

1 The structure of immature tick-borne encephalitis virus

2
3 Maria Anastasina^{1,2#}, Tibor Füzik^{3#}, Aušra Domanska^{1,2}, Lauri IA Pulkkinen^{1,2*}, Lenka
4 Šmerdová³, Petra Pokorná Formanová⁴, Petra Straková^{4,5,6}, Jiří Nováček³, Daniel Růžek^{4,5,6},
5 Pavel Plevka^{3&}, Sarah J Butcher^{1,2&}

6
7 ¹ - Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience
8 Research Programme, University of Helsinki, Helsinki, Finland,

9 ² - Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki,
10 Helsinki, Finland

11 ³ - Central European Institute of Technology, Masaryk University, Brno, Czech Republic

12 ⁴ - Laboratory of Emerging Viral Infections, Veterinary Research Institute, Brno, Czech
13 Republic

14 ⁵ - Faculty of Science, Masaryk University, Brno, Czech Republic

15 ⁶ - Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske
16 Budejovice, Czech Republic

17 [#] - shared first authorship

18 [&] - shared corresponding authorship

19 * Current address: Integrative Medical Biology, Faculty of Medicine, Umeå University, Umeå,
20 Sweden

21

22 **Abstract**

23

24 Tick-borne encephalitis virus (TBEV) is a medically important flavivirus that poses a
25 significant health threat in Europe and Asia. However, the structure of the immature form of
26 TBEV remains unknown. Here, we employed state-of-the-art cryogenic electron microscopy
27 (cryoEM) to determine the structure of the immature TBEV particle. The immature TBEV
28 particle has a diameter of 56 nm and its surface glycoproteins are organised into spikes
29 characteristic of immature flaviviruses. The cryoEM reconstructions of the whole virus and of
30 the individual spike enabled us to build atomic models of the major viral components, the E
31 and prM proteins. The insights obtained from our study provide a foundation for
32 understanding the early stages of TBEV assembly and maturation. The pr domains of prM
33 have a critical role in holding the heterohexameric prM3E3 spikes in metastable
34 conformation. Destabilisation of the prM furin-sensitive loop at acidic pH facilitates its
35 processing. The prM cleavage, the collapse of E protein ectodomains onto the virion surface
36 concurrent with significant movement of the membrane domains of both E and M, and
37 release of the pr fragment from the particle render the virus mature and infectious. This
38 knowledge contributes to our understanding of the flavivirus life cycle.

39

40 **Introduction**

41

42 Tick-borne encephalitis virus (TBEV; *Orthoflavivirus encephalitidis*) belongs to the genus
43 *Orthoflavivirus* and infects a range of ticks, birds, and mammals, including humans. The
44 symptomatic infection in humans results in tick-borne encephalitis (TBE), a severe
45 neurological disease that often results in long-term sequelae and can be fatal (reviewed in ¹).
46 The disease manifestations vary depending on the virus subtype, with the European subtype
47 causing milder disease with a 0.5–2% mortality rate, the Siberian subtype often causing
48 long-term or chronic infections with 1–3% fatality rate, and the Far Eastern subtype having
49 the highest death rate of up to 35 %². TBEV is endemic within Europe, Russia, and North
50 Eastern Asia³. Despite the available vaccines, the number of infections has been steadily
51 growing over the last few decades with about 10,000–15,000 annual reported cases
52 (reviewed in ⁴). Specific therapies for TBE are not available.

53

54 TBEV is structurally similar to other flaviviruses^{5,6}, but has been less well studied than its
55 mosquito-borne counterparts such as dengue (DENV), Zika (ZIKV), West Nile (WNV),
56 Japanese encephalitis (JEV) and yellow fever (YFV) viruses. The virion consists of a single-
57 stranded positive-sense RNA genome bound to multiple copies of the capsid (C) protein,

58 surrounded by a host-derived lipid bilayer where 180 copies of membrane (M) and envelope
59 (E) proteins are embedded forming an icosahedrally-symmetric shell. The building block of
60 the shell in a mature virus is an E₂M₂ heterotetramer, with 90 such units lying parallel to the
61 membrane in a smooth “herringbone” arrangement^{5,6}. TBEV enters the cells via receptor-
62 mediated endocytosis where E plays a major role, mediating receptor binding and low pH-
63 induced membrane fusion^{7,8}. Following uncoating, the viral genome is translated into a single
64 multipass membrane polyprotein that is proteolytically processed to yield individual structural
65 and non-structural proteins. Viral RNA-dependent-RNA-polymerase synthesizes negative-
66 sense and subsequently positive-sense copies of the genome⁹.

67

68 The newly synthesised genomes bind to multiple copies of C to form nucleocapsids, which
69 acquire an envelope by budding into the lumen of the endoplasmic reticulum. The envelope
70 of immature TBEV particle contains 180 copies of each M protein precursor (prM) and E
71 forming heterodimers. The prM protein stabilises E and covers its fusion loop, preventing
72 premature virus activation and its fusion in the low pH with the membranes of the *trans*-Golgi
73 network (TGN)^{10,11}. Immature particles of most flaviviruses are fusion-incompetent and non-
74 infectious and must mature to acquire infectivity^{7,12}. Flavivirus maturation occurs at mildly
75 acidic pH, when host protease furin cleaves the prM protein to a pr peptide that will later
76 dissociate from the particle, and the M protein that remains in the particle, resulting in
77 infectious viruses^{13,14}.

78

79 Particle heterogeneity¹⁵, flexibility¹⁶, and symmetry imperfections¹⁷ have limited the
80 achievable resolution of immature flavivirus particle reconstructions. Detailed structural
81 information is available only for the mosquito-borne Spondweni (SPOV) and mosquito-
82 specific Binjari (BinJV) viruses, providing the first atomic details about the prME
83 interactions^{18,19}.

84

85 Here, we used cryogenic electron microscopy (cryoEM), single particle analysis, and
86 localised reconstruction to determine the structure of immature TBEV particles^{20–24}. By
87 analysing two model TBEV strains—Hypr and Neudoerfl—and the Kuutsalo-14 isolate, we
88 obtain a comprehensive information about the architecture and molecular organisation of
89 immature TBEV, and propose the major conformational changes that need to occur on the
90 route to maturation.

91

92 **Results and Discussion**

93 To acquire a comprehensive understanding of the immature TBEV particle structure, we
94 investigated three strains: Hypr, Neudoerfl, and Kuutsalo-14, using independent protocols for
95 particle production, cryoEM data collection, and image processing. The immature particles
96 were produced in infected cells treated with ammonium chloride to increase the pH of the
97 exocytic pathway and thereby inhibit maturation^{12,13,25}. The purified samples contained
98 primarily immature particles as indicated by the presence of a pronounced prM band on
99 SDS-PAGE (Fig. S1). Prior to vitrification for cryoEM, we inactivated the virus using
100 formaldehyde or ultraviolet (UV) light that neutralised virus infectivity without affecting protein
101 structure^{6,26}.

102

103 The cryoEM micrographs of all three strains revealed particles with a spiky appearance
104 characteristic of immature flaviviruses (Fig. 1a). However, we observed considerable
105 heterogeneity in particle structure, including broken particles, and particles with mixed spiky
106 and smooth morphologies, which may represent partially mature particles. Reference-free
107 2D class averages revealed protein densities projecting outward from the particle surface,
108 causing the spiky morphology. However, in some of the 2D classes, one side of the particle
109 was blurred, with poorly resolved protein and lipid bilayer densities. This blurring could be
110 attributed to sample heterogeneity and/or symmetry imperfections within the particles (Fig.
111 1a). Imposition of icosahedral symmetry during the reconstruction enabled calculation of 7.1
112 Å-resolution maps of Kuutsalo-14 and Neudoerfl, and an 8.6 Å-resolution map of Hypr
113 according to the 0.143 gold-standard criterion of Fourier shell correlation (GSFSC) cutoff²⁷
114 (Fig. 1b and S2-S4, Table 1). The reconstructed particles contain 60, nonsymmetrical,
115 prM₃E₃ “spikes” (Fig. 1b).

116

117 The structure of the nucleocapsid is not resolved in the cryoEM reconstructions of immature
118 TBEV particles indicating that it does not follow icosahedral symmetry. However, the
119 transmembrane helices of E and prM traversing the lipid bilayer can be readily observed in
120 cross-sections of the icosahedrally-symmetric reconstructions (Fig. 2a-c). The ectodomains
121 of E and prM form the spikes extending outwards from the particle surface, contributing to
122 the larger diameter of immature TBEV compared to the mature virion (~560 Å vs. ~500 Å;
123 Fig. 1b, 2a-d). The mature virion exhibits a distinctly angular inner membrane leaflet, due to
124 the clustering of the E and M protein transmembrane helices (Fig. 2d). In contrast, both
125 membrane leaflets in the immature particle are round and the inner leaflet is more closely
126 juxtaposed to the NC. This striking difference in the membrane shape is due to the different
127 spatial organisation of the transmembrane domains in mature and immature TBEV (Fig. 2e-
128 f). Furthermore, the transmembrane helices of E and M are slanted within the membrane in

129 immature particles (Fig. 2c, 3b), contrasting to their orthogonal insertion in the virion
130 membrane (Fig 2d). Evidently, the topology of E differs between immature and mature
131 particles, manifesting in unique arrangements of the ectodomain and membrane-associated
132 regions, and greater projection of the E ectodomains outwards from the particle surface in
133 the immature TBEV. The membrane helix domains of both E and M can be unambiguously
134 connected to their ectodomains in all three reconstructions. The connections in prM are
135 similar to those found in BinJV (Fig. S5), but not to those presumed in the immature
136 Spondweni, Zika or DENV particles^{18,19,28,29}.

