

1 **Metabolic reprogramming during *Candida albicans* planktonic-**
2 **biofilm transition is modulated by the *ZCF15* and *ZCF26***
3 **paralogs**

4

5 Laxmi Shanker Rai¹, Murielle Chauvel¹, Hiram Sanchez², Lasse van Wijlick¹, Corinne
6 Maufrais¹, Thomas Cokelaer³, Natacha Sertour¹, Mélanie Legrand¹, David R Andes², Sophie
7 Bachellier-Bassi^{1,4} and Christophe d'Enfert^{1,4}

8

9 ¹Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité
10 Fongiques, F-75015 Paris, France

11 ²Department of Medicine, University of Wisconsin, Madison, WI 53706, USA

12 ³Institut Pasteur, Université Paris Cité, Hub de Bioinformatique et Biostatistique, F-75015
13 Paris, France

14 ⁴Corresponding authors: sophie.bachellier-bassi@pasteur.fr; christophe.denfert@pasteur.fr

15

16

17

18

19

20

21

22

23

24 Keywords: Biofilm, Candida, Filamentation, Transcription factors, overexpression, metabolic
25 remodeling

26 Running title: Metabolic remodeling during *Candida albicans* biofilm formation.

27

28 **Abstract**

29 *Candida albicans* is a commensal of the human microbiota that can form biofilms on
30 implanted medical devices. These biofilms are tolerant to antifungals and to the host immune
31 system. To identify novel genes modulating *C. albicans* biofilm formation, we performed a
32 large-scale screen with 2454 *C. albicans* doxycycline-dependent overexpression strains and
33 identified 16 genes whose overexpression significantly hampered biofilm formation. Among
34 those, overexpression of the *ZCF15* and *ZCF26* paralogs that encode transcription factors and
35 have orthologs only in biofilm-forming species of the *Candida* clade, caused impaired
36 biofilm formation both *in vitro* and *in vivo*. Interestingly, overexpression of *ZCF15*
37 specifically impeded biofilm formation without any defect in hyphal growth. Transcript
38 profiling, transcription factor binding, and phenotypic microarray analyses conducted upon
39 overexpression of *ZCF15* and *ZCF26* demonstrated their direct role in reprogramming
40 cellular metabolism by regulating glycolytic cycle and tricarboxylic acid cycle genes. Taken
41 together, this study has identified a new set of biofilm regulators, including *ZCF15* and
42 *ZCF26*, that appear to control biofilm development through their specific role in metabolic
43 remodeling.

44

45

46

47

48 **Introduction**

49 *Candida albicans* is a commensal of the human microbiota that resides on the mucosal
50 surfaces of the gastrointestinal and genital tracts. Under certain circumstances, such as if
51 epithelial barriers are disturbed or the immune system is impaired, the fungus undergoes a
52 transition from commensalism to pathogenicity [1]. This transition is well regulated by both
53 the host immune system and fungal-specific virulence attributes.

54 *C. albicans* can form biofilms, which represent a major fungal virulence attribute [2,3].
55 Biofilms are microbial communities attached to surfaces and protected by self-produced
56 extracellular substances [4]. Cells in a biofilm are more adherent and more tolerant to
57 antimicrobials as compared to the free-floating planktonic cells and these properties make
58 biofilm-associated infections a clinical challenge [2,5,6]. *C. albicans* biofilms are structured
59 and composed of differentiated cell types encased in an extracellular matrix. Briefly, the *C.*
60 *albicans* biofilm developmental process involves the attachment of yeast cells to a surface
61 and their proliferation to establish a basal layer. Basal layer cells undergo cellular
62 differentiation in multiple cell types including hyphae and pseudo-hyphae that become
63 encased in a self-produced extracellular matrix, leading to a mature biofilm [4,7]. These
64 biofilms can be the source of disseminated infections that can, in turn, lead to invasive
65 systemic infections of tissues and organs [3,8,9].

66 Among the *Candida* clade, only a few species closely related to *C. albicans*, namely *Candida*
67 *dubliniensis* and *Candida tropicalis*, can form a complex biofilm. The less closely related
68 species, *Candida parapsilosis*, *Loderomyces elongisporus* and *Spathaspora passalidarum* are
69 also able to form biofilms, but these are structurally different and of lesser biomass than those
70 of *C. albicans* [10–14]. Transcript profiling, proteome analyses and metabolomic studies of
71 *C. albicans* planktonic and biofilm cells have shown that cellular differentiation and
72 metabolic reprogramming are two critical events that occur when *C. albicans* cells transition
73 from the planktonic to the biofilm growth mode [13,15–21]. Studies on *C. albicans*
74 transcription regulators have suggested that a well-coordinated crosstalk operates during
75 biofilm development. For instance, transcription regulators, Ace2, Brg1, Efg1, Ndt80, Mss11,
76 Tec1, Flo8, Rob1 and Ume6 are essential for *C. albicans* hyphal development and are also
77 needed for *C. albicans* biofilm formation [13,22,23]. In parallel, Tye7 regulates the glycolytic
78 flux, and the lack of this transcription factor leads to impaired biofilm formation (Bonhomme
79 et al., 2011). In addition, amino acid metabolism is modulated during biofilm formation, and
80 it has been shown that the Gcn4 regulator of the amino acid biosynthetic pathways is
81 important for efficient biofilm formation [19]. Yet, it is notable that most modulators in the

82 regulation of *C. albicans* biofilm formation identified so far are positive regulators. Only a
83 few transcription regulators such as Nrg1, Rfx2, Gal4, Zcf32, and Upc2 have been shown to
84 play a negative role during *C. albicans* biofilm formation [18,24,25]. This may be a
85 consequence of the approach used to identify these modulators, as the biofilm growth
86 conditions did not allow an increase in biofilm biomass to be observed when the target genes
87 were inactivated, as expected for genes encoding negative regulators of biofilm formation
88 [18]. In this study, we sought to identify additional negative regulators of biofilm formation
89 and reasoned that their overexpression would result in reduced biofilm biomass in a biofilm
90 formation assay.

91 Large collections of *C. albicans* overexpression strains are becoming available and have
92 proven useful to identify genes with a role in *C. albicans* morphogenesis, genome plasticity,
93 biofilm formation, antifungal tolerance, and intestinal colonization [26–30]. Using a novel
94 collection of 2454 *C. albicans* doxycycline-dependent overexpression strains derived from
95 the *C. albicans* ORFeome [27,28], we could identify 16 genes whose overexpression led to
96 reduced biofilm formation. Among these genes, the *ZCF15* and *ZCF26* paralogs encode zinc
97 cluster transcription factors whose overexpression leads to impaired biofilm growth *in vitro*
98 and *in vivo*. Transcript profiling and ChIP-sequencing analyses demonstrated that both
99 *ZCF15* and *ZCF26* directly regulate the expression of genes associated with cellular
100 metabolism, including the genes of the glycolysis, glyoxylate cycle and tri-carboxylic acid
101 (TCA) cycle, known to be differentially expressed when *C. albicans* proliferates as biofilms.
102 Altogether, we discovered novel transcription regulators that recently appeared to regulate
103 metabolic remodeling during planktonic to biofilm transition.

104

105 **Results**

106 **A large-scale overexpression screen identifies *C. albicans* negative regulators of biofilm 107 formation**

108 In the frame of the *C. albicans* ORFeome project, 5099 ORFs representing approximately
109 83% of *C. albicans* predicted ORFs were cloned into a GatewayTM donor vector [28]. A total
110 of 2454 of these ORFs were then transferred in a tetracycline-dependent overexpression
111 vector and introduced into a suitably engineered *C. albicans* strain [27] (**Figure 1A**). This
112 unbiased *C. albicans* overexpression collection was used to uncover genes whose
113 overexpression hampers *C. albicans* biofilm formation.

114 We first set up the experimental conditions allowing the detection of genes whose
115 overexpression would alter biofilm formation as compared to either the uninduced condition

116 or the wild-type control. A strain overexpressing *NRG1*, a known negative transcription
117 regulator of *C. albicans* morphogenesis and biofilm formation [25], was used to optimize the
118 screening conditions. The wild-type control strain (CEC4665) and a P_{TET} -*NRG1*
119 overexpression strain (CEC6039) were induced to form biofilms in 96-well polystyrene
120 plates at 37°C for 18h in YPD medium, with or without 25 μ g.mL⁻¹ doxycycline (**Figure 1B**).
121 The extent of biofilm formation was assessed by imaging and by quantifying standard optical
122 density [31]. In these conditions, overexpression of *NRG1*, led to decreased biofilm formation
123 as compared to either the uninduced condition or the wild-type control (**Figure 1C**).
124 Then, the conditions optimized with the *NRG1* overexpression strain were individually
125 applied to the 2454 doxycycline-dependent *C. albicans* overexpression strains. We identified
126 16 candidate genes that, when overexpressed, inhibited biofilm growth as compared to either
127 wild-type or uninduced cells (**Figure S1A**). These genes encode transcription factors (*CBF1*,
128 *NRG1*, *RBF1*, *ZFU2*, *ZCF8*, *ZCF15* and *ZCF26*), a protein phosphatase (*FCP1*), nucleic acid
129 binding proteins (*PAB1*, *ORF19.2973* and *ORF19.5381*), or uncharacterized ORFs
130 (*ORF19.1666*, *ORF19.3720*, *ORF19.5933*, *ORF19.7199* and *GAL7*). Of note, our large-scale
131 screen identified *Nrg1* as a negative regulator of biofilm formation.
132 To confirm that overexpression of the 16 identified genes genuinely hampered biofilm
133 formation, independent overexpression strains for these genes were constructed and tested for
134 their ability to form biofilms in the presence or absence of doxycycline. We could confirm
135 the observed phenotypes for all candidate genes (**Figure 1D**). We also confirmed the
136 reduction of biofilm formation upon overexpression of this set of genes by measuring the dry
137 weight biomass produced on the surface of polystyrene plates (**Figure 1E**). To test whether
138 the reduction in biofilm formation could be the result of a general growth defect upon
139 overexpression, a growth assay was performed with the wild-type control and the 16
140 overexpression strains, with or without doxycycline. In total, 14 out of the 16 mutants
141 showed no significant alteration in their doubling time upon induction (**Figure S1A**).
142 Conversely, *PAB1* overexpression resulted in a ~1.5-fold increase in doubling time as
143 compared to both the wild-type strain or uninduced conditions, and the *ORF19.5381*
144 overexpression strain grew poorly in the presence of doxycycline (~1.9 fold increase in
145 doubling time as compared to uninduced condition and ~4 fold increase in doubling time as
146 compared to the wild type control) (**Figure S1B**). Of note, although the *ORF19.5381*
147 overexpression strain grew poorly in the absence of doxycycline (~2.2 fold increase in
148 doubling time as compared to the uninduced wild-type control), it could form robust biofilms
149 in these conditions. Therefore, we did not investigate the *PAB1* and *ORF19.5381* genes

150 further. The 14 remaining candidate genes did not cause any significant alteration of growth
151 between uninduced and induced conditions, indicating a direct role in biofilm formation. We
152 decided to focus on genes encoding transcription factors, namely *NRG1*, *RBF1*, *ZFU2*, *ZCF8*,
153 *ZCF15* and *ZCF26*. *CBF1* was excluded from further studies as it is a characterized
154 transcription factor that binds to the ribosomal protein gene promoters and whose knock-out
155 mutant exhibits a slow growth phenotype [32].

156 To get further insight in the role of the six regulators in biofilm formation, we first
157 determined the structure and thickness of biofilms formed upon their overexpression by
158 performing confocal laser scanning microscopy (CLSM) with biofilms grown on silicone
159 squares in 12-well polystyrene plates at 37°C for 18 h in YPD medium in the presence of
160 doxycycline [22]. CLSM analysis revealed that biofilms formed upon overexpression of the
161 six candidate genes were mostly composed of yeast cells (**Figure 2A**, top view) resulting in a
162 reduction in the biofilm thickness as compared to the wild-type control strain (**Figure 2A**,
163 side view). These results further confirmed that overexpression of *NRG1*, *RBF1*, *ZFU2*,
164 *ZCF8*, *ZCF15* and *ZCF26* leads to impaired biofilm production.

165

166 **Biofilm forming defect upon *ZCF15* overexpression is independent of hyphal growth**

167 To test whether the defect in biofilm formation upon overexpression of the 6 transcription
168 factor genes is merely the consequence of a defect in hyphal growth, their filamentation was
169 tested by spot assays on solid YPD medium containing 20% fetal bovine serum (FBS) with or
170 without 25 μ g.mL⁻¹ doxycycline (**Figure 2B**). In these conditions, overexpression strains were
171 forming smooth colonies (*RBF1*, *ZFU2* and *ZCF26*) or exhibited reduced wrinkling (*NRG1*,
172 and *ZCF8*), as compared to the wild-type or uninduced conditions. Interestingly, cells
173 overexpressing *ZCF15* still formed wrinkled colonies. We further examined the colony
174 phenotype of the overexpression strains at the single colony level. *NRG1*, *RBF1*, *ZFU2* and
175 *ZCF26* overexpression led to a defect in colony wrinkling. In contrast, *ZCF8* and *ZCF15*-
176 overexpressing cells were able to form wrinkled colonies. (**Figure S2A**). We also inspected
177 the extent of hyphal formation in liquid YPD medium containing 20% FBS with or without
178 doxycycline. In these conditions, strains overexpressing *NRG1*, *RBF1*, and *ZCF26* were
179 compromised for their ability to form hyphae as compared to wild-type control or the
180 uninduced condition. However, overexpression of *ZCF8*, *ZFU2* and *ZCF15* did not prevent
181 hyphal formation in liquid medium (**Figure S2B**). In conclusion, these results indicate that
182 *ZCF15* overexpression does not affect hyphal growth under hyphae inducing conditions. The
183 phenotype observed is hence specific for biofilm formation.

