

1 A comprehensive workflow and its validation for 2 simulating diffuse speckle statistics for optical 3 blood flow measurements

4 **LISA KOBAYASHI FRISK**,^{1,*} **MANISH VERMA**,¹ **FARUK BEŠLIJA**,¹
5 **CHEN-HAO P. LIN**,^{2,3} **NISHIGHANDA PATIL**,¹ **SUMANA CHETIA**,¹
6 **JASON TROBAUGH**,⁴ **JOSEPH P. CULVER**,^{2,3} AND **TURGUT**
7 **DURDURAN**^{1,5}

8 ¹*ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels
(Barcelona), Spain*

9 ²*Department of Physics, Washington University in St. Louis, St. Louis, Missouri 63110, USA*

10 ³*Department of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA*

11 ⁴*Department of Electrical and Systems Engineering, Washington University School of Medicine, St. Louis,
12 Missouri 63110, USA*

13 ⁵*Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain*

14 *lisa.kobayashi@icfo.eu

15 **Abstract:** Diffuse optical methods including speckle contrast optical spectroscopy and
16 tomography (SCOS and SCOT), use speckle contrast (κ) to measure deep blood flow. In order
17 to design practical systems, parameters such as signal-to-noise ratio (SNR) and the effects of
18 limited sampling of statistical quantities, should be considered. To that end, we have developed a
19 method for simulating speckle contrast signals including effects of detector noise. The method
20 was validated experimentally, and the simulations were used to study the effects of physical
21 and experimental parameters on the accuracy and precision of κ . These results revealed that
22 systematic detector effects resulted in decreased accuracy and precision of κ in the regime of low
23 detected signals. The method can provide guidelines for the design and usage of SCOS and/or
24 SCOT instruments.

26 1. Introduction

27 An accurate and often continuous assessment of microvascular, regional blood flow has many
28 implications for diagnosis and treatment of diseases and for the study of healthy physiology.
29 Despite continued efforts to establish practical means for measuring microvascular, regional
30 blood flow in a non-invasive manner, this remains an important unmet need. One potential
31 approach uses near-infrared, coherent light and the arising speckles after its diffusion [1–4].

32 Coherent laser light can be used to non-invasively measure local microvascular blood flow in
33 tissue by detecting the fluctuating speckle patterns after light interaction with the tissue [5–9].
34 For the purposes of this manuscript, we will focus on deep-tissue, i.e. those that utilize light that
35 penetrates up to several centimeters, measurements using photon diffusion. This is possible since
36 near-infrared (~ 650 – 1000 nm) light is only mildly absorbed in most tissues.

37 In the field of near-infrared diffuse optics, there are two common methods for determining blood
38 flow from laser speckles. The first consists of measuring the speckle intensity autocorrelation
39 ($g_2(\tau)$) or the electric field autocorrelation ($g_1(\tau)$) over a continuous range of decay times (τ)
40 to derive a blood flow index [10]. Diffuse correlation spectroscopy (DCS) [10–12] and its
41 variants [13–15] utilize this method for quantifying the speckle statistics to determine blood
42 flow. The second common method consists of quantifying the speckle intensity statistics using a
43 parameter called the “speckle contrast” (κ). Several related techniques measure κ to measure
44 blood flow. These include tomographic techniques (SCOT, scDCT) for the three-dimensional
45 mapping of blood flow from measurement of κ [16, 17] and techniques to calculate one or

46 two-dimensional maps of blood flow (DSCA, SCOS, LSF, LASCA, LSCI) [2, 8, 18–20]. Of
47 these, some techniques (LASCA and LSCI) are non-diffuse methods and therefore only measure
48 superficial blood flow [8, 20].

49 Diffuse optical methods using the laser speckle contrast can achieve similar blood flow
50 information as DCS at an overall cheaper cost per detector channel since κ is an integral of $g_2(\tau)$
51 over the delay times up to a longer exposure time. In other words, common scientific cameras
52 can be utilized as “slower” detectors. This claim has been supported by experiments [3, 21, 22],
53 simulations [23], and most recently by theoretical analyses [24].

54 A thorough analysis of the measurements utilizing the intensity auto-correlation of the speckle
55 statistics, i.e. DCS, has previously been developed and tested [25–30]. Among other uses, these
56 works have allowed the design of components (detectors, sources) and systems that target specific
57 goals in detection precision and accuracy in DCS.

58 Despite the increasing prevalence in literature of the use of speckle contrast techniques, a
59 comprehensive method for determining the effects experimental parameters have on the accuracy
60 and precision of κ has not yet been developed. Accuracy in speckle contrast values, particularly
61 in scenarios with low levels of detected light, is important to consider as the effects of detector
62 noise can greatly influence the detected signal. Valdes et al. [2] first described this phenomenon,
63 and subsequently developed a noise removal algorithm to reduce the effect of detector noise on
64 the measured value of κ . This algorithm has been shown to be effective, however it does not
65 correct for all detector effects, in particular shot noise.

66 Previous work to optimize accuracy and precision in speckle contrast measurements includes
67 theoretical and experimental characterization of the sampling of speckles on the precision of
68 measured κ [31–33], and the effect of the imaged speckle to camera pixel ratio on the accuracy
69 of κ [34–36]. These earlier works did not account for the effect of experimental sources of
70 noise, particularly detector noise, on the measured accuracy and precision of the speckle contrast
71 signal. Recently, this gap in the existing literature was addressed by Zilpelwar et.al. [37] through
72 a simulation method which modeled the generation and detection of decorrelating speckles
73 including detector noise effects. The authors demonstrated that the developed model is able to
74 simulate both the values of κ as well as the noise in κ detected using sCMOS cameras. Using
75 this simulation, the authors investigate the effect of speckle to pixel size ratio, exposure time,
76 and detected photon count rate on κ and its signal to noise ratio (SNR) for two commercially
77 available cameras.

78 We have developed a separate simulation model to Zilpelwar et.al. [37], but with a similar aim
79 of simulating the behavior of κ with respect to detector noise and other experimental parameters.
80 Our model addresses details not included in Ref. [37] such as the efficacy of the detector noise
81 correction by Valdes et.al. [2], and the behavior of κ in a multi-scattering regime in a semi-infinite
82 geometry. We are specifically interested in characterizing the accuracy and precision of speckle
83 contrast measurements taking into consideration experimentally relevant parameters such as
84 the noise specifications of the detectors, the exposure time of the experiments, the detected
85 photon-count rate, the measured medium, and the sampling of the detected speckles. To this end,
86 the developed method was first verified experimentally for its ability to simulate κ and the noise
87 in κ . After verifying the simulation method, the method was used to study the effect of accuracy
88 and precision of κ in various experimental scenarios. Finally, the simulations were used to design
89 and optimize a system capable of measuring baseline cerebral blood flow non-invasively in an
90 adult human.

91 **2. Methods**

92 Here we focus on two dimensional detectors ($i \times j$) with “pixels” but the results can be generalized
93 to other standard detectors. As will be evident later on, it is more convenient to use the square
94 of the speckle contrast (κ^2) for the analysis. We assume that the κ^2 is derived from sampling n

95 speckles that are distributed over space (w_z) and/or over time by repeated measurements (w_t).
96 These n speckles sampled over w_z and/or w_t are used to estimate the probability distribution
97 of the speckle intensity. From these n speckles, the mean intensity ($\mu(I)$) and the variance of
98 intensity ($\sigma^2(I)$) are determined.

99 Even in the case of ideal detectors and light sources, the calculated values are not exactly equal
100 to the true mean and the true variance due to the effects of limited sampling. In experiments,
101 the situation is more complex due to additional sources that contribute to the observed photon
102 statistics such as the detector noise which further influence the measured values of mean and
103 variance.

104 Therefore, these measurement effects must be accounted for in order to experimentally
105 determine a “corrected κ^2 ”, or the best estimate of the true value of κ^2 . For common detectors,
106 these corrections include a dark frame subtraction which attempts to account for the dark and
107 read-out signal and a statistical correction attempting to estimate the shot noise as well as the
108 dark and read-out noise variances [2].

109 The speckle contrast is an alternative data-type that is used to characterize the decorrelation
110 time (τ_c) of the intensity autocorrelation of the speckle statistics which is more commonly
111 utilized [24, 38]. τ_c is in turn dependent on several aspects such as the the optical properties of
112 the medium, the dynamics of the scatterers, the measurement geometry, the source wavelength
113 and more. The signals that are detected in a common detector are affected by this statistical
114 profile which in turn affects the noise statistics. Therefore, in order to simulate realistic speckle
115 contrast signals, we need to take all this into account and incorporate the appropriate aspects of
116 the detectors. An illustrative flowchart of the method that has been developed is shown in Figure
117 1 and is further detailed below.

118 2.1. The simulated experimental setup

119 Let us begin by detailing the canonical experimental setup that is being simulated. The exact
120 details of the desired experimental setup to simulate may differ, however, the simulations are
121 largely independent of these details. A visual representation of a possible setup is shown in
122 Figure 1a. Here, the light is delivered through an optical fiber, and detected with a separate fiber
123 coupled to a camera. The core of the fiber is imaged with appropriate optics and all the pixels
124 within that region-of-interest (ROI) correspond to one value of ρ . In a free-space system, the
125 pixels in the imaged field of view could correspond to different values of ρ .

126 We assume that a coherent light source of wavelength λ is utilized. The photons, once in
127 the medium, undergo absorption and scattering events. The probability per unit length the
128 photons are absorbed is estimated by the absorption coefficient ($\mu_a(\lambda)$). The reduced scattering
129 coefficient ($\mu'_s(\lambda)$) is used to estimate the total length which after a few scattering events leads to
130 the randomization of the photon direction. In other words, after a photon traverses a distance
131 few times the $1/\mu'_s$, the light can be considered diffuse [39]. This diffuse light is measured at a
132 distance ρ away from the source. As a rule-of-thumb, ρ is related to the mean probed depth by
133 the measured light so that in order to measure deeper tissue, canonical experiments utilize longer
134 ρ .

135 If the light source is of sufficiently narrow bandwidth (long coherence length) [40], then the so-
136 called “diffuse laser speckles” and their statistical fluctuations can be observed. The electric-field
137 (g_1) or the intensity (g_2) autocorrelation of the detected speckles are functions of parameters
138 related to the experimental setup (e.g. ρ and λ) and the properties of the measured medium
139 including μ_a , μ'_s , the ratio of the moving scatterers to the static ones (α) and the mean-squared
140 displacement of the scatters (Δr^2). For most experiments, the “effective” particle/scatterer
141 diffusion coefficient weighted by α (αDb) is measured as a “blood flow index” (BFI). For further
142 details see Refs. [7, 10, 41]. The decorrelation time, τ_c (normally defined as the time g_1 decays to 0.5
143 $1/e$ [20]) was defined for the purpose of these simulations as the time at which g_1 decayed to 0.5

