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1« Abstract: Diffuse optical methods including speckle contrast optical spectroscopy and
17 tomography (SCOS and SCOT), use speckle contrast (k) to measure deep blood flow. In order
18 to design practical systems, parameters such as signal-to-noise ratio (SNR) and the effects of
19 limited sampling of statistical quantities, should be considered. To that end, we have developed a
20 method for simulating speckle contrast signals including effects of detector noise. The method
21 was validated experimentally, and the simulations were used to study the effects of physical
22 and experimental parameters on the accuracy and precision of x. These results revealed that
23 systematic detector effects resulted in decreased accuracy and precision of « in the regime of low
24 detected signals. The method can provide guidelines for the design and usage of SCOS and/or
25 SCOT instruments.

26 1. Introduction

27 An accurate and often continuous assessment of microvascular, regional blood flow has many
2s implications for diagnosis and treatment of diseases and for the study of healthy physiology.
29 Despite continued efforts to establish practical means for measuring microvascular, regional
s blood flow in a non-invasive manner, this remains an important unmet need. One potential
a1 approach uses near-infrared, coherent light and the arising speckles after its diffusion [1-4].

32 Coherent laser light can be used to non-invasively measure local microvascular blood flow in
s tissue by detecting the fluctuating speckle patterns after light interaction with the tissue [5-9].
s For the purposes of this manuscript, we will focus on deep-tissue, i.e. those that utilize light that
35 penetrates up to several centimeters, measurements using photon diffusion. This is possible since
s near-infrared (~650-1000 nm) light is only mildly absorbed in most tissues.

37 In the field of near-infrared diffuse optics, there are two common methods for determining blood
s flow from laser speckles. The first consists of measuring the speckle intensity autocorrelation
s  (g2(1)) or the electric field autocorrelation (g (7)) over a continuous range of decay times (1)
40 to derive a blood flow index [10]. Diffuse correlation spectroscopy (DCS) [10-12] and its
4 variants [13-15] utilize this method for quantifying the speckle statistics to determine blood
42 flow. The second common method consists of quantifying the speckle intensity statistics using a
43 parameter called the “speckle contrast” (k). Several related techniques measure « to measure
4 blood flow. These include tomographic techniques (SCOT, scDCT) for the three-dimensional
45 mapping of blood flow from measurement of « [16, 17] and techniques to calculate one or
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46 two-dimensional maps of blood flow (DSCA, SCOS, LSF, LASCA, LSCI) [2,8, 18-20]. Of
47 these, some techniques (LASCA and LSCI) are non-diffuse methods and therefore only measure
4 superficial blood flow [8,20].

49 Diffuse optical methods using the laser speckle contrast can achieve similar blood flow
so information as DCS at an overall cheaper cost per detector channel since « is an integral of g (1)
st over the delay times up to a longer exposure time. In other words, common scientific cameras
s2 can be utilized as “slower” detectors. This claim has been supported by experiments [3,21,22],
s simulations [23], and most recently by theoretical analyses [24].

54 A thorough analysis of the measurements utilizing the intensity auto-correlation of the speckle
55 statistics, i.e. DCS, has previously been developed and tested [25-30]. Among other uses, these
s works have allowed the design of components (detectors, sources) and systems that target specific
57 goals in detection precision and accuracy in DCS.

58 Despite the increasing prevalence in literature of the use of speckle contrast techniques, a
ss comprehensive method for determining the effects experimental parameters have on the accuracy
s and precision of « has not yet been developed. Accuracy in speckle contrast values, particularly
et in scenarios with low levels of detected light, is important to consider as the effects of detector
e2 noise can greatly influence the detected signal. Valdes et al. [2] first described this phenomenon,
es and subsequently developed a noise removal algorithm to reduce the effect of detector noise on
e« the measured value of x. This algorithm has been shown to be effective, however it does not
es correct for all detector effects, in particular shot noise.

66 Previous work to optimize accuracy and precision in speckle contrast measurements includes
&7 theoretical and experimental characterization of the sampling of speckles on the precision of
es measured x [31-33], and the effect of the imaged speckle to camera pixel ratio on the accuracy
ss Of k [34-36]. These earlier works did not account for the effect of experimental sources of
70 noise, particularly detector noise, on the measured accuracy and precision of the speckle contrast
71 signal. Recently, this gap in the existing literature was addressed by Zilpelwar et.al. [37] through
72 a simulation method which modeled the generation and detection of decorrelating speckles
73 including detector noise effects. The authors demonstrated that the developed model is able to
7+ simulate both the values of « as well as the noise in « detected using SCMOS cameras. Using
75 this simulation, the authors investigate the effect of speckle to pixel size ratio, exposure time,
7 and detected photon count rate on « and its signal to noise ratio (SNR) for two commercially
77 available cameras.

78 We have developed a separate simulation model to Zilpelwar et.al. [37], but with a similar aim
79 of simulating the behavior of x with respect to detector noise and other experimental parameters.
so Our model addresses details not included in Ref. [37] such as the efficacy of the detector noise
g1 correction by Valdes et.al. [2], and the behavior of k in a multi-scattering regime in a semi-infinite
s2 geometry. We are specifically interested in characterizing the accuracy and precision of speckle
ss contrast measurements taking into consideration experimentally relevant parameters such as
s« the noise specifications of the detectors, the exposure time of the experiments, the detected
85 photon-count rate, the measured medium, and the sampling of the detected speckles. To this end,
s the developed method was first verified experimentally for its ability to simulate x and the noise
&7 in k. After verifying the simulation method, the method was used to study the effect of accuracy
ss and precision of « in various experimental scenarios. Finally, the simulations were used to design
s and optimize a system capable of measuring baseline cerebral blood flow non-invasively in an
9 adult human.

oo 2. Methods

o2 Here we focus on two dimensional detectors (i X j) with “pixels” but the results can be generalized
93 to other standard detectors. As will be evident later on, it is more convenient to use the square
s of the speckle contrast (k*) for the analysis. We assume that the 2 is derived from sampling n
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os speckles that are distributed over space (w,) and/or over time by repeated measurements (w;).

9 These n speckles sampled over w, and/or w, are used to estimate the probability distribution

o7 of the speckle intensity. From these n speckles, the mean intensity (u (7)) and the variance of

e intensity (o->(])) are determined.

99 Even in the case of ideal detectors and light sources, the calculated values are not exactly equal
1o to the true mean and the true variance due to the effects of limited sampling. In experiments,
101 the situation is more complex due to additional sources that contribute to the observed photon
102 statistics such as the detector noise which further influence the measured values of mean and
103 variance.

104 Therefore, these measurement effects must be accounted for in order to experimentally
105 determine a “corrected 27 , or the best estimate of the true value of k2. For common detectors,
16 these corrections include a dark frame subtraction which attempts to account for the dark and
17 read-out signal and a statistical correction attempting to estimate the shot noise as well as the
108 dark and read-out noise variances [2].