184

185 **Evolutionary appearance of *C. albicans* transcription factors identified by**
186 **overexpression approaches**

187 In this study, we identified transcription regulators whose overexpression caused a reduction
188 in biofilm formation. Therefore, we questioned the conservation of these novel biofilm
189 regulators in different *Candida* species. To this aim, a search for orthologs of *NRG1*, *RBF1*,
190 *ZCF8*, *ZCF15*, *ZCF26* and *ZFU2* was performed in the Saccharomycetes using PSI-BLAST
191 and Hidden Markov models [33]. Further, the presence of orthologs of these transcription
192 factor genes in closely related species was evaluated using Reciprocal Best Hits (RBH)
193 analysis. The repressor of morphogenesis *Nrg1* is present in most sequenced species of the
194 Saccharomycetes, including *Saccharomyces cerevisiae*. *Rbf1*, another repressor of
195 filamentation in *C. albicans* is present in other members of the CTG clade (ie species in
196 which the CUG codon encodes serine instead of a universal leucine, **Figure S2C**). *Zcf8*, a
197 regulator of vacuolar function [34], is present only in a few species of the CTG clade [35].
198 Interestingly, the three other regulators, namely *Zfu2*, *Zcf15* and *Zcf26* are restricted to CTG
199 clade species able to form biofilms. Transcription factor *Zcf15* is found in *C. albicans*, *C.*
200 *dubliniensis*, *C. tropicalis*, and *C. parapsilosis*, *Zcf26* in *C. albicans*, *C. dubliniensis*, *C.*
201 *tropicalis*, *C. parapsilosis*, *L. elongisporus* and *S. passalidarum* and *Zfu2* occurs in *C.*
202 *albicans* and *C. dubliniensis* (**Figure S2C**). We also examined the phylogenetic relationship
203 between the transcription factors identified in this study. Phylogenetic analyses suggested that
204 *ZCF15* and *ZCF26* are paralogs and that *ZCF15* originates from a duplication of the *ZCF26*
205 gene (**Figure S2D**). Our phylogenetic analysis confirms the published *ZCF15* and *ZCF26*
206 phylogenetic relationship [36]. In conclusion, these analyses revealed a recent appearance of
207 transcription factors *Zcf15*, *Zcf26* and *Zfu2* only in CTG clade species that form biofilms.
208

209 **Overexpression of *ZCF15* and *ZCF26* leads to impaired *in vivo* biofilm formation**

210 We demonstrated that conditional overexpression of the *ZCF15* and *ZCF26* paralogs resulted
211 in impaired biofilm formation and that overexpression of *ZCF15* specifically inhibited
212 biofilm growth without any significant defect in hyphal development. To assess whether the
213 results observed upon *in vitro* biofilm formation could be recapitulated *in vivo*, we placed
214 *ZCF15* and *ZCF26* under the control of the constitutive *TDH3* promoter. Next, we examined
215 the constitutive *ZCF15*- and *ZCF26*-overexpression strains for their ability to produce
216 biofilms and filaments *in vitro*. Similar to conditional overexpression, constitutive
217 overexpression of *ZCF15* and *ZCF26* resulted in impaired biofilm formation *in vitro* and

218 overexpression of *ZCF26* alone resulted in impaired filamentation (**Figure S3A and S3B**). To
219 investigate the impact of *ZCF15* and *ZCF26* overexpression on *C. albicans* biofilm formation
220 *in vivo*, we used a well-established rat-catheter model [37]. Catheters were inoculated
221 intraluminally with the wild-type control (CEC4665) and two independent clones of P_{TDH3} -
222 *ZCF15* (CEC5915 and CEC5916) and P_{TDH3} -*ZCF26* (CEC5917 and CEC5918)
223 overexpression strains. After 24 h of biofilm growth, the catheters were removed, and the
224 luminal surfaces of the catheters were imaged by scanning electron microscopy (SEM).
225 Overexpression of *ZCF15* failed to produce any biofilm on rat catheters, whereas
226 overexpression of *ZCF26* resulted in less robust biofilm formation than the wild-type strain
227 (**Figure 2C**). These *in vivo* results thus confirmed the role of transcription factors *Zcf15* and
228 *Zcf26* in modulating *C. albicans* biofilm formation *in vitro* and *in vivo*.
229

230 **Transcriptome alterations upon *Zcf15* and *Zcf26* overexpression**

231 To understand the mechanisms by which *Zcf15* and *Zcf26* inhibit *C. albicans* biofilm
232 formation and to uncover the gene circuitry they orchestrate, we conducted a genome-wide
233 transcript profiling with P_{TET} -*ZCF15* (CEC6052), P_{TET} -*ZCF26* (CEC6051) and the wild-type
234 control strain (CEC4665) by RNA sequencing under conditions of biofilm formation in the
235 presence of 25 μ g.mL⁻¹ doxycycline. To rule out an effect of doxycycline on the overall gene
236 expression profile, we also performed transcript profiling with the wild-type strain grown
237 under biofilm conditions with or without doxycycline (**Datasheet A in S3 Table**). In the
238 latter experiment, we considered as differentially expressed those genes that showed a change
239 in expression level by Log2>1.2 or Log2<-1.2 and p<0.05 in response to doxycycline
240 addition. Transcript profiling of *C. albicans* wild-type cells exposed to doxycycline revealed
241 the upregulation of 1 gene and downregulation of 14 genes as compared with untreated wild-
242 type cells (**Datasheets B and C in S3 Table**). Genes whose expression levels were altered by
243 the presence of doxycycline in wild-type cells were excluded from transcriptome analysis of
244 strains overexpressing *ZCF15* and *ZCF26*. RNA expression analysis with P_{TET} -*ZCF15* and
245 P_{TET} -*ZCF26* overexpression strains displayed differential expression of 923 and 1239 genes,
246 respectively, when Log2>1.2 or Log2<-1.2 and p<0.05 were used as the thresholds for
247 differentially expressed genes as compared to the doxycycline-exposed wild-type strain
248 (**Datasheets D and E in S3 Table**). Overexpression of *ZCF15* resulted in the upregulation of
249 406 coding genes and the downregulation of 517 genes as compared to the wild-type control
250 (**Datasheets F and G in S3 Table**). Similarly, when *ZCF26* was overexpressed, 552 genes
251 were upregulated, and 687 genes were downregulated (**Datasheets H and I in S3 Table**).

252 Interestingly, comparison of differentially expressed genes upon overexpression of *ZCF15* or
253 *ZCF26* showed a common set of 221 upregulated genes and 410 downregulated genes
254 (**Figure S4A and S4B**).
255 To examine the altered pathways upon overexpression of the transcription factors *Zcf15* and
256 *Zcf26*, the differentially expressed genes were categorized into different functional classes
257 using FungiFun 2 [38]. This analysis revealed that genes belonging to cellular metabolism
258 (lipid, fatty acid and isoprenoid, amino acid, C-compound and carbohydrate, nitrogen, sulfur,
259 and selenium metabolism), the tri-carboxylic acid pathway, NAD/NADP binding, and
260 cellular transport were upregulated when *ZCF15* was overexpressed. Categories significantly
261 downregulated included sugar, glucose, polyol and carboxylate metabolism, C-compound and
262 carbohydrate metabolism, stress response, glycolysis, and gluconeogenesis (**Figure 3A**).
263 Similarly, cellular metabolism (lipid, fatty acid and isoprenoid, amino acid, C-compound and
264 carbohydrate and nitrogen, sulfur, and selenium metabolism), the tri-carboxylic acid pathway,
265 protein synthesis (ribosomal proteins), NAD/NADP binding and electron transport were the
266 categories significantly upregulated when *ZCF26* was overexpressed, while sugar, glucose,
267 polyol and carboxylate metabolism, C-compound and carbohydrate metabolism, stress
268 response, glycolysis and gluconeogenesis, filamentation and transcription control were the
269 categories significantly downregulated (**Figure 3B**). Importantly, genes relevant to *C.*
270 *albicans* morphogenesis including *ACE2*, *CPH2*, *EFG1*, *FKH2*, *ASH1*, *RAS1* etc. were
271 downregulated when *ZCF26* was overexpressed, whereas no significant alterations in the
272 expression of these genes were found when *ZCF15* was overexpressed, suggesting that *Zcf26*
273 plays a role in the regulation of both morphogenesis and biofilm formation.
274 Since transcript profiling pinpointed an alteration of central metabolic pathways of *C.*
275 *albicans*, we specifically examined expression of glycolysis and TCA cycle genes.
276 Interestingly, we noticed that overexpression of *ZCF15* and *ZCF26* severely hampered the
277 expression of glycolysis genes known to be upregulated during *C. albicans* biofilm formation
278 [15]. In contrast, genes of the glyoxylate shunt and TCA cycle were upregulated upon
279 overexpression of *ZCF15* and *ZCF26* (**Figure 3C and S4C**). In addition, several critical
280 biofilm-associated genes that are upregulated during *C. albicans* biofilm formation, such as
281 *HWP1*, *ECE1*, *HYR1*, *HSP104*, and *IHD1* were downregulated upon overexpression of
282 *ZCF15* and *ZCF26*. Similarly, biofilm-repressed genes such as *INO1* and *ORF19.4571*, were
283 upregulated when *ZCF15* and *ZCF26* were overexpressed. These subsets of biofilm-critical
284 genes were also validated by quantitative real-time PCR (**Figure 3D**).

285 In conclusion, global gene expression analyses with strains overexpressing the transcription
286 factors Zcf15 or Zcf26 suggested a role in metabolic reprogramming during *C. albicans*
287 biofilm development.

288

289 **Identification of directly bound targets of Zcf15 and Zcf26 by ChIP-sequencing**

290 Genes directly regulated by Zcf15 and Zcf26 were identified by Chromatin
291 Immunoprecipitation followed by high-throughput sequencing (ChIP-seq), which allowed us
292 to map the binding sites of the regulators in the *C. albicans* genome. To implement the ChIP
293 assay, we fused the N-terminus of the transcription factors Zcf15 or Zcf26 with a Tandem
294 Affinity Purification (TAP) epitope tag. The functionality of TAP-Zcf15 and TAP-Zcf26 was
295 verified by testing the impact of their overexpression on biofilm formation and filamentation.
296 Overexpression of *TAP-ZCF15* or *TAP-ZCF26* phenocopied overexpression of *ZCF15* or
297 *ZCF26*, respectively (**Figure S5A and S5B**). We then performed a ChIP assay followed by
298 Illumina sequencing using an untagged *C. albicans* control strain and two independent clones
299 of TAP-tagged Zcf15 and Zcf26 strains growing as biofilms. We detected the binding of
300 Zcf15 and Zcf26 in 317 and 363 intergenic regions of the *C. albicans* genome, respectively.
301 Among these regions, we then identified bona fide promoter regions and uncovered that
302 Zcf15 binds to the promoters of 431 ORFs, whereas Zcf26 binds to the promoters of 494
303 ORFs (**Datasheets J and K in S3 Table**). We then compared the results of transcript
304 profiling and ChIP-seq to identify directly regulated genes. Zcf15 binds to the promoters of
305 89 upregulated and 43 downregulated genes. Similarly, Zcf26 binds to the promoters of 70
306 upregulated and 87 downregulated genes. A comparison of all genes directly bound either by
307 Zcf15 or Zcf26 and differentially expressed upon their overexpression showed an overlap of
308 51 upregulated and 41 downregulated genes (**Figure 4A, Datasheet L in S3 Table**).
309 Strikingly, both Zcf15 and Zcf26 bind to the promoter of the master regulator of glycolysis,
310 *TYE7* (**Figure 4B**) as well as to the promoters of some of the TCA cycle genes, namely *IDP2*,
311 *MDH1-3* and *OSM2*. The binding of Zcf15 and Zcf26 to the promoters of these subsets of
312 genes was further verified by ChIP-quantitative PCR (ChIP-qPCR). Promoter region of
313 *ORF19.4690* was used as a control since it is not bound either by Zcf15, Zcf26 or master
314 regulators of biofilm formation (**Figure 4C**). Then, based on genome-wide binding events of
315 Zcf15 and Zcf26, we determined their binding motif using MEME-ChIP [39]. Since Zcf15
316 and Zcf26 share many targets in which their binding area overlap, the motif identified here
317 for Zcf15 and Zcf26 was very similar (WWWHTCCG) (**Figure 4D**) confirming their
318 common evolutionary origin.

319

320 **Metabolic profiling of *ZCF15* and *ZCF26* overexpression strains by phenotypic
321 microarrays**

322 Both transcript profiling and ChIP-sequencing highlighted the role of *Zcf15* and *Zcf26* in
323 controlling metabolic remodeling during *C. albicans* biofilm formation. Therefore, we
324 examined the metabolic profiles of *ZCF15* and *ZCF26* overexpression strains under different
325 growth conditions. To this aim, we performed phenotypic microarrays (PM), a high-
326 throughput tool to get the global metabolic profiles of microbial cells [40,41]. The growth of
327 the wild-type and of the constitutive overexpression strains P_{TDH3} -*ZCF15* and P_{TDH3} -*ZCF26*
328 were examined in PM plates (Biolog) coated with different nutrients and chemical
329 substances: carbon sources (PM01 and PM02), nitrogen source (PM03), nutritional
330 complements (PM05), and nitrogen peptides (PM06 and PM08). The global growth profile of
331 the strains was monitored at 30°C for 96 h and is represented as heat-map (**Figure S6**). These
332 PM-based results revealed an enhanced growth of strains overexpressing *ZCF15* and *ZCF26*
333 when succinic acid, acetic acid, α -keto-glutaric acid and pyruvic acid were used as carbon
334 sources. In addition, we noticed that strains overexpressing *ZCF15* and *ZCF26* showed a
335 reduced growth when L-arginine was used either as a carbon source, a nitrogen source or
336 provided as a nutrient supplement. Moreover, both *ZCF15* and *ZCF26* overexpression strains
337 displayed a reduced growth when di-peptides containing Arg residues (Arg-Glu, Arg-Gln,
338 Arg-Ile, Arg-Met, Ile-Arg, Arg-Lys, Arg-Asp, Arg-Leu, Arg-Ser, Arg-Val, Arg-Trp, Arg-
339 Arg, Pro-Arg, Arg-Tyr, Leu-Arg, Arg-Ala) were used as nitrogen source (**Figure 5**). These
340 results coincide with the previous reports on the role of arginine metabolism in *C. albicans*
341 biofilm formation [42]. In conclusion, this PM-based growth analysis further establishes the
342 role of the *Zcf15* and *Zcf26* transcription factors in controlling metabolic remodeling during
343 *C. albicans* biofilm development.

344

345 **Discussion**

346 In their natural environment, many microbial species, including bacteria, archaea and fungi,
347 alternate between planktonic and sessile states, alone or in association with other microbial
348 species [6,43]. A radical shift in gene expression and cellular metabolism has been reported
349 in bacteria and fungi during the transition from planktonic to community growth. Bacterial
350 and fungal biofilms indeed show unique metabolic patterns, such as differential expression of

351 glycolytic pathway genes, indicating significant metabolic reprogramming during microbial
352 biofilm development [44–46].

353 Fungal biofilm formation is a complex developmental process that is associated to multiple
354 traits, with each trait having a specific role during the transition from planktonic to biofilm
355 growth. These traits are regulated by a different set of transcription regulators [47,48]. During
356 *C. albicans* biofilm establishment, two major events occur: cell differentiation and metabolic
357 reprogramming [19,21,42,49,50]. The regulators and their genetic networks modulating cell
358 differentiation during *C. albicans* biofilm formation have been extensively studied. For
359 instance, Ace2, Brg1, Efg1, Ndt80, Tec1, Flo8 and Ume6 regulate the expression of genes
360 involved in *C. albicans* morphogenesis, which provides architectural stability to biofilms. In
361 contrast, transcription regulators that modulate metabolic alterations during *C. albicans*
362 biofilm formation have received less attention [48].

363 In this study, a large-scale overexpression approach identified a new set of transcription
364 regulators involved in biofilm formation, associated with either morphogenesis (*NRG1*,
365 *RBF1*, *ZFU2* and *ZCF8*), metabolic alteration (*ZCF15*) or both (*ZCF26*). We selected *Zcf15*
366 and *Zcf26* for further study as they are paralogs whose occurrence is restricted to CTG clade
367 species that form biofilms, and no prior information on their role in morphogenesis or biofilm
368 formation was known.

