

1                   **CD4<sup>+</sup> T cell senescence is associated with reduced**  
2                   **reactogenicity in severe/critical COVID-19**

3

4                   **Jie Zhang<sup>1,2,3†</sup>, Chun Chang<sup>1†</sup>, Zhaoyuan Liang<sup>2</sup>, Tingting Hu<sup>1</sup>, Zhongnan Yin<sup>2,3</sup>,**  
5                   **Ying Liang<sup>1</sup>, Ting Zhang<sup>2,3</sup>, Yanling Ding<sup>1</sup>, Xianlong Li<sup>2</sup>, Xiaoyan Gai<sup>1</sup>, Xiaoxue**  
6                   **Yang<sup>2,3</sup>, Xin Li<sup>1</sup>, Xixuan Dong<sup>2,3</sup>, Jiaqi Ren<sup>1</sup>, Yafei Rao<sup>1</sup>, Jun Wang<sup>1</sup>, Jianling Yang<sup>2</sup>,**  
7                   **Lixiang Xue<sup>2,3\*</sup>, Yongchang Sun<sup>1\*</sup>**

8

9                   <sup>1</sup> Department of Respiratory and Critical Care Medicine, Peking University Third  
10                  Hospital, Beijing, China

11                  <sup>2</sup> Center of Basic Medical Research, Institute of Medical Innovation and Research,  
12                  Peking University Third Hospital, Beijing, China.

13                  <sup>3</sup> Biobank, Peking University Third Hospital, Beijing, China.

14                  <sup>†</sup> These authors have contributed equally to this work

15                  <sup>\*</sup> These authors are corresponding authors

16

17                  **Corresponding Author**

18                  Yongchang Sun, [suny@bjmu.edu.cn](mailto:suny@bjmu.edu.cn)

19                  Lixiang Xue, [lixiangxue@hsc.pku.edu.cn](mailto:lixiangxue@hsc.pku.edu.cn).

20

21                  **Keywords: CD4<sup>+</sup> T cell senescence, COVID-19, spike-specific antibody, IL-2,**  
22                  **vaccine**

23 **Abstract**

24 **Background:** Aging is a critical risk factor for unfavorable clinical outcomes among  
25 COVID-19 patients and may affect vaccine efficacy. However, whether the senescence  
26 of T cells impact the progression to severe COVID-19 in the elderly individuals remains  
27 unclear.

28 **Methods:** By using flow cytometry, we analyzed the frequency of senescent T cells  
29 (Tsens) in the peripheral blood from 100 elderly patients hospitalized for COVID-19  
30 and compared the difference between mild/moderate and severe/critical illness. We also  
31 assessed correlations between the percentage of Tsens and the quantity and quality of  
32 spike-specific antibodies by ELISA, neutralizing antibody test kit and Elispot assay  
33 respectively, cytokine production profile of COVID-19 reactive T cells as well as  
34 plasma soluble factors by cytometric bead array (CBA).

35 **Results:** We found a significant elevated level of CD4<sup>+</sup> Tsens in severe/critical disease  
36 compared to mild/moderate illness and patients with a higher level of CD4<sup>+</sup> Tsens  
37 (>19.78%) showed a decreased survival rate as compared to those with a lower level  
38 (<19.78%), especially in the breakthrough infection. The percentage of CD4<sup>+</sup> Tsens was  
39 negatively correlated with spike-specific antibody titers, neutralization ability and  
40 COVID-19 reactive IL-2<sup>+</sup> CD4<sup>+</sup> T cells. Additionally, IL-2 producing T cells and  
41 plasma levels of IL-2 were positively correlated with antibody levels.

42 **Conclusion:** Our data illustrated that the percentage of CD4<sup>+</sup> Tsens in the peripheral  
43 blood could act as an efficient biomarker for the capacity of spike-specific antibody  
44 production and the prognosis of severe COVID-19, especially in the breakthrough

45 infection. Therefore, restoration of the immune response of CD4<sup>+</sup> Tsens is one of the  
46 key factors to prevent severe illness and improve vaccine efficacy in older adults.

47 **Introduction**

48 Aging is a critical risk factor for COVID-19 disease severity, clinical outcome and may  
49 affect vaccine efficacy. Old individuals showed the highest susceptibility to COVID-  
50 19, with higher hospitalization rates, severe illness rates and mortality<sup>1 2</sup>. Results of  
51 clinical trials on mRNA and recombinant spike protein vaccines indicated relatively  
52 low antibody response and safety in individuals older than 60 years<sup>3 4</sup>. However, some  
53 older adults benefit from COVID-19 vaccines<sup>5</sup>, suggesting heterogeneity of anti-viral  
54 immunity in the old individuals.

55 The mechanisms of impaired immune responses after infection or vaccination in old  
56 individuals were obscure. Recent studies suggested that the senescence of T cells may  
57 dampen humoral and cellular immunity to COVID-19 infection or vaccine. Patients  
58 with COVID-19 had increased amounts of CD8<sup>+</sup> T cells that express CD57, a marker  
59 of T cell senescence<sup>6</sup>. Moreover, compared to young adults, older individuals had a  
60 reduction of vaccine-induced spike-specific antibody and T cell response, which was  
61 negatively correlated with senescent CD8<sup>+</sup> T cells<sup>7-10</sup>. Even if a number of studies have  
62 described such alterations, no comprehensive investigation exists yet in patients aged  
63 more than 60 years by far. Therefore, there is an urgent need to assess how and to what  
64 extent senescent T cells are responsible for the progression of severe disease and  
65 suboptimal vaccine responses observed in older individuals.

66 In the present study, we described the association between senescent T cells, spike-  
67 specific antibody and T cell responses, plasma soluble factors and disease severity as  
68 well as clinical outcome in a cohort of COVID-19 patients with an advanced age of

69 more than 80 years. Our results demonstrated that CD4<sup>+</sup> Tsen, with defect in IL-2  
70 production may impaire quantity and quality spike-specific antibody production,  
71 consequently, enabling progression to severe disease. This finding suggests the  
72 potential of CD4<sup>+</sup> Tsen as a biomarker to predict compromised immune responses in  
73 the elderly and may be relevant for future vaccine strategies especially for the venerable  
74 old populations.

75

76 **1. Study design and human specimens**

77 This study was conducted at the Third Hospital of Peking University (Beijing, China).  
78 The inpatients admitted to the hospital from December 23, 2022, to January 19, 2023,  
79 who had been confirmed with SARS-CoV-2 infection by a nucleic acid–positive test  
80 and were enrolled in this study. Patients were divided into two groups according to the  
81 clinical classification of patients with novel coronavirus infection, first group is  
82 mild/moderate ill and the second group is severe/critical ill. Patients were defined as  
83 mild ill if their clinical symptoms were mild, and there was no sign of pneumonia on  
84 imaging. Patients were defined as moderate ill if they get persistent high fever $>3$  days  
85 or (and) cough, shortness of breath, etc, but the respiratory rate (RR) $<30$  times /min,  
86 and the finger oxygen saturation when breathing air at rest $>93\%$ . The imaging features  
87 of COVID-19 infection pneumonia can be seen. Patients were defined as severely ill if  
88 they met the following criteria: (1) respiratory distress (respiratory rate  $\geq 30$   
89 breaths/min); (2) pulse oxygensaturation  $\leq 93\%$  on room air; (3) low arterial  
90 oxygenation ratio (PaO<sub>2</sub>/fraction of inspired oxygen  $\leq 300$ ). Patients were defined as

91 critically ill if the met the following criteria: (1) respiratory failure requiring a form of  
92 mechanical ventilation; (2) shock; (3) complications with other organ failure that  
93 require monitoring and treatment in the intensive care unit (ICU).

94 Data on basic information (age, gender, and comorbidities) and medical history of  
95 present illness (laboratory values, treatment, et al) on admission were collected from  
96 electronic medical records for each participant.

97

98 **2. *Sample collection, processing and isolation of immunocytes***

99 Peripheral venous blood samples were collected from SARS-CoV-2 infected patients  
100 in Peking University Third Hospital immediately after confirmed with SARS-CoV-2  
101 infection by a nucleic acid–positive test. Firstly, the samples were centrifuged at 2000g  
102 for 10 minutes. And then the plasma on the top layer of the EDTA Vacutainer tubes (BD,  
103 NJ, USA) was aliquoted and stored at -80°C. And the residual samples were processed  
104 for lysed red blood cells using RBC lysis Buffer (Biolegend, CA, USA). White blood  
105 cells were collected for immunophenotyping assay. For intracellular cytokine staining  
106 and ELISPOT assay, peripheral blood mononuclear cells (PBMCs) were obtained from  
107 white blood cells after density gradient centrifugation in Ficoll (Sigma, MO, USA)

108

109 **3. *Flow cytometry***

110 Immune cells phenotyping (Panel S1), T cell senescence (Panel S2) and T cell  
111 activation (Panel S3) were determined using specific markers for innate leukocytes, T  
112 cells and cytokines. Briefly,  $1 \times 10^6$  white blood cells were stained with the Cellular

113 Senescence Detection Kit (Dojindo Molecular Technologies, Gaithersburg, MD)  
114 according to the manufacturer's instructions and cell surface molecules in Panel S1 and  
115 S2 were stained for 20 min in the dark at room temperature. SARS-CoV-2 specific or  
116 non-specific cytokines production by T cells was detected in Panel S3. For assessment  
117 of SARS-CoV-2 non-specific cytokines production,  $1 \times 10^6$  PBMCs were cultured with  
118 PMA (Biolegend, CA, USA) and Brefeldin A (Biolegend, CA, USA) for 5 hours. For  
119 assessment of SARS-CoV-2 specific cytokines production,  $2 \times 10^6$  PBMCs were  
120 cultured with 2 mg/mL SARS-CoV-2 S protein (MabTech, Stockholm, Sweden) for 24  
121 hours, Brefeldin A (Biolegend, CA, USA) was added 5 h before cell collection. PBMCs  
122 in Panel S3 were stained with surface makers of T cells firstly. Afterwards, PBMCs  
123 were fixed and permeabilized using the Staining Buffer Kit (BioLegend CA, USA).  
124 Lastly, intracellular proteins were stained. Cytoflex cytometer (Beckman, CA, USA)  
125 and Kaluza analysis flow cytometry software v. 2.1.1. was used for all flow cytometric  
126 analyses. All antibodies in the three panels were listed in Supplementary Table 1. The  
127 gating strategy was shown in Supplementary Figure 1.