109 The speckle contrast is an alternative data-type that is used to characterize the decorrelation
1o time (7.) of the intensity autocorrelation of the speckle statistics which is more commonly
m utilized [24,38]. 7. is in turn dependent on several aspects such as the the optical properties of
12 the medium, the dynamics of the scatterers, the measurement geometry, the source wavelength
13 and more. The signals that are detected in a common detector are affected by this statistical
1a  profile which in turn affects the noise statistics. Therefore, in order to simulate realistic speckle
ns  contrast signals, we need to take all this into account and incorporate the appropriate aspects of
ne the detectors. An illustrative flowchart of the method that has been developed is shown in Figure
17 1 and is further detailed below.

ws  2.1.  The simulated experimental setup

1s  Let us begin by detailing the canonical experimental setup that is being simulated. The exact
120 details of the desired experimental setup to simulate may differ, however, the simulations are
121 largely independent of these details. A visual representation of a possible setup is shown in
122 Figurela. Here, the light is delivered through an optical fiber, and detected with a separate fiber
123 coupled to a camera. The core of the fiber is imaged with appropriate optics and all the pixels
124 within that region-of-interest (ROI) correspond to one value of p. In a free-space system, the
125 pixels in the imaged field of view could correspond to different values of p.

126 We assume that a coherent light source of wavelength A is utilized. The photons, once in
127 the medium, undergo absorption and scattering events. The probability per unit length the
12s photons are absorbed is estimated by the absorption coefficient (1,(1)). The reduced scattering
129 coefficient (,u; (4)) is used to estimate the total length which after a few scattering events leads to
10 the randomization of the photon direction. In other words, after a photon traverses a distance
11 few times the 1/, the light can be considered diffuse [39]. This diffuse light is measured at a
12 distance p away from the source. As a rule-of-thumb, p is related to the mean probed depth by
133 the measured light so that in order to measure deeper tissue, canonical experiments utilize longer
134 P.

135 If the light source is of sufficiently narrow bandwidth (long coherence length) [40], then the so-
1 called “diffuse laser speckles” and their statistical fluctuations can be observed. The electric-field
17 (g1) or the intensity (g2) autocorrelation of the detected speckles are functions of parameters
138 related to the experimental setup (e.g.p and A1) and the properties of the measured medium
139 including p,, ,u;, the ratio of the moving scatterers to the static ones (@) and the mean-squared
o displacement of the scatters (Ar?). For most experiments, the “effective” particle/scatterer
141 diffusion coefficient weighted by @ (@D b) is measured as a “blood flow index” (BFI). For further
122 details see Refs. [7,10,41]. The decorrelation time, 7. (normally defined as the time g; decays to
13 1/e [20]) was defined for the purpose of these simulations as the time at which g decayed to 0.5


https://doi.org/10.1101/2023.08.03.551830
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.03.551830; this version posted August 4, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

a b Step 1 C Step 2 d Step 3

Laser Detector f X
wavelength (A) pixels (i X j) TR
. Wi
g .'.. R
.g .'.. f=f1 tframe
< ‘e
—?— % I Iy
o e
! P =
A SR A T T i
LlJ J 7(s) p (cm) f=f1 trrame
e Step4 f Step 5 g Step 5 h Step 6
(spatial) (temporal)
Eno noise —CDE
g Enoise added =Ty =Ty \ - -model
g _TX _TX 'Nz
- e ¢ \
2 b
o N
Intensity p (cm)

Figure 1. Flow chart for simulating frames of correlated speckles and k2. These
simulations aim to simulate a variety of experimental setups such as in sub-figure a.
Depending on the experimental setup, the imaged field of view will differ. In this
example, source and the detector fibers are placed a certain distance (p) from each
other and are coupled to the laser and detector. The imaged field-of-view (imaged over
i X j pixels includes the fiber core which in later steps will be used to calculate % over
a specified region of interest (w;). Sub-figure b illustrates Step 1 of the simulations.
In this step, the rate at which the speckles decorrelate, 7., is determined from the
correlation diffusion equation (CDE). Using this value of 7., consecutive frames of
correlated speckles are simulated so that their electric-field autocorrelation decays
with 7. The intensity of these simulations are in arbitrary units, and independent of
exposure time, 7. Instead they represent speckles measured during a finite time-bin
width, 7 f,gme, On the g1 curve. In order to simulate several values of p, the process
illustrated in b can be repeated several times to simulate the p dependent change in
7c. In Step 2 (sub-figure c), the arbitrary units of the simulated frames is scaled to
represent realistic values of photon current rate, ®, in units of photons/second. In Step
3 (sub-figure d), an exposure time is introduced to the simulations by summing over
frames. This process additionally converts the units of the simulations from photons/s
to photons. Various values of T can be simulated from the same set of simulated frames
of Step 1. In this case, the simulation of two values of exposure time, Tx and Ty, is
shown. Multiplying the summed frames in units of photons by the quantum efficiency
(QE) of the camera converts the units of the simulations to electrons (e™). In Step
4 (sub-figure e), the detector effects are simulated by altering the simulated intensity
statistics according to the specifications of real detectors. In Step 5 (sub-figures f and
g), n speckles are sampled over an area, w; or over pixels of several repetitions of
simulations to estimate a value of k2. The yellow dots represent 2 simulated for the 7,
and therefore p simulated in Step 1. The two values of T’ simulated in Step 3 are also
shown. In the final step (Step 6, sub-figure h), the discrepancies in the exact form of
the speckle autocorrelation decay between the solution for the CDE for a semi-infinite
medium and the developed model is corrected for.
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12« and is also a function of these parameters.

s 2.2. Speckle statistics detected by a two dimensional detector array

s We have simulated & for tissue with specific optical properties and blood flow by simulating
147 consecutive frames of correlated speckles which simulate their electric field autocorrelation with
1#s  a decorrelation time, 7., defined by the solution of the CDE for a semi-infinite medium [10]. The
1.9 methodology presented is independent of this solution and other solutions (layered, heterogeneous,
150 numerical) of the CDE could be utilized. For clarity, electric-field autocorrelation curves following
151 the solution of the CDE will be referred to as ¢, while the simulated electric-field autocorrelation
12 curves are referred to as g;. While the two are similar, there are slight differences which are
153 discussed below. Furthermore, the theoretical value of k2 @rived from the CDE will be referred
s 1o as k2 while the simulated values will be referred to as «2.

185 In the first step of the simulation pipeline (Figure 1b), 7. is derived from g;. The derived
156 value of 7, was used to simulate frames of individual speckles by modifying the copula method
157 developed in Ref. [42]. This method simulates consecutive two dimensional matrices of numbers
158 that are correlated to each other by using a mathematical copula. Furthermore, the statistical
1ss  profile of each matrix reflects the probability distribution of speckle intensity. Therefore, each
10 individual matrix can be considered as a camera frame acquired in a speckle contrast experiment.
11 These matrices are referred to as “frames” (f) simulating pixel coordinates 7, j while imaging
162 speckles with diameter, @. @ behaves as a scaling factor to put physical units for the pixel
13 size since the speckle diameter is approximately equal to the wavelength of light being used.
16« Therefore, choosing @ to be equal to three pixels for a system modeling A = 785 nm will scale
s the width of each pixel to be equal to approximately 262 nm.