369 Metabolic reprogramming is one of the major changes that occur during microbial biofilm
370 formation [17,19–21]. Bonhomme et al. demonstrated the upregulation of glycolysis genes
371 during *C. albicans* biofilm formation and highlighted the role of Tye7 in their regulation [15].
372 Furthermore, a comparative metabolomic study of *C. albicans* planktonic and biofilm cells
373 revealed differential production of metabolites of the TCA cycle, lipid synthesis, amino-acid
374 metabolism, glycolysis and oxidative stress [21]. These authors showed that the level of
375 citrate decreased in all stages of biofilm formation, including early and intermediate biofilms,
376 while other intermediates of the TCA cycle (succinate, fumarate, and malate) decreased only
377 in mature biofilms. Moreover, comparison of transcript profiling of cells from planktonic
378 cultures and biofilms also highlighted the role of the TCA cycle and mitochondrial activities
379 during *C. albicans* biofilm formation [20]. These results suggest an inhibition of the TCA
380 cycle during biofilm maturation and a reduction of the respiration rate in biofilm cells.

381 Interestingly, transcript profiling of *ZCF15* and *ZCF26* overexpression strains demonstrated
382 their role in the alteration of central metabolism, in particular the downregulation of genes of
383 the glycolysis and upregulation of genes of the glyoxylate pathway and the TCA cycle. In a
384 different study, Issi et al. also revealed the up-regulation of glucose metabolism in a *ZCF15*

385 knockout strain [36], which further supports our results. In addition, *ZCF26* overexpression
386 also impacted the expression level of genes associated with morphogenesis, which may be the
387 cause of the defect in filamentous growth in the presence of doxycycline. For instance, *ACE2*,
388 *BRG1*, *CPH2*, *EFG1*, *FKH2*, *ASH1*, or *RASI*, which are involved in the yeast to hyphae
389 transition, are downregulated when *ZCF26* is overexpressed. On the contrary, most genes
390 whose expression is altered upon *ZCF15* overexpression are associated with metabolism, and
391 no significant differences were observed for genes associated with morphogenesis (**Figure**
392 **3A**). These data were well supported by the genome-wide binding study and the locus-
393 specific PCR (**Figure 4A** and **4C**). Chip-sequencing and ChIP-qPCR experiments revealed
394 that both *Zcf15* and *Zcf26* bind to the regulatory region of *TYE7*, a key regulator of
395 glycolysis. Furthermore, these two regulators bind to promoter regions of genes encoding
396 enzymes of the TCA cycle, such as *IDP2*, *LSC1*, *KGD2*, *MDH1-3* and *OSM2*, demonstrating
397 their role in modulating the expression levels of TCA cycle and glyoxylate cycle genes. In
398 addition, *Zcf15* and *Zcf26* bind to the acetyl-CoA synthetase-encoding genes, *ACSI* and
399 *ACS2*, which regulate the metabolism of nonfermentable carbon sources via gluconeogenesis,
400 glyoxylate cycle and β -oxidation [51]. Phenotypic microarray results further highlighted the
401 involvement of these two regulators in controlling metabolic remodeling; indeed,
402 overexpression of *ZCF15* and *ZCF26* resulted in increased growth when precursors of the
403 TCA cycle including succinic acid, α -keto-glutaric acid and pyruvic acid were used as a
404 carbon source. Based on these results, we speculate that upon overexpression of *ZCF15* and
405 *ZCF26*, an alteration in the rate of the glycolysis, TCA cycle, and glyoxylate cycle leads to
406 the establishment of a non-fermentative environment, which favors the planktonic mode of
407 growth and thus results in an impaired biofilm formation. Therefore, we posit that a higher
408 occupancy of these two transcription factors at the promoters of critical genes of central
409 metabolic pathways may prevent the regulators required for biofilm formation from accessing
410 them.

411 Besides regulating genes of the central metabolism, *Zcf15* and *Zcf26* also directly regulate
412 the expression of genes necessary for normal biofilm growth (*CRZ2*, *CSA2*, *RASI*), involved
413 in biofilm matrix formation (*GCA1*, *GCA2*), and of transcription regulators of biofilm gene
414 networks (*BRG1*, *TEC1*) [6,52–54].

415 Apart from carbohydrate metabolism, amino-acid metabolism is also crucial for *C. albicans*
416 biofilm formation. Garcia-Sanchez et al. observed that amino acid biosynthetic pathway
417 genes are upregulated during biofilm formation under the aforementioned growth conditions,

418 which led to the demonstration of a role in *C. albicans* biofilm formation of the *GCN4* gene
419 encoding a master regulator of amino acid biosynthetic genes [19]. In addition, Rajendran et
420 al. have shown that amino-acid biosynthetic pathway genes such as arginine and proline are
421 upregulated in high biofilm forming *C. albicans* isolates [42]. Moreover, a recent study
422 revealed the role of the amino acid permease *Stp2* in *C. albicans* adherence and biofilm
423 maturation [16]: *stp2* knock-out mutants are impaired for amino acid uptake and
424 compensatory mechanisms in nutrient acquisition. We noticed a lower utilization of L-
425 arginine by *ZCF15* and *ZCF26* overexpression strains when used as either carbon source,
426 nitrogen source or provided as nutritional complement (**Figure 5**). In addition,
427 overexpression of *ZCF15* and *ZCF26* resulted in slower growth when Arg-containing
428 dipeptides were used as a nitrogen source. These results suggest that *Zcf15* and *Zcf26* may be
429 involved in the regulation of L-arginine utilization. Strikingly, *Zcf26* binds directly to the
430 promoter region of *STP2*, which is downregulated during *ZCF26* overexpression. Therefore,
431 this study establishes the role of arginine metabolism during *C. albicans* biofilm formation.
432 Interestingly, the presence of the transcription regulators *Zcf15* and *Zcf26* is limited to
433 species in the *Candida* clade that can form biofilms, suggesting their relatively recent
434 acquisition in biofilm-forming species. Furthermore, the shared regulation of several genes
435 by *Zcf15* and *Zcf26* argues for a common evolutionary origin of these regulators and may
436 allow tight regulation of the set of regulated genes.
437 In summary, by using overexpression approaches, we discovered new biofilm regulators with
438 either a role in architectural stability and/or a specific role in metabolic reprogramming. This
439 study also identified several other regulators and genes whose further study will provide a
440 better understanding of the mechanism of *C. albicans* biofilm formation. Altogether, this
441 study highlights the role of metabolic reprogramming and its fine-tuned regulation during the
442 shift from planktonic to biofilm growth. This could lead to the development of new
443 antifungals designed to selectively disrupt the fungus central metabolism to treat biofilm-
444 related infections.

445

446 **Materials and Methods**

447 **Ethics Statement:**

448 All animal procedures were approved by the Institutional Animal Care and Use Committee at
449 the University of Wisconsin according to the guidelines of the Animal Welfare Act, the
450 Institute of Laboratory Animal Resources Guide for the Care and Use of Laboratory Animals,

451 and Public Health Service Policy under protocol MV1947. Ketamine and xylazine were used
452 for anesthesia. CO₂ asphyxiation was used for euthanasia at the end of study.

453 **Data availability:** Genome-wide RNA expression and ChIP-sequencing data are deposited to
454 European Nucleotide Archive (ENA) under accession numbers E-MTAB-11383 and E-
455 MTAB-11384, respectively.

456 **Media and growth conditions:** *C. albicans* strains used in this study are listed in **S1 Table**.

457 Cells were grown in YPD (1% yeast extract, 2% peptone and 2% dextrose) at 30°C for
458 planktonic and at 37°C for biofilm growth. Solid media were obtained by adding 2% agar.
459 Induction of P_{TET} was achieved by adding 25 µg/mL doxycycline. Hyphal growth was
460 induced by adding 20% fetal bovine serum to the medium.

461 **Biofilm measurement by standard optical density assay:** To measure the extent of *C.*
462 *albicans* biofilm formation, we performed 96-well standard optical density assays [31] for all
463 *C. albicans* doxycycline-dependent P_{TET} overexpression strains. Biofilms were allowed to
464 grow at the bottom of 96-well polystyrene plate in YPD medium at 37°C for 18 h at 110 rpm
465 with or without adding 25µg/mL doxycycline. Optical density was measured using Tecan I
466 control infinite M200. We measured the optical density at nine independent locations per
467 well; values from six independent wells were used to plot the graph and to estimate the
468 statistical significance.

469 **In vitro biofilm formation and dry biomass measurement:** To measure the dry biomass
470 produced, biofilms were grown in 12-well polystyrene TPP plates (Cat. No. 92412) in 2 mL
471 of YPD medium with or without 25µg/mL doxycycline. The plates were inoculated with cells
472 at OD₆₀₀=0.2 and incubated at 37°C for 60 min at 110 rpm agitation for initial adhesion of the
473 cells. After 60 min, the plates were washed with 2 mL of 1x PBS, and 2 mL of fresh YPD
474 medium with or without 25µg/mL doxycycline were added. Plates were then sealed with
475 breathseal sealing membranes (Greiner bio-one) and incubated at 37°C for 18 h with shaking
476 at 110 rpm. Then the medium was aspirated, and the wells were gently washed with 1x PBS.
477 To estimate the dry biomass of biofilms produced, biofilms were scrapped, and the content of
478 each well was transferred to pre-weighed nitrocellulose filters. Biofilm-containing filters
479 were dried overnight at 60°C and weighed. The average total biomass for each strain was
480 calculated from three independent samples after subtracting the mass of the empty filters
481 [55].

482 **CLSM for biofilm imaging:** Biofilms were grown on silicone squares in YPD medium with
483 25µg/mL doxycycline for 18 hours. The medium was discarded, and silicone squares were
484 gently washed with 1x PBS and stained with 50 µg/mL of concanavalin A-Alexa Fluor 594

485 (Invitrogen) at 30°C for 2 h, with gentle shaking at 110 rpm. Silicone squares were then
486 placed in a Petri dish and covered with 1x PBS. Biofilms were imaged as described
487 previously [22]: CSLM was performed at the UtechS PBI facility of Institut Pasteur using an
488 upright LSM700 microscope equipped with a Zeiss 40X/1.0 W plan-Apochromat immersion
489 objective. Images were acquired and assembled into maximum intensity Z-stack projection
490 using the ZEN software.

491 **RNA extraction and cDNA synthesis:** RNAs were isolated using the RNeasy mini kit
492 mirVana RNA isolation kit (Qiagen). Briefly, *C. albicans* strains were grown in YPD
493 medium either in planktonic grown at 30°C or biofilm-growth conditions grown at 37°C in
494 shaking mode for 18 h in polystyrene plates. Total RNA was isolated from four independent
495 planktonic or biofilm cultures for each strain. Planktonic cells were grown in 50 mL YPD
496 medium in flasks at 30°C till OD₆₀₀=0.8 whereas biofilms were grown in 2 mL of YPD in
497 12-well polystyrene plates at 37°C for 18h. Cells were harvested by centrifugation at 4000
498 rpm both from planktonic and biofilms isolated cells and washed 3 times with 1xPBS and
499 pelleted at 4000 rpm. Cells were resuspended in 700 µL of extraction buffer and lysed by
500 adding 0.5mm of 500 µL of glass beads. Cells were broken in a bead-beater with 500 µL of
501 0.5mm of glass beads (six cycle of 2 min at 10). The RNeasy columns were used to isolate
502 the total RNA. To remove the potential contaminating chromosomal DNA, RNA samples
503 were treated on-column with DNase for 15 min at room temperature (Cat. No. 79254,
504 Qiagen). A total of 1µg of purified RNA was used to make cDNA by adding gDNA wipeout
505 (2 µL), RT buffer 5x (4 µL) RT primer mix and Reverse transcriptase (1 µL) (Qiagen, Cat.
506 No. 205311) added in a final volume of 20 µL. Reactions were carried out at 42°C for 15 min
507 followed by heat inactivation at 95°C for 3 min.

508 **RNA sequencing and analysis:** Libraries were built using a TruSeq Stranded mRNA library
509 Preparation Kit (Illumina, USA) following the manufacturer's protocol. Quality control was
510 performed on a BioAnalyzer 2100 (Agilent Technologies). 75bp single-end RNA sequencing
511 was performed on the Illumina NextSeq 500 platform.

512 The RNA-seq analysis was performed with Sequana [56]. In particular, we used RNA-seq
513 pipeline (v0.9.16, https://github.com/sequana/sequana_rnaseq) built on top of Snakemake 5.8.1
514 [57]. Reads were trimmed from adapters using Cutadapt 2.10 [58] then mapped to the *C.*
515 *albicans* (SC5314, version A22-s07-m01-r105) genome assembly and annotation from
516 Candida Genome Database [59] using STAR 2.7.3a [60]. FeatureCounts 2.0.0 [61] was used
517 to produce the count matrix, assigning reads to features with strand-specificity information.
518 Quality control statistics were summarized using MultiQC 1.8 [62]. Statistical analysis on the

519 count matrix was performed to identify differentially regulated genes, comparing biofilm and
520 planktonic condition RNA expression. Clustering of transcriptomic profiles were assessed
521 using a Principal Component Analysis (PCA). Differential expression testing was conducted
522 using DESeq2 library 1.24.0 [63] scripts based on SARTools 1.7.0 [64] indicating the
523 significance (Benjamini-Hochberg adjusted p-values, false discovery rate FDR < 0.05) and the
524 effect size (fold-change) for each comparison. Functional categorization of up-and
525 downregulated genes were achieved by using FungiFun2 [38].

526 **Quantitative PCR:** *C. albicans* wild-type (CEC4665) and P_{TET}-ZCF15 and P_{TET}-ZCF26
527 strains were grown in biofilm forming condition in the presence of doxycycline as described
528 earlier. RNAs were isolated as described above in RNA extraction section (Qiagen). The
529 integrity of RNAs were examined on 1% agarose gel. cDNA was synthesized by reverse
530 transcription using QuantiTech Reverse Transcription Kit. Primers designed for real time
531 PCR reactions are listed in **S2 Table**. Analysis of melting curves were performed to ensure
532 specific amplification without any secondary non-specific amplicons (melting curve
533 temperatures used were 80°C (*TEF3*), 77°C (*ECE1*), 83°C (*HWPI*), 80°C (*HSP104*), 78°C
534 (*HYRI*) 83°C (*ZCF15*), 80°C (*ZCF26*), 80°C (*INO1*), 80.5°C (*ORF19.4571*) and 81.5°C
535 (*IHD1*). PCR was carried out in a final volume of 20 µL using SsoAdvanced™ Universal
536 SYBR Green supermix (BIO-RAD). The real time PCR analysis was achieved with an i-
537 Cycler (BIO-RAD) using the following reaction conditions: 95°C for 2 min, then 40 cycles of
538 95°C for 30 s, 55°C for 30 s, 72°C for 30 s. Fold difference in expression of mRNA was
539 calculated by the $\Delta\Delta C_T$ method (Real-time PCR applications guide BIO-RAD) [65] using *C.*
540 *albicans* transcription elongation factor 3 (*TEF3*) transcript as normalization control.