128

129 **4. SARS-CoV-2 specific total IgG and IgM titer evaluation**

130 96-well plate (Thermo Fisher, MA, USA) were coated with 1  $\mu$ g/ml of WT spike protein,  
131 or WT and Omicron BF.7 RBD protein (Sino Biological, Beijing, China) at 4 °C  
132 overnight. Plates were then blocked with ELISA Assay Diluent (Biolegend, CA, USA)  
133 at room temperature for 2 h. Serum samples were serially diluted and added to the  
134 blocked plates before incubation at room temperature for an hour. After incubation,

135 bound antibodies were either detected with goat anti-human IgM-HRP antibody (Sigma,  
136 SL, USA) for IgM assessment or goat anti-human IgG-HRP (Invitrogen, CA, USA) for  
137 IgG assessment. After 45 minutes, plates were developed by TMB substrate (Biolegend,  
138 CA, USA) and the reactions were stopped by adding ELISA stop solution (Solarbio,  
139 Beijing, China). The absorbance at 450 nm and 630 nm were measured with Spark  
140 reader (Tecan, Männedorf, Switzerland). The endpoint dilution titer was calculated in  
141 GraphPad Prism using a 0.15 OD 450-630 nm cutoff.

142

143 **5. Neutralizing antibodies assay**

144 SARS-CoV-2 RBD neutralizing antibody test kit (Vazyme, Nanjing, China) was used  
145 for determining RBD neutralizing antibodies inhibition rate. Initial antibody dilution  
146 rate was 1:10 by adding 8  $\mu$ L sera into 72  $\mu$ L dilution buffer. And the next assay was  
147 based on the protocol of manufacturer. Briefly, the ACE2 binding plate was incubated  
148 with plasma at 37 °C for 20 minutes. Then the plate was washed with wash buffer and  
149 100  $\mu$ L TMB was added followed by incubation for 15 minutes at 37 °C. Then 50  $\mu$ L  
150 stop solution was added and the absorbance at 450 nm were measured with Spark reader  
151 (Tecan, Männedorf, Switzerland). Inhibition (%) = (1 – sample OD450/negative control  
152 OD450)  $\times$  100%.

153

154 **6. ELISPOT assay**

155 Cellular specific immune responses in the patients were assessed using IFN- $\gamma$  precoated  
156 ELISPOT kits (MabTech, Stockholm, Sweden), according to the manufacturer's

157 protocol. Briefly, the plates were blocked using RPMI 1640 (Hyclone, KCDC, USA)  
158 containing 10% FBS and incubated for 30 minutes. PBMCs were then plated at  $3 \times 10^5$   
159 cells/well, stimulated with 2 mg/ml human peptide pool for SARS-CoV-2 S protein  
160 (MabTech, Stockholm, Sweden), PMA (Biolegend, CA, USA) was used as positive  
161 control and RPMI 1640 was used as negative control. After incubation at 37°C, 5% CO<sub>2</sub>  
162 for 24 hours, plates were washed with wash buffer and biotinylated anti-human IFN- $\gamma$   
163 antibody was added followed by incubation for 2 hours at room temperature. Following  
164 the addition of AEC substrate solution, the numbers of spot-forming cells were counted  
165 using ELISPOT reader AID ELISPOT (AID, Strassberg, Germany).

166

167 **7. *Plasma soluble factors multiplex immune assay***

168 53 plasma samples were analyzed by LEGENDPlex™ using the Human  
169 Proinflammation Chemokine Panel 1, the Human Chemokine Panel 2 and Human  
170 CD8/NK Panel (Biolegend, CA, USA). The assay was performed according to the  
171 manufacturer's instructions. Flow cytometric analysis was performed on CytoFLEX S  
172 (Beckman Coulter). Data were analyzed using online software (Biolegend).

173

174 **8. *Statistical analysis***

175 GraphPad Prism 9 and SPSS 23 was used for graphic representation and statistical  
176 analysis. All reported probability values were two-tailed, and a P less than 0.05 was  
177 considered statistically significant. Statistical testing included t test (data conformed to  
178 the normal distribution), Man Whitney U test (data not conformed to the normal

179 distribution), chi square ( $\chi^2$ ) and Fisher's exact tests, and Kaplan-Meier survival  
180 analysis with Gehan-Breslow-Wilcoxon test. Correlation were tested by Spearman's  
181 rank coefficient (data not conformed to the normal distribution). Cut-off level (high vs.  
182 low) of Tsen was computed by log-rank maximization method.

183

184 **9. Study Approval**

185 All sampling and experimental steps in this study were approved by the Ethics  
186 Committee of Peking University Third Hospital (License No. IRB00006761-  
187 M2022865).

188

189 **Results**

190 **1. Patient clinical characteristics**

191 Demographics characteristics and clinical features of patients were displayed in Table  
192 1. The average age was  $80.10 \pm 9.89$  years, and 64 (of 100; 64%) of them were men.  
193 The average BMI of patients was  $23.81 \pm 3.91$  kg/m<sup>2</sup>; 38.5% (37 of 96) were overweight  
194 ( $24.0 \leq \text{BMI} \leq 27.9$  kg/m<sup>2</sup>) and 12% (12.5 of 96) were obese ( $\text{BMI} \geq 28.0$  kg/m<sup>2</sup>)  
195 according to the Chinese BMI cutoffs.

196 The most common comorbidities were hypertension (52 of 100; 52%), diabetes 25 of  
197 100; 25%), and cardiovascular diseases (24 of 100; 24%). cough (85 of 100; 85%), fever  
198 (82 of 100; 82%), sputum production (80 of 100; 80%) and dyspnea (60 of 100; 60%)  
199 were the most common symptoms at onset of illness. Compared with patients with  
200 mild/moderate illness, patients who were severe/critically ill were tend to more

201 dyspneic ( $p=0.057$ ). Other characteristics and symptoms had no significant difference  
202 between the 2 groups.

203 Compared with patients with mild/moderate illness, more severe/critically ill patients  
204 were received glucocorticoids (84 of 100; 84%) during the entire hospital stay. The  
205 comparisons of treatment and medication between the 2 groups are shown in Table 1.

206

207 Laboratory characteristics of 100 patients were collected and are presented in Table 2.

208 On admission, white blood cell counts were below the reference range in 2 (of 100; 2%)  
209 patients and above the reference range in 23 (of 100; 23%) patients. Neutrophil counts  
210 were higher in severely/critically ill patients than in mildly/moderately ill patients  
211 ( $p=0.018$ , respectively) and lymphocyte count were lower in severely/critically ill  
212 patients than in mild/moderate ill patients ( $p=0.004$ , respectively). The levels of  
213 coagulation function indexes such as D-dimer on admission were higher in  
214 severely/critically ill patients than in mildly/moderately ill patients ( $p=0.035$ ,  
215 respectively). Regarding the inflammatory markers, procalcitonin (PCT) is higher in  
216 severely/critically ill patients than in mildly/moderately ill patients ( $p=0.046$ ,  
217 respectively). No significant differences in C-reactive protein (CRP) levels,  
218 hemoglobin, serum albumin, total bilirubin, alanine aminotransferase, aspartate  
219 aminotransferase, creatinine and uric acid were observed between the 2 groups.

220

221

222 **2. Increased CD4<sup>+</sup> Tsens is increased in patients with severe/critical COVID-19.**

223 Loss of CD28 and gain of CD57 are prominent markers of senescent T cells <sup>11</sup>.  
224 Therefore, we used the markers CD28 and CD57 to identify four populations within T  
225 cells: CD28<sup>+</sup>CD57<sup>-</sup> (Tn), CD28<sup>-</sup>CD57<sup>-</sup> (Tdn), CD28<sup>+</sup>CD57<sup>+</sup> (Tdp) and CD28<sup>-</sup>CD57<sup>+</sup>  
226 (Tsen, gating strategy in Supplementary Figure 1). Several other senescence markers  
227 were also detected. Tsen had the highest SA- $\beta$ -gal activity and the expression of KLRG-  
228 1 compared with Tn, Tdn and Tdp subsets (Supplementary Figure 2a, b). Phenotype  
229 analysis revealed that Tsen were predominantly EM (CCR7<sup>-</sup>CD45RA<sup>-</sup>) or EMRA  
230 (CCR7<sup>-</sup>CD45RA<sup>+</sup>), whereas Tn were more naïve (CCR7<sup>+</sup>CD45RA<sup>+</sup>) and CM  
231 (CCR7<sup>+</sup>CD45RA<sup>-</sup>) cells (Supplementary Figure 2c). In addition, the percentage of Tn  
232 was reversely associated with the percentage of Tsen and Tsen/Tn ratio in both CD4<sup>+</sup>  
233 and CD8<sup>+</sup> T cells (Supplementary Figure 2d). We also found a significant correlation  
234 between CD4<sup>+</sup> Tsen and CD8<sup>+</sup> Tsen ( $r=0.30$ ,  $p=0.002$ , Supplementary Figure 2d),  
235 suggesting that the senescence of CD4<sup>+</sup> and CD8<sup>+</sup> T cells was synchronous.

236  
237 To determine whether T cell senescence was associated with COVID-19 severity, we  
238 compared the frequency of senescent T cells in the mild/moderate group with that in  
239 the severe/critical group. No change in the percentage of CD8<sup>+</sup> Tn, Tdn, Tdp and Tsen  
240 was noted in mild/moderate patients compared to severe/critical patients (Figure 1a).  
241 However, the percentage of CD4<sup>+</sup> Tn was markedly reduced while the percentage of  
242 CD4<sup>+</sup> Tsen was significantly increased, resulting in an increased Tsen/Tn ratio in  
243 severe/critical group compared to mild/moderate group (CD4<sup>+</sup> Tn,  $p=0.0303$ ; CD4<sup>+</sup>  
244 Tsen,  $p=0.0401$ ; CD4<sup>+</sup> Tsen/Tn,  $p=0.0334$ ; Figure 1a).

