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Abstract

The proliferation of single-cell RNA sequencing data has led to the widespread use
of cellular deconvolution, aiding the extraction of cell type-specific information from
extensive bulk data. However, those advances have been mostly limited to transcriptomic
data. With recent development in single-cell DNA methylation (scDNAm), new avenues
have been opened for deconvolving bulk DNAm data, particularly for solid tissues
like the brain that lack cell-type references. Due to technical limitations, current
scDNAm sequences represent a small proportion of the whole genome for each single
cell, and those detected regions differ across cells. This makes scDNAm data ultra-
high dimensional and ultra-sparse. To deal with these challenges, we introduce scMD
(single cell Methylation Deconvolution), a cellular deconvolution framework to reliably
estimate cell type fractions from tissue-level DNAm data. To analyze large-scale
complex scDNAm data, scMD employs a statistical approach to aggregate scDNAm
data at the cell cluster level, identify cell-type marker DNAm sites, and create a precise
cell-type signature matrix that surpasses state-of-the-art sorted-cell or RNA-derived
references. Through thorough benchmarking in several datasets, we demonstrate scMD’s
superior performance in estimating cellular fractions from bulk DNAm data. With
scMD-estimated cellular fractions, we identify cell type fractions and cell type-specific
differentially methylated cytosines associated with Alzheimer’s disease.
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Background
Tissue-level quantification of omics has gained popularity in the last decades because of
its mature technology and affordable cost. Numerous studies on tissue-level omics, such
as gene expression and DNA methylation (DNAm), provide rich resources to help answer
interesting biological questions. However, bulk omics data are generated from a mixture of
cells, meaning tissue-level analyses are often confounded by cellular heterogeneity, and cell
type-specific (CTS) signals are obscured. While labor-intensive technologies such as flow
cytometry and immunohistochemistry (IHC) can help measure cell type compositions, they
are costly and more challenging for solid tissues1. As a cost-efficient alternative, in silico
cellular deconvolution methods have been developed to recover the cell type composition of
bulk omics data, allowing us to adjust for confounding cellular heterogeneity and infer CTS
associations from bulk data2,3,4.

Recent advances in single-cell technology have fueled numerous studies, leveraging high
throughput single-cell RNA sequencing (scRNA-seq) as a reference to estimate cellular frac-
tions in bulk RNA-seq data5,6. However, this progress in scRNA-seq stands in stark contrast
to single-cell DNA methylation (scDNAm), which remains less studied. As a consequence,
DNAm-based cell proportion estimates are often imprecise and can only be obtained for
coarse cell types compared to RNA-based deconvolution. For example, deconvolving brain
DNAm has been predominantly restricted to references derived from two cell types: neurons
and non-neurons7.

Recently, EpiSCORE8 was proposed to deconvolve brain DNAm into six cell types. It
employs scRNA-seq data to create a proxy signature for DNAm at the gene level. Specifically,
EpiSCORE uses a scRNA-seq-derived reference to impute the DNAm at the promoter regions
of marker genes and runs deconvolution based on these imputed signatures. However, not all
CpGs in the promoter region are CTS, and EpiSCORE’s imputation function mapping marker
gene counts to promoter DNAm is not CTS. These compromise the cell type-specificity and
accuracy of their DNAm signature, which are critical for the fidelity of deconvolution9.

Fortunately, scDNAm has been emerging in the last few years, especially for the brain10,11,12,13.
The data exhibits strong cell type specificity, offering the potential to deconvolve tissue-
level DNAm data. However, due to technical limitations, these methods usually detect
only a small fraction of the genome in each single cell (∼5% of all CpG sites), and the
regions being detected could be highly variable between cells. Consequentially, the data is
ultrahigh-dimensional and sparse, presenting considerable computational challenges.