166 The autocorrelation, g7, of the first frame, f = f; to the k™ frame, f = f; is given by

2mm)? k-1
EZWCP{—%[I—COS(gm)]}, (1)
167 where k is the frame number and m is a parameter related to the decorrelation of the frames.

e In our adaptation we have defined m to be a function of 7.. Since 7. has been defined as

100 g1 = g1 = 0.5 then
—6In(0.5
m(te) = —T)_l : 2
4n2cos(5

170 Each of the individual simulations of gi consisting of f = fy frames of speckles patterns
171 constitute an experiment, defined by €. This process together with notation is illustrated in Figure
172 2. The basic method simulates S, an experimental parameter related to the coherence of the light
173 source and the detection optics [43], equal to one. However 8 can also be simulated for other
17+ values by following the method of Ref. [42].

175 The simulations are simulated in arbitrary copula units. In addition, the frames are only
176 dependent on p and every simulated frame represents a point on the g curve with a finite time-bin
177 width, 7 £ gme. Since each frame has a defined p and is simulated over an array i X j, the complete
s notation is, “S(p);; . In this notation, the pre-superscript indicates the units of the simulated
179 frame. In this case, c refers to the arbitrary “copula” units. The pre-subscript, ~, indicates that
1.0 no effect of detector noise has been included in the simulated frame. The indices i, j and f refer
181 to the pixel and frame.

12 2.3. Scaling detected photon intensity

s In order to convert <S(p);;¢ to physical units, the arbitrary copula units must be scaled to a
18« realistic value (Fig. 1c¢). This is done by defining the spatial decay of light intensity theoretically
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Figure 2. Illustration of how frames with a defined 7. are simulated. First individual
speckles are simulated on a grid of i X j pixels. These individual frames, f, are
correlated to each other and their electric-field autocorrelation, g7, decay according to
7. defined from semi-infinite theory (Figure 1). One full simulation of a theoretical g
curve (g7) consisting of fn frames corresponds to one experiment, €. This process is
repeated several times resulting in several simulations of g;.

s or experimentally. According to the photon diffusion theory, in a semi-infinite geometry, the
18 measured photon current rate, ®(p), in units of photons/second, decreases with p as:

S (eplkni(p)  explry(p)) A
0= 5o\ T h o) )

x A 3)

w7 Where k = \/—vu,/D, and D is the diffusion coefficient (D = v/(3uq + i,)), and v is the
18s  speed of light in medium. r;(p) and rp, (p) are variables related to the boundary conditions for
18s  a semi-infinite geometry [10]. Here % is Plank’s constant, S is the source irradiance in units
10 W/cm?, and A is the pixel area. It is noted that A in the simulations is related to the speckle size,
191, such that A = 1/@.

192 Alternatively, experimental values of ®(p) can be used to simulate the photon current rate
1ss  at the detector. In this case, the average measured photons per second at specified values of
s p (divided by the quantum efficieny of the specified detector) can be used to approximate the
195 photon current rate.

196 Once @ (p) has been established, whether theoretically or experimentally, the simulated frames
197 are scaled using ®(p) to convert them to a physically meaningful unit of photons/second, denoted
108 as P°S(p);jr. This is evaluated through the normalization of °S(p);;r with its mean over
199 simulated frames, u (fS(p),'j)f:

fS(P)ijf

—— 2 xo 4
SO, (p) (4)

PES(pijr =
20 2.4. Introducing exposure time to the simulated frames

201 The next step (Fig. 1d) requires converting the frames of equal frame widths, 7 £, qme, to frames
202 with an exposure time, Tx. These frames are denoted as ¥ S(p, T);; s and are in units of photons.
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2z  This is done by adding N = T/t rrame consecutive frames:

fx
PS(p,Tx)ij =prS(P)ijf )
7=
204 Note that with the introduction of exposure time, the simulated frames drop their indexing of
zz: 4 Finally, the simulated frames are converted from photons to electrons:
“S(p.Ty)ij = QE xPS(p, Ty)ij (0)

207 Where QE is the quantum efficiency of the camera.
208 Table 1 summarizes the introduced notation to refer to the simulated frames.

Speckles (p) Speckles (o, T)

.. . . Tinax =fN Xt frame
i,j pixel index
maximum exposure time simulated

Ty = fx X tframes
f frame index exposure time, X

(fx number of frames required to simulate T )
PS(p,Ty)ij

frame

In

number of frames simulated for one g
(units: photons) (Eq. 5)

209

tframe

size of each frame

(units: time)

“S(p,Tx)ij
frame

(units: electrons) (Eq. 6)

“S(pijr
frame

(units: a.u.)

PES(p)ijr

frame

(units: photons/second) (Eq. 4)

Table 1. Table of definitions of the simulated speckle patterns including conversion of
units from arbitrary simulation units with no 7 dependency to electron units with 7'
dependency. In the notation for the simulated frames, the pre-superscript indicates the
units of the simulated speckle intensities while the pre-subscript, ~, indicates that no

noise has been added

2.5. Detector Noise

210 The final step before using the simulations to calculate 2 is to simulate the effects of the main
types of detector noise on the simulated frames previously described, namely: photon shot noise,

211
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212 dark signal non-uniformity (DSNU), dark current shot noise, and read-out noise [44,45]. This
213 step is illustrated in Fig. le. To simulate detector noise, the distribution of each of the types of
214 noise is considered, and random numbers are generated following the distribution. The notation
215 used to describe the generation of random numbers and their distributions is shown in Eq. 7

2
Iz,; = pz(z;u(l), 0" (1)) (7
216 I7,; is the random number generated representing a certain intensity (in e”) at pixel 7, j. Iz,;
217 originates from a distribution, p, with a mean value of intensity, u(/), and variance, o> ().
218 Photon shot noise is a Poisson distributed noise source [44,46]. Using the notation in Eq. 7,

219 the contribution of photon shot noise at each pixel i, j is described as:

iS(,O, Tx)ij = IS[I' = pS(S;fS(psTX)iﬁeS(p’TX)ij) (8)

220 Where we have applied the definition of a Poisson distribution, u(I) = o>(I). In this case
e

e () = °S(p,Tx); (i.e. the measured intensity in e~ (Eq. 6)). We have also included a new
22 notation §S(p, Tx);;. The pre-subscript, s, denotes the application of shot noise on the simulated

223 frame.

224 DSNU and dark current noise along with read-out noise are not directly applied to ¢S(p, Tx)i;,
225 instead independent dark frames are simulated and then added to {S(p,TY);;.

226 DSNU is simulated by simulating individual pixels of logistically distributed random numbers
227 [46]:

Is,; = pa(d: u(Is), o> (Is)) ©9)

228 Where p(Is) and 0> (1) are the mean and variance of the DSNU specific to each detector.
229 Their values can typically be found in camera specification sheets. The variance of a logistic
20 distribution is given by o?(Is) = (slzn'z)/ 3 where s; is the shape parameter of the logistic
231 distribution.

