR2	
14	0,35	0,357	ND	ND	0,057	0,06	0,061	0,059	0,09	0,068	Fibrosis				0	bilateral	8	G*01:01,G*01:04	UTR3,UTR7	
15	0,086	0,078	0,054	0,057	0,064	0,06	0,068	0,064	0,057	0,078	Cystic fibrosis				0	bilateral	7	G*01:01,*--	UTR1,UTR2	
16	0,06	0,06	ND	ND	0,29	0,23	0,06	0,06	0,06	0,07	Fibrosis	M1	D15	2	single	7	G*01:01,*--	UTR2,UTR6		
17	0,101	0,088	0,053	0,102	0,064	0,076	0,078	0,085	0,07	0,07	Fibrosis				0	bilateral	4	G*01:01,G*01:03	UTR1,UTR2	
18	ND	ND	ND	ND	ND	ND	0,057	0,055	ND	ND	Cystic fibrosis				0	bilateral	5	G*01:01,*--	UTR4,UTR2	
19	0,728	0,564	0,134	0,104	0,112	0,094	0,081	0,073	0,08	0,074	Cystic fibrosis				0	bilateral	8	G*01:03,G*01:06	UTR2,UTR5	
20	0,122	0,081	0,314	0,247	0,054	0,059	0,057	0,07	0,06	0,077	Cystic fibrosis	M3	Yes	0	single	6	G*01:01,*--	UTR1,UTR6		
21	0,078	0,068	0,071	0,058	ND	ND	0,051	0,059	0,07	0,093	Fibrosis				0	bilateral	0	G*01:01,G*01:04	UTR4,UTR3	
22	0,138	0,143	0,059	0,054	0,059	0,063	0,058	0,07	0,055	0,075	Emphysema				2	bilateral	5	G*01:01,*--	UTR1,UTR2	
23	0,194	0,209	0,116	0,178	0,118	0,301	0,117	0,192	ND	ND	Bronchial Dysplasia				3	bilateral	7	G*01:01,*--	UTR4,UTR6	
24	0,076	0,07	0,058	0,059	0,134	0,055	0,058	0,055	0,065	0,069	Cystic fibrosis	M12	Yes	0	single	0	G*01:01,G*01:05N	UTR1,UTR2		
25	0,11	0,117	0,1	0,072	0,194	0,194	0,418	0,466	0,082	0,068	Fibrosis				0	single	6	G*01:01,*--	UTR4,UTR7	
26	ND	ND	0,077	0,081	ND	ND	ND	ND	0,056	0,068	Cystic fibrosis				0	bilateral	6	G*01:01,*--	UTR1,UTR2	
27	0,059	0,065	0,061	0,058	0,055	0,069	0,059	0,058	0,07	0,063	Emphysema				0	single	7	G*01:01,*--	UTR1,UTR2	
28	0,169	0,208	0,057	0,059	0,125	0,074	0,061	0,074	0,06	0,063	Cystic fibrosis	M3	M1	3	single	7	G*01:01,*--	UTR2,UTR4		
29	ND	ND	ND	ND	ND	ND	0,07	0,058	ND	ND	Cystic fibrosis				1	bilateral	7	G*01:01,G*01:04	UTR1,UTR3	
30	0,073	0,081	ND	ND	0,078	0,096	0,058	0,067	ND	ND	Cystic fibrosis		Yes		2	bilateral	7	G*01:01,*--	UTR1,UTR2	
31	0,083	0,077	ND	ND	0,055	0,062	0,056	0,054	0,064	0,069	Cystic fibrosis				0	bilateral	8	G*01:01,*--	UTR7,UTR1	
32	0,07	0,101	0,067	0,068	0,094	0,079	0,139	0,154	0,071	0,061	Fibrosis	M3	M1	3	single	6	G*01:01,G*01:04	UTR1,UTR3		
33	0,61	0,397	0,057	0,054	0,11	0,1	0,066	0,058	0,088	0,065	Cystic fibrosis				0	bilateral	0	G*01:01,G*01:06	UTR2,UTR2	
34	ND	ND	ND	ND	0,06	0,066	ND	ND	0,053	0,058	Emphysema				0	single	5	G*01:01,*--	UTR1,UTR7	
35	0,077	0,1	ND	ND	0,076	0,084	0,063	0,076	0,08	0,131	Fibrosis				0	bilateral	7	G*01:01,*--	UTR1,UTR1	

Supplementary table : characteristics of the pathology, collection dates of the sera and results of the DSA research, and HLA-G typing results for each recipient