To address these issues, we developed scMD (single cell Methylation Deconvolution),
which uses scDNAm data to generate a high-quality DNAm reference and deconvolve bulk
DNAm data. scMD leverages the strong cell type-specificity exhibited by scDNAm markers
to perform high-resolution and accurate cellular deconvolution. Critically, scMD addresses
the statistical and methodological hurdles that accompany scDNAm data, including its
ultrahigh-dimensionality and sparsity, to identify cell-type marker CpGs and construct a
signature that is amenable to bulk DNAm data. We use six real bulk DNAm datasets to
illustrate scMD’s superior performance over existing methods, where we show its ability to
better estimate cellular fractions and infer Alzheimer’s disease-related cell types. With scMD,
we can complement bulk DNAm analyses with estimated cellular fractions to deconfound
tissue-level analyses and enable CTS analyses.
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Results

Overview of scMD
Here we provide an overview of scMD, which uses scDNAm data to construct a DNAm
signature amenable to bulk data and perform deconvolution (Fig. 1). The most challenging
aspect of scDNAm is its high dimensionality and sparsity, which arises because only a
small fraction (∼ 5%) of the roughly 53 million DNAm sites are measured in each cell
(Supplementary Table S1). The set of measured sites is cell-specific, meaning cell-type marker
selection and signature matrix generation tools that require fully observed data, like those
traditionally employed in scRNA-seq data14,15, are not applicable in scDNAm. To address
this, we subset sites observed in bulk data, e.g., CpGs on Illumina’s 450k and EPIC arrays
or in whole genome bisulfite sequencing (WGBS), and aggregate them across cells of the
same type to obtain a much smaller and more computationally tractable cell cluster-level
dataset. With methylated and unmethylated read counts, we then use Fisher’s exact test
to identify cell-type marker CpGs from cluster-level scDNAm data (Methods). This results
in CTS p-values that compare one cell type with all other cell types. We finally define our
signature matrix to be the beta values of marker sites in each cell type.

In contrast to existing DNAm-based deconvolution approaches that segregate brain tissue
into coarse cell types (neurons and non-neurons)7 or use RNA-derived signatures16, our
method takes advantage of recent advancements in brain scDNAm resources11,13 to construct
the first brain scDNAm signature matrices encompassing seven distinct cell types: astrocytes,
endothelial cells, excitatory neurons, inhibitory neurons, microglia, oligodendrocytes, and
oligodendrocyte progenitor cells (OPC) (Fig. 1). After constructing the DNAm signature
matched with the target bulk DNAm data, we utilize our previously developed robust
and accurate ensemble cellular deconvolution method, EnsDeconv9, to integrate different
scDNAm references, data transformations, and deconvolution algorithms. We explore all
suitable combinations of these factors and utilize CTS robust regression to obtain the optimal
ensemble of cellular fractions.

Validating scMD using sorted-cell data
We assessed the accuracy of scMD in deconvolution using three different sorted-cell datasets
derived from various DNAm platforms. This evaluation allowed us to understand scMD’s
performance across multiple technologies and gauge its proficiency in accurately deconvolving
different purified-cell samples. We first tested scMD with the dataset from Mendizabal et al.17,
which quantified WGBS DNAm from sorted neurons (NeuN+) samples and OLIG2+ samples
that indicate oligodendrocytes and OPC. We then utilized the datasets from Guintivano
et al.18 and Gasparoni et al.19, both containing sorted-cell DNAm samples from NeuN+
and non-neurons (NeuN-). All samples from the three datasets have definitive fractions of
non-neurons, neurons, or the sum of oligodendrocytes and OPC. These datasets provided
an opportunity to accurately measure scMD’s performance in identifying and distinguishing
between various major brain cell types. Further details about the validation datasets and the
approaches employed for evaluating the performance of scMD are outlined in the Methods
section and Supplementary Table S2.
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We carried out a comparative analysis of scMD with EpiSCORE16. Tested on the
Mendizabal dataset17, scMD almost perfectly fits the data, accurately deconvolving the
neuron and oligodendrocyte samples (Fig. 2a). Compared to EpiSCORE, which has difficulty
differentiating OLIG2+ and other cell types, our proposed method excelled in effectively
identifying sorted-cell samples as their corresponding cell types. This suggests that scMD
can effectively harness signals from the originally sparse scDNAm data. We also evaluated its
accuracy in deconvolving 450k array-based samples available from Guintivano et al.18 (Fig.
2b) and Gasparoni et al.19 (Fig. 2c), which underscore scMD’s ability to accurately deconvolve
both NeuN+ and NeuN- samples, thereby demonstrating its versatility and efficiency in brain
cell deconvolution.

scMD accurately estimates cellular fractions in cerebral cortex
To gain deeper insights into the performance of scMD, we conducted a comprehensive
comparison of scMD with various other deconvolution methods using real bulk data with
IHC-measured cell counts of four cell types from cerebral cortex samples that were part of
the Religious Orders Study (ROS)20. We also used our signatures as input into existing
deconvolution methods to demonstrate the importance of our novel signature matrices and
illustrate the fidelity of EnsDeconv when applied to DNAm.