541 **In vivo rat catheter biofilm formation:** To perform *in vivo* biofilms, the rat central-venous
542 catheter infection model was used, as described previously [13,37,66,67]. To achieve the *in*
543 *vivo* *C. albicans* biofilm formation, specific pathogen free Sprague-Dawley rats weighing 400
544 g each were used. A heparinised (100 U/ml) polyethylene catheter with 0.76 mm inner and
545 1.52 mm outer diameters was inserted into the external jugular vein. The catheter was secured
546 to the vein with the proximal end tunneled subcutaneously to the midscapular space and
547 externalized through the skin. The catheters were inserted 24 h prior to infection to permit a
548 conditioning period for a deposition of host protein on the catheter surface. Infection was
549 achieved by intraluminal instillation of 500 µL *C. albicans* cells (10⁶ cells/ml). After a 4 h
550 dwelling period, the catheter volume was withdrawn, and the catheter flushed with
551 heparinized 0.15 M NaCl. Catheters were removed after 24 h of *C. albicans* infection to assay
552 biofilm development on the intraluminal surface by scanning electron microscopy (SEM).

553 Catheter segments were washed with 0.1 M phosphate buffer, pH 7.2, fixed in 1%
554 glutaraldehyde/ 4% formaldehyde, washed again with phosphate buffer for 5 min, and placed
555 in 1% osmium tetroxide for 30 min. The samples were dehydrated in a series of 10 min
556 ethanol washes (30%, 50%, 85%, 95% and 100%), followed by critical point drying.

557 Specimens were mounted on aluminum stubs, sputter coated with gold, and imaged using a
558 Hitachi S-5700 or JEOL JSM-6100 scanning electron microscopy in the high-vacuum mode
559 at 10kV. Images were processed using Adobe photoshop software.

560 **Chromatin immunoprecipitation (ChIP):** The ChIP assays were performed as described
561 previously [68]. Briefly, each strain was grown in biofilm condition for 18 h and cells were
562 cross-linked with 1% final concentration of formaldehyde for 25 min at 30°C. Chromatin was
563 isolated and sonicated to yield an average fragment size of 300-500 bp. The DNA in 50 µL of
564 water was immunoprecipitated with 20 µg/mL anti-protein A antibodies (Sigma Aldrich) and
565 purified by phenol/chloroform extraction. The total, immunoprecipitated (IP) DNA, and
566 beads only material were used to determine the binding of Zcf15 and Zcf26 across the
567 genome by ChIP-sequencing, or to the promoters of a subset of biofilm-related genes by real
568 time PCR (qPCR), as described before. The template used was as follows – 1 µL of a 1:50
569 dilution for input and 1 µL of a 1:3 dilution for immunoprecipitated DNA (IP) Zcf15-TAP,
570 Zcf26-TAP, and an untagged control strain. The conditions used for qPCR were as follows:
571 95°C for 2 min; then 40 cycles of 95°C for 30 sec, 55°C for 30 sec, 72°C for 45 sec. The
572 results were analyzed using CFX Manager Software. The graph was plotted according to the
573 percent input method [69].

574 **Library preparation and ChIP-sequencing analysis and DNA binding motif**

575 **identification:** The ChIP DNA library was prepared using TruSeq ChIP sample preparation
576 guidelines (Illumine) and sequencing was achieved by using Nextseq 500 run. The ChIP-seq
577 analysis was performed with the ChIP-seq pipeline of the Sequana framework [56]. We
578 checked the quality of the data by computing the ratio between data peak and so-called
579 phantom peaks and found values >1.3, which indicates a good-quality ChIP-seq data
580 according to best practices recommended by ENCODE [70]. We then mapped the data and
581 identify narrow and broad peaks using Macs3 (<https://github.com/macs3-project/MACS>).
582 Finally, we obtained the final list of peaks by computing IDR (Irreproducible Discovery
583 Rate), which is the approach used in ChIP-sequencing analysis to provide stable thresholds
584 based on reproducibility [71]. The DNA binding motif across the *C. albicans* genome was
585 identified using Motif Analysis of Large Nucleotide Datasets (MEME-ChIP) [39]. The
586 interaction network was generated with Cytoscape [72].

587 **Phenotype MicroArray and data analysis:** Phenotypic Microarray (PM) plates and
588 reagents (inoculating fluid IFY-0 base, redox dye mix D and E) were purchased from Biolog
589 Inc. The composition of the PM plates can be found on the Biolog website
590 (<https://www.biolog.com/wp-content/uploads/2020/04/00A-042-Rev-C-Phenotype-MicroArrays-1-10-Plate-Maps.pdf>). *C. albicans* strains were streaked to YPD plates and
591 grown for 2 days at 30°C. A total of 2-6 colonies from each YPD plates were transferred to
592 the 15 mL tubes in NS medium (nutrient supplement) and cell density was calculated using
593 turbidimeter (Biolog). Turbidity of the suspension was measured by turbidimeter (Biolog)
594 and transmittance was reached to 62%T (+/-1%). The PM panels represent 96-well plates
595 containing different substrate in each well. In addition to the different substrate, PM wells
596 were also containing the minimal components required for normal growth and prepared
597 according to the manufacture's guidelines. PM additives and dye were added according to the
598 method provided by Biolog Inc. In summary, 0.5 mL of cell suspension were mixed to
600 appropriate volume of PM inoculating fluids, A 100 µL of different cell suspension from the
601 PM inoculating fluid was transferred to each well coated with different nutrients. Plates were
602 sealed with PCR seal to keep wells from drying out and to avoid cross-well spreading of
603 volatile chemicals. All PM plates were incubated in Omnilog at 30°C for 96h. The Omnilog
604 software was used to analyze the data. Differential growth was considered when area under
605 the curve (AUC) of mutants were differed by two times in both directions as compared to the
606 reference strain. Differential growth was converted in the form of heat-map using
607 Heatmapper [73]. Clustering was achieved by average linkage and distance was measured by
608 using Pearson method.

609 **Statistical significance:** Graphs were generated using GraphPad Prism. Statistical
610 significance was determined by performing multiple *t*-test using Holm-Sidak method [74].

611

612 **Figure legends**

613 **Figure 1 High-throughput screen for biofilm formation with *C. albicans* overexpression**
614 **strains. (A)** Schematic showing the construction of 2454 *C. albicans* P_{TET} overexpression
615 strains. **(B)** Overview of the *in vitro* screening strategy for the collection of *C. albicans*
616 overexpression strain for biofilm formation. Cells were grown overnight in 96-deep-well
617 plate in YPD with or without 25 µg/mL doxycycline. Then, 0.2 µL of culture was diluted in
618 200 µL of YPD medium with or without 25 µg/mL of doxycycline and transferred to FBS
619 pre-coated 96-well polystyrene plates, that were incubated at 37°C for 1h for adhesion to
620 occur. Then, the medium was aspirated, and the wells were washed with 1xPBS. A fresh

621 aliquot of 200 μ L of YPD medium with or without 25 μ g/ml of doxycycline was added and
622 biofilms were allowed to develop for 18h at 37°C at 110 rpm. After 18 h, the medium was
623 discarded, the wells washed with 1xPBS and photographed. Quantification of biofilms was
624 determined by measuring the standard optical density using Tecan infinite M200. (C) Biofilm
625 formation by *C. albicans* wild-type and $P_{TET}-NRG1$ overexpression strains with or without
626 doxycycline. (D and E) *C. albicans* overexpression strains identified in the screen and the
627 WT control were grown overnight in YPD medium, with or without 25 μ g/mL doxycycline.
628 Biofilms were allowed to develop in 96-well polystyrene plates (D) or in 12-well polystyrene
629 plates (E) in YPD medium with or without 25 μ g/mL doxycycline at 37°C for 18 h. (D)
630 Standard optical density was measured to quantify the extent of biofilm formation using a
631 Tecan infinite M200. (E) Dry weight biomass of biofilms formed by the wild-type and the
632 overexpression strains. Gene names are given below the bar. Statistical significance was
633 determined using Holm-Sidak method by performing multiple *t*-test between uninduced and
634 induced condition datasets.

635

636 **Figure 2 Overexpression of *ZCF15* and *ZCF26* leads to a rudimentary biofilm in rat**
637 **catheter *in vivo* model.** (A) Wild-type (CEC4665) and overexpression strains $P_{TET}-NRG1$
638 (CEC6039), $P_{TET}-RBF1$ (CEC6043), $P_{TET}-ZFU2$ (CEC6044), $P_{TET}-ZCF8$ (CEC6053), $P_{TET}-$
639 $ZCF15$ (CEC6052), and $P_{TET}-ZCF26$ (CEC6051) were allowed to adhere to silicone squares in
640 12-well polystyrene plates in YPD medium supplemented with 25 μ g/mL doxycycline at
641 37°C for 1h. Biofilms were allowed to grow for 18h at 110 rpm and stained with
642 concanavalin A-Alexa Fluor™ 594 conjugate for 2h. Biofilms were imaged by CLSM.
643 Images are projections of the top and side views. Representative images of at least 3
644 replicates are shown. Scale bars for both top view and side view: 25 μ m. (B) The extent of
645 filamentation of wild-type, $P_{TET}-NRG1$, $P_{TET}-RBF1$, $P_{TET}-ZFU2$, $P_{TET}-ZCF8$, $P_{TET}-ZCF15$, and
646 $P_{TET}-ZCF26$ strains was estimated by spot assay on YPD agar containing 20% fetal bovine
647 serum with or without 25 μ g/mL doxycycline at 37°C and 3 days of incubation. (C) *In vivo*
648 biofilm formation assay was performed using the rat catheter model. Wild-type (CEC4665),
649 $P_{TDH3}-ZCF15$ (CEC5915 and CEC5916) and $P_{TDH3}-ZCF26$ (CEC5917 and CEC5918) strains
650 were inoculated in a rat intravenous catheter and were allowed to form biofilms for 24 h.
651 Then, biofilms were visualized using SEM. The images are 100 x and 1000 x magnification
652 views of the catheter lumens. The scale bar for 250x magnification is 100 μ m and 10 μ m for
653 1000x magnification.

654

655 **Figure 3 Transcript profiling of *C. albicans* transcription factors *ZCF15* and *ZCF26***
656 **during biofilm mode of growth.** RNA expression profiling of $P_{TET}\text{-}ZCF15$ (**A**) and $P_{TET}\text{-}$
657 $ZCF26$ (**B**) strains grown in biofilm condition with 25 $\mu\text{g}/\text{mL}$ doxycycline was performed.
658 Functional classification of genome-wide up and down regulated genes upon overexpression
659 of *ZCF15* or *ZCF26* was determined using FungiFun2 and statistically significant altered
660 categories are shown. (**C**) Central metabolic pathways of *C. albicans* is illustrated to show the
661 genes of the glycolytic and tricarboxylic-acid pathways altered when *ZCF15* and *ZCF26*
662 overexpressing strains are grown with 25 $\mu\text{g}/\text{mL}$ doxycycline in biofilm-forming conditions.
663 Down-regulated genes are indicated in green, up-regulated genes in red and non-significantly
664 altered genes in black. (**D**) qPCR analysis was performed to validate the altered expression of
665 biofilm-related genes with wild-type parental cells, $P_{TET}\text{-}ZCF15$ and $P_{TET}\text{-}ZCF26$
666 overexpression strains grown in biofilm conditions in the presence of doxycycline. ΔC_T
667 values were derived after normalizing the expression of genes of interest with that of *TEF3*,
668 and $\Delta\Delta C_T$ values were calculated for the relative expression of the indicated genes. Statistical
669 significance was determined using Holm-Sidak method by performing multiple *t*-tests.
670

671 **Figure 4 Binding of transcription factors Zcf15 and Zcf26 to the *C. albicans* genome.**
672 The DNA binding profile of Zcf15 and Zcf26 obtained by ChIP-sequencing was compared
673 with gene expression data obtained from strains overexpressing *ZCF15* or *ZCF26*. (**A**)
674 Network view for Zcf15 and Zcf26. Genes regulated and bound by Zcf15 (left), Zcf26 (right)
675 or both (middle) are indicated in yellow (upregulation) or blue (downregulation). The
676 interaction network was generated using Cytoscape [72].
677 Genes further analyzed in (**C**) are circle in red. (**B**) Binding of Zcf15 (middle lanes) and
678 Zcf26 (bottom lanes) at the promoter of *TYE7*, a transcription factor that regulates the
679 expression of genes of the glycolytic pathway. (**C**) ChIP assays were performed on wild-type
680 untagged, *N-TAP-ZCF15* and *N-TAP-ZCF26* strains. Immunoprecipitated (IP) DNA fractions
681 were analyzed by qPCR with primer pairs specific for *TYE7*, *IDP2*, *MDH1-3* and *OSM2*
682 promoter regions (see **S2 Table**); Zcf15 and Zcf26 unbound region of *ORF19.4690* was used
683 as a negative control. Quantitative RT-PCR was performed on untagged strain samples to
684 detect the background DNA elution in the ChIP assay. The enrichment of Zcf15 and Zcf26 to
685 the promoters of indicated genes is represented as a percent input immunoprecipitated with
686 standard error of mean (SEM). The values from three independent ChIP experiments were
687 plotted. Statistical significance was determined using Holm-Sidak method by performing

688 multiple *t*-test. **(D)** Genome-wide binding motifs of Zcf15 and Zcf26 were identified using
689 MEME-ChIP.

690

691 **Figure 5. Metabolic activities profile of transcription factors ZCF15 and ZCF26.**

692 Comparison of metabolic activities of parental reference strain and *ZCF15* and *ZCF26*
693 overexpression strains is shown as a heat-map. Metabolic activities were monitored at 30°C
694 for 96 h and were measured using the area under the curve (AUC). Metabolic activity in the
695 indicated growth conditions is represented on a scale from -1 (minimum growth, blue) to +1
696 (maximum growth, yellow).

697

698

699 **Acknowledgments**

700 This project was supported by a grant from the Fondation pour la Recherche Médicale (FRM,
701 DBF20160635719) to CdE. We thank J. Fonseca, E. Turc, L. Lemee and E. Kornobis from
702 the Biomics platform, C2R2, Institut Pasteur, Paris, France, supported by France Génomique
703 (ANR-10-INBS-09-09) and IBISA, and Virginie Passet for her help during operating the
704 Omnilog instrument. We also acknowledge the photonic bioimaging (UTechs PBI) facility of
705 Institut Pasteur, Paris. Work in the laboratory of CdE is supported by the Agence Nationale
706 de Recherche (ANR-10-LABX-62-IBEID).