245

246 To study the relationship between T cell senescence and vaccine efficacy, patients were  
247 further divided into unvaccinated (n=68) and vaccinated (n=28) groups. The association  
248 was confirmed in vaccinated group, where patients who had less Tn but more Tsen  
249 CD4<sup>+</sup> T cells were more vulnerable to serious illness after a breakthrough infection  
250 (CD4<sup>+</sup> Tn, p=0.0007; CD4<sup>+</sup> Tsen, p=0.0044; CD4<sup>+</sup> Tsen/Tn, p=0.0037, Figure 1b).  
251 CD8<sup>+</sup> Tn, Tsen and Tsen/Tn ratio also showed similar trend (CD8<sup>+</sup> Tn, p=0.0661; CD8<sup>+</sup>  
252 Tsen, p=0.6313; CD8<sup>+</sup> Tsen/Tn, p=0.2053, Figure 1b), although not significant.  
253 Whereas, in unvaccinated patients, the percentage of Tn, Tsen as well as Tsen/Tn ratio  
254 were not associated with severity of COVID-19 (Figure 1b).

255

256 To further explore the correlation between T cells senescent with clinical characteristics,  
257 we examined a series of patients' clinical indicators with circulating immune profiles.  
258 We found senescent T cells accumulated with age, obesity and age-related diseases,  
259 such as cardiovascular disease and chronic obstructive pulmonary disease (COPD).  
260 However, in the very old individuals (age > 80 yrs old), the percentage of Tn and Tsen  
261 was not affected by age, BMI and Charlson Comorbidity Index, which indicates that  
262 Tsen may reach the plateau stage (Supplementary Figure 3a). CD8<sup>+</sup> Tsen was correlated  
263 positively with CRP ( $r=0.254$ ,  $p=0.012$ ) and LDH (lactate dehydrogenase;  $r=0.302$ ,  
264  $p=0.002$ ) but inversely with PLT (platelet;  $r=-0.219$ ,  $p=0.027$ ). CD4<sup>+</sup> Tn was positively  
265 correlated with Creatinine ( $r=0.225$ ,  $p=0.029$ ; Supplementary Figure 3a). To determine  
266 the relationship between systemic immune cell profile and T cell senescence, flow

267 cytometric analysis was performed on circulating immune cells in COVID-19 patients.  
268 In accordance with previous report<sup>12</sup>, both the percentage and cell counts of  
269 lymphocytes, CD3<sup>+</sup> T cells, CD4<sup>+</sup> T cells, CD8<sup>+</sup> T cells, B cells, NK cells, monocytes  
270 and DC (dendritic cells) showed statistically significant reduction in patients with  
271 severe/critical COVID-19 disease compared to mild/moderate disease (Supplementary  
272 Figure 3b,c). Moreover, CD8<sup>+</sup> Tsen was inversely correlated with lymphocytes, T cells,  
273 B cells, monocytes and DC, whereas CD4<sup>+</sup> Tsen was inversely correlated with  
274 monocytes and DC, which participated in antigen presenting (Supplementary Figure  
275 3d,e). These findings suggested distinct contributions of CD4<sup>+</sup> and CD8<sup>+</sup> Tsen on the  
276 progression of severe disease.

277

278 Next, we evaluated the association of CD4<sup>+</sup> Tsen with survival rate in COVID-19. The  
279 median value of CD4<sup>+</sup> Tsen was 5.19% (min 0.01%, max 64.95%). A CD4<sup>+</sup> Tsen cut-  
280 off (19.78%) was computed by log-rank maximization method (Supplementary Figure  
281 4). 16% (16/100) patients had  $\geq$  19.78% CD28<sup>-</sup>CD57<sup>+</sup> among CD4<sup>+</sup> T cells. As  
282 compared to patients with low levels CD4<sup>+</sup> Tsen (<19.78%), more patients in CD4<sup>+</sup>  
283 Tsen high group had developed severe and critical illness (87% versus 60%, p=0.045).  
284 Other clinical characteristics of patients with high and low levels of CD4<sup>+</sup> Tsen were  
285 comparable (Supplementary Table 2, 3). As shown in Figure 1, the survival rate was  
286 associated with peripheral blood levels of CD4<sup>+</sup> Tsen, where patients with high levels  
287 (>19.78%) showed a decreased survival rate as compared to those with low levels  
288 (<19.78%, 80% vs. 63%, p=0.13), especially in the breakthrough infection (87% versus

289 40%,  $p=0.02$ , Figure 1c). However, the survival rate was comparable between two  
290 groups in unvaccinated patients (75% versus 73%, Figure 1c). The association was  
291 confirmed by the survival analysis using Kaplan-Meier estimate, which shows CD4<sup>+</sup>  
292 Tsen may act as an efficient prognostic biomarker especially in the breakthrough  
293 infection (Figure 1d).

294

295 **3. High senescent CD4<sup>+</sup> T cells is correlated with lower spike-specific antibody level**  
296 Virus-neutralizing antibodies have been implied in protection against infection <sup>13,14</sup>. To  
297 test the relationship between T cell senescence and virus-specific antibody production,  
298 we measured IgG and IgM titers in the serum samples against the original SARS-CoV-  
299 2 strain (S1 and RBD, S receptor binding domain) and the Omicron variants BF.7  
300 (RBD). Since the domestic epidemic variant at that time was BF.7, the anti-BF.7 RBD  
301 antibody titers were significantly higher compared to anti-WT S1 and anti-WT RBD  
302 antibody titers (supplementary figure 5a). Indeed, vaccinated patients had higher levels  
303 of anti-spike specific IgG and IgM, but no difference in anti-BF.7 RBD IgM  
304 (supplementary figure 5b,c), suggesting that vaccination provided limited protection  
305 targeting Omicron variants in older adults. In the entire cohort, the anti-WT S1 IgG  
306 titers in patients with CD4<sup>+</sup> Tsen >19.78% (median, 89) were approximately 90% lower  
307 in median as compared with those in patients with CD4<sup>+</sup> Tsen <19.78% (median, 870;  
308 Figure 2a). Moreover, the median IgG and IgM titers against BF.7 RBD were extremely  
309 dampened in CD4<sup>+</sup> Tsen >19.78% group (Figure 2a, b). These findings were confirmed  
310 in both primary infections and breakthrough infections (Figure 2a,b).

311

312 We next went on to assess the functional activity of spike-specific antibodies through  
313 measurement of neutralizing activity against ancestral SARS-CoV-2 variants. The  
314 inhibition rate was higher in vaccinated patients than that in unvaccinated ones  
315 (70.28% $\pm$ 32.74% versus 10.68% $\pm$ 13.08%, p<0.0001, Supplementary Figure 5d),  
316 indicating that neutralizing activity is relatively enhanced following vaccination.  
317 However, in vaccinated subgroup, neutralization of ancestral virus was markedly  
318 impaired in patients with CD4<sup>+</sup> Tsen >19.78% compared with patients with CD4<sup>+</sup> Tsen  
319 <19.78% (37.99% $\pm$ 43.59% versus 77.97% $\pm$ 25.25%, p=0.049, Figure 2c). The same  
320 trend was also found in the entire cohort as well as the unvaccinated subgroup (Figure  
321 2c).

322

323 We also examined the association of spike-specific antibodies and T cell senescence.  
324 The same trend was found in the whole population, the unvaccinated group and the  
325 vaccinated group. In the whole cohort, anti-spike-specific IgG, anti-RBD IgG and anti-  
326 BF.7 RBD IgG levels were negatively correlated with senescent CD4<sup>+</sup> and CD8<sup>+</sup> T cells  
327 (Figure 2d). Importantly, in unvaccinated patients, anti-BF.7 RBD IgG and IgM levels  
328 were strongly reversely correlated with CD4<sup>+</sup> Tsen. Moreover, neutralizing activity  
329 showed a positive relationship with CD4<sup>+</sup> Tn, but a negative relationship with CD4<sup>+</sup>  
330 Tsen and this phenomenon was more obvious in vaccinated group (Figure 2d).

331

332 Overall, these results above indicated that the accumulation of senescent CD4<sup>+</sup> T cells  
333 may impair the production and neutralizing activity of spike-specific antibodies, which  
334 may further accelerate the severity and mortality in COVID-19 older patients.

335

336 **4. Higher granzyme B and lower IL-2 is associated with defect in antibody production**

337 To further characterize the phenotypic function of CD4<sup>+</sup> Tsen, we made the comparison  
338 of the cytokine production between different amount of CD4<sup>+</sup> Tsen groups. The data  
339 revealed that patients in CD4<sup>+</sup> Tsen high group had less IL-2<sup>+</sup>CD4<sup>+</sup> T cells but more  
340 granzyme B<sup>+</sup>CD4<sup>+</sup>T cells compared to patients in CD4<sup>+</sup> Tsen low group (Figure 3a). In  
341 line with these findings, we also observed a remarkable elevation of granzyme B<sup>+</sup> T  
342 cells but a reduction of IL-2<sup>+</sup> T cells in patients with severe/critical COVID-19  
343 compared to patients with mild/moderate illness (supplementary figure 6a). In addition,  
344 the amount of both CD4<sup>+</sup> and CD8<sup>+</sup> Tsen were positively correlated with the percentage  
345 of granzyme B producing T cells, and negatively correlated with the frequency of IL-2  
346 producing T cells (supplementary figure 6b). Cytokine production profiles analysis  
347 showed that compare to Tn, Tdn and Tdp, Tsen preferred to produce granzyme B, TNF-  
348  $\alpha$  and IFN- $\gamma$ , but the production of IL-2 was impaired (supplementary figure 6c).  
349 Significantly, the percentage of IL-2<sup>+</sup> T cells was positively correlated with the  
350 production and neutralizing activity of spike-specific antibodies (Figure 3b), indicating  
351 that the defect in IL-2 production of CD4<sup>+</sup> Tsen may be responsible for their lower IgG  
352 responses.