137

138 The interpretability of the icosahedral reconstructions of the whole immature TBEV particles
139 was limited by the resolution (Fig. 2a-c, 3a, S4, Table 1). However, one can clearly identify
140 the three prME heterodimers forming individual spikes at the particle surface (Fig 1b, 2a-c,
141 3a). Suspecting the resolution was limited by particle heterogeneity (Fig. 1a), we employed
142 localised reconstruction of individual spikes, and were able to improve the resolution for
143 Kuutsalo-14 to 3.9 Å, and the resolution of Neudoerfl to 4.0 Å at the 0.143 FSC cutoff (Fig.
144 S4), and to build atomic models for both strains. We observed an 1.0 Å root-mean-square
145 deviation (RMSD) between Kuutsalo-14 and Neudoerfl atomic models when the Cα of prM
146 and E ectodomains were compared and 2.1 Å RMSD of the Cα of the membrane-associated
147 helices emphasising the reliability of the independently determined structures (Fig. S6).
148 Localised reconstruction of Hypr did not result in an improved resolution compared to the
149 icosahedral reconstruction and was not pursued further.

150

151 Each spike decorating the surface of immature TBEV particle is formed by three prME
152 heterodimers and is asymmetric with two prME opposing each other (Fig. 3b-c, red and
153 yellow dimers), and a third dimer joining from a side (Fig. 3b-c, blue dimer; Supplemental
154 video). The peripheral (PM) and transmembrane (TM) helices of prM and E embed the
155 proteins in the lipid bilayer. The E ectodomains extend outwards from the particle surface
156 joining at the top like a tripod, with the pr domains of prM positioned at the top (Fig. 3 a,b).
157 The ectodomains of pr and E in the immature TBEV display the characteristic fold of
158 flavivirus proteins, where pr comprises a globular beta-sandwich and E consists of three
159 distinguishable domains (DI, DII, DIII) (Fig. 3b, S7). Our models reveal a discrepancy in the
160 E ectodomain topology compared to the recently published prME crystal structure¹¹ (Fig.
161 S7). In the latter, E-DII adopts a different position relative to DI resulting in an 19.5°
162 difference with a total Cα RMSD of 8.6 Å between the models¹¹. The difference may arise
163 due to the different oligomeric states of purified E ectodomains compared to the native E
164 proteins within the particle, or due to the different probed pH. These differences underline

165 the importance of structural data obtained within the whole virus particle context, both at
166 neutral and acidic pH.

167

168 The E-DII harbouring the fusion loops join at the top of the prM₃E₃ spike and are capped by
169 pr peptides, each of which binds to its respective E through an interface with a cumulative
170 buried area of ~4700 Å². The negatively-charged prM surfaces cover the positively charged
171 E-DII tips, obscuring the fusion loops (Fig. 3b,e, Supplemental video). The heterohexamer
172 structure of the spike is stabilised by pr-pr interactions, as direct E-E contacts in the spike
173 are limited to just one small interaction surface of ~160 Å² (Supplemental video). The two
174 opposing prME dimers interact via a symmetrical pr-pr interface with ~460 Å² buried surface
175 area (Fig. 3c), involving hydrophobic residues Ala19, Ala20, Val31, Leu33, Val59, Val61, and
176 Phe64 of both prM proteins. The third prME dimer joins from a side via a ~160 Å² interface
177 between its E protein and E from another dimer, and ~320 Å² interface between its pr and E
178 of another dimer (Fig. 3d). Hydrophobic residues are enriched in both interfaces. Thus, the
179 prM₃E₃ arrangement of the immature TBEV particle is mostly maintained by the interactions
180 between pr domains within the prM₃E₃ spike. Analysis of E and M protein sequences of 182
181 TBEV isolates belonging to all three virus subtypes indicates that the interacting residues are
182 highly conserved⁶.

183

184 The globular pr domain of prM is connected to the membrane-associated helices by a
185 flexible linker (Fig. S5). We were able to build the linker along the E protein up to Gly98,
186 including the conserved 85-Arg Thr Arg Arg-88 furin recognition site¹⁴. The cleavage of prM
187 at Arg88 splits it into pr peptide (residues 1-88) and M protein (residues 89-162) and is a
188 crucial step of TBEV maturation¹⁴. The residues forming the furin cleavage site are held in
189 place by a polar interaction between Arg88 of pr and Glu243 of E, and is zipped downstream
190 by the hydrophobic residues Val90, Leu91, and Ile92 of prM fitted into a hydrophobic pocket
191 on E (Fig. 3e). This hydrophobic zipper is maintained in mature TBEV, where Val2, Leu3,
192 and Ile4 of M (corresponding to Val90, Leu91, and Ile92 of prM) are docked into a
193 hydrophobic pocket of E underneath E-DII (Fig. S8), suggesting that the interaction is stable
194 throughout the conformational rearrangement of prME and prM processing. The location of
195 the M protein N-terminus beneath the E-DII suggests that prM cleavage precedes the
196 formation of the mature particle's herringbone structure, as the furin cleavage site would
197 otherwise be inaccessible. Comparing to the low pH structure of a fragment of pr complexed
198 with preassembled E ectodomain dimers¹¹, even there, the furin cleavage site would be
199 inaccessible from the surface of the virus.

200

201 Within the immature particle context, the furin cleavage sites are located “inside” the spike
202 (Fig. 3B, Supplemental video) and are inaccessible to the globular 88 kDa furin³⁰ without a
203 conformational rearrangement of the spike. *In vitro*, the susceptibility of prM in immature
204 TBEV to furin cleavage increases at pH 7 and below, indicated by a reduction of the prM,
205 and the emergence of the M protein bands on SDS-PAGE, verified by Western Blot (Fig. 4).
206 The proteolysis is likely facilitated by the conformational changes of the spike that increase
207 the cleavage site accessibility, as furin is known to be efficient throughout all our tested pH
208 values^{13,31} (Fig 4). This pH-triggered conformational change of the spike agrees with earlier
209 observations of pH-induced changes in the immature particle antigenicity¹⁰. There are 15
210 conserved His in TBEV prME. A strictly conserved His95 from the prM linker interacts with
211 the E hydrophobic pocket (Fig. 3e). This histidine is located in proximity to another
212 conserved histidine, His216 in E, and we speculate that when protonated, these residues
213 could trigger exposure of the loop containing the furin cleavage site to allow proteolysis.
214 Protonation of histidines in the prM linker has been proposed as a maturation trigger for
215 DENV (His98), SPOV (His101), and BinJV (His88)^{18,19,32}, however, the exact mechanism is
216 yet to be shown.

217
218 The prM linker (residues 99-111) is flexible and is not resolved in our prM₃E₃ maps (Fig. 3b,
219 Supplemental video). However, densities connecting the globular pr domain to membrane
220 helices of prM are evident in the icosahedral reconstructions of all the three immature TBEV
221 particles (Fig. S5), allowing us to assign the positions of prM membrane domains beneath
222 the spike tripod (Fig. 3b). Importantly, none of the spikes in the icosahedral reconstructions
223 sit directly on the imposed symmetry axes, and thus all the linkers can be treated as
224 independent observations. A similar domain topology of prM was reported earlier for BinJV¹⁹,
225 whereas an alternative model was suggested for SPOV¹⁸, which proposes clustering of prM
226 and E membrane-associated domains (Fig. 5a,b). The overall TM domain distribution across
227 the virus particle is, however, similar for all the three viruses (Fig. 5c). We propose that the
228 membrane domain topology is similar in all of the immature flaviviruses with the evidence
229 coming from both TBEV and BinJV (Fig. 5d-f), and that the connection has been incorrectly
230 assigned for other viruses, including SPOV^{18,28,29}. The correct assignment affects the
231 interpretation of movements required for particle maturation.

232
233 The mechanism of particle maturation is a central question in flavivirus biology, which may
234 be addressed through the interpretation of immature and mature particle structures and
235 aided by biochemical data^{5,6,10,11,13,14,18,19,33}. The events driving maturation require
236 destabilisation of prM-prM interactions at the tip of the spike, exposure of the furin site in prM

237 and its cleavage, and collapse of E ectodomains onto the membrane accompanied by the
238 large movement of the E and M TM domains. Our structural data support the collapse
239 concept of flavivirus maturation, where E ectodomains reposition parallel to the particle
240 membrane as soon as the spike is disrupted¹⁹. In TBEV, this conformational change is
241 irreversible¹³. The immature particle heterogeneity (Fig. 2a), the prM₃E₃ spikes flexibility, and
242 the pH-sensing histidines in the proximity of the furin cleavage sites (Fig. 3e) may facilitate
243 local conformational changes at acidic pH to enable prM cleavage. As the ammonium
244 chloride treatment of the cells used to produce immature particles raises the exocytic
245 pathway pH, based on this and the *in vitro* furin sensitivity assay (Fig.4), the conformational
246 changes enabling furin cleavage occur at pH 7 and below¹³.