707

708 **References**

709

- 710 1. Jacobsen ID, Niemiec MJ, Kapitan M, Polke M. Commensal to Pathogen Transition of *Candida*
711 *albicans*. Encyclopedia of Mycology. 2021; 507–525. doi:10.1016/b978-0-12-809633-8.21281-8
- 712 2. Fanning S, Mitchell AP. Fungal Biofilms. PLoS Pathog. 2012;8: e1002585.
713 doi:10.1371/journal.ppat.1002585
- 714 3. Mayer FL, Wilson D, Hube B. *Candida albicans* pathogenicity mechanisms. Virulence. 2013;4:
715 119–128. doi:10.4161/viru.22913
- 716 4. Hawser SP, Baillie GS, Douglas LJ. Production of extracellular matrix by *Candida albicans*
717 biofilms. J Med Microbiol. 1998;47: 253–256. doi:10.1099/00222615-47-3-253
- 718 5. Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms.
719 Clin Microbiol Rev. 2002;15: 167–93. doi:10.1128/cmrr.15.2.167-193.2002
- 720 6. Nobile CJ, Johnson AD. *Candida albicans* Biofilms and Human Disease. Annu Rev Microbiol.
721 2015;69: 71–92. doi:10.1146/annurev-micro-091014-104330

722 7. Baillie GS, Douglas LJ. Role of dimorphism in the development of *Candida albicans* biofilms. *J
723 Med Microbiol.* 1999;48: 671–679. doi:10.1099/00222615-48-7-671

724 8. Nicholls S, MacCallum DM, Kaffarnik FAR, Selway L, Peck SC, Brown AJP. Activation of the
725 heat shock transcription factor Hsfl is essential for the full virulence of the fungal pathogen *Candida*
726 *albicans*. *Fungal Genet Biol.* 2011;48: 297–305. doi:10.1016/j.fgb.2010.08.010

727 9. Tsui C, Kong EF, Jabra-Rizk MA. Pathogenesis of *Candida albicans* biofilm. *Pathog Dis.* 2016;74:
728 ftw018. doi:10.1093/femspd/ftw018

729 10. Bizerra FC, Nakamura CV, Poersch CD, Svidzinski TIE, Quesada RMB, Goldenberg S, et al.
730 Characteristics of biofilm formation by *Candida tropicalis* and antifungal resistance. *FEMS Yeast
731 Res.* 2008;8: 442–450. doi:10.1111/j.1567-1364.2007.00347.x

732 11. Holland LM, Schröder MS, Turner SA, Taff H, Andes D, Grózer Z, et al. Comparative Phenotypic
733 Analysis of the Major Fungal Pathogens *Candida parapsilosis* and *Candida albicans*. *PLoS Pathog.*
734 2014;10: e1004365. doi:10.1371/journal.ppat.1004365

735 12. Mancera E, Nocedal I, Hammel S, Gulati M, Mitchell KF, Andes DR, et al. Evolution of the
736 complex transcription network controlling biofilm formation in *Candida* species. *eLife.* 2021;10:
737 e64682. doi:10.7554/elife.64682

738 13. Nobile CJ, Fox EP, Nett JE, Sorrells TR, Mitrovich QM, Hernday AD, et al. A Recently Evolved
739 Transcriptional Network Controls Biofilm Development in *Candida albicans*. *Cell.* 2012;148: 126–
740 138. doi:10.1016/j.cell.2011.10.048

741 14. Ramage G, Walle KV, Wickes BL, López-Ribot JL. Biofilm formation by *Candida dubliniensis*. *J
742 Clin Microbiol.* 2001;39: 3234–40. doi:10.1128/jcm.39.9.3234-3240.2001

743 15. Bonhomme J, Chauvel M, Goyard S, Roux P, Rossignol T, d'Enfert C. Contribution of the
744 glycolytic flux and hypoxia adaptation to efficient biofilm formation by *Candida albicans*. *Mol
745 Microbiol.* 2011;80: 995–1013. doi:10.1111/j.1365-2958.2011.07626.x

746 16. Böttcher B, Driesch D, Krüger T, Garbe E, Gerwien F, Kniemeyer O, et al. Impaired amino acid
747 uptake leads to global metabolic imbalance of *Candida albicans* biofilms. *npj Biofilms Microbiomes.*
748 2022;8: 78. doi:10.1038/s41522-022-00341-9

749 17. Desai JV, Bruno VM, Ganguly S, Stamper RJ, Mitchell KF, Solis N, et al. Regulatory Role of
750 Glycerol in *Candida albicans* Biofilm Formation. *mBio.* 2013;4: e00637-12.
751 doi:10.1128/mbio.00637-12

752 18. Fox EP, Bui CK, Nett JE, Hartooni N, Mui MC, Andes DR, et al. An expanded regulatory
753 network temporally controls *Candida albicans* biofilm formation. *Mol Microbiol.* 2015;96: 1226–
754 1239. doi:10.1111/mmi.13002

755 19. García-Sánchez S, Aubert S, Iraqui I, Janbon G, Ghigo J-M, d'Enfert C. *Candida albicans*
756 Biofilms: a Developmental State Associated With Specific and Stable Gene Expression Patterns.
757 *Eukaryot Cell.* 2004;3: 536–545. doi:10.1128/ec.3.2.536-545.2004

758 20. Rai LS, Chauvel M, Permal E, d'Enfert C, Bachellier-Bassi S. Transcript profiling reveals the role
759 of PDB1, a subunit of the pyruvate dehydrogenase complex, in *Candida albicans* biofilm formation.
760 *Res Microbiol.* 2023;174: 104014. doi:10.1016/j.resmic.2022.104014

761 21. Zhu Z, Wang H, Shang Q, Jiang Y, Cao Y, Chai Y. Time Course Analysis of *Candida albicans*
762 Metabolites during Biofilm Development. *J Proteome Res.* 2013;12: 2375–2385.
763 doi:10.1021/pr300447k

764 22. Nobile CJ, Mitchell AP. Regulation of Cell-Surface Genes and Biofilm Formation by the *C.*
765 *albicans* Transcription Factor Bcr1p. *Curr Biol.* 2005;15: 1150–1155. doi:10.1016/j.cub.2005.05.047

766 23. Lohse MB, Gulati M, Johnson AD, Nobile CJ. Development and regulation of single- and multi-
767 species *Candida albicans* biofilms. *Nat Rev Microbiol.* 2018;16: 19. doi:10.1038/nrmicro.2017.107

768 24. Kakade P, Mahadik K, Balaji KN, Sanyal K, Nagaraja V. Two negative regulators of biofilm
769 development exhibit functional divergence in conferring virulence potential to *Candida albicans*.
770 *FEMS Yeast Res.* 2019. doi:10.1093/femsyr/foy078

771 25. Uppuluri P, Pierce CG, Thomas DP, Bubeck SS, Saville SP, Lopez-Ribot JL. The Transcriptional
772 Regulator Nrg1p Controls *Candida albicans* Biofilm Formation and Dispersion. *Eukaryot Cell.*
773 2010;9: 1531–1537. doi:10.1128/ec.00111-10

774 26. Chauvel M, Nesseir A, Cabral V, Znaidi S, Goyard S, Bachellier-Bassi S, et al. A Versatile
775 Overexpression Strategy in the Pathogenic Yeast *Candida albicans*: Identification of Regulators of
776 Morphogenesis and Fitness. *PLoS One.* 2012;7: e45912. doi:10.1371/journal.pone.0045912

777 27. Chauvel M, Bachellier-Bassi S, Guérout A-M, Lee KK, Maufras C, Permal E, et al. High-
778 throughput functional profiling of the human fungal pathogen *Candida albicans* genome. *Res*
779 *Microbiol.* 2023;174: 104025. doi:10.1016/j.resmic.2022.104025

780 28. Legrand M, Bachellier-Bassi S, Lee KK, Chaudhari Y, Tournu H, Arbogast L, et al. Generating
781 genomic platforms to study *Candida albicans* pathogenesis. *Nucleic Acids Res.* 2018;46: 6935–6949.
782 doi:10.1093/nar/gky594

783 29. Prelich G. Gene Overexpression: Uses, Mechanisms, and Interpretation. *Genetics.* 2012;190: 841–
784 854. doi:10.1534/genetics.111.136911

785 30. Rai LS, Wijlick L, Chauvel M, d'Enfert C, Legrand M, Bachellier-Bassi S. Overexpression
786 approaches to advance understanding of *Candida albicans*. *Mol Microbiol.* 2021.
787 doi:10.1111/mmi.14818

788 31. Lohse MB, Gulati M, Arevalo AV, Fishburn A, Johnson AD, Nobile CJ. Assessment and
789 Optimizations of *Candida albicans* *In Vitro* Biofilm Assays. *Antimicrob Agents Chemother.* 2017;61:
790 e02749-16. doi:10.1128/aac.02749-16

791 32. Biswas K, Rieger K-J, Morschhäuser J. Functional characterization of *CaCBF1*, the *Candida*
792 *albicans* homolog of centromere binding factor 1. *Gene.* 2003;323: 43–55.
793 doi:10.1016/j.gene.2003.09.005

794 33. Finn RD, Clements J, Arndt W, Miller BL, Wheeler TJ, Schreiber F, et al. HMMER web server:
795 2015 update. *Nucleic Acids Res.* 2015;43: W30–W38. doi:10.1093/nar/gkv397

796 34. Böhm L, Torsin S, Tint SH, Eckstein MT, Ludwig T, Pérez JC. The yeast form of the fungus
797 *Candida albicans* promotes persistence in the gut of gnotobiotic mice. *PLoS Pathog.* 2017;13:
798 e1006699. doi:10.1371/journal.ppat.1006699

799 35. Reuter-Weissenberger P, Meir J, Pérez JC. A Fungal Transcription Regulator of Vacuolar
800 Function Modulates *Candida albicans* Interactions with Host Epithelial Cells. *mBio*. 2021;12:
801 e03020-21. doi:10.1128/mbio.03020-21

802 36. Issi L, Farrer RA, Pastor K, Landry B, Delorey T, Bell GW, et al. Zinc Cluster Transcription
803 Factors Alter Virulence in *Candida albicans*. *Genetics*. 2017;205: 559–576.
804 doi:10.1534/genetics.116.195024

805 37. Andes D, Nett J, Oschel P, Albrecht R, Marchillo K, Pitula A. Development and Characterization
806 of an In Vivo Central Venous Catheter *Candida albicans* Biofilm Model. *Infect Immun*. 2004;72:
807 6023–6031. doi:10.1128/iai.72.10.6023-6031.2004

808 38. Priebe S, Kreisel C, Horn F, Guthke R, Linde J. FungiFun2: a comprehensive online resource for
809 systematic analysis of gene lists from fungal species. *Bioinformatics*. 2015;31: 445–446.
810 doi:10.1093/bioinformatics/btu627

811 39. Machanick P, Bailey TL. MEME-ChIP: motif analysis of large DNA datasets. *Bioinformatics*.
812 2011;27: 1696–1697. doi:10.1093/bioinformatics/btr189

813 40. Bochner BR, Gadzinski P, Panomitros E. Phenotype MicroArrays for High-Throughput
814 Phenotypic Testing and Assay of Gene Function. *Genome Res*. 2001;11: 1246–1255.
815 doi:10.1101/gr.186501

816 41. Ene IV, Lohse MB, Vladu AV, Morschhäuser J, Johnson AD, Bennett RJ. Phenotypic Profiling
817 Reveals that *Candida albicans* Opaque Cells Represent a Metabolically Specialized Cell State
818 Compared to Default White Cells. *mBio*. 2016;7: e01269-16. doi:10.1128/mbio.01269-16

819 42. Rajendran R, May A, Sherry L, Kean R, Williams C, Jones BL, et al. Integrating *Candida*
820 *albicans* metabolism with biofilm heterogeneity by transcriptome mapping. *Sci Rep-uk*. 2016;6:
821 35436. doi:10.1038/srep35436

822 43. Lynch AS, Robertson GT. Bacterial and Fungal Biofilm Infections. *Annu Rev Med*. 2008;59:
823 415–428. doi:10.1146/annurev.med.59.110106.132000

824 44. Lu H, Que Y, Wu X, Guan T, Guo H. Metabolomics Deciphered Metabolic Reprogramming
825 Required for Biofilm Formation. *Sci Rep*. 2019;9: 13160. doi:10.1038/s41598-019-49603-1

826 45. Malviya J, Alameri AA, Al-Janabi SS, Fawzi OF, Azzawi AL, Obaid RF, et al. Metabolomic
827 profiling of bacterial biofilm: trends, challenges, and an emerging antibiofilm target. *World J*
828 *Microbiol Biotechnol*. 2023;39: 212. doi:10.1007/s11274-023-03651-y

829 46. Delaney C, Short B, Rajendran R, Kean R, Burgess K, Williams C, et al. An integrated
830 transcriptomic and metabolomic approach to investigate the heterogeneous *Candida albicans* biofilm
831 phenotype. *Biofilm*. 2023;5: 100112. doi:10.1016/j.bioflm.2023.100112

832 47. Ramage G, VandeWalle K, López-Ribot JL, Wickes BL. The filamentation pathway controlled by
833 the Efg1 regulator protein is required for normal biofilm formation and development in *Candida*
834 *albicans*. *FEMS Microbiol Lett*. 2002;214: 95–100. doi:10.1111/j.1574-6968.2002.tb11330.x

835 48. Desai JV, Mitchell AP. *Candida albicans* Biofilm Development and Its Genetic Control.
836 *Microbiol Spectr*. 2015;3: 10.1128/microbiolspec.MB-0005-2014. doi:10.1128/microbiolspec.mb-
837 0005-2014

838 49. Banerjee M, Uppuluri P, Zhao XR, Carlisle PL, Vipulanandan G, Villar CC, et al. Expression of
839 *UME6*, a Key Regulator of *Candida albicans* Hyphal Development, Enhances Biofilm Formation via
840 Hgc1- and Sun41-Dependent Mechanisms. *Eukaryot Cell*. 2013;12: 224–232. doi:10.1128/ec.00163-
841 12

842 50. Pisithkul T, Schroeder JW, Trujillo EA, Yeesin P, Stevenson DM, Chaiamarit T, et al. Metabolic
843 Remodeling during Biofilm Development of *Bacillus subtilis*. *mBio*. 2019;10: e00623-19.
844 doi:10.1128/mbio.00623-19

845 51. Carman AJ, Vylkova S, Lorenz MC. Role of Acetyl Coenzyme A Synthesis and Breakdown in
846 Alternative Carbon Source Utilization in *Candida albicans*. *Eukaryot Cell*. 2008;7: 1733–1741.
847 doi:10.1128/ec.00253-08

848 52. Finkel JS, Xu W, Huang D, Hill EM, Desai JV, Woolford CA, et al. Portrait of *Candida albicans*
849 Adherence Regulators. *PLoS Pathog*. 2012;8: e1002525. doi:10.1371/journal.ppat.1002525

850 53. Nobile CJ, Nett JE, Hernday AD, Homann OR, Deneault J-S, Nantel A, et al. Biofilm Matrix
851 Regulation by *Candida albicans* Zap1. *PLoS Biol*. 2009;7: e1000133.
852 doi:10.1371/journal.pbio.1000133