353

354 Then, we measured SARS-CoV-2-specific T cell responses by stimulating PBMCs with  
355 pools of overlapping peptides spanning the SARS-CoV-2 S1 and S2 subunits of the  
356 Spike protein using interferon- $\gamma$  (IFN- $\gamma$ ) enzyme-linked immunospot (ELISpot) assay.  
357 The overall Spike-specific T cell response in patients with CD4 $^{+}$  Tsen >19.78% was  
358 slightly lower than in patients with CD4 $^{+}$  Tsen <19.78% (18 versus 27, p=0.16; Figure  
359 3c). Since the ELISpot assay does not allow identification of T cell subsets, we utilized  
360 intracellular cytokine staining by flow cytometry to further characterize the phenotype  
361 of responding cells. PBMCs were stimulated with the Spike peptide pool and CD4 $^{+}$  and  
362 CD8 $^{+}$  T cells were analyzed for the production of granzyme B, tumor necrosis factor- $\alpha$   
363 (TNF- $\alpha$ ), IFN- $\gamma$  and interleukin-2 (IL-2). The gating strategy is depicted in  
364 supplementary Figure 1. Due to the small numbers, we could not compare CD4 $^{+}$   
365 Tsen>19.78% (n=2) to CD4 $^{+}$  Tsen<19.78% (n=21). Instead, we investigated whether  
366 there was a difference between mild/moderate group and severe/critical group. In  
367 agreement with the results obtained with the IFN- $\gamma$  ELISpot assay, IFN- $\gamma$  and TNF- $\alpha$ -  
368 producing CD4 $^{+}$  and CD8 $^{+}$  T cells showed a decreased tendency in severe/critical  
369 illness compared to mild/moderate illness (Figure 3d). Similarly, the production of IL-  
370 2 in spike-specific CD4 $^{+}$  and CD8 $^{+}$  T cells was significantly higher in mild/moderate  
371 illness (Figure 3d). No differences were found between severity of illness in relation to  
372 T cells producing granzyme B (Figure 3d). Phenotype analysis revealed that the  
373 majority of IL-2 $^{+}$ , TNF- $\alpha$  $^{+}$  and IFN- $\gamma$  $^{+}$  spike specific T cells were Tn, whereas most of  
374 granzyme B $^{+}$  spike-specific T cells were Tsen (Figure 3e).

375

376 Taken together, our findings suggested that higher granzyme B and lower IL-2 is the  
377 distinct feature of CD4<sup>+</sup> Tsen, which is associated with defect in spike-specific antibody  
378 production.

379

380 **5. Tsens and spike-specific antibodies is associated with plasma inflammatory factors**

381 Finally, plasma level of 39 soluble factors were detected by CBA in 53 COVID-19  
382 patients. Consistent with previous report, severe/critical patients showed increased  
383 plasma level of IL-6 compared to mild/moderate patients ( $71.54\pm23.36$  pg/ml versus  
384  $22.02\pm9.565$  pg/ml,  $p=0.130$ , Supplementary Table 4). No other significant differences  
385 were found in our cohort, indication that as the key component of SASP (Senescent  
386 associated secretory phenotype), IL-6 may mediate important inflammatory role in  
387 COVID-19 progression.

388

389 Next, we analyzed potential correlations among spike-specific antibody levels and  
390 plasma soluble factors. Plasma level of cytokines and chemokines have been grouped  
391 according to one of their main functions, as reported in (Figure 4a). As expected, IL-2  
392 was positively related to spike-specific antibody. Similarly, T cell related cytokines, IL-  
393 4 and IL-17A, as well as pro-inflammatory cytokines, IL-1 $\alpha$ , IL-1 $\beta$  and IL-11, were  
394 positively correlated with levels of spike-specific IgG and IgM. These cytokines were  
395 involved in regulating T cell activation, inducing Th2 polarization and stimulating B  
396 cell antibody production<sup>15-17</sup>. However, we observed spike-specific antibodies were  
397 reversely correlated with IL-18 and IL-22. Regarding chemokines, spike specific

398 antibodies, especially anti-BF.7 RBD IgM, was significantly associated with CXCL5,  
399 but negative associated with CCL4, CXCL9, CXCL10, CXCL11, which were reported  
400 to increase with disease severity <sup>18</sup>. In addition, anti-viral factors exhibited different  
401 relationship with spike-specific antibodies. Levels of spike-specific antibody was  
402 positively correlated with IFN- $\gamma$  and granzyme A and negatively correlated with  
403 granulysin and perforin, indicating that cellular immunity and humoral immunity may  
404 function in different ways.

405

406 Moreover, we examined relationships between levels of plasma soluble molecules and  
407 T cell senescence. As shown in (Figure 4b), several paired parameters were identified  
408 with 3 types of significant correlations. Molecules in group 1, such as IL-18, CCL4,  
409 CXCL9, CXCL10 and CXCL11, showed negative relations with spike-specific  
410 antibody levels, but had positive relations with the frequency of Tsen in the peripheral  
411 blood. Molecules in group 2, such as IL-2, IL-4, IL-1 $\alpha$ , IL-1 $\beta$  and CXCL5, were  
412 positively correlated with spike-specific antibody levels, while negatively correlated  
413 with the percentage of Tsen. Molecules in group 3, including CCL2, CCL11 and CCL17,  
414 exhibit a remarkable positive correlation with CD4 $^+$  Tsen, whereas had no significant  
415 connection with spike-specific antibody production. These results indicated that  
416 molecules in group 1 and group 2 may be involved in the decreased ability of senescent  
417 T cells in helping antibody production, while group 3 molecules may increase the risk  
418 of severe disease in other ways.

419

420 **Discussion**

421 In this study, we investigated the role of T cell senescence in elderly patients with  
422 primary and breakthrough COVID-19 infections. We demonstrated that elderly patients  
423 with severe/critical illness had higher CD4<sup>+</sup> Tsen compared with elderly patients with  
424 mild/severe disease. And the mortality rate was higher in patients with CD4<sup>+</sup> Tsen >  
425 19.78%. This phenomenon was more remarkable in vaccinated individuals. The  
426 percentage of CD4<sup>+</sup> Tsens was correlated inversely with spike-specific IgG and IgM  
427 levels and neutralization ability. Moreover, IL-2 producing T cells and plasma levels of  
428 IL-2 was positively correlated with antibody levels. Our data for the first time illustrated  
429 that the percentage of CD4<sup>+</sup> Tsen in the peripheral blood may act as an efficient  
430 biomarker for predicting the severity and prognosis of COVID-19 in older patients,  
431 especially in the breakthrough infection.

432

433 Immune responses to SARS-CoV-2 or vaccination are impacted by aging, CMV  
434 infection, as well as age related disease such as obesity, cardiometabolic diseases and  
435 frailty<sup>7,19,20</sup>. However, in our cohort, these clinical parameters were not correlated with  
436 disease severity or vaccine efficacy (Table 1), suggesting that other factors may be  
437 responsible for the individual variability in the outcome of COVID-19. We found an  
438 accumulation of CD4<sup>+</sup> Tsen in severe/critical patients compared to mild/moderate  
439 patients (Figure 1a,b) and the death rate was significantly elevated in elderly patients  
440 with CD4<sup>+</sup> Tsen > 19.78% (Figure 1c). Importantly, aging, cytomegalovirus (CMV)  
441 infection, as well as age related disease are reported to accelerate the senescence of T

442 cells<sup>7,21</sup>. Moreover, shorter leukocyte telomere length, a hallmark of biological aging,  
443 was associated with worse COVID-19 outcomes<sup>1</sup>. Our results indicated that for  
444 individuals in the later years of life, the senescence of CD4<sup>+</sup> T cells might be one of the  
445 reasons why age or age-related disease is more likely to cause sever COVID-19.

446

447 The accumulation of senescent T cells is more pronounced for CD8<sup>+</sup> T cells than CD4<sup>+</sup>  
448 T cells with advanced age and CMV infection<sup>22 23</sup>. Therefore, when compared to young  
449 individuals, senescent SARS-CoV-2-Reactive CD8<sup>+</sup> T Cells accumulated in elderly  
450 individuals, whereas CD4<sup>+</sup> T cells proliferation and Th1 cytokine production upon  
451 COVID-19 recognition was comparable between elderly and young individuals<sup>19</sup>.  
452 However, we found an accumulation of CD4<sup>+</sup> Tsen, but not CD8<sup>+</sup> Tsen, in the peripheral  
453 blood of severe/critical patients and was positively correlated with death rate (Figure  
454 1a). These data suggested that within elderly patients, the defect in CD4<sup>+</sup> Tsen may be  
455 responsible for immune responsiveness to COVID-19 infection and vaccination.

456

457 Both cellular and humoral immunity are involved in antiviral response against COVID-  
458 19<sup>24,25</sup>. Humoral immunity is mediated by antibodies and memory B cells. Antibodies  
459 block infection by binding virus and preventing viral entry into host cells. Cellular  
460 immunity includes helper CD4<sup>+</sup> T cells and cytotoxic CD8<sup>+</sup> T cells. Since T cells do not  
461 recognize viruses until they have entered the host cell, T cells cannot prevent host cells  
462 from initially becoming infected, but they can respond rapidly once infection has  
463 occurred to limit virus replication and spread. Emerging evidence supports that immune

464 responses that operate rapidly and efficiently after initial infection could prevent  
465 progression to severe disease<sup>26</sup>. The spike T cell responses peaked and remained  
466 unchanged after the first time of spike exposures <sup>27</sup>, whereas the peak levels of anti-  
467 RBD antibody were observed after the second dose of inactivated, mRNA or adenovirus  
468 vaccination<sup>10,27-29</sup>. These studies indicate the critical role of T cell immunity for long-  
469 term protection by COVID-19 vaccines. In our cohort, the spike-specific antibody titers  
470 were higher in vaccinated group than unvaccinated group (supplementary figure 5b-d).  
471 The quantity and quality of spike-specific antibody as well as the frequency of IL-2<sup>+</sup>  
472 spike-specific CD4<sup>+</sup> and CD8<sup>+</sup> T cells was negatively correlated with CD4<sup>+</sup> Tsen  
473 (Figure 2d, 3d). These findings suggest the COVID-19 vaccines could prevent  
474 progression to severe disease in elderly individuals with low percentage of CD4<sup>+</sup> Tsens.  
475 In agreement, we found that the predictive effect of CD4<sup>+</sup> Tsen on severe/critical  
476 disease was more significant in the vaccine group (Figure 1). Our findings also indicate  
477 that for elderly individuals with high levels of CD4<sup>+</sup> Tsen, early antiviral therapy or the  
478 direct neutralizing antibody administration might be the alternative therapeutics  
479 approach.