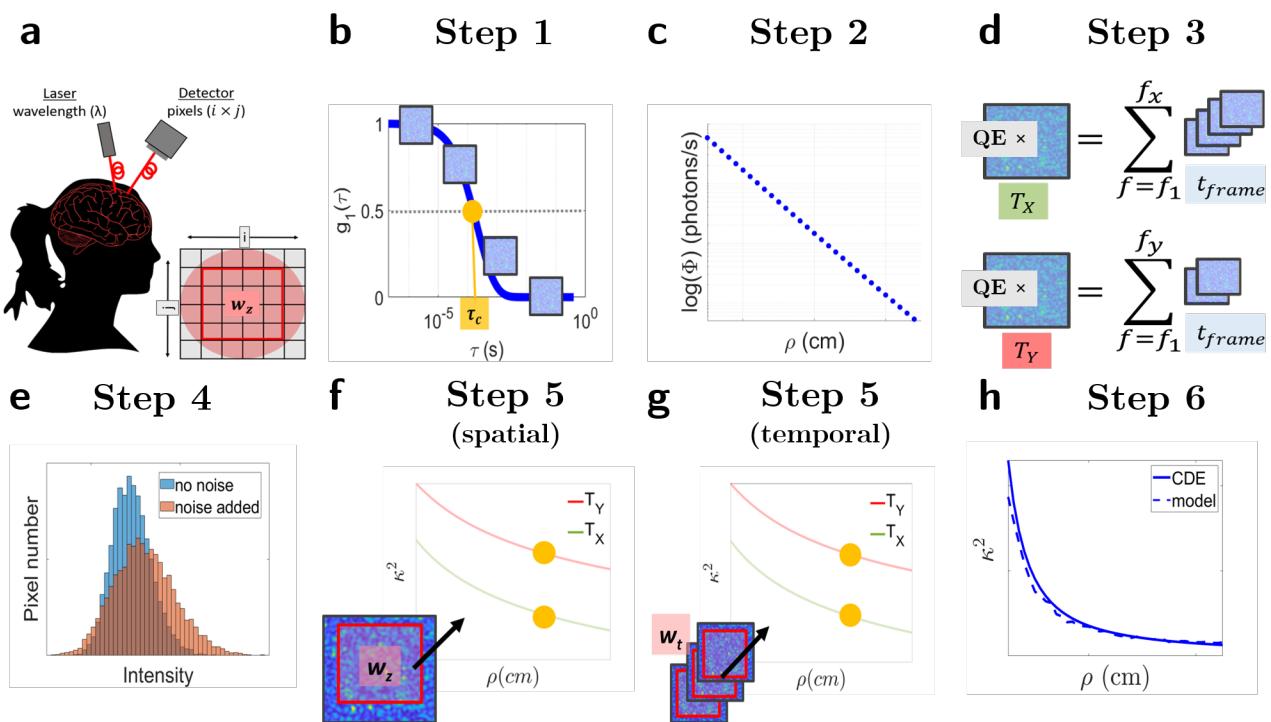


Figure 1. Flow chart for simulating frames of correlated speckles and κ^2 . These simulations aim to simulate a variety of experimental setups such as in sub-figure **a**. Depending on the experimental setup, the imaged field of view will differ. In this example, source and the detector fibers are placed a certain distance (ρ) from each other and are coupled to the laser and detector. The imaged field-of-view (imaged over $i \times j$ pixels) includes the fiber core which in later steps will be used to calculate κ^2 over a specified region of interest (w_z). Sub-figure **b** illustrates Step 1 of the simulations. In this step, the rate at which the speckles decorrelate, τ_c , is determined from the correlation diffusion equation (CDE). Using this value of τ_c , consecutive frames of correlated speckles are simulated so that their electric-field autocorrelation decays with τ_c . The intensity of these simulations are in arbitrary units, and independent of exposure time, T . Instead they represent speckles measured during a finite time-bin width, t_{frame} , on the g_1 curve. In order to simulate several values of ρ , the process illustrated in **b** can be repeated several times to simulate the ρ dependent change in τ_c . In Step 2 (sub-figure **c**), the arbitrary units of the simulated frames is scaled to represent realistic values of photon current rate, Φ , in units of photons/second. In Step 3 (sub-figure **d**), an exposure time is introduced to the simulations by summing over frames. This process additionally converts the units of the simulations from photons/s to photons. Various values of T can be simulated from the same set of simulated frames of Step 1. In this case, the simulation of two values of exposure time, T_X and T_Y , is shown. Multiplying the summed frames in units of photons by the quantum efficiency (QE) of the camera converts the units of the simulations to electrons (e^-). In Step 4 (sub-figure **e**), the detector effects are simulated by altering the simulated intensity statistics according to the specifications of real detectors. In Step 5 (sub-figures **f** and **g**), n speckles are sampled over an area, w_z or over pixels of several repetitions of simulations to estimate a value of κ^2 . The yellow dots represent κ^2 simulated for the τ_c and therefore ρ simulated in Step 1. The two values of T simulated in Step 3 are also shown. In the final step (Step 6, sub-figure **h**), the discrepancies in the exact form of the speckle autocorrelation decay between the solution for the CDE for a semi-infinite medium and the developed model is corrected for.

144 and is also a function of these parameters.

145 **2.2. Speckle statistics detected by a two dimensional detector array**

146 We have simulated κ^2 for tissue with specific optical properties and blood flow by simulating
147 consecutive frames of correlated speckles which simulate their electric field autocorrelation with
148 a decorrelation time, τ_c , defined by the solution of the CDE for a semi-infinite medium [10]. The
149 methodology presented is independent of this solution and other solutions (layered, heterogeneous,
150 numerical) of the CDE could be utilized. For clarity, electric-field autocorrelation curves following
151 the solution of the CDE will be referred to as \hat{g}_1 , while the simulated electric-field autocorrelation
152 curves are referred to as \overline{g}_1 . While the two are similar, there are slight differences which are
153 discussed below. Furthermore, the theoretical value of κ^2 derived from the CDE will be referred
154 to as $\hat{\kappa}^2$ while the simulated values will be referred to as $\overline{\kappa}^2$.

155 In the first step of the simulation pipeline (Figure 1b), τ_c is derived from \hat{g}_1 . The derived
156 value of τ_c was used to simulate frames of individual speckles by modifying the copula method
157 developed in Ref. [42]. This method simulates consecutive two dimensional matrices of numbers
158 that are correlated to each other by using a mathematical copula. Furthermore, the statistical
159 profile of each matrix reflects the probability distribution of speckle intensity. Therefore, each
160 individual matrix can be considered as a camera frame acquired in a speckle contrast experiment.
161 These matrices are referred to as “frames” (f) simulating pixel coordinates i, j while imaging
162 speckles with diameter, \emptyset . \emptyset behaves as a scaling factor to put physical units for the pixel
163 size since the speckle diameter is approximately equal to the wavelength of light being used.
164 Therefore, choosing \emptyset to be equal to three pixels for a system modeling $\lambda = 785$ nm will scale
165 the width of each pixel to be equal to approximately 262 nm.

166 The autocorrelation, \overline{g}_1 , of the first frame, $f = f_1$ to the k^{th} frame, $f = f_k$ is given by

$$\overline{g}_1 = \exp \left\{ -\frac{(2\pi m)^2}{6} \left[1 - \cos \left(\frac{\pi k - 1}{2 T - 1} \right) \right] \right\}, \quad (1)$$

167 where k is the frame number and m is a parameter related to the decorrelation of the frames.
168 In our adaptation we have defined m to be a function of τ_c . Since τ_c has been defined as
169 $\overline{g}_1 = \hat{g}_1 = 0.5$ then

$$m(\tau_c) = \sqrt{\frac{-6\ln(0.5)}{4\pi^2 \cos(\frac{\pi \tau_c - 1}{2 T - 1})}}. \quad (2)$$

170 Each of the individual simulations of \overline{g}_1 consisting of $f = f_N$ frames of speckles patterns
171 constitute an experiment, defined by ϵ . This process together with notation is illustrated in Figure
172 2. The basic method simulates β , an experimental parameter related to the coherence of the light
173 source and the detection optics [43], equal to one. However β can also be simulated for other
174 values by following the method of Ref. [42].

175 The simulations are simulated in arbitrary copula units. In addition, the frames are only
176 dependent on ρ and every simulated frame represents a point on the \overline{g}_1 curve with a finite time-bin
177 width, t_{frame} . Since each frame has a defined ρ and is simulated over an array $i \times j$, the complete
178 notation is, ${}^c S(\rho)_{ijf}$. In this notation, the pre-superscript indicates the units of the simulated
179 frame. In this case, c refers to the arbitrary “copula” units. The pre-subscript, \sim , indicates that
180 no effect of detector noise has been included in the simulated frame. The indices i, j and f refer
181 to the pixel and frame.

182 **2.3. Scaling detected photon intensity**

183 In order to convert ${}^c S(\rho)_{ijf}$ to physical units, the arbitrary copula units must be scaled to a
184 realistic value (Fig. 1c). This is done by defining the spatial decay of light intensity theoretically

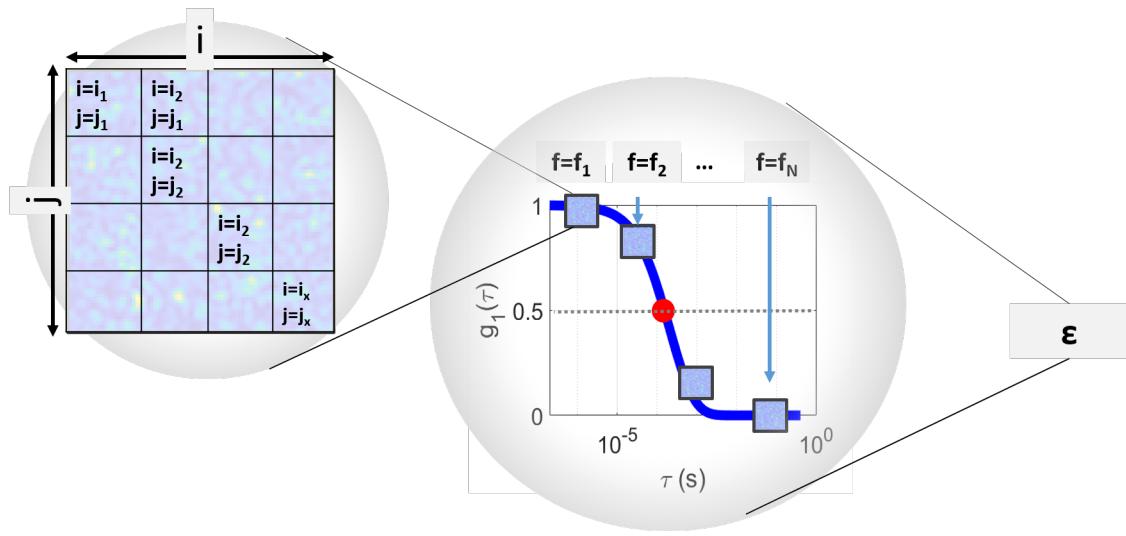


Figure 2. Illustration of how frames with a defined τ_c are simulated. First individual speckles are simulated on a grid of $i \times j$ pixels. These individual frames, f , are correlated to each other and their electric-field autocorrelation, \bar{g}_1 , decay according to τ_c defined from semi-infinite theory (Figure 1). One full simulation of a theoretical g_1 curve (\bar{g}_1) consisting of f_N frames corresponds to one experiment, ϵ . This process is repeated several times resulting in several simulations of g_1 .

185 or experimentally. According to the photon diffusion theory, in a semi-infinite geometry, the
 186 measured photon current rate, $\Phi(\rho)$, in units of photons/second, decreases with ρ as:

$$\Phi(\rho) = \frac{vS}{4\pi D} \left(\frac{\exp(kr_1(\rho))}{r_1(\rho)} - \frac{\exp(kr_b(\rho))}{r_b(\rho)} \right) \times \frac{\lambda}{hv} \times A \quad (3)$$

187 Where $k = \sqrt{-v\mu_a/D}$, and D is the diffusion coefficient ($D = v/(3\mu_a + \mu'_s)$), and v is the
 188 speed of light in medium. $r_1(\rho)$ and $r_b(\rho)$ are variables related to the boundary conditions for
 189 a semi-infinite geometry [10]. Here h is Plank's constant, S is the source irradiance in units
 190 W/cm^3 , and A is the pixel area. It is noted that A in the simulations is related to the speckle size,
 191 \mathcal{O} , such that $A = \lambda/\mathcal{O}$.

192 Alternatively, experimental values of $\Phi(\rho)$ can be used to simulate the photon current rate
 193 at the detector. In this case, the average measured photons per second at specified values of
 194 ρ (divided by the quantum efficiency of the specified detector) can be used to approximate the
 195 photon current rate.

196 Once $\Phi(\rho)$ has been established, whether theoretically or experimentally, the simulated frames
 197 are scaled using $\Phi(\rho)$ to convert them to a physically meaningful unit of photons/second, denoted
 198 as ${}^{ps}\tilde{S}(\rho)_{ijf}$. This is evaluated through the normalization of ${}^cS(\rho)_{ijf}$ with its mean over
 199 simulated frames, $\mu({}^cS(\rho)_{ij})_f$:

$${}^{ps}\tilde{S}(\rho)_{ijf} = \frac{{}^cS(\rho)_{ijf}}{\mu({}^cS(\rho)_{ij})_f} \times \Phi(\rho) \quad (4)$$

200 2.4. Introducing exposure time to the simulated frames

201 The next step (Fig. 1d) requires converting the frames of equal frame widths, t_{frame} , to frames
 202 with an exposure time, T_x . These frames are denoted as ${}^p\tilde{S}(\rho, T)_{ijf}$ and are in units of photons.