853 54. Srikantha T, Daniels KJ, Pujol C, Kim E, Soll DR. Identification of Genes Upregulated by the
854 Transcription Factor Bcr1 That Are Involved in Impermeability, Impenetrability, and Drug Resistance
855 of *Candida albicans* a/ α Biofilms. *Eukaryot Cell*. 2013;12: 875–888. doi:10.1128/ec.00071-13

856 55. Rai LS, Singha R, Sanchez H, Chakraborty T, Chand B, Bachellier-Bassi S, et al. The *Candida*
857 *albicans* biofilm gene circuit modulated at the chromatin level by a recent molecular histone
858 innovation. *PLoS Biol*. 2019;17: e3000422. doi:10.1371/journal.pbio.3000422

859 56. Cokelaer T, Desvillechabrol D, Legendre R, Cardon M. “Sequana”: a Set of Snakemake NGS
860 pipelines. *J Open Source Softw*. 2017;2: 352. doi:10.21105/joss.00352

861 57. Köster J, Rahmann S. Snakemake—a scalable bioinformatics workflow engine. *Bioinformatics*.
862 2012;28: 2520–2522. doi:10.1093/bioinformatics/bts480

863 58. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. *EMBnet*
864 *J*. 2011;17: 10–12. doi:10.14806/ej.17.1.200

865 59. Skrzypek MS, Binkley J, Binkley G, Miyasato SR, Simison M, Sherlock G. The *Candida* Genome
866 Database (CGD): incorporation of Assembly 22, systematic identifiers and visualization of high
867 throughput sequencing data. *Nucleic Acids Res*. 2017;45: D592–D596. doi:10.1093/nar/gkw924

868 60. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal
869 RNA-seq aligner. *Bioinformatics*. 2013;29: 15–21. doi:10.1093/bioinformatics/bts635

870 61. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning
871 sequence reads to genomic features. *Bioinformatics*. 2014;30: 923–930.
872 doi:10.1093/bioinformatics/btt656

873 62. Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple
874 tools and samples in a single report. *Bioinformatics*. 2016;32: 3047–3048.
875 doi:10.1093/bioinformatics/btw354

876 63. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq
877 data with DESeq2. *Genome Biol.* 2014;15: 550. doi:10.1186/s13059-014-0550-8

878 64. Varet H, Brillet-Guéguel L, Coppée J-Y, Dillies M-A. SARTools: A DESeq2- and EdgeR-Based
879 R Pipeline for Comprehensive Differential Analysis of RNA-Seq Data. *Plos One.* 2016;11: e0157022.
880 doi:10.1371/journal.pone.0157022

881 65. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. *Nat
882 Protoc.* 2008;3: 1101–1108. doi:10.1038/nprot.2008.73

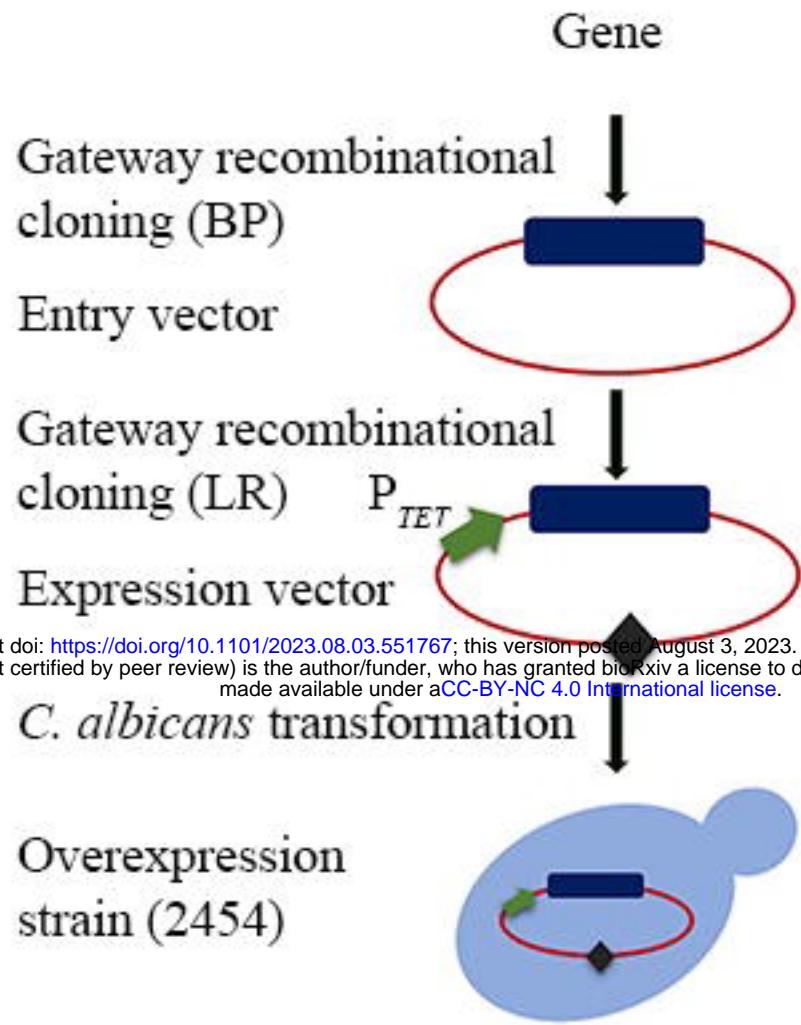
883 66. Dalal CK, Zuleta IA, Mitchell KF, Andes DR, El-Samad H, Johnson AD. Transcriptional rewiring
884 over evolutionary timescales changes quantitative and qualitative properties of gene expression. *eLife.*
885 2016;5: e18981. doi:10.7554/elife.18981

886 67. Nobile CJ, Nett JE, Andes DR, Mitchell AP. Function of *Candida albicans* Adhesin Hwp1 in
887 Biofilm Formation. *Eukaryot Cell.* 2006;5: 1604–1610. doi:10.1128/ec.00194-06

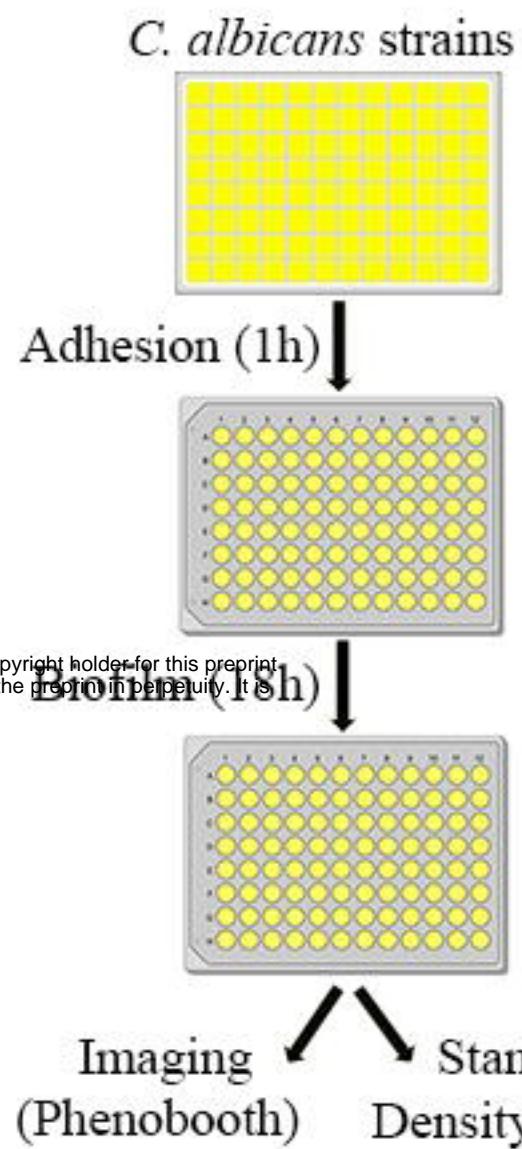
888 68. Mitra S, Rai LS, Chatterjee G, Sanyal K. Chromatin Immunoprecipitation (ChIP) Assay
889 in *Candida albicans*. In: (eds.) RC and RC, editors. Springer; 2016. doi:10.1007/978-1-4939-3052-
890 4_4

891 69. Mukhopadhyay A, Deplancke B, Walhout AJM, Tissenbaum HA. Chromatin
892 immunoprecipitation (ChIP) coupled to detection by quantitative real-time PCR to study transcription
893 factor binding to DNA in *Caenorhabditis elegans*. *Nat Protoc.* 2008;3: 698–709.
894 doi:10.1038/nprot.2008.38

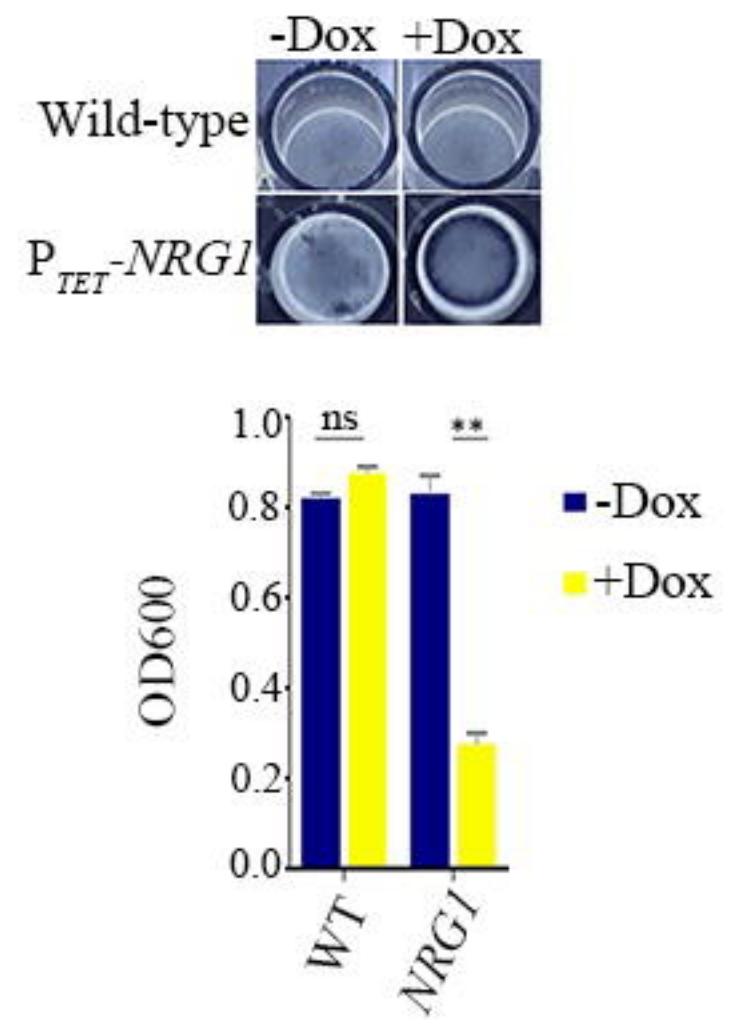
895 70. Landt SG, Marinov GK, Kundaje A, Kheradpour P, Pauli F, Batzoglou S, et al. ChIP-seq
896 guidelines and practices of the ENCODE and modENCODE consortia. *Genome Res.* 2012;22: 1813–
897 1831. doi:10.1101/gr.136184.111

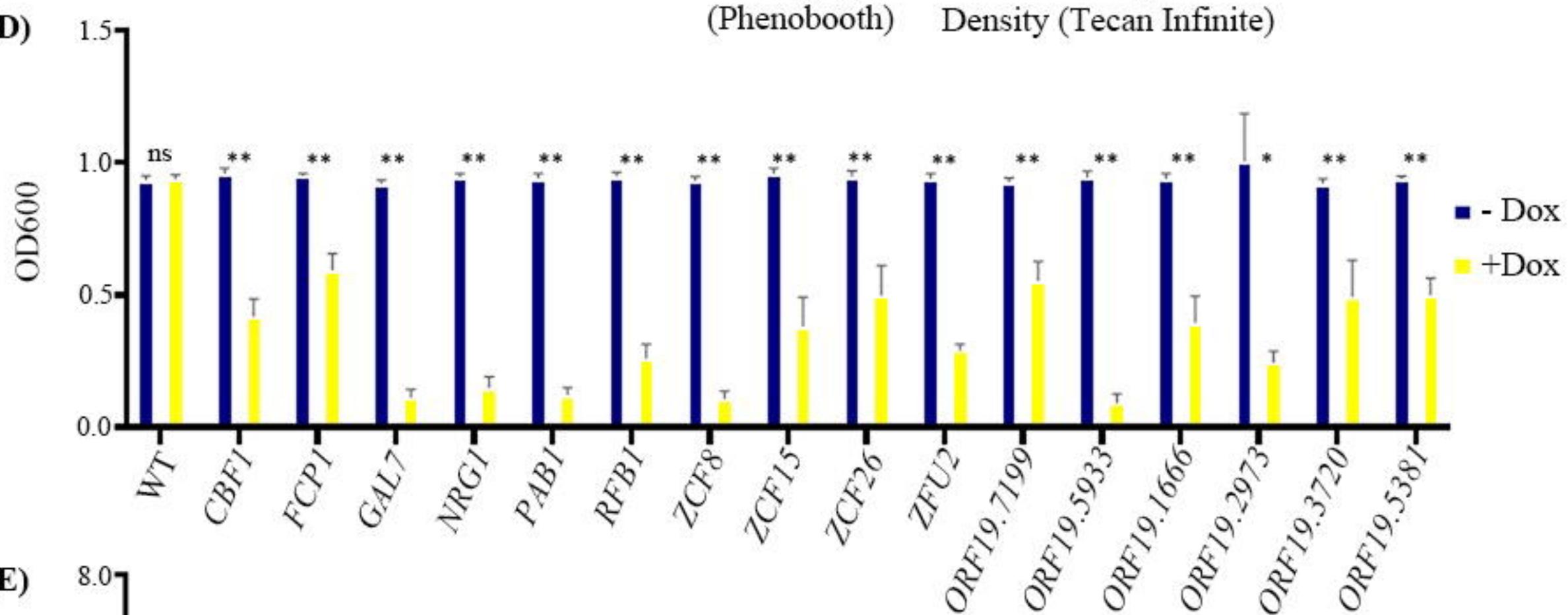

898 71. Li Q, Brown JB, Huang H, Bickel PJ. Measuring reproducibility of high-throughput experiments.
899 *Ann Appl Stat.* 2011;5: 1752–1779. doi:10.1214/11-aoas466