480

481 There are several reasons for the susceptible to severe COVID-19 in elderly patients  
482 with accumulated Tsen. On one hand, insufficient epitope specific T cell clones may be  
483 responsible for impaired cellular immunity to COVID-19 infection in old adults. TCR $\beta$   
484 diversity roughly declines linearly with age<sup>30</sup> and the efficiency of TCR signaling is  
485 compromised in senescent T cells<sup>31</sup>. Compared to younger peoples (median age 63), the

486 spike-specific cellular immune responses in older donors (median age 83) were  
487 impaired following vaccination<sup>8</sup>. Less CD8<sup>+</sup> T cell clone expansion specific to SARS-  
488 CoV-2<sup>10</sup> as well as lower induction and early contraction of CD4<sup>+</sup> T cell responses were  
489 also reported in older adults<sup>29</sup>. In accordance with these reports, a decline in spike-  
490 specific IFN- $\gamma$  and IL-2 producing T cells was found in patients with elevated CD4<sup>+</sup>  
491 Tsen (Figure 3c,d). Although Tsen are more capable of producing granzyme B than  
492 other subsets (Figure 3a, supplementary figure 6b,c), our data suggest that granzyme B  
493 alone may serve as two-edged sword, killing the virus, but aggravating pulmonary  
494 damage and fibrosis<sup>32</sup>.

495

496 On the other hand, T cell senescence may affect the production of COVID-19 specific  
497 antibodies. Recent studies showed that vaccine-induced Spike-specific antibody was  
498 inversely correlated with senescent CD8<sup>+</sup> T cells<sup>7,9</sup>. Likewise, we found that spike-  
499 specific antibody titer and neutralization ability was negatively associated with CD4<sup>+</sup>  
500 Tsen in old adults (Figure 2), indicating that CD4<sup>+</sup> Tsen may have defect in promoting  
501 B cell antibody production. We and others reported a decline of IL-2 production in aged  
502 patients<sup>9,33</sup> or patients with CD4<sup>+</sup> Tsen > 19.78% (Figure 3a). IL-2 enhances T cell  
503 activation by stimulating expansion and differentiation of conventional T cells<sup>34</sup>, which  
504 may delay the onset of lymphopenia for COVID-19 patients<sup>35,36</sup>. T cells derived IL-2  
505 was also able to promote the proliferation and antibodies production of B cells<sup>37</sup>.  
506 Currently, one clinical trial is investigating the potential of administrating of IL-2 in the  
507 treatment of COVID-19<sup>38</sup>.

508

509 Besides the findings described above, our data has to be interpreted carefully due to  
510 some limitations. First, our clinical studies were conducted in a single institution and  
511 the sample size was limited. Therefore, the cut-off value (19.78%) can be varied due to  
512 the population size. Second, we did not detect the senescence and function of antigen-  
513 presenting cells and B cells that are also critical for vaccine-induced immunity, although  
514 it is reported that they are less affected by aging than T cells<sup>39</sup>. Third, we provided  
515 evidence only of associations between CD4<sup>+</sup> Tsen responses with antibody and  
516 COVID-19 infection severity. Further studies are warranted to investigate causal  
517 relationships among these parameters.

518

519 **Conclusions**

520 In conclusion, we demonstrated the accumulation of CD4<sup>+</sup> Tsen, with defect in IL-2  
521 production, was negatively correlated with the quantity and quality spike-specific  
522 antibody production, potentially enabling progression to severe outcome. Our study  
523 highlights CD4<sup>+</sup> Tsen as a better indicator than other clinical parameters for immune  
524 response to COVID-19 infection in older adults. These findings suggest that vaccines  
525 which provoke CD4<sup>+</sup> specific immunity might be efficacious for individuals in the later  
526 years of life or the direct neutralizing antibody administration for the high CD4<sup>+</sup> Tsen  
527 patients might be the alternative therapeutics approach.

528

529 **Abbreviations**

|               |                                                 |
|---------------|-------------------------------------------------|
| ACE           | angiotensin converting enzyme                   |
| BMI           | body mass index                                 |
| CD            | cluster of differentiation                      |
| COVID         | corona virus disease                            |
| CBA           | cytometric bead array                           |
| CRP           | C-reactive protein                              |
| CM            | central memory                                  |
| COPD          | chronic obstructive pulmonary disease           |
| CXCL          | C-X-C motif ligand                              |
| CCL           | C-C motif ligand                                |
| DC            | dendritic cells                                 |
| ELISA         | enzyme-linked immunosorbent assay               |
| EliSpot       | enzyme-linked immunoblot                        |
| EM            | effector memory                                 |
| EMRA          | terminally differentiated effector cells        |
| EDTA          | ethylene diamine tetraacetic acid               |
| IL            | interleukin                                     |
| ICU           | intensive care unit                             |
| IgG           | immunoglobulin G                                |
| IgM           | immunoglobulin M                                |
| IFN- $\gamma$ | interferon- $\gamma$                            |
| LDH           | lactate dehydrogenase                           |
| PCT           | procalcitonin                                   |
| PLT           | platelet                                        |
| PBMCs         | peripheral blood mononuclear cells              |
| RBD           | receptor binding domain                         |
| RBC           | red blood cell                                  |
| RR            | respiratory rate                                |
| SARS-CoV-2    | severe acute respiratory syndrome coronavirus 2 |
| SASP          | senescent associated secretory phenotype        |
| Tsens         | senescent T cells                               |
| TNF- $\alpha$ | tumor necrosis factor                           |
| Th            | helper T cells                                  |
| WT            | wild type                                       |

530

531 **Conflict of interest**

532 The authors declare that the research was conducted in the absence of any commercial  
533 or financial relationships that could be construed as a potential conflict of interest.

534

535 **Author contributions**

536 LXX, YCS, JZ and CC contributed to the concept development and study design. JZ,  
537 ZYL, ZNY, TZ, XXY and XXD performed the laboratory studies. TTH, YL, YLD,  
538 XYG, XL, JQR, YFR, JW, CC and YCS collected the clinical data. JZ, ZYL, TTH,  
539 XLL, JLY and LXX contributed to data analysis, figure preparation and drafted the  
540 manuscript. All authors read and approved the final manuscript.

541

542 **Funding**

543 This work was supported by Youth Program of National Natural Science Foundation of  
544 China (81901570), General Program of National Natural Science Foundation of China  
545 (82072870), and Peking University Third Hospital Talent Program (BYSY2022047,  
546 BYSYZD2021003 and BYSYZD2019045).

547

548 **Acknowledgements**

549 The authors acknowledge the contribution of all investigators at the participating study  
550 sites.

551

552 **References**

553

554 1 Zhang, J. *et al.* Changes in contact patterns shape the dynamics of the COVID-  
555 19 outbreak in China. *Science* **368**, 1481–1486, doi:10.1126/science.abb8001  
556 (2020).

557 2 Shahid, Z. *et al.* COVID-19 and Older Adults: What We Know. *J Am Geriatr Soc*  
558 **68**, 926–929, doi:10.1111/jgs.16472 (2020).

559 3 Ramasamy, M. N. *et al.* Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine  
560 administered in a prime-boost regimen in young and old adults (COV002): a  
561 single-blind, randomised, controlled, phase 2/3 trial. *Lancet* **396**, 1979–1993,  
562 doi:10.1016/S0140-6736(20)32466-1 (2021).

563 4 Anderson, E. J. *et al.* Safety and Immunogenicity of SARS-CoV-2 mRNA-1273  
564 Vaccine in Older Adults. *N Engl J Med* **383**, 2427–2438,  
565 doi:10.1056/NEJMoa2028436 (2020).

566 5 Oyebanji, O. A., Mylonakis, E. & Canaday, D. H. Vaccines for the Prevention  
567 of Coronavirus Disease 2019 in Older Adults. *Infect Dis Clin North Am* **37**, 27–  
568 45, doi:10.1016/j.idc.2022.11.002 (2023).

569 6 De Biasi, S. *et al.* Marked T cell activation, senescence, exhaustion and  
570 skewing towards TH17 in patients with COVID-19 pneumonia. *Nat Commun* **11**, 3434,  
571 doi:10.1038/s41467-020-17292-4 (2020).

572 7 Semelka, C. T. *et al.* Frailty impacts immune responses to Moderna COVID-19  
573 mRNA vaccine in older adults. *Immun Ageing* **20**, 4, doi:10.1186/s12979-023-  
574 00327-x (2023).

575 8 Parry, H. *et al.* Vaccine subtype and dose interval determine immunogenicity  
576 of primary series COVID-19 vaccines in older people. *Cell Rep Med* **3**, 100739,  
577 doi:10.1016/j.xcrm.2022.100739 (2022).

578 9 Palacios-Pedrero, M. A. *et al.* Signs of immunosenescence correlate with poor  
579 outcome of mRNA COVID-19 vaccination in older adults. *Nature Aging* **2**, 896–+,  
580 doi:10.1038/s43587-022-00292-y (2022).

581 10 Xiao, C. C. *et al.* Insufficient epitope-specific T cell clones are responsible  
582 for impaired cellular immunity to inactivated SARS-CoV-2 vaccine in older  
583 adults. *Nature Aging*, doi:10.1038/s43587-023-00379-0 (2023).

584 11 Lee, Y. H. *et al.* Senescent T Cells Predict the Development of Hyperglycemia  
585 in Humans. *Diabetes* **68**, 156–162, doi:10.2337/db17-1218 (2019).

586 12 Huang, W. *et al.* Lymphocyte Subset Counts in COVID-19 Patients: A Meta-  
587 Analysis. *Cytometry A* **97**, 772–776, doi:10.1002/cyto.a.24172 (2020).

588 13 Jansen, J. M., Gerlach, T., Elbahesh, H., Rimmelzwaan, G. F. & Saletti, G.  
589 Influenza virus-specific CD4+ and CD8+ T cell-mediated immunity induced by  
590 infection and vaccination. *J Clin Virol* **119**, 44–52,  
591 doi:10.1016/j.jcv.2019.08.009 (2019).

592 14 Kreye, J. *et al.* A Therapeutic Non-self-reactive SARS-CoV-2 Antibody Protects  
593 from Lung Pathology in a COVID-19 Hamster Model. *Cell* **183**, 1058–1069 e1019,  
594 doi:10.1016/j.cell.2020.09.049 (2020).

595 15 Nakae, S., Asano, M., Horai, R. & Iwakura, Y. Interleukin-1 beta, but not  
596 interleukin-1 alpha, is required for T-cell-dependent antibody production.  
597 *Immunology* **104**, 402–409, doi:10.1046/j.1365-2567.2001.01337.x (2001).

598 16 Nakae, S., Asano, M., Horai, R., Sakaguchi, N. & Iwakura, Y. IL-1 enhances T  
599 cell-dependent antibody production through induction of CD40 ligand and OX40  
600 on T cells. *J Immunol* **167**, 90–97, doi:10.4049/jimmunol.167.1.90 (2001).