On average, scMD significantly outperforms EpiSCORE (Fig. 3a). Especially EpiSCORE
exhibits a low correlation with the measured fractions of microglia and astrocytes. This
is because EpiSCORE consistently estimates microglia fractions to be zero and tends to
overestimate astrocyte fractions (Fig. 3b). In contrast, the fractions estimated by scMD
and those measured through IHC are consistent, especially for astrocytes and microglia (Fig.
3c). This alignment underscores the importance of accurately estimating microglia fractions,
as microglia is a crucial brain cell type implicated in multiple diseases, such as Alzheimer’s
disease21. Results also show that provided they utilize our scDNAm-based signature, existing
deconvolution methods also outperform EpiSCORE (Fig. 3a), thereby further illustrating the
accuracy of our signatures. We do note, however, that scMD, which utilizes EnsDeconv to
perform deconvolution, outperforms all methods.

Consistent cellular fractions estimated from DNAm and mRNA
While it is ideal to validate scMD with measured cell counts, the resources are limited to major
cell types and small sample sizes given the challenges of counting cell types in solid tissues like
the brain. Instead, the deconvolution of RNA-seq data has been well benchmarked and thus
can be used as “gold standard”9. In addition to the ROS data, we further validated scMD
in more cell types and a different platform with the dataset from Markunas et al.22, which
sequenced paired DNAm of Illumina EPIC arrays and RNA-seq bulk data from the nucleus
accumbens (NAc) of 211 individuals. Even though we do not have measured cell counts, the
cellular fractions are available from deconvolving paired mRNA data. The intuition is that
if we possess paired DNAm and RNA bulk data from the same tissue samples, we should
observe high concordance between the estimated cellular fractions from these two omics types,
given that there is a single true cellular composition for a tissue sample.
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With the above rationale, we first estimated cellular fractions using RNA data9 as the
gold standard of cellular fractions for benchmarking. Equipped with our newly constructed
signature matrices, we deconvolved the NAc bulk DNAm and RNA data and examined
the deconvolution results between these two omics types. We obtained a strong correlation
between estimated RNA- and DNAm-based fractions when we employed scMD to deconvolve
DNAm samples and EnsDeconv on RNA samples (Fig. 4a). Except for OPC, all correlations
exhibited were above 0.5. The correlation was especially noticeable among major cell types
such as neurons and oligodendrocytes, where correlations of 0.82 and 0.89 were observed.
Furthermore, the correlation remained high (0.74) even for the less common endothelial cells.
In contrast, when using EpiSCORE to infer cellular fractions from DNAm, the correlations
are lower than those of scMD across all cell types (Fig. 4b). Notably, EpiSCORE consistently
estimates microglia fractions to be approximately zero, and its correlations for astrocytes
and OPC are both negative.

scMD identifies cell types associated with Alzheimer’s disease
To demonstrate the utility of scMD-estimated cellular fractions, we tested their associations
with clinical phenotypes related to Alzheimer’s disease (AD). We utilized the brain DNAm
data from Mount Sinai Brain Bank (MSBB), which also collected variables such as age,
Clinical Dementia Rating (CDR), the Consortium to Establish a Registry for Alzheimer’s
Disease (CERAD) score, and Braak stage—a widely used classification system indicating
the progression of AD. The CDR was employed as an assessment tool to evaluate dementia
and cognitive status, assigning ratings on a scale of 0 to 5, which correspond to escalating
levels of severity in pathology23. CERAD score is a four-level semi-quantitative measure of
neuritic plaques. Braak stage categorizes the advancement of neurofibrillary tangles and
amyloid plaques in the brain, with stages ranging from 0 to 6, representing increasing levels
of pathology severity24,25.