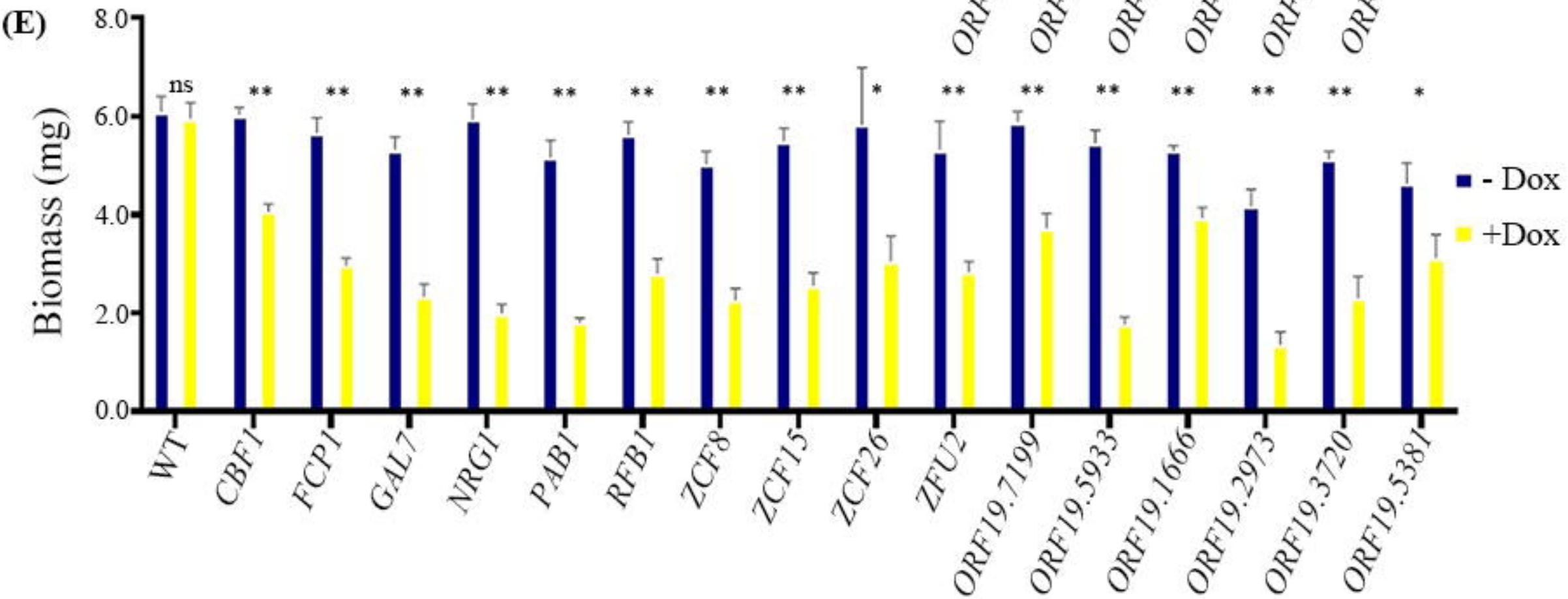
900 72. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: A Software
901 Environment for Integrated Models of Biomolecular Interaction Networks. *Genome Res.* 2003;13:
902 2498–2504. doi:10.1101/gr.1239303

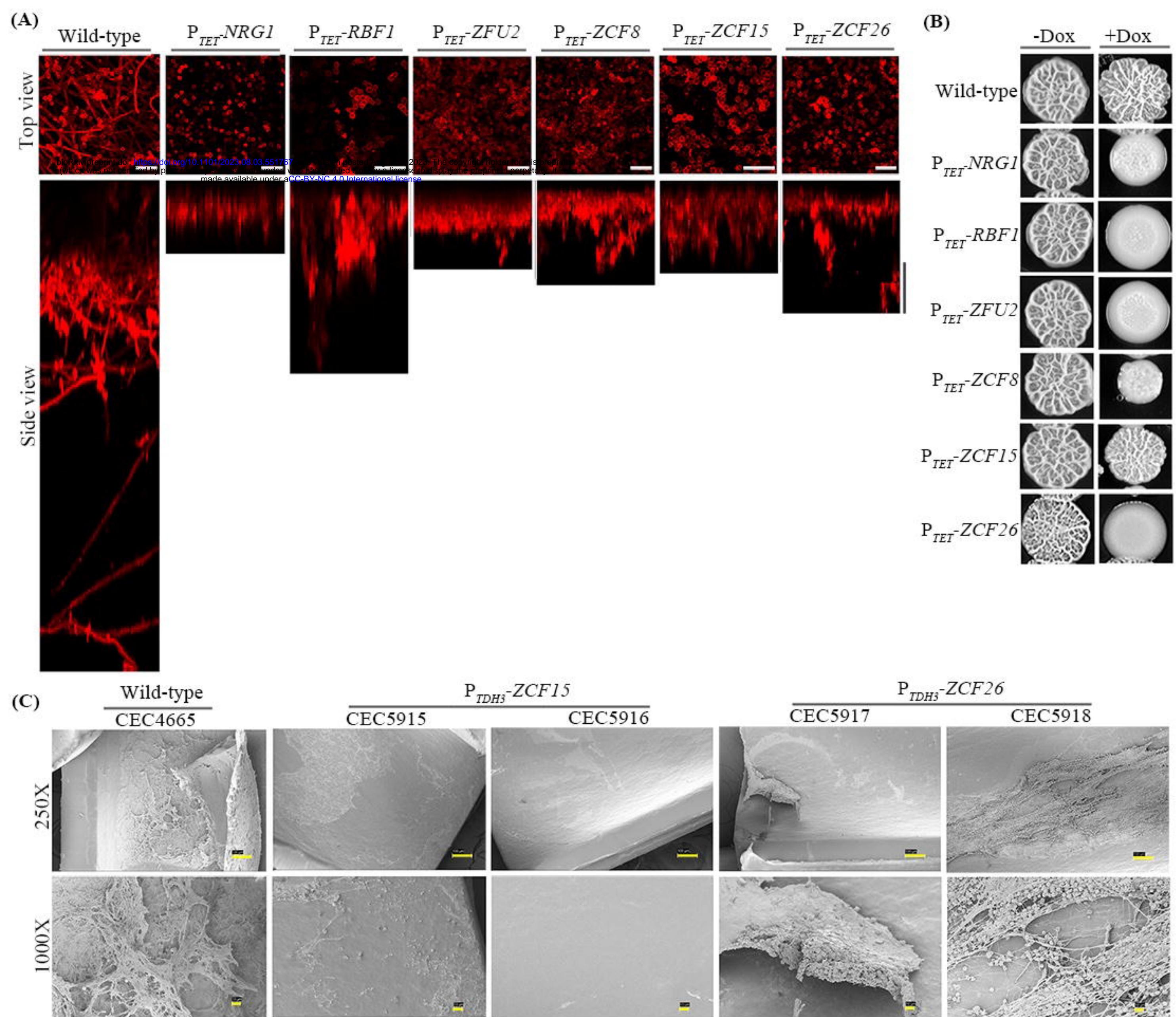

903 73 Babicki S, Arndt D, Marcu A, Liang Y, Grant JR, Maciejewski A, et al. Heatmapper: web-enabled
904 heat mapping for all. *Nucleic Acids Res.* 2016;44: W147–W153. doi:10.1093/nar/gkw419

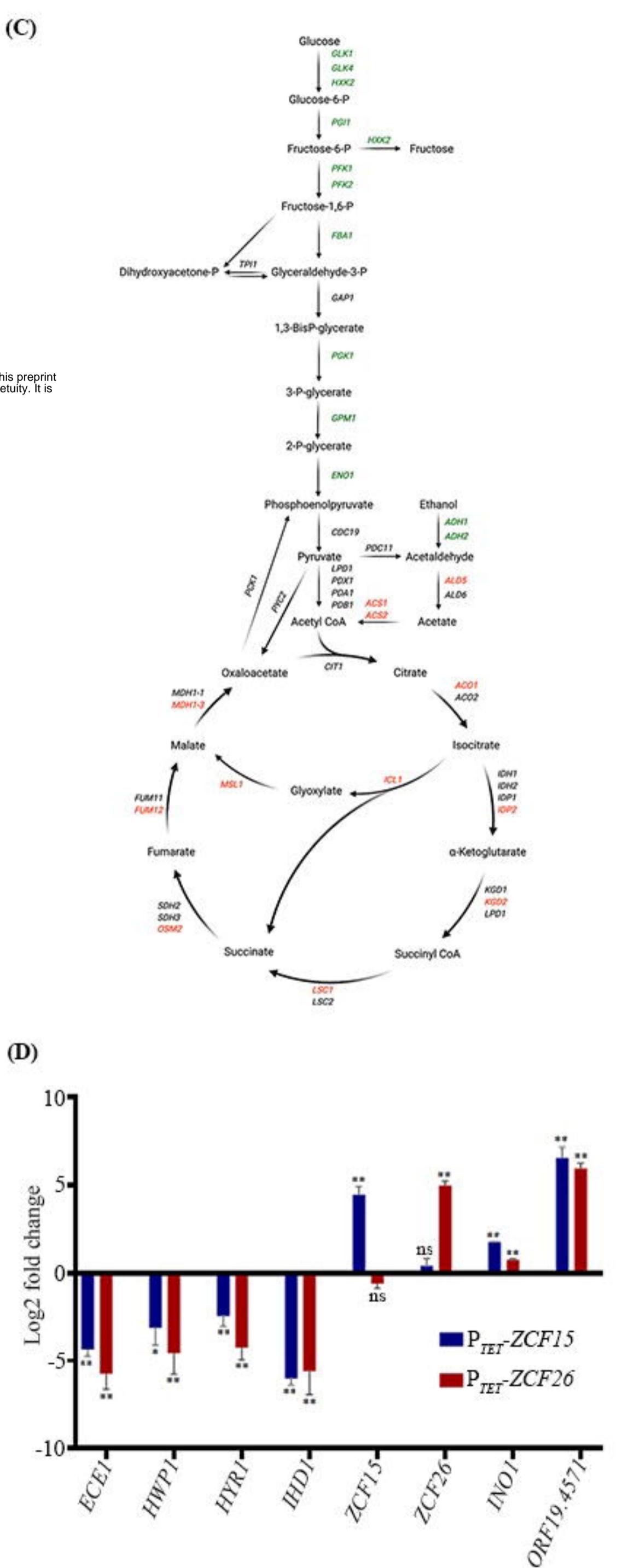
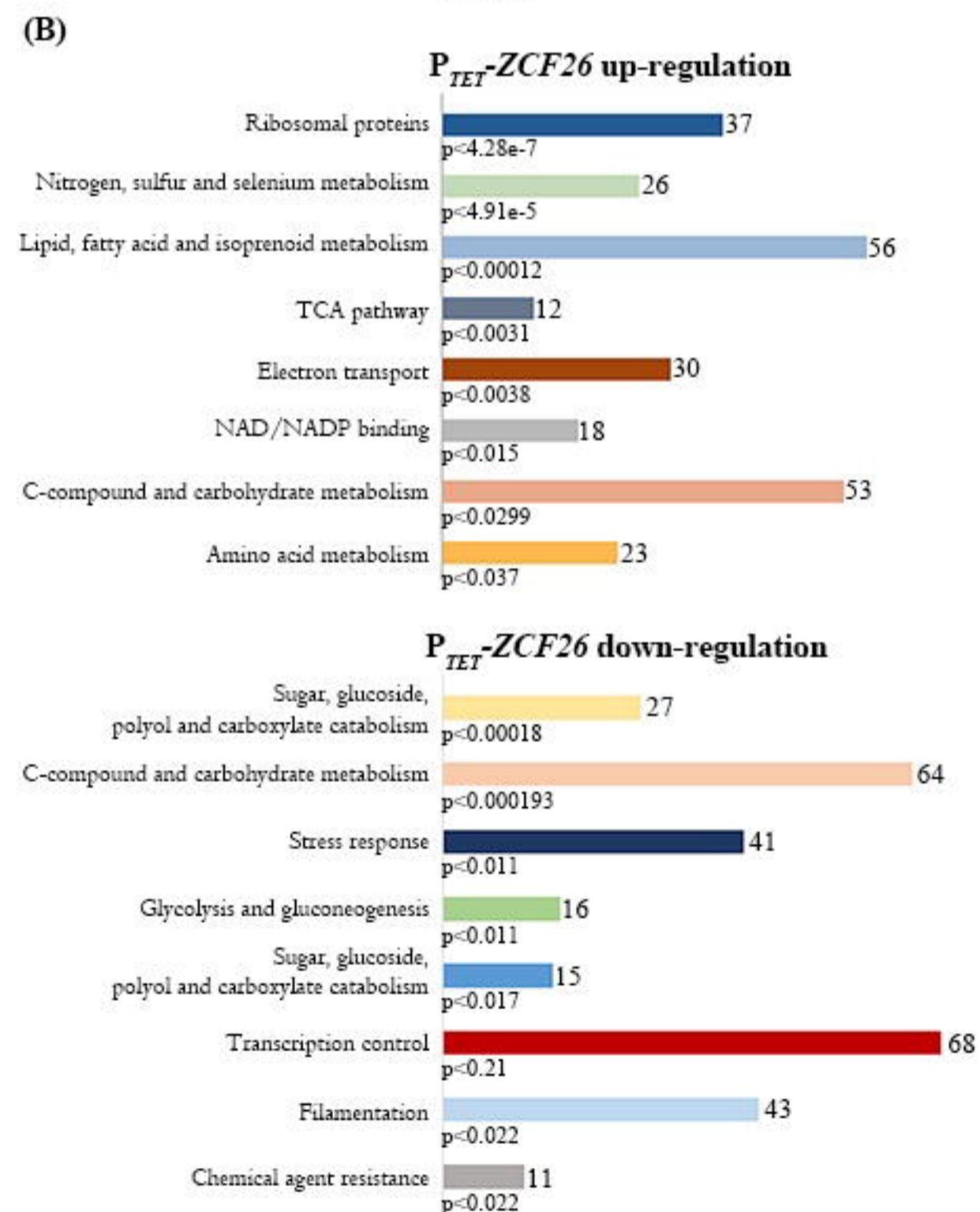
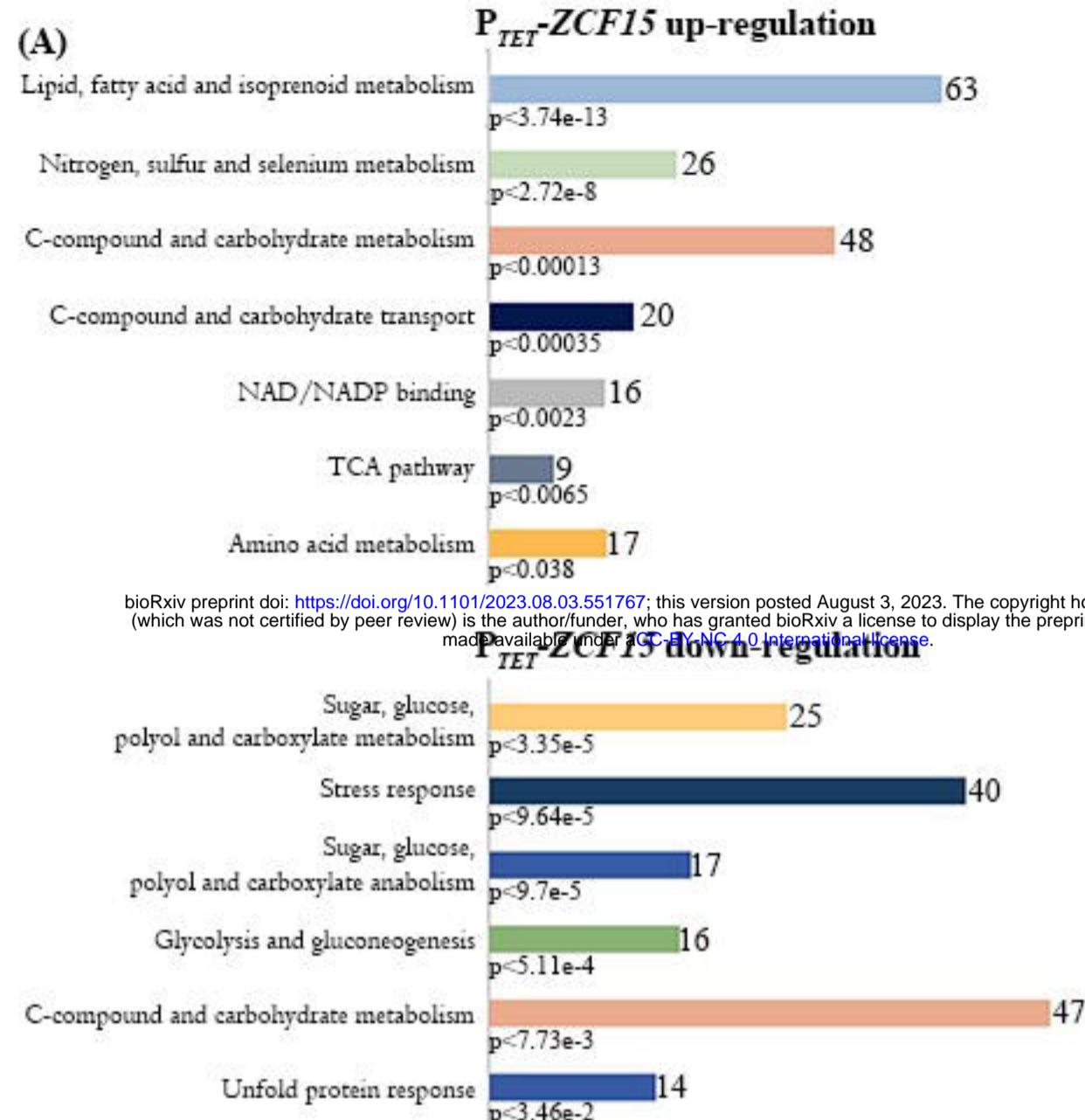
905 74. Holm S. A simple sequentially rejective multiple test procedure. *Scand J Statist.* 1979;6: 65–70.
906 Available: <http://www.jstor.org/stable/4615733>.