601 17 Fung, K. Y. *et al.* Emerging roles for IL-11 in inflammatory diseases. *Cytokine*  
602 **149**, 155750, doi:10.1016/j.cyto.2021.155750 (2022).

603 18 Liao, M. *et al.* Single-cell landscape of bronchoalveolar immune cells in  
604 patients with COVID-19. *Nat Med* **26**, 842–844, doi:10.1038/s41591-020-0901-9  
605 (2020).

606 19 Jo, N. *et al.* Aging and CMV Infection Affect Pre-existing SARS-CoV-2-Reactive  
607 CD8(+) T Cells in Unexposed Individuals. *Front Aging* **2**, 719342,  
608 doi:10.3389/fragi.2021.719342 (2021).

609 20 Retuerto, M. *et al.* Shorter telomere length is associated with COVID-19  
610 hospitalization and with persistence of radiographic lung abnormalities.  
611 *Immun Ageing* **19**, 38, doi:10.1186/s12979-022-00294-9 (2022).

612 21 Zhang, J., He, T., Xue, L. & Guo, H. Senescent T cells: a potential biomarker  
613 and target for cancer therapy. *EBioMedicine* **68**, 103409,  
614 doi:10.1016/j.ebiom.2021.103409 (2021).

615 22 Martinez-Zamudio, R. I. *et al.* Senescence-associated beta-galactosidase  
616 reveals the abundance of senescent CD8+ T cells in aging humans. *Aging Cell*  
617 **20**, e13344, doi:10.1111/acel.13344 (2021).

618 23 Wertheimer, A. M. *et al.* Aging and cytomegalovirus infection differentially  
619 and jointly affect distinct circulating T cell subsets in humans. *J Immunol*  
620 **192**, 2143–2155, doi:10.4049/jimmunol.1301721 (2014).

621 24 Li, Q. *et al.* Immune response in COVID-19: what is next? *Cell Death Differ*  
622 **29**, 1107–1122, doi:10.1038/s41418-022-01015-x (2022).

623 25 Schmidt, T. *et al.* Cellular immunity predominates over humoral immunity after  
624 homologous and heterologous mRNA and vector-based COVID-19 vaccine regimens  
625 in solid organ transplant recipients. *Am J Transplant* **21**, 3990–4002,  
626 doi:10.1111/ajt.16818 (2021).

627 26 Wherry, E. J. & Barouch, D. H. T cell immunity to COVID-19 vaccines. *Science*  
628 **377**, 821–822, doi:10.1126/science.add2897 (2022).

629 27 Keeton, R. *et al.* Impact of SARS-CoV-2 exposure history on the T cell and IgG  
630 response. *Cell Rep Med* **4**, 100898, doi:10.1016/j.xcrm.2022.100898 (2023).

631 28 Liwsrisakun, C. *et al.* Neutralizing antibody and T cell responses against  
632 SARS-CoV-2 variants of concern following ChAdOx-1 or BNT162b2 boosting in the  
633 elderly previously immunized with CoronaVac vaccine. *Immun Ageing* **19**, 24,  
634 doi:10.1186/s12979-022-00279-8 (2022).

635 29 Jo, N. *et al.* Impaired CD4(+) T cell response in older adults is associated  
636 with reduced immunogenicity and reactogenicity of mRNA COVID-19 vaccination.  
637 *Nature Aging* **3**, 82–+, doi:10.1038/s43587-022-00343-4 (2023).

638 30 Britanova, O. V. *et al.* Age-related decrease in TCR repertoire diversity

639 measured with deep and normalized sequence profiling. *J Immunol* **192**, 2689–  
640 2698, doi:10.4049/jimmunol.1302064 (2014).

641 31 Pereira, B. I. *et al.* Sestrins induce natural killer function in senescent-  
642 like CD8(+) T cells. *Nat Immunol* **21**, 684–694, doi:10.1038/s41590-020-0643-3  
643 (2020).

644 32 Cheon, I. S. *et al.* Immune signatures underlying post-acute COVID-19 lung  
645 sequelae. *Sci Immunol* **6**, eabk1741, doi:10.1126/sciimmunol.abk1741 (2021).

646 33 Lo Tartaro, D. *et al.* Molecular and cellular immune features of aged patients  
647 with severe COVID-19 pneumonia. *Commun Biol* **5**, doi:ARTN 59010.1038/s42003-  
648 022-03537-z (2022).

649 34 Shi, H. B. *et al.* The inhibition of IL-2/IL-2R gives rise to CD8(+) T cell  
650 and lymphocyte decrease through JAK1-STAT5 in critical patients with COVID-  
651 19 pneumonia. *Cell Death Dis* **11**, doi:ARTN 42910.1038/s41419-020-2636-4 (2020).

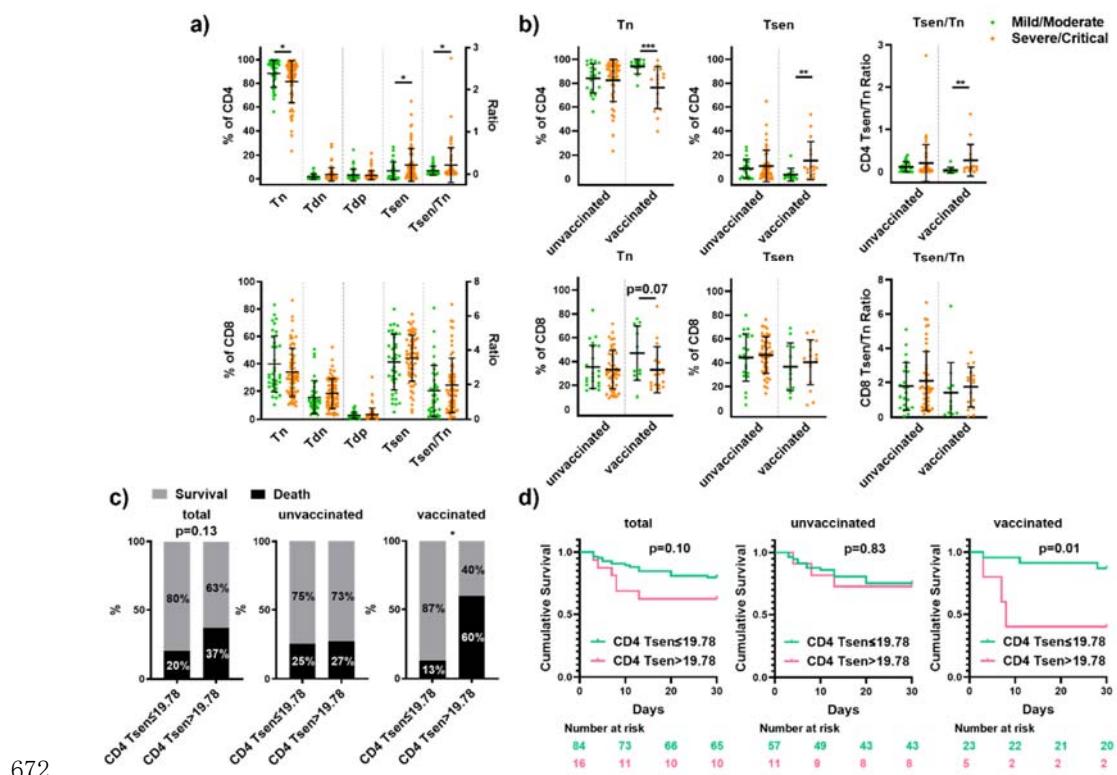
652 35 Zhang, Y. *et al.* Potential contribution of increased soluble IL-2R to  
653 lymphopenia in COVID-19 patients. *Cell Mol Immunol* **17**, 878–880,  
654 doi:10.1038/s41423-020-0484-x (2020).

655 36 Zhang, Y. G. *et al.* Potential contribution of increased soluble IL-2R to  
656 lymphopenia in COVID-19 patients. *Cellular & Molecular Immunology* **17**, 878–  
657 880, doi:10.1038/s41423-020-0484-x (2020).

658 37 Wen, W. *et al.* Immune cell profiling of COVID-19 patients in the recovery  
659 stage by single-cell sequencing. *Cell Discov* **6**, 31, doi:10.1038/s41421-020-  
660 0168-9 (2020).

661 38 Toor, S. M., Saleh, R., Sasidharan Nair, V., Taha, R. Z. & Elkord, E. T-cell  
662 responses and therapies against SARS-CoV-2 infection. *Immunology* **162**, 30–43,  
663 doi:10.1111/imm.13262 (2021).

664 39 Martinez-Zamudio, R. I. *et al.* Senescence-associated beta-galactosidase  
665 reveals the abundance of senescent CD8+T cells in aging humans. *Aging Cell*  
666 **20**, doi:ARTN e1334410.1111/ace.13344 (2021).


667

668

669

670

671



672

673

674 Figure 1 Increased CD4<sup>+</sup> Tsens in severe/critical COVID-19

675 (a) The percentage of CD4<sup>+</sup> and CD8<sup>+</sup> T cell subsets: CD28<sup>+</sup>CD57<sup>-</sup> (Tn), CD28<sup>-</sup>CD57<sup>-</sup> (Tdn), CD28<sup>+</sup>CD57<sup>+</sup> (Tdp), and CD28<sup>-</sup>CD57<sup>+</sup> (Tsen) and Tsen/Tn ratio in 676 mild/moderate patients (n=36) compared to sever/critical patients (n=64). 677