247

248 After spike dissociation, the E dimer formation is probably driven by the large dimerisation
249 surfaces of E proteins³³. Within one spike, two E proteins (red and yellow in Fig. 3b,c and
250 Fig. 6a,b) already have their dimerisation surfaces facing each other. Even though in the
251 immature spike, these E proteins have no interactions with each other, when they collapse
252 onto the membrane they would be readily positioned to dimerise (red and yellow E proteins
253 in Fig. 6c). The third E of that spike (blue in Fig. 3b,c and Fig. 6a,b) will have to interact with
254 the corresponding E of another spike, one such option is shown in Fig. 6a-c. So far there is
255 no satisfactory molecular model of the immature to mature structure transition that we are
256 aware of that does not involve clashing of the proteins, and has the appropriate assignment
257 of all the transmembrane domains. Based on the large heterogeneity of the immature
258 particles, we propose that rather than all spikes maturing at once, there is more likely to be
259 nucleation centre of the conformational change from the most dynamic (disordered) region
260 on the surface, even at pH7 and maturation propagates across the surface³⁴. In so doing,
261 there could be an additional opening up of the prME that allows better proteolytic access to
262 the furin cleavage site than either of the two static models currently reveal. In conclusion, the
263 prM cleavage, the collapse of E protein ectodomains onto the virion surface concurrent with
264 significant movement of the membrane domains of both E and M, and release of the pr
265 fragment from the particle render the virus mature and infectious. This knowledge
266 contributes to our understanding of the flavivirus life cycle and can be aided with future
267 studies on the pH-activated immature particle and timing of pr dissociation.

268

269 **Materials and Methods**

270

271 *Cells and viruses.* Human neuroblastoma SK-N-SH cells (ATCC HTB-11) were maintained in
272 Dulbecco's Modified Eagle's Medium with 1000 mg/l glucose (DMEM; Sigma-Aldrich)

273 supplemented with 10 % fetal bovine serum (FBS, Gibco), 0.5 mg/ml penicillin, 500 U/ml
274 streptomycin (penstrep; Lonza Bioscience), 2 mM glutaMAX (Gibco), and non-essential
275 amino acids (NEAA; Gibco). Baby hamster kidney cells (BHK-21, ATCC CCL-10) were
276 maintained in DMEM (Sigma-Aldrich) supplemented with 10 % FBS (Sigma-Aldrich). All cells
277 were maintained at +37 °C at a 5% CO₂ atmosphere.

278

279 TBEV strain Kuutsalo-14 (European subtype; GenBank MG589938.1) was a kind gift from
280 Prof. Olli Vapalahti, University of Helsinki. The virus stock was produced in SK-N-SH cells
281 and titered using a plaque assay as described previously⁶. TBEV strain Hypr (European
282 subtype; GenBank U39292.1) was passaged five times in the brains of suckling mice and
283 once in BHK-21 before its use in the present study. The virus was provided by the Collection
284 of Arboviruses, Biology Centre of the Czech Academy of Sciences
285 (<https://arboviruscollection.bcc.cz>). TBEV strain Neudoerfl (European subtype; GenBank
286 U27495.1) was passaged several times in the brains of suckling mice, in UKF-NB-4 and
287 BHK-21 cells before its use in the present study. The virus was kindly provided by Prof.
288 Franz Heinz, Medical University of Vienna. The Neudoerfl and Hypr titers were estimated by
289 plaque assay as described previously³⁵.

290

291 *Production and purification of immature TBEV.* For production of Kuutsalo-14 immature
292 particles, SK-N-SH cells were grown to 90 % confluence and, the virus was added in the
293 infection medium (DMEM, 2 % FBS, glutaMAX, penstrep, NEAA, 0.35 uM rapamycin) at a
294 multiplicity of infection of 10. At 22 h.p.i. cells were washed with potassium-buffered saline
295 (PBS) and a fresh infection medium containing 20 mM NH₄Cl was added. At 24 h.p.i. the
296 procedure was repeated. The supernatant containing immature TBEV particles was
297 collected at 48 h.p.i. and precleared by centrifugation at 4000 g for 5 min. Immature TBEV
298 was pelleted by centrifugation through a 30 % sucrose cushion in HNE buffer (20 mM
299 HEPES pH 8.5, 150 mM NaCl, 1 mM EDTA) at 131,000 x g at +4 °C for 2 h. The
300 supernatant was discarded and the pellet was resuspended in HNE, treated with 25 U of
301 benzonase (MerckMillipore) and immediately loaded onto linear glycerol-potassium tartrate
302 gradients (30 % glycerol – 10% glycerol, 35% potassium tartrate (w/v). Following a 2 h
303 centrifugation at 126,500 x g at +4 °C, particle-containing light-scattering bands were
304 collected. The samples were concentrated and buffer-exchanged to HNE using Amicon Ultra
305 centrifugal filters (Merck) and irradiated with 25 mJ/cm² of UV_{245nm} to inactivate infectivity.
306 The protein concentration was determined using a Qubit Protein Kit (ThermoFisher), and the
307 protein content was analyzed using sodium dodecyl-sulphate polyacrylamide gel
308 electrophoresis (SDS-PAGE) and immunoblotting as described previously⁶.

309
310 For production of Hypr and Neudorfl immature particles, BHK-21 cells were grown to 85 %
311 confluence and infected by TBEV strain Hypr or Neudoerfl at a multiplicity of infection of 1.
312 The cells were incubated in medium (DMEM, 5 % FBS, 25 mM HEPES, pH 7.4) for 18 h
313 (Hypr strain) or 26 h (Neudoerfl strain). The medium was replaced by medium containing
314 NH₄Cl (DMEM, 2 % FBS, 25 mM HEPES, 20 mM NH₄Cl, pH 7.4) and the cells were
315 incubated for 24 h at +37°C, 5 % CO₂. After incubation, the medium was clarified by
316 centrifugation (5,700 x g; +4 °C, 20 min) and PEG 8000 dissolved in TNE buffer (20 mM Tris,
317 120 mM NaCl, 1mM EDTA, pH 8.5) was added to the clarified supernatant. The final
318 concentration of PEG was 8 % (w/v). The particles were then fixed by addition of 0.05 %
319 formaldehyde (v/v, final concentration) and precipitated O/N in an orbital shaker at 130 rpm,
320 +4 °C. The precipitated particles were pelleted at 15,000 x g, for 60 min at +4 °C. The pellet
321 was resuspended in 10 ml of TNE buffer containing 8 % PEG 8000 (w/v) and pelleted by
322 centrifugation at 15,000 x g for 60 min at +4 °C. The pellet was resuspended in 3 ml of TNE
323 buffer, RNase A was added (10 µg/ml, final concentration), and incubated for 15 min at 15
324 °C. The suspension was centrifuged at 15,000 g, 10 min, +4 °C, and the supernatant was
325 loaded on 10-35% (w/v) potassium tartrate step gradient and centrifuged at 175,600 x g, 2 h,
326 +4 °C. The light-scattering band was collected. The sample was buffer exchanged into TNE
327 buffer by serial dilution and concentration using Amicon Ultra centrifugal filters (Merck).
328
329 *In vitro maturation.* Each 15 µL in vitro maturation reaction contained 5 µg of purified, UV-
330 inactivated immature Kuutsalo-14 TBEV in HNE adjusted to the indicated pH using 1 M 2-(N-
331 morpholino)-ethanesulfonic acid hydrate (MES, pH 5.0). Reactions were supplied with 30
332 mM CaCl₂ and 2U human recombinant furin (Thermo-Fisher, RP-062) and incubated at +30
333 °C for 16 h. After incubation, half of each reaction was mixed with 4x Laemmli sample buffer
334 and proteins were resolved in 4-20% gradient SDS-PAGE. Protein bands were visualised
335 using stain-free imaging using Biorad GelDoc EZ, and specific prM and M bands were
336 visualised using immunoblotting with an anti-M antibody as described previously⁶.
337
338 *CryoEM sample preparation.* The samples were vitrified in liquid ethane on glow-discharged
339 200 copper mesh R1.2/1.3 Quantifoil holey carbon coated grids with 2 nm continuous carbon
340 on top (Jena Bioscience) using a Leica EM GP plunger at 85 % humidity with 1.5 s blotting
341 time. Both TBEV strain Neudoerfl and Hypr samples were vitrified in liquid ethane on holey
342 carbon coated copper grids (Quantifoil 2/1, mesh 300, Quantifoil Micro Tools GmbH) using
343 Vitrobot Mark IV (Thermo Fisher). Samples were stored under liquid nitrogen until use.
344