Given the neurodegeneration that accompanies AD, comparing cell-type fractions across
age and various AD phenotypes is therefore of scientific interest. We conducted a compre-
hensive study examining the correlation of various phenotypes in MSBB with estimated
cellular fractions using scMD and EpiSCORE (Fig. 5a and Supplementary Table S3). As
expected, scMD detected a significant decrease in OPC and inhibitory neurons with aging,
but EpiSCORE did not identify any cell types associated with age. Among the three AD-
related phenotypes, we found the most differential fraction signals in clinical dementia rating.
With scMD, we observed significantly increased fractions of microglia and oligodendrocyte
and decreased fractions of OPC, excitatory, and inhibitory neurons, while EpiSCORE only
identified a significant increase in astrocytes and oligodendrocytes and a decrease in neurons.

Interestingly, as two aspects of AD, neuritic plaques and neurofibrillary tangles show
strikingly different differential fraction results. Both scMD and EpiSCORE did not identify
any cell types associated with neuritic plaques (as indicated by CERAD score), but there are
some cell types associated with neurofibrillary tangles (as measured by Braak score). For
instance, scMD-estimated microglia and excitatory neuron proportions increase and decrease
as the Braak stage increases, respectively (Fig. 5b), and inhibitory neuron proportions exhibit
little change. The observed increase in microglia proportions suggests an enhanced immune
response and neuroinflammation, which are known to be critical in neurodegenerative disorders
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like AD21. Additionally, the substantial decline in excitatory neurons is a compelling finding.
Excitatory neurons play a crucial role in signal transmission and neural communication
within the brain. The reduction in their cell count implies potential disruptions in synaptic
activity and impaired neuronal function in affected brain regions. These findings align with
previous research emphasizing neuronal loss as a sign of neurodegenerative disease. Similarly,
we also used EpiSCORE to estimate cell fractions from MSBB data and identified cell types
associated with AD. EpiSCORE identified oligodendrocytes and OPC associated with the
Braak score. Consistent with Figure 4b, EpiSCORE estimates microglia proportions to
be almost all zero and therefore not able to infer a significant correlation between their
proportions and Braak stage. While the decrease in neurons among AD patients is confirmed
with EpiSCORE (Fig. 5c), it lacks the resolution to show the decrease is primarily driven by
excitatory neurons since it does not estimate neuronal subtypes.

Furthermore, scMD-estimated cellular fractions enable CTS differential methylation
analyses. We used CellDMC26 to identify cell type-specific differentially methylated cytosines
(CTS-DMCs) (Supplementary Table S4 and Supplementary File). With scMD-estimated
cellular fractions, we identified 38 CTS-DMCs in microglia associated with age (Fig. 5d) and
13 DMCs in OPC with FDR < .05. Notably, among the most significant CpGs in microglia,
cg18574144 is within the gene body of THOP1, which is currently under investigation as a
potential biomarker for Alzheimer’s disease27. For CDR, we detected 221 DMCs in astrocytes
and 20 DMCs in OPC. We also identified dozens of DMCs in excitatory and inhibitory
neurons and oligodendrocytes associated with CERAD (neuritic plaques) and in inhibitory
neurons for Braak score (neurofibrillary tangles).

Discussion
The scMD method that we have developed presents a significant step forward in the ability
to analyze and understand the cellular heterogeneity of the brain at the molecular level using
DNAm data. By constructing signature matrices for seven distinct brain cell types, scMD
offers a much finer level of detail than previous deconvolution methods. Our method goes
beyond existing approaches by effectively leveraging recent advancements in scDNAm data
resources, bridging the gap between single-cell and bulk DNAm data. This utilization of
single-cell data in the generation of our signature matrices captures the intrinsic cellular
heterogeneity of the brain, which is an important consideration in the study of various
brain-related diseases and conditions.

The accuracy of scMD is reflected in its high performance in various validation studies
across different DNAm platforms. First, scMD consistently outperformed other approaches in
the deconvolution of purified-cell and bulk datasets, highlighting its robustness and potential
for widespread application. Furthermore, scMD demonstrated high concordance between the
RNA-estimated fractions and DNAm-estimated fractions, suggesting that scMD is successful
in capturing useful signals from the original sparse scDNAm data. Lastly, we showed that
scMD can precisely identify microglia and excitatory neurons associated with AD.