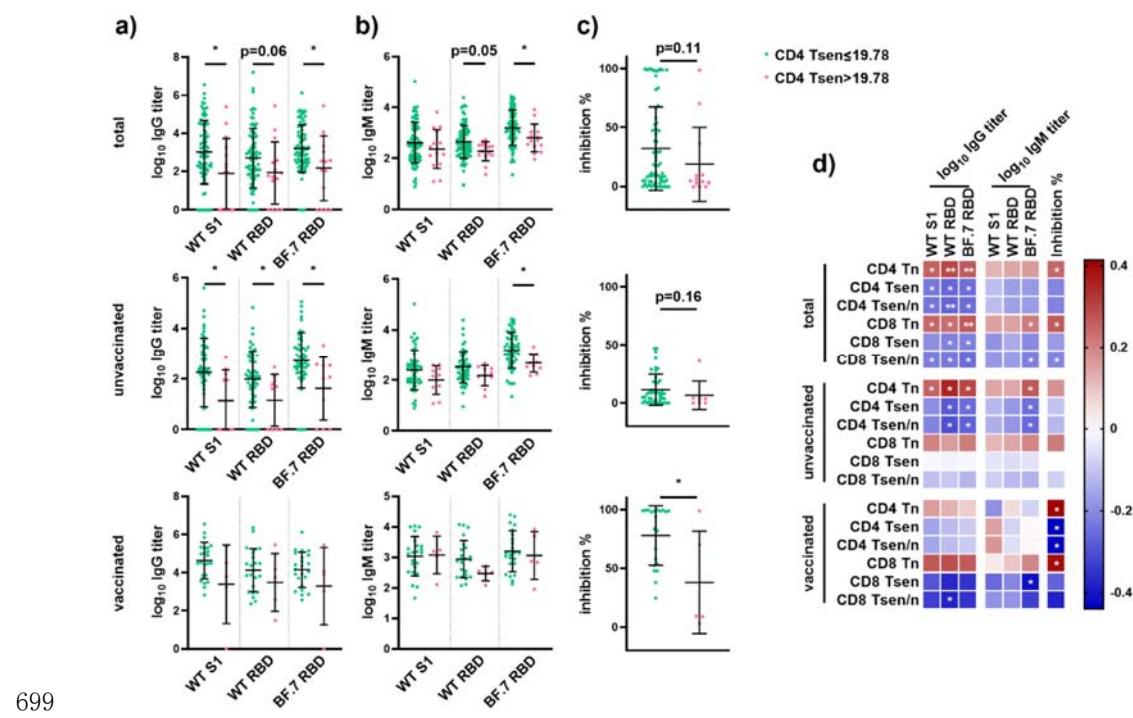
678 (b) The percentage of CD4<sup>+</sup> and CD8<sup>+</sup> Tn, Tsen and Tsen/Tn ration in 679 unvaccinated group (mild/moderate: n=22 versus sever/critical: n=46) and vaccinated group 680 (mild/moderate: n=12 versus sever/critical: n=16).

681 Groups were compared using Mann–Whitney U-test. Bars show mean with SD.

682 (c) Survival rates in patients with COVID-19 stratified by levels of CD4 Tsen (the entire 683 cohort: CD4 Tsen<19.78%, n=84 versus CD4 Tsen>19.78%, n=16; unvaccinated group: CD4 684 Tsen<19.78%, n=57 versus CD4 Tsen>19.78%, n=11; vaccinated group: CD4

685 Tsen<19.78%, n=23 versus CD4 Tsen>19.78%, n=5). P values for difference between  
686 survival rates were calculated using Fisher exact test.  
687 (d) Kaplan-Meier 30-day survival curves for COVID-19 patients with CD4 Tsen>19.78%  
688 versus CD4 Tsen <19.78% (the entire cohort: CD4 Tsen<19.78%, n=84 versus CD4  
689 Tsen>19.78%, n=16; unvaccinated group: CD4 Tsen<19.78%, n=57 versus CD4  
690 Tsen>19.78%, n=11; vaccinated group: CD4 Tsen<19.78%, n=23 versus CD4  
691 Tsen>19.78%, n=5). P values for difference between two groups of curves were  
692 calculated by the log rank test.

693 \*, p< 0.05; \*\*, p <0.01; \*\*\*, p <0.001.


694

695

696

697

698



699

700

701 Figure 2 High senescent CD4<sup>+</sup> T cells is correlated with lower spike-specific antibody  
702 level

703 Plasma IgG (a) and IgM (b) against the S1 domain of original SARS-CoV-2 strain (WT  
704 S1), the RBD domain of original strain (WT RBD) and the Omicron variants BF.7 (BF.7  
705 RBD), and neutralization antibody inhibition rate (c) in COVID-19 patients with  
706 different level of CD4 Tsen (the entire cohort: CD4 Tsen<19.78%, n=80 versus CD4  
707 Tsen>19.78%, n=15; unvaccinated group: CD4 Tsen<19.78%, n=53 versus CD4  
708 Tsen>19.78%, n=10; vaccinated group: CD4 Tsen<19.78%, n=23 versus CD4  
709 Tsen>19.78%, n=5).

710 (d) Correlations between the percentage of senescent T cells and IgG and IgM titers  
711 (against WT S1, WT RBD and BF.7 RBD), inhibition rate (the entire cohort: n=95,  
712 unvaccinated group: n=63; vaccinated group: n=28).

713 Statistical comparisons across cohorts were performed using the Mann-Whitney test.

714 Spearman's rank correlation was used to identify relationships between two variables.

715 R values are indicated by color. Significant correlations were indicated by white

716 asterisks. \*, p< 0.05; \*\*, p <0.01.

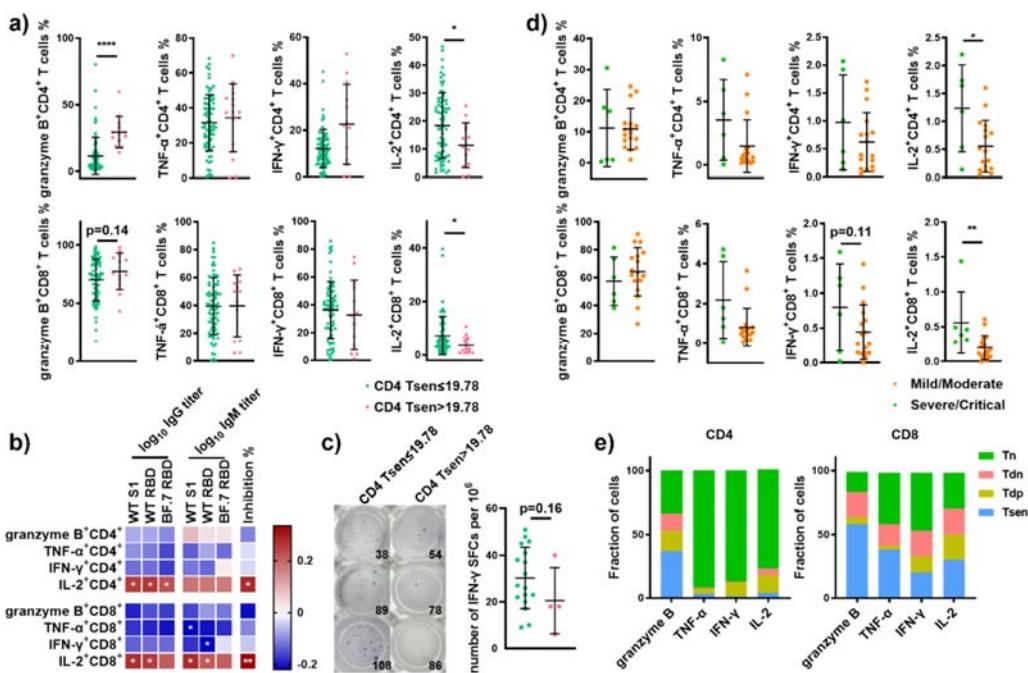
717

718

719

720

721


722

723

724

725

726



727

728

729 Figure 3 Higher granzyme B<sup>+</sup> and lower IL-2<sup>+</sup> T cells is associated with defect in  
730 antibody level

731 (a) Frequency of cytokine<sup>+</sup> T cells (after PMA stimulation) in patients with CD4 Tsen  
732 <19.78% group (n=74) and CD4 Tsen >19.78% group (n=13).

733 (b) Correlations between the percentage of cytokine<sup>+</sup> T cells and plasma IgG and IgM  
734 against the S1 domain of original SARS-CoV-2 strain (WT S1), the RBD domain of  
735 original strain (WT RBD) and the Omicron variants BF.7 (BF.7 RBD, n=83), inhibition  
736 rate (n=74).

737 (c) Frequency of IFN- $\gamma$  SFCs after stimulation with Spike in patients with CD4 Tsen  
738 <19.78% group (n=17) and CD4 Tsen >19.78% group (n=4). The number represents  
739 the patient number.

740 (d) Frequency of cytokine<sup>+</sup> T cells (after Spike stimulation) in patients with

741      mild/moderate illness (n=6) and severe/critical illness (n=17).

742      (e) The frequency of Tn, Tdn, Tdp and Tsen (defined using the markers CD57 and CD28)

743      within spike-specific cytokine<sup>+</sup> T cells (n = 21).

744      Groups were compared using Mann–Whitney U-test. Bars show mean with SD.

745      Spearman's rank correlation was used to identify relationships between two variables.

746      R values are indicated by color. Significant correlations were indicated by white

747      asterisks. \*, p< 0.05; \*\*, p <0.01; \*\*\*\*, p <0.0001.

748

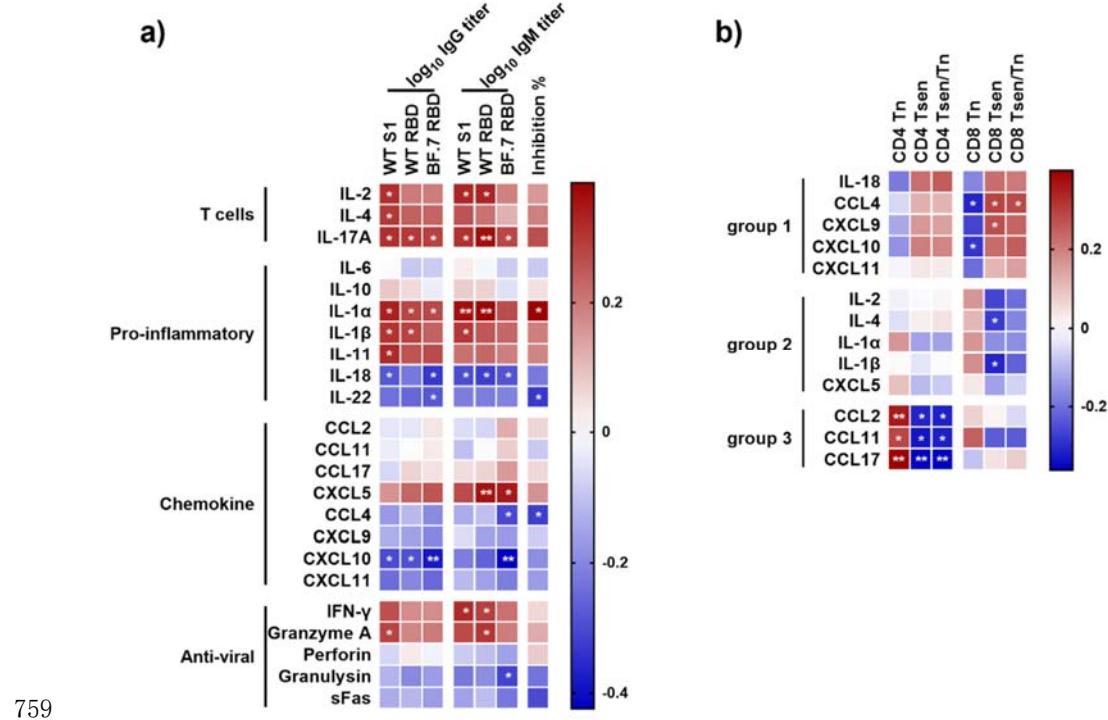
749

750

751

752

753


754

755

756

757

758



759

760

761 Figure 4 The correlation between plasma level of soluble factors and spike-specific  
762 antibody levels, neutralization ability as well as the percentage senescent T cells.