345 *CryoEM data collection.* Kuutsalo-14 data were collected at the SciLifeLab CryoEM
346 Infrastructure Unit (Solna, Sweden) using FEI Titan Krios microscope (Thermo Fisher)
347 operating at 300 kV equipped with a Gatan K3 detector in counting mode at nominal
348 magnification 81,000 x resulting in a sampling rate of 1.075 Å/px. Movies were recorded in
349 counting mode at a total dose of 43 e-/Å² distributed over 50 frames using defocus range -
350 0.7 to -2.7 μm (step 0.2 μm). EPU software (Thermo Fisher) was used for data acquisition. In
351 total, 69964 movies were collected. TBEV strain Hypr was collected on a Titan Krios
352 microscope (Thermo Fisher) operating at 300 kV aligned for parallel illumination in
353 nanoprobe mode equipped with a Falcon3EC direct electron detector. The micrographs were
354 collected in integration mode at a nominal magnification of 75,000 x resulting in a 1.08 Å
355 pixel size on the detector. The defocus range applied during the acquisition was -3 to -1 μm
356 and the total dose during the 1 s acquisition was 69 e-/Å². The dose fractionated acquisitions
357 were saved as 39 fraction movies. EPU software was used for the data acquisition. In total
358 2,262 movies were collected. TBEV strain Neudoerfl was collected on a Titan Krios
359 microscope operating at 300 kV aligned for fringe-free imaging and equipped with a Gatan
360 K3 direct electron detector behind an energy filter (BioQuantum K3, Ametek) with 10 eV slit
361 inserted. The micrographs were collected in counting mode at a nominal magnification of
362 105,000 x resulting in a 0.8336 Å pixel size on the detector. The nominal defocus range
363 applied during the acquisition was -3 to -1 μm and the total dose during the 2 s acquisition
364 was 40 e-/Å². The dose fractionated acquisitions were saved as 40 fraction movies. SerialEM
365 software³⁶ was used for the data acquisition utilising the beam-tilt compensation upon image
366 shift. In total 11,246 movies were collected. Data for both Hypr and Neudoerfl strains were
367 collected at Cryo-electron microscopy and tomography core facility CEITEC MU (Brno,
368 Czech Republic). See Table 1 for full data collection statistics.

369

370 *Image processing.* Kuutsalo-14 image processing was performed at the Finnish Center for
371 Scientific Computing (CSC) supercomputing cluster using Scipion 3.0 framework and
372 Cryosparc^{21,24}. Movies were aligned using MotionCor2 implemented in Relion 3.1^{37,38}, and
373 movies with per-frame motion exceeding 5 pixels were rejected using Xmipp movie
374 maxshift³⁹. Contrast transfer functions were calculated using gctf and CTFFind4, and
375 micrographs with resolution discrepancies beyond 3.0 Å, as well as with low-resolution
376 (worse than 6 Å), astigmatism (> 500 Å) were rejected using CTF consensus³⁹⁻⁴¹. Particles
377 were picked and extracted with a box size of 900 px using Xmipp3 and several rounds of 2D-
378 classification were done using Relion 3.1.2. The selected particles (96,433) were used for
379 initial model generation using stochastic gradient descent method as implemented in Relion
380 3.1.2³⁷. Particles were subsequently 3D classified and refined in Relion 3.1 or in Cryosparc
381 using a 650 Å spherical mask to a final resolution of 7.10 Å according to the FSC_{0.143}

382 criterion. For localized reconstruction of prM₃E₃ spikes, sub-particles were defined and
383 extracted using localised reconstruction package integrated into Scipion⁴² and exported
384 using Relion export particles function. The sub-particles were imported into Cryosparc v4.2.1
385 and were reconstructed using iterative *ab initio* model generation, 3D classification, and
386 refinement using a soft segment mask that included a single spike with the membrane part.
387 The final resolution of the reconstructed spike was 3.89 Å according to the FSC_{0.143} criterion.
388 The local resolution of prM₃E₃ map was estimated using Cryosparc and the map was locally
389 sharpened using Xmipp3 or minimally sharpened using Relion 3.1 post-processing function.
390 Both the locally and the minimally sharpened maps were used for model building.
391

392 The TBEV strain Hypr data was processed as follows. The collected dose-fractionated
393 movies were aligned using MotionCor2³⁸ and the sums of dose-weighted fractions were
394 saved as individual micrographs. CTF estimation was performed using Gctf v1.06⁴⁰. The
395 initial set of particles was manually picked on non-binned micrographs and the crYOLO
396 neural network was trained on this subset. Automatic particle picking was performed on
397 micrographs using crYOLO⁴³. For initial 2D classification, the particles were extracted and
398 down-sampled from 768 px box size to 128 px (final pixel size 6.48 Å). Several rounds of 2D
399 classification were performed in Relion 4.0.0⁴⁴. The selected 18,160 particles were re-
400 extracted and down-sampled to box size of 512 px (pixel size 1.62 Å). The stochastic
401 gradient descent method as implemented in Relion 3.1.2³⁷ was used for initial model
402 generation. Refinement using the initial model lowpass filtered to 40 Å was done in Relion
403 v3.1.2 with icosahedral symmetry applied, using only a spherical mask of diameter 650 Å.
404 No further 3D classification or masked refinement improved the map resolution or quality.
405 The final map was masked by a threshold mask and B-factor sharpened in the
406 postprocessing procedure using Relion 3.1.2. The final resolution was estimated using the
407 FSC_{0.143} criterion as 8.64 Å.

408 The TBEV strain Neudoerfl data was processed as follows. The collected dose-fractionated
409 movies were aligned using MotionCor2 and the sum of dose-weighted fractions were saved
410 as individual micrographs. CTF estimation was performed using Gctf v1.06. The initial set of
411 particles was hand-picked on 10 x binned micrographs and crYOLO neural network was
412 trained on this subset. Automatic particle picking was performed on 10 x binned micrographs
413 using crYOLO and the resulting coordinates were corrected by the binning factor to match
414 the particle positions on the unbinned micrographs. For initial 2D classification the particles
415 were extracted and down-sampled from 960 px box-size to 128 px (final pixel size 6.25 Å).
416 Several rounds of 2D classification were performed in Relion 4.0.0 to exclude false positive
417 particles picked by crYOLO. The resulting 36,236 particles were reextracted and down-

418 sampled to box-size of 512 px (pixel size 1.56 Å). Refinement using lowpass filtered (40 Å)
419 initial model from a previous refinement of TBEV Hypr was done in Relion v 3.1.2 with
420 icosahedral symmetry applied, using only a spherical mask of diameter 650 Å. No further 3D
421 classification or masked refinement improved the map resolution or quality. The final map
422 was masked by a threshold mask and B-factor sharpened in the Relion 3.1.2 postprocessing
423 procedure. The final resolution was estimated using the $FSC_{0.143}$ criterion as 7.15 Å. To
424 improve the resolution of the spike-trimmers, single spike-trimmers were extracted in 300 px box
425 from the original micrographs by a modified version of localised reconstruction²³. In total
426 1,639,578 sub-particles were extracted and subjected to initial 3D refinement using local
427 searches around the already known orientations. A soft segment mask that included a single
428 spike-trimer together with the membrane was applied in the refinement step. After
429 refinement 3 rounds of 3D classification were performed, dividing the particles into 40
430 classes. The orientational search was omitted during the classification and the orientations
431 from the previous refinement step were used. The selected classes included 552,993
432 particles, which were subjected to 3D refinement. This was followed by anisotropic
433 magnification estimation, 3rd and 4th order aberration estimation and defocus refinement per
434 particle in Relion 3.1.2. Finally, the volumes were reconstructed using relion_reconstruct with
435 applied Ewald sphere correction. The final map was masked and B-factor sharpened. The
436 final resolution was estimated using the $FSC_{0.143}$ criterion as 4.03 Å.

437

438 *Model Building.* The homology model of Kuutsalo-14 prM₃E₃ was generated using I-
439 TASSER⁴⁵ with BinJV prM₃E₃¹⁹ (PDB ID: 7I30) as a template. Membrane-associated
440 domains of prM (residues 112-161) were replaced with membrane-associated domains of M
441 from mature TBEV⁶ (PDB ID: 7z51). The resultant model was flexibly fitted into the prM₃E₃
442 maps using ISOLDE integrated into ChimeraX^{46,47}. The model was real-space refined using
443 Phenix version 1.20⁴⁸, after which clashes were fixed in ISOLDE with model-based distance
444 and torsions constraints imposed. For TBEV strain Neudoerfl an AlphaFold v2.2⁴⁹ generated
445 model of the E-prM complex multimer was manually rigid body fitted into the post-processed
446 electrostatic-potential map of the prM₃E₃ spike using UCSF Chimera⁵⁰. The ectodomain of
447 the E-protein and the prM fitted well and manual adjustments were done in Coot⁵¹, followed
448 by real-space refinement in Phenix v1.20. The membrane part of the E-protein was modeled
449 using BinJV prM₃E₃¹⁹ (PDB ID: 7I30) E-protein transmembrane domain as template and the
450 membrane part of the prM was modelled using TBEV M protein⁵ (PDB ID: 5O6A) as a
451 template. Because of the low resolution of the map in the membrane region, the sidechains
452 of the amino acid residues in this region were stripped, and secondary structure restraints
453 were applied before Phenix real-space refinement. The final model containing the joined
454 ectodomains and transmembrane domains was iteratively refined using Phenix real-space

455 refinement and the refined model was manually inspected and corrected in Coot, till final
456 convergence. The geometry of all models was continuously monitored using MolProbity⁵².
457