Despite the evident promise shown by scMD, it is essential to recognize certain challenges
and limitations that may warrant future work. First, there may be a computational burden
presented by processing scDNAm data due to its high dimensionality. The massive volumes
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of raw data require computational resources to process and reduce storage and memory.
However, given the availability of scDNAm data on public online platforms, we have mitigated
this issue through our parallel computation approach. This method allows for the rapid and
efficient processing of many cells at once during the construction of a cell-type signature
matrix. Another potential issue lies in the performance of the model being contingent on
the quality and scope of the reference single-cell data used to build the signature matrices.
Despite incorporating diverse sources of data to create our matrices, representation of certain
cell types, particularly rare ones, may be limited. Furthermore, the method’s efficacy in
tissues and conditions not represented in the training data awaits further evaluation. As
scDNAm is increasingly applied to various tissue types, we anticipate a broadened use of
scMD beyond the brain.

Conclusion
We present a robust and versatile tool for researchers to deconvolve bulk DNAm data with
scDNAm references. By offering more accurate, detailed, and efficient analyses of brain cell
composition from DNAm data, our method opens up new avenues for exploring the molecular
underpinnings of brain function and pathology. In our future work, we plan to refine and
expand the capabilities of scMD. We aim to incorporate additional cell types and explore
various tissue types with the expansion of scDNAm. Additionally, we aim to integrate other
omics data to gain novel insights into cellular heterogeneity in the brain and other tissues.

Methods

Details of the proposed scMD framework
Processing scDNAm data

Our goal is to build high-quality DNAm references using scDNAm technology. The initial step
towards achieving this objective involves harmonizing the differences in DNAm technologies
between traditional bulk DNAm data and the noisier scDNAm data. Compared to bulk
DNAm data, scDNAm is significantly sparser and higher in dimensionality. The challenge
is to bridge the gap between the dimensionality of the traditional bulk DNAm data and
that of the scDNAm data. Traditional bulk DNAm data typically use arrays of 450k or
850k CpG sites, while scDNAm is characterized by its sparse quantification across billions of
genomic locations. To address this issue, we employ a strategy that involves subsetting the
DNAm sites sequenced with 450k or 850k arrays or WGBS. This approach serves two-fold.
Firstly, it accelerates the overall process. Secondly, it simplifies the process of identifying
marker CpGs, which are crucial for various analyses in the field of epigenetics. By employing
this technique, we can successfully reduce the dimensionality of scDNAm data to make it
comparable to its bulk counterpart. After achieving a reduced-dimension scDNAm dataset,
the subsequent step is to derive CTS p-values to identify marker CpGs. Given the inherent
sparsity of scDNAm data, characterized by missing values, it is not feasible to identify specific
markers and construct signatures in the same manner as with scRNA-seq data.
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To generate a DNAm signature matrix akin to a reference, we first aggregated the
methylated counts and coverage of DNAm of each cell type:

mcik =
Nk∑
j=1

mcijk, covik =
Nk∑
j=1

covijk,

where mcik represents the cumulative count of all methylcytosine for the ith CpG site and
kth cell type, Nk denotes the number of cells belonging to the cell type k, and covik is the
total cytosine basecalls, incorporating both methylcytosine and unmethylcytosine for the ith

DNAm site and kth cell type. Subsequently, we carry out two-sided Fisher’s exact tests for
each cell type across all DNAm sites. To differentiate cell type k from all other cell types for
a given DNAm site i, we formulated the following table:

Cell type k Other cell types Row total
Methylcytosine Mik = mcik

∑
k′ ̸=k

Mik′ =
∑
k′ ̸=k

mcik′
∑

k

Mik

Unmethylcytosine Uik = covik − mcik

∑
k′ ̸=k

Uik′ =
∑
k′ ̸=k

covik′ −
∑
k′ ̸=k

mcik′
∑

k

Uik

Column total covik

∑
k′ ̸=k

covik′
∑

k

covik

The p-value of Fisher’s exact test corresponding to cell type k at the DNAm site i is
derived as

pik =

(∑
k

Mik

)
!
(∑

k

Uik

)
!
∑

k′ ̸=k

covik

! (covik)!

(Mik)!
∑

k′ ̸=k

Mik′

! (Uik)!
∑

k′ ̸=k

Uik′

!
(∑

k

covik

)
!
.