203 This is done by adding $N = T_x/t_{frame}$ consecutive frames:

$${}^p \tilde{S}(\rho, T_x)_{ij} = \sum_{f=1}^{f_x} {}^p \tilde{S}(\rho)_{ijf} \quad (5)$$

204 Note that with the introduction of exposure time, the simulated frames drop their indexing of
205 f .

206 Finally, the simulated frames are converted from photons to electrons:

$${}^e \tilde{S}(\rho, T_x)_{ij} = QE \times {}^p \tilde{S}(\rho, T_x)_{ij} \quad (6)$$

207 Where QE is the quantum efficiency of the camera.

208 Table 1 summarizes the introduced notation to refer to the simulated frames.

Speckles (ρ)	Speckles (ρ, T)
i, j pixel index	$T_{max} = f_N \times t_{frame}$ maximum exposure time simulated
f frame index	$T_x = f_x \times t_{frames}$ exposure time, x (f_x number of frames required to simulate T_x)
f_N number of frames simulated for one \bar{g}_1	${}^p \tilde{S}(\rho, T_x)_{ij}$ frame (units: photons) (Eq. 5)
t_{frame} size of each frame (units: time)	${}^e \tilde{S}(\rho, T_x)_{ij}$ frame (units: electrons) (Eq. 6)
${}^c \tilde{S}(\rho)_{ijf}$ frame (units: a.u.)	
${}^{ps} \tilde{S}(\rho)_{ijf}$ frame (units: photons/second) (Eq. 4)	

Table 1. Table of definitions of the simulated speckle patterns including conversion of units from arbitrary simulation units with no T dependency to electron units with T dependency. In the notation for the simulated frames, the pre-superscript indicates the units of the simulated speckle intensities while the pre-subscript, \sim , indicates that no noise has been added

209 **2.5. Detector Noise**

210 The final step before using the simulations to calculate $\bar{\kappa^2}$ is to simulate the effects of the main
211 types of detector noise on the simulated frames previously described, namely: photon shot noise,

212 dark signal non-uniformity (DSNU), dark current shot noise, and read-out noise [44, 45]. This
 213 step is illustrated in Fig. 1e. To simulate detector noise, the distribution of each of the types of
 214 noise is considered, and random numbers are generated following the distribution. The notation
 215 used to describe the generation of random numbers and their distributions is shown in Eq. 7

$$I_{Z_{ij}} = p_Z(z; \mu(I), \sigma^2(I)) \quad (7)$$

216 $I_{Z_{ij}}$ is the random number generated representing a certain intensity (in e^-) at pixel i, j . $I_{Z_{ij}}$
 217 originates from a distribution, p_Z , with a mean value of intensity, $\mu(I)$, and variance, $\sigma^2(I)$.

218 Photon shot noise is a Poisson distributed noise source [44, 46]. Using the notation in Eq. 7,
 219 the contribution of photon shot noise at each pixel i, j is described as:

$${}^eS(\rho, T_x)_{ij} = I_{s_{ij}} = p_S(s; {}^eS(\rho, T_x)_{ij}, {}^eS(\rho, T_x)_{ij}) \quad (8)$$

220 Where we have applied the definition of a Poisson distribution, $\mu(I) = \sigma^2(I)$. In this case
 221 $\mu(I) = {}^eS(\rho, T_x)_{ij}$ (i.e. the measured intensity in e^- (Eq. 6)). We have also included a new
 222 notation ${}^eS(\rho, T_x)_{ij}$. The pre-subscript, s , denotes the application of shot noise on the simulated
 223 frame.

224 DSNU and dark current noise along with read-out noise are not directly applied to ${}^eS(\rho, T_x)_{ij}$,
 225 instead independent dark frames are simulated and then added to ${}^eS(\rho, T_x)_{ij}$.

226 DSNU is simulated by simulating individual pixels of logically distributed random numbers
 227 [46]:

$$I_{\delta_{ij}} = p_\Delta(\delta; \mu(I_\delta), \sigma^2(I_\delta)) \quad (9)$$

228 Where $\mu(I_\delta)$ and $\sigma^2(I_\delta)$ are the mean and variance of the DSNU specific to each detector.
 229 Their values can typically be found in camera specification sheets. The variance of a logistic
 230 distribution is given by $\sigma^2(I_\delta) = (s_l^2 \pi^2)/3$ where s_l is the shape parameter of the logistic
 231 distribution.

232 The dark shot noise, similar to the photon shot noise (Eq. 8) is simulated by applying Poisson
 233 distributed random numbers [44] to each pixel simulated in Eq 9:

$$I_{d_{ij}} = p_D(d; I_{\delta_{ij}}, I_{\delta_{ij}}) \quad (10)$$

234 Finally, read out noise is simulated by assuming that it is a normally distributed noise
 235 source [47]. Read out noise in CMOS cameras is added at each pixel and is independent of the
 236 dark noise and the detected signal. Therefore, the contribution of the read out signal at each pixel,
 237 $I_{r_{ij}}$, is simulated:

$$I_{r_{ij}} = p_R(r; \mu(I_r), \sigma^2(I_r)) \quad (11)$$

238 where the mean and variance of the read-out signal ($\mu(I_r)$ and $\sigma^2(I_r)$) are specific to each
 239 detector and can be found in specification sheets or estimated from online camera simulators.

240 The total dark frame, df , is then given by

$$df_{ij} = I_{d_{ij}} + I_{r_{ij}}. \quad (12)$$

241 Putting everything together, the frames with shot noise, DSNU, dark shot noise, and read-out
 242 noise, ${}^eS(\rho, T_x)_{ij}$, are given by:

$${}^eS(\rho, T_x)_{ij} = {}^eS(\rho, T_x)_{ij} + df_{ij} \quad (13)$$

243 To generalize the notation, the pre-subscript N indicates a general noise source. In other words,
 244 ${}^eS(\rho, T_x)$ is shorthand for speckle intensity frames in units of electrons with unspecified noise,
 245 N , added. N can take values:

246 • \sim : no noise

247 • s : shot noise added

248 • sdr : shot noise and dark frame added (dark and read out noise)

249 • $sd'r'$: shot noise and dark frame added, dark frame offset subtracted (dark and read out
250 noise corrected)

251 • $s'd'r'$: shot noise and dark frame added, dark frame and shot noise corrected.

252 The definitions and notation for simulating detector noise is summarized in Table 2:

Noise Source		Distribution
shot	$I_{s_{ij}} = p_S(s; \mu(I_{ij}), \sigma^2(I_{ij}))$ $I_{ij} = {}^e_S(\rho, T_x)_{ij}$ (Eq. 8)	Poisson $\mu(I_s)_{ij} = I_{ij}$ $\sigma^2(I_s)_{ij} = \mu(I_s)_{ij}$
dark	dark signal non-uniformity $I_{\delta_{ij}} = p_\Delta(\delta; \mu(I_{\delta_{ij}}), \sigma^2(I_{\delta_{ij}}))$ (Eq. 9)	Logistic $\mu(I_\delta)_{ij} = \mu(I_\delta)^\dagger$ $\sigma^2(I_\delta)_{ij} = \frac{3s_l^2}{\pi^2}$ s_l^\dagger : shape parameter, logistic distribution
	dark shot $I_{d_{ij}} = p_D(d; \mu(I_{\delta_{ij}}), \sigma^2(I_{\delta_{ij}}))$ (Eq. 10)	Poisson $\mu(I_d)_{ij} = I_{\delta_{ij}}$ $\sigma^2(I_\delta)_{ij} = \mu(I_\delta)_{ij}$
read	$p_R(I_{r_{ij}}; \mu(I_{r_{ij}}), \sigma^2(I_{r_{ij}}))$ (Eq. 11)	Normal $\mu(I_r)_{ij} = \mu(I_r)^\dagger$ $\sigma^2(I_r)_{ij} = \sigma^2(I_r)^\dagger$

Table 2. Table of definitions of the noise sources that are included in the simulations along with their corresponding distributions. The notation $p_Z(z; \mu, \sigma^2)$ is used to define random numbers, z , originating from a distribution, p_Z , with a mean value of, μ , and variance, σ^2 . † denotes parameters that can be found in camera specification sheets.

253 2.6. *Speckle Contrast*

254 The final steps of the simulation pipeline require the calculation of $\overline{\kappa^2}$ using the frames that
255 have been simulated. In the first step, $\overline{\kappa^2}$ is directly calculated using the simulated frames. The
256 calculation of $\overline{\kappa^2}$, as in a real experimental setting, can be done temporally or spatially depending
257 on how speckles are sampled. Independent of the domain in which $\overline{\kappa^2}$ is simulated, it should
258 be noted that since the speckle decorrelation was modelled as a single exponential (Eq. 1),
259 the physically more realistic semi-infinite model of the speckle decorrelation follows a double
260 exponential model [10]. A correction was applied in order to simulate a model corrected value
261 of $\overline{\kappa^2}$ denoted as $\overline{\kappa^2}'$. Previous work in developing a successful DCS noise model also applied
262 a single exponential model in order to model noise [25, 48]. Therefore, while the value of $\overline{\kappa^2}$
263 will be affected by the model used for $\overline{g_1}$, the noise is well described using the simplified single

264 exponential model. The definitions and notation related to $\overline{\kappa^2}$ are summarized in Table 3. The
 265 following sections will describe their calculations.

κ^2	Spatial κ^2	Temporal κ^2
\hat{g}_1 electric-field autocorrelation curve CDE, semi-infinite solution [10]	$w_z = [i_\zeta j_\zeta, i_\xi j_\xi]$ “spatial window” of pixel area	$w_t = [\epsilon_\zeta, \epsilon_\xi]$ “temporal window” of experiments
$\hat{\kappa}^2$ derived from \hat{g}_1	$\mu(I_\epsilon)_{w_z}$ mean intensity over w_z	$\mu(I_{ij})_{w_t}$ mean intensity over w_t
\overline{g}_1 simulated autocorrelation curve (Eq. 1)	$\sigma^2(I_\epsilon)_{w_z}$ variance of intensity over w_z	$\sigma^2(I_{ij})_{w_t}$ variance of intensity over w_t
$\overline{\kappa^2}$ derived from \overline{g}_1	${}_{N\kappa^2}\epsilon = \frac{\sigma^2(I_\epsilon)_{w_z}}{\mu^2(I_\epsilon)_{w_z}}$ spatial κ^2 (Eq. 14)	${}_{N\kappa^2}ij = \frac{\sigma^2(I_{ij})_{w_t}}{\mu^2(I_{ij})_{w_t}}$ temporal κ^2 (Eq. 15)
${}_{N\gamma} = \overline{\kappa^2} - {}_{N\kappa^2}$ bias term (Eq. 19)		
${}_{N\kappa^2}' = p_K(k; \hat{\kappa}^2 + {}_{N\gamma}, \sigma^2({}_{N\kappa^2}))$ corrected for semi-infinite theory (Eq. 20)		

Table 3. Table of definitions for κ^2 . Three different variations of κ^2 are calculated: first κ^2 calculated directly from the integration of the double exponential g_1 from CDE. This is $\hat{\kappa}^2$. Secondly, κ^2 calculated directly from the simulated frames whose g_1 (\overline{g}_1) follows a single exponential form. This is $\overline{\kappa^2}$ and outlined in Section 2.7. Thirdly, the model differences due to the differences in g_1 is corrected. This is $\overline{\kappa^2}'$ and is outlined in Section 2.8. Moreover, $\overline{\kappa^2}$ and $\overline{\kappa^2}'$ can be calculated either spatially or temporally.

266 **2.7. Model uncorrected speckle contrast**

267 So far the process for simulating the detection of speckle statistics on a 2D detector array and the
 268 detector properties (Fig. 1 **b** to **e**) has been described. These steps can be repeated in order to
 269 simulate several experiments (ϵ , Fig. 2) for several different values of τ_c and therefore ρ , for
 270 calculating $\overline{\kappa^2}$ in the temporal domain over w_t , or for determining $\sigma(\overline{\kappa^2})$.

271 The next step in the pipeline is to use these frames to calculate values of $\overline{\kappa^2}$ (Fig. 1 **f** and **g**).
 272 As mentioned previously, κ^2 can be measured spatially or temporally i.e. speckle statistics can
 273 be determined spatially by using an area, w_z , of pixels or temporally over the pixels in a set of
 274 experiments, w_t .

275 Spatial $\overline{\kappa^2}$ is given by:

$${}_{N\overline{\kappa^2}}\epsilon = \frac{\sigma^2({}^eS(\rho, T_x)\epsilon)_{w_z}}{\mu^2({}^eS(\rho, T_x)\epsilon)_{w_z}} \quad (14)$$

276 Where $\sigma^2(\overset{e}{N}S(\rho, T_x)_\epsilon)_{w_z}$ is the variance of the speckles and $\mu(\overset{e}{N}S(\rho, T_x)_\epsilon)_{w_z}$ is the mean
 277 of the speckles, both calculated over the window w_z for each experiment, ϵ .
 278 Similarly, temporal κ^2 is given by:

$$\overset{N}{\kappa^2}_{ij} = \frac{\sigma^2(\overset{e}{N}S(\rho, T_x)_{ij})_{w_t}}{\mu^2(\overset{e}{N}S(\rho, T_x)_{ij})_{w_t}} \quad (15)$$

279 Where in this case, the variance and means of the speckle intensities are calculated over a
 280 temporal window of many experiments w_t for a set of $i \times j$ pixels.

281 With $\overset{N}{\kappa^2}$ simulated, noise correction must be applied. To do this, the noise correction method
 282 outlined in [2] was used. Here we outline the correction for spatial $\overset{N}{\kappa^2}$, but the same principles
 283 apply for temporal measurements.