458 **References**

- 459 1. Ruzek, D. *et al.* Tick-borne encephalitis in Europe and Russia: Review of
460 pathogenesis, clinical features, therapy, and vaccines. *Antiviral Res.* **164**, 23–51
461 (2019).
- 462 2. European Centre for Disease Prevention and Control. Factsheet about tick-borne
463 encephalitis. (2016). Available at: <https://ecdc.europa.eu/en/tick-borne-encephalitis/facts/factsheet>. (Accessed: 1st August 2023)
- 464 3. Chrdle, A., Chmelík, V. & Růžek, D. Tick-borne encephalitis: What travelers should
465 know when visiting an endemic country. *Hum. Vaccin. Immunother.* **12**, 2694–2699
466 (2016).
- 467 4. Bogovic, P. & Strle, F. Tick-borne encephalitis: A review of epidemiology, clinical
468 characteristics, and management. *World J. Clin. cases* **3**, 430–441 (2015).
- 469 5. Füzik, T. *et al.* Structure of tick-borne encephalitis virus and its neutralization by a
470 monoclonal antibody. *Nat. Commun.* **9**, 436 (2018).
- 471 6. Pulkkinen, L. I. A. *et al.* Molecular organisation of tick-borne encephalitis virus.
472 *Viruses* **14**, (2022).
- 473 7. Allison, S. L. *et al.* Oligomeric rearrangement of tick-borne encephalitis virus envelope
474 proteins induced by an acidic pH. *J. Virol.* **69**, 695–700 (1995).
- 475 8. Xiaowei, Z. *et al.* T-Cell Immunoglobulin and Mucin Domain 1 (TIM-1) Is a functional
476 entry factor for tick-borne encephalitis virus. *MBio* **13**, e02860-21 (2022).
- 477 9. Choi, K. H. & Rossmann, M. G. RNA-dependent RNA polymerases from Flaviviridae.
478 *Curr. Opin. Struct. Biol.* **19**, 746–751 (2009).
- 479 10. Heinz, F. X. *et al.* Structural changes and functional control of the tick-borne
480 encephalitis virus glycoprotein E by the heterodimeric association with protein prM.
481 *Virology* **198**, 109–117 (1994).
- 482 11. Vaney, M.-C. *et al.* Evolution and activation mechanism of the flavivirus class II
483 membrane-fusion machinery. *Nat. Commun.* **13**, 3718 (2022).
- 484 12. Guirakhoo, F., Heinz, F. X., Mandl, C. W., Holzmann, H. & Kunz, C. Fusion activity of
485 flaviviruses: comparison of mature and immature (prM-containing) tick-borne
486 encephalitis virions. *J. Gen. Virol.* **72 (Pt 6)**, 1323–1329 (1991).
- 487 13. Stadler, K., Allison, S. L., Schalich, J. & Heinz, F. X. Proteolytic activation of tick-
488 borne encephalitis virus by furin. *J. Virol.* **71**, 8475–8481 (1997).
- 489 14. Elshuber, S., Allison, S. L., Heinz, F. X. & Mandl, C. W. Cleavage of protein prM is

491 necessary for infection of BHK-21 cells by tick-borne encephalitis virus FN1. *J. Gen.*
492 *Virol.* **84**, 183–191 (2003).

493 15. Plevka, P., Battisti, A. J., Sheng, J. & Rossmann, M. G. Mechanism for maturation-
494 related reorganization of flavivirus glycoproteins. *J. Struct. Biol.* **185**, 27–31 (2014).

495 16. Prasad, V. M. *et al.* Structure of the immature Zika virus at 9 Å resolution. *Nat. Struct.*
496 *Mol. Biol.* **24**, 184–186 (2017).

497 17. Therkelsen, M. D. *et al.* Flaviviruses have imperfect icosahedral symmetry. *Proc. Natl.*
498 *Acad. Sci. U. S. A.* **115**, 11608–11612 (2018).

499 18. Renner, M. *et al.* Flavivirus maturation leads to the formation of an occupied lipid
500 pocket in the surface glycoproteins. *Nat. Commun.* **12**, 1238 (2021).

501 19. D., N. N. *et al.* The structure of an infectious immature flavivirus redefines viral
502 architecture and maturation. *Sci. Adv.* **7**, eabe4507 (2021).

503 20. Kimanis, D., Dong, L., Sharov, G., Nakane, T. & Scheres, S. H. W. New tools for
504 automated cryo-EM single-particle analysis in RELION-4.0. *Biochem. J.* **478**, 4169–
505 4185 (2021).

506 21. de la Rosa-Trevín, J. M. *et al.* Scipion: A software framework toward integration,
507 reproducibility and validation in 3D electron microscopy. *J. Struct. Biol.* **195**, 93–99
508 (2016).

509 22. Briggs, J. A. G. *et al.* Classification and three-dimensional reconstruction of unevenly
510 distributed or symmetry mismatched features of icosahedral particles. *J. Struct. Biol.*
511 **150**, 332–339 (2005).

512 23. Ilca, S. L. *et al.* Localized reconstruction of subunits from electron cryomicroscopy
513 images of macromolecular complexes. *Nat. Commun.* **6**, 8843 (2015).

514 24. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms
515 for rapid unsupervised cryo-EM structure determination. *Nat. Methods* **14**, 290–296
516 (2017).

517 25. Seksek, O., Biwersi, J. & Verkman, A. S. Direct measurement of trans-Golgi pH in
518 living cells and regulation by second messengers. *J. Biol. Chem.* **270**, 4967–4970
519 (1995).

520 26. Schur, F. K. M. *et al.* An atomic model of HIV-1 capsid-SP1 reveals structures
521 regulating assembly and maturation. *Science (80-.)* **353**, 506–508 (2016).

522 27. Scheres, S. H. W. RELION: implementation of a Bayesian approach to cryo-EM
523 structure determination. *J. Struct. Biol.* **180**, 519–530 (2012).

524 28. Tan, T. Y. *et al.* Capsid protein structure in Zika virus reveals the flavivirus assembly
525 process. *Nat. Commun.* **11**, 895 (2020).

526 29. Kostyuchenko, V. A., Zhang, Q., Tan, J. L., Ng, T.-S. & Lok, S.-M. Immature and
527 mature dengue serotype 1 virus structures provide insight into the maturation process.

565 43. Wagner, T. *et al.* SPHIRE-crYOLO is a fast and accurate fully automated particle
566 picker for cryo-EM. *Commun. Biol.* **2**, 218 (2019).

567 44. Zivanov, J. *et al.* A Bayesian approach to single-particle electron cryo-tomography in
568 RELION-4.0. *Elife* **11**, e83724 (2022).

569 45. Zhang, Y. I-TASSER server for protein 3D structure prediction. *BMC Bioinformatics* **9**,
570 40 (2008).

571 46. Croll, T. I. ISOLDE: a physically realistic environment for model building into low-
572 resolution electron-density maps. *Acta Crystallogr. Sect. D, Struct. Biol.* **74**, 519–530
573 (2018).

574 47. Goddard, T. D. *et al.* UCSF ChimeraX: Meeting modern challenges in visualization
575 and analysis. *Protein Sci.* **27**, 14–25 (2018).

576 48. Liebschner, D. *et al.* Macromolecular structure determination using X-rays, neutrons
577 and electrons: recent developments in Phenix. *Acta Crystallogr. Sect. D, Struct. Biol.*
578 **75**, 861–877 (2019).

579 49. Jumper, J. *et al.* Highly accurate protein structure prediction with AlphaFold. *Nature*
580 **596**, 583–589 (2021).

581 50. Pettersen, E. F. *et al.* UCSF Chimera--a visualization system for exploratory research
582 and analysis. *J. Comput. Chem.* **25**, 1605–1612 (2004).

583 51. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of
584 Coot. *Acta Crystallogr. D. Biol. Crystallogr.* **66**, 486–501 (2010).

585 52. Williams, C. J. *et al.* MolProbity: More and better reference data for improved all-atom
586 structure validation. *Protein Sci.* **27**, 293–315 (2018).

587

588 Acknowledgments

589

590 We thank Dr. Pasi Laurinmäki of the Instruct-ERIC Centre Finland and the Biocenter Finland
591 National CryoEM Facility, the CryoEM Swedish National Facility funded by the Knut and
592 Alice Wallenberg, Family Erling Persson and Kempe Foundations, SciLifeLab, Stockholm
593 University and Umeå University, and the CSC-IT Center for Science Ltd. for providing
594 reagents, technical assistance, and facilities to carry out the work. We thank Prof. Olli
595 Vapalahti for the kind gift of the TBEV Kuutsalo-14 isolate and Saana Haarma, Dr. Suvi
596 Kuivanen, Irina Suomalainen and Sanna Mäki for excellent technical help. We thank Prof.
597 Franz Heinz for the kind gift of TBEV strain Neudoerfl.

598

599 The research was funded by the Swedish Research Council, reference number 2018-05851
600 (to SJB); the Academy of Finland, grant number 315950 (to SJB); the Sigrid Juselius

601 Foundation, grant number 95-7202-38 (to SJB); the Jane and Aatos Erkko Foundation (to
602 SJB); European Union's Horizon 2020 Research and Innovation Programme under the
603 Marie Skłodowska-Curie grant agreements number 799929 (to MA); University of Helsinki
604 Research Foundation (to LIAP); University of Helsinki Doctoral School in Integrative Life
605 Science (to LIAP); Helsinki Institute of Life Sciences (to SJB), the project "National Institute
606 of Virology and Bacteriology" (Programme EXCELES, ID Project No. LX22NPO5103) -
607 Funded by the European Union - Next Generation EU (to PP and DR) and the Czech
608 Science Foundation Grant GX 19-25982X (to PP). We acknowledge Cryo-electron
609 microscopy and tomography core facility CEITEC MU of CIISB, Instruct-CZ Centre,
610 supported by MEYS CR (LM2023042) and European Regional Development Fund-Project
611 „UP CIISB“ (No. CZ.02.1.01/0.0/0.0/18_046/0015974).