Recipients	Disease	Characteristic of Pathology					Collection Dates (D: Day; M: Month)												HLA-G typing							
		CMV Status	Type of LTx	HLA mismatch	Chronic rejection	Acute rejection	DSA	DSA classe I one lambda MFI	DSA classe II one lambda MFI	Ab non DSA	DSA classe I one lambda MFI	DSA classe II one lambda MFI	Ab non DSA	DSA classe I one lambda MFI	DSA classe II one lambda MFI	Ab non DSA	DSA classe I one lambda MFI	DSA classe II one lambda MFI	Ab non DSA	HLA-G genotype	UTR haplotype					
1	Histiocytosis	0	bilateral	8	Yes		D15	0	0	No	0	D03:10500 D03:2600	0	DQ03:9000	No	0	DQ03:5000	No	0	0	G*01:01;*-	UTR2,UTR4				
2	Cystic fibrosis	0	bilateral	7				0	0	No	0	0	0	0	0	0	0	0	0	G*01:01;*-	UTR1,UTR1					
3	Fibrosis	0	bilateral	8			M1	0	0	No	0	0	0	0	D07:4000	No	0	0	0	G*01:01;*-	UTR1,UTR1					
4	Fibrosis	3	bilateral	0			M12	D15	0	0	No	0	D07:2300 B13:8000 Cw4 ou DQ2:1500	A30:4500 B13:8000 Cw4 ou DQ2:1500	DQ02:5000 DQ2:10000 DQ3:3000	No	0	DQ02:5000, DQ3:4000	No	0	0	G*01:01;*-	UTR1,UTR1			
5	Emphysema	0	single	3				0	0	No	0	0	0	0	0	0	0	0	0	G*01:01;*-	UTR1,UTR4					
6	Cystic fibrosis	3	bilateral	8				0	0	No	0	0	0	0	0	Yes	0	0	0	G*01:01;*-	UTR1,UTR2					
7	Emphysema	2	bilateral	6				0	0	No	0	0	0	0	0	No	0	0	0	G*01:01;G*01:06	UTR2,UTR5					
8	Cystic fibrosis	0	bilateral	6			M1	0	0	No	0	0	0	0	B44:3300 B12:4000 B8:1500	DQ2:5300	No	0	0	0	G*01:01;G*01:04	UTR1,UTR3				
9	Emphysema	0	bilateral	6			D0	B7:11000	B7:11000	No	B7:13000	0	B7:7000	0	No	B7:3000	0	No	B7:3000	G*01:01;G*01:06	UTR2,UTR2					
10	Cystic fibrosis	0	bilateral	6			M3	0	0	No	0	0	0	0	0	Yes	A30:1500 DQ7:5000 DQ2:12000 DQ3:3000	No	0	0	G*01:01;G*01:04	UTR3,UTR6				
11	Emphysema	0	bilateral	0			D15	0	0	No	B44:5000	0	0	0	No	0	0	0	0	G*01:01;G*01:06	UTR2,UTR2					
12	Cystic fibrosis	0	single	8			M1	D15	0	0	No	A25:4500 DQ8:10000 DQ6: 13000	DQ5:3000 DQ6:5000	No	0	0	No	0	0	G*01:01;G*01:05N	UTR4,UTR3					
13	Cystic fibrosis	0	single	7			M1	0	0	No	0	0	0	0	B45:2000	DQ6:6000	No	0	0	0	G*01:01;*-	UTR1,UTR2				
14	Fibrosis	0	bilateral	8			M1	0	0	No	0	0	0	0	DQ9:4900	Yes	0	0	0	G*01:01;G*01:04	UTR3,UTR7					
15	Cystic fibrosis	0	bilateral	7			M1	0	0	No	0	0	0	0	B44:5000	DQ2:14000	No	0	0	0	G*01:01;*-	UTR1,UTR2				
16	Fibrosis	2	single	7				0	0	No	0	0	0	0	B44:5000	DQ7:4000 DQ2:12000	No	0	0	0	G*01:01;*-	UTR2,UTR6				