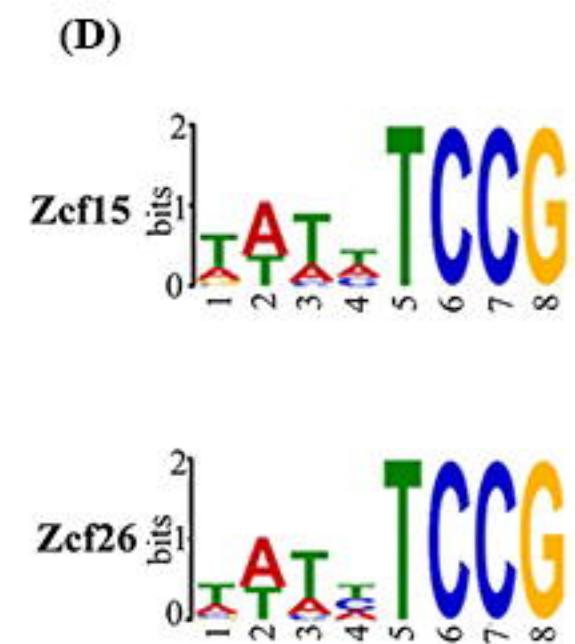
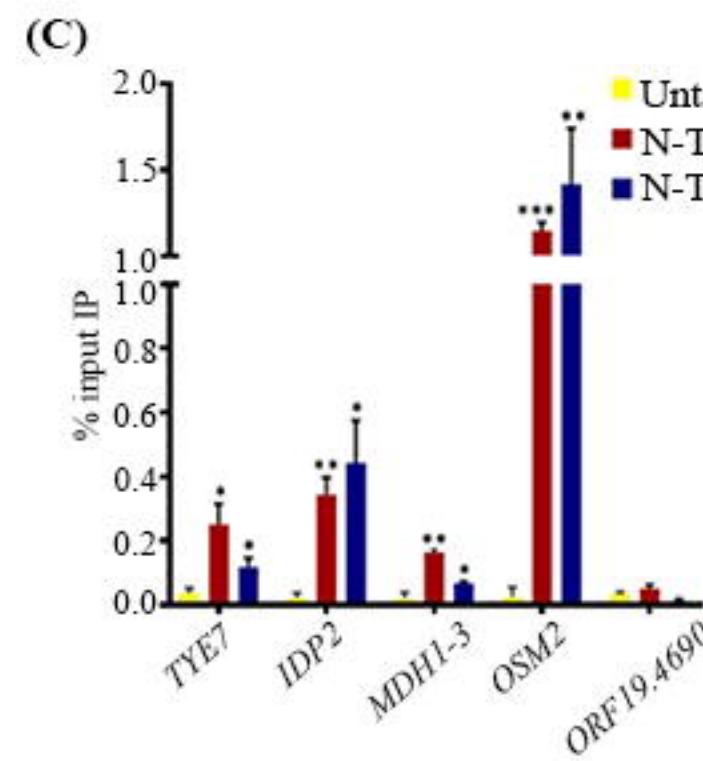
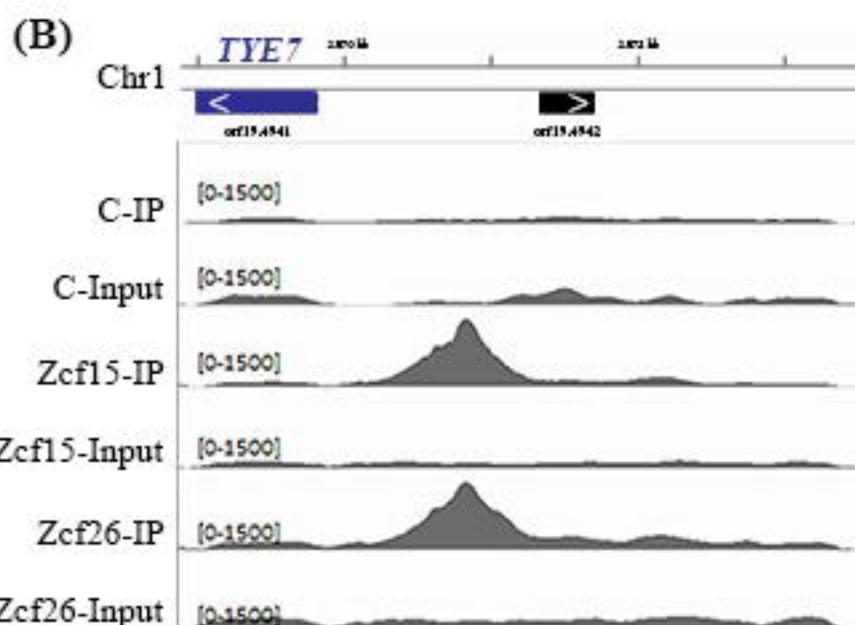
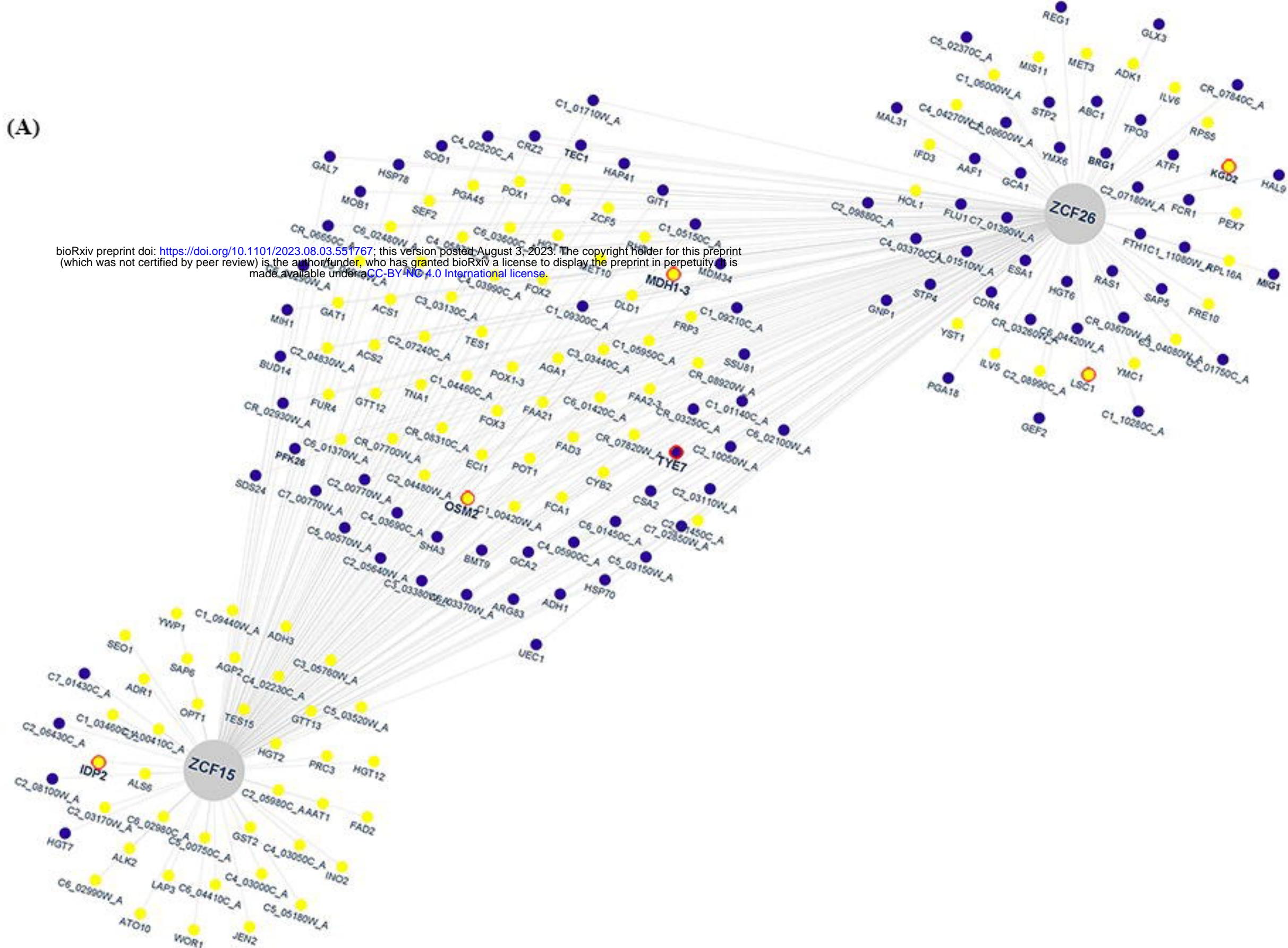

(A)

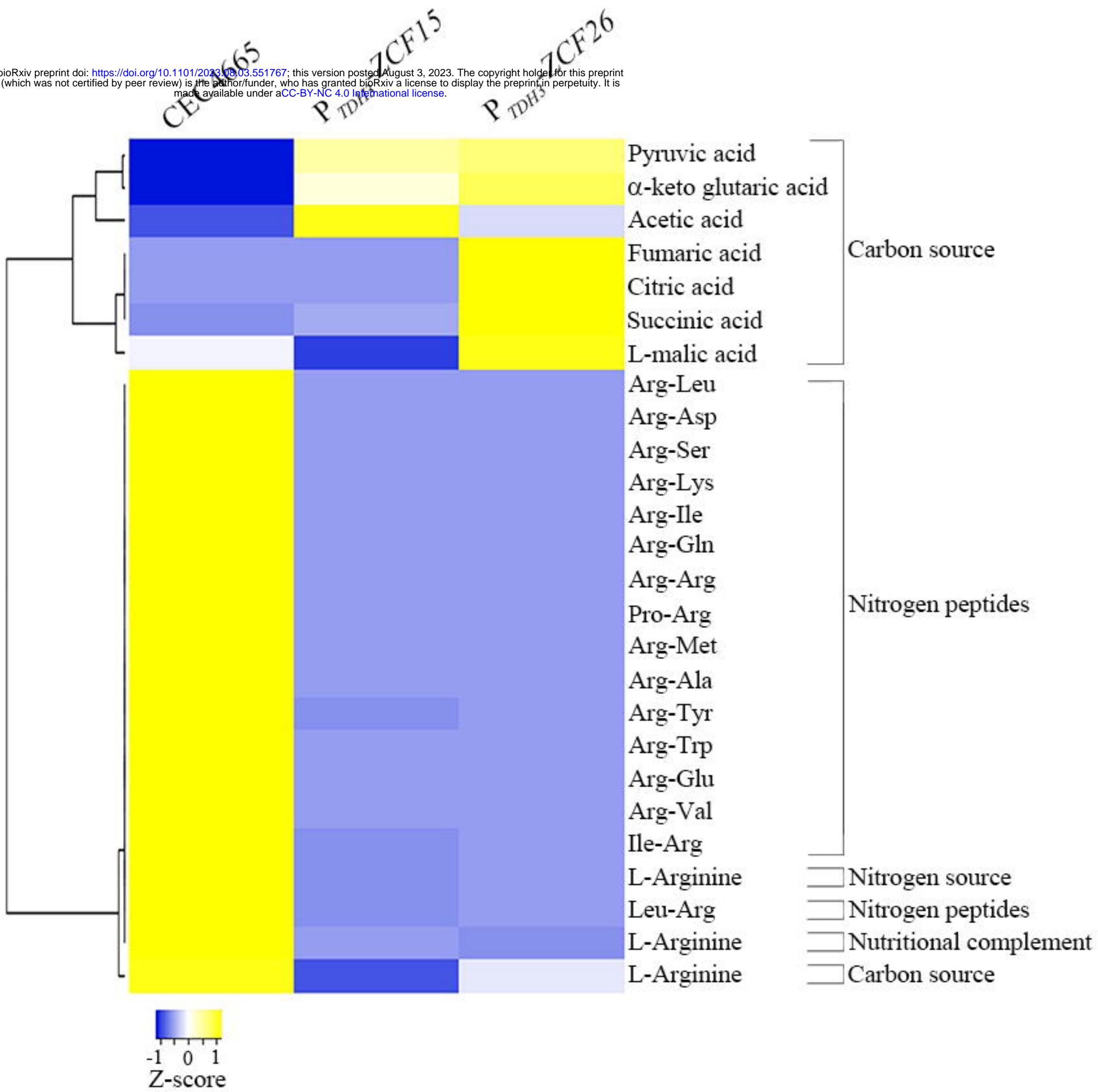

(B)


(C)






(D)


(E)