232 The dark shot noise, similar to the photon shot noise (Eq. 8) is simulated by applying Poisson
233 distributed random numbers [44] to each pixel simulated in Eq 9:

la; = pp(d;ls;. Is;) (10)
234 Finally, read out noise is simulated by assuming that it is a normally distributed noise

235 source [47]. Read out noise in CMOS cameras is added at each pixel and is independent of the
23 dark noise and the detected signal. Therefore, the contribution of the read out signal at each pixel,
C N P is simulated:

Iy = prOs (1), 03 (1)) (an

238 where the mean and variance of the read-out signal (u(I,) and o>(1,)) are specific to each
239 detector and can be found in specification sheets or estimated from online camera simulators.
240 The total dark frame, df, is then given by

dfij = L, + L. (12)

241 Putting everything together, the frames with shot noise, DSNU, dark shot noise, and read-out
242 MNOISE, Sde(p, T);;, are given by:

sarS(0.Tx)ij = §S(p, Tx)ij +dfij (13)
243 To generalize the notation, the pre-subscript N indicates a general noise source. In other words,
2s S(p,Ty) is shorthand for speckle intensity frames in units of electrons with unspecified noise,
25 N, added. N can take values:
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The definitions and notation for simulating detector noise is summarized in Table 2:
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~ ! No noise

s : shot noise added

sdr : shot noise and dark frame added (dark and read out noise)

sd'r’ -
noise corrected)

s’d’r’: shot noise and dark frame added, dark frame and shot noise corrected.

shot noise and dark frame added, dark frame offset subtracted (dark and read out

Noise Source Distribution
Ly, = ps(s; u(lij), o> (1i7)) Poisson
shot Iij =°S(p, Ty)ij u(ls)ij =1
(Eq. 8) 0'2(1s)ij = p(ls)ij
Logistic
dark signal non-uniformity :
P 21 uls)ij = p(ls)
dark Sij = pa(6; u( 61‘]‘)’0— ( 5ij)) 0'2(15)" _ ﬁ
ij 72
(Eq. 9) s e e
s,: shape parameter, logistic distribution
dark shot Poisson
Ly, = po(dsu(Is,), o> (1s;)) pulla)ij = 1s,;
(Eq. 10) o (Is)ij = u(1s)i;
( U ). 0L ) Normal
PRUp s (L), 07 (1 R
read i K & ﬂ(lr)ij = M(Ir)[
(Eq. 11) 5 20t
o(Iy)ij = o=(Iy)

Table 2. Table of definitions of the noise sources that are included in the simulations
along with their corresponding distributions. The notation pz(z; u, o?) is used to
define random numbers, z, originating from a distribution, pz, with a mean value of, u,
and variance, o-2. Tdenotes parameters that can be found in camera specification sheets.

2.6. Speckle Contrast

253

254 The final steps of the simulation pipeline require the calculation of K2 using the frames that

25 have been simulated. In the first step, «2 is directly calculated using the simulated frames. The

calculation of k2, as in a real experimental setting, can be done temporally or spatially depending
257 on how speckles are sampled. Independent of the domain in which &2 is simulated, it should
be noted that since the speckle decorrelation was modelled as a single exponential (Eq. 1),
the physically more realistic semi-infinite model of the speckle decorrelation follows a double

exponential model [10]. A correction was applied in order to simulate a model corrected value

258
259
260

21 of k2 denoted as P'. Previous work in developing a successful DCS noise model also applied
a single exponential model in order to model noise [25,48]. Therefore, while the value of «2

will be affected by the model used for g7, the noise is well described using the simplified single

262

263
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264 exponential model. The definitions and notation related to 2 are summarized in Table 3. The
265 following sections will describe their calculations.

K? Spatial «> Temporal «*

g L
. . W= \izjz ie] w; = |€z, €
electric-field autocorrelation curve ‘ [ ee g] [ f]

o ) “spatial window” of pixel area | “temporal window” of experiments
CDE, semi-infinite solution [10]

~

K2 s e)w, 1w,
derived from g; mean intensity over w, mean intensity over w;
81
. . O—Z(IE)WZ O'Z(Iij)wt
simulated autocorrelation curve
variance of intensity over w variance of intensity over wy

(Eq. 1)
2 2 0_2(16)wz a2 O'Z(Iij)wt
K = — R

_ M 2 o). MUY 2 L),
derived from g, spatial x? (Eq. 14) temporal «* (Eq. 15)

NY = k2 = NK

bias term (Eq. 19)

— . —
NK2 = pr (ki k2 + Ny, 0F (kD)
corrected for semi-infinite theory

(Eq. 20)

Table 3. Table of definitions for k2. Three different variations of k2 are calculated:
first k2 calculated directly from the integration of the double exponential g| from CDE.
This is k2. Secondly, k2 calculated directly from the simulated frames whose g; (g7)
follows a single exponential form. This is «2 and outlined in Section 2.7. Thirdly, the
model differences due to the differences in g is corrected. This is K_2, and is outlined
in Section 2.8. Moreover, «2 and K_2, can be calculated either spatially or temporally.

s 2.7. Model uncorrected speckle contrast

267 So far the process for simulating the detection of speckle statistics on a 2D detector array and the
268 detector properties (Fig. 1 b to e) has been described. These steps can be repeated in order to
269 simulate several experiments (e, Fig. 2) for several different values of 7. and therefore p, for
a0 calculating 2 in the temporal domain over wy, or for determining o («2).
271 The next step in the pipeline is to use these frames to calculate values of «2 (Fig. 1 f and g).
222 As mentioned previously, k2 can be measured spatially or temporally i.e. speckle statistics can
273 be determined spatially by using an area, w, of pixels or temporally over the pixels in a set of
274 experiments, wy.
275 Spatial &2 is given by:
- _ 0-2(]\67S(p, T)e)w.
NKPe = —— (14)
M (NS(p, T)e)w,



https://doi.org/10.1101/2023.08.03.551830
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.03.551830; this version posted August 4, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

276 Where o( ~S(p.Tx) ), is the variance of the speckles and u(yS(p,Tx),),, is the mean
217 of the speckles, both calculated over the window w, for each experiment, €.
278 Similarly, temporal «2 is given by:
2
z” o (;}S(P, Tx)ij)wt
NKTij =
,Uz([\eJS(Pa Tx)ij)wt

279 Where in this case, the variance and means of the speckle intensities are calculated over a
230 temporal window of many experiments w, for a set of i X j pixels.

15)

281 With ,, 2 simulated, noise correction must be applied. To do this, the noise correction method

22 outlined in [2] was used. Here we outline the correction for spatial 5«2, but the same principles
253 apply for temporal measurements.