17	Fibrosis	0	bilateral	4			D15	0	0	No	0	DQ2:9000	0	DQ2:8000	No	0	DQ7:4000 DQ2:12000	No	0	0	G*01:01;G*01:03	UTR1,UTR2				
18	Cystic fibrosis	0	bilateral	5			M1	0	0	No	0	0	0	0	A2:3100, B44:2900	0	Yes	0	0	0	G*01:01;*-	UTR4,UTR2				
19	Cystic fibrosis	0	bilateral	8			D15	0	0	Yes	0	DQ5:5500 DQ6: 9500	0	DQ5:7500 DQ6:5000	Yes	0	DQ5:5000	No	0	0	G*01:03;G*01:06	UTR2,UTR5				
20	Cystic fibrosis	0	single	6				0	0	No	0	0	0	0	0	0	No	0	0	G*01:01;*-	UTR1,UTR6					
21	Fibrosis	0	bilateral	0	Yes	M3	M1	0	0	No	0	0	0	0	DQ2:13000	No	0	DQ2:4500	No	0	DQ2:5000	G*01:01;G*01:04	UTR4,UTR3			
22	Emphysema	2	bilateral	5	Yes		D15	0	0	Yes	0	DQ4:13000 DR8:4000	B58:2000	DQ4:15000	No	0	DQ4:5000	Yes	0	0	Yes	G*01:01;*-	UTR1,UTR2			
23	Bronchial dysplasia	3	bilateral	7	Yes		D0	0	0	No	0	DQ7:9000	0	DQ7:9000	No	0	DQ7:9000	Yes	0	0	G*01:01;*-	UTR4,UTR6				
24	Cystic fibrosis	0	bilateral	0				0	0	No	0	0	0	0	A23:12000	No	0	0	0	G*01:01;G*01:05N	UTR1,UTR2					
25	Fibrosis	0	single	6				0	0	No	0	0	0	0	0	No	0	0	0	G*01:01;*-	UTR4,UTR7					
26	Cystic fibrosis	0	bilateral	6			D15	0	0	No	0	DQ7:12000 DR12: 5000 DR52:2500 DR11:1500	0	DQ7:16000 DR12:3500 DR52:1700	No	0	0	Yes	0	0	No	G*01:01;*-	UTR1,UTR2			
27	Emphysema	0	single	7	Yes	M12	M1	0	0	No	A2:9000	DR8:8000	A23:12000	0	No	0	0	No	0	0	G*01:01;*-	UTR1,UTR2				
28	Cystic fibrosis	3	bilateral	7		M3	M1	0	0	No	0	0	0	0	A2:77000 A24:5000 B44:3000 B38:15000	DQ2:12000 DQ3:2500	No	0	0	DQ2:10000	No	0	DQ2:6000	No	G*01:01;*-	UTR2,UTR4
29	Cystic fibrosis	1	bilateral	7				0	0	No	0	0	0	0	0	0	0	0	0	0	G*01:01;G*01:04	UTR1,UTR3				
30	Cystic fibrosis	2	bilateral	7		M3	M1	0	0	No	0	0	0	0	A26:12000 A3:8500 B44:3000 B38:15000	DQ2:12000 DQ3:2500	No	0	0	DQ4:16000	Yes	0	0	No	G*01:01;*-	UTR1,UTR2
31	Cystic fibrosis	0	bilateral	8	Yes		M1	0	0	No	0	0	0	0	B8:3600	DQ2:11000	No	B8: 2000	0	Yes	0	0	Yes	G*01:01;*-	UTR7,UTR1	
32	Fibrosis	3	single	6			D0	B27:5000	B27:5000	No	0	0	0	0	0	0	0	0	0	0	0	G*01:01;G*01:04	UTR1,UTR3			
33	Cystic fibrosis	0	bilateral	0		M3	M1	0	0	No	0	0	0	0	A31:2000	0	No	0	0	0	Yes	0	0	No	G*01:01;G*01:06	UTR2,UTR2
34	Emphysema	0	single	5			M1	0	0	No	0	0	0	0	B8:13000	No	0	0	0	0	0	G*01:01;*-	UTR1,UTR7			
35	Fibrosis	0	bilateral	7	Yes		M1	0	0	No	0	0	0	0	A32: 7200	DR17:14500 DR7:13000 DR4:4500	No	A32: 5900 B57: 2000	0	No	0	0	No	G*01:01;*-	UTR1,UTR1	