284 Briefly, in order to correct for the dark and read signal offset in $\overset{N}{\kappa^2}$, a new dark frame, df_{corr} ,
 285 is simulated using Eq. 12. The new dark and read signal offset corrected speckles frames is given
 286 by:

$$_{sd'r'}^e S(\rho, T_x)_{ij} = _{sd'r'}^e S(\rho, T_x)_{ij} - df_{corr_{ij}} \quad (16)$$

287 After the dark frame offset is corrected, the additional variance due to shot (σ^2_{shot}) and the
 288 dark frame (dark and read out noise, σ^2_{df}) is corrected by subtracting their respective variances
 289 from the signal variance, $\sigma^2_{signal} = \sigma^2(_{sd'r'}^e S(\rho, T_x)_{w_z})_\epsilon$.

290 Putting everything together, the shot, dark, and read noise corrected value of κ^2 , i.e. $_{s'd'r'}\overset{N}{\kappa^2}_{w_z\epsilon}$,
 291 is given by:

$$_{s'd'r'}\overset{N}{\kappa^2}_{\epsilon} = \frac{\sigma^2_{signal} - \sigma^2_{shot} - \sigma^2_{df}}{\mu^2(_{sd'r'}^e S(\rho, T_x)_\epsilon)_{w_z}} \quad (17)$$

292 Where $\sigma^2_{shot} = \mu(_{sd'r'}^e S(\rho, T_x)_\epsilon)_{w_z}$ and $\sigma^2_{df} = \sigma^2(df_\epsilon)_{w_z}$.

293 Variations in the noise correction can also be simulated. For example, the shot noise only
 294 added frames, $_{s'}\overset{N}{\kappa^2}$, can be corrected in the following way:

$$_{s'}\overset{N}{\kappa^2}_{\epsilon} = \frac{\sigma^2_{signal} - \sigma^2_{shot}}{\mu^2(_s^e S(\rho, T_x)_\epsilon)_{w_z}} \quad (18)$$

295 Where in this case, $\sigma^2_{signal} = \sigma^2(_s^e S(\rho, T_x)_\epsilon)_{w_z}$ and $\sigma^2_{shot} = \mu(_s^e S(\rho, T_x)_\epsilon)_{w_z}$.

296 2.8. Model corrected speckle contrast

297 In these simulations, two forms of the electric field autocorrelation function have been introduced:
 298 \hat{g}_1 and \overline{g}_1 , and crucially the decorrelation of the latter was modeled from the decorrelation time
 299 of the former. However, the two are described by two different exponential functions meaning
 300 that the values of κ^2 derived from the two will differ. In particular, \hat{g}_1 describes a measurement
 301 in a semi-infinite medium and a multi-scattering (diffuse) regime. Since \hat{g}_1 is a more realistic
 302 solution to the CDE, rather than working with κ^2 derived from \overline{g}_1 , we introduce another variable,
 303 $\overset{N}{\kappa^2}'$, which is the model-corrected value of κ^2 .

304 $\overset{N}{\kappa^2}'$ is derived from both $\overset{N}{\kappa^2}$ and \hat{g}_1^2 . $\overset{N}{\kappa^2}$ values are used to simulate the offset or bias (γ) in κ^2
 305 due to noise, as well as to simulate the expected variance of κ^2 over ϵ . The CDE solution of \hat{g}_1^2 is
 306 then used to scale the value of $\overset{N}{\kappa^2}'$ to the expected value of speckle contrast when measuring in a
 307 semi-infinite geometry.

308 The bias term, γ is defined as:

$$\gamma = \mu(\bar{\kappa^2})_\epsilon - \mu(\bar{\kappa^2})_\epsilon \quad (19)$$

309 Finally $\bar{\kappa^2}'$ values are generated by generating normally distributed random numbers, k , with
310 mean equal to $\hat{\kappa^2} + \gamma$ and variance equal to $\sigma^2(\bar{\kappa^2})_\epsilon$:

$$\bar{\kappa^2}' = p_K(k; \hat{\kappa^2} + \gamma, \sigma^2(\bar{\kappa^2})_\epsilon) \quad (20)$$

311 2.9. Using the simulations to evaluate system performance

312 A primary motivation for developing a speckle contrast model is to evaluate the performance
313 of such systems. Performance of simulated systems has been evaluated by its accuracy and
314 precision. In this context, accuracy refers to the percent error of $\bar{\kappa^2}'$ from its CDE solution, $\hat{\kappa^2}$,
315 and was defined as $100 \times \frac{\bar{\kappa^2}' - \hat{\kappa^2}}{\hat{\kappa^2}}$. Precision is a measure of how variable a repeated measurement
316 is and has been evaluated by its coefficient of variation (CV) as a percentage defined as the ratio
317 of standard deviation of repeated experiments of $\bar{\kappa^2}'$ to its mean: $100 \times \frac{\sigma(\bar{\kappa^2}')_\epsilon}{\mu(\bar{\kappa^2}')_\epsilon}$. Maximum
318 accuracy and maximum precision correspond to the minimum values in these metrics.

319 2.10. Experimental setup (A) to validate simulations

320 The speckle contrast noise model was validated by comparing experimental results to the
321 simulated noise for a range of exposure times. A multi-mode fiber delivered light (785nm,
322 Crystalaser, Reno NV, USA), onto a liquid phantom of water, intralipid and ink. The resulting
323 speckle pattern was imaged onto an sCMOS camera (Orca Fusion-C14440-20UP, Hamamatsu
324 Photonics K.K., Hamamatsu, Japan) using a multi-mode fiber (910 μm core, 0.22 NA) and
325 objective lens ($f = 11$ mm). The value of β was measured to be approximately 0.2, and ϕ was
326 adjusted to be approximately 4 pixels.

327 τ_c of the system was obtained by simultaneous recording g_2 of the system using a single mode
328 fiber coupled to a standard DCS device. The detector fibers of both the SCOS system as well as
329 the DCS system were placed at a distance $\rho = 0.8$ cm from the source. The performance of the
330 simulations was compared to the experimental results by evaluating the standard deviations of
331 $s_{dr}\kappa^2$ of both over 100 experiments. In addition, the expected signal-to-noise-ratio (SNR) was
332 also evaluated considering $\mu(\bar{\kappa^2}')$ to be equal to the average value of $s_{dr}\kappa^2$ over 100 experiments
333 (Eq. 20). SNR is defined as the ratio of the average value of the signal over the noise. The
334 experimental values of $s_{dr}\kappa^2$ was calculated over a horizontal row of 1032 pixels. The simulated
335 SNR was defined as the ratio of the standard deviation of the experimentally obtained values of
336 $s_{dr}\kappa^2$ to the average value of $s_{dr}\bar{\kappa^2}'$ over 100 simulated experiments, ϵ , calculated over 1032
337 simulated pixels.

338 2.11. Experimental setup (B) to optimize and design a speckle contrast system

339 The speckle contrast noise model was further used to design a speckle contrast system and define
340 the required detected electron count rate ($e^-/\text{pixel/second}$) in order to accurately measure blood
341 flow in the adult human brain. An sCMOS camera by Basler (daA1920-160um, Basler AG,
342 Ahrensburg, Germany) was considered and simulated due its lightweight (15 g), compact size
343 (19.9 mm x 29.3 mm x 29 mm) and cheap price (<300€). Measurements were chosen to be
344 taken at ρ of 2.5 cm and T of 5 ms.

345 The required detected electron count rate to accurately measure κ^2 was determined by
346 attenuating a 785 nm laser (Crystalaser, Reno NV, USA) on a liquid phantom using a fiber
347 attenuator (OZ Optics, Ottawa Ontario, Canada). The diffuse light was imaged onto the camera

348 using an 800 μm core multi-mode fiber (0.22 NA). The imaged speckles had a size of $\emptyset = 5$
349 pixels. The value of β of the system was previously determined to be approximately 0.2. Speckle
350 contrast data was acquired over 600 frames, and data was analyzed using an ROI of approximately
351 1100 pixels.

352 As in the setup (A) to validate the simulations, τ_c of the simulations was obtained from g_2
353 recorded using a standard DCS device. In order to approximate the required detected electron
354 count-rate ($\text{e}^-/\text{pixel/second}$), a liquid phantom was prepared to have optical properties of $\mu_a = 0.1$
355 cm^{-1} and $\mu'_s = 10 \text{ cm}^{-1}$. The true value of κ^2 was considered to be the value of κ^2 measured with
356 the highest detected intensity count rate, I_{max} . Percent error of κ^2 as a function of the attenuated
357 detected intensity count rates, I_{att} , was therefore calculated as: $100 \times \frac{\kappa^2(I_{att}) - \kappa^2(I_{max})}{\kappa^2(I_{max})}$.

358 3. Results

359 3.1. Verification with experimental data

Tissue Parameters	Detector Parameters	Speckle Parameters
$\tau_c: 4.18 \times 10^{-5} \text{ s}$	QE: scaled from measurements	$\emptyset: 4 \text{ pixels}$
	$\mu(I_\delta) : 0.0025 \text{ e}^-$	$\epsilon_N : 100$
	$\sigma^2(I_\delta) : 0.16 \text{ e}^-$	$w_z : [0, 0; 32, 32]$
	$\mu(I_r) : 0.93 \text{ e}^-$	
	$\sigma^2(I_r) : 0.24 \text{ e}^-$	

Table 4. Simulation parameters used to verify simulations with experimental data acquired using an sCMOS camera (Orca Fusion-C14440-20UP, Hamamatsu Photonics K.K.)

360 The results of the simulation model were compared to experimental data of an Orca Fusion
361 camera using the experimental set-up in Section 2.10. Details of the camera parameters are
362 summarized in Table 4. The simulations used τ_c obtained from the g_1 curve recorded using DCS
363 (Figure 3 a). β was simulated to be 0.2 and \emptyset was set to 4 pixels to agree with the values of β and
364 \emptyset of the experimental data. Both experimental and simulation results were obtained for exposure
365 times ranging between 0.1 ms and 5 ms in order to cover a range of detected electron intensities.
366 It was ensured that the average value of the simulated detected electron intensity matched the
367 experimental data (Figure 3 b). The resulting experimental and simulated standard deviation of
368 κ^2 is shown in Figure 3 c. The calculated signal to noise ratio of κ^2 in Figure 3 d, shows good
369 agreement of the simulations with the experimental results.

370 3.2. Simulation study

371 Using the simulation pipeline described, we simulate speckle patterns with realistic detector
372 noise. All simulations considered hardware consisting of a 785 nm unpolarized laser ($\beta = 0.5$)
373 and a 100×100 pixel array detector with noise properties derived from an Orca Flash4.0 v3
374 CMOS camera [49]. Since the variance of read-out noise is typically not defined in specification
375 sheets, an online simulation tool was used to approximate the value of $\sigma^2(I_r)$ [50]. Tissue with
376 optical properties listed in Table 5 were simulated. These values were chosen as they are roughly
377 the expected values when measuring in human tissue. \bar{g}_1 was simulated for ρ ranging from 0.5 to
378 4.5 cm for $T_{max} = 5 \text{ ms}$. \emptyset was chosen to equal three pixels in order to meet the requirements of

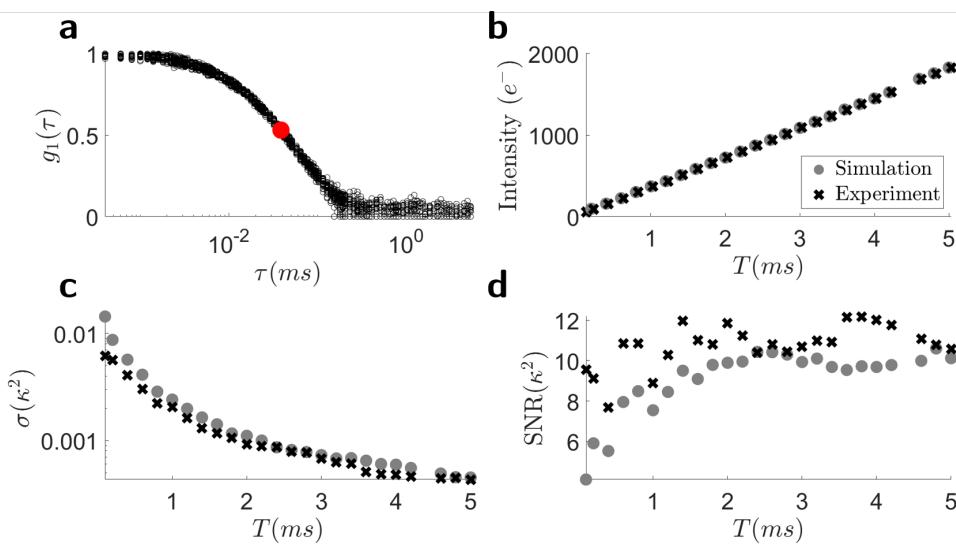


Figure 3. Comparison of the developed speckle contrast noise simulation model with experimental values. The number of experiments as well as the number of speckles used to obtain κ^2 were the same for experiments and simulations. **a)** Experimental g_1 curves measured with a DCS system from which τ_c used in the simulations was determined (red). **b)** Average detected electrons over 1032 pixels and 100 experiments (black) and 100 simulations over 1000 pixels (grey). **c)** The standard deviation in $_{sdr}^e \kappa^2$ calculated by simulation (grey) and the experimental results (black). **d)** SNR from experiment (black) and simulation (grey).