284 Briefly, in order to correct for the dark and read signal offset in NKZ, a new dark frame, df.o.r,
255 1s simulated using Eq. 12. The new dark and read signal offset corrected speckles frames is given
286 by:

Sd/ﬁS(,O, Tx)ij = Sde(P, Tx)ij - dfcorrij (16)
287 After the dark frame offset is corrected, the additional variance due to shot (o-fho ;) and the
288 dark frame (dark and read out noise, 0'5 f) is corrected by subtracting their respective variances
250 from the signal variance, o-szigna = a( sarr S0 T)w, e
200 Putting everything together, the shot, dark, and read noise corrected value of k2, i.e. s szz €

201 1S given by:

2 2 2
; _ o_signal O shot O_df a7
s'd'r’'" e —
12 (0,2 S(0s To)ew,
202 Wherg o-?hot = u(sd,re,s(p,Tx)e)sz and o-jf = 0-2(dfe)wz. .
293 Variations in the noise correction can also be simulated. For example, the shot noise only

204 added frames, ‘ﬁ can be corrected in the following way:

2 2
K_ _ O-Signal = Tshor (18)
s'h e —
1SS (05 T e,
205 Where in this case, o-fignal =o? (¢,S(p.Tx)e)w. and o-fhot =u(S(p. Tx)e)w. -

26 2.8. Model corrected speckle contrast

207 In these simulations, two forms of the electric field autocorrelation function have been introduced:
208 g1 and gy, and crucially the decorrelation of the latter was modeled from the decorrelation time
200  of the former. However, the two are described by two different exponential functions meaning
a0 that the values of k2 derived from the two will differ. In particular, ¢} describes a measurement
31 in a semi-infinite medium and a multi-scattering (diffuse) regime. Since ¢ is a more realistic
a2 solution to the CDE, rather than working with p derived from g7, we introduce another variable,
303 ﬁ,,_which is the model-corrected value of 2.

304 «2 is derived from both x2 and x2. x2 values are used to simulate the offset or bias (y) in k?
s0s  due to noise, as well as to simulate the expected variance of k> over €. The CDE solution of K2 is
sos then used to scale the value of ﬁ' to the expected value of speckle contrast when measuring in a
307 semi-infinite geometry.


https://doi.org/10.1101/2023.08.03.551830
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.03.551830; this version posted August 4, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

308 The bias term, 7 is defined as:
y=p( ke — p(ya2)e (19)

—_
309 Finally 2 values are generated by generating normally distributed random numbers, k, with
s mean equal to k> +y and variance equal to o &%) e:

N = pr (ks K2+, 02 (kD)) (20)

s 2.9. Using the simulations to evaluate system performance

a2 A primary motivation for developing a speckle contrast model is to evaluate the performance
a3 of such systems. Performance of simulated systems has been evaluated by its accuracy and

a1« precision. In this context, accuracy refers to the percent error of &2’ from its CDE solution, 2,

a5 and was defined as 100 x <& T2K

K
a6 is and has been evaluated by its coefficient of variation (CV) as a percentage defined as the ratio
‘r(N K% ) €

H(NK)e
a8 accuracy and maximum precision correspond to the minimum values in these metrics.

2 . e . .
. Precision is a measure of how variable a repeated measurement

el
sz of standard deviation of repeated experiments of &2 to its mean: 100 X . Maximum

s 2.10. Experimental setup (A) to validate simulations

a0 The speckle contrast noise model was validated by comparing experimental results to the
321 simulated noise for a range of exposure times. A multi-mode fiber delivered light (785nm,
a2 Crystalaser, Reno NV, USA), onto a liquid phantom of water, intralipid and ink. The resulting
a3 speckle pattern was imaged onto an SCMOS camera (Orca Fusion-C14440-20UP, Hamamatsu
a4 Photonics K.K., Hamamatsu, Japan) using a multi-mode fiber (910 um core, 0.22 NA) and
a5 objective lens (f = 11 mm). The value of 8 was measured to be approximately 0.2, and @ was
a6 adjusted to be approximately 4 pixels.

327 7. of the system was obtained by simultaneous recording g» of the system using a single mode
a8 fiber coupled to a standard DCS device. The detector fibers of both the SCOS system as well as
320 the DCS system were placed at a distance p = 0.8 cm from the source. The performance of the
s simulations was compared to the experimental results by evaluating the standard deviations of

331 rK2 of both over 100 experiments. In addition, the expected signal-to-noise-ratio (SNR) was

sd
a2 also evaluated considering pu( KZ/) to be equal to the average value of _, k? over 100 experiments
sz (Eq. 20). SNR is defined as the ratio of the average value of the signal over the noise. The
w4 experimental values of _ k? was calculated over a horizontal row of 1032 pixels. The simulated
a5 SNR was defined as the ratio of the standard deviation of the experimentally obtained values of
W6 drK2 to the average value of ,,, k%" over 100 simulated experiments, €, calculated over 1032
a7 simulated pixels.

ws 2.11. Experimental setup (B) to optimize and design a speckle contrast system

as  The speckle contrast noise model was further used to design a speckle contrast system and define
a0 the required detected electron count rate (e”/pixel/second) in order to accurately measure blood
a1 flow in the adult human brain. An sCMOS camera by Basler (daA1920-160um, Basler AG,
a2 Ahrensburg, Germany) was considered and simulated due its lightweight (15 g), compact size
a3 (19.9 mm x 29.3 mm x 29 mm) and cheap price (<300€). Measurements were chosen to be
a4 taken at p of 2.5 cm and 7 of 5 ms.

345 The required detected electron count rate to accurately measure «~ was determined by
as  attenuating a 785 nm laser (Crystalaser, Reno NV, USA) on a liquid phantom using a fiber
a7 attenuator (OZ Optics, Ottawa Ontario, Canada). The diffuse light was imaged onto the camera

2
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us  using an 800 um core multi-mode fiber (0.22 NA). The imaged speckles had a size of @ =5
a9 pixels. The value of g of the system was previously determined to be approximately 0.2. Speckle
350 contrast data was acquired over 600 frames, and data was analyzed using an ROI of approximately
st 1100 pixels.

352 As in the setup (A) to validate the simulations, 7. of the simulations was obtained from g,
sss  recorded using a standard DCS device. In order to approximate the required detected electron
s« count-rate (e /pixel/second), a liquid phantom was prepared to have optical properties of u, =0.1
s cm~!and u, = 10 cm™!. The true value of x*> was considered to be the value of x> measured with
ase  the highest detected intensity count rate, [,,,4. Percent error of «? as a function of the attenuated

2 0
ss7 detected intensity count rates, I,,;;, was therefore calculated as: 100 x K Uar) =K Umax)

& (Inax)
ss 3. Results
o 3.1.  Verification with experimental data
Tissue Parameters Detector Parameters Speckle Parameters
7.0 4.18x1073 s QE: scaled from measurements | @: 4 pixels
u(ls) :0.0025¢~ en : 100
o*(Is) : 0.16e~ wz 1 [0,0;32,32]
u(l;) : 0.93e”
o*(I,) : 0.24e

Table 4. Simulation parameters used to verify simulations with experimental data
acquired using an sSCMOS camera (Orca Fusion-C14440-20UP, Hamamatsu Photonics
KK)

360 The results of the simulation model were compared to experimental data of an Orca Fusion
st camera using the experimental set-up in Section 2.10. Details of the camera parameters are
sz summarized in Table 4. The simulations used 7. obtained from the g; curve recorded using DCS
ss  (Figure 3 a). 8 was simulated to be 0.2 and @ was set to 4 pixels to agree with the values of 8 and
s @ of the experimental data. Both experimental and simulation results were obtained for exposure
a5 times ranging between 0.1 ms and 5 ms in order to cover a range of detected electron intensities.
sss It was ensured that the average value of the simulated detected electron intensity matched the
s7  experimental data (Figure 3 b). The resulting experimental and simulated standard deviation of
s " % is shown in Figure 3 ¢. The calculated signal to noise ratio of x> in Figure 3 d, shows good
a9 agreement of the simulations with the experimental results.