Once we calculated the CTS p-values for each cell type across all DNAm sites, we
arranged these values in ascending order. Based on a detailed evaluation of two sorted-cell
datasets, we selected the top 100 marker DNAm sites for each cell type based on their
p-values (Supplementary Fig. S1). This aligns with existing methods, such as minfi2, which
opted to select the top 100 differentially methylated marker DNAm sites per cell type. We
believe this strategic selection offers dual benefits. It not only accelerates the deconvolution
process, making the computational burden manageable for extensive bulk DNAm datasets,
especially for WGBS bulk DNAm data, but also enhances accessibility for the broader scientific
community. By reducing computational costs, our approach alleviates the challenges for
researchers, particularly those in resource-constrained settings, when handling large datasets.

Here we use an example to illustrate how scMD handles the large-scale raw scDNAm data.
The original compressed raw scDNAm files for more than 4,200 nuclei from Lee et al.11 totaled
a substantial 717 GB. After filtering for only CpG sites, the data was condensed to 183.2
GB. Further refinement at the cluster level reduced the data size to a more manageable 17.4
GB before loading into the R environment. Through the application of parallel computation
across 20 nodes, we were able to generate an 850k-based signature within approximately 10
minutes. Supplementary Table S1 provides detailed information on the number of DNAm
sites before and after processing.
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Ensemble deconvolution (EnsDeconv)

After obtaining the signature matrix from scDNAm data as described earlier, the subsequent
crucial step involves performing deconvolution on DNAm datasets. To accomplish this, we
employed our previously developed method EnsDeconv9. In essence, EnsDeconv represents a
deconvolution technique that draws inspiration from ensemble learning, wherein the outputs
of multiple deconvolution algorithms are combined to achieve enhanced estimation accuracy.
EnsDeconv focuses on important factors such as the choice of reference datasets, data
transformations, and deconvolution methods. EnsDeconv implements CTS robust regression
to synthesize results from different deconvolution settings, resulting in more robust and
accurate results than randomly choosing one setting. Taking into account all possible
combinations of the aforementioned factors in deconvolution, we leveraged ensemble learning
to generate P̂1, . . . , P̂D, representing the estimated cellular proportions from each of the D
scenarios. In this context, we define a scenario as a specific setting with a particular reference
dataset, transformations approach, and deconvolution method. We treat the ensemble learning
problem as a robust regression problem:

argmin W1,...,WK∈[0,1]S
(W1,··· ,WK)1K=1S

∑
d

K∑
k=1

∥Ŵdk − Wk∥2,

where Wk denotes the k-th cell type’s ensemble fraction for S samples, Ŵdk represents
the estimate for the k-th cell type fraction in the d-th deconvolution scenario, and ∥v∥2 =
(∑i v

2
i )1/2 is the vector equivalent of absolute deviation.

In this study, we utilized two scDNAm references, Lee et al.11 and Tian et al.13, to
implement the EnsDeconv approach. In terms of data transformations, scDNAm adopts
both beta-value and M-value transformations. In addition, our implementation of EnsDeconv
incorporated nine diverse deconvolution methods, each founded on unique theoretical bases
and specifically designed for various purposes. A portion of these techniques was originally
developed for deconvolving bulk DNAm data, e.g., quadratic programming28 and robust
partial correlations (RPC)29. In parallel, we also integrated several deconvolution methods
primarily designed for RNA-seq experiments. These included the robust regression technique
from FARDEEP30, support-vector regression from CIBERSORT31, the penalized regression
method with elastic net regularization featured in DCQ32, a log-normal model from ICeDT33,
and non-negative least squares (NNLS).

DNA methylation datasets
Brain scDNAm datasets

In this study, we began by generating a reference for scDNAm using snmC-seq data obtained
from Lee et al.11. The dataset utilized in this study is comprised of 4,238 single human brain
prefrontal cortex cells, enabling the simultaneous capture of chromatin organization and
DNA methylation information. The scDNAm data was downloaded from the GEO database
(GSE130711). To ensure data quality, we utilized the cell-type annotation provided by the
authors and excluded any cells marked as outliers, resulting in a total of 4,234 cells for further
analysis. The distribution of cell-type annotations in the remaining dataset consisted of
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670 inhibitory neurons (InN), 945 excitatory neurons (ExN), 1,250 oligodendrocytes (Oligo),
449 astrocytes (Astro), 416 microglial cells (Micro), 315 endothelial cells (Endo), and 189
oligodendrocyte progenitor cells (OPC). To map the scDNAm data to the DNAm sites in the
bulk DNAm dataset, we specifically considered cytosines in the CG context while excluding
those in the CH context. Additionally, we incorporated data from a newly collected dataset
Tian et al.13, which employed snmC-seq3 technology to profile whole-genome DNAm data.
We obtained the cluster-level data from the frontal cortex for the same seven cell types as
Lee et al.11.