379 the Nyquist criteria [35, 51]. The details of the parameters used in the simulation are summarized
 380 in the table below:

Tissue Parameters	Detector Parameters	Speckle Parameters
$\mu_a : 0.1 \text{ cm}^{-1}$	QE: 54.2%	\emptyset : 3 pixels
$\mu'_s : 10 \text{ cm}^{-1}$	$\mu(I_\delta) : 0.06 e^-/\text{s}$	$\epsilon_N : 100$
$n : 1.33$	$\sigma^2(I_\delta) : 0.16 e^-$	$w_z : [0, 0; 100, 100]$
$Db : 1 \times 10^{-8} \text{ cm}^2/\text{s}$	$\mu(I_r) : 2.9 e^-$	
	$\sigma^2(I_r) : 0.1 e^-$	

Table 5. Parameters that were used to simulate synthetic speckles. Optical properties were chosen to mimic biological tissue, and detector parameters are based off of the properties of the Orca Flash4.0 v3 CMOS camera by Hamamatsu K.K.

381 **3.3. Part I: Simulating $\overline{\kappa^2}$**

382 The simulated values of the decorrelation time, τ_c , as a function of source-detector separation,
 383 ρ , is shown in Fig. 4 **a**. As expected from theory, the speckle autocorrelation decays faster
 384 with increasing ρ [10], confirming that the modified copula method for simulating decorrelating

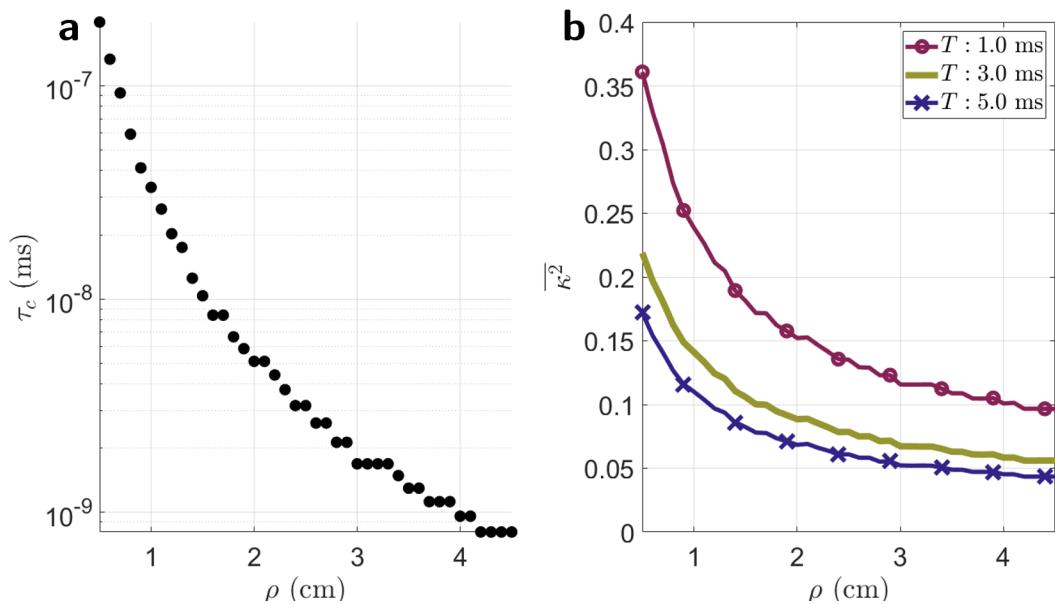


Figure 4. **a)** simulated values of τ_c in ms. A clear decrease in τ_c with increasing ρ is seen. **b)** $\overline{\kappa^2}$ at three different exposure times calculated from integrating the autocorrelation, $\overline{g_1}$, of the simulated speckles.

385 speckle intensity replicates the expected dynamics from theory. In Fig. 4 **b**, $\overline{\kappa^2}(\rho)$ calculated by
 386 integrating the simulated speckle electric field decorrelation curves, $\overline{g_1}$ (Eq. 1) for three different
 387 exposure times is shown. As expected from theory, $\overline{\kappa^2}$ decreases with increasing ρ and increasing
 388 T .

389 The simulated detected number of electrons ($\mathcal{E}S(\rho, T)_{ij}$) for different ρ at two different T
 390 for all 100 simulated experiments are shown in Fig. 5 **a** and **d**. Including detector effects in
 391 the simulations results in deviations of the average value and variance from the ideal detected
 392 electron intensity value. This effect is ρ and T dependent. For all values of ρ and T , the average
 393 value of the electron intensity does not deviate from the ideal case when only shot noise is
 394 simulated (N: s). However, in the regime of lower detected electron counts originating from
 395 speckle signal, i.e. at longer ρ and shorter T , there is an increased variance in the shot noise
 396 included detected electron intensity. Furthermore, at short T , it is seen that the addition of a dark
 397 frame (N: sdr) visibly leads to a deviation in the average value of the detected electron intensity
 398 at $\rho = 2$ cm, while the same deviation for higher T is not observed until approximately $\rho = 4$
 399 cm. This is explained by the properties of the camera that were simulated. In this case, the dark
 400 current, a T dependent signal, was significantly smaller than the read out signal, a T independent
 401 signal, for the exposure times shown ($\mu(I_d) = 6 \times 10^{-6} e^-$ and $\mu(I_d) = 3 \times 10^{-4} e^-$ for $T = 0.1$
 402 ms and $T = 5$ ms respectively, compared to $\mu(I_r) = 2.5 e^-$). Therefore, while dark noise is a T
 403 dependent noise source, the effect of adding a dark frame appears more significant at shorter
 404 T due to the high read-out signal relative to the speckle signal. Subtracting a dark frame (N:
 405 sdr') corrects this deviation. However a dark frame subtraction does not correct the increase in
 406 variance of the detected signal due to shot, dark, and read-out noise terms.

407 These observations are carried through to Figure 5 **b** and **e** where the values of $\overline{\kappa^2}$ are plotted.
 408 At shorter ρ and for both values of T , simulation of detector effects show very little deviation
 409 from the ideal, no detector noise added case. However, with increasing ρ , there is a noticeable

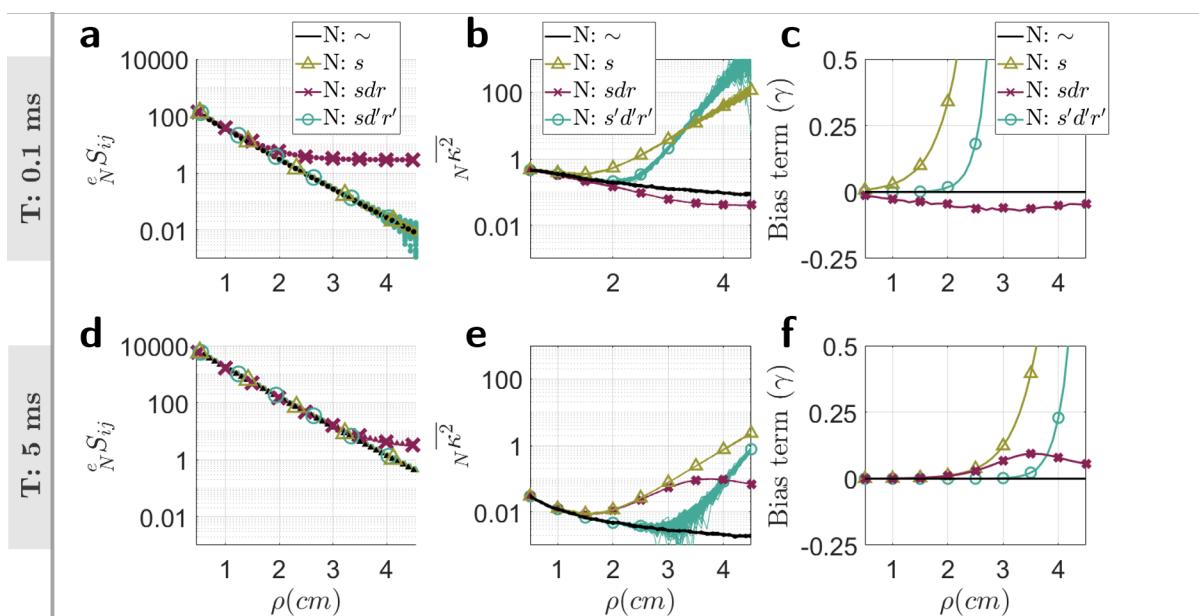


Figure 5. Simulation of $\overline{\kappa^2}$ from the frames of synthetic speckles. **a, d**, $\Phi(\rho)$ for two different exposure times ($T = 0.1$ ms and $T = 5.0$ ms on the top and bottom rows respectively) for when no noise source are added are shown as well as for when noise sources are added and when a dark frame is subtracted. **b, e**, the values of ${}_N\overline{\kappa^2}$ for all 100 simulated experiments. **c, f**, In order to correct for differences in theory of g_1 between the double exponential form of the semi-infinite model from CDE and the single exponential copula model, a bias term γ is calculated (Eq. 19). These are shown for different variations of added noise, N , at the two simulated exposure times.

410 deviation, as expected from experiments [2]. In the case of addition of shot, dark, and read-out
 411 noise ($N: sdr$), it is seen that for $T = 0.1$ ms (Figure 5 b), $sdr\overline{\kappa^2}$ begins to deviate from the ideal
 412 case, at approximately $\rho=2.0$ cm. At $T = 5.0$ ms (Figure 5 e), $sdr\overline{\kappa^2}$ begins to deviate from the
 413 ideal case from approximately $\rho=1.5$ cm. Correcting for detector effects by applying a dark
 414 frame subtraction and correcting for shot, dark, and read-out noises ($N: s'd'r'$) results in a larger
 415 range of ρ for which $\overline{\kappa^2}$ agrees with the ideal case for $T=5.0$ ms, to about $\rho=3$ cm. However, the
 416 same correction does not obviously perform as well for $T=0.1$ ms (Figure 5 b), with detector
 417 effects correction ($N: s'd'r'$) apparently performing worse than the uncorrected case ($N: sdr$).
 418 This last observation should not be interpreted as a failure in the correction of noise, rather it
 419 is a reflection of the origin of the electron signal in this regime. Referring back to the plot of
 420 the detected intensity (Figure 5 a), at $T=0.1$ ms, the majority of the detected electron signal
 421 after $\rho=2$ cm originate from the detector rather than from speckles. Therefore, without applying
 422 corrections, any value of κ^2 in this regime is not a reflection of speckle contrast, rather reflects a
 423 "detector signal" contrast.

424 The bias term, γ (Eq. 19), is shown in Fig. 5 c and f and reflects the offset of ${}_N\overline{\kappa^2}$ from the no
 425 noise added case, $\sim\overline{\kappa^2}$. These were used to calculate the average theory corrected value of κ^2
 426 with simulated detector effects (${}_N\overline{\kappa^2'}$). For the remaining results, only the case of $N = s'd'r'$ will
 427 be considered as this is the case of most interest in any experiment. The theory corrected values
 428 of κ^2 are shown in Fig. 6 a and d.