s 3.2.  Simulation study

sn Using the simulation pipeline described, we simulate speckle patterns with realistic detector
a2 noise. All simulations considered hardware consisting of a 785 nm unpolarized laser (8 = 0.5)
a3 and a 100x100 pixel array detector with noise properties derived from an Orca Flash4.0 v3
ars - CMOS camera [49]. Since the variance of read-out noise is typically not defined in specification
a5 sheets, an online simulation tool was used to approximate the value of 0'2(1,) [50]. Tissue with
are  optical properties listed in Table 5 were simulated. These values were chosen as they are roughly
a7 the expected values when measuring in human tissue. g; was simulated for p ranging from 0.5 to
s 4.5 cm for Ty, = 5 ms. @ was chosen to equal three pixels in order to meet the requirements of
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Figure 3. Comparison of the developed speckle contrast noise simulation model with
experimental values. The number of experiments as well as the number of speckles
used to obtain k2 were the same for experiments and simulations. a) Experimental
g1 curves measured with a DCS system from which 7. used in the simulations was
determined (red). b) Average detected electrons over 1032 pixels and 100 experiments
(black) and 100 simulations over 1000 pixels (grey). ¢) The standard deviation in s di K2
calculated by simulation (grey) and the experimental results (black). d) SNR from

experiment (black) and simulation (grey).

are  the Nyquist criteria [35,51]. The details of the parameters used in the simulation are summarized
a0 in the table below:

Tissue Parameters

Detector Parameters

Speckle Parameters

Ua 2 0.1cm™! QE: 54.2% @: 3 pixels
iy 10em™! u(ls) :0.06e™ /s en : 100
n:1.33 o%(Is) : 0.16e~ w : [0,0; 100, 100]
Db :1x 10 8cm?/s | u(I,):2.9e”
o%(I.) : 0.1e”

Table 5. Parameters that were used to simulate synthetic speckles. Optical properties
were chosen to mimic biological tissue, and detector parameters are based off of the
properties of the Orca Flash4.0 v3 CMOS camera by Hamamatsu K.K.

@ 3.3. Partl: Simu/atingp

sz The simulated values of the decorrelation time, 7., as a function of source-detector separation,
a3 p, is shown in Fig. 4 a. As expected from theory, the speckle autocorrelation decays faster
s« with increasing p [10], confirming that the modified copula method for simulating decorrelating
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Figure 4. a) simulated values of 7. in ms. A clear decrease in 7. with increasing

p is seen. b) «2 at three different exposure times calculated from integrating the
autocorrelation, g1, of the simulated speckles.

sss  speckle intensity replicates the expected dynamics from theory. In Fig. 4 b, p(p) calculated by
s integrating the simulated speckle electric field decorrelation curves, g (Eq. 1) for three different

a7 exposure times is shown. As expected from theory, k2 decreases with increasing p and increasing
sss 1.

389 The simulated detected number of electrons (£S(p, T);;) for different p at two different T
a0 for all 100 simulated experiments are shown in Fig. 5 a and d. Including detector effects in
ser  the simulations results in deviations of the average value and variance from the ideal detected
ss2 electron intensity value. This effect is p and T dependent. For all values of p and T, the average
a3 value of the electron intensity does not deviate from the ideal case when only shot noise is
s« simulated (N: s). However, in the regime of lower detected electron counts originating from
a5 speckle signal, i.e. at longer p and shorter 7, there is an increased variance in the shot noise
s included detected electron intensity. Furthermore, at short 7', it is seen that the addition of a dark
a7 frame (N: sdr) visibly leads to a deviation in the average value of the detected electron intensity
ass  at p = 2 cm, while the same deviation for higher T is not observed until approximately p = 4
sss cm. This is explained by the properties of the camera that were simulated. In this case, the dark
a0 current, a T dependent signal, was significantly smaller than the read out signal, a T independent
a1 signal, for the exposure times shown (u(Iy) = 6 x 107%™ and u(I;) =3 x 10™*e~ for T = 0.1
a2 msand T = 5 ms respectively, compared to u(1l,) = 2.5¢7). Therefore, while dark noise is a T
a3 dependent noise source, the effect of adding a dark frame appears more significant at shorter
a4 T due to the high read-out signal relative to the speckle signal. Subtracting a dark frame (N:
as sd’r") corrects this deviation. However a dark frame subtraction does not correct the increase in
a6 variance of the detected signal due to shot, dark, and read-out noise terms.

407 These observations are carried through to Figure 5 b and e where the values of 2 are plotted.
a8 At shorter p and for both values of 7', simulation of detector effects show very little deviation
a0 from the ideal, no detector noise added case. However, with increasing p, there is a noticeable
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Figure 5. Simulation of 2 from the frames of synthetic speckles. a, d) ®(p) for two
different exposure times (7' = 0.1 ms and 7 = 5.0 ms on the top and bottom rows
respectively) for when no noise source are added are shown as well as for when noise
sources are added and when a dark frame is subtracted. b, e), the values of NK2 for
all 100 simulated experiments. ¢, f) In order to correct for differences in theory of g
between the double exponential form of the semi-infinite model from CDE and the
single exponential copula model, a bias term v is calculated (Eq. 19). These are shown
for different variations of added noise, N, at the two simulated exposure times.

410 deviation, as expected from experiments [2]. In the case of addition of shot, dark, and read-out
s noise (N: sdr), it is seen that for 7 = 0.1 ms (Figure 5 b), ;% begins to deviate from the ideal

w2 case, at approximately p=2.0 cm. At T = 5.0 ms (Figure 5 e), ,;, k2 begins to deviate from the
#13 ideal case from approximately p=1.5 cm. Correcting for detector effects by applying a dark
414 frame subtraction and correcting for shot, dark, and read-out noises (N: s’d’r’”) results in a larger
w15 range of p for which k2 agrees with the ideal case for 7=5.0 ms, to about p=3 cm. However, the
416 same correction does not obviously perform as well for 7=0.1 ms (Figure 5 b), with detector
417 effects correction (N: s’d’r’") apparently performing worse than the uncorrected case (N: sdr).
418 This last observation should not be interpreted as a failure in the correction of noise, rather it
419 is a reflection of the origin of the electron signal in this regime. Referring back to the plot of
a0 the detected intensity (Figure 5 a), at 7=0.1 ms, the majority of the detected electron signal
421 after p=2 cm originate from the detector rather than from speckles. Therefore, without applying
w22 corrections, any value of «? in this regime is not a reflection of speckle contrast, rather reflects a
423 “detector signal" contrast.