612

613 **Author contributions**

614 M.A., S.J.B., and P.P. designed research; M.A., L.I.A.P., P.F.-P., P.S., D.R., J.N, L.S. and
615 T.F. performed research; M.A., A.D. S.J.B., T.F. and P.P analysed data; M.A. drafted the
616 paper and all authors contributed to finalising the paper.

617

618 **Competing Interests Statement**

619 The authors declare no competing financial interests.

620

621 **Figure Legends**

622

623 **Figure 1. CryoEM and 3D reconstructions of immature TBEV particles.** (a)
624 representative micrographs, where black arrowheads indicate spherical particles, white
625 arrowheads indicate non-spherical particles and black arrows indicate broken particles.
626 Scale bar 50 nm. 2D class averages box sizes are 800 x 800 Å for Kuutsalo-14 and 864 x
627 864 Å for Neuroerfl and Hypr. The prevalent initial 2D class averages are shown below the
628 respective micrographs with the number of particles per class indicated. (b) Isosurface
629 representations of the icosahedral-symmetrised 3D reconstructions of immature Kuutsalo-
630 14, Neudoerfl, and Hypr particles viewed down an icosahedral twofold axis of symmetry,
631 coloured by local resolution with the key indicated by the bar. Positions of selected symmetry
632 axes are indicated by a pentagon (fivefold), an ellipse (twofold), and a triangle (threefold).
633 Scale bar 10 nm.

634

635 **Figure 2. Membrane organisation in immature vs mature TBEV particles.** (a-c) 100 Å
636 thick central sections of icosahedral reconstructions of immature particles compared to (d)

637 *the mature Kuutsalo-14 reconstruction (EMDB ID:14512)⁶. Cleavage and dissociation of 180*
638 *copies of pr peptide upon maturation is indicated between c and d. (e) Positions of*
639 *transmembrane and peripheral membrane helices of E (light blue) and (pr)M (light red) in the*
640 *front hemisphere of the immature Kuutsalo-14 and (f) in the mature Kuutsalo-14. Membrane-*
641 *associated helices cluster into rafts in the mature particle compared to the more even*
642 *distribution in the immature particle. The scale bar is 10 nm.*

643

644 **Figure 3. prM_3E_3 spike organisation and protein-protein interactions.** (a) Isosurface
645 representation of the icosahedral reconstruction of immature Kuutsalo-14. Positions of
646 symmetry axes are indicated using an oval (twofold), a triangle (threefold), and a pentagon
647 (fivefold). One prM_3E_3 spike is highlighted in colour. (b) Atomic model of a Kuutsalo-14
648 prM_3E_3 spike refined against a 3.9 Å resolution map. One prME heterodimer is shown in
649 cartoon representation with TM helices of E and prM indicated. The remaining two prME
650 heterodimers are shown as molecular surfaces. prM and E dimers are coloured in red,
651 yellow, and blue with prM in darker shades. Fusion loops of E and prM furin cleavage sites
652 are highlighted in magenta and turquoise, respectively. (c) A molecular surface
653 representation of prM_3E_3 with a close-up view of the pr-pr interaction interface. Proteins are
654 coloured as in (b) in the top panel, both pr peptides are coloured by hydrophilicity in the
655 middle, and in the bottom panel one pr peptide is coloured according to hydrophilicity
656 whereas the other prM is shown as a transparent molecular surface with black outline to
657 indicate the interaction area. (d) A molecular surface representation of prM_3E_3 spike with a
658 close-up view of E-prM-E interaction interfaces showing how one prM binds together the two
659 E. The proteins are coloured as in (b), but prM is semi-transparent. (e) A cartoon
660 representation of one prME heterodimer with names of TM helices of pr and E indicated.
661 Close-up images show prME salt bridge (left upper panel), a hydrophobic zipper (left,
662 bottom) stabilising the furin site, and prME interaction interface coloured by electrostatic
663 potential (right side; proteins are outlined for clarity).

664

665 **Figure 4. Susceptibility of immature TBEV to furin at decreasing pH.** An SDS-PAGE of
666 purified immature TBEV shows the three major protein components, E, prM and C. As the
667 particles are exposed to decreasing pH in the presence of furin for 16 h at 30 °C, prM is
668 cleaved into pr peptide and M with increasing efficiency (top panel), which is verified by
669 immunostaining with an antibody against the C-terminus of M, as pr and M have similar
670 molecular weights (bottom panel).

671

672 **Figure 5. Comparison of membrane-associated domains of immature TBEV, BinJV and**
673 **SPOV particles.** Cartoon representations of Kuutsalo-14 prME (blue) overlaid with (a) BinJV

674 (yellow; PDB ID: 7I30) or (b) SPOV (red; PDB ID: 6zqj) show that prM membrane-associated
675 domains are localised underneath the spike in TBEV and BinJV, but are clustered with E
676 membrane-associated domain in SPOV. (c) Only the transmembrane and peripheral
677 membrane helices of E and prM are shown for the front hemispheres of immature TBEV
678 (blue), BinJV (yellow) and SPOV (red) particles emphasising similar distribution of
679 membrane-associated domains in all three viruses. (d-f) Only the transmembrane and
680 peripheral membrane helices of E (tints) and prM (shades) are shown for the front
681 hemispheres of immature TBEV (d), BinJV (e) and SPOV (f). Membrane-associated
682 domains of E and prM of one asymmetric unit per particle are highlighted in colour,
683 emphasizing similar domain assignment in TBEV (d, blue) and BinJV (e, yellow), but
684 different in SPOV (f, red).

685

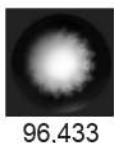
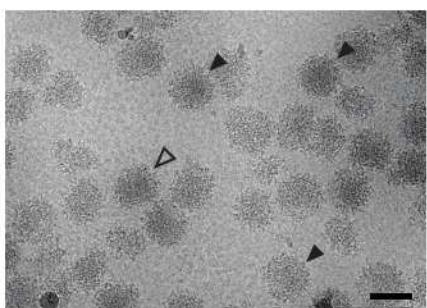
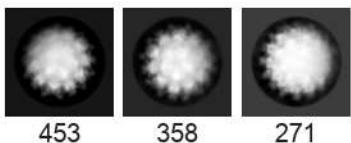
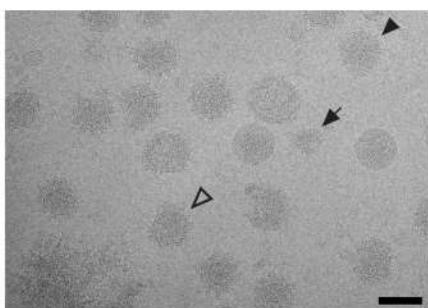


686 **Figure 6. Redistribution of E ectodomains after TBEV maturation.** (a) Surface
687 representation of an immature Kuutsalo-14 particle is shown with two asymmetric units
688 highlighted in colour, individual prME dimers are coloured in tints and shades of red, yellow
689 and blue for clarity. (b) Same, but pr domains are hidden for clarity, and the residues of E
690 that will form a E-E dimer interacting surface in the virion are highlighted in green, the fusion
691 loops of E are highlighted in pink. (c) Proposed redistribution of E on the virion surface after
692 maturation involves collapse and dimerization of two E from one prM₃E₃ spike (red and
693 yellow), whereas the third E (blue) will interact with one from the other prM₃E₃. The proteins
694 are re-distributed around the symmetry axes.