Sorted-cell brain DNAm datasets for validation

Descriptions of DNAm validation datasets used in this part are summarized in Supplementary
Table S2. In order to assess the accuracy of our signature matrices, we used three sorted-cell
datasets that contained either sorted neuron samples and non-neuron samples or oligoden-
drocyte samples as validation datasets. The first dataset Mendizabal17 is a whole-genome
bisulfite sequencing (WGBS) postmortem human brain dataset. It is composed of two cell
populations: NeuN+ and OLIG2+. We focus on healthy controls, and the sample size is 25
and 20 respectively for the two cell types. The data is downloaded from GEO (GSE108066).
The second dataset Guintivano18 is an Illumina Human 450k Methylation dataset and profiled
in the postmortem frontal cortex of two different cellular populations (NeuN+ vs. NeuN-)
generated from 29 individuals using flow sorting. We downloaded the Guintivano data through
the Bioconductor package FlowSorted.DLPFC.450k. The third dataset Gasparoni19 is an
Illumina Human 450k Methylation dataset that contains 62 sorted-cell frontal cortex brain
samples, including 31 NeuN+ samples and 31 NeuN- samples. Gasparoni data is available at
GEO (GSE66351). We processed the Mendizabal data by extracting a subset of DNAm sites
that corresponds to the specific locations matched with scMD and EpiSCORE references
respectively. We prepossessed the Gasparoni, and Guintivano data using the minfi package7.
We evaluated the performance of scMD and EpiSCORE using total mean absolute error
(MAE) comparing estimated and measured fractions.

Bulk brain DNAm datasets for validation

The bulk DNA methylation (DNAm) data for the Mount Sinai Brain Bank (MSBB)23 were
obtained from Synapse (ID: syn21347197). This data encompasses 201 tissue samples derived
from the parahippocampal gyrus region of the brain (Brodmann area 36), and processed
using the Illumina 850k platform. We first deconvolved the MSBB DNAm data, subsequently
examining the relationship between cellular fractions and the Braak stage of Alzheimer’s
disease (AD).

We also used brain DNAm data from the Religious Orders Study (ROS), specifically
from the dorsolateral prefrontal cortex (DLPFC) tissue of 49 senior donors. This dataset
incorporates both bulk DNAm data, captured through a 450k array as described by De
Jager et al.20, and measured cell-type fractions as reported by Patrick et al.34. The study
measured the proportions of four distinct cell types, namely astrocyte, microglia, neuron, and
oligodendrocyte. Note that we excluded endothelial cells since prior studies confirmed their
poor quality of measured cell counts9.
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In addition, paired bulk DNAm and RNA data from the nucleus accumbens (NAc) were
obtained from public repositories, GSE147040 and GSE171936, respectively. The DNAm
data for NAc was profiled using the Infinium MethylationEPIC/850k microarray following
the guidelines provided by the manufacturer. The raw idat files were subsequently processed
and normalized using the minfi R package.

Single-cell RNA-sequencing (scRNA-seq) references to deconvolve
bulk RNA-seq data
In our prior research, we compiled a selection of scRNA-seq reference datasets9. For the
present study, we utilized the brain scRNA-seq data curated by STAB35 from three studies:
Darmanis et al.36, Hodge et al.37, and Habib et al.38. Deconvolution results were then
obtained via EnsDeconv. The single deconvolution methods implemented in EnsDeconv to
derive the RNA estimated fraction extend beyond those used in DNAm EnsDeconv. Notably,
we excluded deconvolution methods initially intended for DNAm deconvolution, including
Houseman et al.28 and RPC. This included an additional hybrid scale method—dtangle39—and
two deconvolution approaches specifically designed for scRNA-seq references: MuSiC5 and
Bisque6. These methods are not used in the DNAm deconvolution due to their methodological
incompatibility with DNAm data.

EpiSCORE
For a comprehensive comparison, we incorporated the DNAm reference matrix from Zhu
et al.16, which employs single-cell RNA sequencing (scRNA-seq) information and obtained
using EpiSCORE8. The resources needed to generate this reference matrix, including the
code and data, were directly sourced from the Code Ocean repository:
https://codeocean.com/capsule/2549317/tree/v3.