424 The bias term, y (Eq. 19), is shown in Fig. 5 ¢ and f and reflects the offset of , «? from the no
w25 noise added case, _«2. These were used to calculate the average theory corrected value of k>

26 with simulated detector effects ( Nﬁ’). For the remaining results, only the case of N = s"d’r’ will
427 be considered as this is the case of most interest in any experiment. The theory corrected values
w25 of k* are shown in Fig. 6 a and d.
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Figure 6. a, d) Simulation of theory corrected values of speckle contrast, g rlK_2/ . b,
e) Accuracy (percent error) of o dfr/Kz, . ¢, f) Precision (coefficient of variation) of
s’d’r’KZ/'
—
429 Theory corrected values of speckle contrast, NK2 , were calculated from Eq. 20. The final

a0 averaged value of the simulated 500 normally distributed random values of Np/ forT =0.1
a1 ms and 7 = 5 ms are plotted in Fig. 6 a and d. Error bars reflect the standard deviation. The

'l
a2 accuracy of k2 is shown in Fig. 6 b and e, reflected as the percent error. The percent error
a3 Increases (accuracy decreases) with increasing p reaching 5% at approximately 1.8 cm for short
—

2 T (Fig. 6 b) and 2.5 cm for long T' ((Fig. 6 e). Similarly, the precision of , 2 , represented as
435 the coefficient of variation (CV) also decreases (CV increases) with increasing p (Fig. 6 ¢ and d
a6 for T =0.1and T = 5.0 ms respectively).

w  3.4. Partll: Using the simulations to study precision and accuracy

a3 As seen in the previous section, effects of detector noise lead to decreases in accuracy of K2/
a9 particularly in the regimes of long p and short 7. In the next part of this analysis, the simulations
a0 are used to understand how various parameters can be changed in order to increase the usable
a1 range of p and T considering both precision and accuracy. In order to quantify the requirements
a2 of a SCOS or SCOT system, it is assumed that the required accuracy is within a 5% error and
a3 precision within a 10% coefficient of variation (CV) at p=4 cm and 7=5 ms. These values were
aaa  chosen for deep tissue measurement: p=4 cm corresponds to an approximate measurement depth
a5 of 2 cm. Although p=2.5 cm is considered sufficient for measuring the cortical surface going to
«s  further distances offers greath depth sensitivity and distances of between 3.0 - 4.0 cm have been
47 used for tomographic reconstruction of human functional activation [52,53]. 7=5 ms was chosen
4 in order to be able to sample at fast enough acquisition rates while also maximizing the number
we  of detected photons (Figure 5 d).

450 In speckle contrast optical tomography (SCOT) or speckle contrast diffuse correlation tomog-
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Figure 7. The effect of the number sampled speckles on the measured precision of

4
sdr k2 at three values of p, and T = 5 ms. Increasing the number of sampled speckles

—_—
results in a decrease in the CV of o d,r,K2 .

451 raphy (scDCT) [16, 17], several source and detector positions are used in order to reconstruct a
42 three dimensional image of blood flow. In a system incorporating nine source positions as in [54],
s using T=5 ms, this will correspond to a full acquisition rate of 22.2 Hz for x> measured at each
454 source position. Furthermore, 5% accuracy and 10% precision have been chosen as our targets
45 since a 10% blood flow change corresponds to approximately 10% change in *>. A 10% change
4s6  in flow is similar to what is measured in functional studies [21].

457 It is known that a contributing factor to the precision of x> is the number of speckles used
458 to determine u and o2 [31,35]. In the previous simulations of k2, w, = 100 x 100 pixels
sse  corresponding to the sampling of 1100 independent speckles. In Figure 7, w, was changed to

a0 simulate the effects of the number of independently sampled speckles on the CV of KZ,.

461 As expected in Fig. 7, increasing the number of speckles used to calculate k> results in
w2 an increase in the precision of x>. The decay in CV with increasing speckle number follows
w3 a square root dependency, in accordance to the theory [31]. Therefore, if the objective is to
s measure k> with 10% precision at p=4 cm and T=5 ms, w, must be increased from 100 x 100
ws to approximately 170 x 170 pixels corresponding to approximately 3000 speckles (since @=3
a6 pixels). Sampling more speckles can easily be implemented in a typical SCMOS camera with
a7 2048x2048 pixels by choosing a larger region of pixels.

468 As observed in Fig. 6 b and e, accuracy was seen to be higher at shorter p and longer 7,
w9 1.e. in the regime of high ®@. Strategies for increasing the amount of detected light to achieve
470 good accuracy while remaining within safety limits may include employing dual sources located
an equi-distance apart from the detected area of interest.

472 In addition to ®(p) , 7., may also affect accuracy of «>. In order to study the effect of 7.
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w73 on accuracy in «2, the simulations were repeated fixing ®(p) to be constant over all values of
474 simulated p.

—_—

475 In Fig. 8, the percent errorin , ,, ,k> as a function of the number of detected electrons shows
476 that measurement accuracy is dependent on p, and by extension, 7.. For the simulated camera,
477 measurements with longer p (shorter 7.) require less detected electrons to achieve the same

w7 accuracy in 2.
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Figure 8. Accuracy of , d,r,KZ for two different values of p with identical values of ®
(T = 1ms). Higher accuracy was found for greater p.

a9 3.5, Using the simulations to design and optimize a system

a0 In the previous sections we have verified the simulation pipeline by comparing the SNR measured
ss1  experimentally with an Orca Fusion-C14440-20UP camera to the expectations from simulation.
42 We have further demonstrated in detail (without experimental comparison) the entire simulation
ss3  pipeline. Finally, in the following section we will demonstrate how these simulations can be used
a4 to design and optimize a speckle contrast system.

485 Speckles were simulated using the parameters specified in Table 6. These parameters were
«s  derived from the experimental results (1. and @), properties of the camera defined by the
sz manufacturer, as well as data analysis (w,). The resulting experimental and simulated percent
ws error in k> for varying detected electron count rates is shown in Fig. 9.

489 The experimental and simulated results are in good agreement with each other and suggest
wo that for the chosen detector, a minimum detected count rate on the order between 4 to 5x10%
w1 e /pixel/second allows us to calculate x> with approximately 5% error.

492 Using the derived acceptable minimum detected count rate as a guide in determining the
a3 accuracy of raw data signal, the same device was placed on a human subject’s forehead using
a4 apof2.53 cm and T of 5 ms. Data was acquired at a frame rate of 100 fps. A summary of
a5 the measurements is show in Fig. 10. The desired electron count rate was reached (around
w6 4.3x10% e~ /pixel/second, Fig. 10), and the resulting 1/«* shows the expected pulsatile behavior
497 for a measurement acquired at this frame rate (Fig. 10 a). In order to confirm that the pulsatile
a8 behavior has physiological meaning, the fast Fourier transform (FFT) of the data has also been
a99  plotted (Fig. 10 ¢). A distinct peak at 1.4 Hz is seen in the FFT corresponding to a heart rate of
so 84 bpm. This value matches the resting heart rate measured in this subject using a standard pulse
st oxymeter. The harmonics of the heart rate can also be seen.
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Figure 10. Summary of results from a SCOS measurement on an adult human forehead.
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detected electron count rate lies in a range which allows us to accurately measure k2. ¢)
Fourier transform of the «2 signal. A clear peak is found at 1.4 Hz corresponding to the
heart rate of the subject (84 bpm).
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Tissue Parameters

Detector Parameters

Speckle Parameters

7. : 1.46x1077 s

QE: 29%

@: 5 pixels

u(I5) : 130.9¢

en : 100

o*(Is) : 0.8e”

wy : [0,0;100, 100]

u(l) :2.15e

o2(1,) : 2.28e”