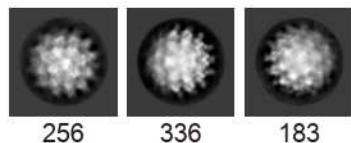
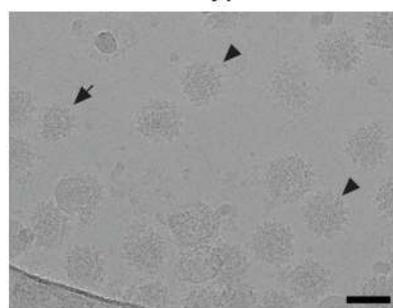
Table 1. Cryo-EM data collection, refinement, and validation statistics

	Kuutsalo-14 full particle	Kuutsalo-14 prM ₃ E ₃ spike	Neudoerfl full particle	Neudoerfl prM ₃ E ₃ spike	Hypr full particle
Data collection and processing					
Magnification	81000	81000	105000	105000	75000
Voltage (kV)	300	300	300	300	300
Electron exposure (e⁻ /Å²) total dose	43	43	40	40	69
Defocus range settings (μm)	-0.7 to -2.7 at 0.2 step	-0.7 to -2.7 at 0.2 step	-1.0 to -3.0 at 0.2 step	-1.0 to -3.0 at 0.2 step	-1.0 to -3.0 at 0.2 step
Pixel size (Å)	1.075	1.075	1.563 (binned 1.875x)	0.8336	1.62 (binned 1.5x)
Symmetry imposed	I2	C1	I1	C1	I1
Micrographs (no.)	40138	40138	11246	11246	2262
Initial particle images (no.)	271870	4312440	156614	1639578	29978
Particles used in reconstruction (no.)	70189	1172996	36236	552993	18160
Map resolution (Å)	7.1	3.9	7.0	4.0	8.6
FSC threshold	0.143	0.143	0.143	0.143	0.143
Map resolution range (Å)	999-7.1	999-3.9	999-7.2	999-4.0	999-8.6
Refinement					
Map sharpening B factor (Å²)	-658.6	-226.9/variable	-725	-167	-1178
Model composition					
Non-hydrogen atoms	N/A	14700	N/A	13407	N/A
Protein residues	N/A	1923	N/A	1908	N/A
E	N/A	1-496	N/A	1-492	N/A
prM	N/A	1-82, 85-98, 112-162	N/A	1-82, 86-95, 111-160	N/A
Ligands	N/A	3 (NAG)	N/A	3 (NAG)	N/A
R.m.s. deviations					
Bond lengths (Å)	N/A	0.66	N/A	0.002	N/A
Bond angles (°)	N/A	1.06	N/A	0.455	N/A
Validation					
MolProbity score	N/A	1.27	N/A	1.57	N/A
Clashscore	N/A	1.57	N/A	5.31	N/A
Poor rotamers (%)	N/A	0.06	N/A	0.00	N/A
Ramachandran plot					
Favored (%)	N/A	94.68	N/A	95.85	N/A
Allowed (%)	N/A	5.32	N/A	3.99	N/A
Disallowed (%)	N/A	0.00	N/A	0.16	N/A
PDB ID	N/A	8PPQ	N/A	8PUV	N/A
EMD	17809	17808	17946	17947	17945



a

Kuutsalo-14

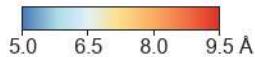
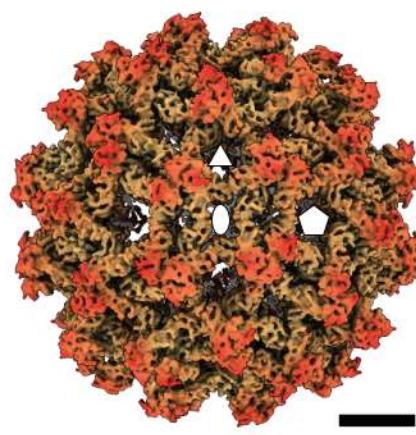
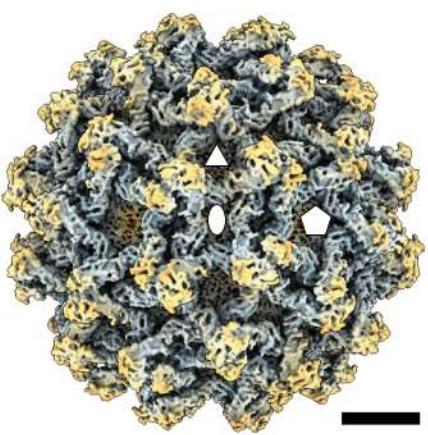
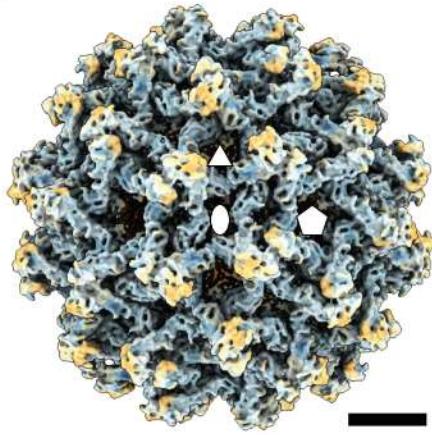
96,433



Neudoerfl

358

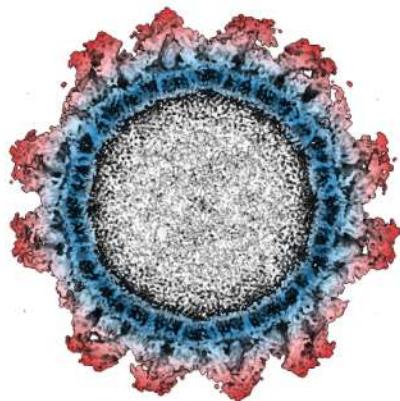
271

Hypr

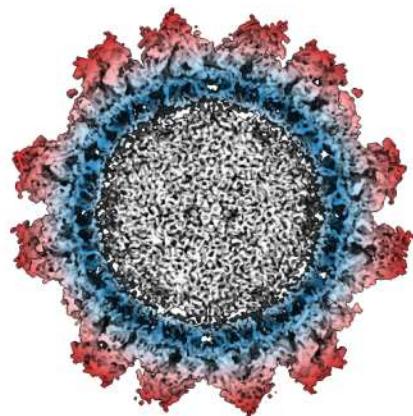





256

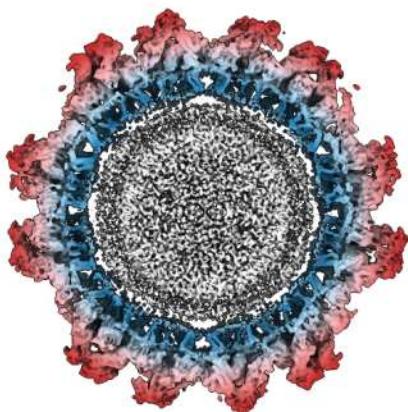
336


183

b

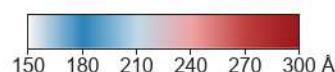
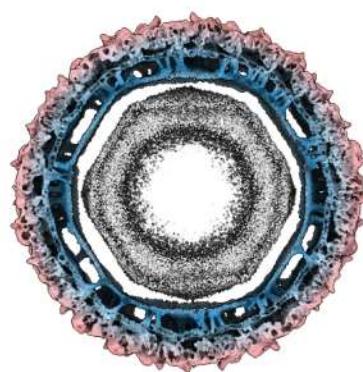
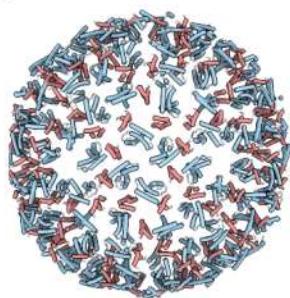
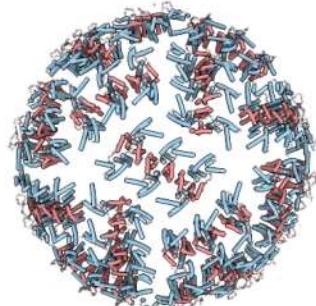