Availability of data and materials
• scMD is publicly hosted on GitHub (https://github.com/randel/scMD).

• The processed signatures of different platforms can be downloaded from
(https://github.com/randel/scMD/tree/main/Processed_data_450k850k).

• EnsDeconv (https://github.com/randel/EnsDeconv).

• The Lee scDNAm data can be obtained through
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE130711).

• The Tian scDNAm data is available at http://neomorph.salk.edu/wtian/hba-data/.

• The Guintivano DNAm data can be downloaded from a Bioconductor package named
FlowSorted.DLPFC.450k.
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• The Gasparoni DNAm data is publicly available on
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE66351).

• The Mendizabal DNAm data is publicly available on
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE108066).

• The NAc bulk DNAm and RNA data are publicly available on
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE147040) and
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE171936).

• The ROS and MSBB bulk data and related clinical data are publicly available on AD
Knowledge Portal (https://adknowledgeportal.synapse.org/).

• EpiSCORE (https://github.com/aet21/EpiSCORE).
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Figures

Figure 1: a, Schematic representation of the proposed scMD framework. The scMD process
is comprised of several steps. First, with single-cell DNA methylation (scDNAm) data and
cell cluster labels, the data is filtered to include only DNAm sites present in the 450k or
850k array or WGBS sequencing, addressing the challenge of high dimensionality. Second,
the data is aggregated at the cluster level to mitigate the issue of sparsity. Third, Fisher’s
exact test is utilized to identify marker CpGs by comparing each cell type against all other
cell types. Finally, based on the resulting p-values, a distinctive scDNAm signature is
constructed. Here we show seven cell types: astrocytes (Astro), endothelial cells (Endo),
excitatory neurons (ExN), inhibitory neurons (InN), microglia (Micro), oligodendrocytes
(Oligo), and oligodendrocyte precursor cells (OPC). b, Detailed demonstration of building
DNAm signature matrix from high-dimensional and sparse scDNAm data. Question marks
in matrices denote missing data. Column annotations denote cell types.
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Figure 2: Validating cell-type DNAm signature from scDNAm data on sorted-cell data. a,
Validation on Mendizabal et al.17. Bar plots of mean estimated cellular fractions across
NeuN+ and OLIG2+ samples using scMD and EpiSCORE. Different cell types are annotated
with different colors. Box plots of cellular fractions in sorted NeuN+ and OLIG2+ samples are
shown on the right. Different colors represent different methods. b, Validation on Guintivano
et al.18. c, Validation on Gasparoni et al.19. Note that for benchmarking, we aggregated the
fraction estimates of cell subtypes to generate the fractions of broader cell types.
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Figure 3: a, Benchmarking of scMD and other deconvolution methods on ROS data. Except
for EpiSCORE which uses its RNA-derived reference, all other methods use our derived
scDNAm references. For scMD, each dot denotes one correlation for each cell type. For
other methods, each dot represents the average of Spearman’s correlation across scenarios
in each cell type. A scenario is defined as a particular setting with a specific deconvolution
method and reference dataset. The black vertical line shows the mean of the average
Spearman’s correlation across scenarios, and the horizontal lines present means ± standard
error of the mean. Scatterplots (b) and (c) illustrate the relationship between the estimated
fractions of EpiSCORE and scMD (x-axis) against the corresponding fractions measured
using immunohistochemistry (IHC) in ROS data (y-axis). Note that for benchmarking, we
aggregated scMD’s fraction estimates of neuronal subtypes to generate the neuronal fractions.
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Figure 4: Deconvolution of bulk NAc data using scMD (a) and EpiSCORE (b) into six cell
types. Scatter plots comparing the estimated fraction (est. fraction) obtained for each sample
with RNA data (x-axis) using EnsDeconv vs. DNAm data (y-axis).
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Figure 5: Identifying differential cellular fractions and methylated cytosines with the Mount
Sinai Brain Bank (MSBB) data. a, Correlation between cellular fractions and age and AD
phenotypes. * p-value < 0.05. b, scMD identified pairs of phenotypes and cellular fractions. c,
EpiSCORE identified pairs of phenotypes and cellular fractions. d, Differentially methylated
cytosines in microglia associated with aging using scMD estimated cellular fractions.
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