Table 6. Parameters that were used to simulate synthetic speckles based on experimental
data taken using a Basler (daA1920-160um) CMOS camera on a liquid phantom.

s2 4. Discussion

s3 A comprehensive model of speckle contrast signal for measurement of flow requires three
s+ main components: the simulation of speckles, their dynamics, and the detector effects on the
sos measured signal. Individual 2D frames of speckles with the correct intensity distribution in
sos  these simulations were simulated following the method of Duncan et.al. [55]. The dynamics
sz of the speckle intensity were simulated modifying the method of Ref. [42], where crucially the
sos modification allowed for the characterization of 7. to be specified according to speckle intensity
sos decorrelation defined by the correlation diffusion equation [10]. While the exact form of the
sio  speckle decorrelation, g1, differs in the simulations, general properties of the dynamics and their
511 dependency on parameters such as p and aDb could be simulated. The simplification of g; of
sz a semi-infinite medium as a single exponential function has been seen to be accurate in noise
si3 - models for DCS [25]. Detector effects were simulated taking into account photon shot noise,
si4  dark current signal and noise, and read-out signal and noise. Our method for modeling speckle
515 contrast can account for parameters such as the speckle to pixel size and .

516 ‘We have shown that the simulations accurately represent experimentally observed behavior
s of k in the regime of long p and/or short T where the speckle contrast signal increases above
sis the theoretically expected values. Simulation of the noise correction method of Ref. [2] extends
si9  the region of p and T where the speckle contrast signal matches its theoretical value. However,
s20 depending on the amount of the contribution of the detector effects, the correction cannot account
s21 for all of the increased variance from these effects. Therefore, it is important when designing a
sz speckle contrast system to consider the range of p and T where k> can be corrected. We have
s23  also shown the dependency of accuracy in speckle contrast signal on parameters including the
s« number of detected photons, p, and 7.

525 The accuracy and precision of > developed in the simulation model not only reflects observed
s experimental behavior, but is also comparable to what has been described in the noise models of
s27 - related techniques. In DCS, similar to what we have seen in speckle contrast, the SNR of the raw
s28 g1 signal is dependent on the detected photon intensity and 7.. Since DCS uses correlators to
529 measure g, the noise model for DCS also depends on the architecture of the correlator [25, 56].
s An emerging variation of DCS known as interferometric DCS, or iDCS, utilizes a heterodyne
s31 detection technique mixing the traditional DCS signal with a reference arm (i.e. the coherent
s2 source). This detection scheme results in greater values of 7. compared to traditional DCS
s33  resulting in an increase in the SNR of the raw g; data as well as a decrease in the coefficient of
s« variation of the retrieved blood flow values [15].

535 While in this analysis we have concentrated on the effects of detector noise in the regime
s  of low detected photon counts corresponding to the typical observations in experiments, it is
ss7 - worth noting that high photon count rates that saturate the detector can also lead to decreases in
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s accuracy as well as precision of the raw signal and in the derived blood flow values. In DCS,
s39  saturated detection leads to decreases in the experimentally measured S resulting in inaccuracy
s¢0  of the retrieved blood flow [29]. Although not shown here, the same applies in measurements
st of speckle contrast as detector saturation will lead to inaccurate measurements of o>(7) and/or
s (1) and consequently 2.

543 The copula method [55] has previously been used by Qiu et.al. [32] to study the effects of
s pixel sampling (sampling of w, and w;) on . In this work, a pseudo exposure time was
ss  considered. However since the decorrelation of the speckles were not reassigned in units of
se6  time, the simulations were not related to proper physiological or system properties. Thompson
se7  et.al [34] combined the method of simulating a single frame of speckles of Ref. [55] with small
s¢s  random phase changes for each consecutively simulated frame, making it very similar to the
s¢9  copula method of Ref. [55]. These simulations were used to study the effect of speckle to pixel
ss0  size ratio in the measurement of x2. However, like in Ref. [32], the simulations were not scaled
551 to represent physiological properties and did not include any effects of detector noise.

552 The present study is complementary to the recent publication by Zilpelwar et.al. [37], with
ss3 - several notable differences. The model developed by Zilpelwar et.al. is based on a Monte-Carlo
s« method simulating random particle (scatterer) motion. Their approach considers a single
555 scattering regime, and is therefore strictly speaking is not applicable for SCOS which is a diffuse
sse  optical method considering a multi-scattering regime. Our approach does not simulate particle
ss7 - motion, rather we directly simulate the statistical properties of decorrelating speckle by generating
sss  correlated random numbers using the method of Duncan et.al. [42]. Both simulations are based
sss  on a single-exponential form of g;. In the present work, we argue that while the exact value of x>
se0  is dependent on the approximations used to define g, the noise in 2 is likely not affected due to
st previous observations in the development of a noise model for DCS [25]. In order to account for
sz the difference in x*> stemming from discrepancies in the approximation of g, in our simulations,
ss  we have included a method to correct for this difference. Furthermore, in the present work we
se¢  were interested in deriving limits of accuracy and precision for an experimental scenario and
ses therefore included a full noise corrected simulation of ;.. %’ by simulating the expected dark
se  frames of the individual specifications of each simulated camera. These details, multi-scattering
se7  regime in a semi-infinite medium, was not included in the model of Ref. [37].

568 We are not the first to adapt the work of Duncan et.al. [42, 55] to study the behavior of
se9 K. We note that this method is not only method in the literature for simulating decorrelating
s speckle patterns [57-60]. In the copula method of [42], spatial correlation is not preserved
s between frames. Song et.al propose another method for simulating frames correlated in the
sz spatio-temporal domain [57]. The authors successfully simulated real speckle contrast data by
573 creating correlation maps of data from a rat ear, however the authors note that the accuracy of
s74  replicating an image taken from real data depends greatly on the quality of the camera used
575 to acquire the image. Sang et.al. utilized the method of Song et.al. [57] to further expand the
s method to include time integration effects of exposure time [61], however only one exposure time
s77 - was simulated. Another method for modelling speckles is to model the summation of random
s phasors [58]. Postnov et.al. modified this technique in order to simulate the effects of the laser
s79  linewidth and camera noise on «2 [59]. An interesting work by Song et.al. [62] derives the effect
ss0  of camera quantization of intensity on speckle contrast from the probability density function of
ss1 speckle intensity. Quantization of the speckle signal is something that was not considered in the
sz current study and should be considered in future work.

sss 5. Conclusion

ss¢  In the present work we have introduced a method for simulating the formation and detection
sss  of dynamic speckle patterns. The main application that we have focused on was the design
sss  and characterization of a speckle a contrast system capable of measuring human adult cerebral
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ss7  blood flow non-invasively. To this end, the simulation method was validated on a dynamic
sss  liquid phantom, the details of speckle contrast signal as a function of p and T were studied, and
ss9  finally a system designed for human cerebral blood flow was characterized and validated on an
seo adult human subject. The simulation method has been shown to be useful when identifying
se1  the lower bounds of detected electron count-rate to achieve the desired accuracy and precision
s of speckle contrast signal. As speckle contrast signal is sensitive to detector noise effects at
ses  low detected electron count-rates, characterizing these limits is advisable when developing any
s« speckle contrast system.
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