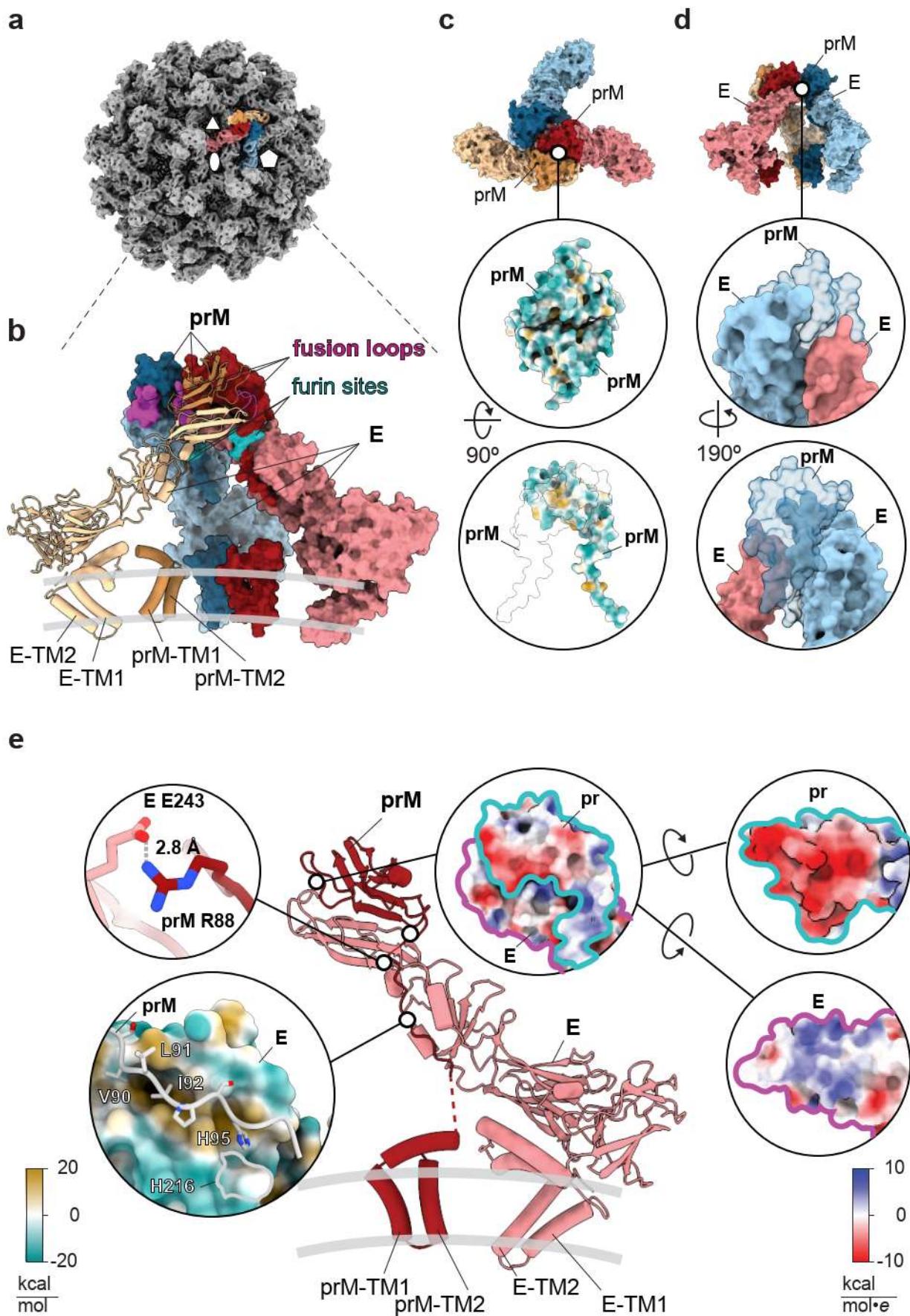
a

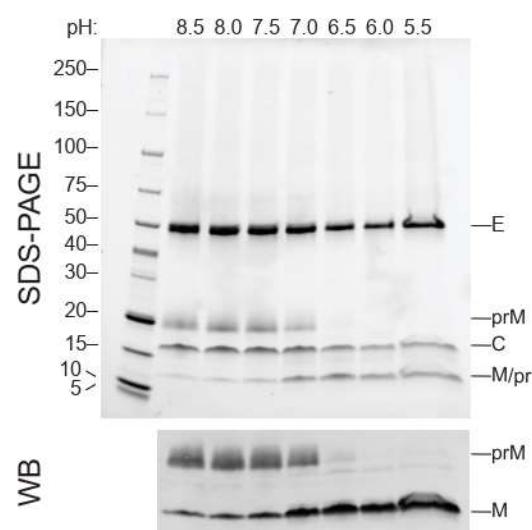

Immature Neudoerfl (7.1 Å)

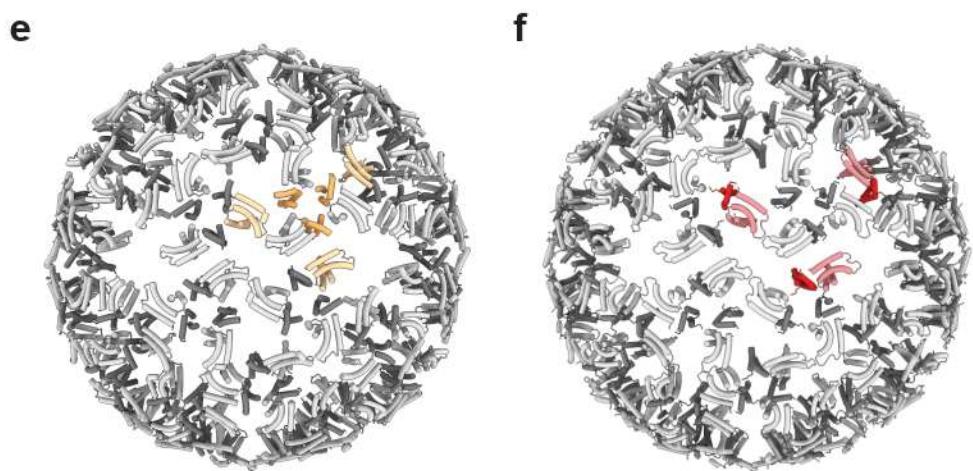
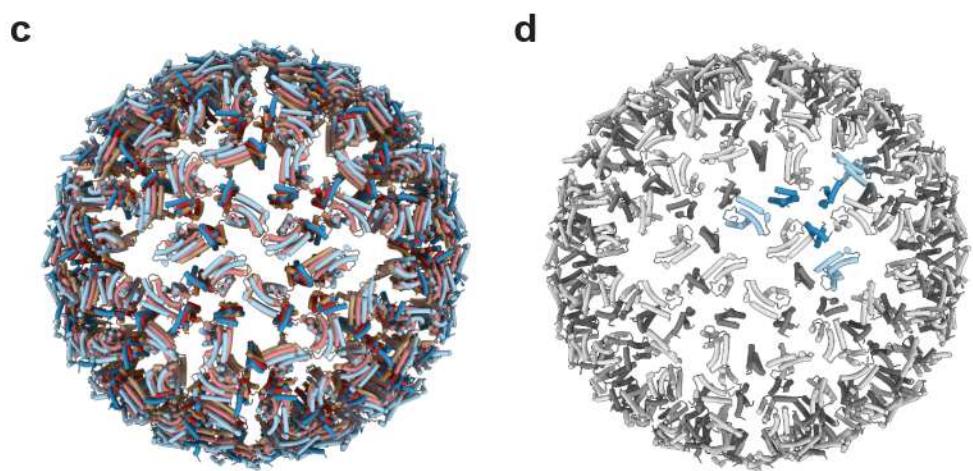
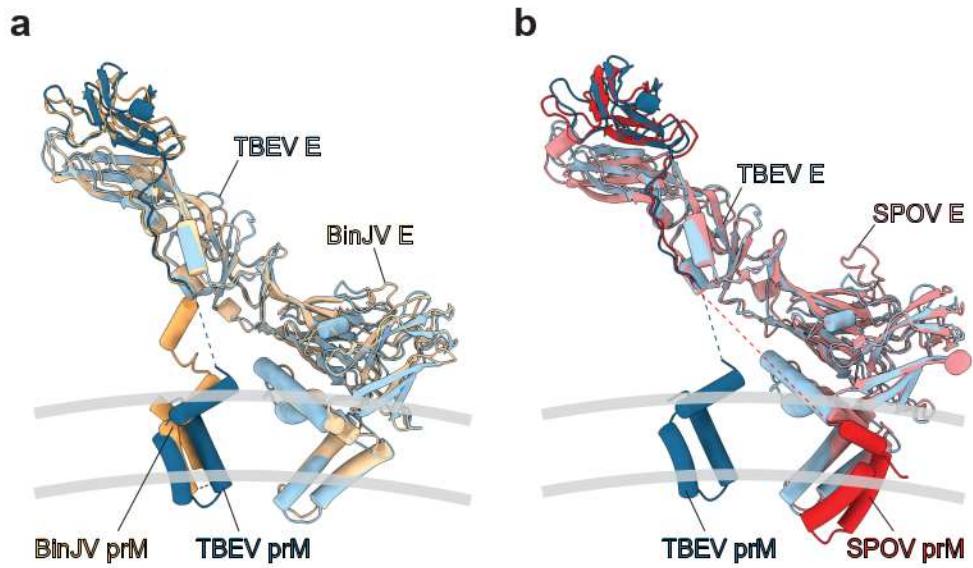
b

Immature Hypr (8.6 Å)





c

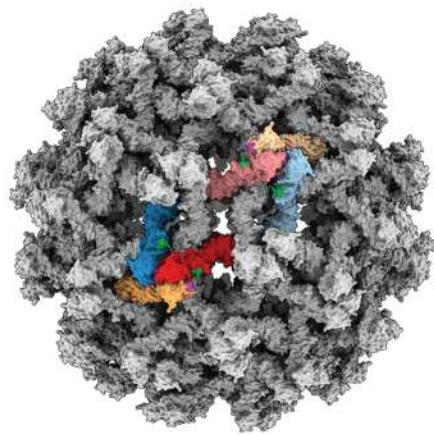

Immature Kuutsalo-14 (7.1 Å)

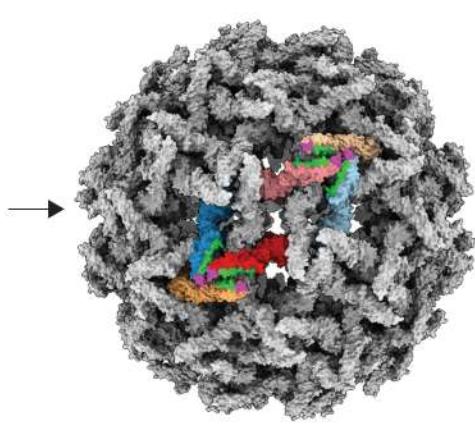

d




Kuutsalo-14 virion (3.3 Å)

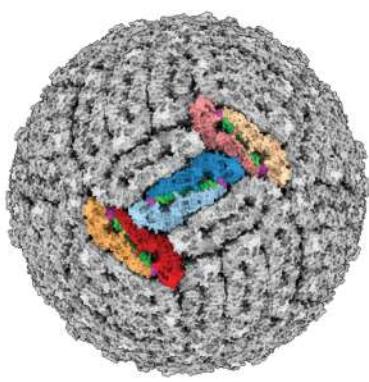
180 x
→

e**f**





a


Immature Kuutsalo-14

b

Immature Kuutsalo-14
(pr domains hidden)

c

Mature Kuutsalo-14