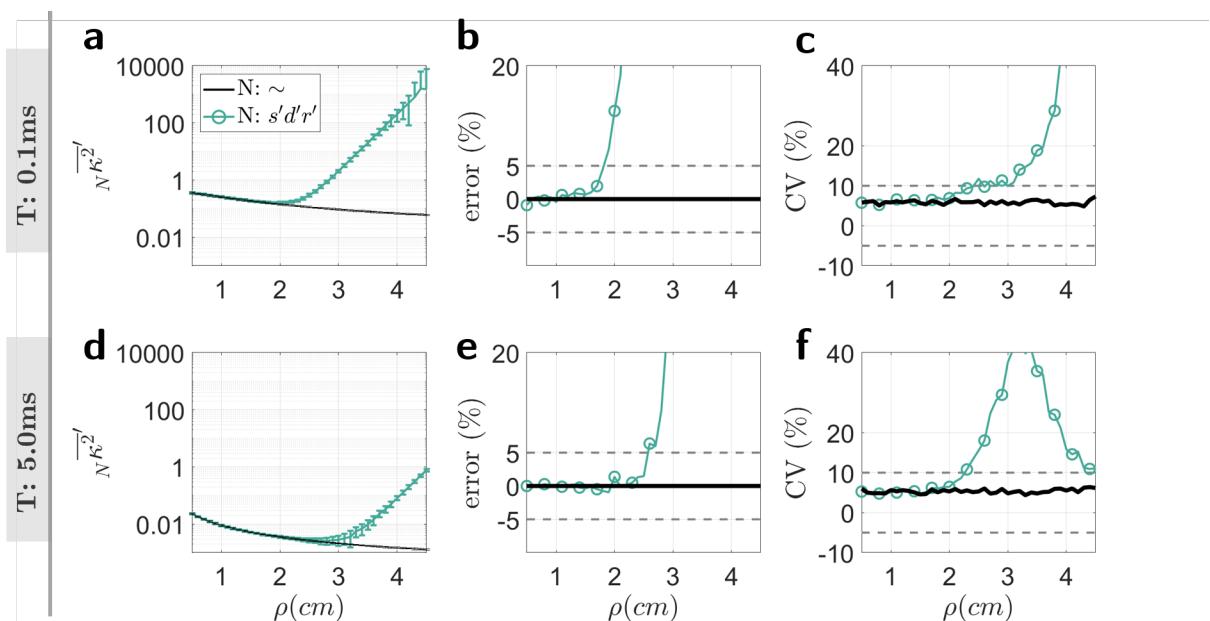


Figure 6. **a, d)** Simulation of theory corrected values of speckle contrast, $s'd'r'\overline{\kappa^2'}$. **b, e)** Accuracy (percent error) of $s'd'r'\overline{\kappa^2'}$. **c, f)** Precision (coefficient of variation) of $s'd'r'\overline{\kappa^2'}$.

429 Theory corrected values of speckle contrast, $N\overline{\kappa^2'}$, were calculated from Eq. 20. The final
 430 averaged value of the simulated 500 normally distributed random values of $N\overline{\kappa^2'}$ for $T = 0.1$
 431 ms and $T = 5$ ms are plotted in Fig. 6 **a** and **d**. Error bars reflect the standard deviation. The
 432 accuracy of $N\overline{\kappa^2'}$ is shown in Fig. 6 **b** and **e**, reflected as the percent error. The percent error
 433 increases (accuracy decreases) with increasing ρ reaching 5% at approximately 1.8 cm for short
 434 T (Fig. 6 **b**) and 2.5 cm for long T (Fig. 6 **e**). Similarly, the precision of $N\overline{\kappa^2'}$, represented as
 435 the coefficient of variation (CV) also decreases (CV increases) with increasing ρ (Fig. 6 **c** and **d**
 436 for $T = 0.1$ and $T = 5.0$ ms respectively).

437 3.4. Part II: Using the simulations to study precision and accuracy

438 As seen in the previous section, effects of detector noise lead to decreases in accuracy of $\overline{\kappa^2'}$
 439 particularly in the regimes of long ρ and short T . In the next part of this analysis, the simulations
 440 are used to understand how various parameters can be changed in order to increase the usable
 441 range of ρ and T considering both precision and accuracy. In order to quantify the requirements
 442 of a SCOS or SCOT system, it is assumed that the required accuracy is within a 5% error and
 443 precision within a 10% coefficient of variation (CV) at $\rho=4$ cm and $T=5$ ms. These values were
 444 chosen for deep tissue measurement: $\rho=4$ cm corresponds to an approximate measurement depth
 445 of 2 cm. Although $\rho=2.5$ cm is considered sufficient for measuring the cortical surface going to
 446 further distances offers greater depth sensitivity and distances of between 3.0 - 4.0 cm have been
 447 used for tomographic reconstruction of human functional activation [52, 53]. $T=5$ ms was chosen
 448 in order to be able to sample at fast enough acquisition rates while also maximizing the number
 449 of detected photons (Figure 5 **d**).

450 In speckle contrast optical tomography (SCOT) or speckle contrast diffuse correlation tomog-

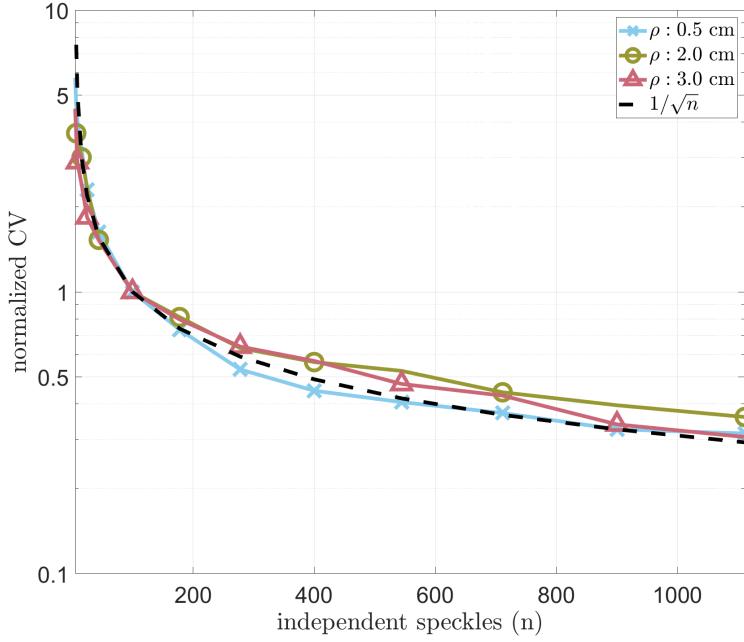


Figure 7. The effect of the number sampled speckles on the measured precision of $s'd'r'\bar{\kappa}^2$ at three values of ρ , and $T = 5$ ms. Increasing the number of sampled speckles results in a decrease in the CV of $s'd'r'\bar{\kappa}^2$.

raphy (scDCT) [16, 17], several source and detector positions are used in order to reconstruct a three dimensional image of blood flow. In a system incorporating nine source positions as in [54], using $T=5$ ms, this will correspond to a full acquisition rate of 22.2 Hz for $\bar{\kappa}^2$ measured at each source position. Furthermore, 5% accuracy and 10% precision have been chosen as our targets since a 10% blood flow change corresponds to approximately 10% change in $\bar{\kappa}^2$. A 10% change in flow is similar to what is measured in functional studies [21].

It is known that a contributing factor to the precision of $\bar{\kappa}^2$ is the number of speckles used to determine μ and σ^2 [31, 35]. In the previous simulations of $\bar{\kappa}^2$, $w_z = 100 \times 100$ pixels corresponding to the sampling of 1100 independent speckles. In Figure 7, w_z was changed to simulate the effects of the number of independently sampled speckles on the CV of $\bar{\kappa}^2$.

As expected in Fig. 7, increasing the number of speckles used to calculate $\bar{\kappa}^2$ results in an increase in the precision of $\bar{\kappa}^2$. The decay in CV with increasing speckle number follows a square root dependency, in accordance to the theory [31]. Therefore, if the objective is to measure $\bar{\kappa}^2$ with 10% precision at $\rho=4$ cm and $T=5$ ms, w_z must be increased from 100 x 100 to approximately 170 x 170 pixels corresponding to approximately 3000 speckles (since $\bar{\kappa}^2$ is proportional to the number of speckles). Sampling more speckles can easily be implemented in a typical sCMOS camera with 2048x2048 pixels by choosing a larger region of pixels.

As observed in Fig. 6 b and e, accuracy was seen to be higher at shorter ρ and longer T , i.e. in the regime of high Φ . Strategies for increasing the amount of detected light to achieve good accuracy while remaining within safety limits may include employing dual sources located equi-distance apart from the detected area of interest.

In addition to $\Phi(\rho)$, τ_c , may also affect accuracy of $\bar{\kappa}^2$. In order to study the effect of τ_c

473 on accuracy in κ^2 , the simulations were repeated fixing $\Phi(\rho)$ to be constant over all values of
 474 simulated ρ .

475 In Fig. 8, the percent error in κ^2 as a function of the number of detected electrons shows
 476 that measurement accuracy is dependent on ρ , and by extension, τ_c . For the simulated camera,
 477 measurements with longer ρ (shorter τ_c) require less detected electrons to achieve the same
 478 accuracy in κ^2 .

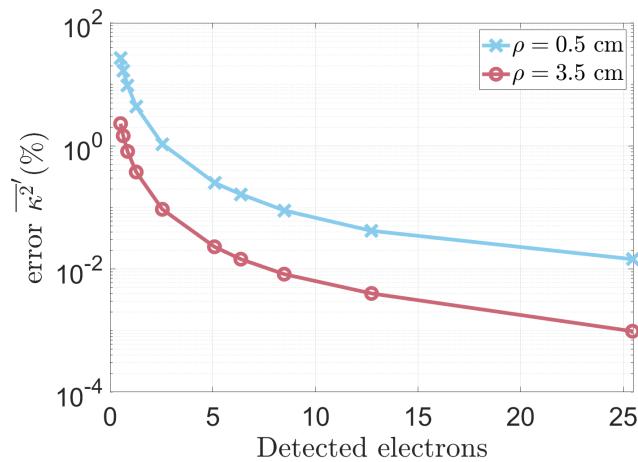


Figure 8. Accuracy of κ^2 for two different values of ρ with identical values of Φ ($T = 1\text{ms}$). Higher accuracy was found for greater ρ .

479 3.5. Using the simulations to design and optimize a system

480 In the previous sections we have verified the simulation pipeline by comparing the SNR measured
 481 experimentally with an Orca Fusion-C14440-20UP camera to the expectations from simulation.
 482 We have further demonstrated in detail (without experimental comparison) the entire simulation
 483 pipeline. Finally, in the following section we will demonstrate how these simulations can be used
 484 to design and optimize a speckle contrast system.

485 Speckles were simulated using the parameters specified in Table 6. These parameters were
 486 derived from the experimental results (τ_c and \emptyset), properties of the camera defined by the
 487 manufacturer, as well as data analysis (w_z). The resulting experimental and simulated percent
 488 error in κ^2 for varying detected electron count rates is shown in Fig. 9.

489 The experimental and simulated results are in good agreement with each other and suggest
 490 that for the chosen detector, a minimum detected count rate on the order between 4 to 5×10^4
 491 $\text{e}^-/\text{pixel/second}$ allows us to calculate κ^2 with approximately 5% error.

492 Using the derived acceptable minimum detected count rate as a guide in determining the
 493 accuracy of raw data signal, the same device was placed on a human subject's forehead using
 494 a ρ of 2.53 cm and T of 5 ms. Data was acquired at a frame rate of 100 fps. A summary of
 495 the measurements is show in Fig. 10. The desired electron count rate was reached (around
 496 $4.3 \times 10^4 \text{ e}^-/\text{pixel/second}$, Fig. 10), and the resulting $1/\kappa^2$ shows the expected pulsatile behavior
 497 for a measurement acquired at this frame rate (Fig. 10 a). In order to confirm that the pulsatile
 498 behavior has physiological meaning, the fast Fourier transform (FFT) of the data has also been
 499 plotted (Fig. 10 c). A distinct peak at 1.4 Hz is seen in the FFT corresponding to a heart rate of
 500 84 bpm. This value matches the resting heart rate measured in this subject using a standard pulse
 501 oximeter. The harmonics of the heart rate can also be seen.

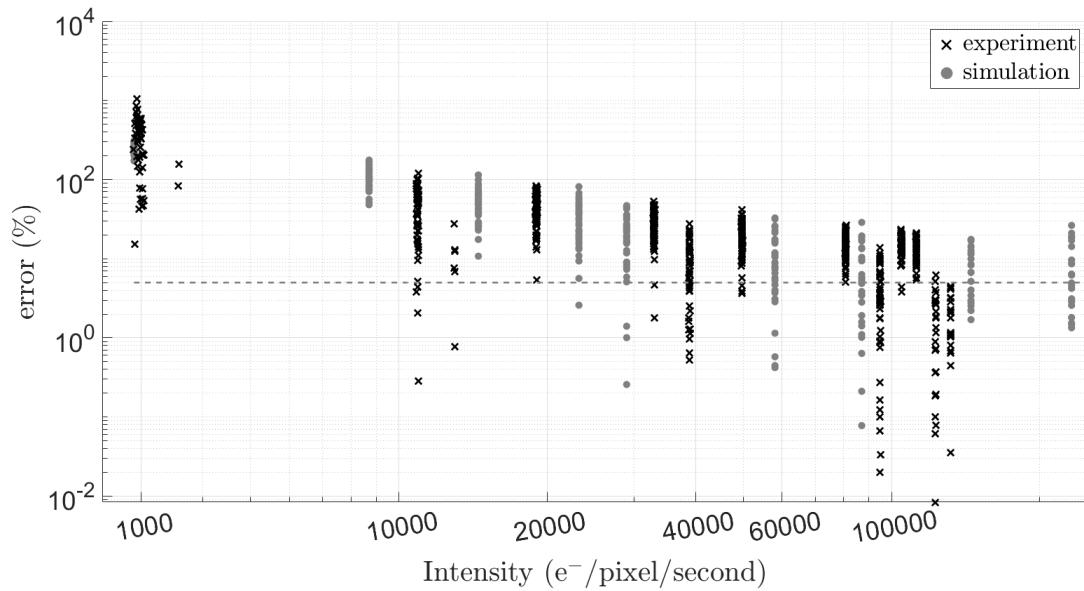


Figure 9. The effect of changing values of detected electron count rate on both the experimental and simulated values of percent error of κ^2 . The grey horizontal line marks 5% error.