763 (a) Correlation analysis between IgG and IgM titers (against WT S1, WT RBD and BF.7  
764 RBD), inhibition rate and plasma levels of soluble factors (IL-2, IL-4, IL-17A, IL-6,  
765 IL-10, IL-1 $\alpha$ , IL-1 $\beta$ , IL-11, IL-18, IL-22, CCL2, CCL11, CCL17, CXCL5, CCL4,  
766 CXCL9, CXCL10, CXCL11, IFN- $\gamma$ , granzyme A, perforin, granulysin, sFas). The  
767 function mediated by each plasmatic molecule was indicated on the left.

768 (b) Correlations between the percentage of senescent T cells and plasma levels of  
769 soluble factors (group 1: IL-18, CCL4, CXCL9, CXCL10, CXCL11; group 2: IL-2, IL-  
770 4, IL-1 $\alpha$ , IL-1 $\beta$ , CXCL5; group 3: CCL2, CCL11, CCL17).

771 Data were collected from 53 COVID-19 infected patients, except the inhibition rate was  
772 detected in 42 patients. Spearman's rank correlation was used to identify relationships

773 between two variables. R values are indicated by color. Significant correlations were  
774 indicated by white asterisks. \*, p<0.05; \*\*, p<0.01.

775

776

777 **Tables**

778 Table 1. Demographics, Characteristics, and Clinical Features of Patients with  
779 Coronavirus Disease 2019<sup>a</sup>

| Characteristics            | All<br>(n=100)  | cases<br>(n= 36) | Mild/Moderate<br>(n= 36) | Severe/Critical<br>(n=64) | P-value <sup>b</sup> |
|----------------------------|-----------------|------------------|--------------------------|---------------------------|----------------------|
| Age, y(n)                  | 80.10±9.89      | 79.33±9.99       | 80.53±9.89               | 0.564                     |                      |
| Sex, male                  | 64 (64%)        | 20 (55.6%)       | 44 (68.8%)               | 0.184                     |                      |
| BMI, kg/m <sup>2</sup>     | 23.81±3.91 (96) | 23.32±3.82       | 24.07±3.96               | 0.379                     |                      |
| <18.5                      | 7 (7.3%)        | 2 (6.1%)         | 5 (7.9%)                 | 0.754                     |                      |
| 18.5-23.9                  | 40 (41.7%)      | 16 (48.5)        | 24 (38.1%)               |                           |                      |
| 24.0-27.9                  | 37 (38.5%)      | 12 (36.4)        | 25 (39.7%)               |                           |                      |
| ≥28.0                      | 12 (12.5%)      | 3 (9.1%)         | 9 (14.3%)                |                           |                      |
| Smoking                    | 35 (35.0%)      | 10 (27.8%)       | 25 (39.1%)               | 0.256                     |                      |
| History, yes (n)           |                 |                  |                          |                           |                      |
| Any comorbidity            |                 |                  |                          |                           |                      |
| Diabetes                   | 25 (25%)        | 10 (27.8%)       | 15 (23.4%)               | 0.630                     |                      |
| Hypertension               | 52 (52.0%)      | 16 (44.4%)       | 36 (56.3%)               | 0.257                     |                      |
| Cardiovascular<br>diseases | 24 (24.0%)      | 6 (16.7%)        | 18 (28.1%)               | 0.198                     |                      |
| COPD                       | 11 (11.0%)      | 2 (5.6%)         | 9 (14.1%)                | 0.331                     |                      |
| Asthma                     | 4 (4.0%)        | 0 (0%)           | 4 (6.3%)                 | 0.294                     |                      |
| aCCI                       | 4.8±1.23        | 4.92±1.05        | 4.85±1.33                | 0.825                     |                      |
| Signs and<br>symptoms      |                 |                  |                          |                           |                      |
| Fever                      | 82 (82.0%)      | 29 (82.9%)       | 53 (84.1%)               | 0.871                     |                      |
| Cough                      | 85 (85.0%)      | 30 (83.3%)       | 55 (85.9%)               | 0.726                     |                      |
| Sputum<br>Production       | 80 (80.0%)      | 29 (80.6%)       | 51 (79.7%)               | 0.917                     |                      |
| Dyspnea                    | 60 (60.0%)      | 17 (47.2%)       | 43 (67.2%)               | 0.057                     |                      |
| Medication                 |                 |                  |                          |                           |                      |
| Glucocorticoids            | 84 (84.0%)      | 26 (72.2%)       | 58 (90.6%)               | 0.016                     |                      |

780 BMI, body mass index; aCCI, age-adjusted Charlson Comorbidity Index.

781 a. Continuous variables were presented as mean ± SD (n); categorical variables are  
782 shown as n (%). Medication and respiratory support information was recorded during  
783 entire hospital stay; other information was recorded at admission.

784 b. P-values were from t-test for continuous data and from  $\chi^2$  test for categorical data

785

786 Table 2. Laboratory Characteristics on Admission for Severely and Critically Ill  
787 Patients with Coronavirus Disease 2019<sup>a</sup>

| Characteristics                            | All<br>(n=100) | cases<br>(n=36) | Mild/Moderate<br>(n=36) | Severe/Critical<br>(n=64) | P-value <sup>b</sup> |
|--------------------------------------------|----------------|-----------------|-------------------------|---------------------------|----------------------|
| <b>Blood routine</b>                       |                |                 |                         |                           |                      |
| White blood cell count, 10 <sup>9</sup> /L | 7.56±2.9       | 7.13±2.25       | 7.79±3.21               | 0.277                     |                      |
| <3.5                                       | 2 (2.0%)       | 1 (2.8%)        | 1 (1.6%)                | 0.501                     |                      |
| 3.5~9.5                                    | 75 (75.0%)     | 29 (80.6%)      | 46 (71.9%)              |                           |                      |
| >9.5                                       | 23 (23.0%)     | 6 (16.7%)       | 17 (26.6%)              |                           |                      |
| Neutrophil count, 10 <sup>9</sup> /L       | 6.39±2.77      | 5.61±1.93       | 6.82±3.07               | 0.018                     |                      |
| Lymphocyte count, 10 <sup>9</sup> /L       | 0.78±0.48      | 0.99±0.61       | 0.66±0.34               | 0.004                     |                      |
| Platelet count, 10 <sup>9</sup> /L         | 214.62±81.04   | 234.44±75.68    | 203.47±82.39            | 0.066                     |                      |
| Hemoglobin, g/L                            | 121±28.41      | 122.08±18.92    | 120.39±32.68            | 0.776                     |                      |
| <b>Inflammatory markers</b>                |                |                 |                         |                           |                      |
| Procalcitonin, ng/mL                       | 0.38±1.10      | 0.14±0.18       | 0.51±1.35               | 0.046                     |                      |
| <0.1                                       | 53 (54.1%)     | 23 (63.9%)      | 30 (48.4%)              | 0.324                     |                      |
| 01~0.3                                     | 30 (30.6%)     | 9 (25.0%)       | 21 (33.9%)              |                           |                      |
| >0.3                                       | 15 (15.3%)     | 4 (11.1%)       | 11 (17.7%)              |                           |                      |
| C-reactive protein, mg/L                   | 24.76±40.66    | 24.77±37.11     | 24.75±42.77             | 0.998                     |                      |
| ≤8                                         | 41 (42.7%)     | 17 (50.0%)      | 24 (38.7%)              | 0.285                     |                      |
| >8                                         | 55 (57.3%)     | 17 (50.0%)      | 38 (61.3%)              |                           |                      |
| <b>Coagulation function</b>                |                |                 |                         |                           |                      |
| D-dimer, ug/mL                             | 2.77±5.00      | 1.53±2.85       | 3.41±5.73               | 0.035                     |                      |
| ≤age/100                                   | 47 (49.0%)     | 21 (63.6%)      | 26 (41.3%)              | 0.037                     |                      |
| > age/100                                  | 49 (51.0%)     | 12 (36.4%)      | 37 (58.7%)              |                           |                      |
| <b>Serum biochemical indicators</b>        |                |                 |                         |                           |                      |
| Serum albumin level, g/L                   | 31.89±4.87     | 33.04±4.11      | 31.24±5.17              | 0.075                     |                      |
| Creatinine, μmol/L                         | 98.34±92.85    | 96.75±71.64     | 99.23±103.42            | 0.899                     |                      |
| Serum urea nitrogen, mmol/L                | 9.96±8.53      | 9.71±7.00       | 10.10±9.34              | 0.828                     |                      |
| Total bilirubin, μmol/L                    | 12.02±5.66     | 11.31±3.81      | 12.41±6.47              | 0.352                     |                      |
| Alanine Aminotransferase, U/L              | 37.49±38.22    | 33.48±39.71     | 39.74±37.50             | 0.435                     |                      |
| Aspartate Aminotransferase, U/L            | 42.47±35.11    | 38.26±28.96     | 44.84±38.15             | 0.371                     |                      |
| Creatine kinase, U/L                       | 109.06±182.15  | 88.56±70.43     | 121.16±223.13           | 0.397                     |                      |

|                         |             |             |             |       |
|-------------------------|-------------|-------------|-------------|-------|
| Creatine kinase-MB, U/L | 15.56±31.62 | 18.06±33.74 | 14.13±30.53 | 0.554 |
|-------------------------|-------------|-------------|-------------|-------|

788 a. Continuous variables were presented as median (interquartile range); categorical  
789 variables are shown as n (%).

790 b. P-values were from t-test for normally distributed continuous data and from Mann-  
791 Whitney U test for abnormally distributed continuous data. P-values were from  $\chi^2$  test  
792 for categorical data