A

B

	OD Blank	OD Control HLA Pool	OD Control Neg Pool
Effective	269	269	269
Min	0,05	1,43	0,06
Max	0,08	2,13	0,09
Mean	0,05	1,62	0,07
Median	0,05	1,52	0,07
Standard deviation	0,01	0,20	0,01
CV%	16,2	12,1	7,4

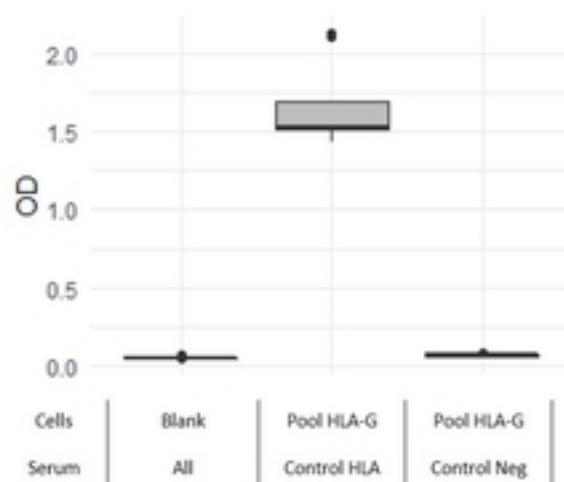
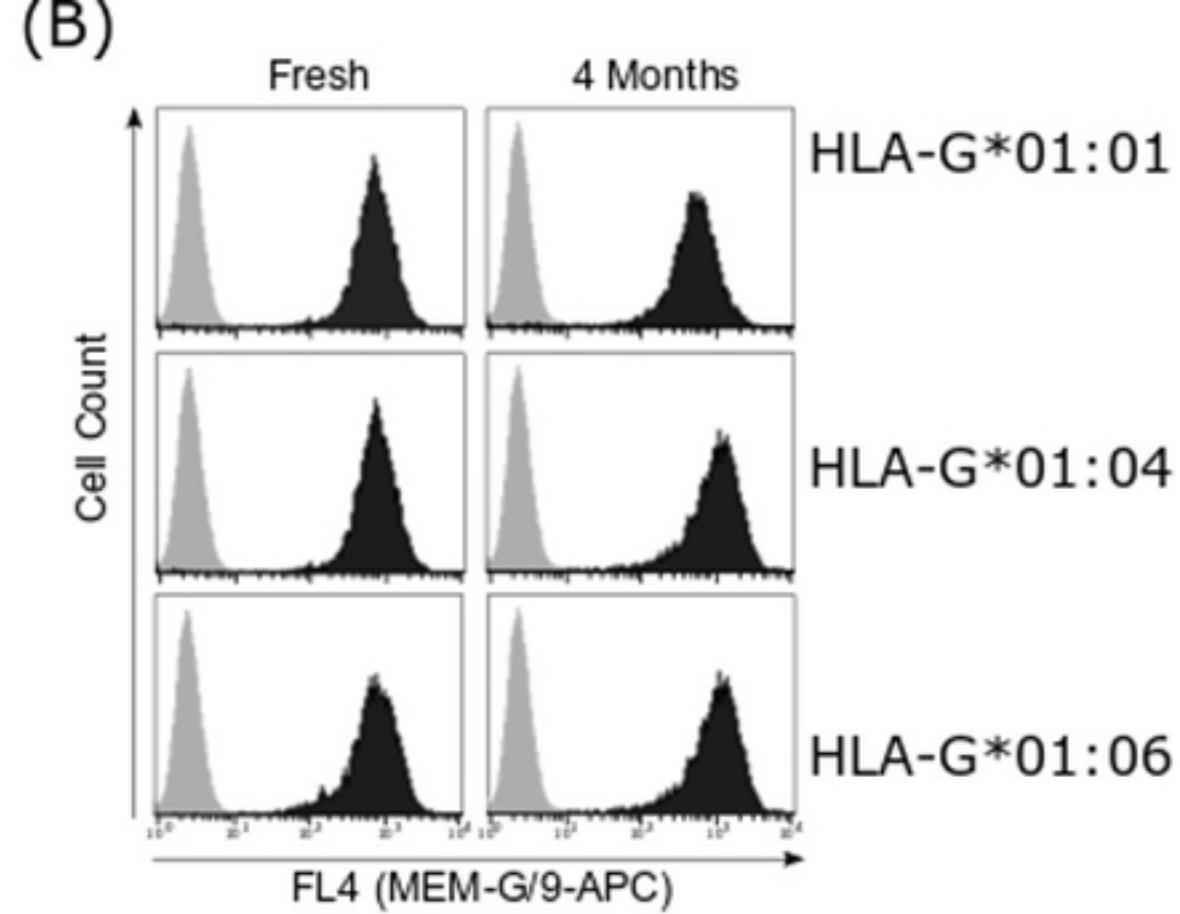
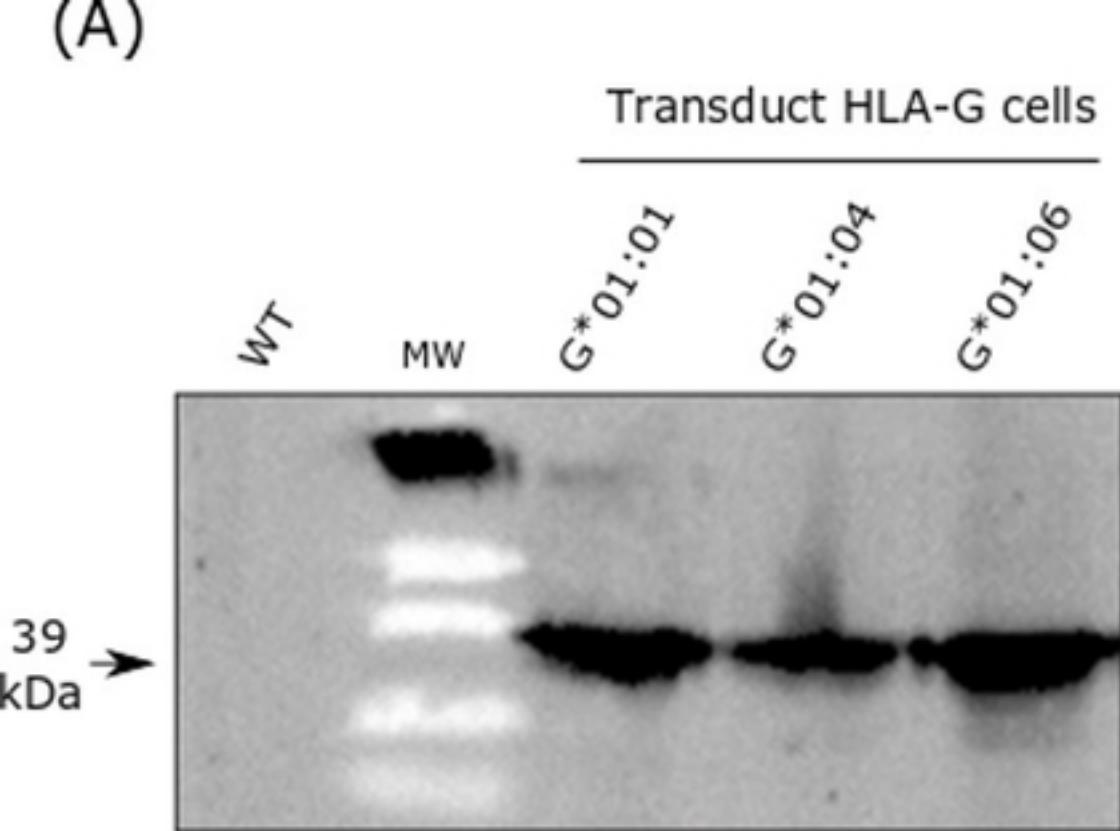
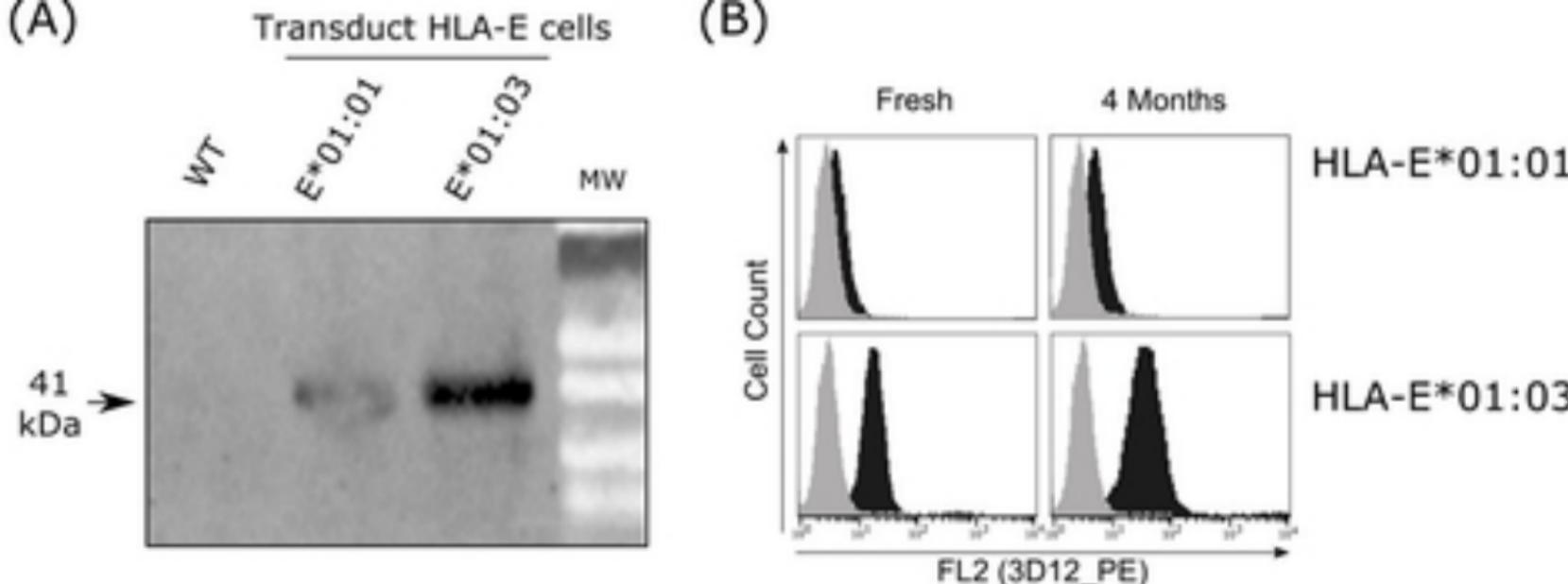