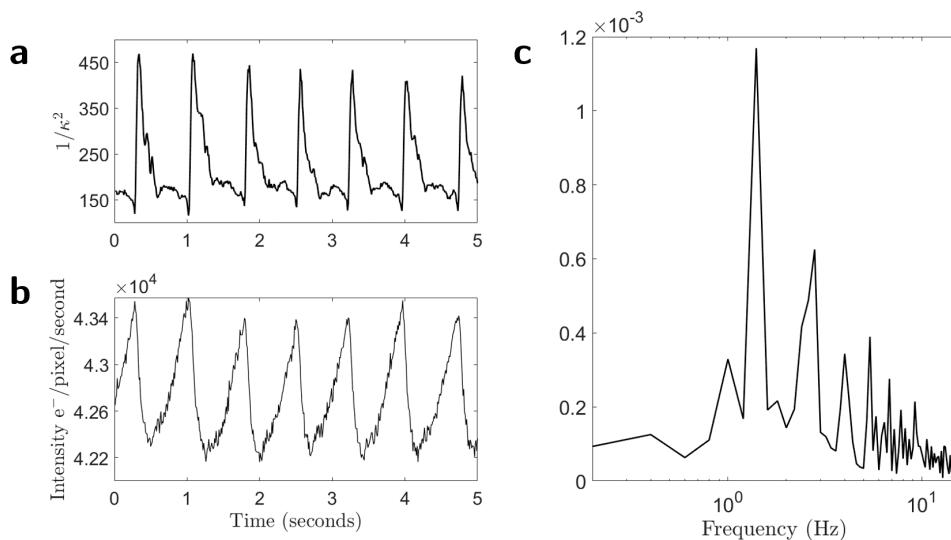


Figure 10. Summary of results from a SCOS measurement on an adult human forehead. **a)** $1/\kappa^2$, a surrogate measure of blood flow, shows clear pulsatile signals. **b)** Average detected electron count rate lies in a range which allows us to accurately measure κ^2 . **c)** Fourier transform of the κ^2 signal. A clear peak is found at 1.4 Hz corresponding to the heart rate of the subject (84 bpm).

Tissue Parameters	Detector Parameters	Speckle Parameters
$\tau_c : 1.46 \times 10^{-5} \text{ s}$	QE: 29%	$\emptyset: 5 \text{ pixels}$
	$\mu(I_\delta) : 130.9 e^-$	$\epsilon_N : 100$
	$\sigma^2(I_\delta) : 0.8 e^-$	$w_z : [0, 0; 100, 100]$
	$\mu(I_r) : 2.15 e^-$	
	$\sigma^2(I_r) : 2.28 e^-$	

Table 6. Parameters that were used to simulate synthetic speckles based on experimental data taken using a Basler (daA1920-160um) CMOS camera on a liquid phantom.

502 4. Discussion

503 A comprehensive model of speckle contrast signal for measurement of flow requires three
 504 main components: the simulation of speckles, their dynamics, and the detector effects on the
 505 measured signal. Individual 2D frames of speckles with the correct intensity distribution in
 506 these simulations were simulated following the method of Duncan et.al. [55]. The dynamics
 507 of the speckle intensity were simulated modifying the method of Ref. [42], where crucially the
 508 modification allowed for the characterization of τ_c to be specified according to speckle intensity
 509 decorrelation defined by the correlation diffusion equation [10]. While the exact form of the
 510 speckle decorrelation, g_1 , differs in the simulations, general properties of the dynamics and their
 511 dependency on parameters such as ρ and αDb could be simulated. The simplification of g_1 of
 512 a semi-infinite medium as a single exponential function has been seen to be accurate in noise
 513 models for DCS [25]. Detector effects were simulated taking into account photon shot noise,
 514 dark current signal and noise, and read-out signal and noise. Our method for modeling speckle
 515 contrast can account for parameters such as the speckle to pixel size and β .

516 We have shown that the simulations accurately represent experimentally observed behavior
 517 of κ^2 in the regime of long ρ and/or short T where the speckle contrast signal increases above
 518 the theoretically expected values. Simulation of the noise correction method of Ref. [2] extends
 519 the region of ρ and T where the speckle contrast signal matches its theoretical value. However,
 520 depending on the amount of the contribution of the detector effects, the correction cannot account
 521 for all of the increased variance from these effects. Therefore, it is important when designing a
 522 speckle contrast system to consider the range of ρ and T where κ^2 can be corrected. We have
 523 also shown the dependency of accuracy in speckle contrast signal on parameters including the
 524 number of detected photons, ρ , and τ_c .

525 The accuracy and precision of κ^2 developed in the simulation model not only reflects observed
 526 experimental behavior, but is also comparable to what has been described in the noise models of
 527 related techniques. In DCS, similar to what we have seen in speckle contrast, the SNR of the raw
 528 g_1 signal is dependent on the detected photon intensity and τ_c . Since DCS uses correlators to
 529 measure g_1 , the noise model for DCS also depends on the architecture of the correlator [25, 56].
 530 An emerging variation of DCS known as interferometric DCS, or iDCS, utilizes a heterodyne
 531 detection technique mixing the traditional DCS signal with a reference arm (i.e. the coherent
 532 source). This detection scheme results in greater values of τ_c compared to traditional DCS
 533 resulting in an increase in the SNR of the raw g_1 data as well as a decrease in the coefficient of
 534 variation of the retrieved blood flow values [15].

535 While in this analysis we have concentrated on the effects of detector noise in the regime
 536 of low detected photon counts corresponding to the typical observations in experiments, it is
 537 worth noting that high photon count rates that saturate the detector can also lead to decreases in

538 accuracy as well as precision of the raw signal and in the derived blood flow values. In DCS,
539 saturated detection leads to decreases in the experimentally measured β resulting in inaccuracy
540 of the retrieved blood flow [29]. Although not shown here, the same applies in measurements
541 of speckle contrast as detector saturation will lead to inaccurate measurements of $\sigma^2(I)$ and/or
542 $\mu(I)$ and consequently κ^2 .

543 The copula method [55] has previously been used by Qiu et.al. [32] to study the effects of
544 pixel sampling (sampling of w_z and w_t) on κ^2 . In this work, a pseudo exposure time was
545 considered. However since the decorrelation of the speckles were not reassigned in units of
546 time, the simulations were not related to proper physiological or system properties. Thompson
547 et.al [34] combined the method of simulating a single frame of speckles of Ref. [55] with small
548 random phase changes for each consecutively simulated frame, making it very similar to the
549 copula method of Ref. [55]. These simulations were used to study the effect of speckle to pixel
550 size ratio in the measurement of κ^2 . However, like in Ref. [32], the simulations were not scaled
551 to represent physiological properties and did not include any effects of detector noise.

552 The present study is complementary to the recent publication by Zilpelwar et.al. [37], with
553 several notable differences. The model developed by Zilpelwar et.al. is based on a Monte-Carlo
554 method simulating random particle (scatterer) motion. Their approach considers a single
555 scattering regime, and is therefore strictly speaking is not applicable for SCOS which is a diffuse
556 optical method considering a multi-scattering regime. Our approach does not simulate particle
557 motion, rather we directly simulate the statistical properties of decorrelating speckle by generating
558 correlated random numbers using the method of Duncan et.al. [42]. Both simulations are based
559 on a single-exponential form of g_1 . In the present work, we argue that while the exact value of κ^2
560 is dependent on the approximations used to define g_1 , the noise in κ^2 is likely not affected due to
561 previous observations in the development of a noise model for DCS [25]. In order to account for
562 the difference in κ^2 stemming from discrepancies in the approximation of g_1 , in our simulations,
563 we have included a method to correct for this difference. Furthermore, in the present work we
564 were interested in deriving limits of accuracy and precision for an experimental scenario and
565 therefore included a full noise corrected simulation of $s'd'r'\overline{\kappa^2'}$ by simulating the expected dark
566 frames of the individual specifications of each simulated camera. These details, multi-scattering
567 regime in a semi-infinite medium, was not included in the model of Ref. [37].

568 We are not the first to adapt the work of Duncan et.al. [42, 55] to study the behavior of
569 κ . We note that this method is not only method in the literature for simulating decorrelating
570 speckle patterns [57–60]. In the copula method of [42], spatial correlation is not preserved
571 between frames. Song et.al propose another method for simulating frames correlated in the
572 spatio-temporal domain [57]. The authors successfully simulated real speckle contrast data by
573 creating correlation maps of data from a rat ear, however the authors note that the accuracy of
574 replicating an image taken from real data depends greatly on the quality of the camera used
575 to acquire the image. Sang et.al. utilized the method of Song et.al. [57] to further expand the
576 method to include time integration effects of exposure time [61], however only one exposure time
577 was simulated. Another method for modelling speckles is to model the summation of random
578 phasors [58]. Postnov et.al. modified this technique in order to simulate the effects of the laser
579 linewidth and camera noise on κ^2 [59]. An interesting work by Song et.al. [62] derives the effect
580 of camera quantization of intensity on speckle contrast from the probability density function of
581 speckle intensity. Quantization of the speckle signal is something that was not considered in the
582 current study and should be considered in future work.

583 5. Conclusion

584 In the present work we have introduced a method for simulating the formation and detection
585 of dynamic speckle patterns. The main application that we have focused on was the design
586 and characterization of a speckle a contrast system capable of measuring human adult cerebral

587 blood flow non-invasively. To this end, the simulation method was validated on a dynamic
588 liquid phantom, the details of speckle contrast signal as a function of ρ and T were studied, and
589 finally a system designed for human cerebral blood flow was characterized and validated on an
590 adult human subject. The simulation method has been shown to be useful when identifying
591 the lower bounds of detected electron count-rate to achieve the desired accuracy and precision
592 of speckle contrast signal. As speckle contrast signal is sensitive to detector noise effects at
593 low detected electron count-rates, characterizing these limits is advisable when developing any
594 speckle contrast system.

595 **Funding.** This work was funded by Fundació CELLEX Barcelona, Fundació Mir-Puig, Agencia Estatal de
596 Investigación (PHOTOMETABO, PID2019-106481RB-C31/10.13039/501100011033), the “Severo Ochoa”
597 Programme for Centres of Excellence in R&D (CEX2019-000910-S), the Obra social “la Caixa” Foundation
598 (LlumMedBen), Generalitat de Catalunya (CERCA), Agència de Gestió d’Ajuts Universitaris i de Recerca
599 (AGAUR)-Generalitat (2017SGR1380), FEDER EC, LASERLAB-EUROPE V (EC H2020 no. 871124),
600 European Union’s Horizon 2020 (Marie Skłodowska-Curie grant / 847517), Marie Skłodowska-Curie
601 (H2020-MSCA-ITN-2019) grant agreement No 860185, MCIN/AEI (PRE2018-085082, LKF), and by
602 the National Institute Of Neurological Disorders And Stroke of the National Institutes of Health (NIH
603 R01NS090874).

604 **Disclosures.** Turgut Durduran and Joseph P. Culver are inventors on a relevant patent (“Speckle contrast
605 optical tomography”, United States patent US2015/0182136 (granted); European patent EP2888994
606 (granted)).

607 **Data availability.** Data underlying the results presented in this paper are not publicly available at this time
608 but may be obtained from the authors upon reasonable request.