Figure 1 : A. Illustration of the different technical steps, adaptations and compounds for MAIPA Adapted. B. Characteristics of MAIPA Adapted quality controls.

Figure 1

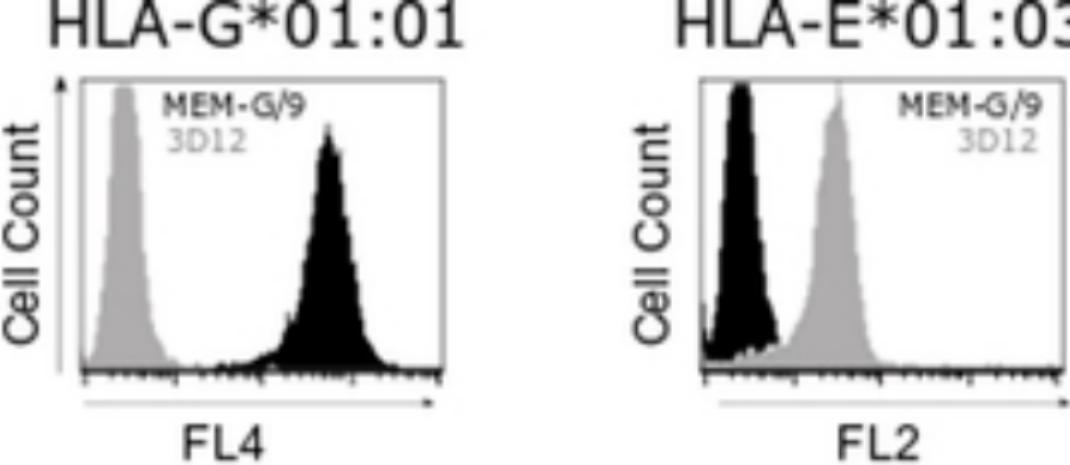

Figure 2 : Expression of HLA-G isoform on SPI801 cell lines. (A) Western Blot analysis of HLA-G in the transduced cells in comparison with non-transduced cells line (WT). (B) Flow cytometry results showing stable expression levels of HLA-G isoforms in transduced cells lines (black) and non-transduced cells line (gray).

Figure 2

Supplementary Figure 1: Expression of HLA-E isoform on SPI801 cell lines. (A) Western Blot analysis of HLA-E in the transduced cells in comparison with non-transduced cells (WT = wild type). (B) Stable expression levels of HLA-E isoform in transduced cells (black) versus non-transduced cells (gray) by flow cytometry.

Figure 1 sup

Supplementary figure 2 : Specificity of detection of HLA-G and HLA-E by MEMG/9 and 3D12, respectively. Histograms show flow cytometry analysis of cells stained with MEM-G/9 (anti HLA-G antibody) in black or 3D12 (anti HLA-E antibody) in grey. Left histogram shows absence of detection of HLA-E on HLA-G*01:01 cells. Right histogram shows absence of detection of HLA-G on HLA-E*01:03 cells. Same analysis was performed on HLA-G*01:04, HLA-G*01:06 and HLA-E*01:01 cells line (Data not shown).

Figure 2 sup