609 **References**

1. T. Durduran and A. G. Yodh, “Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement,” *Neuroimage* **85**, 51–63 (2014).
2. C. P. Valdes, H. M. Varma, A. K. Kristoffersen, T. Dragojevic, J. P. Culver, and T. Durduran, “Speckle contrast optical spectroscopy, a non-invasive, diffuse optical method for measuring microvascular blood flow in tissue,” *Biomed. optics express* **5**, 2769–2784 (2014).
3. R. Bi, J. Dong, and K. Lee, “Deep tissue flowmetry based on diffuse speckle contrast analysis,” *Opt. letters* **38**, 1401–1403 (2013).
4. K. Lee, “Diffuse speckle contrast analysis (dsca) for deep tissue blood flow monitoring,” *Adv. Biomed. Eng.* **9**, 21–30 (2020).
5. D. Watkins and G. A. Holloway, “An instrument to measure cutaneous blood flow using the doppler shift of laser light,” *IEEE Trans. on Biomed. Eng.* pp. 28–33 (1978).
6. G. E. Nilsson, T. Tenland, and P. A. Oberg, “Evaluation of a laser doppler flowmeter for measurement of tissue blood flow,” *IEEE Trans. on Biomed. Eng.* pp. 597–604 (1980).
7. D. A. Boas, L. Campbell, and A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” *Phys. review letters* **75**, 1855 (1995).
8. A. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” *Opt. communications* **37**, 326–330 (1981).
9. M. Heckmeier and G. Maret, “Visualization of flow in multiple-scattering liquids,” *EPL (Europhysics Lett.)* **34**, 257 (1996).
10. T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” *Reports on Prog. Phys.* **73**, 076701 (2010).
11. D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” *JOSA A* **14**, 192–215 (1997).
12. R. Choe and T. Durduran, “Diffuse optical monitoring of the neoadjuvant breast cancer therapy,” *IEEE J. selected topics quantum electronics* **18**, 1367–1386 (2011).
13. D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” *Phys. review letters* **60**, 1134 (1988).
14. V. Viasnoff, F. Lequeux, and D. Pine, “Multispeckle diffusing-wave spectroscopy: A tool to study slow relaxation and time-dependent dynamics,” *Rev. scientific instruments* **73**, 2336–2344 (2002).
15. M. B. Robinson, D. A. Boas, S. Sakadžić, M. A. Franceschini, and S. A. Carp, “Interferometric diffuse correlation spectroscopy improves measurements at long source–detector separation and low photon count rate,” *J. Biomed. Opt.* **25**, 097004 (2020).

642 16. H. M. Varma, C. P. Valdes, A. K. Kristoffersen, J. P. Culver, and T. Durduran, "Speckle contrast optical tomography:
643 A new method for deep tissue three-dimensional tomography of blood flow," *Biomed. optics express* **5**, 1275–1289
644 (2014).

645 17. C. Huang, D. Irwin, M. Zhao, Y. Shang, N. Agochukwu, L. Wong, and G. Yu, "Noncontact 3-d speckle contrast diffuse
646 correlation tomography of tissue blood flow distribution," *IEEE transactions on medical imaging* **36**, 2068–2076
647 (2017).

648 18. R. Bi, J. Dong, and K. Lee, "Multi-channel deep tissue flowmetry based on temporal diffuse speckle contrast analysis,"
649 *Opt. express* **21**, 22854–22861 (2013).

650 19. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, "Dynamic imaging of cerebral blood flow using laser
651 speckle," *J. Cereb. Blood Flow & Metab.* **21**, 195–201 (2001).

652 20. J. D. Briers and S. Webster, "Laser speckle contrast analysis (lasca): a nonscanning, full-field technique for monitoring
653 capillary blood flow," *J. biomedical optics* **1**, 174–179 (1996).

654 21. T. Dragojević, J. L. Hollmann, D. Tamborini, D. Portaluppi, M. Buttafava, J. P. Culver, F. Villa, and T. Durduran,
655 "Compact, multi-exposure speckle contrast optical spectroscopy (scos) device for measuring deep tissue blood flow,"
656 *Biomed. optics express* **9**, 322–334 (2018).

657 22. K. Murali, A. Nandakumaran, T. Durduran, and H. M. Varma, "Recovery of the diffuse correlation spectroscopy
658 data-type from speckle contrast measurements: towards low-cost, deep-tissue blood flow measurements," *Biomed.*
659 *optics express* **10**, 5395–5413 (2019).

660 23. R. Bi, J. Dong, C. L. Poh, and K. Lee, "Optical methods for blood perfusion measurement—theoretical comparison
661 among four different modalities," *JOSA A* **32**, 860–866 (2015).

662 24. K. Murali, A. Nandakumaran, and H. M. Varma, "On the equivalence of speckle contrast-based and diffuse correlation
663 spectroscopy methods in measuring in vivo blood flow," *Opt. Lett.* **45**, 3993–3996 (2020).

664 25. C. Zhou, G. Yu, D. Furuya, J. H. Greenberg, A. G. Yodh, and T. Durduran, "Diffuse optical correlation tomography
665 of cerebral blood flow during cortical spreading depression in rat brain," *Opt. express* **14**, 1125–1144 (2006).

666 26. L. Cortese, G. L. Presti, M. Pagliazzi, D. Contini, A. Dalla Mora, H. Dehghani, F. Ferri, J. B. Fischer, M. Giovannella,
667 F. Martelli *et al.*, "Recipes for diffuse correlation spectroscopy instrument design using commonly utilized hardware
668 based on targets for signal-to-noise ratio and precision," *Biomed. Opt. Express* **12**, 3265–3281 (2021).

669 27. S. A. Carp, D. Tamborini, D. Mazumder, K.-C. Wu, M. B. Robinson, K. A. Stephens, O. Shatrov, N. Lue, N. Ozana,
670 M. H. Blackwell *et al.*, "Diffuse correlation spectroscopy measurements of blood flow using 1064 nm light," *J. Biomed. Opt.* **25**, 097003 (2020).

671 28. D. Irwin, L. Dong, Y. Shang, R. Cheng, M. Kudrimoti, S. D. Stevens, and G. Yu, "Influences of tissue absorption
672 and scattering on diffuse correlation spectroscopy blood flow measurements," *Biomed. optics express* **2**, 1969–1985
673 (2011).

674 29. D. Wang, P. Gao, L. Zhu, Q. Peng, Z. Li, and J. Zhao, "Optimization of detected optical intensity for measurement of
675 diffuse correlation spectroscopy: Intralipid phantom study," *AIP Adv.* **9**, 015315 (2019).

676 30. X. Cheng, H. Chen, E. J. Sie, F. Marsili, and D. A. Boas, "Development of a monte carlo-wave model to simulate time
677 domain diffuse correlation spectroscopy measurements from first principles," *J. Biomed. Opt.* **27**, 083009 (2022).

678 31. C. Zhou, *In-vivo optical imaging and spectroscopy of cerebral hemodynamics* (University of Pennsylvania, 2007).

679 32. J. Qiu, P. Li, W. Luo, J. Wang, H. Zhang, and Q. Luo, "Spatiotemporal laser speckle contrast analysis for blood flow
680 imaging with maximized speckle contrast," *J. biomedical optics* **15**, 016003 (2010).

681 33. J. Xu, A. K. Jahromi, and C. Yang, "Diffusing wave spectroscopy: a unified treatment on temporal sampling and
682 speckle ensemble methods," *APL Photonics* **6**, 016105 (2021).

683 34. O. Thompson, M. Andrews, and E. Hirst, "Correction for spatial averaging in laser speckle contrast analysis," *Biomed.*
684 *optics express* **2**, 1021–1029 (2011).

685 35. S. J. Kirkpatrick, D. D. Duncan, and E. M. Wells-Gray, "Detrimental effects of speckle-pixel size matching in laser
686 speckle contrast imaging," *Opt. letters* **33**, 2886–2888 (2008).

687 36. J. Ramirez-San-Juan, R. Ramos-Garcia, G. Martinez-Niconoff, and B. Choi, "Simple correction factor for laser
688 speckle imaging of flow dynamics," *Opt. letters* **39**, 678–681 (2014).

689 37. S. Zilpelwar, E. J. Sie, D. Postnov, A. I. Chen, B. Zimmermann, F. Marsili, D. A. Boas, and X. Cheng, "Model of
690 dynamic speckle evolution for evaluating laser speckle contrast measurements of tissue dynamics," *Biomed. Opt. Express* **13**, 6533–6549 (2022).

691 38. J. D. Briers and S. Webster, "Quasi real-time digital version of single-exposure speckle photography for full-field
692 monitoring of velocity or flow fields," *Opt. communications* **116**, 36–42 (1995).

693 39. P. Kaplan, M. H. Kao, A. Yodh, and D. J. Pine, "Geometric constraints for the design of diffusing-wave spectroscopy
694 experiments," *Appl. Opt.* **32**, 3828–3836 (1993).

695 40. T. Bellini, M. Glaser, N. Clark, and V. Degiorgio, "Effects of finite laser coherence in quasielastic multiple scattering,"
696 *Phys. Rev. A* **44**, 5215 (1991).

697 41. D. A. Boas, S. Sakadžić, J. Selb, P. Farzam, M. A. Franceschini, and S. A. Carp, "Establishing the diffuse correlation
698 spectroscopy signal relationship with blood flow," *Neurophotonics* **3**, 031412–031412 (2016).

699 42. D. D. Duncan and S. J. Kirkpatrick, "The copula: a tool for simulating speckle dynamics," *JOSA A* **25**, 231–237
700 (2008).

701 43. P.-A. Lemieux and D. Durian, "Investigating non-gaussian scattering processes by using nth-order intensity correlation
702 functions," *JOSA A* **16**, 1651–1664 (1999).

705 44. E. -E. M. V. Association, "Standard for characterization of image sensors and cameras," (2021). Release 4.0.

706 45. M. Bigas, E. Cabruja, J. Forest, and J. Salvi, "Review of cmos image sensors," *Microelectron. journal* **37**, 433–451 (2006).

707 46. R. D. Gow, D. Renshaw, K. Findlater, L. Grant, S. J. McLeod, J. Hart, and R. L. Nicol, "A comprehensive tool for
709 modeling cmos image-sensor-noise performance," *IEEE Trans. on Electron Devices* **54**, 1321–1329 (2007).

710 47. L. J. Van Vliet, F. R. Boddeke, D. Sudar, and I. T. Young, "Image detectors for digital image microscopy," (1998).

711 48. G. Dietsche, M. Ninck, C. Ortolf, J. Li, F. Jaillon, and T. Gisler, "Fiber-based multispeckle detection for time-resolved
712 diffusing-wave spectroscopy: characterization and application to blood flow detection in deep tissue," *Appl. optics*
713 **46**, 8506–8514 (2007).

714 49. H. P. K.K., "C13440-20cu," .

715 50. H. P. K.K., "Camera simulator," .

716 51. D. A. Boas and A. K. Dunn, "Laser speckle contrast imaging in biomedical optics," *J. biomedical optics* **15**, 011109
717 (2010).

718 52. A. T. Eggebrecht, B. R. White, S. L. Ferradal, C. Chen, Y. Zhan, A. Z. Snyder, H. Dehghani, and J. P. Culver, "A
719 quantitative spatial comparison of high-density diffuse optical tomography and fmri cortical mapping," *Neuroimage*
720 **61**, 1120–1128 (2012).

721 53. B. R. White and J. P. Culver, "Phase-encoded retinotopy as an evaluation of diffuse optical neuroimaging," *Neuroimage*
722 **49**, 568–577 (2010).

723 54. T. Dragojević, E. E. V. Rosas, J. L. Hollmann, J. P. Culver, C. Justicia, and T. Durduran, "High-density speckle
724 contrast optical tomography of cerebral blood flow response to functional stimuli in the rodent brain," *Neurophotonics*
725 **6**, 045001 (2019).

726 55. D. D. Duncan, S. J. Kirkpatrick, and R. K. Wang, "Statistics of local speckle contrast," *JOSA A* **25**, 9–15 (2008).

727 56. D. Biganzoli and F. Ferri, "Statistical analysis of dynamic light scattering data: revisiting and beyond the schätzel
728 formulas," *Opt. Express* **26**, 29375–29392 (2018).

729 57. L. Song, Z. Zhou, X. Wang, X. Zhao, and D. S. Elson, "Simulation of speckle patterns with pre-defined correlation
730 distributions," *Biomed. optics express* **7**, 798–809 (2016).

731 58. X. Cheng, Y. Lockerman, and A. Z. Genack, "Phase singularity diffusion," *Opt. letters* **39**, 3348–3351 (2014).

732 59. D. D. Postnov, X. Cheng, S. E. Erdener, and D. A. Boas, "Choosing a laser for laser speckle contrast imaging," *Sci.
733 reports* **9**, 1–6 (2019).

734 60. E. James, S. Powell, and P. Munro, "Simulation of statistically accurate time-integrated dynamic speckle patterns in
735 biomedical optics," *Opt. letters* **46**, 4390–4393 (2021).

736 61. X. Sang, D. Li, and B. Chen, "A new simulation method for laser speckle imaging to investigate hemodynamics," in
737 *E3S Web of Conferences*, vol. 128 (EDP Sciences, 2019), p. 02001.

738 62. L. Song and D. S. Elson, "Effect of signal intensity and camera quantization on laser speckle contrast analysis,"
739 *Biomed. optics express* **4**, 89–104 (2013).